modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
Declan/Reuters_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: sks --- ### sks-jessy-2400 Dreambooth model trained by eicu with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: sks (use that on your prompt) ![sks 0](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%281%29.jpg)![sks 1](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%282%29.jpg)![sks 2](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%283%29.jpg)![sks 3](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%284%29.jpg)![sks 4](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%285%29.jpg)![sks 5](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%286%29.jpg)![sks 6](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%287%29.jpg)![sks 7](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%288%29.jpg)![sks 8](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%289%29.jpg)![sks 9](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%2810%29.jpg)![sks 10](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%2811%29.jpg)![sks 11](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%2812%29.jpg)![sks 12](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%2813%29.jpg)![sks 13](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%2814%29.jpg)![sks 14](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%2815%29.jpg)![sks 15](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%2816%29.jpg)![sks 16](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%2817%29.jpg)![sks 17](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%2818%29.jpg)![sks 18](https://huggingface.co/eicu/sks-jessy-2400/resolve/main/concept_images/sks_%2819%29.jpg)
Declan/Reuters_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="gauthamk28/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Declan/WallStreetJournal_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-dpv-finetuned-WITH-AUGMENTATION-AUGMENTED-ALL results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-dpv-finetuned-WITH-AUGMENTATION-AUGMENTED-ALL This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6523 - Wer: 35.1345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3432 | 1.25 | 1000 | 0.5472 | 37.2824 | | 0.138 | 2.49 | 2000 | 0.5765 | 37.0563 | | 0.0569 | 3.74 | 3000 | 0.6523 | 35.1345 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
DeepChem/ChemBERTa-77M-MLM
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,416
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: AkkyMa/MLAgents-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
DeividasM/wav2vec2-large-xlsr-53-lithuanian
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "lt", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-mnli-target-glue-qnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mnli-target-glue-qnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mnli](https://huggingface.co/muhtasham/tiny-mlm-glue-mnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4695 - Accuracy: 0.7814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6034 | 0.15 | 500 | 0.5431 | 0.7335 | | 0.5403 | 0.31 | 1000 | 0.5253 | 0.7459 | | 0.5174 | 0.46 | 1500 | 0.4953 | 0.7659 | | 0.5137 | 0.61 | 2000 | 0.5259 | 0.7483 | | 0.511 | 0.76 | 2500 | 0.4814 | 0.7750 | | 0.5032 | 0.92 | 3000 | 0.4670 | 0.7847 | | 0.4901 | 1.07 | 3500 | 0.4525 | 0.7904 | | 0.4798 | 1.22 | 4000 | 0.4679 | 0.7836 | | 0.4667 | 1.37 | 4500 | 0.4752 | 0.7798 | | 0.4736 | 1.53 | 5000 | 0.4695 | 0.7814 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
DemangeJeremy/4-sentiments-with-flaubert
[ "pytorch", "flaubert", "text-classification", "fr", "transformers", "sentiments", "french", "flaubert-large" ]
text-classification
{ "architectures": [ "FlaubertForSequenceClassification" ], "model_type": "flaubert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
226
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-9e-05 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.6840345500139314 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-9e-05 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.8481 - Accuracy: 0.6840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1839 | 1.0 | 224 | 1.0266 | 0.6120 | | 1.0333 | 2.0 | 448 | 0.9063 | 0.6608 | | 0.9655 | 3.0 | 672 | 0.8481 | 0.6840 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Denilson/gbert-base-germaner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - vi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: HuyenNguyen results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HuyenNguyen This model is a fine-tuned version of [Huyen2310/FPT-S15000](https://huggingface.co/Huyen2310/FPT-S15000) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Deniskin/essays_small_2000
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - coreml - stable-diffusion - text-to-image --- # Core ML Converted Model: - This model was converted to Core ML for use on Apple Silicon devices. Instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-files-to-Core-ML).<br> - Provide the model to an app such as [Mochi Diffusion](https://github.com/godly-devotion/MochiDiffusion) to generate images.<br> - `split_einsum` version is compatible with all compute unit options including Neural Engine.<br> # Note: This model does not have the [unet split into chunks](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml). # ATitanStrawberry: Source(s): [CivitAI](https://civitai.com/models/1404/atitanstrawberry) Creative Ladies and artsy Gentle-beings i present to you great all-around checkpoint that was secretly made by Reddit user Virtual-Fix6855 by using recipe of forgotten Old Gods which he probably also forgot. For a well-designed prompt it could give out great photo-realistic images as well as digital paintings. It does not fail on bodies and landscapes and with proper resolution you can count on humans having right amount of everything. Sharing is caring, use it for your entertainment and more.
Deniskin/essays_small_2000i
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="avoroshilov/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Deniskin/gpt3_medium
[ "pytorch", "gpt2", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
52
2023-01-08T20:37:06Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Denny29/DialoGPT-medium-asunayuuki
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 583.50 +/- 161.15 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga npit -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga npit -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga npit ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 80000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Denver/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: sks --- ### jessy-3500 Dreambooth model trained by eicu with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: sks (use that on your prompt) ![sks 0](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%281%29.jpg)![sks 1](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%282%29.jpg)![sks 2](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%283%29.jpg)![sks 3](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%284%29.jpg)![sks 4](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%285%29.jpg)![sks 5](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%286%29.jpg)![sks 6](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%287%29.jpg)![sks 7](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%288%29.jpg)![sks 8](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%289%29.jpg)![sks 9](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%2810%29.jpg)![sks 10](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%2811%29.jpg)![sks 11](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%2812%29.jpg)![sks 12](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%2813%29.jpg)![sks 13](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%2814%29.jpg)![sks 14](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%2815%29.jpg)![sks 15](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%2816%29.jpg)![sks 16](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%2817%29.jpg)![sks 17](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%2818%29.jpg)![sks 18](https://huggingface.co/eicu/jessy-3500/resolve/main/concept_images/sks_%2819%29.jpg)
DeskDown/MarianMix_en-zh-10
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: openrail language: - en tags: - Angelcore - Devilcore - Dieselpunk - Steampunk - Clockpunk - Fantasy - Gothic Style - Nu-Gothic Style - Gothic Art - Dark Fantasy - Dark Art - Medieval - Modern - Futuristic - Cybernetic - Magic tech - Magic Circles - Cute Girls - Beautiful Women - Creepy Women - Creepy Girls - Evil - Wicked - Handsome man - Adorable Boy - Creepy Boy - Creepy Man - Girl - Boy - Man - Woman - text2img - stable diffusion - SD - Image Generation - AI Image Generation - Model - Safetensor --- Gemini is a Dark Fantasy Anime focused merge of several models using various combination methods to attempt and extract specific styles. The first version of Gemini_Anime is for darker renders or more fantasy based.\ This particular model has a heavier lean on dark art, gothic art and scene based (action etc rather than just profiling, though profiling still works fine)\ Danbooru works for the most, as does regular CLIP.\ The model is not intended for research, but I won't stop you if you wish. It's intended entirely for entertainment --- With this model you can generate styles like for example: - Angelcore - Devilcore - Dieselpunk - Steampunk - Clockpunk - Modern - Futuristic - Cybernetic - Magic tech - Fantasy - Dark Fantasy - Dark Art - Gothic Style - Nu-Gothic Style - Gothic Art - Medieval --- While the model can generate all these styles to some degree, the greatest focus is on dark fantasy and various gothic styles, magical and angel/devil based.\ So I can't promise the others will work as well as that. --- Using (splash-art style:) followed by prompts such as (Nu-Gothic Art Style:) or (Nu-Gothic Art Infusion:) with your prefered weight depending on the interface you use\ Can provide you with the most interesting results --- Tested with and Capable of generating 1024x640 in 95% of cases without using highres fix Tested using kl-f8-anime2 VAE and Anything-V3.0 VAE and while the kl-f8 is harder to obtain higher quality from, it's by no means worse than Anything V3 VAE. No other VAE was tested. --- openRAIL license, feel free to use it, merge it and anything you make with it is yours and I make no claim to it. As such you assume any responsibility for anything you create, but it has to be within the laws. No underage representations in sexual situations No impersonation Nothing illegal in your living location. --- Note:\ This is the first version and the first merge variant model I've made, as such there is bound to be a lot of bugs and things that won't work. Feel free to post about things not working right (even things like very obvious prompts returning the opposite thing).\ I will read all comments but probably not reply unless necessary\ Have fun, I will get to work on v2 now and later on my intention is to create dreambooth models if things progress right.\ I haven't decided if I should put them on patreon or not once I make them from start. Will see how things progress and what time it takes up.\ \ Have fun!\ //Cryonicus
DeskDown/MarianMix_en-zh_to_vi-ms-hi-ja
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-mnli-target-glue-rte results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mnli-target-glue-rte This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mnli](https://huggingface.co/muhtasham/tiny-mlm-glue-mnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5419 - Accuracy: 0.6137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6373 | 6.41 | 500 | 0.6751 | 0.5993 | | 0.4271 | 12.82 | 1000 | 0.8148 | 0.6390 | | 0.2621 | 19.23 | 1500 | 0.9962 | 0.6173 | | 0.1589 | 25.64 | 2000 | 1.2448 | 0.6065 | | 0.1002 | 32.05 | 2500 | 1.5419 | 0.6137 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
Despin89/test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-casedepoch3_sexist_baseline_with_reddit_and_gab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-casedepoch3_sexist_baseline_with_reddit_and_gab This model is a fine-tuned version of [Wiebke/bert-base-casedepoch3_sexist_baseline](https://huggingface.co/Wiebke/bert-base-casedepoch3_sexist_baseline) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4434 - Accuracy: 0.8707 - F1: 0.8699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0279 | 0.16 | 500 | 0.5257 | 0.8564 | 0.8540 | | 0.0273 | 0.31 | 1000 | 0.4614 | 0.8607 | 0.8607 | | 0.0235 | 0.47 | 1500 | 0.4873 | 0.8657 | 0.8620 | | 0.0201 | 0.63 | 2000 | 0.4544 | 0.8729 | 0.8694 | | 0.0215 | 0.78 | 2500 | 0.4597 | 0.865 | 0.8653 | | 0.0184 | 0.94 | 3000 | 0.4434 | 0.8707 | 0.8699 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Dev-DGT/food-dbert-multiling
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-mnli-target-glue-sst2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mnli-target-glue-sst2 This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mnli](https://huggingface.co/muhtasham/tiny-mlm-glue-mnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5014 - Accuracy: 0.7993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5929 | 0.24 | 500 | 0.4966 | 0.7752 | | 0.4445 | 0.48 | 1000 | 0.4688 | 0.7833 | | 0.3937 | 0.71 | 1500 | 0.4462 | 0.8005 | | 0.372 | 0.95 | 2000 | 0.4629 | 0.7913 | | 0.3341 | 1.19 | 2500 | 0.4480 | 0.7993 | | 0.3159 | 1.43 | 3000 | 0.4481 | 0.8085 | | 0.2978 | 1.66 | 3500 | 0.4441 | 0.8073 | | 0.2923 | 1.9 | 4000 | 0.4464 | 0.8085 | | 0.273 | 2.14 | 4500 | 0.5014 | 0.7993 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
Devrim/prism-default
[ "license:mit" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
DevsIA/Devs_IA
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - spearmanr model-index: - name: tiny-mlm-glue-mnli-target-glue-stsb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mnli-target-glue-stsb This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mnli](https://huggingface.co/muhtasham/tiny-mlm-glue-mnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9147 - Pearson: 0.8161 - Spearmanr: 0.8166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | 3.1849 | 2.78 | 500 | 1.1212 | 0.7265 | 0.7541 | | 0.9758 | 5.56 | 1000 | 1.0688 | 0.7790 | 0.7990 | | 0.7441 | 8.33 | 1500 | 1.0145 | 0.8030 | 0.8178 | | 0.6177 | 11.11 | 2000 | 0.8751 | 0.8166 | 0.8220 | | 0.5205 | 13.89 | 2500 | 0.9216 | 0.8143 | 0.8173 | | 0.4664 | 16.67 | 3000 | 1.0287 | 0.8147 | 0.8200 | | 0.4095 | 19.44 | 3500 | 0.9147 | 0.8161 | 0.8166 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
DevsIA/imagenes
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 28 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 28, "warmup_steps": 3, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
DheerajPranav/Dialo-GPT-Rick-bot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-08T21:20:57Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: TheTeamBuilder/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Dhritam/Zova-bot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-mnli-target-glue-wnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mnli-target-glue-wnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mnli](https://huggingface.co/muhtasham/tiny-mlm-glue-mnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1798 - Accuracy: 0.0845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6896 | 25.0 | 500 | 0.7651 | 0.2535 | | 0.6597 | 50.0 | 1000 | 1.1537 | 0.1408 | | 0.6018 | 75.0 | 1500 | 1.6711 | 0.0986 | | 0.5365 | 100.0 | 2000 | 2.1798 | 0.0845 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
Dhruva/Interstellar
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: openrail++ --- # Model Card for Model ID A Sci-Fi themed model trained on SD 1.5 with a 26K+ image dataset. # Model Details - **Developed by:** Corruptlake - **License:** openrail++ - **Finetuned from model:** Stable Diffusion v1.5 - **Developed using:** Everydream 1.0 - **Version:** v1.0 **If you would like to support the development of v2.0 and other future projects, please consider supporting me here:** [![Become A Patreon](https://badgen.net/badge/become/a%20patron/F96854)](https://www.patreon.com/user?u=86594740) ## Model Description This model has been trained on 26,949 high resolution and quality Sci-Fi themed images for 2 Epochs. Which equals to around 53K steps/iterations. The training resolution was 640, however it works well at higher resolutions. This model is still in developement Comparison between SD1.5/2.1 on the same seed, prompt and settings can be found below. <a href="https://ibb.co/NV2265y"><img src="https://i.ibb.co/vw44xpj/sdvssf.png" alt="sdvssf" border="0"></a> ## Model Usage - **Recommended sampler:** Euler, Euler A Recommended words to add to prompts are as follows: - Sci-Fi - caspian Sci-Fi - Star Citizen - Star Atlas - Spaceship - Render More words that were prominent in the dataset, but effects are currently not well known: - Inktober - Star Trek - Star Wars - Sketch ## Contact and Further Info For any questions or information/requests about development and for any feedback, contact me either on Stable Diffusion discord with the same username. ## Misuse, Malicious Use, and Out-of-Scope Use Note: This section is originally taken from the Stable-Diffusion 2.1 model card. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. ## Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use.
