modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
Alexander-Learn/bert-finetuned-squad-accelerate
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: RL-unit4-reinforce-Pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 80.80 +/- 74.36 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Alexander-Learn/bert-finetuned-squad
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: layout-xlm-geocite-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layout-xlm-geocite-v2 This model is a fine-tuned version of [microsoft/layoutxlm-base](https://huggingface.co/microsoft/layoutxlm-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
AliPotter24/a
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
AliReza/distilbert-emotion
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
Aloka/mbart50-ft-si-en
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MBartForConditionalGeneration" ], "model_type": "mbart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.63 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Jbot/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Alstractor/distilbert-base-uncased-finetuned-cola
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
40
null
--- license: agpl-3.0 --- Model is developed in support of the University of Belgrade doctoral dissertation "Composite pseudogrammars based on parallel language models of Serbian" by Mihailo Škorić. It generates syntactly masked sentences for Serbian. This small gpt-2 model was fine-tuned on several corpora for Serbian, augmented using [Serbian Morphological Dictionaries](http://poincare.matf.bg.ac.rs/~cvetana/biblio/22_Vitas_Krstev.pdf)). The corpora include ["The corpus of Contemporary Serbian"](https://drive.google.com/file/d/1wRgoWer6YULGCXR0zWOl1fVA6VIe1DOR), [SrpELTeC](https://drive.google.com/file/d/1RtBXyw5Cdh6y_cqbJoMlYhSwNFydBRUv) and WikiKorpus by [JeRTeh – Society for Language Resources and Technologies](https://jerteh.rs/).
Amalq/distilroberta-base-finetuned-MentalHealth
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### gitlatt Dreambooth model trained by wxcvbnw with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Amalq/distilroberta-base-finetuned-anxiety-depression
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- ### Rim_illustration on Stable Diffusion This is the `<rimbot>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<rimbot> 0](https://huggingface.co/sd-concepts-library/rim-illustration/resolve/main/concept_images/0.jpeg) ![<rimbot> 1](https://huggingface.co/sd-concepts-library/rim-illustration/resolve/main/concept_images/1.jpeg) ![<rimbot> 2](https://huggingface.co/sd-concepts-library/rim-illustration/resolve/main/concept_images/3.jpeg) ![<rimbot> 3](https://huggingface.co/sd-concepts-library/rim-illustration/resolve/main/concept_images/2.jpeg)
AndrewMcDowell/wav2vec2-xls-r-1B-german
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: unknown language: - en pipeline_tag: text-to-image tags: - Danbooru 2021 - Stable Diffusion --- funni title lmao
AnonymousSub/SR_rule_based_roberta_twostage_quadruplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.55 +/- 22.69 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnonymousSub/SciFive_pubmedqa_question_generation
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
7
2023-01-12T22:23:42Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Helicopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 40.90 +/- 22.59 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AnonymousSub/bert-base-uncased_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - generated_from_trainer model-index: - name: tiny-mlm-glue-cola-from-scratch-custom-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-cola-from-scratch-custom-tokenizer This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.2646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.2649 | 0.47 | 500 | 7.5102 | | 7.0502 | 0.94 | 1000 | 6.8533 | | 6.5834 | 1.4 | 1500 | 6.7023 | | 6.3077 | 1.87 | 2000 | 6.6566 | | 6.1706 | 2.34 | 2500 | 6.4929 | | 6.128 | 2.81 | 3000 | nan | | 6.1135 | 3.27 | 3500 | 6.3916 | | 5.964 | 3.74 | 4000 | 6.2980 | | 5.967 | 4.21 | 4500 | 6.2670 | | 5.901 | 4.68 | 5000 | 6.2646 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/bert-base-uncased_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- tags: - generated_from_trainer model-index: - name: tiny-mlm-glue-mnli-from-scratch-custom-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mnli-from-scratch-custom-tokenizer This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.3372 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 9.3697 | 0.4 | 500 | 8.5748 | | 7.9343 | 0.8 | 1000 | 7.7323 | | 7.3224 | 1.2 | 1500 | 7.4549 | | 7.1382 | 1.6 | 2000 | 7.4191 | | 7.0553 | 2.0 | 2500 | 7.3967 | | 6.9814 | 2.4 | 3000 | 7.3621 | | 6.9808 | 2.8 | 3500 | 7.3591 | | 6.9386 | 3.2 | 4000 | 7.3327 | | 6.9167 | 3.6 | 4500 | 7.3050 | | 6.9831 | 4.0 | 5000 | 7.3372 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/bert_hier_diff_equal_wts_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- tags: - generated_from_trainer model-index: - name: tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.4855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.9119 | 1.09 | 500 | 8.3154 | | 7.6669 | 2.18 | 1000 | 7.5949 | | 7.1524 | 3.27 | 1500 | 7.4914 | | 7.0173 | 4.36 | 2000 | 7.5929 | | 6.9491 | 5.45 | 2500 | 7.4708 | | 6.89 | 6.54 | 3000 | 7.3486 | | 6.8284 | 7.63 | 3500 | 7.3566 | | 6.8484 | 8.71 | 4000 | 7.6411 | | 6.8088 | 9.8 | 4500 | 7.4855 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/cline-s10-AR
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- tags: - generated_from_trainer model-index: - name: tiny-mlm-glue-qqp-from-scratch-custom-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-qqp-from-scratch-custom-tokenizer This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.5630 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.8759 | 0.4 | 500 | 8.0883 | | 7.4497 | 0.8 | 1000 | 7.3157 | | 6.8553 | 1.2 | 1500 | 7.0495 | | 6.6004 | 1.6 | 2000 | 6.8851 | | 6.4548 | 2.0 | 2500 | 6.7926 | | 6.3122 | 2.4 | 3000 | 6.6611 | | 6.2733 | 2.8 | 3500 | 6.6870 | | 6.2271 | 3.2 | 4000 | 6.5846 | | 6.103 | 3.6 | 4500 | 6.5860 | | 6.1545 | 4.0 | 5000 | 6.5630 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/cline-techqa
