modelId
stringlengths 4
81
| tags
list | pipeline_tag
stringclasses 17
values | config
dict | downloads
int64 0
59.7M
| first_commit
timestamp[ns, tz=UTC] | card
stringlengths 51
438k
|
---|---|---|---|---|---|---|
Aleksandar/bert-srb-ner | [
"pytorch",
"bert",
"token-classification",
"dataset:wikiann",
"transformers",
"generated_from_trainer",
"autotrain_compatible"
]
| token-classification | {
"architectures": [
"BertForTokenClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4 | null | ---
language:
- zh
tags:
- infomation extraction
- uie
license: apache-2.0
---
# UIE信息抽取模型(Pytorch)
## 模型介绍
+ [UIE(Universal Information Extraction)](https://arxiv.org/pdf/2203.12277.pdf):Yaojie Lu等人在ACL-2022中提出了通用信息抽取统一框架 `UIE`。
+ 该框架实现了实体抽取、关系抽取、事件抽取、情感分析等任务的统一建模,并使得不同任务间具备良好的迁移和泛化能力。
+ 为了方便大家使用 `UIE` 的强大能力,[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)借鉴该论文的方法,基于 `ERNIE 3.0` 知识增强预训练模型,训练并开源了首个中文通用信息抽取模型 `UIE`。
+ 该模型可以支持不限定行业领域和抽取目标的关键信息抽取,实现零样本快速冷启动,并具备优秀的小样本微调能力,快速适配特定的抽取目标。
## 使用方法
```commandline
pip install lightningnlp
```
```python
from pprint import pprint
from lightningnlp.task.uie import UIEPredictor
# 实体识别
schema = ['时间', '选手', '赛事名称']
uie = UIEPredictor("xusenlin/uie-base", schema=schema)
pprint(uie("2月8日上午北京冬奥会自由式滑雪女子大跳台决赛中中国选手谷爱凌以188.25分获得金牌!")) # Better print results using pprint
# 输出
[{'时间': [{'end': 6,
'probability': 0.9857378532924486,
'start': 0,
'text': '2月8日上午'}],
'赛事名称': [{'end': 23,
'probability': 0.8503089953268272,
'start': 6,
'text': '北京冬奥会自由式滑雪女子大跳台决赛'}],
'选手': [{'end': 31,
'probability': 0.8981548639781138,
'start': 28,
'text': '谷爱凌'}]}]
```
## 参考链接
[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/uie) |
Aleksandra/herbert-base-cased-finetuned-squad | [
"pytorch",
"tensorboard",
"bert",
"question-answering",
"transformers",
"generated_from_trainer",
"license:cc-by-4.0",
"autotrain_compatible"
]
| question-answering | {
"architectures": [
"BertForQuestionAnswering"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | 2022-12-07T09:55:30Z | ---
language: de
datasets:
- Short-Answer-Feedback/saf_legal_domain_german
tags:
- generated_from_trainer
widget:
- text: "Antwort: Wird sich nicht an die Auflagen gehalten (unzureichende Eigenbemühung), droht eine Sperrzeit von 1-2 Wochen. Dadurch wird für die genannte zeit keine Leistung gezahlt, die Anspruchsdauer vermindert sich insgesamt. Bei wichtigen Gründen wird die Sperrzeit nicht verordnet. Lösung: Merkblatt 1 für Arbeitslose, S. 22: Erbringen Sie die Pflichten im Zusammenhang mit den Eigenbemühungen nicht, nicht rechtzeitig oder nicht vollständig, tritt eine Sperrzeit (0,75 p) ein. Merkblatt 1 für Arbeitslose, S. 55: Die Dauer einer Sperrzeit bei unzureichenden Eigenbemühungen beträgt zwei Wochen. (0,25 p). Frage: Mit welcher Folge und welcher Dauer müssen Sie rechnen, wenn Sie Ihre notwendigen Eigenbemühungen nicht rechtzeitig oder nicht vollständig erfüllen?"
---
# mbart-finetuned-saf-legal-domain
This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the [saf_legal_domain_german](https://huggingface.co/datasets/Short-Answer-Feedback/saf_legal_domain_german) dataset for Short Answer Feedback (SAF).
## Model description
This model was built on top of [mBART](https://arxiv.org/abs/2001.08210), which is a sequence-to-sequence denoising auto-encoder pre-trained on large-scale monolingual corpora in many languages.
It expects inputs in the following format:
```
Antwort: [answer] Lösung: [reference_answer] Frage: [question]
```
In the example above, `[answer]`, `[reference_answer]` and `[question]` should be replaced by the provided answer, the reference answer and the question to which they refer, respectively.
The outputs are formatted as follows:
```
[verification_feedback] Feedback: [feedback]
```
Hence, the `[verification_feedback]` label will be one of `Correct`, `Partially correct` or `Incorrect`, while `[feedback]` will be the textual feedback generated by the model according to the given answer.
## Intended uses & limitations
This model is intended to be used for Short Answer Feedback generation in the domain of the German social law. Thus, it is not expected to have particularly good performance on sets of questions and answers out of this scope.
It is important to acknowledge that the model underperforms when a question that was not seen during training is given as input for inference. In particular, it tends to classify most answers as being correct and does not provide relevant feedback in such cases. Nevertheless, this limitation could be partially overcome by extending the dataset with the desired question (and associated answers) and fine-tuning it for a few epochs on the new data.
## Training and evaluation data
As mentioned previously, the model was trained on the [saf_legal_domain_german](https://huggingface.co/datasets/Short-Answer-Feedback/saf_legal_domain_german) dataset, which is divided into the following splits.
| Split | Number of examples |
| --------------------- | ------------------ |
| train | 1596 |
| validation | 400 |
| test_unseen_answers | 221 |
| test_unseen_questions | 275 |
Evaluation was performed on the `test_unseen_answers` and `test_unseen_questions` splits.
## Training procedure
The [Trainer API](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainer) was used to fine-tune the model. The code utilized for pre-processing and training was mostly adapted from the [summarization script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) made available by HuggingFace.
Training was completed in a little over 1 hour on a GPU on Google Colab.
### Training hyperparameters
The following hyperparameters were used during training:
- num_epochs: 9
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- learning_rate: 5e-05
- lr_scheduler_type: linear
- train_batch_size: 1
- gradient_accumulation_steps: 4
- eval_batch_size: 4
- mixed_precision_training: Native AMP
- seed: 42
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
## Evaluation results
The generated feedback was evaluated through means of the [SacreBLEU](https://huggingface.co/spaces/evaluate-metric/sacrebleu), [ROUGE-2](https://huggingface.co/spaces/evaluate-metric/rouge), [METEOR](https://huggingface.co/spaces/evaluate-metric/meteor), [BERTScore](https://huggingface.co/spaces/evaluate-metric/bertscore) metrics from HuggingFace, while the [accuracy](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html) and [F1](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html) scores from scikit-learn were used for evaluation of the labels.
The following results were achieved.
| Split | SacreBLEU | ROUGE-2 | METEOR | BERTScore | Accuracy | Weighted F1 | Macro F1 |
| --------------------- | :-------: | :-----: | :----: | :-------: | :------: | :---------: | :------: |
| test_unseen_answers | 42.8 | 43.7 | 58.2 | 57.5 | 81.0 | 80.1 | 74.6 |
| test_unseen_questions | 3.2 | 5.0 | 20.0 | 14.8 | 60.7 | 55.3 | 55.4 |
The script used to compute these metrics and perform evaluation can be found in the `evaluation.py` file in this repository.
## Usage
The example below shows how the model can be applied to generate feedback to a given answer.
```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained('Short-Answer-Feedback/mbart-finetuned-saf-legal-domain')
tokenizer = AutoTokenizer.from_pretrained('Short-Answer-Feedback/mbart-finetuned-saf-legal-domain')
example_input = 'Antwort: Wird sich nicht an die Auflagen gehalten (unzureichende Eigenbemühung), droht eine Sperrzeit von 1-2 Wochen. Dadurch wird für die genannte zeit keine Leistung gezahlt, die Anspruchsdauer vermindert sich insgesamt. Bei wichtigen Gründen wird die Sperrzeit nicht verordnet. Lösung: Merkblatt 1 für Arbeitslose, S. 22: Erbringen Sie die Pflichten im Zusammenhang mit den Eigenbemühungen nicht, nicht rechtzeitig oder nicht vollständig, tritt eine Sperrzeit (0,75 p) ein. Merkblatt 1 für Arbeitslose, S. 55: Die Dauer einer Sperrzeit bei unzureichenden Eigenbemühungen beträgt zwei Wochen. (0,25 p). Frage: Mit welcher Folge und welcher Dauer müssen Sie rechnen, wenn Sie Ihre notwendigen Eigenbemühungen nicht rechtzeitig oder nicht vollständig erfüllen?'
inputs = tokenizer(example_input, max_length=256, padding='max_length', truncation=True, return_tensors='pt')
generated_tokens = model.generate(
inputs['input_ids'],
attention_mask=inputs['attention_mask'],
max_length=128
)
output = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
```
The output produced by the model then looks as follows:
```
Partially correct Feedback: Es ist richtig, dass Sie mit einer Sperrzeit rechnen müssen, in der Sie keine Leistung bekommen. Die gesetzlich vorgesehene Sperrzeit bei unzureichenden Eigenbemühungen beträgt jedoch zwei Wochen.
```
|
adorkin/xlm-roberta-en-ru-emoji | [
"pytorch",
"safetensors",
"xlm-roberta",
"text-classification",
"en",
"ru",
"dataset:tweet_eval",
"transformers"
]
| text-classification | {
"architectures": [
"XLMRobertaForSequenceClassification"
],
"model_type": "xlm-roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 31 | 2022-12-07T09:59:38Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- f1
model-index:
- name: finetuned-self_mlm_medium
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: train
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.91304
- name: F1
type: f1
value: 0.9545435537155521
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-self_mlm_medium
This model is a fine-tuned version of [muhtasham/bert-medium-mlm-finetuned-imdb](https://huggingface.co/muhtasham/bert-medium-mlm-finetuned-imdb) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3215
- Accuracy: 0.9130
- F1: 0.9545
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.2916 | 0.64 | 500 | 0.2293 | 0.9087 | 0.9522 |
| 0.1969 | 1.28 | 1000 | 0.1605 | 0.9442 | 0.9713 |
| 0.1511 | 1.92 | 1500 | 0.1787 | 0.9406 | 0.9694 |
| 0.1046 | 2.56 | 2000 | 0.2280 | 0.9379 | 0.9680 |
| 0.0852 | 3.2 | 2500 | 0.3215 | 0.9130 | 0.9545 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2
|
AlekseyKorshuk/horror-scripts | [
"pytorch",
"gpt2",
"text-generation",
"transformers"
]
| text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 19 | null | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 287.31 +/- 20.97
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
No preview (Windows dev.).