Dibyaranjan/nl_image_search
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-08T21:28:21Z
--- language: en thumbnail: http://www.huggingtweets.com/petite_findom/1673213417942/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1578499778182320129/mj80HxKx_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">dom goddess</div> <div style="text-align: center; font-size: 14px;">@petite_findom</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from dom goddess. | Data | dom goddess | | --- | --- | | Tweets downloaded | 171 | | Retweets | 0 | | Short tweets | 10 | | Tweets kept | 161 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2fxo3voz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @petite_findom's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/30b2l3q4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/30b2l3q4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/petite_findom') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
DicoTiar/wisdomfiy
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-01-08T21:31:16Z
--- license: apache-2.0 language: - hu tags: - text-classification metrics: - accuracy widget: - text: >- Kovácsné Nagy Erzsébet [SEP] A Kovácsné Nagy Erzsébet nagyon jól érzi magát a Nokiánál, azonban a Németországból érkezett Kovács Péter nehezen boldogul a beilleszkedéssel. example_title: positive - text: >- Kovács Péter [SEP] A Kovácsné Nagy Erzsébet nagyon jól érzi magát a Nokiánál, azonban a Németországból érkezett Kovács Péter nehezen boldogul a beilleszkedéssel. example_title: negative - text: >- Kovácsné Nagy Erzsébet [SEP] A Kovácsné Nagy Erzsébet azt mondta, hogy a Németországból érkezett Kovács Péter nehezen boldogul a beilleszkedéssel. example_title: neutral --- # Hungarian Aspect-based Sentiment Analysis with finetuned huBERT model For further models, scripts and details, see [our repository](https://github.com/nytud/sentiment-analysis) or [our demo site](https://juniper.nytud.hu/demo/nlp). - Pretrained model used: huBERT - Finetuned on OpinHuBank (OHB) Corpus - Labels: 0 (negative), 1 (neutral), 2 (positive) - Separator: [SEP] ## Limitations - max_seq_length = 256 ## Results | Model | OHB | | ------------- | ------------- | | huBERT | **82.30** | | XLM-R | 80.59 | ## Usage with pipeline ```python from transformers import pipeline classification = pipeline(task="sentiment-analysis", model="NYTK/sentiment-ohb3-hubert-hungarian") input_text = "Kovácsné Nagy Erzsébet [SEP] A Kovácsné Nagy Erzsébet nagyon jól érzi magát a Nokiánál, azonban a Németországból érkezett Kovács Péter nehezen boldogul a beilleszkedéssel." print(classification(input_text)[0]) ``` ## Citation If you use this model, please cite the following paper: ``` @inproceedings {yang-asent, title = {Neurális entitásorientált szentimentelemző alkalmazás magyar nyelvre}, booktitle = {XIX. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2023)}, year = {2023}, publisher = {Szegedi Tudományegyetem, Informatikai Intézet}, address = {Szeged, Hungary}, author = {Yang, Zijian Győző and Laki, László János}, pages = {107--117} } ```
DiegoAlysson/opus-mt-en-ro-finetuned-en-to-ro
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
2023-01-08T21:31:31Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: tiny-mlm-glue-mrpc-target-glue-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-target-glue-cola This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7869 - Matthews Correlation: 0.1551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6097 | 1.87 | 500 | 0.6213 | 0.0 | | 0.6008 | 3.73 | 1000 | 0.6170 | 0.0 | | 0.5827 | 5.6 | 1500 | 0.6185 | 0.0615 | | 0.5534 | 7.46 | 2000 | 0.6389 | 0.1043 | | 0.5246 | 9.33 | 2500 | 0.6589 | 0.1507 | | 0.5102 | 11.19 | 3000 | 0.6608 | 0.1476 | | 0.4873 | 13.06 | 3500 | 0.6693 | 0.1282 | | 0.4681 | 14.93 | 4000 | 0.7066 | 0.1577 | | 0.448 | 16.79 | 4500 | 0.7266 | 0.1613 | | 0.4302 | 18.66 | 5000 | 0.7454 | 0.1446 | | 0.4108 | 20.52 | 5500 | 0.7858 | 0.1595 | | 0.4023 | 22.39 | 6000 | 0.7869 | 0.1551 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
DiegoBalam12/institute_classification
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-08T21:35:33Z
--- license: creativeml-openrail-m tags: - coreml - stable-diffusion - text-to-image --- # Core ML Converted Model: - This model was converted to Core ML for use on Apple Silicon devices. Instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-files-to-Core-ML).<br> - Provide the model to an app such as [Mochi Diffusion](https://github.com/godly-devotion/MochiDiffusion) to generate images.<br> - `split_einsum` version is compatible with all compute unit options including Neural Engine.<br> # Note: This model does not have the [unet split into chunks](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml). # Elldreth's Dream Mix: Source(s): [CivitAI](https://civitai.com/models/1254/elldreths-dream-mix) This mixed model is a combination of some of my favorites. A little Pyros Model A mixed with a F111-sd14 diff and mixed into Anything. What's it good at? Portraits Landscapes Fantasy Sci-Fi Anime Semi-realistic Horror It's an all-around easy-to-prompt general purpose model that cranks out some really nice images. No trigger words required. All models were scanned prior to mixing and totally safe.