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: tiny-mlm-glue-cola-from-scratch-custom-tokenizer-target-glue-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-cola-from-scratch-custom-tokenizer-target-glue-cola This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-cola-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-cola-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8379 - Matthews Correlation: 0.0351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6103 | 1.87 | 500 | 0.6208 | 0.0 | | 0.6074 | 3.73 | 1000 | 0.6191 | 0.0 | | 0.605 | 5.6 | 1500 | 0.6149 | 0.0 | | 0.57 | 7.46 | 2000 | 0.6413 | 0.0702 | | 0.4989 | 9.33 | 2500 | 0.6938 | 0.0708 | | 0.4577 | 11.19 | 3000 | 0.7318 | 0.0569 | | 0.4285 | 13.06 | 3500 | 0.7803 | 0.0481 | | 0.4065 | 14.93 | 4000 | 0.8379 | 0.0351 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/cline
[ "pytorch", "roberta", "transformers" ]
null
{ "architectures": [ "LecbertForPreTraining" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Brhnglc/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AnonymousSub/cline_emanuals
[ "pytorch", "roberta", "transformers" ]
null
{ "architectures": [ "LecbertForPreTraining" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - generated_from_trainer model-index: - name: tiny-mlm-glue-rte-from-scratch-custom-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-rte-from-scratch-custom-tokenizer This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.6341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 9.13 | 1.6 | 500 | 8.4505 | | 7.8185 | 3.21 | 1000 | 7.7760 | | 7.2846 | 4.81 | 1500 | 7.5443 | | 7.1052 | 6.41 | 2000 | 7.7086 | | 7.1017 | 8.01 | 2500 | 7.5114 | | 7.0598 | 9.62 | 3000 | 7.4909 | | 7.0125 | 11.22 | 3500 | 7.4334 | | 6.9987 | 12.82 | 4000 | 7.6285 | | 6.9734 | 14.42 | 4500 | 7.4881 | | 6.9619 | 16.03 | 5000 | 7.6341 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/cline_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 10.40 +/- 7.79 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AnonymousSub/declutr-emanuals-techqa
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2023-01-12T23:57:29Z
--- tags: - generated_from_trainer model-index: - name: small-mlm-glue-cola-from-scratch-custom-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-cola-from-scratch-custom-tokenizer This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.6550 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.8212 | 0.47 | 500 | 6.2788 | | 6.116 | 0.94 | 1000 | 6.1923 | | 5.9605 | 1.4 | 1500 | 6.1613 | | 5.7116 | 1.87 | 2000 | 6.1499 | | 5.6233 | 2.34 | 2500 | 6.0771 | | 5.5925 | 2.81 | 3000 | nan | | 5.547 | 3.27 | 3500 | 5.9853 | | 5.3711 | 3.74 | 4000 | 5.7912 | | 5.3294 | 4.21 | 4500 | 5.7309 | | 5.2142 | 4.68 | 5000 | 5.6550 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/declutr-model-emanuals
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-cola-from-scratch-custom-tokenizer-target-glue-qnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-cola-from-scratch-custom-tokenizer-target-glue-qnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-cola-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-cola-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6513 - Accuracy: 0.6129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6926 | 0.15 | 500 | 0.6887 | 0.5599 | | 0.6814 | 0.31 | 1000 | 0.6675 | 0.5867 | | 0.6728 | 0.46 | 1500 | 0.6621 | 0.5997 | | 0.6665 | 0.61 | 2000 | 0.6609 | 0.6022 | | 0.6614 | 0.76 | 2500 | 0.6589 | 0.6028 | | 0.6627 | 0.92 | 3000 | 0.6566 | 0.6039 | | 0.6552 | 1.07 | 3500 | 0.6562 | 0.6046 | | 0.659 | 1.22 | 4000 | 0.6533 | 0.6077 | | 0.6536 | 1.37 | 4500 | 0.6519 | 0.6114 | | 0.6553 | 1.53 | 5000 | 0.6513 | 0.6129 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/declutr-techqa
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-4 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 37.80 +/- 30.07 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AnonymousSub/rule_based_bert_hier_diff_equal_wts_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-cola-from-scratch-custom-tokenizer-target-glue-rte results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-cola-from-scratch-custom-tokenizer-target-glue-rte This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-cola-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-cola-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9954 - Accuracy: 0.4729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.693 | 6.41 | 500 | 0.6947 | 0.4549 | | 0.6248 | 12.82 | 1000 | 0.8627 | 0.4729 | | 0.4602 | 19.23 | 1500 | 1.1278 | 0.4657 | | 0.3484 | 25.64 | 2000 | 1.3214 | 0.4801 | | 0.2599 | 32.05 | 2500 | 1.6232 | 0.4693 | | 0.2052 | 38.46 | 3000 | 1.7684 | 0.4801 | | 0.1667 | 44.87 | 3500 | 1.9954 | 0.4729 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_bert_mean_diff_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-cola-from-scratch-custom-tokenizer-target-glue-sst2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-cola-from-scratch-custom-tokenizer-target-glue-sst2 This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-cola-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-cola-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4365 - Accuracy: 0.8085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6856 | 0.24 | 500 | 0.6922 | 0.5195 | | 0.6777 | 0.48 | 1000 | 0.6786 | 0.5849 | | 0.6106 | 0.71 | 1500 | 0.5295 | 0.7592 | | 0.4947 | 0.95 | 2000 | 0.4996 | 0.7557 | | 0.446 | 1.19 | 2500 | 0.4592 | 0.7844 | | 0.4169 | 1.43 | 3000 | 0.4700 | 0.7752 | | 0.3997 | 1.66 | 3500 | 0.4481 | 0.7878 | | 0.3814 | 1.9 | 4000 | 0.4403 | 0.7844 | | 0.3699 | 2.14 | 4500 | 0.4491 | 0.7833 | | 0.3497 | 2.38 | 5000 | 0.4365 | 0.8085 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: mit --- Pretrained Latent Guidance predictor for Stable Diffusion as described in this Paper - https://sketch-guided-diffusion.github.io/. Used to Guide the output of Diffusion models (Stable Diffusion in this Case) to stick closely to the edges of sketches.