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AlekseyKulnevich/Pegasus-QuestionGeneration | [
"pytorch",
"pegasus",
"text2text-generation",
"transformers",
"autotrain_compatible"
]
| text2text-generation | {
"architectures": [
"PegasusForConditionalGeneration"
],
"model_type": "pegasus",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 17 | null | ---
language:
- sk
license: apache-2.0
tags:
- hf-asr-leaderboard
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Slovak
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
split: test
config: sk
metrics:
- name: Wer
type: wer
value: 33.817229890528324
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Slovak
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 sk dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6225
- Wer: 33.8172
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0038 | 14.0 | 1000 | 0.5366 | 34.2575 |
| 0.0006 | 28.01 | 2000 | 0.5914 | 34.8881 |
| 0.0003 | 42.01 | 3000 | 0.6225 | 33.8172 |
| 0.0002 | 57.0 | 4000 | 0.6411 | 34.1385 |
| 0.0002 | 71.01 | 5000 | 0.6498 | 34.0195 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|
AlexDemon/Alex | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- xlsum
metrics:
- rouge
model-index:
- name: t5-small-finetuned-xlsum-concat-multi-news-withlm
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: xlsum
type: xlsum
config: english
split: train
args: english
metrics:
- name: Rouge1
type: rouge
value: 29.1852
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-xlsum-concat-multi-news-withlm
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4218
- Rouge1: 29.1852
- Rouge2: 8.0131
- Rougel: 22.5457
- Rougelsum: 22.5874
- Gen Len: 18.8391
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 2.7018 | 1.0 | 19158 | 2.4218 | 29.1852 | 8.0131 | 22.5457 | 22.5874 | 18.8391 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|
AlexeyIgnatov/albert-xlarge-v2-squad-v2 | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2022-12-07T11:09:03Z | ---
license: creativeml-openrail-m
language:
- en
thumbnail: "https://huggingface.co/Norod78/sd2-dreambooth-ClaymationXmas/resolve/main/collage_1.jpeg"
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
datasets:
- Norod78/ChristmasClaymation-blip-captions
inference: true
widget:
- text: Whilly Wonka, ClaymationXmas
- text: Pikachu, ClaymationXmas, very detailed, clean, high quality, sharp image, Naoto Hattori
---
# sd2-dreambooth-ClaymationXmas
## Use ClaymationXmas in your prompt
### WebUI Examples
See [examples](https://huggingface.co/Norod78/sd2-dreambooth-ClaymationXmas/tree/main/examples) folder for images generated with this model using a1111's WebUI
### WebUI Example Collage




```py
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import torch
def main():
#////////////////////////////////////////////
seed = 42
model = "Norod78/sd2-dreambooth-ClaymationXmas"
#////////////////////////////////////////////
torch.manual_seed(seed)
generator = torch.Generator()
generator.manual_seed(seed)
scheduler = DPMSolverMultistepScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
trained_betas=None,
predict_epsilon=True,
thresholding=False,
algorithm_type="dpmsolver++",
solver_type="midpoint",
lower_order_final=True,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
pipe = StableDiffusionPipeline.from_pretrained(model, scheduler=scheduler,torch_dtype=dtype, generator=generator,use_auth_token=True).to(device)
#////////////////////////////////////////////
num_inference_steps = 20
width=512
height=512
samples=4
#////////////////////////////////////////////
prompt = "Willy Wonka, ClaymationXmas"
result = pipe([prompt] * samples, num_inference_steps=num_inference_steps, height=height, width=width)
images = result["images"]
for i, image in enumerate(images):
prompt_to_print = str(i) + "-" + prompt
output_file = prompt_to_print.replace(" ", "_") + "-" + str(width) + "x" +str(height)+ "_" + str(num_inference_steps) + "steps" + "_seed" + str(seed) + ".jpg"
image.save(output_file)
print("Saved: " + str(output_file))
if __name__ == '__main__':
main()
```
Fine Tuned by [@Norod78](https://twitter.com/Norod78)
|
AlexeyYazev/my-awesome-model | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
license: creativeml-openrail-m
tags:
- text-to-image
widget:
- text: enAttendantColine
---
### enAttendantColine-v2-512-DreamBooth Dreambooth model trained by eBoreal with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v2-512 base model
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
Sample pictures of:
enAttendantColine (use that on your prompt)

|
Alireza1044/albert-base-v2-sst2 | [
"pytorch",
"tensorboard",
"albert",
"text-classification",
"en",
"dataset:glue",
"transformers",
"generated_from_trainer",
"license:apache-2.0"
]
| text-classification | {
"architectures": [
"AlbertForSequenceClassification"
],
"model_type": "albert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 52 | null | ---
tags:
- text-to-image
- stable-diffusion
- diffusion-models-class
- dreambooth-hackathon
- wildcard
---
# If you want to use this style , the prompt: wgz style
**I trianed this weight by using dreambooth**
There are three models in the library, V1, V2, and beta
V1:WOLP.ckpt
V2:wgz v2.ckpt
BEAT :wgz beta.ckpt
Let me introduce these versions ,
V1 is the earliest. use 512 resolution for training,
Advantages: the generation logic is good, text2img is used well
Disadvantages: There will be less screen details and less imitation of strokes. The whites of the eyes turn red easily.
V2 adjusted the training set and used 768 resolution training
Advantages: more details, better facial portrayal
Disadvantages: Eyeballs tend to generate green, and the logic of text generation is not good, resulting in poor usability of text2img.
BETA: A version of the training map that is relatively complex has poor logic, but sometimes satisfactory results can be obtained in the img2 img. Try if you want!
**v2**
Next, I will show the nice output of V2, which is made by using the img2img. I will also give the configuration I use.
**parameters;**
Prompt :wgz style,portrait of a beautiful women highly detailed,perfect femine face,Classical oil painting,by masamune shirow, by William-tae Kim
Negative prompt: old,men,two poeple,Three dimensional facial features,deep shadows on the five senses,tall nose,Eye shadow,[High bridge], [narrow nose],Deep orbital fossa
Steps: 20, Sampler: DPM++ 2S a Karras, CFG scale: 9.5, Denoising strength: 0.51, Mask blur: 4
I hope you guys enjoy this model and create works that satisfied

**BETA**
Below I will show the nice output of a beta. I like its abstract color swatches, but the production rate is not high

I hope you guys enjoy this model and create works that satisfied
Below is the introduction about V1,and some nice output by using V1
**v1**
--------------------------
Training with the Elden ring Style ckpt (SD1.5)
# link:[eldenring-ckpt](https://huggingface.co/nitrosocke/elden-ring-diffusion)
# Training parameters:
steps: 12500 stpes
Learning rate:1e-6
int images number:about 100
class image number :200
**There are some samples:**


PS:I try hard to achieve the painting style I want by using stable diffusion. I have tried a lot, with failures and successes. With my current technology, I can hardly find progress now. So this model will not be updated in a short time. If you have ideas or want to improve together, you can contact me,happy new year guys.
Telegram: https://t.me/hhhyxnh
QQ:1602821649
** More pictures in the image folder
thank you. |
Alstractor/distilbert-base-uncased-finetuned-cola | [
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"dataset:glue",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
]
| text-classification | {
"architectures": [
"DistilBertForSequenceClassification"
],
"model_type": "distilbert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 40 | null | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -52.64 +/- 21.59
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Altidore/DuggFace | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language:
- ro
license: apache-2.0
tags:
- whisper-event
pinned: true
datasets:
- mozilla-foundation/common_voice_11_0
- gigant/romanian_speech_synthesis_0_8_1
model-index:
- name: Whisper Medium Romanian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 ro
type: mozilla-foundation/common_voice_11_0
config: ro
split: test
args: ro
metrics:
- name: Wer
type: wer
value: 4.73
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs ro
type: google/fleurs
config: ro
split: test
args: ro
metrics:
- name: Wer
type: wer
value: 19.64
metrics:
- wer
---
# Whisper Medium Romanian
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset, and the Romanian speech synthesis corpus.
It achieves the following results on the evaluation set:
- eval_loss: 0.06453
- eval_wer: 4.717
- epoch: 7.03
- step: 3500
## Model description
The architecture is the same as [openai/whisper-medium](https://huggingface.co/openai/whisper-medium).
## Training and evaluation data
The model was trained on the Common Voice 11.0 dataset (`train+validation+other` splits) and the Romanian speech synthesis corpus, and was tested on the `test` split of the Common Voice 11.0 dataset.
## Usage
Inference with 🤗 transformers
```python
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from datasets import Audio, load_dataset
import torch
# load model and processor
processor = WhisperProcessor.from_pretrained("gigant/whisper-medium-romanian")
model = WhisperForConditionalGeneration.from_pretrained("gigant/whisper-medium-romanian")
# load dummy dataset and read soundfiles
ds = load_dataset("common_voice", "ro", split="test", streaming=True)
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
input_speech = next(iter(ds))["audio"]["array"]
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language = "ro", task = "transcribe")
input_features = processor(input_speech, return_tensors="pt", sampling_rate=16_000).input_features
predicted_ids = model.generate(input_features, max_length=448)
# transcription = processor.batch_decode(predicted_ids)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens = True)
```
The code was adapted from [openai/whisper-medium](https://huggingface.co/openai/whisper-medium).
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2 |
AndreLiu1225/t5-news-summarizer | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"autotrain_compatible"
]
| text2text-generation | {
"architectures": [
"T5ForConditionalGeneration"
],
"model_type": "t5",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": true,
"length_penalty": 2,
"max_length": 200,
"min_length": 30,
"no_repeat_ngram_size": 3,
"num_beams": 4,
"prefix": "summarize: "
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 10 | null | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 288.24 +/- 20.60
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AndrewChar/model-QA-5-epoch-RU | [
"tf",
"distilbert",
"question-answering",
"ru",
"dataset:sberquad",
"transformers",
"generated_from_keras_callback",
"autotrain_compatible"
]
| question-answering | {
"architectures": [
"DistilBertForQuestionAnswering"
],
"model_type": "distilbert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 109 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9851851851851852
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [nielsr/swin-tiny-patch4-window7-224-finetuned-eurosat](https://huggingface.co/nielsr/swin-tiny-patch4-window7-224-finetuned-eurosat) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0416
- Accuracy: 0.9852
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1296 | 1.0 | 190 | 0.0646 | 0.9774 |
| 0.1257 | 2.0 | 380 | 0.0445 | 0.9841 |
| 0.1067 | 3.0 | 570 | 0.0416 | 0.9852 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0
- Datasets 2.7.1
- Tokenizers 0.13.2
|
Andy1621/uniformer | [
"license:mit",
"has_space"
]
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
license: creativeml-openrail-m
tags:
- text-to-image
widget:
- text: asmug
---
### asmug Dreambooth model trained by jayshreeanand with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
Sample pictures of:
asmug (use that on your prompt)

|
AndyyyCai/bert-base-uncased-finetuned-copa | [
"pytorch",
"bert",
"multiple-choice",
"transformers"
]
| multiple-choice | {
"architectures": [
"BertForMultipleChoice"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4 | null | ---
language:
- as
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Assamese
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 as
type: mozilla-foundation/common_voice_11_0
config: as
split: test
args: as
metrics:
- name: Wer
type: wer
value: 35.49900739938639
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Assamese
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 as dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6033
- Wer: 35.4990
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 40
- training_steps: 400
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 1.0676 | 3.01 | 50 | 0.6487 | 62.5338 |
| 0.2252 | 6.03 | 100 | 0.3487 | 36.4916 |
| 0.0787 | 9.04 | 150 | 0.3934 | 35.6434 |
| 0.0178 | 13.01 | 200 | 0.5057 | 36.0043 |
| 0.0048 | 16.02 | 250 | 0.5589 | 35.8239 |
| 0.0022 | 19.04 | 300 | 0.5882 | 35.7336 |
| 0.0015 | 23.01 | 350 | 0.5985 | 35.5712 |
| 0.0013 | 26.02 | 400 | 0.6033 | 35.4990 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
Anirbanbhk/Hate-speech-Pretrained-movies | [
"tf",
"bert",
"text-classification",
"transformers"
]
| text-classification | {
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 20 | null |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: BeeBeaver/testpyramidsrnd
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
AnonymousSub/AR_rule_based_only_classfn_epochs_1_shard_1 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 1 | null | # QP
```
Dataset: MSCOCO
Learning Rate: 5e-5
```
## Text Diversity Metrics
```
Semantic Similarity: SBERT
Syntactic Diversity: Dependency Parse Tree edit distance
Lexical Diversity: Character-level edit distance
Phonological Diversity: Rhythmic Diversity
Morphological Diversity: POS edit distance.