Dilmk2/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
2023-01-08T21:38:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - recall - precision model-index: - name: vit-base-patch16-224-in21k_male_or_female_eyes results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9726681127982646 - name: F1 type: f1 value: 0.9741273100616017 - name: Recall type: recall value: 0.9665851670741646 - name: Precision type: precision value: 0.9817880794701986 language: - en pipeline_tag: image-classification --- # vit-base-patch16-224-in21k_male_or_female_eyes This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0810 - Accuracy: 0.9727 - F1: 0.9741 - Recall: 0.9666 - Precision: 0.9818 ## Model description This is a binary classification model to distinguish between male and female eyes. For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Binary%20Classification/Male%20or%20Female%20Eyes/are_they_male_or_female_eyes_ViT.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/pavelbiz/eyes-rtte ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.1998 | 1.0 | 577 | 0.2365 | 0.9072 | 0.9196 | 0.9976 | 0.8530 | | 0.0846 | 2.0 | 1154 | 0.0810 | 0.9727 | 0.9741 | 0.9666 | 0.9818 | | 0.0309 | 3.0 | 1731 | 0.0852 | 0.9809 | 0.9821 | 0.9837 | 0.9805 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.12.1
DimaOrekhov/transformer-method-name
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-01-08T21:45:36Z
--- license: mit language: - hu tags: - text-classification metrics: - accuracy widget: - text: >- Kovácsné Nagy Erzsébet </s> A Kovácsné Nagy Erzsébet nagyon jól érzi magát a Nokiánál, azonban a Németországból érkezett Kovács Péter nehezen boldogul a beilleszkedéssel. example_title: positive - text: >- Kovács Péter </s> A Kovácsné Nagy Erzsébet nagyon jól érzi magát a Nokiánál, azonban a Németországból érkezett Kovács Péter nehezen boldogul a beilleszkedéssel. example_title: negative - text: >- Kovácsné Nagy Erzsébet </s> A Kovácsné Nagy Erzsébet azt mondta, hogy a Németországból érkezett Kovács Péter nehezen boldogul a beilleszkedéssel. example_title: neutral --- # Hungarian Aspect-based Sentiment Analysis with finetuned XLM-RoBERTa model For further models, scripts and details, see [our repository](https://github.com/nytud/sentiment-analysis) or [our demo site](https://juniper.nytud.hu/demo/nlp). - Pretrained model used: XLM-RoBERTa - Finetuned on OpinHuBank (OHB) Corpus - Labels: 0 (negative), 2 (neutral), 3 (positive) - Separator: \</s\> ## Limitations - max_seq_length = 256 ## Results | Model | OHB | | ------------- | ------------- | | huBERT | 82.30 | | XLM-R | 80.59 | ## Usage with pipeline ```python from transformers import pipeline classification = pipeline(task="sentiment-analysis", model="NYTK/sentiment-ohb3-xlm-roberta-hungarian") input_text = "Kovácsné Nagy Erzsébet </s> A Kovácsné Nagy Erzsébet nagyon jól érzi magát a Nokiánál, azonban a Németországból érkezett Kovács Péter nehezen boldogul a beilleszkedéssel." print(classification(input_text)[0]) ``` ## Citation If you use this model, please cite the following paper: ``` @inproceedings {yang-asent, title = {Neurális entitásorientált szentimentelemző alkalmazás magyar nyelvre}, booktitle = {XIX. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2023)}, year = {2023}, publisher = {Szegedi Tudományegyetem, Informatikai Intézet}, address = {Szeged, Hungary}, author = {Yang, Zijian Győző and Laki, László János}, pages = {107--117} } ```
Dimedrolza/DialoGPT-small-cyberpunk
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-01-08T21:46:57Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-mrpc-target-glue-mnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-target-glue-mnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8094 - Accuracy: 0.6373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0737 | 0.04 | 500 | 1.0366 | 0.4615 | | 1.0169 | 0.08 | 1000 | 0.9833 | 0.5194 | | 0.9799 | 0.12 | 1500 | 0.9344 | 0.5719 | | 0.9452 | 0.16 | 2000 | 0.9106 | 0.5879 | | 0.9293 | 0.2 | 2500 | 0.8905 | 0.5962 | | 0.9189 | 0.24 | 3000 | 0.8801 | 0.6026 | | 0.9017 | 0.29 | 3500 | 0.8705 | 0.6103 | | 0.896 | 0.33 | 4000 | 0.8619 | 0.6178 | | 0.881 | 0.37 | 4500 | 0.8574 | 0.6211 | | 0.8854 | 0.41 | 5000 | 0.8495 | 0.6201 | | 0.8756 | 0.45 | 5500 | 0.8434 | 0.6223 | | 0.8713 | 0.49 | 6000 | 0.8410 | 0.6263 | | 0.8757 | 0.53 | 6500 | 0.8337 | 0.6301 | | 0.8624 | 0.57 | 7000 | 0.8363 | 0.6284 | | 0.8576 | 0.61 | 7500 | 0.8203 | 0.6356 | | 0.8583 | 0.65 | 8000 | 0.8188 | 0.6378 | | 0.8523 | 0.69 | 8500 | 0.8294 | 0.6304 | | 0.8533 | 0.73 | 9000 | 0.8052 | 0.6429 | | 0.8448 | 0.77 | 9500 | 0.8180 | 0.6356 | | 0.8368 | 0.81 | 10000 | 0.8030 | 0.6399 | | 0.8389 | 0.86 | 10500 | 0.8094 | 0.6373 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
Dizoid/Lll
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-08T21:54:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 244.97 +/- 28.21 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Dkwkk/Da
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-08T21:57:21Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 30.20 +/- 15.31 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Dkwkk/W
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-08T21:57:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.57 +/- 20.35 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Dmitriiserg/Pxd
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-08T22:04:23Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: robertuito-base-cased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robertuito-base-cased This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3006 - Accuracy: 0.9738 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2557 | 1.0 | 3611 | 0.2650 | 0.9383 | | 0.1543 | 2.0 | 7222 | 0.1762 | 0.9632 | | 0.0792 | 3.0 | 10833 | 0.1959 | 0.9601 | | 0.0565 | 4.0 | 14444 | 0.2106 | 0.9670 | | 0.0507 | 5.0 | 18055 | 0.2597 | 0.9664 | | 0.0297 | 6.0 | 21666 | 0.2761 | 0.9688 | | 0.0531 | 7.0 | 25277 | 0.2336 | 0.9514 | | 0.166 | 8.0 | 28888 | 0.2249 | 0.9688 | | 0.0112 | 9.0 | 32499 | 0.2416 | 0.9720 | | 0.0129 | 10.0 | 36110 | 0.2840 | 0.9713 | | 0.0041 | 11.0 | 39721 | 0.2673 | 0.9695 | | 0.0023 | 12.0 | 43332 | 0.3371 | 0.9664 | | 0.0022 | 13.0 | 46943 | 0.3109 | 0.9688 | | 0.0023 | 14.0 | 50554 | 0.2464 | 0.9757 | | 0.0042 | 15.0 | 54165 | 0.3368 | 0.9688 | | 0.001 | 16.0 | 57776 | 0.2903 | 0.9726 | | 0.001 | 17.0 | 61387 | 0.3165 | 0.9707 | | 0.0006 | 18.0 | 64998 | 0.2619 | 0.9769 | | 0.0 | 19.0 | 68609 | 0.3053 | 0.9732 | | 0.0 | 20.0 | 72220 | 0.3001 | 0.9745 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Dmitry12/sber
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-08T22:05:44Z
# Stable Diffusion web UI A browser interface based on Gradio library for Stable Diffusion. ![](txt2img_Screenshot.png) Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) wiki page for extra scripts developed by users. ## Features [Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features): - Original txt2img and img2img modes - One click install and run script (but you still must install python and git) - Outpainting - Inpainting - Color Sketch - Prompt Matrix - Stable Diffusion Upscale - Attention, specify parts of text that the model should pay more attention to - a man in a ((tuxedo)) - will pay more attention to tuxedo - a man in a (tuxedo:1.21) - alternative syntax - select text and press ctrl+up or ctrl+down to automatically adjust attention to selected text (code contributed by anonymous user) - Loopback, run img2img processing multiple times - X/Y plot, a way to draw a 2 dimensional plot of images with different parameters - Textual Inversion - have as many embeddings as you want and use any names you like for them - use multiple embeddings with different numbers of vectors per token - works with half precision floating point numbers - train embeddings on 8GB (also reports of 6GB working) - Extras tab with: - GFPGAN, neural network that fixes faces - CodeFormer, face restoration tool as an alternative to GFPGAN - RealESRGAN, neural network upscaler - ESRGAN, neural network upscaler with a lot of third party models - SwinIR and Swin2SR([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers - LDSR, Latent diffusion super resolution upscaling - Resizing aspect ratio options - Sampling method selection - Adjust sampler eta values (noise multiplier) - More advanced noise setting options - Interrupt processing at any time - 4GB video card support (also reports of 2GB working) - Correct seeds for batches - Live prompt token length validation - Generation parameters - parameters you used to generate images are saved with that image - in PNG chunks for PNG, in EXIF for JPEG - can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI - can be disabled in settings - drag and drop an image/text-parameters to promptbox - Read Generation Parameters Button, loads parameters in promptbox to UI - Settings page - Running arbitrary python code from UI (must run with --allow-code to enable) - Mouseover hints for most UI elements - Possible to change defaults/mix/max/step values for UI elements via text config - Random artist button - Tiling support, a checkbox to create images that can be tiled like textures - Progress bar and live image generation preview - Negative prompt, an extra text field that allows you to list what you don't want to see in generated image - Styles, a way to save part of prompt and easily apply them via dropdown later - Variations, a way to generate same image but with tiny differences - Seed resizing, a way to generate same image but at slightly different resolution - CLIP interrogator, a button that tries to guess prompt from an image - Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway - Batch Processing, process a group of files using img2img - Img2img Alternative, reverse Euler method of cross attention control - Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions - Reloading checkpoints on the fly - Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one - [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community - [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once - separate prompts using uppercase `AND` - also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2` - No token limit for prompts (original stable diffusion lets you use up to 75 tokens) - DeepDanbooru integration, creates danbooru style tags for anime prompts - [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args) - via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI - Generate forever option - Training tab - hypernetworks and embeddings options - Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime) - Clip skip - Use Hypernetworks - Use VAEs - Estimated completion time in progress bar - API - Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML. - via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)) - [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions ## Installation and Running Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. Alternatively, use online services (like Google Colab): - [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services) ### Automatic Installation on Windows 1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH" 2. Install [git](https://git-scm.com/download/win). 3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`. 4. Place `model.ckpt` in the `models` directory (see [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) for where to get it). 5. _*(Optional)*_ Place `GFPGANv1.4.pth` in the base directory, alongside `webui.py` (see [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) for where to get it). 6. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user. ### Automatic Installation on Linux 1. Install the dependencies: ```bash # Debian-based: sudo apt install wget git python3 python3-venv # Red Hat-based: sudo dnf install wget git python3 # Arch-based: sudo pacman -S wget git python3 ``` 2. To install in `/home/$(whoami)/stable-diffusion-webui/`, run: ```bash bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh) ``` ### Installation on Apple Silicon Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon). ## Contributing Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing) ## Documentation The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki). ## Credits - Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers - k-diffusion - https://github.com/crowsonkb/k-diffusion.git - GFPGAN - https://github.com/TencentARC/GFPGAN.git - CodeFormer - https://github.com/sczhou/CodeFormer - ESRGAN - https://github.com/xinntao/ESRGAN - SwinIR - https://github.com/JingyunLiang/SwinIR - Swin2SR - https://github.com/mv-lab/swin2sr - LDSR - https://github.com/Hafiidz/latent-diffusion - MiDaS - https://github.com/isl-org/MiDaS - Ideas for optimizations - https://github.com/basujindal/stable-diffusion - Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing. - Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion) - Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas). - Idea for SD upscale - https://github.com/jquesnelle/txt2imghd - Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot - CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator - Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch - xformers - https://github.com/facebookresearch/xformers - DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru - Security advice - RyotaK - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. - (You)
Doiman/DialoGPT-medium-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
