modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
Camzure/MaamiBot-test
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dirkvg/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Camzure/MaamiBot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.57 +/- 22.71 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Canadiancaleb/jessebot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="newbie4000/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
CapitainData/wav2vec2-large-xlsr-turkish-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="newbie4000/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Capreolus/bert-base-msmarco
[ "pytorch", "tf", "jax", "bert", "text-classification", "arxiv:2008.09093", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
238
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 476.00 +/- 249.55 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Addwater -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Addwater -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Addwater ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Capreolus/birch-bert-large-car_mb
[ "pytorch", "tf", "jax", "bert", "next-sentence-prediction", "transformers" ]
null
{ "architectures": [ "BertForNextSentencePrediction" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - generated_from_trainer model-index: - name: toxification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # toxification This model is a fine-tuned version of [sberbank-ai/ruT5-base](https://huggingface.co/sberbank-ai/ruT5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 435 | 2.2082 | | 3.5337 | 2.0 | 870 | 2.0111 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu102 - Datasets 2.7.1 - Tokenizers 0.12.1
Capreolus/birch-bert-large-mb
[ "pytorch", "tf", "jax", "bert", "next-sentence-prediction", "transformers" ]
null
{ "architectures": [ "BertForNextSentencePrediction" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxiv3_Qlearning_v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="akgeni/taxiv3_Qlearning_v2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Capreolus/electra-base-msmarco
[ "pytorch", "tf", "electra", "text-classification", "arxiv:2008.09093", "transformers" ]
text-classification
{ "architectures": [ "ElectraForSequenceClassification" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
110
null
--- model: base_learning_rate: 1.0e-04 target: ldm.models.diffusion.ddpm.LatentDiffusion params: linear_start: 0.00085 linear_end: 0.0120 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: "jpg" cond_stage_key: "txt" image_size: 64 channels: 4 cond_stage_trainable: false # Note: different from the one we trained before conditioning_key: crossattn monitor: val/loss_simple_ema scale_factor: 0.18215 use_ema: False scheduler_config: # 10000 warmup steps target: ldm.lr_scheduler.LambdaLinearScheduler params: warm_up_steps: [ 10000 ] cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases f_start: [ 1.e-6 ] f_max: [ 1. ] f_min: [ 1. ] unet_config: target: ldm.modules.diffusionmodules.openaimodel.UNetModel params: image_size: 32 # unused in_channels: 4 out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_heads: 8 use_spatial_transformer: True transformer_depth: 1 context_dim: 768 use_checkpoint: True legacy: False first_stage_config: target: ldm.models.autoencoder.AutoencoderKL params: embed_dim: 4 monitor: val/rec_loss ddconfig: double_z: true z_channels: 4 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 4 - 4 num_res_blocks: 2 attn_resolutions: [] dropout: 0.0 lossconfig: target: torch.nn.Identity cond_stage_config: target: ldm.modules.encoders.modules.FrozenCLIPEmbedder --- <a href="https://discord.gg/unvailai"> <img src="https://cdn.discordapp.com/attachments/1051410188592226364/1061335270194171944/havo_aloe_banner_copie.jpg" alt="image description" width="768"> </a> <a href="https://www.patreon.com/unvailai"> <img src="https://cdn.discordapp.com/attachments/1051410188592226364/1061335270483566662/havo_aloe_banner_patreon.jpg" alt="image description" width="768"> </a> Model name: H&A 3DKX Model versions: 1.0b, 1.1(latest) ## Changelog: V1.1: Minor update based on feedback, containing the following fixes: -“nsfw”, “nudity” , and “erotica” have been trained into the model and work as Negatives to greatly reduce unintended NSFW content. - CFG can be pushed a bit higher before the images become burnt. As a result, the model can accommodate more complicated prompts now. - Oversaturated images will be encountered way less often ## Description: SFW model with limited nsfw capabilities (suggestive nsfw) that is highly versatile for 3D renders. The model has the particularity of splitting itself into two different well balanced styles. If you'd like to have your 3D characters have a more "Cartoony" face, you simply start your prompt with "3d cartoon of", and if you want the classic 3D render style, you write "a 3d render of". Please check the cheat sheet for prompting tips as the structure of the prompt and negatives used has a huge effect. Note: Model has an embedded VAE, so do not add one with this model. It will be the best in most cases, and configured for higher resolutions. ## Model has an embedded VAE, do not use an extra one! If you want to chat with us and join our community visit our discord: https://discord.gg/CPyqJgXdRG ## Dataset: - between 140 and 180 pictures of 3D render of all kind ## PromptGuide/Cheat Sheet [3DKX_1.0b/1.1 Guide](https://docs.google.com/document/d/15pJ3TkbmX3LRoSTNsMYsbetvO7A46L60wVOxIL2ZZ6E/) ## Has a high success rate at: - sfw portraits, full body poses, close ups, etc - high versatility in terms of outputs, it isn't locked to perform well on portraits - Landscapes, cyberpunk, steampunk, natural, scifi, etc - 2B Nier Automata (Don't ask us why) - different body types - different ethnicity - nsfw portraits, full body poses, close ups, etc ## What it "In theory" shouldn't exceed at: - anything outside the scope of portraits, people, landscapes, game artworks, 3D sculptures, 3D fantasy, 3D film stills, etc - celebrities - highly specific animated cartoon characters - multiple subjects - highly specific video-game characters - pornography, genitalia and highly explicit materials <img width="768px" src="https://cdn.discordapp.com/attachments/1056287982363086930/1056331346177425438/00011-3928902726-A203d20render20of2020epic20portrait20close20shot20of20beautiful20turkish20woman20wearing20with20angelic20feathered20wings20gold20armour20neckline.png"> <img width="768px" src="https://cdn.discordapp.com/attachments/323893037379878912/1056823178846031882/00494-2262985444-3d_render_of_a_sharp_focused_detailed_photo_of_a_super_car_with_iridescent_metallic_color_driving_on_a_midnight_road_multicolo.png"> <img width="768px" src="https://media.discordapp.net/attachments/1056287982363086930/1056387208900268062/00102-971809704-movie_still_of_a_alien_from_mass_effect_wearing_scifi_armor_disney_pixar_animation_3d_render_4k_resolution_very_detail.png"> <img width="768px" src="https://cdn.discordapp.com/attachments/1056287982363086930/1056399456695767151/00143-556286556-3d_render_of_a_cute_simba_from_the_lion_king_disney_pixar_animation_RDR_2_game_render_lion_king_movie_still_very_detailed_4.png"> <img width="768px" src="https://media.discordapp.net/attachments/1056287982363086930/1056385527907110963/00097-3269033961-picture_of_a_handsome_viking_chief_in_his_village_disney_pixar_animation_3d_render_4k_resolution_very_detailed_movie_stil.png?width=645&height=806"> <img width="768px" src="https://cdn.discordapp.com/attachments/1056287982363086930/1056340815011659917/02082-2709311262-A_3d_render_of_a_cute_tiny_little_fluffy_monster_with_googly_eyes_running_in_a_huge_bedroom_antview_bokeh_closeup_highly_det.png"> <img width="768px" src="https://media.discordapp.net/attachments/1051410188592226364/1056636097330942022/02045-172340656-A_3d_render_of_A_mature_woman_with_short_styled_hair_and_wearing_a_colorful_printed_blouse_seated_in_a_cozy_armchair_with_a_wa.png"> <img width="768px" src="https://cdn.discordapp.com/attachments/1051410188592226364/1056636096412389508/02029-172340656-A_3d_cartoon_of_A_mature_woman_with_short_styled_hair_and_wearing_a_colorful_printed_blouse_seated_in_a_cozy_armchair_with_a.png"> <img width="768px" src="https://cdn.discordapp.com/attachments/1051410188592226364/1056636286347247616/01925-2050823061-A_woman_with_short_bobbed_hair_styled_in_a_choppy_textured_look_wearing_a_cyberpunk-inspired_outfit_with_neon_accents_and_boo.png"> <img width="768px" src="https://cdn.discordapp.com/attachments/1051410188592226364/1056636296103198740/01858-1327022461-A_slender_woman_with_pale_skin_short_blonde_hair_and_bright_blue_eyes._She_is_standing_in_a_bright_white_studio_surrounded_by.png"> <img width="768px" src="https://cdn.discordapp.com/attachments/1051410188592226364/1056636414059618406/02107-599009770-A_3d_cartoon_of_a_a_beautiful_spanish_woman_wearing_Kimono_neckline_fine_-_art_photography_cinematic_portrait_shot_8_k_mid.png"> ## Use Restrictions You agree not to use the Model or Derivatives of the Model: - In any way that violates any applicable national, federal, state, local or international law or regulation; - For the purpose of exploiting, harming or attempting to exploit or harm minors in any way; - To generate or disseminate verifiably false information and/or content with the purpose of harming others; - To generate or disseminate personal identifiable information that can be used to harm an individual; - To defame, disparage or otherwise harass others; - For fully automated decision making that adversely impacts an individual’s legal rights or otherwise creates or modifies a binding, enforceable obligation; - For any use intended to or which has the effect of discriminating against or harming individuals or groups based on online or offline social behavior or known or predicted personal or personality characteristics; - To exploit any of the vulnerabilities of a specific group of persons based on their age, social, physical or mental characteristics, in order to materially distort the behavior of a person pertaining to that group in a manner that causes or is likely to cause that person or another person physical or psychological harm; - For any use intended to or which has the effect of discriminating against individuals or groups based on legally protected characteristics or categories; - To provide medical advice and medical results interpretation; - To generate or disseminate information for the purpose to be used for administration of justice, law enforcement, immigration or asylum processes, such as predicting an individual will commit fraud/crime commitment (e.g. by text profiling, drawing causal relationships between assertions made in documents, indiscriminate and arbitrarily-targeted use). ## Important notes: - This model’s datasets do NOT contain any character that could be remotely described as a child, or underage. - Our datasets contains no mentions of the artist's name, nor specific styles from any artist whatsoever. - The creators (Havo and Aloe Vera) will not be held accountable for the way this model is being used or the outputs that any person may generate. - The purpose of this model isn't to replicate a style, but to provide a useful tool to creators of all kinds to generate 3D related contents - Be advised that this model can generate explicit material and therefore shouldn't be used in any way to cause harm or produce non-consensual sexual content. ## Conclusion: We do have limited resources, so our weeks worth of testing cannot realistically encapsulate the full potential of the model. Which is why we're very excited to discover that YOU, the awesome creators will make out of this tool. And for anyone that feels like we're worth a shot, we invite you to please have a look at our Patreon in which you can choose to chip in and support our work. We have many plans and we'd like to have some more resources that will allow us to work more efficiently and to eventually be able to create models of professional standards. It's our goal ! https://www.patreon.com/aloeNhavo
Carlork314/Carlos
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 667.00 +/- 188.34 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga andrei-saceleanu -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga andrei-saceleanu -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga andrei-saceleanu ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 2000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Carlork314/Xd
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 580.00 +/- 240.78 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Isaacp -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Isaacp -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Isaacp ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
CarlosPR/mt5-spanish-memmories-analysis