```
## Results
```
Train Loss (MSE): 0.0127
Dev Loss (MSE): 0.0136
```
|
AnonymousSub/AR_rule_based_roberta_bert_triplet_epochs_1_shard_10 | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 10 | 2022-12-07T15:45:52Z | ---
language:
- fi
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
model-index:
- name: Whisper Medium Fi - Teemu Sormunen
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: fi
split: test
args: fi
metrics:
- name: Wer
type: wer
value: 16.3871
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Fi - Teemu Sormunen
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0, train+val dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.2453
- eval_wer: 16.3871
- eval_runtime: 1296.4339
- eval_samples_per_second: 1.314
- eval_steps_per_second: 0.164
- epoch: 5.04
- step: 300
## Model description
Checkpoint of a Finnish model trained with Common Voice 11.0 train+validation data. The data is very small, and already during 300 steps the model overfit on training data.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- training_steps: 1000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
AnonymousSub/AR_rule_based_roberta_twostage_quadruplet_epochs_1_shard_1 | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | null | ---
tags:
- generated_from_trainer
datasets:
- decision_transformer_gym_replay
model-index:
- name: output
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# output
This model is a fine-tuned version of [](https://huggingface.co/) on the decision_transformer_gym_replay dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 120
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2
|
AnonymousSub/AR_rule_based_roberta_twostagetriplet_epochs_1_shard_1 | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | null | ---
language:
- ca
library_name: nemo
datasets:
- mozilla-foundation/common_voice_11_0
thumbnail: null
tags:
- automatic-speech-recognition
- speech
- audio
- CTC
- citrinet
- pytorch
- NeMo
license: cc-by-4.0
widget:
- example_title: CV sample 1
src: https://huggingface.co/projecte-aina/stt-ca-citrinet-512/tree/main/samples/common_voice_ca_34667058.wav
model-index:
- name: stt-ca-citrinet-512
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Mozilla Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: ca
split: test
args:
language: ca
metrics:
- name: Test WER
type: wer
value: 6.684
---
# Aina Project's Catalan text-to-speech model
## Model description
This model transcribes audio samples in Catalan to lowercase text without punctuation. The model was fine-tuned from a pre-trained Spanish [stt-es-citrinet-512](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_es_citrinet_512) model using the [NeMo](https://github.com/NVIDIA/NeMo) toolkit. It has around 36.5M parámeters and has been trained on [Common Voice 11.0](https://commonvoice.mozilla.org/en/datasets).
## Intended uses and limitations
You can use this model for Automatic Speech Recognition (ASR) in Catalan, to transcribe audio files in Catalan to plain text without punctuation.
## How to use
### Usage
Requiered libraries:
```bash
pip install nemo_toolkit['all']
```
Clone the repository to download the model:
```bash
git clone https://huggingface.co/projecte-aina/stt-ca-citrinet-512
```
Given that `NEMO_PATH` is the path that points to the downloaded `stt-ca-citrinet-512.nemo` file, to do inference over a set of `.wav` files you should:
```python
# Load the model
model = nemo_asr.models.EncDecCTCModel.restore_from(NEMO_PATH)
# Create a list pointing to the audio files
paths2audio_files = ["audio_1.wav", ..., "audio_n.wav"]
# Fix the batch size to whatever number suits your purpose
batch_size = 8
# Transcribe the audio files
transcriptions = model.transcribe(paths2audio_files=paths2audio_files,
batch_size=batch_size)
# Visualize the transcriptions
print(transcriptions)
```
## Training data
This model has been trained on the training split of the Catalan version of [Common Voice 11.0](https://commonvoice.mozilla.org/en/datasets).
## Training
### Data preparation
We have processed [Common Voice 11.0](https://commonvoice.mozilla.org/en/datasets) using the NeMo toolkit. We used [get_commonvoice_data.py](https://github.com/NVIDIA/NeMo/blob/main/scripts/dataset_processing/get_commonvoice_data.py) to process the manifests and made a subsequent data cleaning step.
After cleaning the dataset and normalizing the `ñ` character to `ny`, we have used the following charset to create the final NeMo manifests for training.
```python
['c', ' ', 'ó', 'g', 'a', 'o', 'ü', 'v', 'p', 't', "'", '—', 'f', 'k', 'à', 'ï', 'í', 'ú', 'd', 'l', 'z', 'é', 'w', 'm', 'r', 'n', 'y', '-', 'u', 'i', 'h', 'ç', 'e', '·', 'q', 'è', 'ò', 'j', 'x', 's', 'b']
```
### Training procedure
This model was trained starting from a pre-trained Spanish [stt-es-citrinet-512](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_es_citrinet_512) model. The initial learning rate was set to 0.005 and the minimum lr for weight decay was set to 1e-7.
The model was trained for 90 steps and then continued training for another 90 steps starting from a learning rate of 1e-4.
## Evaluation
After evaluation on the test split of Common Voice 11.0 we have obtained a WER of 6.684.
## Additional information
### Author
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected])
### Contact information
For further information, send an email to [email protected]
### Copyright
Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center
### Licensing Information
[Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/)
### Funding
This work was funded by the [Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
## Disclaimer
<details>
<summary>Click to expand</summary>
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.
In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
|
AnonymousSub/AR_rule_based_twostagetriplet_epochs_1_shard_1 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 5 | null | Access to model picikkk/Ai is restricted and you are not in the authorized list. Visit https://huggingface.co/picikkk/Ai to ask for access. |
AnonymousSub/AR_rule_based_twostagetriplet_hier_epochs_1_shard_1 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | null | ---
language:
- it
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Italian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
args: 'config: it, split: test'
metrics:
- name: Wer
type: wer
value: 17.37085955328124
---
# Whisper Small Italian
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2421
- Wer: 17.3709
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.4521 | 0.1 | 100 | 1.3771 | 120.3480 |
| 0.7526 | 0.21 | 200 | 0.9120 | 83.8949 |
| 0.3023 | 0.31 | 300 | 0.4427 | 26.2063 |
| 0.2718 | 0.42 | 400 | 0.4282 | 25.9013 |
| 0.2823 | 0.52 | 500 | 0.4181 | 26.2757 |
| 0.3151 | 0.63 | 600 | 0.4095 | 25.0624 |
| 0.2559 | 0.73 | 700 | 0.4028 | 25.4784 |
| 0.2727 | 0.84 | 800 | 0.2888 | 19.5491 |
| 0.2532 | 0.94 | 900 | 0.2779 | 19.3832 |
| 0.232 | 1.05 | 1000 | 0.2722 | 18.6778 |
| 0.2169 | 1.15 | 1100 | 0.2720 | 18.9268 |
| 0.2493 | 1.26 | 1200 | 0.2741 | 20.0678 |
| 0.2312 | 1.36 | 1300 | 0.2666 | 18.2767 |
| 0.2158 | 1.47 | 1400 | 0.2651 | 19.6529 |
| 0.2171 | 1.57 | 1500 | 0.2583 | 18.6087 |
| 0.2074 | 1.68 | 1600 | 0.2551 | 17.6820 |
| 0.1862 | 1.78 | 1700 | 0.2491 | 17.4124 |
| 0.2044 | 1.89 | 1800 | 0.2475 | 17.8964 |
| 0.1877 | 1.99 | 1900 | 0.2421 | 17.3709 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
AnonymousSub/SR_cline | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | null | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 650 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 650,
"warmup_steps": 65,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
AnonymousSub/SR_consert | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 2 | null | ---
license: apache-2.0
datasets:
- tals/vitaminc
- SetFit/mnli
- snli
- fever
- paws
- scitail
language:
- en
---
This is an NLI model based on T5-XXL that predicts a binary label ('1' - Entailment, '0' - No entailment).
It is trained similarly to the NLI model described in the [TRUE paper (Honovich et al, 2022)](https://arxiv.org/pdf/2204.04991.pdf), but using the following datasets instead of ANLI:
- SNLI ([Bowman et al., 2015](https://arxiv.org/abs/1508.05326))
- MNLI ([Williams et al., 2018](https://aclanthology.org/N18-1101.pdf))
- Fever ([Thorne et al., 2018](https://aclanthology.org/N18-1074.pdf))
- Scitail ([Khot et al., 2018](http://ai2-website.s3.amazonaws.com/publications/scitail-aaai-2018_cameraready.pdf))
- PAWS ([Zhang et al. 2019](https://arxiv.org/abs/1904.01130))
- VitaminC ([Schuster et al., 2021](https://arxiv.org/pdf/2103.08541.pdf))
The input format for the model is: "premise: PREMISE_TEXT hypothesis: HYPOTHESIS_TEXT".
If you use this model for a research publication, please cite the TRUE paper (using the bibtex entry below) and the dataset papers mentioned above.
```
@inproceedings{honovich-etal-2022-true-evaluating,
title = "{TRUE}: Re-evaluating Factual Consistency Evaluation",
author = "Honovich, Or and
Aharoni, Roee and
Herzig, Jonathan and
Taitelbaum, Hagai and
Kukliansy, Doron and
Cohen, Vered and
Scialom, Thomas and
Szpektor, Idan and
Hassidim, Avinatan and
Matias, Yossi",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.287",
doi = "10.18653/v1/2022.naacl-main.287",
pages = "3905--3920",
}
``` |
AnonymousSub/SR_rule_based_hier_triplet_epochs_1_shard_1 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 1 | null | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 650 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 650,
"warmup_steps": 65,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
AnonymousSub/SR_rule_based_roberta_hier_triplet_epochs_1_shard_1_wikiqa_copy | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 2 | null | ---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-all
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-all
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1750
- F1: 0.8532
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2999 | 1.0 | 835 | 0.1961 | 0.8018 |
| 0.1565 | 2.0 | 1670 | 0.1772 | 0.8465 |
| 0.0998 | 3.0 | 2505 | 0.1750 | 0.8532 |
### Framework versions
- Transformers 4.22.2
- Pytorch 1.10.0
- Datasets 2.7.1
- Tokenizers 0.12.1
|
AnonymousSub/SR_rule_based_roberta_only_classfn_twostage_epochs_1_shard_1 | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | null | ---
language: en
license: apache-2.0
library_name: diffusers
tags: []
datasets: huggan/smithsonian_butterflies_subset
metrics: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-butterflies-128
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `huggan/smithsonian_butterflies_subset` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/teddya2007/ddpm-butterflies-128/tensorboard?#scalars)
|
AnonymousSub/SR_rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1 | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4 | null | ---
language:
- swe
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
model-index:
- name: Whisper Small Swe - Swedish
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Swe - Swedish
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2
|
AnonymousSub/SR_rule_based_roberta_twostagetriplet_epochs_1_shard_1 | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | null |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: TUMxudashuai/testpyramidsrnd
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
AnonymousSub/SR_rule_based_roberta_twostagetriplet_epochs_1_shard_10 | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4 | null | ---
language:
- et
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: 'Whisper Small et '
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: et
split: test
args: et
metrics:
- name: Wer
type: wer
value: 45.727838353970306
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small et
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9972
- Wer: 45.7278
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0045 | 19.01 | 1000 | 0.8365 | 46.1129 |
| 0.0031 | 39.01 | 2000 | 0.9022 | 46.4116 |
| 0.0005 | 59.01 | 3000 | 0.9536 | 45.3921 |
| 0.0003 | 79.01 | 4000 | 0.9844 | 45.7771 |
| 0.0003 | 99.01 | 5000 | 0.9972 | 45.7278 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
AnonymousSub/consert-techqa | [
"pytorch",
"bert",
"question-answering",
"transformers",
"autotrain_compatible"
]
| question-answering | {
"architectures": [
"BertForQuestionAnswering"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4 | 2022-12-07T17:55:33Z | ---
language:
- it
license: apache-2.0
tags:
- generated_from_trainer
- whisper-event
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: whisper-tiny-it
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 it
type: mozilla-foundation/common_voice_11_0
config: it
split: test
args: it
metrics:
- name: Wer
type: wer
value: 26.61
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-it
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the
Common Voice 11 dataset.