2023-01-08T22:12:42Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: tiny-mlm-glue-mrpc-target-glue-mrpc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-target-glue-mrpc This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0963 - Accuracy: 0.7034 - F1: 0.7738 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5884 | 4.35 | 500 | 0.5523 | 0.7059 | 0.8046 | | 0.4494 | 8.7 | 1000 | 0.5547 | 0.7574 | 0.8358 | | 0.304 | 13.04 | 1500 | 0.6339 | 0.7525 | 0.8256 | | 0.1927 | 17.39 | 2000 | 0.7843 | 0.7230 | 0.8000 | | 0.1179 | 21.74 | 2500 | 1.0963 | 0.7034 | 0.7738 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
DongHai/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-01-08T22:18:14Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
DongHyoungLee/distilbert-base-uncased-finetuned-cola
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
2023-01-08T22:19:38Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-mrpc-target-glue-qnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-target-glue-qnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4717 - Accuracy: 0.7798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6112 | 0.15 | 500 | 0.5408 | 0.7346 | | 0.5426 | 0.31 | 1000 | 0.5351 | 0.7366 | | 0.522 | 0.46 | 1500 | 0.5029 | 0.7619 | | 0.5151 | 0.61 | 2000 | 0.5191 | 0.7529 | | 0.5116 | 0.76 | 2500 | 0.4829 | 0.7758 | | 0.5052 | 0.92 | 3000 | 0.4673 | 0.7833 | | 0.4909 | 1.07 | 3500 | 0.4521 | 0.7921 | | 0.4811 | 1.22 | 4000 | 0.4689 | 0.7827 | | 0.4672 | 1.37 | 4500 | 0.4819 | 0.7730 | | 0.4744 | 1.53 | 5000 | 0.4717 | 0.7798 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
Donghyun/L2_BERT
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-08T22:22:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: my_movie_review_model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.908 - name: F1 type: f1 value: 0.9094488188976377 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_movie_review_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3665 - Accuracy: 0.908 - F1: 0.9094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Dongjae/mrc2reader
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "XLMRobertaForQuestionAnswering" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-01-08T22:24:28Z
--- tags: - generated_from_trainer model-index: - name: bert-base-casedepoch3_sexist_baseline_with_reddit_and_gabfordev results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-casedepoch3_sexist_baseline_with_reddit_and_gabfordev This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Dongmin/testmodel
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
11
2023-01-08T22:27:39Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="timondesch/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Waynehillsdev/Waynehills-STT-doogie-server
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
61
2023-01-08T22:34:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: tiny-mlm-glue-mrpc-target-glue-qqp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-target-glue-qqp This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4096 - Accuracy: 0.7995 - F1: 0.7718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.5796 | 0.04 | 500 | 0.5174 | 0.7297 | 0.6813 | | 0.5102 | 0.09 | 1000 | 0.4804 | 0.7541 | 0.7035 | | 0.4957 | 0.13 | 1500 | 0.4916 | 0.7412 | 0.7152 | | 0.4798 | 0.18 | 2000 | 0.4679 | 0.7549 | 0.7221 | | 0.4728 | 0.22 | 2500 | 0.4563 | 0.7624 | 0.7270 | | 0.4569 | 0.26 | 3000 | 0.4501 | 0.7673 | 0.7340 | | 0.4583 | 0.31 | 3500 | 0.4480 | 0.7682 | 0.7375 | | 0.4502 | 0.35 | 4000 | 0.4498 | 0.7665 | 0.7387 | | 0.4514 | 0.4 | 4500 | 0.4452 | 0.7681 | 0.7410 | | 0.4416 | 0.44 | 5000 | 0.4209 | 0.7884 | 0.7491 | | 0.4297 | 0.48 | 5500 | 0.4288 | 0.7826 | 0.7502 | | 0.4299 | 0.53 | 6000 | 0.4069 | 0.8001 | 0.7559 | | 0.4248 | 0.57 | 6500 | 0.4194 | 0.7896 | 0.7547 | | 0.4257 | 0.62 | 7000 | 0.4063 | 0.7998 | 0.7582 | | 0.418 | 0.66 | 7500 | 0.4059 | 0.8038 | 0.7639 | | 0.4306 | 0.7 | 8000 | 0.4111 | 0.7964 | 0.7615 | | 0.4212 | 0.75 | 8500 | 0.3990 | 0.8065 | 0.7672 | | 0.4143 | 0.79 | 9000 | 0.4227 | 0.7875 | 0.7604 | | 0.4121 | 0.84 | 9500 | 0.3906 | 0.8098 | 0.7667 | | 0.4138 | 0.88 | 10000 | 0.3872 | 0.8152 | 0.7725 | | 0.4082 | 0.92 | 10500 | 0.3843 | 0.8148 | 0.7700 | | 0.4084 | 0.97 | 11000 | 0.3863 | 0.8170 | 0.7740 | | 0.4067 | 1.01 | 11500 | 0.4001 | 0.8037 | 0.7707 | | 0.3854 | 1.06 | 12000 | 0.3814 | 0.8182 | 0.7756 | | 0.3945 | 1.1 | 12500 | 0.3861 | 0.8132 | 0.7761 | | 0.3831 | 1.14 | 13000 | 0.3917 | 0.8110 | 0.7750 | | 0.3722 | 1.19 | 13500 | 0.4096 | 0.7995 | 0.7718 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
Waynehillsdev/Waynehills_summary_tensorflow
[ "tf", "t5", "text2text-generation", "transformers", "generated_from_keras_callback", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2023-01-08T22:34:15Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kelestemur/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Waynehillsdev/wav2vec2-base-timit-demo-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2023-01-08T22:35:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.86 +/- 17.81 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Doohae/q_encoder
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-01-08T22:36:20Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-casedepoch3_sexist_baseline_with_reddit_and_gab_equal results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-casedepoch3_sexist_baseline_with_reddit_and_gab_equal This model is a fine-tuned version of [Wiebke/bert-base-casedepoch3_sexist_baseline](https://huggingface.co/Wiebke/bert-base-casedepoch3_sexist_baseline) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4692 - Accuracy: 0.865 - F1: 0.8655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0428 | 0.31 | 500 | 0.5614 | 0.8393 | 0.8433 | | 0.0377 | 0.61 | 1000 | 0.4765 | 0.8536 | 0.8558 | | 0.0324 | 0.92 | 1500 | 0.4692 | 0.865 | 0.8655 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Doquey/DialoGPT-small-Luisbot1
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2023-01-08T22:38:12Z
--- tags: - conversational --- # Ivern DialoGPT Model
Doquey/DialoGPT-small-Michaelbot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
2023-01-08T22:43:17Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="kelestemur/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DoyyingFace/bert-asian-hate-tweets-asian-clean-with-unclean-valid
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
2023-01-08T22:47:59Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="timondesch/taxi-v3-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DoyyingFace/bert-asian-hate-tweets-asian-unclean-freeze-4
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
44
2023-01-08T22:56:16Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 46.00 +/- 38.96 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
DoyyingFace/bert-asian-hate-tweets-asian-unclean-slanted
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
2023-01-08T23:06:38Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="timondesch/taxi-v3-v2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DoyyingFace/bert-asian-hate-tweets-asian-unclean-warmup-100
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
2023-01-08T23:07:00Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="timondesch/taxi-v3-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DoyyingFace/bert-asian-hate-tweets-asian-unclean-warmup-75
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
37
2023-01-08T23:18:05Z
--- tags: - generated_from_trainer model-index: - name: bert-base-casedepoch3_sexist_baseline_with_reddit_and_gab_equalfordev results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-casedepoch3_sexist_baseline_with_reddit_and_gab_equalfordev This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
DoyyingFace/bert-asian-hate-tweets-asonam-clean
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
2023-01-08T23:23:36Z
--- license: creativeml-openrail-m tags: - coreml - stable-diffusion - text-to-image --- # Core ML Converted Model: - This model was converted to Core ML for use on Apple Silicon devices. Instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-files-to-Core-ML).<br> - Provide the model to an app such as [Mochi Diffusion](https://github.com/godly-devotion/MochiDiffusion) to generate images.<br> - `split_einsum` version is compatible with all compute unit options including Neural Engine.<br> # Note: This model does not have the [unet split into chunks](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml). # Elldreth's OG 4060 mix: Source(s): [CivitAI](https://civitai.com/models/1259/elldreths-og-4060-mix) This mixed model is a combination of my all-time favorites. A genuine simple mix of a very popular anime model and the powerful and Zeipher's fantastic f222. What's it good at? Realistic portraits Stylized characters Landscapes Fantasy Sci-Fi Anime Horror It's an all-around easy-to-prompt general purpose semi-realistic to realistic model that cranks out some really nice images. No trigger words required. All models were scanned prior to mixing and totally safe.
DoyyingFace/bert-asian-hate-tweets-asonam-unclean
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
2023-01-08T23:24:47Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: sks --- ### sks-arzu-1400 Dreambooth model trained by eicu with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: sks (use that on your prompt) ![sks 0](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%281%29.jpg)![sks 1](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%282%29.jpg)![sks 2](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%283%29.jpg)![sks 3](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%284%29.jpg)![sks 4](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%285%29.jpg)![sks 5](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%286%29.jpg)![sks 6](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%287%29.jpg)![sks 7](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%288%29.jpg)![sks 8](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%289%29.jpg)![sks 9](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%2810%29.jpg)![sks 10](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%2811%29.jpg)![sks 11](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%2812%29.jpg)![sks 12](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%2813%29.jpg)![sks 13](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%2814%29.jpg)![sks 14](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%2815%29.jpg)![sks 15](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%2816%29.jpg)![sks 16](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%2817%29.jpg)![sks 17](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%2818%29.jpg)![sks 18](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%2819%29.jpg)![sks 19](https://huggingface.co/eicu/sks-arzu-1400/resolve/main/concept_images/sks_%2820%29.jpg)
DoyyingFace/bert-asian-hate-tweets-concat-clean-with-unclean-valid
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
2023-01-08T23:26:26Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 43.10 +/- 35.24 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
DoyyingFace/bert-asian-hate-tweets-concat-clean
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
2023-01-08T23:28:29Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-mrpc-target-glue-rte results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-target-glue-rte This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2201 - Accuracy: 0.6101 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6409 | 6.41 | 500 | 0.6648 | 0.6209 | | 0.4327 | 12.82 | 1000 | 0.8199 | 0.6173 | | 0.2663 | 19.23 | 1500 | 1.0143 | 0.5921 | | 0.1606 | 25.64 | 2000 | 1.2201 | 0.6101 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