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Medium Amharic FLEURS results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs am_et type: google/fleurs config: am_et split: validation args: am_et metrics: - name: Wer type: wer value: 154.41176470588235 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Amharic FLEURS This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the google/fleurs am_et dataset. It achieves the following results on the evaluation set: - Loss: 7.8670 - Wer: 154.4118 ## Model description - The main Whisper Small Hugging Face page: [Hugging Face - Whisper Small](https://huggingface.co/openai/whisper-small) ## Intended uses & limitations - For experimentation and curiosity. - Based on the paper [AXRIV](https://arxiv.org/abs/2212.04356) and [Benchmarking OpenAI Whisper for non-English ASR - Dan Shafer](https://blog.deepgram.com/benchmarking-openai-whisper-for-non-english-asr/), there is a performance bias towards certain languages and curated datasets. - From the Whisper paper, am_et is a low resource language (Table E), with the WER results ranging from 120-229, based on model size. Whisper small WER=120.2, indicating more training time may improve the fine tuning. ## Training and evaluation data - This model was trained/evaluated on "test+validation" data from google/fleurs [google/fluers - HuggingFace Datasets](https://huggingface.co/datasets/google/fleurs). ## Training procedure - The training was done in Lambda Cloud GPU on A100/40GB GPUs, which were provided by OpenAI Community Events [Whisper Fine Tuning Event - Dec 2022](https://github.com/huggingface/community-events/tree/main/whisper-fine-tuning-event#fine-tune-whisper). The training was done using [HuggingFace Community Events - Whisper - run_speech_recognition_seq2seq_streaming.py](https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/run_speech_recognition_seq2seq_streaming.py) using the included [whisper_python_am_et.ipynb](https://huggingface.co/drmeeseeks/whisper-small-am_et/blob/main/am_et_fine_tune_whisper_streaming_colab_RUNNING-evalerrir.ipynb) to setup the Lambda Cloud GPU/Colab environment. For Colab, you must reduce the train batch size to the recommended amount mentioned at , as the T4 GPUs have 16GB of memory [Whisper Fine Tuning Event - Dec 2022](https://github.com/huggingface/community-events/tree/main/whisper-fine-tuning-event#fine-tune-whisper). The notebook sets up the environment, logs into your huggingface account, and generates a bash script. The bash script generated in the IPYNB, `run.sh` was run from the terminal to train `bash run.sh`, as described on the Whisper community events GITHUB page. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0194 | 100.0 | 100 | 3.8540 | 147.9947 | | 0.0001 | 200.0 | 200 | 4.1479 | 148.1283 | | 0.0001 | 300.0 | 300 | 4.1840 | 150.5348 | | 0.0001 | 400.0 | 400 | 4.3339 | 177.9412 | | 0.0 | 500.0 | 500 | 4.5831 | 151.0695 | | 0.0 | 600.0 | 600 | 4.9317 | 164.0374 | | 0.0 | 700.0 | 700 | 5.3031 | 141.0428 | | 0.0 | 800.0 | 800 | 5.6584 | 122.3262 | | 0.0 | 900.0 | 900 | 5.9711 | 157.4866 | | 0.0 | 1000.0 | 1000 | 6.2465 | 141.1765 | | 0.0 | 1100.0 | 1100 | 6.4832 | 169.6524 | | 0.0 | 1200.0 | 1200 | 6.6890 | 155.0802 | | 0.0 | 1300.0 | 1300 | 6.8679 | 159.7594 | | 0.0 | 1400.0 | 1400 | 7.0250 | 155.0802 | | 0.0 | 1500.0 | 1500 | 7.1615 | 146.2567 | | 0.0 | 1600.0 | 1600 | 7.2877 | 143.0481 | | 0.0 | 1700.0 | 1700 | 7.3987 | 148.5294 | | 0.0 | 1800.0 | 1800 | 7.5010 | 142.5134 | | 0.0 | 1900.0 | 1900 | 7.5849 | 136.7647 | | 0.0 | 2000.0 | 2000 | 7.6689 | 148.2620 | | 0.0 | 2100.0 | 2100 | 7.6955 | 165.3743 | | 0.0 | 2200.0 | 2200 | 7.7247 | 162.9679 | | 0.0 | 2300.0 | 2300 | 7.7557 | 161.6310 | | 0.0 | 2400.0 | 2400 | 7.7842 | 162.2995 | | 0.0 | 2500.0 | 2500 | 7.8074 | 150.9358 | | 0.0 | 2600.0 | 2600 | 7.8287 | 154.8128 | | 0.0 | 2700.0 | 2700 | 7.8434 | 155.4813 | | 0.0 | 2800.0 | 2800 | 7.8567 | 154.4118 | | 0.0 | 2900.0 | 2900 | 7.8635 | 154.4118 | | 0.0 | 3000.0 | 3000 | 7.8670 | 154.4118 | ### Recommendations Limit training duration for smaller datasets to ~ 2000 to 3000 steps to avoid overfitting. 5000 steps using the [HuggingFace - Whisper Small](https://huggingface.co/openai/whisper-small) takes ~ 5hrs on A100 GPUs (1hr/1000 steps). Encountered `RuntimeError: The size of tensor a (504) must match the size of tensor b (448) at non-singleton dimension 1` which is related to [Trainer RuntimeError](https://discuss.huggingface.co/t/trainer-runtimeerror-the-size-of-tensor-a-462-must-match-the-size-of-tensor-b-448-at-non-singleton-dimension-1/26010) as some languages datasets have input lengths that have non-standard lengths. The link did not resolve my issue, and appears elsewhere too [Training languagemodel – RuntimeError the expanded size of the tensor (100) must match the existing size (64) at non singleton dimension 1](https://hungsblog.de/en/technology/troubleshooting/training-languagemodel-runtimeerror-the-expanded-size-of-the-tensor-100-must-match-the-existing-size-64-at-non-singleton-dimension-1/). To circumvent this issue, `run.sh` paremeters are adjusted. Then run `python run_eval_whisper_streaming.py --model_id="openai/whisper-small" --dataset="google/fleurs" --config="am_et" --batch_size=32 --max_eval_samples=64 --device=0 --language="am"` to find the WER score manually. Otherwise, erroring out during evaluation prevents the trained model from loading to HugginFace. Based on the paper [AXRIV](https://arxiv.org/abs/2212.04356) and [Benchmarking OpenAI Whisper for non-English ASR - Dan Shafer](https://blog.deepgram.com/benchmarking-openai-whisper-for-non-english-asr/), there is a performance bias towards certain languages and curated datasets. The OpenAI fintuning community event provided ample _free_ GPU time to help develop the model further and improve WER scores. ### Environmental Impact Carbon emissions were estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). In total roughly 100 hours were used primarily in US East/Asia Pacific (80%/20%), with AWS as the reference. Additional resources are available at [Our World in Data - CO2 Emissions](https://ourworldindata.org/co2-emissions) - __Hardware Type__: AMD EPYC 7J13 64-Core Processor (30 core VM) 197GB RAM, with NVIDIA A100-SXM 40GB - __Hours Used__: 100 hrs - __Cloud Provider__: Lambda Cloud GPU - __Compute Region__: US East/Asia Pacific - __Carbon Emitted__: 12 kg (GPU) + 13 kg (CPU) = 25 kg (the weight of 3 gallons of water) ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2 ### Citation - [Whisper - GITHUB](https://github.com/openai/whisper) - [Whisper - OpenAI - BLOG](https://openai.com/blog/whisper/) - [Model Card - HuggingFace Hub - GITHUB](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md) ```bibtex @misc{https://doi.org/10.48550/arxiv.2212.04356, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, keywords = {Audio and Speech Processing (eess.AS), Computation and Language (cs.CL), Machine Learning (cs.LG), Sound (cs.SD), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } @article{owidco2andothergreenhousegasemissions, author = {Hannah Ritchie and Max Roser and Pablo Rosado}, title = {CO₂ and Greenhouse Gas Emissions}, journal = {Our World in Data}, year = {2020}, note = {https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions} } ```
Carolhuehuehuehue/Sla
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: feasible/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Cat/Kitty
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - animal widget: - text: a photo of sgengiuli dog in the Acropolis with a crocodile hidden behind --- # DreamBooth model for the sgengiuli concept trained by DiTo97 on a private dataset of images of his childhood dog Leo (also known as *Sgengiuli*), which passed away in late 2020. This is a Stable Diffusion model fine-tuned on the sgengiuli concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of sgengiuli dog** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `dog` images for the animal theme. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('DiTo97/sgengiuli-dog') image = pipeline().images[0] image ```
dccuchile/albert-base-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
34
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 631.00 +/- 216.87 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga hendoo -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga hendoo -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga hendoo ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
dccuchile/albert-base-spanish-finetuned-pos
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: keshan/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dccuchile/albert-base-spanish-finetuned-qa-mlqa
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: CyantifiCQ/ppo-Huggy_01 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dccuchile/albert-base-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- license: agpl-3.0 language: - en thumbnail: tags: - text generation - conversational inference: false --- # Pygmalion 1.3B ## Model description Pymalion 1.3B is a proof-of-concept dialogue model based on EleutherAI's [pythia-1.3b-deduped](https://huggingface.co/EleutherAI/pythia-1.3b-deduped). **Warning:** This model is **NOT** suitable for use by minors. It **will** output X-rated content under certain circumstances. ## Training data The fine-tuning dataset consisted of 56MB of dialogue data gathered from multiple sources, which includes both real _and_ partially machine-generated conversations. ## Training procedure Fine-tuning was done using [ColossalAI](https://github.com/hpcaitech/ColossalAI) (specifically, with a slightly modified version of their [OPT fine-tune example](https://github.com/hpcaitech/ColossalAI/blob/78509124d32b63b7fc36f6508e0576a326d51422/examples/language/opt/run_clm.py)) for around 11.4 million tokens over 5440 steps on a single 24GB GPU. The run took just under 21 hours. ## Intended use ### The easy way We provide a notebook with a Gradio UI for playing around with the model without having to manually format inputs. This notebook can be found [here](https://github.com/PygmalionAI/gradio-ui/blob/master/notebooks/GPU.ipynb). ### The manual way The model can be used as a regular text generation model, but it'll perform best if the input prompt adheres to the following format: ``` [CHARACTER]'s Persona: [A few sentences about the character you want the model to play] [DIALOGUE HISTORY] You: [Your input message here] [CHARACTER]: ``` Where `[CHARACTER] `is, as you can probably guess, the name of the character you want the model to portray, and `[DIALOGUE HISTORY]` is chat history so the model can have some conversational context to draw from. Ideally it'll be pairs of messages like: ``` [CHARACTER]: [some dialogue here] You: [your response to the dialogue above] ``` Apart from chat history, you can also just add example conversations in `[DIALOGUE HISTORY]` to show how the character should speak - ideally at the beginning, so it doesn't get confused as to what's conversation history vs. character definition. ## Known issues - The model can get stuck repeating certain phrases, or sometimes even entire sentences. - We believe this is due to that behavior being present in the training data itself, and plan to investigate and adjust accordingly for future versions.
dccuchile/albert-large-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-xlsum-with-multi-news-test-5-epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xlsum-with-multi-news-test-5-epoch This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2989 - Rouge1: 30.8254 - Rouge2: 9.2466 - Rougel: 24.0068 - Rougelsum: 24.0535 - Gen Len: 18.8143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7346 | 1.0 | 20543 | 2.3901 | 29.3586 | 8.2361 | 22.7798 | 22.8273 | 18.8201 | | 2.6739 | 2.0 | 41086 | 2.3414 | 30.2258 | 8.77 | 23.496 | 23.5405 | 18.8384 | | 2.6486 | 3.0 | 61629 | 2.3160 | 30.6221 | 9.1072 | 23.8114 | 23.8584 | 18.8194 | | 2.648 | 4.0 | 82172 | 2.3033 | 30.8171 | 9.2146 | 23.9993 | 24.0424 | 18.8016 | | 2.63 | 5.0 | 102715 | 2.2989 | 30.8254 | 9.2466 | 24.0068 | 24.0535 | 18.8143 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.13.1+cpu - Datasets 2.8.0 - Tokenizers 0.10.3
dccuchile/albert-large-spanish-finetuned-pawsx
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="khatkeashish/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dccuchile/albert-large-spanish-finetuned-pos
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: my_deneme_3_epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_deneme_3_epoch This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2653 - Precision: 0.8985 - Recall: 0.8916 - F1: 0.8950 - Accuracy: 0.9259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 488 | 0.3634 | 0.8684 | 0.8580 | 0.8632 | 0.9029 | | 0.6954 | 2.0 | 976 | 0.2862 | 0.8908 | 0.8838 | 0.8873 | 0.9204 | | 0.3535 | 3.0 | 1464 | 0.2653 | 0.8985 | 0.8916 | 0.8950 | 0.9259 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
dccuchile/albert-large-spanish-finetuned-qa-mlqa
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
One night after work, Joe was having a discussion with some colleagues, which controlled towards the way that over portion of their clients couldn't buy in view of terrible credit. Follow this link https://philadelphia.asapcreditrepairusa.com/
dccuchile/albert-large-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.44 +/- 2.75 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="khatkeashish/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dccuchile/albert-tiny-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi_v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dirkvg/taxi_v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dccuchile/albert-tiny-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.60 +/- 24.85 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dccuchile/albert-tiny-spanish-finetuned-pawsx
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- license: mit --- Translates from Hebrew to Arabic T5-base model that was trained on TED talks (around 347k sentences) Using a 37k unigram wordpiece shared vocabulary
dccuchile/albert-xlarge-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 236.92 +/- 19.61 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dccuchile/albert-xlarge-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 612.50 +/- 140.38 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga yarafa -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga yarafa -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga yarafa ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