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-cola-from-scratch-custom-tokenizer-target-glue-wnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-cola-from-scratch-custom-tokenizer-target-glue-wnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-cola-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-cola-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9560 - Accuracy: 0.0704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6933 | 25.0 | 500 | 0.6928 | 0.5493 | | 0.6896 | 50.0 | 1000 | 0.7724 | 0.1972 | | 0.6469 | 75.0 | 1500 | 1.2231 | 0.1127 | | 0.5484 | 100.0 | 2000 | 1.9560 | 0.0704 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_wikiqa_copy
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: tiny-mlm-glue-mnli-from-scratch-custom-tokenizer-target-glue-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mnli-from-scratch-custom-tokenizer-target-glue-cola This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mnli-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-mnli-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7995 - Matthews Correlation: 0.0140 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6109 | 1.87 | 500 | 0.6204 | 0.0 | | 0.607 | 3.73 | 1000 | 0.6189 | 0.0 | | 0.6041 | 5.6 | 1500 | 0.6187 | 0.0 | | 0.5729 | 7.46 | 2000 | 0.6550 | 0.0093 | | 0.5254 | 9.33 | 2500 | 0.6909 | 0.0411 | | 0.4976 | 11.19 | 3000 | 0.7189 | 0.0526 | | 0.4767 | 13.06 | 3500 | 0.7382 | 0.0223 | | 0.4591 | 14.93 | 4000 | 0.7636 | 0.0449 | | 0.4393 | 16.79 | 4500 | 0.7995 | 0.0140 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-mnli-from-scratch-custom-tokenizer-target-glue-mnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mnli-from-scratch-custom-tokenizer-target-glue-mnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mnli-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-mnli-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0101 - Accuracy: 0.4803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0983 | 0.04 | 500 | 1.0959 | 0.3689 | | 1.0911 | 0.08 | 1000 | 1.0872 | 0.3711 | | 1.0844 | 0.12 | 1500 | 1.0766 | 0.3948 | | 1.0647 | 0.16 | 2000 | 1.0568 | 0.4272 | | 1.0482 | 0.2 | 2500 | 1.0364 | 0.4501 | | 1.0385 | 0.24 | 3000 | 1.0274 | 0.4595 | | 1.0298 | 0.29 | 3500 | 1.0287 | 0.4501 | | 1.0209 | 0.33 | 4000 | 1.0215 | 0.4656 | | 1.0144 | 0.37 | 4500 | 1.0139 | 0.4786 | | 1.0111 | 0.41 | 5000 | 1.0101 | 0.4803 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-5 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 14.73 +/- 13.92 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Please put the prompt: flat minimal illustration of... georgeart Dreambooth model trained by Alexwww with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook This model is train with @george.ee illustrations Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2023-01-13T02:16:04Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: tiny-mlm-glue-mnli-from-scratch-custom-tokenizer-target-glue-mrpc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mnli-from-scratch-custom-tokenizer-target-glue-mrpc This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mnli-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-mnli-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6245 - Accuracy: 0.6201 - F1: 0.6990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6321 | 4.35 | 500 | 0.6107 | 0.6838 | 0.8122 | | 0.5481 | 8.7 | 1000 | 0.6208 | 0.6936 | 0.7941 | | 0.3207 | 13.04 | 1500 | 0.8799 | 0.6275 | 0.696 | | 0.1738 | 17.39 | 2000 | 1.2027 | 0.6348 | 0.7162 | | 0.1133 | 21.74 | 2500 | 1.6245 | 0.6201 | 0.6990 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_only_classfn_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - generated_from_trainer model-index: - name: small-mlm-glue-qqp-from-scratch-custom-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-qqp-from-scratch-custom-tokenizer This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.9723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.1744 | 0.4 | 500 | 6.6327 | | 6.2017 | 0.8 | 1000 | 6.4708 | | 5.9807 | 1.2 | 1500 | 6.3544 | | 5.8057 | 1.6 | 2000 | 6.1953 | | 5.7186 | 2.0 | 2500 | 6.1794 | | 5.5759 | 2.4 | 3000 | 6.0617 | | 5.5572 | 2.8 | 3500 | 6.1286 | | 5.5134 | 3.2 | 4000 | 6.0364 | | 5.3844 | 3.6 | 4500 | 6.0568 | | 5.4336 | 4.0 | 5000 | 5.9723 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - generated_from_trainer model-index: - name: small-mlm-glue-rte-from-scratch-custom-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-rte-from-scratch-custom-tokenizer This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.3463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.7345 | 1.6 | 500 | 7.4398 | | 7.051 | 3.21 | 1000 | 7.4338 | | 6.9685 | 4.81 | 1500 | 7.3969 | | 6.8422 | 6.41 | 2000 | 7.5530 | | 6.8292 | 8.01 | 2500 | 7.2865 | | 6.7599 | 9.62 | 3000 | 7.2730 | | 6.6839 | 11.22 | 3500 | 7.1490 | | 6.6433 | 12.82 | 4000 | 7.3275 | | 6.5957 | 14.42 | 4500 | 7.2154 | | 6.5601 | 16.03 | 5000 | 7.3463 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-samsum-ElectrifAi_v8.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-samsum-ElectrifAi_v8.1 This model is a fine-tuned version of [philschmid/bart-large-cnn-samsum](https://huggingface.co/philschmid/bart-large-cnn-samsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3222 - Rouge1: 55.3039 - Rouge2: 31.3218 - Rougel: 42.3951 - Rougelsum: 53.2394 - Gen Len: 108.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 27 | 1.3061 | 53.8018 | 30.0487 | 39.9195 | 52.1464 | 101.4333 | | No log | 2.0 | 54 | 1.2995 | 54.2973 | 30.6364 | 42.0125 | 51.995 | 99.6 | | No log | 3.0 | 81 | 1.3222 | 55.3039 | 31.3218 | 42.3951 | 53.2394 | 108.9 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-mnli-from-scratch-custom-tokenizer-target-glue-sst2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mnli-from-scratch-custom-tokenizer-target-glue-sst2 This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mnli-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-mnli-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4356 - Accuracy: 0.8131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6877 | 0.24 | 500 | 0.6942 | 0.5138 | | 0.6658 | 0.48 | 1000 | 0.6622 | 0.6101 | | 0.527 | 0.71 | 1500 | 0.5329 | 0.7603 | | 0.4562 | 0.95 | 2000 | 0.4880 | 0.7833 | | 0.3976 | 1.19 | 2500 | 0.5178 | 0.7798 | | 0.3615 | 1.43 | 3000 | 0.4421 | 0.8050 | | 0.3406 | 1.66 | 3500 | 0.4455 | 0.7959 | | 0.3215 | 1.9 | 4000 | 0.4449 | 0.8119 | | 0.2977 | 2.14 | 4500 | 0.4416 | 0.8142 | | 0.2807 | 2.38 | 5000 | 0.4356 | 0.8131 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - Taxi-v3-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3-4x4-no_slippery type: Taxi-v3-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Nyxynyx/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: edgertej/poebert-balanced results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # edgertej/poebert-balanced This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.8393 - Validation Loss: 3.5576 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.1167 | 3.7102 | 0 | | 3.8640 | 3.6570 | 1 | | 3.9454 | 3.6030 | 2 | | 3.8175 | 3.5792 | 3 | | 3.8393 | 3.5576 | 4 | ### Framework versions - Transformers 4.19.2 - TensorFlow 2.9.1 - Datasets 2.4.0 - Tokenizers 0.12.1