albert-base-v1
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
38,156
2023-01-08T23:30:07Z
--- tags: - generated_from_trainer model-index: - name: bert-base-casedepoch3_sexist_baseline_with_reddit_and_gab_equalfordevfordev results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-casedepoch3_sexist_baseline_with_reddit_and_gab_equalfordevfordev This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
albert-base-v2
[ "pytorch", "tf", "jax", "rust", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4,785,283
2023-01-08T23:34:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-mrpc-target-glue-sst2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-target-glue-sst2 This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4921 - Accuracy: 0.8314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5814 | 0.24 | 500 | 0.4938 | 0.7706 | | 0.4444 | 0.48 | 1000 | 0.4690 | 0.7844 | | 0.3934 | 0.71 | 1500 | 0.4458 | 0.7982 | | 0.3733 | 0.95 | 2000 | 0.4633 | 0.7890 | | 0.3319 | 1.19 | 2500 | 0.4503 | 0.7982 | | 0.3151 | 1.43 | 3000 | 0.4525 | 0.8028 | | 0.2971 | 1.66 | 3500 | 0.4431 | 0.8142 | | 0.2899 | 1.9 | 4000 | 0.4452 | 0.8108 | | 0.2716 | 2.14 | 4500 | 0.4914 | 0.7993 | | 0.2548 | 2.38 | 5000 | 0.4419 | 0.8177 | | 0.2443 | 2.61 | 5500 | 0.4475 | 0.8245 | | 0.2515 | 2.85 | 6000 | 0.4462 | 0.8257 | | 0.2357 | 3.09 | 6500 | 0.4509 | 0.8314 | | 0.2279 | 3.33 | 7000 | 0.4641 | 0.8337 | | 0.2134 | 3.56 | 7500 | 0.4615 | 0.8326 | | 0.2136 | 3.8 | 8000 | 0.4882 | 0.8314 | | 0.2122 | 4.04 | 8500 | 0.4921 | 0.8314 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
albert-xlarge-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
341
2023-01-08T23:38:41Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Orokusaki/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
albert-xlarge-v2
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,973
2023-01-08T23:39:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 283.66 +/- 17.27 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
albert-xxlarge-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7,091
2023-01-08T23:40:16Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-asp-project-bribri results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-asp-project-bribri This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.24e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
bert-base-cased-finetuned-mrpc
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11,644
2023-01-08T23:43:59Z
--- tags: - FrozenLake-v1-8x8 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8 type: FrozenLake-v1-8x8 metrics: - type: mean_reward value: 0.12 +/- 0.32 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Orokusaki/q-FrozenLake-v1-8x8-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bert-base-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,621,271
2023-01-08T23:51:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - spearmanr model-index: - name: tiny-mlm-glue-mrpc-target-glue-stsb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-target-glue-stsb This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9256 - Pearson: 0.8144 - Spearmanr: 0.8124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | 2.9549 | 2.78 | 500 | 1.1776 | 0.7187 | 0.7620 | | 0.9497 | 5.56 | 1000 | 1.1286 | 0.7777 | 0.8045 | | 0.7413 | 8.33 | 1500 | 1.0286 | 0.8024 | 0.8197 | | 0.6158 | 11.11 | 2000 | 0.8676 | 0.8181 | 0.8232 | | 0.5192 | 13.89 | 2500 | 0.9099 | 0.8164 | 0.8193 | | 0.4693 | 16.67 | 3000 | 1.0002 | 0.8169 | 0.8212 | | 0.4144 | 19.44 | 3500 | 0.8905 | 0.8185 | 0.8185 | | 0.3768 | 22.22 | 4000 | 0.9210 | 0.8193 | 0.8191 | | 0.3443 | 25.0 | 4500 | 0.9723 | 0.8201 | 0.8206 | | 0.3212 | 27.78 | 5000 | 0.9919 | 0.8157 | 0.8162 | | 0.3032 | 30.56 | 5500 | 0.9692 | 0.8164 | 0.8162 | | 0.2797 | 33.33 | 6000 | 0.9256 | 0.8144 | 0.8124 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
bert-base-chinese
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "zh", "arxiv:1810.04805", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3,377,486
2023-01-08T23:57:41Z
--- tags: - FrozenLake-v1-8x8 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-Slippery-IAMSMART results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8 type: FrozenLake-v1-8x8 metrics: - type: mean_reward value: 0.11 +/- 0.31 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Orokusaki/q-FrozenLake-v1-8x8-Slippery-IAMSMART", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bert-base-multilingual-uncased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
328,585
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-mrpc-target-glue-wnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-target-glue-wnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2938 - Accuracy: 0.1127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6895 | 25.0 | 500 | 0.7684 | 0.2394 | | 0.6608 | 50.0 | 1000 | 1.1646 | 0.1127 | | 0.5992 | 75.0 | 1500 | 1.7771 | 0.1127 | | 0.5303 | 100.0 | 2000 | 2.2938 | 0.1127 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
bert-base-uncased
[ "pytorch", "tf", "jax", "rust", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
59,663,489
2023-01-09T00:07:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: taylor-swift-model-temp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # taylor-swift-model-temp This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.0072 | 1.0 | 58 | 3.7794 | | 3.8685 | 2.0 | 116 | 3.6857 | | 3.8123 | 3.0 | 174 | 3.6220 | | 3.7141 | 4.0 | 232 | 3.5796 | | 3.3674 | 5.0 | 290 | 3.5402 | | 3.556 | 6.0 | 348 | 3.5092 | | 3.442 | 7.0 | 406 | 3.4829 | | 3.5147 | 8.0 | 464 | 3.4609 | | 3.3591 | 9.0 | 522 | 3.4289 | | 3.3258 | 10.0 | 580 | 3.4135 | | 3.2393 | 11.0 | 638 | 3.3918 | | 3.2989 | 12.0 | 696 | 3.3756 | | 3.2535 | 13.0 | 754 | 3.3557 | | 3.1144 | 14.0 | 812 | 3.3352 | | 2.9332 | 15.0 | 870 | 3.3305 | | 3.0371 | 16.0 | 928 | 3.3078 | | 3.0357 | 17.0 | 986 | 3.2889 | | 2.8728 | 18.0 | 1044 | 3.2851 | | 2.9121 | 19.0 | 1102 | 3.2688 | | 2.9804 | 20.0 | 1160 | 3.2562 | | 2.855 | 21.0 | 1218 | 3.2485 | | 2.7546 | 22.0 | 1276 | 3.2275 | | 2.9248 | 23.0 | 1334 | 3.2233 | | 2.9627 | 24.0 | 1392 | 3.2113 | | 2.891 | 25.0 | 1450 | 3.1965 | | 2.7106 | 26.0 | 1508 | 3.1925 | | 2.8863 | 27.0 | 1566 | 3.1836 | | 2.8311 | 28.0 | 1624 | 3.1869 | | 2.6953 | 29.0 | 1682 | 3.1769 | | 2.7916 | 30.0 | 1740 | 3.1717 | | 2.7262 | 31.0 | 1798 | 3.1609 | | 2.6203 | 32.0 | 1856 | 3.1564 | | 2.7066 | 33.0 | 1914 | 3.1492 | | 2.3818 | 34.0 | 1972 | 3.1475 | | 2.7237 | 35.0 | 2030 | 3.1412 | | 2.4593 | 36.0 | 2088 | 3.1372 | | 2.5471 | 37.0 | 2146 | 3.1298 | | 2.6026 | 38.0 | 2204 | 3.1324 | | 2.5049 | 39.0 | 2262 | 3.1285 | | 2.5509 | 40.0 | 2320 | 3.1262 | | 2.7736 | 41.0 | 2378 | 3.1142 | | 2.7144 | 42.0 | 2436 | 3.1159 | | 2.5972 | 43.0 | 2494 | 3.1145 | | 2.5897 | 44.0 | 2552 | 3.1142 | | 2.4131 | 45.0 | 2610 | 3.1152 | | 2.5602 | 46.0 | 2668 | 3.1130 | | 2.4986 | 47.0 | 2726 | 3.1123 | | 2.5507 | 48.0 | 2784 | 3.1108 | | 2.4885 | 49.0 | 2842 | 3.1124 | | 2.4204 | 50.0 | 2900 | 3.1118 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
bert-large-cased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "rust", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,214
2023-01-09T00:10:08Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: tiny-mlm-glue-qnli-target-glue-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-qnli-target-glue-cola This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qnli](https://huggingface.co/muhtasham/tiny-mlm-glue-qnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7322 - Matthews Correlation: 0.1353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6099 | 1.87 | 500 | 0.6209 | 0.0 | | 0.6009 | 3.73 | 1000 | 0.6169 | 0.0 | | 0.5819 | 5.6 | 1500 | 0.6196 | 0.0545 | | 0.5519 | 7.46 | 2000 | 0.6391 | 0.0997 | | 0.5226 | 9.33 | 2500 | 0.6657 | 0.1182 | | 0.5061 | 11.19 | 3000 | 0.6671 | 0.1357 | | 0.4831 | 13.06 | 3500 | 0.6787 | 0.1205 | | 0.4652 | 14.93 | 4000 | 0.7167 | 0.1264 | | 0.4443 | 16.79 | 4500 | 0.7322 | 0.1353 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
bert-large-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
388,769
2023-01-09T00:21:36Z
--- tags: - generated_from_trainer model-index: - name: bert-from-scratch-15e-10334t-finetuned-opinion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-from-scratch-15e-10334t-finetuned-opinion This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.5936 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.5669 | 1.0 | 902 | 6.2062 | | 6.1906 | 2.0 | 1804 | 6.0842 | | 6.0858 | 3.0 | 2706 | 6.0119 | | 6.0325 | 4.0 | 3608 | 5.9765 | | 5.9894 | 5.0 | 4510 | 5.9406 | | 5.958 | 6.0 | 5412 | 5.9109 | | 5.9195 | 7.0 | 6314 | 5.8513 | | 5.8653 | 8.0 | 7216 | 5.8068 | | 5.8215 | 9.0 | 8118 | 5.7579 | | 5.772 | 10.0 | 9020 | 5.7021 | | 5.7374 | 11.0 | 9922 | 5.6582 | | 5.7041 | 12.0 | 10824 | 5.6425 | | 5.6762 | 13.0 | 11726 | 5.6251 | | 5.6606 | 14.0 | 12628 | 5.6135 | | 5.655 | 15.0 | 13530 | 5.6090 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
bert-large-uncased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
480,510
2023-01-09T00:22:58Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-qnli-target-glue-mnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-qnli-target-glue-mnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qnli](https://huggingface.co/muhtasham/tiny-mlm-glue-qnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7907 - Accuracy: 0.6507 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0753 | 0.04 | 500 | 1.0327 | 0.4677 | | 1.0084 | 0.08 | 1000 | 0.9655 | 0.5434 | | 0.962 | 0.12 | 1500 | 0.9232 | 0.5779 | | 0.9358 | 0.16 | 2000 | 0.9087 | 0.5874 | | 0.9241 | 0.2 | 2500 | 0.8928 | 0.5963 | | 0.9157 | 0.24 | 3000 | 0.8772 | 0.5988 | | 0.8992 | 0.29 | 3500 | 0.8687 | 0.6088 | | 0.8928 | 0.33 | 4000 | 0.8571 | 0.6173 | | 0.8757 | 0.37 | 4500 | 0.8529 | 0.6164 | | 0.8774 | 0.41 | 5000 | 0.8438 | 0.6232 | | 0.8694 | 0.45 | 5500 | 0.8372 | 0.6246 | | 0.8653 | 0.49 | 6000 | 0.8350 | 0.6265 | | 0.8677 | 0.53 | 6500 | 0.8268 | 0.6292 | | 0.8584 | 0.57 | 7000 | 0.8270 | 0.6326 | | 0.8508 | 0.61 | 7500 | 0.8134 | 0.6391 | | 0.8521 | 0.65 | 8000 | 0.8110 | 0.6416 | | 0.8447 | 0.69 | 8500 | 0.8264 | 0.6323 | | 0.8466 | 0.73 | 9000 | 0.7951 | 0.6468 | | 0.8379 | 0.77 | 9500 | 0.8089 | 0.6401 | | 0.8277 | 0.81 | 10000 | 0.7941 | 0.6477 | | 0.8307 | 0.86 | 10500 | 0.7999 | 0.6437 | | 0.8289 | 0.9 | 11000 | 0.7874 | 0.6530 | | 0.8228 | 0.94 | 11500 | 0.7835 | 0.6524 | | 0.8228 | 0.98 | 12000 | 0.7851 | 0.6511 | | 0.8078 | 1.02 | 12500 | 0.7907 | 0.6507 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
bert-large-uncased-whole-word-masking
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
76,685
2023-01-09T00:25:22Z
--- tags: - Qbert-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Qbert-v5 type: Qbert-v5 metrics: - type: mean_reward value: 18817.50 +/- 1866.21 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Qbert-v5** This is a trained model of a PPO agent playing Qbert-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_envpool_async_jax_scan_impalanet_machado.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_atari_envpool_async_jax_scan_impalanet_machado]" python -m cleanrl_utils.enjoy --exp-name ppo_atari_envpool_async_jax_scan_impalanet_machado --env-id Qbert-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Qbert-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/ppo_atari_envpool_async_jax_scan_impalanet_machado.py curl -OL https://huggingface.co/cleanrl/Qbert-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Qbert-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/poetry.lock poetry install --all-extras python ppo_atari_envpool_async_jax_scan_impalanet_machado.py --track --wandb-project-name envpool-atari --save-model --upload-model --hf-entity cleanrl --env-id Qbert-v5 --seed 1 ``` # Hyperparameters ```python {'anneal_lr': True, 'async_batch_size': 16, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Qbert-v5', 'exp_name': 'ppo_atari_envpool_async_jax_scan_impalanet_machado', 'gae': True, 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1024, 'norm_adv': True, 'num_envs': 64, 'num_minibatches': 2, 'num_steps': 32, 'num_updates': 24414, 'save_model': True, 'seed': 1, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 2, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'envpool-atari'} ```
bert-large-uncased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,058,496