dccuchile/albert-xxlarge-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: npit/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dccuchile/albert-xxlarge-spanish-finetuned-pos
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 datasets: - Dr-BERT/NACHOS language: - fr library_name: transformers tags: - medical - chemistry - biomedical - life science --- <p align="center"> <img src="https://github.com/qanastek/DrBERT/blob/main/assets/logo.png?raw=true" alt="drawing" width="250"/> </p> # DrBERT: A Robust Pre-trained Model in French for Biomedical and Clinical domains In recent years, pre-trained language models (PLMs) achieve the best performance on a wide range of natural language processing (NLP) tasks. While the first models were trained on general domain data, specialized ones have emerged to more effectively treat specific domains. In this paper, we propose an original study of PLMs in the medical domain on French language. We compare, for the first time, the performance of PLMs trained on both public data from the web and private data from healthcare establishments. We also evaluate different learning strategies on a set of biomedical tasks. Finally, we release the first specialized PLMs for the biomedical field in French, called DrBERT, as well as the largest corpus of medical data under free license on which these models are trained. # 1. DrBERT models **DrBERT** is a French RoBERTa trained on a open source corpus of French medical crawled textual data called NACHOS. Models with different amount of data from differents public and private sources are trained using the CNRS (French National Centre for Scientific Research) [Jean Zay](http://www.idris.fr/jean-zay/) French supercomputer. Only the weights of the models trained using exclusively open-sources data are publicly released to prevent any personnal information leak and to follow the european GDPR laws : | Model name | Corpus | Number of layers | Attention Heads | Embedding Dimension | Sequence Length | Model URL | | :------: | :---: | :---: | :---: | :---: | :---: | :---: | | `DrBERT-7-GB-cased-Large` | NACHOS 7 GB | 24 | 16 | 1024 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-7GB-Large) | | `DrBERT-7-GB-cased` | NACHOS 7 GB | 12 | 12 | 768 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-7GB) | | `DrBERT-4-GB-cased` | NACHOS 4 GB | 12 | 12 | 768 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-4GB) | | `DrBERT-4-GB-cased-CP-CamemBERT` | NACHOS 4 GB | 12 | 12 | 768 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-4GB-CP-CamemBERT) | | `DrBERT-4-GB-cased-CP-PubMedBERT` | NACHOS 4 GB | 12 | 12 | 768 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-4GB-CP-PubMedBERT) | # 2. Using DrBERT You can use DrBERT with [Hugging Face's Transformers library](https://github.com/huggingface/transformers) as follow. Loading the model and tokenizer : ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("Dr-BERT/DrBERT-7GB") model = AutoModel.from_pretrained("Dr-BERT/DrBERT-7GB") ``` Perform the mask filling task : ```python from transformers import pipeline fill_mask = pipeline("fill-mask", model="Dr-BERT/DrBERT-7GB", tokenizer="Dr-BERT/DrBERT-7GB") results = fill_mask("La patiente est atteinte d'une <mask>") ``` # 3. Pre-training DrBERT tokenizer and model from scratch by using HuggingFace Transformers Library ## 3.1 Install dependencies ```bash accelerate @ git+https://github.com/huggingface/accelerate@66edfe103a0de9607f9b9fdcf6a8e2132486d99b datasets==2.6.1 sentencepiece==0.1.97 protobuf==3.20.1 evaluate==0.2.2 tensorboard==2.11.0 torch >= 1.3 ``` ## 3.2 Download NACHOS Dataset text file Download the full NACHOS dataset from [Zenodo]() and place it the the `from_scratch` or `continued_pretraining` directory. ## 3.3 Build your own tokenizer from scratch based on NACHOS Note : This step is required only in the case of an from scratch pre-training, if you want to do a continued pre-training you just have to download the model and the tokenizer that correspond to the model you want to continue the training from. In this case, you simply have to go to the HuggingFace Hub, select a model (for example [RoBERTa-base](https://huggingface.co/roberta-base)). Finally, you have to download the entire model / tokenizer repository by clicking on the `Use In Transformers` button and get the Git link `git clone https://huggingface.co/roberta-base`. Build the tokenizer from scratch on your data of the file `./corpus.txt` by using `./build_tokenizer.sh`. ## 3.4 Preprocessing and tokenization of the dataset First, replace the field `tokenizer_path` of the shell script to match the path of your tokenizer directory downloaded before using HuggingFace Git or the one you have build. Run `./preprocessing_dataset.sh` to generate the tokenized dataset by using the givent tokenizer. ## 3.5 Model training First, change the number of GPUs `--ntasks=128` you are needing to match your computational capabilities in the shell script called `run_training.sh`. In our case, we used 128 V100 32 GB GPUs from 32 nodes of 4 GPUs (`--ntasks-per-node=4` and `--gres=gpu:4`) during 20 hours (`--time=20:00:00`). If you are using Jean Zay, you also need to change the `-A` flag to match one of your `@gpu` profile capable of running the job. You also need to move **ALL** of your datasets, tokenizer, script and outputs on the `$SCRATCH` disk space to preserve others users of suffuring of IO issues. ### 3.5.1 Pre-training from scratch Once the SLURM parameters updated, you have to change name of the model architecture in the flag `--model_type="camembert"` and to update the `--config_overrides=` according to the specifications of the architecture you are trying to train. In our case, RoBERTa had a `514` sequence length, a vocabulary of `32005` (32K tokens of the tokenizer and 5 of the model architecture) tokens, the identifier of the beginning-of-sentence token (BOS) and end-of-sentence token (EOS) are respectivly `5` and `6`. Change the Then, go to `./from_scratch/` directory. Run `sbatch ./run_training.sh` to send the training job in the SLURM queue. ### 3.5.2 continue pre-training Once the SLURM parameters updated, you have to change path of the model / tokenizer you want to start from `--model_name_or_path=` / `--tokenizer_name=` to the path of the model downloaded from HuggingFace's Git in the section 3.3. Then, go to `./continued_pretraining/` directory. Run `sbatch ./run_training.sh` to send the training job in the SLURM queue. # 4. Fine-tuning on a downstream task You just need to change the name of the model to `Dr-BERT/DrBERT-7GB` in any of the examples given by HuggingFace's team [here](https://huggingface.co/docs/transformers/tasks/sequence_classification). # Citation BibTeX ```bibtex @inproceedings{labrak2023drbert, title = "DrBERT: A Robust Pre-trained Model in French for Biomedical and Clinical domains", author = "Yanis, Labrak and Adrien, Bazoge and Richard, Dufour and Mickael, Rouvier and Emmanuel, Morin and Béatrice, Daille and Pierre-Antoine, Gourraud", booktitle = "Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL'23), Long Paper", month = july, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", abstract = "In recent years, pre-trained language models (PLMs) achieve the best performance on a wide range of natural language processing (NLP) tasks. While the first models were trained on general domain data, specialized ones have emerged to more effectively treat specific domains. In this paper, we propose an original study of PLMs in the medical domain on French language. We compare, for the first time, the performance of PLMs trained on both public data from the web and private data from healthcare establishments. We also evaluate different learning strategies on a set of biomedical tasks. In particular, we show that we can take advantage of already existing biomedical PLMs in a foreign language by further pre-train it on our targeted data. Finally, we release the first specialized PLMs for the biomedical field in French, called DrBERT, as well as the largest corpus of medical data under free license on which these models are trained.", } ```
dccuchile/albert-xxlarge-spanish-finetuned-qa-mlqa
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-pubmed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-pubmed This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on a truncated [PubMed Summarization](https://huggingface.co/datasets/ccdv/pubmed-summarization) dataset. It achieves the following results on the evaluation set: - Loss: 2.7252 - Rouge1: 19.4457 - Rouge2: 3.125 - Rougel: 18.3168 - Rougelsum: 18.5625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 3.2735 | 1.0 | 13 | 2.9820 | 18.745 | 3.7918 | 15.7876 | 15.8512 | | 3.0428 | 2.0 | 26 | 2.8828 | 17.953 | 2.5 | 15.49 | 15.468 | | 2.6259 | 3.0 | 39 | 2.8283 | 21.5532 | 5.9278 | 19.7523 | 19.9232 | | 3.0795 | 4.0 | 52 | 2.7910 | 20.9244 | 5.9278 | 19.8685 | 20.0181 | | 2.8276 | 5.0 | 65 | 2.7613 | 20.6403 | 3.125 | 18.0574 | 18.2227 | | 2.64 | 6.0 | 78 | 2.7404 | 19.4457 | 3.125 | 18.3168 | 18.5625 | | 2.5525 | 7.0 | 91 | 2.7286 | 19.4457 | 3.125 | 18.3168 | 18.5625 | | 2.4951 | 8.0 | 104 | 2.7252 | 19.4457 | 3.125 | 18.3168 | 18.5625 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0 - Datasets 2.8.0 - Tokenizers 0.13.2
dccuchile/albert-xxlarge-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
68
null
--- license: other tags: - generated_from_trainer model-index: - name: NLP_Opt350M results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP_Opt350M This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.453 | 1.0 | 849 | 3.3589 | | 2.9744 | 2.0 | 1698 | 3.3594 | | 2.7146 | 3.0 | 2547 | 3.3806 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
dccuchile/albert-tiny-spanish
[ "pytorch", "tf", "albert", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA" ]
null
{ "architectures": [ "AlbertForPreTraining" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
393
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 280.50 +/- 17.54 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dccuchile/albert-xlarge-spanish
[ "pytorch", "tf", "albert", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA" ]
null
{ "architectures": [ "AlbertForPreTraining" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
91
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 581.00 +/- 159.61 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga DoctorRobotnik -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga DoctorRobotnik -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga DoctorRobotnik ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
dccuchile/bert-base-spanish-wwm-cased-finetuned-pawsx
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/few-shot-grumpy-cat metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/few-shot-grumpy-cat` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/frieza/ddpm-butterflies-128/tensorboard?#scalars)
dccuchile/bert-base-spanish-wwm-uncased-finetuned-mldoc
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
39
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: QRDQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 6264.00 +/- 3562.06 name: mean_reward verified: false --- # **QRDQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **QRDQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -orga NorbertRop -f logs/ python enjoy.py --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -orga NorbertRop -f logs/ rl_zoo3 enjoy --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga NorbertRop ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_fraction', 0.025), ('frame_stack', 4), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('normalize', False)]) ```
dccuchile/bert-base-spanish-wwm-uncased-finetuned-pawsx
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - animal widget: - text: a photo of a pssg wearing goggles - text: a photo of a pssg sugar glider wearing goggles --- # DreamBooth model for the pssg concept trained by pharmapsychotic **Sugar gliders** are adorable creatures! I've never had one as a pet but I've been tempted. Imagine having one in your shirt pocket and feeding it snacks as you work. 😍 Anyway, I created a few AI renders of sugar gliders and mixed in with some photos of the critters and trained a model for the [DreamBooth Hackathon](https://huggingface.co/dreambooth-hackathon)! If you enjoy the model or just find the results funny and cute, drop a like on the model! To use the model be sure to include `pssg` in your prompt (PharmapSychotic Sugar Glider) or `pssg sugar glider` for a stronger effect. I recommend using a version of the inference that has cross attention control so you can balance the influence of the sugar glider and the weird scenarios you put him in. I trained to 10,000 steps and it overcooked so dropped back to the 2,500 step checkpoint but still need to boost other things in the prompts like `(((goggles)))` to overcome the default `pssg` influence. See below for usage! ## Examples | | | | | ------------------------- | -------------------------- | ---------------------------- | | ![](examples/dj.png) | ![](examples/fantasy1.png) | ![](examples/fantasy2.png) | | ![](examples/glasses.png) | ![](examples/goggles.png) | ![](examples/red_carpet.png) | | ![](examples/robo.png) | ![](examples/tron.png) | ![](examples/bitcoin.png) | ## Usage #### With Diffusers ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('pharma/sugar-glider') image = pipeline().images[0] image ``` #### With SD Web UI To use with SD Web UI download [sugar_gliders_pssg_2500.ckpt](https://huggingface.co/pharma/sugar-glider/resolve/main/sugar_gliders_pssg_2500.ckpt) and put in your models folder.