Language: **Italian**
It achieves the following results on the evaluation set:
- Loss: 0.3958
- Wer: 26.61
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 256
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.3997 | 1.68 | 1000 | 0.4651 | 0.3038 |
| 0.3026 | 3.35 | 2000 | 0.4086 | 0.2743 |
| 0.2874 | 5.03 | 3000 | 0.3958 | 0.2661 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
AnonymousSub/declutr-biomed-roberta-papers | [
"pytorch",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
]
| fill-mask | {
"architectures": [
"RobertaForMaskedLM"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 7 | 2022-12-07T17:56:00Z | ---
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: enlm-roberta-130-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# enlm-roberta-130-imdb
This model is a fine-tuned version of [manirai91/enlm-roberta-130](https://huggingface.co/manirai91/enlm-roberta-130) on the imdb dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 10
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 1.11.0
- Datasets 2.7.1
- Tokenizers 0.13.2
|
AnonymousSub/declutr-s10-AR | [
"pytorch",
"roberta",
"text-classification",
"transformers"
]
| text-classification | {
"architectures": [
"RobertaForSequenceClassification"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 26 | 2022-12-07T18:23:15Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 271.79 +/- 12.25
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AnonymousSub/hier_triplet_epochs_1_shard_1 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | 2022-12-07T18:47:31Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 256.32 +/- 19.14
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AnonymousSub/hier_triplet_epochs_1_shard_10 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | 2022-12-07T18:49:11Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.925
- name: F1
type: f1
value: 0.9249684190735334
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2174
- Accuracy: 0.925
- F1: 0.9250
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8164 | 1.0 | 250 | 0.3181 | 0.9015 | 0.8984 |
| 0.2434 | 2.0 | 500 | 0.2174 | 0.925 | 0.9250 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
AnonymousSub/roberta-base_squad2.0 | [
"pytorch",
"roberta",
"question-answering",
"transformers",
"autotrain_compatible"
]
| question-answering | {
"architectures": [
"RobertaForQuestionAnswering"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | 2022-12-07T18:49:29Z | # VLP Dataset Metadata
---
library_name: keras
tags:
- Clasificacion imagen-detection
- Deteccion LED
---
## Model description
This dataset was acquired during the dissertation entitled **Optical Camera Communications and Machine Learning for Indoor Visible Light Positioning**. This work was carried out in the academic year 2020/2021 at the Instituto de Telecomunicacoes in Aveiro.
The images that constitute this dataset were acquired over a grid with 15 regularly spaced reference points on the floor surface. Table 2 shows the position of these points in relation to the referential defined in the room along with the position of the LED luminaires. During the dataset acquisition, the CMOS image sensor (Sony IMX219) was positioned parallel to the floor at a height of 25.6 cm facing upwards, i.e. with pitch and yaw angles equal to 0. All images were saved as TIFF (Tagged Image File Format) with a resolution of 3264 × 2464 pixels and exposure and readout times equal to 9 µs and 18 µs, respectively.
## Intended uses & limitations
Can use as academic and formation objetives
## Training and evaluation data
Training by a Keras model
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
| Hyperparameters | Value |
| :-- | :-- |
| name | RMSprop |
| learning_rate | 0.0010000000474974513 |
| decay | 0.0 |
| rho | 0.8999999761581421 |
| momentum | 0.0 |
| epsilon | 1e-07 |
| centered | False |
| training_precision | float32 |
## Model Plot
<details>
<summary>View Model Plot</summary>

</details> |
AnonymousSub/rule_based_bert_hier_diff_equal_wts_epochs_1_shard_1 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | 2022-12-07T18:57:53Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 263.85 +/- 12.40
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_1 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | 2022-12-07T19:17:08Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: abesmon/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_10 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | 2022-12-07T19:20:50Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 261.96 +/- 23.93
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_10 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4 | 2022-12-07T19:38:10Z | readme file for the project for huggingface/openaigym
# OpenAI Gym
This is my repo of the OpenAI Gym, which is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents everything from walking to playing games like Pong or Pinball.
## Installation
To install, simply:
```bash
pip install gym
```
## Documentation
The documentation is available at [https://gym.openai.com/docs](https://gym.openai.com/docs).
## Files
The files in this repo are:
Colab-CartPole.ipynb: A notebook that shows how to use the OpenAI Gym to train a simple agent to play the CartPole game. It uses PPOLearner from the stable_baselines3 library.
|
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_squad2.0 | [
"pytorch",
"bert",
"question-answering",
"transformers",
"autotrain_compatible"
]
| question-answering | {
"architectures": [
"BertForQuestionAnswering"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 3 | 2022-12-07T19:44:31Z |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_tweetqa
pipeline_tag: text2text-generation
tags:
- question answering
widget:
- text: "question: What is a person called is practicing heresy?, context: Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things."
example_title: "Question Answering Example 1"
- text: "question: who created the post as we know it today?, context: 'So much of The Post is Ben,' Mrs. Graham said in 1994, three years after Bradlee retired as editor. 'He created it as we know it today.'— Ed O'Keefe (@edatpost) October 21, 2014"
example_title: "Question Answering Example 2"
model-index:
- name: lmqg/t5-large-tweetqa-qa
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_tweetqa
type: default
args: default
metrics:
- name: BLEU4 (Question Answering)
type: bleu4_question_answering
value: 35.02
- name: ROUGE-L (Question Answering)
type: rouge_l_question_answering
value: 64.13
- name: METEOR (Question Answering)
type: meteor_question_answering
value: 36.5
- name: BERTScore (Question Answering)
type: bertscore_question_answering
value: 94.8
- name: MoverScore (Question Answering)
type: moverscore_question_answering
value: 80.79
- name: AnswerF1Score (Question Answering)
type: answer_f1_score__question_answering
value: 71.1
- name: AnswerExactMatch (Question Answering)
type: answer_exact_match_question_answering
value: 54.45
---
# Model Card of `lmqg/t5-large-tweetqa-qa`
This model is fine-tuned version of [t5-large](https://huggingface.co/t5-large) for question answering task on the [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [t5-large](https://huggingface.co/t5-large)
- **Language:** en
- **Training data:** [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/t5-large-tweetqa-qa")
# model prediction
answers = model.answer_q(list_question="What is a person called is practicing heresy?", list_context=" Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things.")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/t5-large-tweetqa-qa")
output = pipe("question: What is a person called is practicing heresy?, context: Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things.")
```
## Evaluation
- ***Metric (Question Answering)***: [raw metric file](https://huggingface.co/lmqg/t5-large-tweetqa-qa/raw/main/eval/metric.first.answer.paragraph_question.answer.lmqg_qg_tweetqa.default.json)
| | Score | Type | Dataset |
|:-----------------|--------:|:--------|:-------------------------------------------------------------------|
| AnswerExactMatch | 54.45 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| AnswerF1Score | 71.1 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| BERTScore | 94.8 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| Bleu_1 | 58.53 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| Bleu_2 | 49.65 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| Bleu_3 | 41.43 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| Bleu_4 | 35.02 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| METEOR | 36.5 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| MoverScore | 80.79 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| ROUGE_L | 64.13 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_tweetqa
- dataset_name: default
- input_types: ['paragraph_question']
- output_types: ['answer']
- prefix_types: None
- model: t5-large
- max_length: 512
- max_length_output: 32
- epoch: 6
- batch: 16
- lr: 5e-05
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/t5-large-tweetqa-qa/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_wikiqa | [
"pytorch",
"bert",
"text-classification",
"transformers"
]
| text-classification | {
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 31 | 2022-12-07T19:51:51Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: jmsalvi/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_wikiqa_copy | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 1 | 2022-12-07T19:53:02Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 254.25 +/- 36.89
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_10 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4 | 2022-12-07T20:05:12Z | ---
language:
- it
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Tiny it 9
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: it
split: test[:10%]
args: 'config: it, split: test'
metrics:
- name: Wer
type: wer
value: 45.327232390460345
---
# Whisper Tiny it 9
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.777710
- Wer: 45.327232
## Model description
This model is the openai whisper small transformer adapted for Italian audio to text transcription.
This model has weight decay set to 0.1 and the learning rate has been set to 1e-4 in the hyperparameter tuning process.
## Intended uses & limitations
The model is available through its [HuggingFace web app](https://huggingface.co/spaces/GIanlucaRub/whisper-it)
## Training and evaluation data
Data used for training is the initial 10% of train and validation of [Italian Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/it/train) 11.0 from Mozilla Foundation.
The dataset used for evaluation is the initial 10% of test of Italian Common Voice.
The training data has been augmented with random noise, random pitching and change of the speed of the voice.
## Training procedure
After loading the pre trained model, it has been trained on the augmented dataset.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-04
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 1.5158 | 0.95 | 1000 | 0.9359 | 64.8780 |
| 0.9302 | 1.91 | 2000 | 0.8190 | 50.6864 |
| 0.5034 | 2.86 | 3000 | 0.7768 | 45.3688 |
| 0.2248 | 3.82 | 4000 | 0.7777 | 45.3272 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2 |
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_1_wikiqa | [
"pytorch",
"bert",
"text-classification",
"transformers"
]
| text-classification | {
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 30 | 2022-12-07T20:13:15Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('ursus/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
AnonymousSub/rule_based_hier_triplet_0.1_epochs_1_shard_1_squad2.0 | [
"pytorch",
"bert",
"question-answering",
"transformers",
"autotrain_compatible"
]
| question-answering | {
"architectures": [
"BertForQuestionAnswering"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 2 | 2022-12-07T20:16:45Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wnut_17
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_wnut_model
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wnut_17
type: wnut_17
config: wnut_17
split: train
args: wnut_17
metrics:
- name: Precision
type: precision
value: 0.5673758865248227
- name: Recall
type: recall
value: 0.2965708989805375
- name: F1
type: f1
value: 0.3895313451004261
- name: Accuracy
type: accuracy
value: 0.9410884528237357
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_wnut_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2747
- Precision: 0.5674
- Recall: 0.2966
- F1: 0.3895
- Accuracy: 0.9411
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 213 | 0.2827 | 0.5605 | 0.2317 | 0.3279 | 0.9380 |
| No log | 2.0 | 426 | 0.2747 | 0.5674 | 0.2966 | 0.3895 | 0.9411 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | 2022-12-07T20:28:25Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 287.80 +/- 16.52
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_10 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | 2022-12-07T20:30:05Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: dirkvg/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
AnonymousSub/rule_based_only_classfn_epochs_1_shard_1_wikiqa | [
"pytorch",
"bert",
"text-classification",
"transformers"
]
| text-classification | {
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 32 | null |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: daripaez/ppo_2-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
AnonymousSub/rule_based_only_classfn_twostage_epochs_1_shard_1 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 10 | 2022-12-07T20:52:37Z | ---
language:
- as
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Medium Assamese - Drishti Sharma
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: as
split: test
args: as
metrics:
- name: Wer
type: wer
value: 30.650219527493206
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Assamese - Drishti Sharma
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5164
- Wer: 30.6502
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 150
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 1.1539 | 3.02 | 50 | 0.7835 | 89.0863 |
| 0.2089 | 7.0 | 100 | 0.3041 | 37.7378 |
| 0.0428 | 10.02 | 150 | 0.3760 | 33.9118 |
| 0.0141 | 14.01 | 200 | 0.4400 | 31.6538 |
| 0.0059 | 17.02 | 250 | 0.4472 | 31.2774 |
| 0.0022 | 21.01 | 300 | 0.4696 | 31.0475 |
| 0.0005 | 24.03 | 350 | 0.5032 | 31.2983 |
| 0.0003 | 28.02 | 400 | 0.5051 | 30.7129 |
| 0.0003 | 32.0 | 450 | 0.5137 | 30.7338 |
| 0.0003 | 35.02 | 500 | 0.5164 | 30.6502 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
AnonymousSub/rule_based_only_classfn_twostage_epochs_1_shard_1_wikiqa | [
"pytorch",
"bert",
"text-classification",
"transformers"
]
| text-classification | {
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 27 | 2022-12-07T20:52:54Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 237.81 +/- 47.79
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_1 | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | 2022-12-07T20:54:29Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 251.68 +/- 18.17
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_10 | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | 2022-12-07T20:59:19Z | ---
language:
- it
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Italian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 it
type: mozilla-foundation/common_voice_11_0
config: it
split: test
args: it
metrics:
- name: Wer
type: wer
value: 11.271395917499468
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Italian
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 it dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2517
- Wer: 11.2714
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2529 | 1.0 | 466 | 0.2758 | 12.4907 |
| 0.1711 | 2.0 | 932 | 0.2517 | 11.2714 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|
AnonymousSub/specter-emanuals-model | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
]
| feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: KB13-t5-base-finetuned-en-to-regex
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# KB13-t5-base-finetuned-en-to-regex
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4785
- Semantic accuracy: 0.3902
- Syntactic accuracy: 0.3171
- Gen Len: 15.2927
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Semantic accuracy | Syntactic accuracy | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:------------------:|:-------:|
| No log | 2.13 | 100 | 0.7159 | 0.122 | 0.0976 | 15.2439 |
| No log | 4.26 | 200 | 0.4649 | 0.2683 | 0.2195 | 15.0488 |
| No log | 6.38 | 300 | 0.3749 | 0.4146 | 0.3415 | 15.3659 |
| No log | 8.51 | 400 | 0.4155 | 0.3902 | 0.2927 | 15.0976 |
| 0.5191 | 10.64 | 500 | 0.4148 | 0.3902 | 0.2927 | 15.7561 |
| 0.5191 | 12.77 | 600 | 0.4010 | 0.439 | 0.3415 | 15.3902 |
| 0.5191 | 14.89 | 700 | 0.4429 | 0.3902 | 0.3171 | 15.3659 |
| 0.5191 | 17.02 | 800 | 0.4607 | 0.3902 | 0.3415 | 15.561 |
| 0.5191 | 19.15 | 900 | 0.4629 | 0.3902 | 0.3171 | 15.122 |
| 0.0518 | 21.28 | 1000 | 0.4785 | 0.3902 | 0.3171 | 15.2927 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
Anonymreign/savagebeta | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2022-12-08T00:38:42Z | ---
license: apache-2.0
pipeline_tag: fill-mask
tags:
- fill-mask
- transformers
- en
- ko
widget:
- text: 한국 수도는 [MASK] 입니다.