2023-01-09T00:26:09Z
--- license: creativeml-openrail-m tags: - coreml - stable-diffusion - text-to-image --- # Core ML Converted Model: - This model was converted to [Core ML for use on Apple Silicon devices](https://github.com/apple/ml-stable-diffusion). Conversion instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-or-safetensors-files-to-Core-ML).<br> - Provide the model to an app such as Mochi Diffusion [Github](https://github.com/godly-devotion/MochiDiffusion) - [Discord](https://discord.gg/x2kartzxGv) to generate images.<br> - `split_einsum` version is compatible with all compute unit options including Neural Engine.<br> - `original` version is only compatible with CPU & GPU option.<br> - Custom resolution versions are tagged accordingly.<br> - `vae` tagged files have a vae embedded into the model.<br> - Descriptions are posted as-is from original model source. Not all features and/or results may be available in CoreML format.<br> - This model was converted with `vae-encoder` for i2i. # Note: This model does not have the [unet split into chunks](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml). # Elldreth's StolenDreams Mix: Source(s): [CivitAI](https://civitai.com/models/2540/elldreths-stolendreams-mix) A mix of Dreamlike and Anything V3, created by Elldreth, immediately discounted, stolen and released by me. The model is a versatile general purpose model, which responds well to Textual Inversion (better than his AMAZING Lucid model), while retaining some of the visual characteristics of his other Dream series. Please consider joining my Patreon! Advanced SD tutorials, settings explanations, adult-art, from a female content creator (theally!) [patreon.com/theally](http://patreon.com/theally)
ctrl
[ "pytorch", "tf", "ctrl", "en", "arxiv:1909.05858", "arxiv:1910.09700", "transformers", "license:bsd-3-clause", "has_space" ]
null
{ "architectures": null, "model_type": "ctrl", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17,007
2023-01-09T00:39:03Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### mpid-hassanblend-v1-4-main-v2 Dreambooth model trained by tftgregrge with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
distilbert-base-multilingual-cased
[ "pytorch", "tf", "onnx", "safetensors", "distilbert", "fill-mask", "multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "mn", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "th", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:wikipedia", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,339,633
2023-01-09T00:53:26Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: tiny-mlm-glue-qnli-target-glue-mrpc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-qnli-target-glue-mrpc This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qnli](https://huggingface.co/muhtasham/tiny-mlm-glue-qnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3118 - Accuracy: 0.7353 - F1: 0.8176 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5845 | 4.35 | 500 | 0.5424 | 0.7402 | 0.8290 | | 0.4395 | 8.7 | 1000 | 0.5503 | 0.7525 | 0.8374 | | 0.2883 | 13.04 | 1500 | 0.6404 | 0.7475 | 0.8280 | | 0.1828 | 17.39 | 2000 | 0.7736 | 0.7574 | 0.8406 | | 0.1141 | 21.74 | 2500 | 1.0144 | 0.7255 | 0.8056 | | 0.0816 | 26.09 | 3000 | 1.1432 | 0.7328 | 0.8180 | | 0.0616 | 30.43 | 3500 | 1.3118 | 0.7353 | 0.8176 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
distilbert-base-uncased
[ "pytorch", "tf", "jax", "rust", "safetensors", "distilbert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1910.01108", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10,887,471
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: jpopham91/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
gpt2-large
[ "pytorch", "tf", "jax", "rust", "safetensors", "gpt2", "text-generation", "en", "arxiv:1910.09700", "transformers", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,454,819
2023-01-09T01:02:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-qnli-target-glue-qnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-qnli-target-glue-qnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qnli](https://huggingface.co/muhtasham/tiny-mlm-glue-qnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4636 - Accuracy: 0.7818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6183 | 0.15 | 500 | 0.5369 | 0.7379 | | 0.5398 | 0.31 | 1000 | 0.5269 | 0.7446 | | 0.5176 | 0.46 | 1500 | 0.5027 | 0.7609 | | 0.5119 | 0.61 | 2000 | 0.5233 | 0.7478 | | 0.5099 | 0.76 | 2500 | 0.4825 | 0.7710 | | 0.5025 | 0.92 | 3000 | 0.4702 | 0.7802 | | 0.4893 | 1.07 | 3500 | 0.4484 | 0.7939 | | 0.4794 | 1.22 | 4000 | 0.4709 | 0.7783 | | 0.465 | 1.37 | 4500 | 0.4758 | 0.7754 | | 0.4739 | 1.53 | 5000 | 0.4636 | 0.7818 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
gpt2-xl
[ "pytorch", "tf", "jax", "rust", "gpt2", "text-generation", "en", "arxiv:1910.09700", "transformers", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
308,781
2023-01-09T01:07:21Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="neatbullshit/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
850886470/xxy_gpt2_chinese
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-09T03:56:39Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Farbum/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Pinwheel/wav2vec2-large-xls-r-1b-hi-v2
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-01-09T07:18:41Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="bdiptesh99/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AdapterHub/bert-base-uncased-pf-stsb
[ "bert", "en", "arxiv:2104.08247", "adapter-transformers", "text-classification", "adapterhub:sts/sts-b" ]
text-classification
{ "architectures": null, "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Closen/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AdapterHub/roberta-base-pf-drop
[ "roberta", "en", "dataset:drop", "arxiv:2104.08247", "adapter-transformers", "question-answering" ]
question-answering
{ "architectures": null, "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-stsb-target-glue-mnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-stsb-target-glue-mnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-stsb](https://huggingface.co/muhtasham/tiny-mlm-glue-stsb) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8112 - Accuracy: 0.6365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0767 | 0.04 | 500 | 1.0354 | 0.4644 | | 1.0091 | 0.08 | 1000 | 0.9646 | 0.5496 | | 0.9629 | 0.12 | 1500 | 0.9236 | 0.5798 | | 0.9384 | 0.16 | 2000 | 0.9054 | 0.5916 | | 0.9254 | 0.2 | 2500 | 0.8894 | 0.5995 | | 0.9167 | 0.24 | 3000 | 0.8788 | 0.6028 | | 0.9013 | 0.29 | 3500 | 0.8707 | 0.6104 | | 0.8962 | 0.33 | 4000 | 0.8603 | 0.6132 | | 0.8802 | 0.37 | 4500 | 0.8561 | 0.6185 | | 0.8834 | 0.41 | 5000 | 0.8490 | 0.6220 | | 0.8734 | 0.45 | 5500 | 0.8427 | 0.6227 | | 0.8721 | 0.49 | 6000 | 0.8399 | 0.6278 | | 0.8739 | 0.53 | 6500 | 0.8336 | 0.6331 | | 0.8654 | 0.57 | 7000 | 0.8345 | 0.6294 | | 0.8579 | 0.61 | 7500 | 0.8192 | 0.6375 | | 0.8567 | 0.65 | 8000 | 0.8191 | 0.6348 | | 0.8517 | 0.69 | 8500 | 0.8275 | 0.6315 | | 0.8528 | 0.73 | 9000 | 0.8060 | 0.6433 | | 0.8448 | 0.77 | 9500 | 0.8152 | 0.6355 | | 0.8361 | 0.81 | 10000 | 0.8026 | 0.6415 | | 0.8398 | 0.86 | 10500 | 0.8112 | 0.6365 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
Akashpb13/Central_kurdish_xlsr
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ckb", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - wildcard widget: - text: illustration of a dashdash toy sitting on top of the deck of a battle ship traveling through the open sea with a lot of ships surrounding it --- # DreamBooth model for the dashdash concept trained by xianbao. This is a Stable Diffusion model fine-tuned on the dashdash concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of dashdash toy** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `toy` images for the wildcard theme. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('xianbao/dashdash-toy-heywhale-3') image = pipeline().images[0] image ```
AlbertHSU/ChineseFoodBert
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: oklyt --- oklyt (use that on your prompt)
Aleksandar/distilbert-srb-ner-setimes
[ "pytorch", "distilbert", "token-classification", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-01-09T15:34:29Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 281.21 +/- 24.19 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Aleksandar1932/gpt2-hip-hop
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: tiny-mlm-glue-cola-custom-tokenizer-target-glue-qqp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-cola-custom-tokenizer-target-glue-qqp This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-cola-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-cola-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4522 - Accuracy: 0.7694 - F1: 0.7176 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.6113 | 0.04 | 500 | 0.5700 | 0.6848 | 0.5805 | | 0.5608 | 0.09 | 1000 | 0.5332 | 0.7140 | 0.6093 | | 0.5442 | 0.13 | 1500 | 0.5218 | 0.7215 | 0.6596 | | 0.5278 | 0.18 | 2000 | 0.5059 | 0.7337 | 0.6510 | | 0.5193 | 0.22 | 2500 | 0.4961 | 0.7402 | 0.6579 | | 0.5085 | 0.26 | 3000 | 0.4918 | 0.7413 | 0.6695 | | 0.5049 | 0.31 | 3500 | 0.4851 | 0.7464 | 0.6760 | | 0.5024 | 0.35 | 4000 | 0.4900 | 0.7433 | 0.6854 | | 0.505 | 0.4 | 4500 | 0.4799 | 0.7500 | 0.6846 | | 0.4942 | 0.44 | 5000 | 0.4715 | 0.7568 | 0.6800 | | 0.4826 | 0.48 | 5500 | 0.4733 | 0.7528 | 0.6936 | | 0.4898 | 0.53 | 6000 | 0.4634 | 0.7638 | 0.6684 | | 0.4789 | 0.57 | 6500 | 0.4643 | 0.7617 | 0.6904 | | 0.4721 | 0.62 | 7000 | 0.4594 | 0.7652 | 0.6810 | | 0.4742 | 0.66 | 7500 | 0.4654 | 0.7616 | 0.6937 | | 0.4828 | 0.7 | 8000 | 0.4608 | 0.7648 | 0.6997 | | 0.4758 | 0.75 | 8500 | 0.4538 | 0.7680 | 0.6891 | | 0.4697 | 0.79 | 9000 | 0.4614 | 0.7626 | 0.7067 | | 0.466 | 0.84 | 9500 | 0.4497 | 0.7718 | 0.6838 | | 0.4685 | 0.88 | 10000 | 0.4491 | 0.7714 | 0.6765 | | 0.4629 | 0.92 | 10500 | 0.4502 | 0.7708 | 0.6595 | | 0.4617 | 0.97 | 11000 | 0.4473 | 0.7723 | 0.6809 | | 0.4606 | 1.01 | 11500 | 0.4569 | 0.7668 | 0.7114 | | 0.4467 | 1.06 | 12000 | 0.4482 | 0.7752 | 0.6727 | | 0.4537 | 1.1 | 12500 | 0.4468 | 0.7722 | 0.7130 | | 0.454 | 1.14 | 13000 | 0.4545 | 0.7711 | 0.7131 | | 0.4395 | 1.19 | 13500 | 0.4522 | 0.7694 | 0.7176 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
Andrey1989/mt5-small-finetuned-mlsum-fr
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nlptest results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nlptest This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.9241 - Validation Loss: 2.5831 - Train Rougel: tf.Tensor(0.19511123, shape=(), dtype=float32) - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rougel | Epoch | |:----------:|:---------------:|:----------------------------------------------:|:-----:| | 2.9241 | 2.5831 | tf.Tensor(0.19511123, shape=(), dtype=float32) | 0 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.11.0 - Datasets 2.8.0 - Tokenizers 0.13.2
Andrija/SRoBERTa-F
[ "pytorch", "tensorboard", "roberta", "fill-mask", "hr", "sr", "multilingual", "dataset:oscar", "dataset:srwac", "dataset:leipzig", "dataset:cc100", "dataset:hrwac", "transformers", "masked-lm", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
59
null
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-rr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-rr This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
AnonymousSub/declutr-s10-AR
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- tags: - generated_from_trainer datasets: - custom_squad_v2 model-index: - name: kobigbird-pure45-82642472 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobigbird-pure45-82642472 This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.5578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 45 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 42 | 1.3233 | | No log | 1.99 | 84 | 1.1793 | | No log | 2.99 | 126 | 1.5578 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
AnonymousSub/declutr-techqa
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: violll/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AnonymousSub/dummy_2_parent