dccuchile/bert-base-spanish-wwm-uncased-finetuned-pos
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO-MlpPolicy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.13 +/- 17.06 name: mean_reward verified: false --- # **PPO-MlpPolicy** Agent playing **LunarLander-v2** This is a trained model of a **PPO-MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dccuchile/bert-base-spanish-wwm-uncased-finetuned-xnli
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
null
--- license: creativeml-openrail-m tags: - text-to-image --- ### Meryl_Stryfe_20221225_2230__4800_steps on Stable Diffusion via Dreambooth #### model by NickKolok This your the Stable Diffusion model fine-tuned the Meryl_Stryfe_20221225_2230__4800_steps concept taught to Stable Diffusion with Dreambooth. #It can be used by modifying the `instance_prompt`: **merylstryfetrigun** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/waist3.png) ![image 1](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/waist4.png) ![image 2](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face6.png) ![image 3](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face8.png) ![image 4](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/waist9.png) ![image 5](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/waist5.png) ![image 6](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face18_meryl_lingerie_by_ajd_262_d4j6vf4.png) ![image 7](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face16.png) ![image 8](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face5.png) ![image 9](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face1.png) ![image 10](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face15.png) ![image 11](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/waist7.png) ![image 12](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face17_meryl_and_milly_for_gojiro7_by_ajd_262_d399p4i.png) ![image 13](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face7.png) ![image 14](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/shoulders1.png) ![image 15](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/waist1.png) ![image 16](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face19_meryl_x_knives_by_ajd_262_d9lp35g.png) ![image 17](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face13.png) ![image 18](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/knees2.png) ![image 19](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face2.png) ![image 20](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face14.png) ![image 21](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/waist2.png) ![image 22](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/waist8.png) ![image 23](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face11.png) ![image 24](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face9.png) ![image 25](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/knees3.png) ![image 26](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/shoulders2.png) ![image 27](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/waist6.png) ![image 28](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face10.png) ![image 29](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/knees4.png) ![image 30](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face3.png) ![image 31](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face20_merylxvash_by_ajd_262_d3bofm7.png) ![image 32](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/knees1.png) ![image 33](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face4.png) ![image 34](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4800-steps_1/resolve/main/concept_images/face12.png)
dccuchile/distilbert-base-spanish-uncased-finetuned-mldoc
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- license: creativeml-openrail-m tags: - text-to-image --- ### Meryl_Stryfe_20221225_2230__800_steps on Stable Diffusion via Dreambooth #### model by NickKolok This your the Stable Diffusion model fine-tuned the Meryl_Stryfe_20221225_2230__800_steps concept taught to Stable Diffusion with Dreambooth. #It can be used by modifying the `instance_prompt`: **merylstryfetrigun** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/waist3.png) ![image 1](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/waist4.png) ![image 2](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face6.png) ![image 3](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face8.png) ![image 4](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/waist9.png) ![image 5](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/waist5.png) ![image 6](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face18_meryl_lingerie_by_ajd_262_d4j6vf4.png) ![image 7](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face16.png) ![image 8](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face5.png) ![image 9](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face1.png) ![image 10](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face15.png) ![image 11](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/waist7.png) ![image 12](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face17_meryl_and_milly_for_gojiro7_by_ajd_262_d399p4i.png) ![image 13](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face7.png) ![image 14](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/shoulders1.png) ![image 15](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/waist1.png) ![image 16](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face19_meryl_x_knives_by_ajd_262_d9lp35g.png) ![image 17](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face13.png) ![image 18](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/knees2.png) ![image 19](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face2.png) ![image 20](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face14.png) ![image 21](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/waist2.png) ![image 22](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/waist8.png) ![image 23](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face11.png) ![image 24](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face9.png) ![image 25](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/knees3.png) ![image 26](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/shoulders2.png) ![image 27](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/waist6.png) ![image 28](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face10.png) ![image 29](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/knees4.png) ![image 30](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face3.png) ![image 31](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face20_merylxvash_by_ajd_262_d3bofm7.png) ![image 32](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/knees1.png) ![image 33](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face4.png) ![image 34](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-800-steps_1/resolve/main/concept_images/face12.png)
dccuchile/distilbert-base-spanish-uncased-finetuned-ner
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- license: creativeml-openrail-m tags: - text-to-image --- ### Meryl_Stryfe_20221225_2230__1600_steps on Stable Diffusion via Dreambooth #### model by NickKolok This your the Stable Diffusion model fine-tuned the Meryl_Stryfe_20221225_2230__1600_steps concept taught to Stable Diffusion with Dreambooth. #It can be used by modifying the `instance_prompt`: **merylstryfetrigun** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/waist3.png) ![image 1](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/waist4.png) ![image 2](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face6.png) ![image 3](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face8.png) ![image 4](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/waist9.png) ![image 5](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/waist5.png) ![image 6](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face18_meryl_lingerie_by_ajd_262_d4j6vf4.png) ![image 7](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face16.png) ![image 8](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face5.png) ![image 9](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face1.png) ![image 10](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face15.png) ![image 11](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/waist7.png) ![image 12](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face17_meryl_and_milly_for_gojiro7_by_ajd_262_d399p4i.png) ![image 13](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face7.png) ![image 14](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/shoulders1.png) ![image 15](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/waist1.png) ![image 16](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face19_meryl_x_knives_by_ajd_262_d9lp35g.png) ![image 17](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face13.png) ![image 18](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/knees2.png) ![image 19](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face2.png) ![image 20](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face14.png) ![image 21](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/waist2.png) ![image 22](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/waist8.png) ![image 23](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face11.png) ![image 24](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face9.png) ![image 25](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/knees3.png) ![image 26](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/shoulders2.png) ![image 27](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/waist6.png) ![image 28](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face10.png) ![image 29](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/knees4.png) ![image 30](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face3.png) ![image 31](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face20_merylxvash_by_ajd_262_d3bofm7.png) ![image 32](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/knees1.png) ![image 33](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face4.png) ![image 34](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-1600-steps_1/resolve/main/concept_images/face12.png)
dccuchile/distilbert-base-spanish-uncased-finetuned-pos
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: creativeml-openrail-m tags: - text-to-image --- ### meryl-stryfe-20221225-2230-2400-steps_1 on Stable Diffusion via Dreambooth #### model by NickKolok This your the Stable Diffusion model fine-tuned the meryl-stryfe-20221225-2230-2400-steps_1 concept taught to Stable Diffusion with Dreambooth. #It can be used by modifying the `instance_prompt`: **merylstryfetrigun** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts)
dccuchile/distilbert-base-spanish-uncased-finetuned-qa-mlqa
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: creativeml-openrail-m tags: - text-to-image --- ### Meryl_Stryfe_20221225_2230__3200_steps on Stable Diffusion via Dreambooth #### model by NickKolok This your the Stable Diffusion model fine-tuned the Meryl_Stryfe_20221225_2230__3200_steps concept taught to Stable Diffusion with Dreambooth. #It can be used by modifying the `instance_prompt`: **merylstryfetrigun** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/waist3.png) ![image 1](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/waist4.png) ![image 2](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face6.png) ![image 3](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face8.png) ![image 4](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/waist9.png) ![image 5](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/waist5.png) ![image 6](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face18_meryl_lingerie_by_ajd_262_d4j6vf4.png) ![image 7](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face16.png) ![image 8](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face5.png) ![image 9](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face1.png) ![image 10](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face15.png) ![image 11](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/waist7.png) ![image 12](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face17_meryl_and_milly_for_gojiro7_by_ajd_262_d399p4i.png) ![image 13](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face7.png) ![image 14](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/shoulders1.png) ![image 15](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/waist1.png) ![image 16](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face19_meryl_x_knives_by_ajd_262_d9lp35g.png) ![image 17](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face13.png) ![image 18](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/knees2.png) ![image 19](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face2.png) ![image 20](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face14.png) ![image 21](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/waist2.png) ![image 22](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/waist8.png) ![image 23](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face11.png) ![image 24](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face9.png) ![image 25](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/knees3.png) ![image 26](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/shoulders2.png) ![image 27](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/waist6.png) ![image 28](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face10.png) ![image 29](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/knees4.png) ![image 30](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face3.png) ![image 31](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face20_merylxvash_by_ajd_262_d3bofm7.png) ![image 32](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/knees1.png) ![image 33](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face4.png) ![image 34](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-3200-steps_1/resolve/main/concept_images/face12.png)
dccuchile/distilbert-base-spanish-uncased-finetuned-xnli
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- license: creativeml-openrail-m tags: - text-to-image --- ### Meryl_Stryfe_20221225_2230__4000_steps on Stable Diffusion via Dreambooth #### model by NickKolok This your the Stable Diffusion model fine-tuned the Meryl_Stryfe_20221225_2230__4000_steps concept taught to Stable Diffusion with Dreambooth. #It can be used by modifying the `instance_prompt`: **merylstryfetrigun** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/waist3.png) ![image 1](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/waist4.png) ![image 2](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face6.png) ![image 3](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face8.png) ![image 4](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/waist9.png) ![image 5](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/waist5.png) ![image 6](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face18_meryl_lingerie_by_ajd_262_d4j6vf4.png) ![image 7](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face16.png) ![image 8](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face5.png) ![image 9](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face1.png) ![image 10](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face15.png) ![image 11](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/waist7.png) ![image 12](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face17_meryl_and_milly_for_gojiro7_by_ajd_262_d399p4i.png) ![image 13](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face7.png) ![image 14](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/shoulders1.png) ![image 15](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/waist1.png) ![image 16](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face19_meryl_x_knives_by_ajd_262_d9lp35g.png) ![image 17](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face13.png) ![image 18](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/knees2.png) ![image 19](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face2.png) ![image 20](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face14.png) ![image 21](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/waist2.png) ![image 22](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/waist8.png) ![image 23](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face11.png) ![image 24](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face9.png) ![image 25](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/knees3.png) ![image 26](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/shoulders2.png) ![image 27](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/waist6.png) ![image 28](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face10.png) ![image 29](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/knees4.png) ![image 30](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face3.png) ![image 31](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face20_merylxvash_by_ajd_262_d3bofm7.png) ![image 32](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/knees1.png) ![image 33](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face4.png) ![image 34](https://huggingface.co/NickKolok/meryl-stryfe-20221225-2230-4000-steps_1/resolve/main/concept_images/face12.png)
dccuchile/distilbert-base-spanish-uncased
[ "pytorch", "distilbert", "fill-mask", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
670