---
# albert-small-kor-v1
- albert-small 한국어 scratch 모델
- [ai_hub 웹데이터 기반 한국어 말뭉치 데이터](https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=624) (약 52M Text) 말뭉치로 SOP, MLM 훈련시킨 모델
- vocab: 30,000개 (SentencePiece)
## Usage (HuggingFace Transformers)
### MASK 예시
```python
from transformers import AutoTokenizer, AutoModel, AlbertForMaskedLM
import torch
import torch.nn.functional as F
tokenizer = AutoTokenizer.from_pretrained('bongsoo/albert-small-kor-v1', do_lower_case=True)
model = AlbertForMaskedLM.from_pretrained('bongsoo/albert-small-kor-v1')
text = ['한국 수도는 [MASK] 이다', '프랑스 수도는 [MASK]이다', '충무공 이순신은 [MASK]에 최고의 장수였다']
tokenized_input = tokenizer(text, max_length=128, truncation=True, padding='max_length', return_tensors='pt')
outputs = model(**tokenized_input)
logits = outputs.logits
mask_idx_list = []
for tokens in tokenized_input['input_ids'].tolist():
token_str = [tokenizer.convert_ids_to_tokens(s) for s in tokens]
# **위 token_str리스트에서 [MASK] 인덱스를 구함
# => **해당 [MASK] 안덱스 값 mask_idx 에서는 아래 출력하는데 사용됨
mask_idx = token_str.index('[MASK]')
mask_idx_list.append(mask_idx)
for idx, mask_idx in enumerate(mask_idx_list):
logits_pred=torch.argmax(F.softmax(logits[idx]), dim=1)
mask_logits_idx = int(logits_pred[mask_idx])
# [MASK]에 해당하는 token 구함
mask_logits_token = tokenizer.convert_ids_to_tokens(mask_logits_idx)
# 결과 출력
print('\n')
print('*Input: {}'.format(text[idx]))
print('*[MASK] : {} ({})'.format(mask_logits_token, mask_logits_idx))
```
- 결과
```
*Input: 한국 수도는 [MASK] 이다
*[MASK] : ▁서울 (80)
*Input: 프랑스 수도는 [MASK]이다
*[MASK] : ▁불과 (1682)
*Input: 충무공 이순신은 [MASK]에 최고의 장수였다
*[MASK] : ▁우리 (184)
```
## Training
**MLM(Masked Langeuage Model) 훈련**
- 모델 : Bert-base
- 말뭉치 : [ai_hub 웹데이터 기반 한국어 말뭉치 데이터](https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=624) (약 52M Text)
- HyperParameter : **lr = 1e-4 , weigth_decay=0.01, batch_size = 128, token_max_len = 128,epoch = 8**
- Vocab: 30,000개 (SentencePiece)
- 훈련시간 : 171h/1GPU (24GB/21GB use)
- 훈련코드 [여기](https://github.com/kobongsoo/BERT/blob/master/albert/albert-SOP-MLM-Trainer-V2.0.ipynb) 참조
## Model Config
```
{
"architectures": [
"AlbertForPreTraining"
],
"attention_probs_dropout_prob": 0,
"bos_token_id": 2,
"classifier_dropout_prob": 0.1,
"embedding_size": 128,
"eos_token_id": 3,
"hidden_act": "gelu_new",
"hidden_dropout_prob": 0,
"hidden_size": 768,
"initializer_range": 0.02,
"inner_group_num": 1,
"intermediate_size": 3072,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "albert",
"num_attention_heads": 12,
"num_hidden_groups": 1,
"num_hidden_layers": 6,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"torch_dtype": "float32",
"transformers_version": "4.21.2",
"type_vocab_size": 2,
"vocab_size": 30000
}
```
## Citing & Authors
bongsoo
|
Anorak/nirvana | [
"pytorch",
"pegasus",
"text2text-generation",
"unk",
"dataset:Anorak/autonlp-data-Niravana-test2",
"transformers",
"autonlp",
"co2_eq_emissions",
"autotrain_compatible"
]
| text2text-generation | {
"architectures": [
"PegasusForConditionalGeneration"
],
"model_type": "pegasus",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 7 | 2022-12-08T00:39:37Z | ---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Medium Pashto
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs ps_af
type: google/fleurs
config: ps_af
split: test
args: ps_af
metrics:
- name: Wer
type: wer
value: 50.6431598062954
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Pashto
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the google/fleurs ps_af dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2950
- Wer: 50.6432
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0139 | 14.29 | 100 | 1.0302 | 50.1211 |
| 0.0011 | 28.57 | 200 | 1.2129 | 49.7806 |
| 0.0008 | 42.86 | 300 | 1.2581 | 50.3178 |
| 0.0007 | 57.14 | 400 | 1.2850 | 50.5524 |
| 0.0007 | 71.43 | 500 | 1.2950 | 50.6432 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
Anthos23/distilbert-base-uncased-finetuned-sst2 | [
"tf",
"tensorboard",
"distilbert",
"text-classification",
"transformers",
"generated_from_keras_callback",
"license:apache-2.0"
]
| text-classification | {
"architectures": [
"DistilBertForSequenceClassification"
],
"model_type": "distilbert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 21 | null | ---
license: apache-2.0
---
# Introduction
This repo contains ConvEmformer transducer models that have been
converted to ncnn format.
You can use models from this repo with <https://github.com/k2-fsa/sherpa-ncnn>
for speech recognition. It runs on x86 machines as well as on embedded devices.
Note: It has only 18.6 M parameters.
If you are interested in model training and conversion, please have a look at
<https://github.com/k2-fsa/icefall/pull/717>
The torchscript model can be found at
https://huggingface.co/csukuangfj/icefall-asr-wenetspeech-conv-emformer-transducer-stateless-small-2022-12-08
|
AntonClaesson/finetuning_test | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2022-12-08T01:25:56Z | ---
language: is
datasets:
- language-and-voice-lab/samromur_asr
- language-and-voice-lab/samromur_children
- language-and-voice-lab/malromur_asr
- language-and-voice-lab/althingi_asr
tags:
- audio
- automatic-speech-recognition
- icelandic
- xlrs-53-icelandic
- iceland
- reykjavik
- samromur
license: cc-by-4.0
widget:
model-index:
- name: wav2vec2-large-xlsr-53-icelandic-ep10-1000h
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Samrómur (Test)
type: language-and-voice-lab/samromur_asr
split: test
args:
language: is
metrics:
- name: WER
type: wer
value: 9.847
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Samrómur (Dev)
type: language-and-voice-lab/samromur_asr
split: validation
args:
language: is
metrics:
- name: WER
type: wer
value: 8.736
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Samrómur Children (Test)
type: language-and-voice-lab/samromur_children
split: test
args:
language: is
metrics:
- name: WER
type: wer
value: 9.391
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Samrómur Children (Dev)
type: language-and-voice-lab/samromur_children
split: validation
args:
language: is
metrics:
- name: WER
type: wer
value: 6.055
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Malrómur (Test)
type: language-and-voice-lab/malromur_asr
split: test
args:
language: is
metrics:
- name: WER
type: wer
value: 5.643
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Malrómur (Dev)
type: language-and-voice-lab/malromur_asr
split: validation
args:
language: is
metrics:
- name: WER
type: wer
value: 6.156
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Althingi (Test)
type: language-and-voice-lab/althingi_asr
split: test
args:
language: is
metrics:
- name: WER
type: wer
value: 11.437
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Althingi (Dev)
type: language-and-voice-lab/althingi_asr
split: validation
args:
language: is
metrics:
- name: WER
type: wer
value: 11.093
---
# wav2vec2-large-xlsr-53-icelandic-ep10-1000h
The "wav2vec2-large-xlsr-53-icelandic-ep10-1000h" is an acoustic model suitable for Automatic Speech Recognition in Icelandic. It is the result of fine-tuning the model "facebook/wav2vec2-large-xlsr-53" for 10 epochs with around 1000 hours of Icelandic data developed by the [Language and Voice Laboratory](https://huggingface.co/language-and-voice-lab). Most of the data is available at public repositories such as [LDC](https://www.ldc.upenn.edu/), [OpenSLR](https://openslr.org/) or [Clarin.is](https://clarin.is/)
The specific list of corpora used to fine-tune the model is:
- [Samrómur 21.05 (114h34m)](http://www.openslr.org/112/)
- [Samrómur Children (127h25m)](https://catalog.ldc.upenn.edu/LDC2022S11)
- [Malrómur (119hh03m)](https://clarin.is/en/resources/malromur/)
- [Althingi Parliamentary Speech (514h29m)](https://catalog.ldc.upenn.edu/LDC2021S01)
- L2-Speakers Data (125h55m) **Unpublished material**
The fine-tuning process was performed during December (2022) in the servers of the Language and Voice Laboratory (https://lvl.ru.is/) at Reykjavík University (Iceland) by Carlos Daniel Hernández Mena.
# Evaluation
```python
import torch
from transformers import Wav2Vec2Processor
from transformers import Wav2Vec2ForCTC
#Load the processor and model.
MODEL_NAME="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-icelandic-ep10-1000h"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME)
#Load the dataset
from datasets import load_dataset, load_metric, Audio
ds=load_dataset("language-and-voice-lab/samromur_children", split="test")
#Downsample to 16kHz
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
#Process the dataset
def prepare_dataset(batch):
audio = batch["audio"]
#Batched output is "un-batched" to ensure mapping is correct
batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]
with processor.as_target_processor():
batch["labels"] = processor(batch["normalized_text"]).input_ids
return batch
ds = ds.map(prepare_dataset, remove_columns=ds.column_names,num_proc=1)
#Define the evaluation metric
import numpy as np
wer_metric = load_metric("wer")
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
pred_str = processor.batch_decode(pred_ids)
#We do not want to group tokens when computing the metrics
label_str = processor.batch_decode(pred.label_ids, group_tokens=False)
wer = wer_metric.compute(predictions=pred_str, references=label_str)
return {"wer": wer}
#Do the evaluation (with batch_size=1)
model = model.to(torch.device("cuda"))
def map_to_result(batch):
with torch.no_grad():
input_values = torch.tensor(batch["input_values"], device="cuda").unsqueeze(0)
logits = model(input_values).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_str"] = processor.batch_decode(pred_ids)[0]
batch["sentence"] = processor.decode(batch["labels"], group_tokens=False)
return batch
results = ds.map(map_to_result,remove_columns=ds.column_names)
#Compute the overall WER now.
print("Test WER: {:.3f}".format(wer_metric.compute(predictions=results["pred_str"], references=results["sentence"])))
```
**Test Result**: 0.094
# BibTeX entry and citation info
*When publishing results based on these models please refer to:*
```bibtex
@misc{mena2022xlrs53icelandic,
title={Acoustic Model in Icelandic: wav2vec2-large-xlsr-53-icelandic-ep10-1000h.},
author={Hernandez Mena, Carlos Daniel},
year={2022},
url={https://huggingface.co/carlosdanielhernandezmena/wav2vec2-large-xlsr-53-icelandic-ep10-1000h},
}
```
# Acknowledgements
Special thanks to Jón Guðnason, head of the Language and Voice Lab for providing computational power to make this model possible. We also want to thank to the "Language Technology Programme for Icelandic 2019-2023" which is managed and coordinated by Almannarómur, and it is funded by the Icelandic Ministry of Education, Science and Culture.
|
Apisate/DialoGPT-small-jordan | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
]
| conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 12 | 2022-12-08T02:56:24Z | # iSEEEK
Generative pretraining from the rankings of top expressing genes.