AnonymousSub/rule_based_roberta_hier_triplet_0.1_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - generated_from_trainer model-index: - name: small-mlm-glue-sst2-from-scratch-custom-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-sst2-from-scratch-custom-tokenizer This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.2425 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.7065 | 0.4 | 500 | 7.3339 | | 7.1401 | 0.8 | 1000 | 7.2865 | | 6.9592 | 1.2 | 1500 | 7.3445 | | 6.9335 | 1.6 | 2000 | 7.3916 | | 6.8822 | 2.0 | 2500 | 7.2251 | | 6.6974 | 2.4 | 3000 | 7.1682 | | 6.6423 | 2.8 | 3500 | 7.2053 | | 6.6121 | 3.2 | 4000 | 7.2180 | | 6.6063 | 3.6 | 4500 | 7.1581 | | 6.5295 | 4.0 | 5000 | 7.2425 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_hier_triplet_0.1_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Nyxynyx/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - generated_from_trainer metrics: - spearmanr model-index: - name: tiny-mlm-glue-mnli-from-scratch-custom-tokenizer-target-glue-stsb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mnli-from-scratch-custom-tokenizer-target-glue-stsb This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mnli-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-mnli-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0116 - Pearson: 0.2065 - Spearmanr: 0.2191 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | 3.4686 | 2.78 | 500 | 2.3726 | -0.0027 | 0.0046 | | 2.007 | 5.56 | 1000 | 2.4554 | 0.1070 | 0.1026 | | 1.6757 | 8.33 | 1500 | 2.5454 | 0.1855 | 0.2018 | | 1.2994 | 11.11 | 2000 | 2.6006 | 0.2215 | 0.2353 | | 1.0455 | 13.89 | 2500 | 2.6117 | 0.2278 | 0.2338 | | 0.8597 | 16.67 | 3000 | 2.9475 | 0.2118 | 0.2236 | | 0.7389 | 19.44 | 3500 | 2.8112 | 0.2173 | 0.2237 | | 0.6597 | 22.22 | 4000 | 3.0116 | 0.2065 | 0.2191 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer-target-glue-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer-target-glue-cola This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6220 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6131 | 1.87 | 500 | 0.6205 | 0.0 | | 0.6072 | 3.73 | 1000 | 0.6191 | 0.0 | | 0.6061 | 5.6 | 1500 | 0.6164 | 0.0 | | 0.5996 | 7.46 | 2000 | 0.6220 | 0.0 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
2023-01-13T04:09:08Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer-target-glue-mnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer-target-glue-mnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0217 - Accuracy: 0.4665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.099 | 0.04 | 500 | 1.0972 | 0.3681 | | 1.0938 | 0.08 | 1000 | 1.0886 | 0.3654 | | 1.0844 | 0.12 | 1500 | 1.0758 | 0.4004 | | 1.0661 | 0.16 | 2000 | 1.0610 | 0.4208 | | 1.0616 | 0.2 | 2500 | 1.0567 | 0.4282 | | 1.055 | 0.24 | 3000 | 1.0497 | 0.4301 | | 1.0481 | 0.29 | 3500 | 1.0486 | 0.4384 | | 1.0304 | 0.33 | 4000 | 1.0303 | 0.4549 | | 1.0257 | 0.37 | 4500 | 1.0260 | 0.4638 | | 1.0209 | 0.41 | 5000 | 1.0217 | 0.4665 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- datasets: - fka/awesome-chatgpt-prompts metrics: - accuracy library_name: allennlp pipeline_tag: image-classification tags: - biomedical - legal ---
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - generated_from_trainer metrics: - wer model-index: - name: libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-att-take-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-att-take-4 This model is a fine-tuned version of [rohitp1/libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-att-take-2](https://huggingface.co/rohitp1/libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-att-take-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 37.5364 - Wer: 0.3334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 43.7806 | 0.9 | 400 | 41.3073 | 0.2570 | | 48.6549 | 1.8 | 800 | 41.8945 | 0.2740 | | 57.4209 | 2.7 | 1200 | 39.9947 | 0.2872 | | 68.8449 | 3.59 | 1600 | 39.4528 | 0.3059 | | 79.4299 | 4.49 | 2000 | 38.9575 | 0.3179 | | 93.0514 | 5.39 | 2400 | 37.5364 | 0.3334 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.11.0
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer-target-glue-qnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer-target-glue-qnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6504 - Accuracy: 0.6180 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6935 | 0.15 | 500 | 0.6924 | 0.5634 | | 0.6894 | 0.31 | 1000 | 0.6736 | 0.5960 | | 0.672 | 0.46 | 1500 | 0.6572 | 0.6127 | | 0.6634 | 0.61 | 2000 | 0.6543 | 0.6112 | | 0.6616 | 0.76 | 2500 | 0.6527 | 0.6090 | | 0.6597 | 0.92 | 3000 | 0.6489 | 0.6158 | | 0.6507 | 1.07 | 3500 | 0.6505 | 0.6156 | | 0.6504 | 1.22 | 4000 | 0.6477 | 0.6134 | | 0.6443 | 1.37 | 4500 | 0.6496 | 0.6163 | | 0.646 | 1.53 | 5000 | 0.6504 | 0.6180 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -95.66 +/- 135.45 name: mean_reward verified: false --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga kreepy -f logs/ python -m rl_zoo3.enjoy --algo dqn --env LunarLander-v2 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga kreepy -f logs/ python -m rl_zoo3.enjoy --algo dqn --env LunarLander-v2 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env LunarLander-v2 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env LunarLander-v2 -f logs/ -orga kreepy ``` ## Hyperparameters ```python OrderedDict([('batch_size', 9), ('buffer_size', 56569), ('exploration_final_eps', 0.1), ('exploration_fraction', 0.1164397832458963), ('exploration_initial_eps', 0.03696153798457299), ('gamma', 0.0006190974200887802), ('gradient_steps', 9), ('learning_rate', 0.011288061590135373), ('learning_starts', 15731), ('max_grad_norm', 3.705892661777349), ('n_timesteps', 10000000.0), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(net_arch=[256, 256])'), ('target_update_interval', 218430), ('tau', 0.04363931503941886), ('train_freq', (9, 'episode')), ('normalize', False)]) ```