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-v4 results: [] widget: - text: "The process starts when the customer enters the shop. The customer then takes the product from the shelf. The customer then pays for the product and leaves the store." example_title: "Example 1" - text: "The process begins when the HR department hires the new employee. Next, the new employee completes necessary paperwork and provides documentation to the HR department. After the initial task, the HR department performs a decision to determine the employee's role and department assignment. The employee is trained by the Sales department. After the training, the Sales department assigns the employee a sales quota and performance goals. Finally, the process ends with an 'End' event, when the employee begins their role in the Sales department." example_title: "Example 2" - text: "A customer places an order for a product on the company's website. Next, the customer service department checks the availability of the product and confirms the order with the customer. After the initial task, the warehouse processes the order. If the order is eligible for same-day shipping, the warehouse staff picks and packs the order, and it is sent to the shipping department. After the order is packed, the shipping department delivers the order to the customer. Finally, the process ends with an 'End' event, when the customer receives their order." example_title: "Example 3" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bpmn-information-extraction This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on a dataset containing 90 textual process descriptions. The dataset contains 5 target labels: * `AGENT` * `TASK` * `TASK_INFO` * `PROCESS_INFO` * `CONDITION` It achieves the following results on the evaluation set: - Loss: 0.2909 - Precision: 0.8557 - Recall: 0.9247 - F1: 0.8889 - Accuracy: 0.9285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 2.0586 | 1.0 | 10 | 1.5601 | 0.1278 | 0.1559 | 0.1404 | 0.4750 | | 1.3702 | 2.0 | 20 | 1.0113 | 0.3947 | 0.5645 | 0.4646 | 0.7150 | | 0.8872 | 3.0 | 30 | 0.6645 | 0.5224 | 0.6882 | 0.5940 | 0.8051 | | 0.5341 | 4.0 | 40 | 0.4741 | 0.6754 | 0.8280 | 0.7440 | 0.8541 | | 0.3221 | 5.0 | 50 | 0.3831 | 0.7523 | 0.8817 | 0.8119 | 0.8883 | | 0.2168 | 6.0 | 60 | 0.3297 | 0.7731 | 0.8978 | 0.8308 | 0.9079 | | 0.1565 | 7.0 | 70 | 0.2998 | 0.8195 | 0.9032 | 0.8593 | 0.9128 | | 0.1227 | 8.0 | 80 | 0.3227 | 0.8038 | 0.9032 | 0.8506 | 0.9099 | | 0.0957 | 9.0 | 90 | 0.2840 | 0.8431 | 0.9247 | 0.8821 | 0.9216 | | 0.077 | 10.0 | 100 | 0.2914 | 0.8252 | 0.9140 | 0.8673 | 0.9216 | | 0.0691 | 11.0 | 110 | 0.2850 | 0.8431 | 0.9247 | 0.8821 | 0.9285 | | 0.059 | 12.0 | 120 | 0.2886 | 0.8564 | 0.9301 | 0.8918 | 0.9285 | | 0.0528 | 13.0 | 130 | 0.2838 | 0.8564 | 0.9301 | 0.8918 | 0.9305 | | 0.0488 | 14.0 | 140 | 0.2881 | 0.8515 | 0.9247 | 0.8866 | 0.9305 | | 0.049 | 15.0 | 150 | 0.2909 | 0.8557 | 0.9247 | 0.8889 | 0.9285 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Chaddmckay/Cdm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 datasets: - Dr-BERT/NACHOS language: - fr library_name: transformers tags: - medical - chemistry - biomedical - life science widget: - text: "Le patient est atteint d'une <mask>." --- <p align="center"> <img src="https://github.com/qanastek/DrBERT/blob/main/assets/logo.png?raw=true" alt="drawing" width="250"/> </p> # DrBERT: A Robust Pre-trained Model in French for Biomedical and Clinical domains In recent years, pre-trained language models (PLMs) achieve the best performance on a wide range of natural language processing (NLP) tasks. While the first models were trained on general domain data, specialized ones have emerged to more effectively treat specific domains. In this paper, we propose an original study of PLMs in the medical domain on French language. We compare, for the first time, the performance of PLMs trained on both public data from the web and private data from healthcare establishments. We also evaluate different learning strategies on a set of biomedical tasks. Finally, we release the first specialized PLMs for the biomedical field in French, called DrBERT, as well as the largest corpus of medical data under free license on which these models are trained. # 1. DrBERT models **DrBERT** is a French RoBERTa trained on a open source corpus of French medical crawled textual data called NACHOS. Models with different amount of data from differents public and private sources are trained using the CNRS (French National Centre for Scientific Research) [Jean Zay](http://www.idris.fr/jean-zay/) French supercomputer. Only the weights of the models trained using exclusively open-sources data are publicly released to prevent any personnal information leak and to follow the european GDPR laws : | Model name | Corpus | Number of layers | Attention Heads | Embedding Dimension | Sequence Length | Model URL | | :------: | :---: | :---: | :---: | :---: | :---: | :---: | | `DrBERT-7-GB-cased-Large` | NACHOS 7 GB | 24 | 16 | 1024 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-7GB-Large) | | `DrBERT-7-GB-cased` | NACHOS 7 GB | 12 | 12 | 768 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-7GB) | | `DrBERT-4-GB-cased` | NACHOS 4 GB | 12 | 12 | 768 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-4GB) | | `DrBERT-4-GB-cased-CP-CamemBERT` | NACHOS 4 GB | 12 | 12 | 768 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-4GB-CP-CamemBERT) | | `DrBERT-4-GB-cased-CP-PubMedBERT` | NACHOS 4 GB | 12 | 12 | 768 | 512 | [HuggingFace](https://huggingface.co/Dr-BERT/DrBERT-4GB-CP-PubMedBERT) | # 2. Using DrBERT You can use DrBERT with [Hugging Face's Transformers library](https://github.com/huggingface/transformers) as follow. Loading the model and tokenizer : ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("Dr-BERT/DrBERT-7GB") model = AutoModel.from_pretrained("Dr-BERT/DrBERT-7GB") ``` Perform the mask filling task : ```python from transformers import pipeline fill_mask = pipeline("fill-mask", model="Dr-BERT/DrBERT-7GB", tokenizer="Dr-BERT/DrBERT-7GB") results = fill_mask("La patiente est atteinte d'une <mask>") ``` # 3. Pre-training DrBERT tokenizer and model from scratch by using HuggingFace Transformers Library ## 3.1 Install dependencies ```bash accelerate @ git+https://github.com/huggingface/accelerate@66edfe103a0de9607f9b9fdcf6a8e2132486d99b datasets==2.6.1 sentencepiece==0.1.97 protobuf==3.20.1 evaluate==0.2.2 tensorboard==2.11.0 torch >= 1.3 ``` ## 3.2 Download NACHOS Dataset text file Download the full NACHOS dataset from [Zenodo]() and place it the the `from_scratch` or `continued_pretraining` directory. ## 3.3 Build your own tokenizer from scratch based on NACHOS Note : This step is required only in the case of an from scratch pre-training, if you want to do a continued pre-training you just have to download the model and the tokenizer that correspond to the model you want to continue the training from. In this case, you simply have to go to the HuggingFace Hub, select a model (for example [RoBERTa-base](https://huggingface.co/roberta-base)). Finally, you have to download the entire model / tokenizer repository by clicking on the `Use In Transformers` button and get the Git link `git clone https://huggingface.co/roberta-base`. Build the tokenizer from scratch on your data of the file `./corpus.txt` by using `./build_tokenizer.sh`. ## 3.4 Preprocessing and tokenization of the dataset First, replace the field `tokenizer_path` of the shell script to match the path of your tokenizer directory downloaded before using HuggingFace Git or the one you have build. Run `./preprocessing_dataset.sh` to generate the tokenized dataset by using the givent tokenizer. ## 3.5 Model training First, change the number of GPUs `--ntasks=128` you are needing to match your computational capabilities in the shell script called `run_training.sh`. In our case, we used 128 V100 32 GB GPUs from 32 nodes of 4 GPUs (`--ntasks-per-node=4` and `--gres=gpu:4`) during 20 hours (`--time=20:00:00`). If you are using Jean Zay, you also need to change the `-A` flag to match one of your `@gpu` profile capable of running the job. You also need to move **ALL** of your datasets, tokenizer, script and outputs on the `$SCRATCH` disk space to preserve others users of suffuring of IO issues. ### 3.5.1 Pre-training from scratch Once the SLURM parameters updated, you have to change name of the model architecture in the flag `--model_type="camembert"` and to update the `--config_overrides=` according to the specifications of the architecture you are trying to train. In our case, RoBERTa had a `514` sequence length, a vocabulary of `32005` (32K tokens of the tokenizer and 5 of the model architecture) tokens, the identifier of the beginning-of-sentence token (BOS) and end-of-sentence token (EOS) are respectivly `5` and `6`. Change the Then, go to `./from_scratch/` directory. Run `sbatch ./run_training.sh` to send the training job in the SLURM queue. ### 3.5.2 continue pre-training Once the SLURM parameters updated, you have to change path of the model / tokenizer you want to start from `--model_name_or_path=` / `--tokenizer_name=` to the path of the model downloaded from HuggingFace's Git in the section 3.3. Then, go to `./continued_pretraining/` directory. Run `sbatch ./run_training.sh` to send the training job in the SLURM queue. # 4. Fine-tuning on a downstream task You just need to change the name of the model to `Dr-BERT/DrBERT-7GB` in any of the examples given by HuggingFace's team [here](https://huggingface.co/docs/transformers/tasks/sequence_classification). # Citation BibTeX ```bibtex @inproceedings{labrak2023drbert, title = "DrBERT: A Robust Pre-trained Model in French for Biomedical and Clinical domains", author = "Yanis, Labrak and Adrien, Bazoge and Richard, Dufour and Mickael, Rouvier and Emmanuel, Morin and Béatrice, Daille and Pierre-Antoine, Gourraud", booktitle = "Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL'23), Long Paper", month = july, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", abstract = "In recent years, pre-trained language models (PLMs) achieve the best performance on a wide range of natural language processing (NLP) tasks. While the first models were trained on general domain data, specialized ones have emerged to more effectively treat specific domains. In this paper, we propose an original study of PLMs in the medical domain on French language. We compare, for the first time, the performance of PLMs trained on both public data from the web and private data from healthcare establishments. We also evaluate different learning strategies on a set of biomedical tasks. In particular, we show that we can take advantage of already existing biomedical PLMs in a foreign language by further pre-train it on our targeted data. Finally, we release the first specialized PLMs for the biomedical field in French, called DrBERT, as well as the largest corpus of medical data under free license on which these models are trained.", } ```
Chaima/TunBerto
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - fr pipeline_tag: text-classification widget: - text: "Voila les limaces de retour. Ça faisait longtemps que j’en avais pas vu sur blé." example_title: "Observation - limace" - text: "C’est bon le maïs , pour la pyrale. Dans le 64, les larves les plus âgées prennent des force avant de se chrysalider et faire une 2 è génération début août. ⁦@Arvalisofficiel⁩ ⁦@Fragritwittos⁩ https://t.co/JLypU2zFFe" example_title: "Observation - Pyrale de maïs" - text: "JNO sur céréales à paille : de nombreux retours témoignent de dégâts importants aux quatre coins de l’Hexagone !" example_title: "Observation - JNO" - text: "Ravageurs sur les maïs, 90% de la parcelle perdue. Impressionnant à voir, difficile à vivre pour l'éleveur #choucas #morbihan https://t.co/DMw3c4EtyQ" example_title: "Observation - Corbeau" - text: "Visite des plateformes d’essais dans les #Vosges on observe un flétrissement des feuilles de #maïs et surprise on trouve un Taupin. #lorraine #babycorn https://t.co/xh4NExMvDv" example_title: "Observation - Taupin" - text: "Erreur le taupin creuse dans la tige du maïs, à croire que vous n avez jamais vu de dégâts ! La seule solution pour l instant c est la chimie le reste c est de la poudre de perlinpinpin" example_title: "Information général-Taupin" - text: "Lol taupin ? Toi qui critiquait le programme de classe prépa LoL ! " example_title: "Hors sujet - Taupin" - text: "En attendant grâce au Bt je n’ai jamais vu de pyrale dans un champ de maïs grain de toute ma vie." example_title: "Non-observation - Pyrale" - text: "Protection des cultures corvidé, pigeon. Étude scientifique baguage gibier d'eau et bécasse pour mieux connaître les animaux migrateurs. Étude menée par les chasseurs sur les sangliers. Plantation de de plusieurs km de haie(refuge pour la petite et moyenne faune)" example_title: "Non-observation - Corbeau" - text: "RT C'est un #puceron des #céréales! ... qui transmet le #virus de la #JNO . Pas un puceron de l'#agriconventionnelle ou de l'#agr…" example_title: "Non-observation - JNO" --- ### How to use You can use this model directly with a pipeline for text-classification: ```python from transformers import pipeline pipe = pipeline(model="ChouBERT/ChouBERT-32-plant-health-tweet-classifier") pipe("Voila les limaces de retour. Ça faisait longtemps que j’en avais pas vu sur blé.") ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("ChouBERT/ChouBERT-32-plant-health-tweet-classifier") model = AutoModelForSequenceClassification.from_pretrained("ChouBERT/ChouBERT-32-plant-health-tweet-classifier") text = "Il y a 7 jours le blé ne pointait pas encore. Aujourd’hui 1,5 feuille et dégat de limace. Intervention a venir." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ```
ChaitanyaU/FineTuneLM
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 653.00 +/- 290.48 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Convolution -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Convolution -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Convolution ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Chakita/Friends
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 604.50 +/- 91.12 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Musha-the-Yusha -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Musha-the-Yusha -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Musha-the-Yusha ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 150000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Chakita/KROBERT
[ "pytorch", "roberta", "fill-mask", "transformers", "masked-lm", "fill-in-the-blanks", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - animal widget: - text: a photo of mimicat cat wearing a santa hat --- # DreamBooth model for the mimicat concept trained by mjfang27 on the mjfang27/dreambooth-hackathon-images dataset. This is a Stable Diffusion model fine-tuned on the mimicat concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of mimicat cat** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `cat` images for the animal theme. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('mjfang27/mimicat-cat') image = pipeline().images[0] image ```
Champion/test_upload_vox2_wavlm_epoch8
[ "sidekit", "audio" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1396.79 +/- 48.52 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CharlieChen/feedback-bigbird
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Large Amharic FLEURS results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs am_et type: google/fleurs config: am_et split: validation args: am_et metrics: - name: Wer type: wer value: 102.94117647058823 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large Amharic FLEURS This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the google/fleurs am_et dataset. It achieves the following results on the evaluation set: - Loss: 12.2408 - Wer: 102.9412 ## Model description - The main Whisper Small Hugging Face page: [Hugging Face - Whisper Small](https://huggingface.co/openai/whisper-small) ## Intended uses & limitations - For experimentation and curiosity. - Based on the paper [AXRIV](https://arxiv.org/abs/2212.04356) and [Benchmarking OpenAI Whisper for non-English ASR - Dan Shafer](https://blog.deepgram.com/benchmarking-openai-whisper-for-non-english-asr/), there is a performance bias towards certain languages and curated datasets. - From the Whisper paper, am_et is a low resource language (Table E), with the WER results ranging from 120-229, based on model size. Whisper small WER=120.2, indicating more training time may improve the fine tuning. ## Training and evaluation data - This model was trained/evaluated on "test+validation" data from google/fleurs [google/fluers - HuggingFace Datasets](https://huggingface.co/datasets/google/fleurs). ## Training procedure - The training was done in Lambda Cloud GPU on A100/40GB GPUs, which were provided by OpenAI Community Events [Whisper Fine Tuning Event - Dec 2022](https://github.com/huggingface/community-events/tree/main/whisper-fine-tuning-event#fine-tune-whisper). The training was done using [HuggingFace Community Events - Whisper - run_speech_recognition_seq2seq_streaming.py](https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/run_speech_recognition_seq2seq_streaming.py) using the included [whisper_python_am_et.ipynb](https://huggingface.co/drmeeseeks/whisper-small-am_et/blob/main/am_et_fine_tune_whisper_streaming_colab_RUNNING-evalerrir.ipynb) to setup the Lambda Cloud GPU/Colab environment. For Colab, you must reduce the train batch size to the recommended amount mentioned at , as the T4 GPUs have 16GB of memory [Whisper Fine Tuning Event - Dec 2022](https://github.com/huggingface/community-events/tree/main/whisper-fine-tuning-event#fine-tune-whisper). The notebook sets up the environment, logs into your huggingface account, and generates a bash script. The bash script generated in the IPYNB, `run.sh` was run from the terminal to train `bash run.sh`, as described on the Whisper community events GITHUB page. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0 | 1000.0 | 1000 | 8.3822 | 156.0160 | | 0.0 | 2000.0 | 2000 | 9.7961 | 110.4278 | | 0.0 | 3000.0 | 3000 | 12.0014 | 102.8075 | | 0.0 | 4000.0 | 4000 | 12.2633 | 103.3422 | | 0.0 | 5000.0 | 5000 | 12.2408 | 102.9412 | ### Recommendations Limit training duration for smaller datasets to ~ 2000 to 3000 steps to avoid overfitting. 5000 steps using the [HuggingFace - Whisper Small](https://huggingface.co/openai/whisper-small) takes ~ 5hrs on A100 GPUs (1hr/1000 steps). Encountered `RuntimeError: The size of tensor a (504) must match the size of tensor b (448) at non-singleton dimension 1` which is related to [Trainer RuntimeError](https://discuss.huggingface.co/t/trainer-runtimeerror-the-size-of-tensor-a-462-must-match-the-size-of-tensor-b-448-at-non-singleton-dimension-1/26010) as some languages datasets have input lengths that have non-standard lengths. The link did not resolve my issue, and appears elsewhere too [Training languagemodel – RuntimeError the expanded size of the tensor (100) must match the existing size (64) at non singleton dimension 1](https://hungsblog.de/en/technology/troubleshooting/training-languagemodel-runtimeerror-the-expanded-size-of-the-tensor-100-must-match-the-existing-size-64-at-non-singleton-dimension-1/). To circumvent this issue, `run.sh` paremeters are adjusted. Then run `python run_eval_whisper_streaming.py --model_id="openai/whisper-small" --dataset="google/fleurs" --config="am_et" --batch_size=32 --max_eval_samples=64 --device=0 --language="am"` to find the WER score manually. Otherwise, erroring out during evaluation prevents the trained model from loading to HugginFace. Based on the paper [AXRIV](https://arxiv.org/abs/2212.04356) and [Benchmarking OpenAI Whisper for non-English ASR - Dan Shafer](https://blog.deepgram.com/benchmarking-openai-whisper-for-non-english-asr/), there is a performance bias towards certain languages and curated datasets. The OpenAI fintuning community event provided ample _free_ GPU time to help develop the model further and improve WER scores. ### Environmental Impact Carbon emissions were estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). In total roughly 100 hours were used primarily in US East/Asia Pacific (80%/20%), with AWS as the reference. Additional resources are available at [Our World in Data - CO2 Emissions](https://ourworldindata.org/co2-emissions) - __Hardware Type__: AMD EPYC 7J13 64-Core Processor (30 core VM) 197GB RAM, with NVIDIA A100-SXM 40GB - __Hours Used__: 100 hrs - __Cloud Provider__: Lambda Cloud GPU - __Compute Region__: US East/Asia Pacific - __Carbon Emitted__: 12 kg (GPU) + 13 kg (CPU) = 25 kg (the weight of 3 gallons of water) ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2 ### Citation - [Whisper - GITHUB](https://github.com/openai/whisper) - [Whisper - OpenAI - BLOG](https://openai.com/blog/whisper/) - [Model Card - HuggingFace Hub - GITHUB](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md) ```bibtex @misc{https://doi.org/10.48550/arxiv.2212.04356, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, keywords = {Audio and Speech Processing (eess.AS), Computation and Language (cs.CL), Machine Learning (cs.LG), Sound (cs.SD), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } @article{owidco2andothergreenhousegasemissions, author = {Hannah Ritchie and Max Roser and Pablo Rosado}, title = {CO₂ and Greenhouse Gas Emissions}, journal = {Our World in Data}, year = {2020}, note = {https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions} } ```