It was trained on more than 20 million single-cell transcriptomes with a sequence length of 64.
|
Appolo/TestModel | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2022-12-08T03:07:25Z | # iSEEEK
Generative pretraining from the rankings of top expressing genes.
Finetune on `transcriptome-1024-8-16-128` for 10 epochs with a sequence length of 128.
|
Archie/myProject | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 272.17 +/- 22.11
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AriakimTaiyo/DialoGPT-medium-Kumiko | [
"conversational"
]
| conversational | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language: en
license: apache-2.0
library_name: diffusers
tags: []
datasets: huggan/smithsonian_butterflies_subset
metrics: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# ddpm-butterflies-128
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `huggan/smithsonian_butterflies_subset` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/katwicks/ddpm-butterflies-128/tensorboard?#scalars)
|
ArnaudPannatier/MLPMixer | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 279.88 +/- 22.21
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Arnold/common_voiceha | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language:
- vi
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: openai/whisper-medium
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 vi
type: mozilla-foundation/common_voice_11_0
config: vi
split: test
args: vi
metrics:
- name: Wer
type: wer
value: 19.92761570519851
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-medium
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7599
- Wer: 19.9276
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0001 | 62.0 | 1000 | 0.6531 | 19.3463 |
| 0.0001 | 124.0 | 2000 | 0.6964 | 19.6973 |
| 0.0 | 187.0 | 3000 | 0.7282 | 19.8947 |
| 0.0 | 249.0 | 4000 | 0.7481 | 19.8837 |
| 0.0 | 312.0 | 5000 | 0.7599 | 19.9276 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
ArvinZhuang/BiTAG-t5-large | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"autotrain_compatible"
]
| text2text-generation | {
"architectures": [
"T5ForConditionalGeneration"
],
"model_type": "t5",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": true,
"length_penalty": 2,
"max_length": 200,
"min_length": 30,
"no_repeat_ngram_size": 3,
"num_beams": 4,
"prefix": "summarize: "
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": true,
"max_length": 300,
"num_beams": 4,
"prefix": "translate English to German: "
},
"translation_en_to_fr": {
"early_stopping": true,
"max_length": 300,
"num_beams": 4,
"prefix": "translate English to French: "
},
"translation_en_to_ro": {
"early_stopping": true,
"max_length": 300,
"num_beams": 4,
"prefix": "translate English to Romanian: "
}
}
} | 4 | null | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
If you are wondering what would happen when a model trained on a bunch of images pokemons and then denoising them using Diffusion, then check out this model.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('Hawk91/sd-Pokemon')
image = pipeline().images[0]
image
``` |
AryanLala/autonlp-Scientific_Title_Generator-34558227 | [
"pytorch",
"pegasus",
"text2text-generation",
"en",
"dataset:AryanLala/autonlp-data-Scientific_Title_Generator",
"transformers",
"autonlp",
"co2_eq_emissions",
"autotrain_compatible",
"has_space"
]
| text2text-generation | {
"architectures": [
"PegasusForConditionalGeneration"
],
"model_type": "pegasus",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 103 | null | This repo contains pre-trained models, checkpoints, training logs and decoding results of the following pull-request:
https://github.com/k2-fsa/icefall/pull/746
|
AshLukass/AshLukass | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 260.38 +/- 21.10
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Ashagi/Ashvx | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
license: creativeml-openrail-m
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
inference: false
library_name: diffusers
extra_gated_prompt: >-
One more step before getting this model.
This model is open access and available to all, with a CreativeML OpenRAIL-M
license further specifying rights and usage.
The CreativeML OpenRAIL License specifies:
1. You can't use the model to deliberately produce nor share illegal or
harmful outputs or content
2. CompVis claims no rights on the outputs you generate, you are free to use
them and are accountable for their use which must not go against the
provisions set in the license
3. You may re-distribute the weights and use the model commercially and/or as
a service. If you do, please be aware you have to include the same use
restrictions as the ones in the license and share a copy of the CreativeML
OpenRAIL-M to all your users (please read the license entirely and carefully)
Please read the full license here:
https://huggingface.co/spaces/CompVis/stable-diffusion-license
By clicking on "Access repository" below, you accept that your *contact
information* (email address and username) can be shared with the model authors
as well.
extra_gated_fields:
I have read the License and agree with its terms: checkbox
duplicated_from: runwayml/stable-diffusion-inpainting
---
Stable Diffusion Inpainting is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input, with the extra capability of inpainting the pictures by using a mask.
The **Stable-Diffusion-Inpainting** was initialized with the weights of the [Stable-Diffusion-v-1-2](https://steps/huggingface.co/CompVis/stable-diffusion-v-1-2-original). First 595k steps regular training, then 440k steps of inpainting training at resolution 512x512 on “laion-aesthetics v2 5+” and 10% dropping of the text-conditioning to improve classifier-free [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). For inpainting, the UNet has 5 additional input channels (4 for the encoded masked-image and 1 for the mask itself) whose weights were zero-initialized after restoring the non-inpainting checkpoint. During training, we generate synthetic masks and in 25% mask everything.
[](https://huggingface.co/spaces/runwayml/stable-diffusion-inpainting) | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
:-------------------------:|:-------------------------:|
## Examples:
You can use this both with the [🧨Diffusers library](https://github.com/huggingface/diffusers) and the [RunwayML GitHub repository](https://github.com/runwayml/stable-diffusion).
### Diffusers
```python
from diffusers import StableDiffusionInpaintPipeline
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
revision="fp16",
torch_dtype=torch.float16,
)
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
#image and mask_image should be PIL images.
#The mask structure is white for inpainting and black for keeping as is
image = pipe(prompt=prompt, image=image, mask_image=mask_image).images[0]
image.save("./yellow_cat_on_park_bench.png")
```
**How it works:**
`image` | `mask_image`
:-------------------------:|:-------------------------:|
<img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" alt="drawing" width="300"/> | <img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" alt="drawing" width="300"/>
`prompt` | `Output`
:-------------------------:|:-------------------------:|
<span style="position: relative;bottom: 150px;">Face of a yellow cat, high resolution, sitting on a park bench</span> | <img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/test.png" alt="drawing" width="300"/>
### Original GitHub Repository
1. Download the weights [sd-v1-5-inpainting.ckpt](https://huggingface.co/runwayml/stable-diffusion-inpainting/resolve/main/sd-v1-5-inpainting.ckpt)
2. Follow instructions [here](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion).
## Model Details
- **Developed by:** Robin Rombach, Patrick Esser
- **Model type:** Diffusion-based text-to-image generation model
- **Language(s):** English
- **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based.
- **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([CLIP ViT-L/14](https://arxiv.org/abs/2103.00020)) as suggested in the [Imagen paper](https://arxiv.org/abs/2205.11487).
- **Resources for more information:** [GitHub Repository](https://github.com/runwayml/stable-diffusion), [Paper](https://arxiv.org/abs/2112.10752).
- **Cite as:**
@InProceedings{Rombach_2022_CVPR,
author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn},
title = {High-Resolution Image Synthesis With Latent Diffusion Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {10684-10695}
}
# Uses
## Direct Use
The model is intended for research purposes only. Possible research areas and
tasks include
- Safe deployment of models which have the potential to generate harmful content.
- Probing and understanding the limitations and biases of generative models.
- Generation of artworks and use in design and other artistic processes.
- Applications in educational or creative tools.
- Research on generative models.
Excluded uses are described below.
### Misuse, Malicious Use, and Out-of-Scope Use
_Note: This section is taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), but applies in the same way to Stable Diffusion v1_.
The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes.
#### Out-of-Scope Use
The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
#### Misuse and Malicious Use
Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to:
- Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc.
- Intentionally promoting or propagating discriminatory content or harmful stereotypes.
- Impersonating individuals without their consent.
- Sexual content without consent of the people who might see it.
- Mis- and disinformation
- Representations of egregious violence and gore
- Sharing of copyrighted or licensed material in violation of its terms of use.
- Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use.
## Limitations and Bias
### Limitations
- The model does not achieve perfect photorealism
- The model cannot render legible text
- The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere”
- Faces and people in general may not be generated properly.
- The model was trained mainly with English captions and will not work as well in other languages.
- The autoencoding part of the model is lossy
- The model was trained on a large-scale dataset
[LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material
and is not fit for product use without additional safety mechanisms and
considerations.
- No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data.
The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images.
### Bias
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
Stable Diffusion v1 was trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/),
which consists of images that are primarily limited to English descriptions.
Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for.
This affects the overall output of the model, as white and western cultures are often set as the default. Further, the
ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts.
## Training
**Training Data**
The model developers used the following dataset for training the model:
- LAION-2B (en) and subsets thereof (see next section)
**Training Procedure**
Stable Diffusion v1 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training,
- Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4
- Text prompts are encoded through a ViT-L/14 text-encoder.
- The non-pooled output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention.
- The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet.
We currently provide six checkpoints, `sd-v1-1.ckpt`, `sd-v1-2.ckpt` and `sd-v1-3.ckpt`, `sd-v1-4.ckpt`, `sd-v1-5.ckpt` and `sd-v1-5-inpainting.ckpt`
which were trained as follows,
- `sd-v1-1.ckpt`: 237k steps at resolution `256x256` on [laion2B-en](https://huggingface.co/datasets/laion/laion2B-en).
194k steps at resolution `512x512` on [laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution) (170M examples from LAION-5B with resolution `>= 1024x1024`).
- `sd-v1-2.ckpt`: Resumed from `sd-v1-1.ckpt`.
515k steps at resolution `512x512` on "laion-improved-aesthetics" (a subset of laion2B-en,
filtered to images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`, and an estimated watermark probability `< 0.5`. The watermark estimate is from the LAION-5B metadata, the aesthetics score is estimated using an [improved aesthetics estimator](https://github.com/christophschuhmann/improved-aesthetic-predictor)).
- `sd-v1-3.ckpt`: Resumed from `sd-v1-2.ckpt`. 195k steps at resolution `512x512` on "laion-improved-aesthetics" and 10\% dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598).
- `sd-v1-4.ckpt`: Resumed from stable-diffusion-v1-2.225,000 steps at resolution 512x512 on "laion-aesthetics v2 5+" and 10 % dropping of the text-conditioning to [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598).
- `sd-v1-5.ckpt`: Resumed from sd-v1-2.ckpt. 595k steps at resolution 512x512 on "laion-aesthetics v2 5+" and 10% dropping of the text-conditioning to improve classifier-free guidance sampling.
- `sd-v1-5-inpaint.ckpt`: Resumed from sd-v1-2.ckpt. 595k steps at resolution 512x512 on "laion-aesthetics v2 5+" and 10% dropping of the text-conditioning to improve classifier-free guidance sampling. Then 440k steps of inpainting training at resolution 512x512 on “laion-aesthetics v2 5+” and 10% dropping of the text-conditioning. For inpainting, the UNet has 5 additional input channels (4 for the encoded masked-image and 1 for the mask itself) whose weights were zero-initialized after restoring the non-inpainting checkpoint. During training, we generate synthetic masks and in 25% mask everything.
- **Hardware:** 32 x 8 x A100 GPUs
- **Optimizer:** AdamW
- **Gradient Accumulations**: 2
- **Batch:** 32 x 8 x 2 x 4 = 2048
- **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant
## Evaluation Results
Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, 8.0) and 50 PLMS sampling
steps show the relative improvements of the checkpoints:

Evaluated using 50 PLMS steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores.