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: en datasets: - lmqg/qg_squad pipeline_tag: text2text-generation tags: - question generation - answer extraction widget: - text: "generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records." example_title: "Question Generation Example 1" - text: "generate question: Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records." example_title: "Question Generation Example 2" - text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ." example_title: "Question Generation Example 3" - text: "extract answers: <hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress." example_title: "Answer Extraction Example 1" - text: "extract answers: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress. <hl>" example_title: "Answer Extraction Example 2" model-index: - name: lmqg/bart-base-squad-qg-ae results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_squad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 25.07 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 52.79 - name: METEOR (Question Generation) type: meteor_question_generation value: 25.87 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 90.65 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 64.49 - name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer value: 93.45 - name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer value: 94.14 - name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer value: 92.78 - name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer value: 64.47 - name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer value: 65.49 - name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer value: 63.55 - name: BLEU4 (Answer Extraction) type: bleu4_answer_extraction value: 58.31 - name: ROUGE-L (Answer Extraction) type: rouge_l_answer_extraction value: 68.38 - name: METEOR (Answer Extraction) type: meteor_answer_extraction value: 41.39 - name: BERTScore (Answer Extraction) type: bertscore_answer_extraction value: 91.86 - name: MoverScore (Answer Extraction) type: moverscore_answer_extraction value: 81.95 - name: AnswerF1Score (Answer Extraction) type: answer_f1_score__answer_extraction value: 69.14 - name: AnswerExactMatch (Answer Extraction) type: answer_exact_match_answer_extraction value: 57.58 --- # Model Card of `lmqg/bart-base-squad-qg-ae` This model is fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) for question generation and answer extraction jointly on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [facebook/bart-base](https://huggingface.co/facebook/bart-base) - **Language:** en - **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="lmqg/bart-base-squad-qg-ae") # model prediction question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/bart-base-squad-qg-ae") # answer extraction answer = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.") # question generation question = pipe("extract answers: <hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/bart-base-squad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:---------------------------------------------------------------| | BERTScore | 90.65 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_1 | 56.53 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_2 | 40.97 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_3 | 31.71 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_4 | 25.07 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | METEOR | 25.87 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | MoverScore | 64.49 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | ROUGE_L | 52.79 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | - ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/bart-base-squad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_squad.default.json) | | Score | Type | Dataset | |:--------------------------------|--------:|:--------|:---------------------------------------------------------------| | QAAlignedF1Score (BERTScore) | 93.45 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | QAAlignedF1Score (MoverScore) | 64.47 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | QAAlignedPrecision (BERTScore) | 92.78 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | QAAlignedPrecision (MoverScore) | 63.55 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | QAAlignedRecall (BERTScore) | 94.14 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | QAAlignedRecall (MoverScore) | 65.49 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | - ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/bart-base-squad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_squad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:---------------------------------------------------------------| | AnswerExactMatch | 57.58 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | AnswerF1Score | 69.14 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | BERTScore | 91.86 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_1 | 65.9 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_2 | 63.06 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_3 | 60.47 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_4 | 58.31 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | METEOR | 41.39 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | MoverScore | 81.95 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | ROUGE_L | 68.38 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_squad - dataset_name: default - input_types: ['paragraph_answer', 'paragraph_sentence'] - output_types: ['question', 'answer'] - prefix_types: ['qg', 'ae'] - model: facebook/bart-base - max_length: 512 - max_length_output: 32 - epoch: 3 - batch: 32 - lr: 5e-05 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/bart-base-squad-qg-ae/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer-target-glue-qqp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer-target-glue-qqp This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5311 - Accuracy: 0.7402 - F1: 0.5973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6429 | 0.04 | 500 | 0.6232 | 0.6395 | 0.3481 | | 0.6149 | 0.09 | 1000 | 0.6025 | 0.6619 | 0.4427 | | 0.5929 | 0.13 | 1500 | 0.5800 | 0.6870 | 0.5779 | | 0.5688 | 0.18 | 2000 | 0.5620 | 0.7075 | 0.5454 | | 0.5597 | 0.22 | 2500 | 0.5503 | 0.7218 | 0.5681 | | 0.5477 | 0.26 | 3000 | 0.5432 | 0.7283 | 0.5902 | | 0.5467 | 0.31 | 3500 | 0.5388 | 0.7322 | 0.5946 | | 0.541 | 0.35 | 4000 | 0.5357 | 0.7350 | 0.6098 | | 0.543 | 0.4 | 4500 | 0.5331 | 0.7348 | 0.6141 | | 0.5377 | 0.44 | 5000 | 0.5311 | 0.7402 | 0.5973 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: other --- For le thesis, URL Classification using BERT. Referenced from URLTran research