Charlotte77/model_test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: i123smo --- ### Ismo Dreambooth model trained by duja1 with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: i123smo (use that on your prompt) ![i123smo 0](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%281%29.jpg)![i123smo 1](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%282%29.jpg)![i123smo 2](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%283%29.jpg)![i123smo 3](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%284%29.jpg)![i123smo 4](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%285%29.jpg)![i123smo 5](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%286%29.jpg)![i123smo 6](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%287%29.jpg)![i123smo 7](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%288%29.jpg)![i123smo 8](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%289%29.jpg)![i123smo 9](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%2810%29.jpg)![i123smo 10](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%2811%29.jpg)![i123smo 11](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%2812%29.jpg)![i123smo 12](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%2813%29.jpg)![i123smo 13](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%2814%29.jpg)![i123smo 14](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%2815%29.jpg)![i123smo 15](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%2816%29.jpg)![i123smo 16](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%2817%29.jpg)![i123smo 17](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%2818%29.jpg)![i123smo 18](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%2819%29.jpg)![i123smo 19](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%2820%29.jpg)![i123smo 20](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%2821%29.jpg)![i123smo 21](https://huggingface.co/duja1/ismo/resolve/main/concept_images/i123smo_%2822%29.jpg)
Cheatham/xlm-roberta-base-finetuned
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
null
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: hotel-image-classifier results: - task: name: Hotel Image Classification type: hotel-image-classification metrics: - name: Accuracy type: accuracy value: 0.8020833134651184 --- # hotel-image-classifier Hotel Cateogry Transformer.. ## Example Images #### bathroom ![bathroom](images/bathroom.jpg) #### beach ![beach](images/beach.jpg) #### fitness ![fitness](images/fitness.jpg) #### food ![food](images/food.jpg) #### lobby ![lobby](images/lobby.jpg) #### meetings ![meetings](images/meetings.jpg) #### pool ![pool](images/pool.jpg) #### restaurants ![restaurants](images/restaurants.jpg) #### room ![room](images/room.jpg) #### spa ![spa](images/spa.jpg) #### suite ![suite](images/suite.jpg)
Cheatham/xlm-roberta-large-finetuned-d12
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-poet results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-poet This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5041 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 4.0149 | | No log | 2.0 | 312 | 3.7999 | | No log | 3.0 | 468 | 3.7235 | | 4.4263 | 4.0 | 624 | 3.6806 | | 4.4263 | 5.0 | 780 | 3.6501 | | 4.4263 | 6.0 | 936 | 3.6179 | | 3.951 | 7.0 | 1092 | 3.6038 | | 3.951 | 8.0 | 1248 | 3.5823 | | 3.951 | 9.0 | 1404 | 3.5644 | | 3.787 | 10.0 | 1560 | 3.5492 | | 3.787 | 11.0 | 1716 | 3.5452 | | 3.787 | 12.0 | 1872 | 3.5312 | | 3.6901 | 13.0 | 2028 | 3.5259 | | 3.6901 | 14.0 | 2184 | 3.5181 | | 3.6901 | 15.0 | 2340 | 3.5108 | | 3.6901 | 16.0 | 2496 | 3.5109 | | 3.6212 | 17.0 | 2652 | 3.5074 | | 3.6212 | 18.0 | 2808 | 3.5043 | | 3.6212 | 19.0 | 2964 | 3.5041 | | 3.5786 | 20.0 | 3120 | 3.5041 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Cheatham/xlm-roberta-large-finetuned-r01
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
23
null
--- license: mit tags: - generated_from_trainer metrics: - f1 - recall - precision model-index: - name: cold_reman_gpu_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cold_reman_gpu_v1 This model is a fine-tuned version of [ibm/ColD-Fusion](https://huggingface.co/ibm/ColD-Fusion) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4520 - F1: 0.6592 - Roc Auc: 0.7559 - Recall: 0.6197 - Precision: 0.704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:------:|:---------:| | No log | 1.0 | 452 | 0.4556 | 0.6 | 0.7160 | 0.5282 | 0.6944 | | 0.4832 | 2.0 | 904 | 0.4520 | 0.6592 | 0.7559 | 0.6197 | 0.704 | | 0.3505 | 3.0 | 1356 | 0.4658 | 0.6543 | 0.7530 | 0.6197 | 0.6929 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
Ci/Pai
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_keras_callback model-index: - name: study-ML results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # study-ML This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.3777 - Validation Loss: 8.5817 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.3777 | 8.5817 | 0 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.8.1 - Datasets 2.8.0 - Tokenizers 0.13.2
Ciruzzo/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: mit --- ### June the Dog on Stable Diffusion This is the `<june-the-dog>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<june-the-dog> 0](https://huggingface.co/sd-concepts-library/june-the-dog/resolve/main/concept_images/0.jpeg) ![<june-the-dog> 1](https://huggingface.co/sd-concepts-library/june-the-dog/resolve/main/concept_images/3.jpeg) ![<june-the-dog> 2](https://huggingface.co/sd-concepts-library/june-the-dog/resolve/main/concept_images/4.jpeg) ![<june-the-dog> 3](https://huggingface.co/sd-concepts-library/june-the-dog/resolve/main/concept_images/2.jpeg) ![<june-the-dog> 4](https://huggingface.co/sd-concepts-library/june-the-dog/resolve/main/concept_images/1.jpeg)
CoachCarter/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-26T05:51:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 276.19 +/- 20.26 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CodeNinja1126/bert-p-encoder
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2022-12-26T06:05:50Z
--- license: apache-2.0 language: zh inference: false tags: - text-generation - dialogue-generation - pytorch - inference acceleration - gpt2 - gpt3 --- # YuYan-Dialogue YuYan is a series of Chinese language models with different size, developed by Fuxi AI lab, Netease.Inc. They are trained on a large Chinese novel dataset of high quality. YuYan is in the same family of decoder-only models like [GPT2 and GPT-3](https://arxiv.org/abs/2005.14165). As such, it was pretrained using the self-supervised causal language modedling objective. YuYan-Dialogue is a dialogue model by fine-tuning the YuYan-11b on a large multi-turn dialogue dataset of high quality. It has very strong conversation generation capabilities. ## Model Inference Acceleration As the model size increases, the model inference time increases and more computational resources are required. Therefore, we developed our own transformer model inference acceleration framework, [EET](https://github.com/NetEase-FuXi/EET.git). More details are in [Easy and Efficient Transformer: Scalable Inference Solution For Large NLP Model](https://aclanthology.org/2022.naacl-industry.8/). We combine our language model with the EET inference framework to provide industrial-grade inference reasoning performance. ## How to use Our model is trained based on the [fairseq](https://github.com/facebookresearch/fairseq). As a result, the inference and finetuning depend on it. For inference, we modify some parts of the original fairseq codes. Mainly > fairseq-0.12.2/fairseq/sequence_generator.py We integrate the EET with sequence_generator. We replace the eos token to a token unlikely to be sampled to ensure the generated text length. The repetition penalty trick is also modified. You can change the penalty strength by adjusting the value of `self.ban_weight`. Then, to keep the eos token in the final generated text, we change the line 75 `include_eos=False` to `include_eos=True` in > fairseq-0.12.2/fairseq/data/dictionary.py Finally, to pass in parameters in python scripts, we remove the line 67 ~ line 69 in >fairseq-0.12.2/fairseq/dataclass/utils.py Below are the install tutorial. ``` # install pytorch pip install torch==1.8.1 # install pytorch # install fairseq unzip fairseq-0.12.2.zip cd fairseq-0.12.2 pip install. # install EET git clone https://github.com/NetEase-FuXi/EET.git cd EET pip install . # install transformers (EET requirements) pip install transformers==4.23 # make a folder, move the dictionary file and model file into it. mkdir transformer_lm_gpt2_xxl_dialogue mv dict.txt transformer_lm_gpt2_xxl_dialogue/ mv checkpoint_best_part_*.pt transformer_lm_gpt2_xxl_dialogue/ ``` `inference.py` is a script to provide a interface to initialize the EET object and sequence_generator. It includes some pre-process and post-process functions for text input and output. You can modify the script according to your needs. In addition, it provide a simple object to organize the dialogue generation and dialogue history. After the environment is ready, several lines of codes can realize the inference. ``` python from inference import Inference, Dialogue model_path = "transformer_lm_gpt2_xxl_dialogue/checkpoint_best.pt" data_path = "transformer_lm_gpt2_xxl_dialogue" eet_batch_size = 10 # max inference batch size, adjust according to cuda memory, 40GB memory is necessary inference = Inference(model_path, data_path, eet_batch_size) dialogue_model = Dialogue(inference) dialogue_model.get_repsonse("你好啊") ``` ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. - https://aclanthology.org/2022.naacl-industry.8/ ``` @inproceedings{li-etal-2022-easy, title = "Easy and Efficient Transformer: Scalable Inference Solution For Large {NLP} Model", author = "Li, Gongzheng and Xi, Yadong and Ding, Jingzhen and Wang, Duan and Luo, Ziyang and Zhang, Rongsheng and Liu, Bai and Fan, Changjie and Mao, Xiaoxi and Zhao, Zeng", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track", month = jul, year = "2022", address = "Hybrid: Seattle, Washington + Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-industry.8", doi = "10.18653/v1/2022.naacl-industry.8", pages = "62--68" } ``` ## Contact Us You can also contact us by email: [email protected], [email protected]
Venkatakrishnan-Ramesh/Text_gen
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-26T06:57:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 275.24 +/- 14.14 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CoffeeAddict93/gpt1-call-of-the-wild
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: nzx/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CoffeeAddict93/gpt2-call-of-the-wild
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: omarcevi/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CoffeeAddict93/gpt2-medium-call-of-the-wild
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
2022-12-26T07:03:56Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: fr datasets: - lmqg/qag_frquad pipeline_tag: text2text-generation tags: - questions and answers generation widget: - text: "Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc." example_title: "Questions & Answers Generation Example 1" model-index: - name: lmqg/mt5-small-frquad-qag results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qag_frquad type: default args: default metrics: - name: QAAlignedF1Score-BERTScore (Question & Answer Generation) type: qa_aligned_f1_score_bertscore_question_answer_generation value: 77.23 - name: QAAlignedRecall-BERTScore (Question & Answer Generation) type: qa_aligned_recall_bertscore_question_answer_generation value: 77.74 - name: QAAlignedPrecision-BERTScore (Question & Answer Generation) type: qa_aligned_precision_bertscore_question_answer_generation value: 76.76 - name: QAAlignedF1Score-MoverScore (Question & Answer Generation) type: qa_aligned_f1_score_moverscore_question_answer_generation value: 52.36 - name: QAAlignedRecall-MoverScore (Question & Answer Generation) type: qa_aligned_recall_moverscore_question_answer_generation value: 52.54 - name: QAAlignedPrecision-MoverScore (Question & Answer Generation) type: qa_aligned_precision_moverscore_question_answer_generation value: 52.19 --- # Model Card of `lmqg/mt5-small-frquad-qag` This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question & answer pair generation task on the [lmqg/qag_frquad](https://huggingface.co/datasets/lmqg/qag_frquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small) - **Language:** fr - **Training data:** [lmqg/qag_frquad](https://huggingface.co/datasets/lmqg/qag_frquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="fr", model="lmqg/mt5-small-frquad-qag") # model prediction question_answer_pairs = model.generate_qa("Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mt5-small-frquad-qag") output = pipe("Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.") ``` ## Evaluation - ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-frquad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_frquad.default.json) | | Score | Type | Dataset | |:--------------------------------|--------:|:--------|:-------------------------------------------------------------------| | QAAlignedF1Score (BERTScore) | 77.23 | default | [lmqg/qag_frquad](https://huggingface.co/datasets/lmqg/qag_frquad) | | QAAlignedF1Score (MoverScore) | 52.36 | default | [lmqg/qag_frquad](https://huggingface.co/datasets/lmqg/qag_frquad) | | QAAlignedPrecision (BERTScore) | 76.76 | default | [lmqg/qag_frquad](https://huggingface.co/datasets/lmqg/qag_frquad) | | QAAlignedPrecision (MoverScore) | 52.19 | default | [lmqg/qag_frquad](https://huggingface.co/datasets/lmqg/qag_frquad) | | QAAlignedRecall (BERTScore) | 77.74 | default | [lmqg/qag_frquad](https://huggingface.co/datasets/lmqg/qag_frquad) | | QAAlignedRecall (MoverScore) | 52.54 | default | [lmqg/qag_frquad](https://huggingface.co/datasets/lmqg/qag_frquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qag_frquad - dataset_name: default - input_types: ['paragraph'] - output_types: ['questions_answers'] - prefix_types: None - model: google/mt5-small - max_length: 512 - max_length_output: 256 - epoch: 13 - batch: 8 - lr: 0.001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 8 - label_smoothing: 0.0 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-frquad-qag/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
CoffeeAddict93/gpt2-medium-modest-proposal
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit tags: - generated_from_trainer model-index: - name: model_headlines_news-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_headlines_news-2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
CoffeeAddict93/gpt2-modest-proposal
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2022-12-26T07:13:42Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2236 - Accuracy: 0.9225 - F1: 0.9224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8532 | 1.0 | 250 | 0.3276 | 0.904 | 0.8999 | | 0.2564 | 2.0 | 500 | 0.2236 | 0.9225 | 0.9224 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
CohleM/bert-nepali-tokenizer
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- This is a reproduction of the following paper: ``` @inproceedings{katsumata-komachi-2020-stronger, title = "Stronger Baselines for Grammatical Error Correction Using a Pretrained Encoder-Decoder Model", author = "Katsumata, Satoru and Komachi, Mamoru", booktitle = "Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing", month = dec, year = "2020", address = "Suzhou, China", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.aacl-main.83", pages = "827--832", } ``` This model achieves the following results: |Data|Metric|gotutiyan/gec-bart-large|Paper (bart-large)| |:--|:--|:--|:--| |CoNLL-2014|M2 (P/R/F0.5)|71.01 / 43.3 / 62.9|69.3 / 45.0 /62.6| |BEA19-test|ERRANT (P/R/F0.5)3|70.4 / 55.0 / 66.6|68.3 / 57.1 /65.6| |JFLEG-test|GLEU|57.8|57.3| The details can be found in the [GitHub repository](https://github.com/gotutiyan/GEC-BART).