## Inpainting Evaluation
To assess the performance of the inpainting model, we used the same evaluation
protocol as in our [LDM paper](https://arxiv.org/abs/2112.10752). Since the
Stable Diffusion Inpainting Model acccepts a text input, we simply used a fixed
prompt of `photograph of a beautiful empty scene, highest quality settings`.
| Model | FID | LPIPS |
|-----------------------------|------|------------------|
| Stable Diffusion Inpainting | 1.00 | 0.141 (+- 0.082) |
| Latent Diffusion Inpainting | 1.50 | 0.137 (+- 0.080) |
| CoModGAN | 1.82 | 0.15 |
| LaMa | 2.21 | 0.134 (+- 0.080) |
## Environmental Impact
**Stable Diffusion v1** **Estimated Emissions**
Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.
- **Hardware Type:** A100 PCIe 40GB
- **Hours used:** 150000
- **Cloud Provider:** AWS
- **Compute Region:** US-east
- **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 11250 kg CO2 eq.
## Citation
```bibtex
@InProceedings{Rombach_2022_CVPR,
author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn},
title = {High-Resolution Image Synthesis With Latent Diffusion Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {10684-10695}
}
```
*This model card was written by: Robin Rombach and Patrick Esser and is based on the [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).* |
Ashim/dga-transformer | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 265.63 +/- 21.31
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AshtonBenson/DialoGPT-small-quentin-coldwater | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 114.28 +/- 65.83
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 1000000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 512
'anneal_lr': True
'gae': True
'gamma': 0.999
'gae_lambda': 0.98
'num_minibatches': 64
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'gstaff/ppo-LunarLander-v2'
'batch_size': 2048
'minibatch_size': 32}
```
|
AshtonBenson/DialoGPT-small-quentin | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
license: openrail
library_name: diffusers
tags:
- TPU
- JAX
- Flax
- stable-diffusion
- text-to-image
language:
- en
--- |
Aspect11/DialoGPT-Medium-LiSBot | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
]
| conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 7 | null |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_tweetqa
pipeline_tag: text2text-generation
tags:
- question answering
widget:
- text: "question: What is a person called is practicing heresy?, context: Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things."
example_title: "Question Answering Example 1"
- text: "question: who created the post as we know it today?, context: 'So much of The Post is Ben,' Mrs. Graham said in 1994, three years after Bradlee retired as editor. 'He created it as we know it today.'— Ed O'Keefe (@edatpost) October 21, 2014"
example_title: "Question Answering Example 2"
model-index:
- name: lmqg/bart-large-tweetqa-qa
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_tweetqa
type: default
args: default
metrics:
- name: BLEU4 (Question Answering)
type: bleu4_question_answering
value: 35.95
- name: ROUGE-L (Question Answering)
type: rouge_l_question_answering
value: 61.82
- name: METEOR (Question Answering)
type: meteor_question_answering
value: 34.86
- name: BERTScore (Question Answering)
type: bertscore_question_answering
value: 94.37
- name: MoverScore (Question Answering)
type: moverscore_question_answering
value: 79.66
- name: AnswerF1Score (Question Answering)
type: answer_f1_score__question_answering
value: 68.58
- name: AnswerExactMatch (Question Answering)
type: answer_exact_match_question_answering
value: 50.54
---
# Model Card of `lmqg/bart-large-tweetqa-qa`
This model is fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) for question answering task on the [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [facebook/bart-large](https://huggingface.co/facebook/bart-large)
- **Language:** en
- **Training data:** [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/bart-large-tweetqa-qa")
# model prediction
answers = model.answer_q(list_question="What is a person called is practicing heresy?", list_context=" Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things.")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/bart-large-tweetqa-qa")
output = pipe("question: What is a person called is practicing heresy?, context: Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things.")
```
## Evaluation
- ***Metric (Question Answering)***: [raw metric file](https://huggingface.co/lmqg/bart-large-tweetqa-qa/raw/main/eval/metric.first.answer.paragraph_question.answer.lmqg_qg_tweetqa.default.json)
| | Score | Type | Dataset |
|:-----------------|--------:|:--------|:-------------------------------------------------------------------|
| AnswerExactMatch | 50.54 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| AnswerF1Score | 68.58 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| BERTScore | 94.37 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| Bleu_1 | 59.01 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| Bleu_2 | 49.88 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| Bleu_3 | 41.7 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| Bleu_4 | 35.95 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| METEOR | 34.86 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| MoverScore | 79.66 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
| ROUGE_L | 61.82 | default | [lmqg/qg_tweetqa](https://huggingface.co/datasets/lmqg/qg_tweetqa) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_tweetqa
- dataset_name: default
- input_types: ['paragraph_question']
- output_types: ['answer']
- prefix_types: None
- model: facebook/bart-large
- max_length: 512
- max_length_output: 32
- epoch: 6
- batch: 32
- lr: 1e-05
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 2
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/bart-large-tweetqa-qa/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|
At3ee/wav2vec2-base-timit-demo-colab | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
tags:
- conversational
---
# Walter Bishop DialoGPT Model |
Atarax/rick | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
license: creativeml-openrail-m
tags:
- text-to-image
---
### dulls on Stable Diffusion via Dreambooth
#### model by thomasjeon
This your the Stable Diffusion model fine-tuned the dulls concept taught to Stable Diffusion with Dreambooth.
It can be used by modifying the `instance_prompt`: **<dulls-avatar> face**
You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb).
And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts)
Here are the images used for training this concept:





|
Atchuth/DialoGPT-small-MichaelBot | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
]
| conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | null | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 278.49 +/- 18.47
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Ateeb/EmotionDetector | [
"pytorch",
"funnel",
"text-classification",
"transformers"
]
| text-classification | {
"architectures": [
"FunnelForSequenceClassification"
],
"model_type": "funnel",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 32 | null | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 273.84 +/- 22.39
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Ateeb/QA | [
"pytorch",
"distilbert",
"question-answering",
"transformers",
"autotrain_compatible"
]
| question-answering | {
"architectures": [
"DistilBertForQuestionAnswering"
],
"model_type": "distilbert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4 | null | Access to model lmxhappy/topic_correlation_classfication is restricted and you are not in the authorized list. Visit https://huggingface.co/lmxhappy/topic_correlation_classfication to ask for access. |
Ateeb/asd | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: lsaulier/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Atiqah/Atiqah | [
"license:artistic-2.0"
]
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
license: agpl-3.0
---
# Cafe Instagram Unofficial Test v2
This is a test model created to assess the Waifu Diffusion training code, and not intended to be a full-featured or official release.
This model has been trained from `runwayml/stable-diffusion-v1-5` for approximately 1.6 epochs on 1.2m images total from various Instagram accounts (primarily Japanese). As the model is undertrained, its performance is marginal. Mixing the model is recommended for better performance.
Natural language descriptions (using BLIP), as well as [booru tags](https://huggingface.co/SmilingWolf/wd-v1-4-vit-tagger) have been used to assist in captioning. Any Instagram hashtags were also included in the caption data.
*Note: Training was done using various aspect ratios, with a base resolution of 768x768, as well as the penultimate CLIP layer. Clip skip of 2 and a resolution of 768x768 or higher is recommended for generations.*

Example:
```
waifu, instagram, cute girl, japaneseidol, idol, アイドル, 自撮り女子, photorealistic, photo, 可愛い, kawaii, cute, gravure, fashion, 1girl, solo, cleavage, cowboy shot
Negative prompt: (((mutated hands and fingers))), ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed face))), ((ugly)), ((bad anatomy)), (((bad proportions))), (((extra limbs))), extra face, ((double head)), ((extra head)), (big breast), (((extra feet))), monster, (text), (logo), (blurry), text, english text, watermark, logo, (((anime)))
```
This model is released under the aGPL. You can use this for whatever you like. If you make changes, share them.
|
Augustvember/WOKKAWOKKA | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
]
| conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 12 | 2022-12-08T07:56:12Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="jmsalvi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
Augustvember/WokkaBot4 | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
tags:
- FrozenLake-v1-8x8
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-8x8-Slippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-8x8
type: FrozenLake-v1-8x8
metrics:
- type: mean_reward
value: 0.37 +/- 0.48
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="jmsalvi/q-FrozenLake-v1-8x8-Slippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
Axon/resnet34-v1 | [
"dataset:ImageNet",
"arxiv:1512.03385",
"Axon",
"Elixir",
"license:apache-2.0"
]
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language: en
thumbnail: http://www.huggingtweets.com/tomscott/1670488558148/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1147263107082989569/kVxalZfU_400x400.png')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Tom Scott</div>
<div style="text-align: center; font-size: 14px;">@tomscott</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Tom Scott.
| Data | Tom Scott |
| --- | --- |
| Tweets downloaded | 457 |
| Retweets | 16 |
| Short tweets | 5 |
| Tweets kept | 436 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/szvh9krj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tomscott's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3chzqp31) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3chzqp31/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/tomscott')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Ayham/albert_gpt2_Full_summarization_cnndm | [
"pytorch",
"tensorboard",
"encoder-decoder",
"text2text-generation",
"dataset:cnn_dailymail",
"transformers",
"generated_from_trainer",
"autotrain_compatible"
]
| text2text-generation | {
"architectures": [
"EncoderDecoderModel"
],
"model_type": "encoder-decoder",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 9 | null | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Tayge/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
Ayham/albert_gpt2_summarization_cnndm | [
"pytorch",
"tensorboard",
"encoder-decoder",
"text2text-generation",
"dataset:cnn_dailymail",
"transformers",
"generated_from_trainer",
"autotrain_compatible"
]
| text2text-generation | {
"architectures": [
"EncoderDecoderModel"
],
"model_type": "encoder-decoder",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | null | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="jmsalvi/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
Ayham/bert_gpt2_summarization_cnndm_new | [
"pytorch",
"tensorboard",
"encoder-decoder",
"text2text-generation",
"dataset:cnn_dailymail",
"transformers",
"generated_from_trainer",
"autotrain_compatible"
]
| text2text-generation | {
"architectures": [
"EncoderDecoderModel"
],
"model_type": "encoder-decoder",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | null |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: Dharkelf/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Ayham/distilbert_gpt2_summarization_xsum | [
"pytorch",
"tensorboard",
"encoder-decoder",
"text2text-generation",
"dataset:xsum",
"transformers",
"generated_from_trainer",
"autotrain_compatible"
]
| text2text-generation | {
"architectures": [
"EncoderDecoderModel"
],
"model_type": "encoder-decoder",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | null |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: AlexChe/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Ayham/xlnet_roberta_summarization_cnn_dailymail | [
"pytorch",
"tensorboard",
"encoder-decoder",
"text2text-generation",
"dataset:cnn_dailymail",
"transformers",
"generated_from_trainer",
"autotrain_compatible"
]
| text2text-generation | {
"architectures": [
"EncoderDecoderModel"
],
"model_type": "encoder-decoder",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 10 | 2022-12-08T10:25:13Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 256.05 +/- 16.58
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Ayoola/cdial-yoruba-test | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"transformers",
"has_space"
]
| automatic-speech-recognition | {
"architectures": [
"Wav2Vec2ForCTC"
],
"model_type": "wav2vec2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 25 | 2022-12-08T10:37:27Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-tiny-ar-quran
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-ar-quran
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0928
- Wer: 7.0535
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1766 | 0.05 | 500 | 0.2829 | 20.0236 |
| 0.1129 | 0.09 | 1000 | 0.1981 | 13.8364 |
| 0.0775 | 0.14 | 1500 | 0.1763 | 12.5450 |
| 0.0678 | 0.19 | 2000 | 0.1485 | 10.7302 |
| 0.0437 | 0.23 | 2500 | 0.1336 | 9.6693 |
| 0.0341 | 0.28 | 3000 | 0.1244 | 8.9602 |
| 0.0302 | 0.33 | 3500 | 0.1059 | 8.2224 |
| 0.0189 | 0.37 | 4000 | 0.1044 | 7.6902 |
| 0.0167 | 0.42 | 4500 | 0.0966 | 7.2643 |
| 0.0151 | 0.47 | 5000 | 0.0928 | 7.0535 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
Ayoola/wav2vec2-large-xlsr-turkish-demo-colab | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2022-12-08T10:46:18Z | ---
language:
- pl
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
model-index:
- name: Whisper Small PL
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: pl
split: test
metrics:
- type: wer
value: 14.57
name: WER
- type: wer_without_norm
value: 33.57
name: WER unnormalized
- type: cer
value: 4.02
name: CER
- type: mer
value: 14.37
name: MER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: facebook/voxpopuli
type: facebook/voxpopuli
config: pl
split: test
metrics:
- type: wer
value: 15.73
name: WER
- type: wer_without_norm
value: 34.51
name: WER unnormalized
- type: cer
value: 7.73
name: CER
- type: mer
value: 15.28
name: MER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: pl_pl
split: test
metrics:
- type: wer
value: 16.79
name: WER
- type: wer_without_norm
value: 35.69
name: WER unnormalized
- type: cer
value: 4.99
name: CER
- type: mer
value: 16.55
name: MER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small PL
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 and the FLEURS datasets.