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - spacy - text-classification language: - en model-index: - name: en_nature_of_li_multilabel results: [] --- | Feature | Description | | --- | --- | | **Name** | `en_nature_of_li_multilabel` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.3,<3.5.0` | | **Default Pipeline** | `textcat_multilabel` | | **Components** | `textcat_multilabel` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (8 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`textcat_multilabel`** | `shirt`, `balloon`, `cream`, `socks`, `pants`, `shampoo`, `toy`, `sweater` | </details> ### Accuracy | Type | Score | | --- | --- | | `CATS_SCORE` | 95.82 | | `CATS_MICRO_P` | 99.77 | | `CATS_MICRO_R` | 99.60 | | `CATS_MICRO_F` | 99.69 | | `CATS_MACRO_P` | 74.48 | | `CATS_MACRO_R` | 73.84 | | `CATS_MACRO_F` | 74.14 | | `CATS_MACRO_AUC` | 95.82 | | `CATS_MACRO_AUC_PER_TYPE` | 0.00 | | `TEXTCAT_MULTILABEL_LOSS` | 7.61 |
AnonymousSub/hier_triplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - generated_from_trainer datasets: - custom_squad_v2 model-index: - name: kobigbird-pure31-24819605 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobigbird-pure31-24819605 This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.4195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 31 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 42 | 1.2926 | | No log | 1.99 | 84 | 1.2772 | | No log | 2.99 | 126 | 1.4195 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
AnonymousSub/hier_triplet_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: mit pipeline_tag: zero-shot-image-classification library_name: open_clip tags: - clip --- # Model Card for CLIP-convnext_base_w.laion2B-s13B-b82k-augreg # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Training Details](#training-details) 4. [Evaluation](#evaluation) 5. [Acknowledgements](#acknowledgements) 6. [Citation](#citation) # Model Details ## Model Description A series of CLIP [ConvNeXt-Base](https://arxiv.org/abs/2201.03545) (w/ wide embed dim) models trained on subsets LAION-5B (https://laion.ai/blog/laion-5b/) using OpenCLIP (https://github.com/mlfoundations/open_clip). Goals: * Explore an alternative to ViT and ResNet (w/ AttentionPooling) CLIP models that scales well with model size and image resolution Firsts: * First known ConvNeXt CLIP models trained at scale in the range of CLIP ViT-B/16 and RN50x4 models * First released model weights exploring increase of augmentation + regularization for image tower via adding (greater scale range of RRC, random erasing, stochastic depth) The models utilize the [timm](https://github.com/rwightman/pytorch-image-models) ConvNeXt-Base model (`convnext_base`) as the image tower, and the same text tower as the RN50x4 (depth 12, embed dim 640) model from OpenAI CLIP. The base models are trained at 256x256 image resolution and roughly match the RN50x4 models on FLOPs and activation counts. The models with `320` in the name are trained at 320x320. All models in this series were trained for 13B samples and have ImageNet Zero-Shot top-1 of >= 70.8%. Comparing to ViT-B/16 at 34B SS with zero-shot of 70.2% (68.1% for 13B SS) this suggests the ConvNeXt architecture may be more sample efficient in this range of model scale. More experiments needed to confirm. | Model | Dataset | Resolution | AugReg | Top-1 ImageNet Zero-Shot (%) | | ----- | ------- | ---------- | ------------ | --------- | | [convnext_base_w.laion2b_s13b_b82k](https://huggingface.co/laion/CLIP-convnext_base_w-laion2B-s13B-b82K) | LAION-2B | 256x256 | RRC (0.9, 1.0) | 70.8 | | [convnext_base_w.laion2b_s13b_b82k_augreg](https://huggingface.co/laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg) | LAION-2B | 256x256 | RRC (0.33, 1.0), RE (0.35), SD (0.1) | 71.5 | | [convnext_base_w.laion_aesthetic_s13b_b82k](https://huggingface.co/laion/CLIP-convnext_base_w-laion_aesthetic-s13B-b82K) | LAION-A | 256x256 | RRC (0.9, 1.0) | 71.0 | | [convnext_base_w_320.laion_aesthetic_s13b_b82k](https://huggingface.co/laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K) | LAION-A | 320x320 | RRC (0.9, 1.0) | 71.7 | | [convnext_base_w_320.laion_aesthetic_s13b_b82k_augreg](https://huggingface.co/laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K-augreg) | LAION-A | 320x320 | RRC (0.33, 1.0), RE (0.35), SD (0.1) | 71.3 | RRC = Random Resize Crop (crop pcts), RE = Random Erasing (prob), SD = Stochastic Depth (prob) -- image tower only LAION-A = LAION Aesthetic, an ~900M sample subset of LAION-2B with pHash dedupe and asthetic score filtering. Model training done by Ross Wightman across both the [stability.ai](https://stability.ai/) cluster and the [JUWELS Booster](https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html) supercomputer. See acknowledgements below. # Uses As per the original [OpenAI CLIP model card](https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/model-card.md), this model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such model. The OpenAI CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis. Additionally, the LAION-5B blog (https://laion.ai/blog/laion-5b/) and upcoming paper include additional discussion as it relates specifically to the training dataset. ## Direct Use Zero-shot image classification, image and text retrieval, among others. ## Downstream Use Image classification and other image task fine-tuning, linear probe image classification, image generation guiding and conditioning, among others. ## Out-of-Scope Use As per the OpenAI models, **Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful. Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use. Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases. Further the above notice, the LAION-5B dataset used in training of these models has additional considerations, see below. # Training Details ## Training Data This model was trained with one of (see table in intro): * LAION-2B - A 2 billion sample English subset of LAION-5B (https://laion.ai/blog/laion-5b/). * LAION-Aesthetic - A 900M sample subset of LAION-2B with pHash dedupe and asthetic score filtering **IMPORTANT NOTE:** The motivation behind dataset creation is to democratize research and experimentation around large-scale multi-modal model training and handling of uncurated, large-scale datasets crawled from publically available internet. Our recommendation is therefore to use the dataset for research purposes. Be aware that this large-scale dataset is uncurated. Keep in mind that the uncurated nature of the dataset means that collected links may lead to strongly discomforting and disturbing content for a human viewer. Therefore, please use the demo links with caution and at your own risk. It is possible to extract a “safe” subset by filtering out samples based on the safety tags (using a customized trained NSFW classifier that we built). While this strongly reduces the chance for encountering potentially harmful content when viewing, we cannot entirely exclude the possibility for harmful content being still present in safe mode, so that the warning holds also there. We think that providing the dataset openly to broad research and other interested communities will allow for transparent investigation of benefits that come along with training large-scale models as well as pitfalls and dangers that may stay unreported or unnoticed when working with closed large datasets that remain restricted to a small community. Providing our dataset openly, we however do not recommend using it for creating ready-to-go industrial products, as the basic research about general properties and safety of such large-scale models, which we would like to encourage with this release, is still in progress. ## Training Procedure All models were trained with a global batch size of 81920 for 64 checkpoint intervals of 203.7M samples for a total of ~13B samples seen over training. For 256x256 models, a slurm script w/ srun below was used on 20 8-GPU (A100 40GB) nodes (Stability), switching to 40 4-GPU nodes for time on JUWELS. ``` /opt/slurm/sbin/srun --cpu_bind=v --accel-bind=gn python -m training.main \ --save-frequency 1 \ --name "convnext_256" \ --resume 'latest' \ --train-data="pipe:aws s3 cp s3://mybucket/path/{laion{00000..xxxxx}.tar -" \ --train-num-samples 203666042 \ --dataset-type webdataset \ --precision amp_bfloat16 \ --warmup 10000 \ --batch-size=512 \ --epochs=64 \ --dataset-resampled \ --clip-grad-norm 5.0 \ --lr 1e-3 \ --workers=6 \ --model "convnext_base_w" \ --seed 0 \ --ddp-static-graph \ --local-loss \ --gather-with-grad \ --grad-checkpointing ``` For 320x320 models, same as above but w/ 32 8-GPU nodes, local batch size 320, or 64 4-GPU nodes on JUWELs. # Evaluation Evaluation done with code in the [LAION CLIP Benchmark suite](https://github.com/LAION-AI/CLIP_benchmark). ## Testing Data, Factors & Metrics ### Testing Data The testing is performed with VTAB+ (A combination of VTAB (https://arxiv.org/abs/1910.04867) w/ additional robustness datasets) for classification and COCO and Flickr for retrieval. ## Results The models achieve between 70.8 and 71.7 zero-shot top-1 accuracy on ImageNet-1k. ![](convnext_base_w_zero_shot.png) An initial round of benchmarks have been performed on a wider range of datasets, to be viewable at https://github.com/LAION-AI/CLIP_benchmark/blob/main/benchmark/results.ipynb As part of exploring increased augmentation + regularization, early evalations suggest that `augreg` trained models evaluate well over a wider range of resolutions. This is especially true for the 320x320 LAION-A model, where the augreg run was lower than the non-augreg when evaluated at the train resolution of 320x320 (71.3 vs 71.7), but improves to 72.2 when evaluated at 384x384 (the non-augreg drops to 71.0 at 384x384). # Acknowledgements Acknowledging [stability.ai](https://stability.ai/) and the Gauss Centre for Supercomputing e.V. (http://gauss-centre.eu) for funding this part of work by providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS Booster at Jülich Supercomputing Centre (JSC). # Citation **BibTeX:** ```bibtex @inproceedings{schuhmann2022laionb, title={{LAION}-5B: An open large-scale dataset for training next generation image-text models}, author={Christoph Schuhmann and Romain Beaumont and Richard Vencu and Cade W Gordon and Ross Wightman and Mehdi Cherti and Theo Coombes and Aarush Katta and Clayton Mullis and Mitchell Wortsman and Patrick Schramowski and Srivatsa R Kundurthy and Katherine Crowson and Ludwig Schmidt and Robert Kaczmarczyk and Jenia Jitsev}, booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track}, year={2022}, url={https://openreview.net/forum?id=M3Y74vmsMcY} } ``` OpenCLIP software ```bibtex @software{ilharco_gabriel_2021_5143773, author = {Ilharco, Gabriel and Wortsman, Mitchell and Wightman, Ross and Gordon, Cade and Carlini, Nicholas and Taori, Rohan and Dave, Achal and Shankar, Vaishaal and Namkoong, Hongseok and Miller, John and Hajishirzi, Hannaneh and Farhadi, Ali and Schmidt, Ludwig}, title = {OpenCLIP}, month = jul, year = 2021, note = {If you use this software, please cite it as below.}, publisher = {Zenodo}, version = {0.1}, doi = {10.5281/zenodo.5143773}, url = {https://doi.org/10.5281/zenodo.5143773} } ``` OpenAI CLIP paper ```bibtex @inproceedings{Radford2021LearningTV, title={Learning Transferable Visual Models From Natural Language Supervision}, author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever}, booktitle={ICML}, year={2021} } ``` ```bibtex @Article{liu2022convnet, author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2022}, } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ```
AnonymousSub/roberta-base_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - generated_from_trainer datasets: - custom_squad_v2 model-index: - name: kobigbird-pure32-16909457 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobigbird-pure32-16909457 This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.5202 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 32 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 42 | 1.6905 | | No log | 1.99 | 84 | 1.3219 | | No log | 2.99 | 126 | 1.5202 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