CohleM/mbert-nepali-tokenizer
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-26T07:34:20Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: ko datasets: - lmqg/qag_koquad pipeline_tag: text2text-generation tags: - questions and answers generation widget: - text: "1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다." example_title: "Questions & Answers Generation Example 1" model-index: - name: lmqg/mt5-small-koquad-qag results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qag_koquad type: default args: default metrics: - name: QAAlignedF1Score-BERTScore (Question & Answer Generation) type: qa_aligned_f1_score_bertscore_question_answer_generation value: 74.23 - name: QAAlignedRecall-BERTScore (Question & Answer Generation) type: qa_aligned_recall_bertscore_question_answer_generation value: 74.2 - name: QAAlignedPrecision-BERTScore (Question & Answer Generation) type: qa_aligned_precision_bertscore_question_answer_generation value: 74.29 - name: QAAlignedF1Score-MoverScore (Question & Answer Generation) type: qa_aligned_f1_score_moverscore_question_answer_generation value: 75.06 - name: QAAlignedRecall-MoverScore (Question & Answer Generation) type: qa_aligned_recall_moverscore_question_answer_generation value: 75.04 - name: QAAlignedPrecision-MoverScore (Question & Answer Generation) type: qa_aligned_precision_moverscore_question_answer_generation value: 75.14 --- # Model Card of `lmqg/mt5-small-koquad-qag` This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question & answer pair generation task on the [lmqg/qag_koquad](https://huggingface.co/datasets/lmqg/qag_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small) - **Language:** ko - **Training data:** [lmqg/qag_koquad](https://huggingface.co/datasets/lmqg/qag_koquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="ko", model="lmqg/mt5-small-koquad-qag") # model prediction question_answer_pairs = model.generate_qa("1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mt5-small-koquad-qag") output = pipe("1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.") ``` ## Evaluation - ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-koquad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_koquad.default.json) | | Score | Type | Dataset | |:--------------------------------|--------:|:--------|:-------------------------------------------------------------------| | QAAlignedF1Score (BERTScore) | 74.23 | default | [lmqg/qag_koquad](https://huggingface.co/datasets/lmqg/qag_koquad) | | QAAlignedF1Score (MoverScore) | 75.06 | default | [lmqg/qag_koquad](https://huggingface.co/datasets/lmqg/qag_koquad) | | QAAlignedPrecision (BERTScore) | 74.29 | default | [lmqg/qag_koquad](https://huggingface.co/datasets/lmqg/qag_koquad) | | QAAlignedPrecision (MoverScore) | 75.14 | default | [lmqg/qag_koquad](https://huggingface.co/datasets/lmqg/qag_koquad) | | QAAlignedRecall (BERTScore) | 74.2 | default | [lmqg/qag_koquad](https://huggingface.co/datasets/lmqg/qag_koquad) | | QAAlignedRecall (MoverScore) | 75.04 | default | [lmqg/qag_koquad](https://huggingface.co/datasets/lmqg/qag_koquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qag_koquad - dataset_name: default - input_types: ['paragraph'] - output_types: ['questions_answers'] - prefix_types: None - model: google/mt5-small - max_length: 512 - max_length_output: 256 - epoch: 13 - batch: 8 - lr: 0.0005 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 16 - label_smoothing: 0.0 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-koquad-qag/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
ComCom/gpt2
[ "pytorch", "gpt2", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "GPT2Model" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
2022-12-26T07:49:49Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: jayshim/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
cometrain/neurotitle-rugpt3-small
[ "pytorch", "gpt2", "text-generation", "ru", "en", "dataset:All-NeurIPS-Papers-Scraper", "transformers", "Cometrain AutoCode", "Cometrain AlphaML", "license:mit" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
null
--- license: mit tags: - generated_from_trainer model-index: - name: article-generator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # article-generator This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Connor/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: - en license: apache-2.0 tags: - t5-small - text2text-generation - natural language generation - conversational system - task-oriented dialog datasets: - ConvLab/multiwoz21 metrics: - Slot Error Rate - sacrebleu model-index: - name: t5-small-nlg-user-multiwoz21 results: - task: type: text2text-generation name: natural language generation dataset: type: ConvLab/multiwoz21 name: MultiWOZ 2.1 split: test revision: 5f55375edbfe0270c20bcf770751ad982c0e6614 metrics: - type: Slot Error Rate value: 7.8 name: SER - type: sacrebleu value: 20.7 name: BLEU widget: - text: "[inform][taxi]([destination][Pizza Hut Fen Ditton],[departure][Saint John's college])\n\nuser: " - text: "[inform][attraction]([name][Nusha]);[inform][restaurant]([][])\n\nuser: " inference: parameters: max_length: 100 --- # t5-small-nlg-user-multiwoz21 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on [MultiWOZ 2.1](https://huggingface.co/datasets/ConvLab/multiwoz21) user utterances. Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Connorvr/TeachingGen
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2022-12-26T08:13:35Z
--- language: - zh tags: - conditional text generation - data augmentation license: apache-2.0 datasets: - beyond/chinese_clean_passages_80m widget: - text: "[mask]疫情[mask]公园[mask]散步[mask]" example_title: "案例1" - text: "今天[mask]篮球[mask]学校[mask]" example_title: "案例2" - text: "[mask]感染新冠[mask]身体不舒服[mask]多休息[mask]" example_title: "案例3" inference: parameters: max_length: 128 num_beams: 10 no_repeat_ngram_size: 5 do_sample: True min_length: 10 early_stopping: True --- ## 功能介绍 该模型主要功能是针对mask部分进行补全生成,能够生成较流利丰富的自然文本。 参考案例如下: 1)今天[mask]篮球[mask]学校[mask] 2)[mask]疫情[mask]公园[mask]散步[mask] 3)[mask]感染新冠[mask]身体不舒服[mask]多休息[mask] ## 如何使用 ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM pretrained = "Maciel/T5_Mask_Completion" tokenizer = AutoTokenizer.from_pretrained(pretrained) model = AutoModelForSeq2SeqLM.from_pretrained(pretrained) sentence = "[mask]疫情[mask]公园[mask]散步[mask]" max_input_length = 128 input_encodings = tokenizer(sentence, max_length=max_input_length, truncation=True, return_tensors="pt") if "token_type_ids" in input_encodings.keys(): input_encodings.pop("token_type_ids") output = model.generate(**input_encodings, num_beams=10, no_repeat_ngram_size=5, do_sample=True, early_stopping=True, min_length=10, max_length=64, return_dict_in_generate=True, output_scores=True) decoded_output = tokenizer.batch_decode(output.sequences, skip_special_tokens=True)[0] completion = decoded_output.strip() print(completion) ``` ## 案例展示 ``` 1) 原始文本:今天[mask]篮球[mask]学校[mask] 补全文本:今天,我们来谈谈篮球与学校的关系。 2) 原始文本:[mask]疫情[mask]公园[mask]散步[mask] 补全文本:在疫情发生之前,人们可以在公园里散步。 3) 原始文本:[mask]感染新冠[mask]身体不舒服[mask]多休息[mask] 补全文本:如果你感染新冠了,身体不舒服,建议你多休息,不要吃辛辣刺激性的食物,以免加重病情。 ```
ConstellationBoi/Oop
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-26T08:15:50Z
--- license: agpl-3.0 --- # WD Unofficial Releases All releases in this repo are _unofficial_ releases. In short, every model you see here are preview releases of models currently being developed and/or trained. ## Important Info ![Example](https://huggingface.co/waifu-diffusion/unofficial-releases/resolve/main/wd14-booru.jpg) The WD1.4-booru series is trained off of `stabilityai/stable-diffusion-2-1-base`, and has a native resolution of 512x512. For use in the popular Web UI, please use [this](https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference.yaml) config file.
Contrastive-Tension/BERT-Base-CT-STSb
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: de datasets: - lmqg/qg_dequad pipeline_tag: text2text-generation tags: - answer extraction widget: - text: "Sommerzeit <hl> Frühling <hl>: Umstellung von Normalzeit auf Sommerzeit – die Uhr wird um eine Stunde ''vor''gestellt. Herbst: Umstellung von Sommerzeit auf Normalzeit – die Uhr wird um eine Stunde ''zurück''gestellt. Als Sommerzeit wird die gegenüber der Zonenzeit meist um eine Stunde vorgestellte Uhrzeit bezeichnet, die während eines bestimmten Zeitraums im Sommerhalbjahr (und oft auch etwas darüber hinaus) als gesetzliche Zeit dient. Eine solche Regelung wird fast nur in Ländern der gemäßigten Zonen angewandt. Die mitteleuropäische Sommerzeit beginnt am letzten Sonntag im März um 2:00 Uhr MEZ, indem die Stundenzählung um eine Stunde von 2:00 Uhr auf 3:00 Uhr vorgestellt wird. Sie endet jeweils am letzten Sonntag im Oktober um 3:00 Uhr MESZ, indem die Stundenzählung um eine Stunde von 3:00 Uhr auf 2:00 Uhr zurückgestellt wird." example_title: "Answering Extraction Example 1" - text: "Iran === Landwirtschaft === Die landwirtschaftliche Nutzfläche beträgt trotz zahlreicher Gebirge und Wüsten 10 % der Landesfläche, wobei ein Drittel künstlich bewässert wird. Die Landwirtschaft ist einer der größten Arbeitgeber des Landes. Wichtige Produkte sind Pistazien, Weizen, Reis, Zucker, Baumwolle, Früchte, Nüsse, Datteln, Wolle und Kaviar. Seit der Revolution von 1979 wurde der Anbau von Weintrauben wegen des islamischen Alkoholverbots auf den 200.000 Hektar Rebfläche fast vollständig auf Tafeltrauben und Rosinen umgestellt. Bei Rosinen ist <hl> der Iran <hl> inzwischen nach der Türkei der zweitgrößte Exporteur der Welt, bei Safran mit ungefähr 90 % Marktanteil des globalen Bedarfs mit Abstand der größte." example_title: "Answering Extraction Example 2" model-index: - name: lmqg/mt5-small-dequad-ae results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_dequad type: default args: default metrics: - name: BLEU4 (Answer Extraction) type: bleu4_answer_extraction value: 5.11 - name: ROUGE-L (Answer Extraction) type: rouge_l_answer_extraction value: 17.54 - name: METEOR (Answer Extraction) type: meteor_answer_extraction value: 21.09 - name: BERTScore (Answer Extraction) type: bertscore_answer_extraction value: 74.03 - name: MoverScore (Answer Extraction) type: moverscore_answer_extraction value: 56.82 - name: AnswerF1Score (Answer Extraction) type: answer_f1_score__answer_extraction value: 36.07 - name: AnswerExactMatch (Answer Extraction) type: answer_exact_match_answer_extraction value: 8.8 --- # Model Card of `lmqg/mt5-small-dequad-ae` This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for answer extraction on the [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small) - **Language:** de - **Training data:** [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="de", model="lmqg/mt5-small-dequad-ae") # model prediction answers = model.generate_a("das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mt5-small-dequad-ae") output = pipe("Sommerzeit <hl> Frühling <hl>: Umstellung von Normalzeit auf Sommerzeit – die Uhr wird um eine Stunde ''vor''gestellt. Herbst: Umstellung von Sommerzeit auf Normalzeit – die Uhr wird um eine Stunde ''zurück''gestellt. Als Sommerzeit wird die gegenüber der Zonenzeit meist um eine Stunde vorgestellte Uhrzeit bezeichnet, die während eines bestimmten Zeitraums im Sommerhalbjahr (und oft auch etwas darüber hinaus) als gesetzliche Zeit dient. Eine solche Regelung wird fast nur in Ländern der gemäßigten Zonen angewandt. Die mitteleuropäische Sommerzeit beginnt am letzten Sonntag im März um 2:00 Uhr MEZ, indem die Stundenzählung um eine Stunde von 2:00 Uhr auf 3:00 Uhr vorgestellt wird. Sie endet jeweils am letzten Sonntag im Oktober um 3:00 Uhr MESZ, indem die Stundenzählung um eine Stunde von 3:00 Uhr auf 2:00 Uhr zurückgestellt wird.") ``` ## Evaluation - ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-dequad-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_dequad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:-----------------------------------------------------------------| | AnswerExactMatch | 8.8 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | AnswerF1Score | 36.07 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | BERTScore | 74.03 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | Bleu_1 | 17.77 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | Bleu_2 | 11.73 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | Bleu_3 | 7.74 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | Bleu_4 | 5.11 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | METEOR | 21.09 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | MoverScore | 56.82 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | ROUGE_L | 17.54 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_dequad - dataset_name: default - input_types: ['paragraph_sentence'] - output_types: ['answer'] - prefix_types: None - model: google/mt5-small - max_length: 512 - max_length_output: 32 - epoch: 22 - batch: 32 - lr: 0.001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 2 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-dequad-ae/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
Contrastive-Tension/BERT-Base-NLI-CT
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.68 +/- 24.17 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Contrastive-Tension/BERT-Large-CT-STSb
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2022-12-26T08:43:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9264510412051395 - name: Recall type: recall value: 0.9356751314464705 - name: F1 type: f1 value: 0.9310402404408081 - name: Accuracy type: accuracy value: 0.9835417096922808 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0629 - Precision: 0.9265 - Recall: 0.9357 - F1: 0.9310 - Accuracy: 0.9835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2396 | 1.0 | 878 | 0.0706 | 0.9172 | 0.9186 | 0.9179 | 0.9810 | | 0.0539 | 2.0 | 1756 | 0.0627 | 0.9264 | 0.9334 | 0.9299 | 0.9831 | | 0.03 | 3.0 | 2634 | 0.0629 | 0.9265 | 0.9357 | 0.9310 | 0.9835 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