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer-target-glue-sst2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer-target-glue-sst2 This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4355 - Accuracy: 0.8165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6881 | 0.24 | 500 | 0.6950 | 0.5092 | | 0.6801 | 0.48 | 1000 | 0.6692 | 0.6514 | | 0.5122 | 0.71 | 1500 | 0.4978 | 0.7603 | | 0.4227 | 0.95 | 2000 | 0.4629 | 0.7764 | | 0.3789 | 1.19 | 2500 | 0.4438 | 0.8108 | | 0.357 | 1.43 | 3000 | 0.4243 | 0.8085 | | 0.3414 | 1.66 | 3500 | 0.4251 | 0.8073 | | 0.3289 | 1.9 | 4000 | 0.4215 | 0.8154 | | 0.3076 | 2.14 | 4500 | 0.4438 | 0.8096 | | 0.3009 | 2.38 | 5000 | 0.4355 | 0.8165 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: RichFrank/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AnonymousSub/rule_based_twostage_quadruplet_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer-target-glue-wnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer-target-glue-wnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-mrpc-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5713 - Accuracy: 0.1127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6933 | 25.0 | 500 | 0.6928 | 0.5352 | | 0.6841 | 50.0 | 1000 | 0.8358 | 0.2535 | | 0.6609 | 75.0 | 1500 | 1.0305 | 0.1549 | | 0.6149 | 100.0 | 2000 | 1.5713 | 0.1127 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AnonymousSub/unsup-consert-papers-bert
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 276.57 +/- 20.72 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnthonyNelson/DialoGPT-small-ricksanchez
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2023-01-13T06:42:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - minds14 metrics: - wer model-index: - name: my_asr_model_3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: minds14 type: minds14 config: en-US split: train[:100] args: en-US metrics: - name: Wer type: wer value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_asr_model_3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 3.8875 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 7.7043 | 60.0 | 300 | 6.0169 | 1.0 | | 4.5859 | 120.0 | 600 | 4.3190 | 1.0 | | 3.8087 | 180.0 | 900 | 3.8875 | 1.0 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Anthos23/my-awesome-model
[ "pytorch", "tf", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
2023-01-13T06:46:18Z
--- license: mit tags: - generated_from_trainer datasets: - sst2 model-index: - name: finetuned_gpt2-medium_sst2_negation0.2_pretrainedFalse results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_gpt2-medium_sst2_negation0.2_pretrainedFalse This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on the sst2 dataset. It achieves the following results on the evaluation set: - Loss: 5.2012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.7789 | 1.0 | 1072 | 5.4517 | | 4.368 | 2.0 | 2144 | 5.2641 | | 4.1183 | 3.0 | 3216 | 5.2012 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.13.1+cu117 - Datasets 2.5.2 - Tokenizers 0.12.1
Anthos23/test_trainer
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer datasets: - sst2 model-index: - name: finetuned_gpt2_sst2_negation0.2_pretrainedFalse results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_gpt2_sst2_negation0.2_pretrainedFalse This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the sst2 dataset. It achieves the following results on the evaluation set: - Loss: 5.3370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.9034 | 1.0 | 1072 | 5.5636 | | 4.5404 | 2.0 | 2144 | 5.3854 | | 4.368 | 3.0 | 3216 | 5.3370 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.13.1+cu117 - Datasets 2.5.2 - Tokenizers 0.12.1
Antony/mint_model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - simplification - generated_from_trainer metrics: - rouge model-index: - name: marimari-r2r-mlsum-clara-med results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marimari-r2r-mlsum-clara-med This model is a fine-tuned version of [IIC/marimari-r2r-mlsum](https://huggingface.co/IIC/marimari-r2r-mlsum) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9618 - Rouge1: 42.6764 - Rouge2: 24.4569 - Rougel: 37.0033 - Rougelsum: 37.1595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 1.0 | 190 | 2.3970 | 40.7426 | 23.212 | 35.7093 | 35.8437 | | No log | 2.0 | 380 | 2.3165 | 42.5676 | 24.6494 | 37.1225 | 37.2619 | | 1.9699 | 3.0 | 570 | 2.4711 | 42.0346 | 23.7633 | 36.3472 | 36.4433 | | 1.9699 | 4.0 | 760 | 2.7339 | 41.1717 | 22.8419 | 35.3263 | 35.4823 | | 0.6485 | 5.0 | 950 | 2.9593 | 40.714 | 22.6931 | 34.8859 | 35.0647 | | 0.6485 | 6.0 | 1140 | 3.1316 | 41.3218 | 23.2054 | 35.3103 | 35.5063 | | 0.6485 | 7.0 | 1330 | 3.2542 | 41.2786 | 23.4853 | 35.8236 | 35.972 | | 0.1529 | 8.0 | 1520 | 3.3470 | 41.2991 | 22.8385 | 35.0524 | 35.2153 | | 0.1529 | 9.0 | 1710 | 3.4324 | 41.3838 | 23.1045 | 35.3472 | 35.5779 | | 0.0719 | 10.0 | 1900 | 3.5187 | 42.0833 | 23.8538 | 36.3282 | 36.5294 | | 0.0719 | 11.0 | 2090 | 3.5527 | 41.2993 | 23.0323 | 35.3116 | 35.4687 | | 0.0719 | 12.0 | 2280 | 3.6624 | 41.6524 | 23.8925 | 35.9281 | 36.1012 | | 0.0393 | 13.0 | 2470 | 3.6536 | 41.188 | 23.2066 | 35.371 | 35.5616 | | 0.0393 | 14.0 | 2660 | 3.6656 | 40.8222 | 22.5651 | 35.0515 | 35.1399 | | 0.0266 | 15.0 | 2850 | 3.7349 | 41.844 | 23.7839 | 36.102 | 36.3169 | | 0.0266 | 16.0 | 3040 | 3.7254 | 41.5535 | 23.3996 | 35.9619 | 36.0981 | | 0.0266 | 17.0 | 3230 | 3.7919 | 41.5683 | 23.2824 | 36.0855 | 36.2475 | | 0.0151 | 18.0 | 3420 | 3.8152 | 42.1272 | 24.0548 | 36.5784 | 36.785 | | 0.0151 | 19.0 | 3610 | 3.8213 | 41.9185 | 23.5975 | 36.1182 | 36.3194 | | 0.0087 | 20.0 | 3800 | 3.8501 | 41.3409 | 23.0081 | 35.7662 | 35.9451 | | 0.0087 | 21.0 | 3990 | 3.8690 | 41.9496 | 23.7032 | 36.0116 | 36.1843 | | 0.0087 | 22.0 | 4180 | 3.8809 | 42.5366 | 24.6413 | 37.2644 | 37.459 | | 0.0044 | 23.0 | 4370 | 3.8865 | 42.4346 | 24.2278 | 36.7284 | 36.8846 | | 0.0044 | 24.0 | 4560 | 3.9044 | 42.9781 | 24.8423 | 37.3582 | 37.4807 | | 0.0024 | 25.0 | 4750 | 3.9138 | 42.6738 | 24.4737 | 36.8959 | 37.0031 | | 0.0024 | 26.0 | 4940 | 3.9361 | 42.5267 | 24.4155 | 36.8414 | 36.9915 | | 0.0024 | 27.0 | 5130 | 3.9477 | 42.4844 | 24.5483 | 36.8857 | 37.0219 | | 0.0013 | 28.0 | 5320 | 3.9561 | 42.7199 | 24.5977 | 37.1206 | 37.2374 | | 0.0013 | 29.0 | 5510 | 3.9599 | 42.7088 | 24.4474 | 37.0513 | 37.1971 | | 0.001 | 30.0 | 5700 | 3.9618 | 42.6764 | 24.4569 | 37.0033 | 37.1595 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0 - Datasets 2.8.0 - Tokenizers 0.12.1
gaurishhs/API
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-13T07:19:03Z