AnonymousSub/roberta-base_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- license: mit library_name: open_clip pipeline_tag: zero-shot-image-classification tags: - clip --- # Model Card for CLIP-convnext_base_w-320.laion_aesthetic-s13B-b82k-augreg # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Training Details](#training-details) 4. [Evaluation](#evaluation) 5. [Acknowledgements](#acknowledgements) 6. [Citation](#citation) # Model Details ## Model Description A series of CLIP [ConvNeXt-Base](https://arxiv.org/abs/2201.03545) (w/ wide embed dim) models trained on subsets LAION-5B (https://laion.ai/blog/laion-5b/) using OpenCLIP (https://github.com/mlfoundations/open_clip). Goals: * Explore an alternative to ViT and ResNet (w/ AttentionPooling) CLIP models that scales well with model size and image resolution Firsts: * First known ConvNeXt CLIP models trained at scale in the range of CLIP ViT-B/16 and RN50x4 models * First released model weights exploring increase of augmentation + regularization for image tower via adding (greater scale range of RRC, random erasing, stochastic depth) The models utilize the [timm](https://github.com/rwightman/pytorch-image-models) ConvNeXt-Base model (`convnext_base`) as the image tower, and the same text tower as the RN50x4 (depth 12, embed dim 640) model from OpenAI CLIP. The base models are trained at 256x256 image resolution and roughly match the RN50x4 models on FLOPs and activation counts. The models with `320` in the name are trained at 320x320. All models in this series were trained for 13B samples and have ImageNet Zero-Shot top-1 of >= 70.8%. Comparing to ViT-B/16 at 34B SS with zero-shot of 70.2% (68.1% for 13B SS) this suggests the ConvNeXt architecture may be more sample efficient in this range of model scale. More experiments needed to confirm. | Model | Dataset | Resolution | AugReg | Top-1 ImageNet Zero-Shot (%) | | ----- | ------- | ---------- | ------------ | --------- | | [convnext_base_w.laion2b_s13b_b82k](https://huggingface.co/laion/CLIP-convnext_base_w-laion2B-s13B-b82K) | LAION-2B | 256x256 | RRC (0.9, 1.0) | 70.8 | | [convnext_base_w.laion2b_s13b_b82k_augreg](https://huggingface.co/laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg) | LAION-2B | 256x256 | RRC (0.33, 1.0), RE (0.35), SD (0.1) | 71.5 | | [convnext_base_w.laion_aesthetic_s13b_b82k](https://huggingface.co/laion/CLIP-convnext_base_w-laion_aesthetic-s13B-b82K) | LAION-A | 256x256 | RRC (0.9, 1.0) | 71.0 | | [convnext_base_w_320.laion_aesthetic_s13b_b82k](https://huggingface.co/laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K) | LAION-A | 320x320 | RRC (0.9, 1.0) | 71.7 | | [convnext_base_w_320.laion_aesthetic_s13b_b82k_augreg](https://huggingface.co/laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K-augreg) | LAION-A | 320x320 | RRC (0.33, 1.0), RE (0.35), SD (0.1) | 71.3 | RRC = Random Resize Crop (crop pcts), RE = Random Erasing (prob), SD = Stochastic Depth (prob) -- image tower only LAION-A = LAION Aesthetic, an ~900M sample subset of LAION-2B with pHash dedupe and asthetic score filtering. Model training done by Ross Wightman across both the [stability.ai](https://stability.ai/) cluster and the [JUWELS Booster](https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html) supercomputer. See acknowledgements below. # Uses As per the original [OpenAI CLIP model card](https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/model-card.md), this model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such model. The OpenAI CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis. Additionally, the LAION-5B blog (https://laion.ai/blog/laion-5b/) and upcoming paper include additional discussion as it relates specifically to the training dataset. ## Direct Use Zero-shot image classification, image and text retrieval, among others. ## Downstream Use Image classification and other image task fine-tuning, linear probe image classification, image generation guiding and conditioning, among others. ## Out-of-Scope Use As per the OpenAI models, **Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful. Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use. Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases. Further the above notice, the LAION-5B dataset used in training of these models has additional considerations, see below. # Training Details ## Training Data This model was trained with one of (see table in intro): * LAION-2B - A 2 billion sample English subset of LAION-5B (https://laion.ai/blog/laion-5b/). * LAION-Aesthetic - A 900M sample subset of LAION-2B with pHash dedupe and asthetic score filtering **IMPORTANT NOTE:** The motivation behind dataset creation is to democratize research and experimentation around large-scale multi-modal model training and handling of uncurated, large-scale datasets crawled from publically available internet. Our recommendation is therefore to use the dataset for research purposes. Be aware that this large-scale dataset is uncurated. Keep in mind that the uncurated nature of the dataset means that collected links may lead to strongly discomforting and disturbing content for a human viewer. Therefore, please use the demo links with caution and at your own risk. It is possible to extract a “safe” subset by filtering out samples based on the safety tags (using a customized trained NSFW classifier that we built). While this strongly reduces the chance for encountering potentially harmful content when viewing, we cannot entirely exclude the possibility for harmful content being still present in safe mode, so that the warning holds also there. We think that providing the dataset openly to broad research and other interested communities will allow for transparent investigation of benefits that come along with training large-scale models as well as pitfalls and dangers that may stay unreported or unnoticed when working with closed large datasets that remain restricted to a small community. Providing our dataset openly, we however do not recommend using it for creating ready-to-go industrial products, as the basic research about general properties and safety of such large-scale models, which we would like to encourage with this release, is still in progress. ## Training Procedure All models were trained with a global batch size of 81920 for 64 checkpoint intervals of 203.7M samples for a total of ~13B samples seen over training. For 256x256 models, a slurm script w/ srun below was used on 20 8-GPU (A100 40GB) nodes (Stability), switching to 40 4-GPU nodes for time on JUWELS. ``` /opt/slurm/sbin/srun --cpu_bind=v --accel-bind=gn python -m training.main \ --save-frequency 1 \ --name "convnext_256" \ --resume 'latest' \ --train-data="pipe:aws s3 cp s3://mybucket/path/{laion{00000..xxxxx}.tar -" \ --train-num-samples 203666042 \ --dataset-type webdataset \ --precision amp_bfloat16 \ --warmup 10000 \ --batch-size=512 \ --epochs=64 \ --dataset-resampled \ --clip-grad-norm 5.0 \ --lr 1e-3 \ --workers=6 \ --model "convnext_base_w" \ --seed 0 \ --ddp-static-graph \ --local-loss \ --gather-with-grad \ --grad-checkpointing ``` For 320x320 models, same as above but w/ 32 8-GPU nodes, local batch size 320, or 64 4-GPU nodes on JUWELs. # Evaluation Evaluation done with code in the [LAION CLIP Benchmark suite](https://github.com/LAION-AI/CLIP_benchmark). ## Testing Data, Factors & Metrics ### Testing Data The testing is performed with VTAB+ (A combination of VTAB (https://arxiv.org/abs/1910.04867) w/ additional robustness datasets) for classification and COCO and Flickr for retrieval. ## Results The models achieve between 70.8 and 71.7 zero-shot top-1 accuracy on ImageNet-1k. ![](convnext_base_w_zero_shot.png) An initial round of benchmarks have been performed on a wider range of datasets, to be viewable at https://github.com/LAION-AI/CLIP_benchmark/blob/main/benchmark/results.ipynb As part of exploring increased augmentation + regularization, early evalations suggest that `augreg` trained models evaluate well over a wider range of resolutions. This is especially true for the 320x320 LAION-A model, where the augreg run was lower than the non-augreg when evaluated at the train resolution of 320x320 (71.3 vs 71.7), but improves to 72.2 when evaluated at 384x384 (the non-augreg drops to 71.0 at 384x384). # Acknowledgements Acknowledging [stability.ai](https://stability.ai/) and the Gauss Centre for Supercomputing e.V. (http://gauss-centre.eu) for funding this part of work by providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS Booster at Jülich Supercomputing Centre (JSC). # Citation **BibTeX:** LAION-5B ```bibtex @inproceedings{schuhmann2022laionb, title={{LAION}-5B: An open large-scale dataset for training next generation image-text models}, author={Christoph Schuhmann and Romain Beaumont and Richard Vencu and Cade W Gordon and Ross Wightman and Mehdi Cherti and Theo Coombes and Aarush Katta and Clayton Mullis and Mitchell Wortsman and Patrick Schramowski and Srivatsa R Kundurthy and Katherine Crowson and Ludwig Schmidt and Robert Kaczmarczyk and Jenia Jitsev}, booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track}, year={2022}, url={https://openreview.net/forum?id=M3Y74vmsMcY} } ``` OpenCLIP software ```bibtex @software{ilharco_gabriel_2021_5143773, author = {Ilharco, Gabriel and Wortsman, Mitchell and Wightman, Ross and Gordon, Cade and Carlini, Nicholas and Taori, Rohan and Dave, Achal and Shankar, Vaishaal and Namkoong, Hongseok and Miller, John and Hajishirzi, Hannaneh and Farhadi, Ali and Schmidt, Ludwig}, title = {OpenCLIP}, month = jul, year = 2021, note = {If you use this software, please cite it as below.}, publisher = {Zenodo}, version = {0.1}, doi = {10.5281/zenodo.5143773}, url = {https://doi.org/10.5281/zenodo.5143773} } ``` OpenAI CLIP paper ```bibtex @inproceedings{Radford2021LearningTV, title={Learning Transferable Visual Models From Natural Language Supervision}, author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever}, booktitle={ICML}, year={2021} } ``` ```bibtex @Article{liu2022convnet, author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2022}, } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ```
AnonymousSub/rule_based_bert_hier_diff_equal_wts_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 5148 with parameters: ``` {'batch_size': 8} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 514, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
AnonymousSub/rule_based_bert_hier_diff_equal_wts_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: small-mlm-glue-cola-target-glue-wnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-cola-target-glue-wnli This model is a fine-tuned version of [muhtasham/small-mlm-glue-cola](https://huggingface.co/muhtasham/small-mlm-glue-cola) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.0250 - Accuracy: 0.0563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6311 | 25.0 | 500 | 2.6389 | 0.0845 | | 0.3168 | 50.0 | 1000 | 5.1490 | 0.0986 | | 0.1452 | 75.0 | 1500 | 6.3515 | 0.0986 | | 0.0775 | 100.0 | 2000 | 7.5723 | 0.0704 | | 0.056 | 125.0 | 2500 | 8.0250 | 0.0563 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### mpid-hassanblend-v1-4-last-version Dreambooth model trained by tftgregrge with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: parinzee/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### elenakiss Dreambooth model trained by REddiska with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_wikiqa_copy
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -226.89 +/- 25.60 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: creativeml-openrail-m tags: - coreml - stable-diffusion - text-to-image --- # Core ML Converted Model: - This model was converted to Core ML for use on Apple Silicon devices. Instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-files-to-Core-ML).<br> - Provide the model to an app such as [Mochi Diffusion](https://github.com/godly-devotion/MochiDiffusion) to generate images.<br> - `split_einsum` version is compatible with all compute unit options including Neural Engine.<br> # Note: This model does not have the [unet split into chunks](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml). # Healy's Anime Blend V1.7: Source(s): [CivitAI](https://civitai.com/models/1400/healys-anime-blend) This is a blend of some anime models mixed with "realistic" stuff to get a look i've been trying to accomplish for awhile. Im pretty happy with what it outputs, but judge that for yourself. I can't for the life of me remember what I put into this model. I take no credit whatsoever, I just smashed rocks together like a caveman and the outcome somehow worked. It can create NSFW stuff to I think, but i've noticed the outcomes remain pretty tolerable with "cleavage" in the negative prompts.
AnthonyNelson/DialoGPT-small-ricksanchez
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - generated_from_trainer datasets: - custom_squad_v2 model-index: - name: kobigbird-test45-79336811 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobigbird-test45-79336811 This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the custom_squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 5.0685 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 45 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.84 | 4 | 5.6915 | | No log | 1.84 | 8 | 5.2510 | | No log | 2.84 | 12 | 5.0685 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2