CouchCat/ma_ner_v6_distil
[ "pytorch", "distilbert", "token-classification", "en", "transformers", "ner", "license:mit", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: - en license: apache-2.0 tags: - t5-small - text2text-generation - natural language understanding - conversational system - task-oriented dialog datasets: - ConvLab/multiwoz21 metrics: - Dialog acts Accuracy - Dialog acts F1 model-index: - name: t5-small-nlu-all-multiwoz21-context3 results: - task: type: text2text-generation name: natural language understanding dataset: type: ConvLab/multiwoz21 name: MultiWOZ 2.1 split: test revision: 5f55375edbfe0270c20bcf770751ad982c0e6614 metrics: - type: Dialog acts Accuracy value: 73.6 name: Accuracy - type: Dialog acts F1 value: 86.9 name: F1 widget: - text: "user: I would like a taxi from Saint John's college to Pizza Hut Fen Ditton.\nsystem: What time do you want to leave and what time do you want to arrive by?\nuser: I want to leave after 17:15." - text: "user: I want to find a moderately priced restaurant. \nsystem: I have many options available for you! Is there a certain area or cuisine that interests you?\nuser: Yes I would like the restaurant to be located in the center of the attractions. \nsystem: There are 21 restaurants available in the centre of town. How about a specific type of cuisine?" inference: parameters: max_length: 100 --- # t5-small-nlu-all-multiwoz21-context3 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on [MultiWOZ 2.1](https://huggingface.co/datasets/ConvLab/multiwoz21) both user and system utterances with context window size == 3. Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Culmenus/opus-mt-de-is-finetuned-de-to-is
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
2022-12-26T10:39:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - collection3 metrics: - precision - recall - f1 - accuracy model-index: - name: rubert-finetuned-collection3 results: - task: name: Token Classification type: token-classification dataset: name: collection3 type: collection3 config: default split: train args: default metrics: - name: Precision type: precision value: 0.9354685646500593 - name: Recall type: recall value: 0.9577362156910372 - name: F1 type: f1 value: 0.9464714354296688 - name: Accuracy type: accuracy value: 0.986481047855993 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rubert-finetuned-collection3 This model is a fine-tuned version of [sberbank-ai/ruBert-base](https://huggingface.co/sberbank-ai/ruBert-base) on the collection3 dataset. It achieves the following results on the evaluation set: - Loss: 0.0514 - Precision: 0.9355 - Recall: 0.9577 - F1: 0.9465 - Accuracy: 0.9865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0794 | 1.0 | 1163 | 0.0536 | 0.9178 | 0.9466 | 0.9320 | 0.9825 | | 0.0391 | 2.0 | 2326 | 0.0512 | 0.9228 | 0.9553 | 0.9388 | 0.9853 | | 0.0191 | 3.0 | 3489 | 0.0514 | 0.9355 | 0.9577 | 0.9465 | 0.9865 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0.dev20220929+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
DTAI-KULeuven/robbertje-1-gb-merged
[ "pytorch", "roberta", "fill-mask", "nl", "dataset:oscar", "dataset:oscar (NL)", "dataset:dbrd", "dataset:lassy-ud", "dataset:europarl-mono", "dataset:conll2002", "arxiv:2101.05716", "transformers", "Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- language: tr --- Trained on publicly-available audiobook data by anonymous contributors.
DTAI-KULeuven/robbertje-1-gb-non-shuffled
[ "pytorch", "roberta", "fill-mask", "nl", "dataset:oscar", "dataset:dbrd", "dataset:lassy-ud", "dataset:europarl-mono", "dataset:conll2002", "arxiv:2101.05716", "transformers", "Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
53
2022-12-26T14:06:31Z
--- language: cz --- **Optical Character Recognition made seamless & accessible to anyone, powered by PyTorch** ## Task: recognition ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_resnet50', >>> reco_arch=model, >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ``` Training configuration and logs: https://wandb.ai/xbankov/text-recognition ### Run Configuration { "hf_dataset_name": "fimu-docproc-research/born_digital_recognition", "name": "master_250_512_32_0.00711026024243061_0.017221138239850567_constant_da2de2d1_f3c04964", "epochs": 250, "lr": 0.00711026024243061, "weight_decay": 0.017221138239850567, "batch_size": 512, "input_size": 32, "sched": "constant", "sample": null, "workers": 16, "wb": true, "push_to_hub": "fimu-docproc-research/master", "test_only": false, "arch": "master" }
alexandrainst/da-binary-emotion-classification-base
[ "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,066
2022-12-26T14:18:20Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: sdcid --- ### benjamincode Dreambooth model trained by tzvc with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: sdcid (use that on your prompt) ![sdcid 0](https://huggingface.co/tzvc/benjamincode/resolve/main/concept_images/sdcid_%281%29.jpg)![sdcid 1](https://huggingface.co/tzvc/benjamincode/resolve/main/concept_images/sdcid_%282%29.jpg)![sdcid 2](https://huggingface.co/tzvc/benjamincode/resolve/main/concept_images/sdcid_%283%29.jpg)![sdcid 3](https://huggingface.co/tzvc/benjamincode/resolve/main/concept_images/sdcid_%284%29.jpg)![sdcid 4](https://huggingface.co/tzvc/benjamincode/resolve/main/concept_images/sdcid_%285%29.jpg)![sdcid 5](https://huggingface.co/tzvc/benjamincode/resolve/main/concept_images/sdcid_%286%29.jpg)![sdcid 6](https://huggingface.co/tzvc/benjamincode/resolve/main/concept_images/sdcid_%287%29.jpg)
Daivakai/DialoGPT-small-saitama
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2022-12-26T15:12:15Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 592.50 +/- 100.01 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga daripaez -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga daripaez -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga daripaez ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 120000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.001), ('exploration_fraction', 0.05), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 8e-05), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
DanL/scientific-challenges-and-directions
[ "pytorch", "bert", "text-classification", "en", "dataset:DanL/scientific-challenges-and-directions-dataset", "arxiv:2108.13751", "transformers", "generated_from_trainer" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
134
2022-12-26T15:32:33Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dracero/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Darren/darren
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-26T16:07:28Z
--- tags: - generated_from_keras_callback model-index: - name: bert-turkish-from-scratch-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-turkish-from-scratch-2 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2439 - Train Accuracy: 0.9903 - Epoch: 6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adagrad', 'learning_rate': 0.001, 'decay': 0.0, 'initial_accumulator_value': 0.1, 'epsilon': 1e-07} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Epoch | |:----------:|:--------------:|:-----:| | 0.5831 | 0.9423 | 0 | | 0.4659 | 0.9522 | 1 | | 0.3938 | 0.9603 | 2 | | 0.3409 | 0.9700 | 3 | | 0.3003 | 0.9807 | 4 | | 0.2690 | 0.9874 | 5 | | 0.2439 | 0.9903 | 6 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.9.2 - Datasets 2.8.0 - Tokenizers 0.13.2
DarshanDeshpande/marathi-distilbert
[ "pytorch", "tf", "distilbert", "fill-mask", "mr", "dataset:Oscar Corpus, News, Stories", "arxiv:1910.01108", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### shanmukh Dreambooth model trained by hurricane18 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb)
DataikuNLP/average_word_embeddings_glove.6B.300d
[ "arxiv:1908.10084", "sentence-transformers", "feature-extraction", "sentence-similarity", "license:apache-2.0" ]
sentence-similarity
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - conversational --- # DialoGPT-medium-Soraka
DavidSpaceG/MSGIFSR
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-12-26T17:10:33Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Qtable_taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="sartajbhuvaji/Qtable_taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Davlan/bert-base-multilingual-cased-finetuned-luganda
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- license: unknown --- da ningguang and saren pt file
Davlan/bert-base-multilingual-cased-masakhaner
[ "pytorch", "tf", "bert", "token-classification", "arxiv:2103.11811", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
88
null
--- tags: - generated_from_keras_callback model-index: - name: bert-large-uncased-finetuned-edos results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-edos This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.25.1 - TensorFlow 2.9.2 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/m2m100_418M-eng-yor-mt
[ "pytorch", "m2m_100", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "M2M100ForConditionalGeneration" ], "model_type": "m2m_100", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2022-12-26T18:07:06Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Sangonomiya_Kokomi Dreambooth model trained by Falon with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept:
Davlan/mT5_base_yoruba_adr
[ "pytorch", "mt5", "text2text-generation", "arxiv:2003.10564", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2022-12-26T18:15:16Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: f123ranck --- ### Franck Dreambooth model trained by duja1 with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: f123ranck (use that on your prompt)
Davlan/xlm-roberta-base-finetuned-amharic
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
401
2022-12-26T18:30:51Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - food widget: - text: ctm curry dish in a rustic modern farmhouse kitchen --- # DreamBooth model for the ctm concept trained by jnick on the jnick/chicken-tikka-masala dataset. This is a Stable Diffusion model fine-tuned on the ctm concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of ctm curry dish** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on images of chicken tikka masala for the food theme. Here are some examples: | "an adorable puppy sniffing ctm curry dish" | "ctm curry dish in the style of Johannes Vermeer" | | -- | -- | | ![](chicken-tikka-masala-1.png) | ![](chicken-tikka-masala-2.png) | | "a delicious plate of ctm curry dish in the Grand Canyon" | "ctm curry dish in a modern science laboratory" | | -- | -- | | ![](chicken-tikka-masala-3.png) | ![](chicken-tikka-masala-4.png) | ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('jnick/chicken-tikka-masala') image = pipeline().images[0] image ```
Davlan/xlm-roberta-base-finetuned-english
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2022-12-26T18:32:54Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('kzipa/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
Davlan/xlm-roberta-base-finetuned-hausa
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
234
2022-12-26T18:33:48Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Morpheee/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Davlan/xlm-roberta-base-finetuned-somali
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2022-12-26T18:53:47Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 252.93 +/- 13.87 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Dawn576/Dawn
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: sdbib --- ### sd-bib Dreambooth model trained by tzvc with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: sdbib (use that on your prompt) ![sdbib 0](https://huggingface.co/tzvc/sd-bib/resolve/main/concept_images/sdbib_%281%29.jpg)![sdbib 1](https://huggingface.co/tzvc/sd-bib/resolve/main/concept_images/sdbib_%282%29.jpg)![sdbib 2](https://huggingface.co/tzvc/sd-bib/resolve/main/concept_images/sdbib_%283%29.jpg)![sdbib 3](https://huggingface.co/tzvc/sd-bib/resolve/main/concept_images/sdbib_%284%29.jpg)![sdbib 4](https://huggingface.co/tzvc/sd-bib/resolve/main/concept_images/sdbib_%285%29.jpg)![sdbib 5](https://huggingface.co/tzvc/sd-bib/resolve/main/concept_images/sdbib_%286%29.jpg)![sdbib 6](https://huggingface.co/tzvc/sd-bib/resolve/main/concept_images/sdbib_%287%29.jpg)
Declan/Breitbart_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: b123oy --- ### boys Dreambooth model trained by duja1 with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: b123oy (use that on your prompt)
Declan/CNN_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="gstaff/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Declan/CNN_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - CartPole-v1 - reinforcement-learning model-index: - name: A2C-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **CartPole-v1** This is a trained model of a **Q-Learning** agent playing **CartPole-v1** . ## Usage ```python model = load_from_hub(repo_id="utyug1/A2C-CartPole-v1", filename="model.pt") ```
Declan/FoxNews_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('pravsels/ddpm-ffhq-vintage-finetuned-vintage-3epochs') image = pipeline().images[0] image ```
Declan/FoxNews_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 280.22 +/- 26.49 name: mean_reward verified: false --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```