--- tags: - KungFuMaster-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: KungFuMaster-v5 type: KungFuMaster-v5 metrics: - type: mean_reward value: 28270.00 +/- 6635.82 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **KungFuMaster-v5** This is a trained model of a PPO agent playing KungFuMaster-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari_envpool_async_jax_scan_impalanet_machado.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_atari_envpool_async_jax_scan_impalanet_machado]" python -m cleanrl_utils.enjoy --exp-name ppo_atari_envpool_async_jax_scan_impalanet_machado --env-id KungFuMaster-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/KungFuMaster-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/ppo_atari_envpool_async_jax_scan_impalanet_machado.py curl -OL https://huggingface.co/cleanrl/KungFuMaster-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/KungFuMaster-v5-ppo_atari_envpool_async_jax_scan_impalanet_machado-seed1/raw/main/poetry.lock poetry install --all-extras python ppo_atari_envpool_async_jax_scan_impalanet_machado.py --track --wandb-project-name envpool-atari --save-model --upload-model --hf-entity cleanrl --env-id KungFuMaster-v5 --seed 1 ``` # Hyperparameters ```python {'anneal_lr': True, 'async_batch_size': 16, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'KungFuMaster-v5', 'exp_name': 'ppo_atari_envpool_async_jax_scan_impalanet_machado', 'gae': True, 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1024, 'norm_adv': True, 'num_envs': 64, 'num_minibatches': 2, 'num_steps': 32, 'num_updates': 24414, 'save_model': True, 'seed': 1, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 2, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'envpool-atari'} ```
Apisate/Discord-Ai-Bot
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: sd99/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ArBert/albert-base-v2-finetuned-ner-gmm-twitter
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Worm library_name: ml-agents --- # **ppo** Agent playing **Worm** This is a trained model of a **ppo** agent playing **Worm** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Worm 2. Step 1: Write your model_id: saikiranp/ppo-Worm 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ArBert/albert-base-v2-finetuned-ner-kmeans-twitter
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- language: - en tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - art - artistic - diffusers inference: true license: creativeml-openrail-m --- ## Pending info card I will be updating soon ## Model Weights ![alt text](https://huggingface.co/darkstorm2150/Protogen_Infinity_Official_Release/resolve/main/Model%20Weights.png)
ArBert/albert-base-v2-finetuned-ner-kmeans
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.76 +/- 19.78 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ArBert/albert-base-v2-finetuned-ner
[ "pytorch", "tensorboard", "albert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
19
null
--- language: - en tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - art - artistic - diffusers - protogen inference: true widget: - text: >- modelshoot style, (extremely detailed CG unity 8k wallpaper), full shot body photo of the most beautiful artwork in the world, english medieval witch, black silk vale, pale skin, black silk robe, black cat, necromancy magic, medieval era, photorealistic painting by Ed Blinkey, Atey Ghailan, Studio Ghibli, by Jeremy Mann, Greg Manchess, Antonio Moro, trending on ArtStation, trending on CGSociety, Intricate, High Detail, Sharp focus, dramatic, photorealistic painting art by midjourney and greg rutkowski example_title: Model photo license: creativeml-openrail-m --- <center><img src="https://huggingface.co/darkstorm2150/Protogen_Nova_Official_Release/resolve/main/Protogen%20Nova-512.png" style="height:400px; border-radius: 7%; border: 10px solid #663380; padding-top:0px;" span title="Protogen Nova Raw Output with a bladerunner 2049 embedding ;)"></center> <center><h1>Protogen Nova</h1></center> <center><p><em>Research Model by <a href="https://instagram.com/officialvictorespinoza">darkstorm2150</a></em></p></center> </div> ## Table of contents * [General info](#general-info) * [Granular Adaptive Learning](#granular-adaptive-learning) * [Setup](#setup) * [Space](#space) * [CompVis](#compvis) * [Diffusers](#diffusers) * [Checkpoint Merging Data Reference](#checkpoint-merging-data-reference) * [License](#license) ## General info The Protogen Nova is a checkpoint model that merges all the previous models into one This merger includes * Protogen v2.2 (Anime) * Protogen x3.4 (Photorealism) * ProtoGen x5.3 (Photorealism) * ProtoGen x5.8 Rebuilt (Scifi+Anime) * ProtoGen x5.9 (Dragon) * ProtoGen x7.4 (Eclipse) As part the of the checkpoint merging, Granular Adaptive Learning is a technique where traininig data is lessen selectively from 30% to 0.05%, and as the training is eventually saturated, the process reduces loss and introduces elements from various checkpoints ## Granular Adaptive Learning Granular adaptive learning is a machine learning technique that focuses on adjusting the learning process at a fine-grained level, rather than making global adjustments to the model. This approach allows the model to adapt to specific patterns or features in the data, rather than making assumptions based on general trends. Granular adaptive learning can be achieved through techniques such as active learning, which allows the model to select the data it wants to learn from, or through the use of reinforcement learning, where the model receives feedback on its performance and adapts based on that feedback. It can also be achieved through techniques such as online learning where the model adjust itself as it receives more data. Granular adaptive learning is often used in situations where the data is highly diverse or non-stationary and where the model needs to adapt quickly to changing patterns. This is often the case in dynamic environments such as robotics, financial markets, and natural language processing. ## Setup To run this model, download the model.ckpt and install it in your "stable-diffusion-webui\models\Stable-diffusion" directory ## Space ## CompVis ## Diffusers ## Checkpoint Merging Data Reference - PENDING DATA FOR MERGE, RPGv2 not accounted.. <style> .myTable { border-collapse:collapse; } .myTable th { background-color:#663380; color:white; } .myTable td, .myTable th { padding:5px; border:1px solid #663380; } </style> <table class="myTable"> <tr> <th>Models</th> <th>Protogen v2.2 (Anime)</th> <th>Protogen x3.4 (Photo)</th> <th>Protogen x5.3 (Photo)</th> <th>Protogen x5.8 (Sci-fi/Anime)</th> <th>Protogen x5.9 (Dragon)</th> <th>Protogen x7.4 (Eclipse)</th> <th>Protogen x8.0 (Nova)</th> <th>Protogen x8.6 (Infinity)</th> </tr> <tr> <td>seek_art_mega v1</td> <td>52.50%</td> <td>42.76%</td> <td>42.63%</td> <td></td> <td></td> <td></td> <td>25.21%</td> <td>14.83%</td> </tr> <tr> <td>modelshoot v1</td> <td>30.00%</td> <td>24.44%</td> <td>24.37%</td> <td>2.56%</td> <td>2.05%</td> <td>3.48%</td> <td>22.91%</td> <td>13.48%</td> </tr> <tr> <td>elldreth v1</td> <td>12.64%</td> <td>10.30%</td> <td>10.23%</td> <td></td> <td></td> <td></td> <td>6.06%</td> <td>3.57%</td> </tr> <tr> <td>photoreal