It achieves the following results on the evaluation set:
- eval_loss: 0.3571
- eval_wer: 14.8004
- eval_runtime: 2233.4204
- eval_samples_per_second: 3.714
- eval_steps_per_second: 0.232
- epoch: 4.03
- step: 3000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 24
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
Azuris/DialoGPT-medium-senorita | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
]
| conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 14 | null |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: magleb/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
BE/demo-sentiment2021 | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2022-12-08T12:21:44Z | ---
language: en
license: apache-2.0
library_name: diffusers
tags: []
datasets: undefined
metrics: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# Diffusion_Model
## Model description
This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
on the `undefined` dataset.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training data
[TODO: describe the data used to train the model]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- gradient_accumulation_steps: 1
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
- lr_scheduler: None
- lr_warmup_steps: 500
- ema_inv_gamma: None
- ema_inv_gamma: None
- ema_inv_gamma: None
- mixed_precision: fp16
### Training results
📈 [TensorBoard logs](https://huggingface.co/txy8496/Diffusion_Model/tensorboard?#scalars)
|
BOON/electra-xlnet | []
| null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2022-12-08T12:31:27Z | ---
language:
- fr
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small French
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 fr
type: mozilla-foundation/common_voice_11_0
config: fr
split: test
args: fr
metrics:
- name: Wer
type: wer
value: 15.38
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: facebook/voxpopuli fr
type: facebook/voxpopuli
config: fr
split: test
args: fr
metrics:
- name: Wer
type: wer
value: 16.29
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs fr_fr
type: google/fleurs
config: fr_fr
split: test
args: fr_fr
metrics:
- name: Wer
type: wer
value: 13.98
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small French
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 fr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.00
- WER on `mozilla-foundation/common_voice_11_0` FR (with normalization): 15.38 %
- WER on `facebook/voxpopuli` FR (with normalization): 16.29 %
- WER on `google/fleurs` fr_fr (with normalization): 13.98 %
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
BSC-LT/RoBERTalex | [
"pytorch",
"roberta",
"fill-mask",
"es",
"dataset:legal_ES",
"dataset:temu_legal",
"arxiv:2110.12201",
"transformers",
"legal",
"spanish",
"license:apache-2.0",
"autotrain_compatible"
]
| fill-mask | {
"architectures": [
"RobertaForMaskedLM"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 24 | null | ---
language:
- it
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper tiny italian - Mattia Surricchio
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 it
type: mozilla-foundation/common_voice_11_0
config: it
split: test
args: it
metrics:
- name: Wer
type: wer
value: 26.495056347012547
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper tiny italian - Mattia Surricchio
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_11_0 it dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4736
- Wer: 26.4951
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.3889 | 0.2 | 1000 | 0.6844 | 39.1000 |
| 0.5832 | 0.4 | 2000 | 0.5691 | 31.9995 |
| 0.524 | 0.6 | 3000 | 0.4993 | 28.2672 |
| 0.4663 | 0.8 | 4000 | 0.4799 | 26.7230 |
| 0.3107 | 1.05 | 5000 | 0.4736 | 26.4951 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
BSC-LT/roberta-base-biomedical-clinical-es | [
"pytorch",
"roberta",
"fill-mask",
"es",
"arxiv:2109.03570",
"arxiv:2109.07765",
"transformers",
"biomedical",
"clinical",
"spanish",
"license:apache-2.0",
"autotrain_compatible"
]
| fill-mask | {
"architectures": [
"RobertaForMaskedLM"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 27 | null | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 283.94 +/- 17.57
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
BSC-LT/roberta-base-bne-capitel-ner-plus | [
"pytorch",
"roberta",
"token-classification",
"es",
"dataset:bne",
"dataset:capitel",
"arxiv:1907.11692",
"arxiv:2107.07253",
"transformers",
"national library of spain",
"spanish",
"bne",
"capitel",
"ner",
"license:apache-2.0",
"autotrain_compatible"
]
| token-classification | {
"architectures": [
"RobertaForTokenClassification"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 9 | null | ---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- vumichien/preprocessed_jsut_jsss_css10_common_voice_11
metrics:
- wer
model-index:
- name: Whisper Medium Japanese
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0 ja
type: mozilla-foundation/common_voice_11_0
config: ja
split: test
args: ja
metrics:
- type: wer
value: 8.7213
name: Wer
- type: cer
value: 5.4698
name: Cer
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: ja_jp
split: test
metrics:
- type: wer
value: 12.825163229350192
name: WER
- type: cer
value: 7.797336057522297
name: CER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-medium
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the vumichien/preprocessed_jsut_jsss_css10_common_voice_11 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2836
- Wer: 8.7213
- Cer: 5.4698
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|
| 0.1106 | 1.1 | 1000 | 0.1827 | 10.3480 | 6.4784 |
| 0.0487 | 2.2 | 2000 | 0.1799 | 9.4764 | 5.9127 |
| 0.0243 | 3.29 | 3000 | 0.1950 | 9.2111 | 5.8069 |
| 0.0106 | 4.39 | 4000 | 0.2113 | 8.9713 | 5.5756 |
| 0.0054 | 5.49 | 5000 | 0.2325 | 8.6470 | 5.4041 |
| 0.0031 | 6.59 | 6000 | 0.2462 | 8.7078 | 5.4409 |
| 0.0014 | 7.68 | 7000 | 0.2608 | 8.7145 | 5.4849 |
| 0.0009 | 8.78 | 8000 | 0.2695 | 8.6301 | 5.3876 |
| 0.0004 | 9.88 | 9000 | 0.2794 | 8.6064 | 5.3528 |
| 0.0003 | 10.98 | 10000 | 0.2836 | 8.7213 | 5.4698 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
BSC-LT/roberta-base-bne-capitel-pos | [
"pytorch",
"roberta",
"token-classification",
"es",
"dataset:bne",
"dataset:capitel",
"arxiv:1907.11692",
"arxiv:2107.07253",
"transformers",
"national library of spain",
"spanish",
"bne",
"capitel",
"pos",
"license:apache-2.0",
"autotrain_compatible"
]
| token-classification | {
"architectures": [
"RobertaForTokenClassification"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 14 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: wa2vec2-large-xls-r-colab_turkish
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice
type: common_voice
config: tr
split: train+validation
args: tr
metrics:
- name: Wer
type: wer
value: 0.381166377285262
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wa2vec2-large-xls-r-colab_turkish
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3941
- Wer: 0.3812
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.0265 | 3.67 | 400 | 0.7368 | 0.8192 |
| 0.4253 | 7.34 | 800 | 0.4467 | 0.5111 |
| 0.1902 | 11.01 | 1200 | 0.4423 | 0.4723 |
| 0.1293 | 14.68 | 1600 | 0.3854 | 0.4216 |
| 0.0989 | 18.35 | 2000 | 0.3997 | 0.4197 |
| 0.0745 | 22.02 | 2400 | 0.4133 | 0.4182 |
| 0.0598 | 25.69 | 2800 | 0.3962 | 0.3925 |
| 0.0488 | 29.36 | 3200 | 0.3941 | 0.3812 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
BSC-LT/roberta-base-bne | [
"pytorch",
"roberta",
"fill-mask",
"es",
"dataset:bne",
"arxiv:1907.11692",
"arxiv:2107.07253",
"transformers",
"national library of spain",
"spanish",
"bne",
"license:apache-2.0",
"autotrain_compatible"
]
| fill-mask | {
"architectures": [
"RobertaForMaskedLM"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 594 | null | ---
license: creativeml-openrail-m
---
# What is this
This is a hypernetwork trained to make pictures of Re-l Mayer from Ergo Proxy. Trained on Atlers mix (758f6d9b). Usable on other models aware of anime. Limited usefullness on real-life models.
# Installing
## Webui
* Download `relmayer.pt` into `stable-diffusion-webui/models/hypernetworks`
* Go to settings
* Select `relmayer.pt` in hypernetwork dropdown menu
# Usage
Type `relmayer` before prompt.
# Limitations
Seems to be overtrained to draw collar.
# Examples

|
BSC-LT/roberta-large-bne-sqac | [
"pytorch",
"roberta",
"question-answering",
"es",
"dataset:BSC-TeMU/SQAC",
"arxiv:1907.11692",
"arxiv:2107.07253",
"transformers",
"national library of spain",
"spanish",
"bne",
"qa",
"question answering",
"license:apache-2.0",
"autotrain_compatible"
]
| question-answering | {
"architectures": [
"RobertaForQuestionAnswering"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 15 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-burak-new-300-v2-8-medium
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-burak-new-300-v2-8-medium
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4311
- Wer: 0.2602
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 151
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 2.7459 | 9.43 | 500 | 0.3843 | 0.4597 |
| 0.579 | 18.87 | 1000 | 0.3006 | 0.3668 |
| 0.2662 | 28.3 | 1500 | 0.3760 | 0.3503 |
| 0.1936 | 37.74 | 2000 | 0.3631 | 0.3214 |
| 0.157 | 47.17 | 2500 | 0.3838 | 0.3063 |
| 0.1307 | 56.6 | 3000 | 0.3671 | 0.3056 |
| 0.1138 | 66.04 | 3500 | 0.3700 | 0.2959 |
| 0.1002 | 75.47 | 4000 | 0.4164 | 0.3014 |
| 0.0874 | 84.91 | 4500 | 0.4001 | 0.2973 |
| 0.0791 | 94.34 | 5000 | 0.3883 | 0.2911 |
| 0.0667 | 103.77 | 5500 | 0.4220 | 0.2780 |
| 0.0581 | 113.21 | 6000 | 0.4163 | 0.2670 |
| 0.0506 | 122.64 | 6500 | 0.4065 | 0.2753 |
| 0.043 | 132.08 | 7000 | 0.4279 | 0.2643 |
| 0.0386 | 141.51 | 7500 | 0.4284 | 0.2650 |
| 0.0341 | 150.94 | 8000 | 0.4311 | 0.2602 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|
BSC-LT/roberta-large-bne | [
"pytorch",
"roberta",
"fill-mask",
"es",
"dataset:bne",
"arxiv:1907.11692",
"arxiv:2107.07253",
"transformers",
"national library of spain",
"spanish",
"bne",
"license:apache-2.0",
"autotrain_compatible"
]
| fill-mask | {
"architectures": [
"RobertaForMaskedLM"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 24 | null | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: ppo
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 284.54 +/- 15.48
name: mean_reward
verified: false
---
# **ppo** Agent playing **LunarLander-v2**
This is a trained model of a **ppo** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Bagus/wav2vec2-xlsr-japanese-speech-emotion-recognition | [
"pytorch",
"wav2vec2",
"audio-classification",
"ja",
"dataset:jtes",
"transformers",
"audio",
"speech",
"speech-emotion-recognition",
"has_space"
]
| audio-classification | {
"architectures": [
"HubertForSequenceClassification"
],
"model_type": "wav2vec2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 26 | 2022-12-08T13:45:34Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- f1
model-index:
- name: sentiment-model-imdb-small-100-demo
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: train
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.56
- name: F1
type: f1
value: 0.15384615384615385
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment-model-imdb-small-100-demo
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6782
- Accuracy: 0.56
- F1: 0.1538
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0
- Datasets 2.7.1
- Tokenizers 0.13.2
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.