v2</td> <td></td> <td></td> <td>10.00%</td> <td>48.64%</td> <td>38.91%</td> <td>66.33%</td> <td>20.49%</td> <td>12.06%</td> </tr> <tr> <td>analogdiffusion v1</td> <td></td> <td>4.75%</td> <td>4.50%</td> <td></td> <td></td> <td></td> <td>1.75%</td> <td>1.03%</td> </tr> <tr> <td>openjourney v2</td> <td></td> <td>4.51%</td> <td>4.28%</td> <td></td> <td></td> <td>4.75%</td> <td>2.26%</td> <td>1.33%</td> </tr> <tr> <td>hassan1.4</td> <td>2.63%</td> <td>2.14%</td> <td>2.13%</td> <td></td> <td></td> <td></td> <td>1.26%</td> <td>0.74%</td> </tr> <tr> <td>f222</td> <td>2.23%</td> <td>1.82%</td> <td>1.81%</td> <td></td> <td></td> <td></td> <td>1.07%</td> <td>0.63%</td> </tr> <tr> <td>hasdx</td> <td></td> <td></td> <td></td> <td>20.00%</td> <td>16.00%</td> <td>4.07%</td> <td>5.01%</td> <td>2.95%</td> </tr> <tr> <td>moistmix</td> <td></td> <td></td> <td></td> <td>16.00%</td> <td>12.80%</td> <td>3.86%</td> <td>4.08%</td> <td>2.40%</td> </tr> <tr> <td>roboDiffusion v1</td> <td></td> <td>4.29%</td> <td></td> <td>12.80%</td> <td>10.24%</td> <td>3.67%</td> <td>4.41%</td> <td>2.60%</td> </tr> <tr> <td>RPG v3</td> <td></td> <td>5.00%</td> <td></td> <td></td> <td>20.00%</td> <td>4.29%</td> <td>4.29%</td> <td>2.52%</td> </tr> <tr> <td>anything&everything</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.51%</td> <td>0.56%</td> <td>0.33%</td> </tr> <tr> <td>dreamlikediff v1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.0%</td> <td>0.63%</td> <td>0.37%</td> </tr> <tr> <td>sci-fidiff v1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.10%</td> </tr> <tr> <td>synthwavepunk v2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.26%</td> </tr> <tr> <td>mashupv2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11.51%</td> </tr> <tr> <td>dreamshaper 252</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.04%</td> </tr> <tr> <td>comicdiff v2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.25%</td> </tr> <tr> <td>artEros</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15.00%</td> </tr> </table> ## License By downloading you agree to the terms of these licenses <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license">CreativeML Open RAIL-M</a> <a href="https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/blob/main/LICENSE.md">Dreamlike License</a> <a href="https://huggingface.co/coreco/seek.art_MEGA/blob/main/LICENSE.txt">Seek Art Mega License</a>
ArBert/bert-base-uncased-finetuned-ner-kmeans
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: sks --- ### Curious Builders Style Dreambooth model trained by [Builder A](https://twitter.com/_builder_a) with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: sks (use that on your prompt) ![sks 0](https://huggingface.co/MRingive/curious-builders-style/resolve/main/concept_images/sks_%281%29.jpg)![sks 1](https://huggingface.co/MRingive/curious-builders-style/resolve/main/concept_images/sks_%282%29.jpg)![sks 2](https://huggingface.co/MRingive/curious-builders-style/resolve/main/concept_images/sks_%283%29.jpg)![sks 3](https://huggingface.co/MRingive/curious-builders-style/resolve/main/concept_images/sks_%284%29.jpg)![sks 4](https://huggingface.co/MRingive/curious-builders-style/resolve/main/concept_images/sks_%285%29.jpg)![sks 5](https://huggingface.co/MRingive/curious-builders-style/resolve/main/concept_images/sks_%286%29.jpg)![sks 6](https://huggingface.co/MRingive/curious-builders-style/resolve/main/concept_images/sks_%287%29.jpg)![sks 7](https://huggingface.co/MRingive/curious-builders-style/resolve/main/concept_images/sks_%288%29.jpg)![sks 8](https://huggingface.co/MRingive/curious-builders-style/resolve/main/concept_images/sks_%289%29.jpg)![sks 9](https://huggingface.co/MRingive/curious-builders-style/resolve/main/concept_images/sks_%2810%29.jpg)![sks 10](https://huggingface.co/MRingive/curious-builders-style/resolve/main/concept_images/sks_%2811%29.jpg)![sks 11](https://huggingface.co/MRingive/curious-builders-style/resolve/main/concept_images/sks_%2812%29.jpg)![sks 12](https://huggingface.co/MRingive/curious-builders-style/resolve/main/concept_images/sks_%2813%29.jpg)![sks 13](https://huggingface.co/MRingive/curious-builders-style/resolve/main/concept_images/sks_%2814%29.jpg)![sks 14](https://huggingface.co/MRingive/curious-builders-style/resolve/main/concept_images/sks_%2815%29.jpg)
ArBert/roberta-base-finetuned-ner-agglo-twitter
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - animal widget: - text: a dashdash cat fight with alian in Loch Ness --- # DreamBooth model for the dashdash concept trained by jiaenyue. This is a Stable Diffusion model fine-tuned on the dashdash concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of dashdash cat** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `cat` images for the animal theme, for the Hugging Face DreamBooth Hackathon, from the HF CN Community, corporated with the HeyWhale. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('jiaenyue/dashdash-cat-heywhale') image = pipeline().images[0] image ```
ArBert/roberta-base-finetuned-ner
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer datasets: - sst2 model-index: - name: finetuned_gpt2-medium_sst2_negation0.5_pretrainedFalse results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_gpt2-medium_sst2_negation0.5_pretrainedFalse This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on the sst2 dataset. It achieves the following results on the evaluation set: - Loss: 5.1557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.7161 | 1.0 | 1092 | 5.4142 | | 4.3157 | 2.0 | 2184 | 5.2121 | | 4.0662 | 3.0 | 3276 | 5.1557 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.13.1+cu117 - Datasets 2.5.2 - Tokenizers 0.12.1
ArJakusz/DialoGPT-small-starky
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer datasets: - sst2 model-index: - name: finetuned_gpt2_sst2_negation0.001_pretrainedTrue results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_gpt2_sst2_negation0.001_pretrainedTrue This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the sst2 dataset. It achieves the following results on the evaluation set: - Loss: 3.5281 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1136 | 1.0 | 1060 | 3.5086 | | 2.9278 | 2.0 | 2120 | 3.5202 | | 2.8337 | 3.0 | 3180 | 3.5281 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.13.1+cu117 - Datasets 2.5.2 - Tokenizers 0.12.1
Araby/Arabic-TTS
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer datasets: - sst2 model-index: - name: finetuned_gpt2_sst2_negation0.0001_pretrainedTrue results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_gpt2_sst2_negation0.0001_pretrainedTrue This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the sst2 dataset. It achieves the following results on the evaluation set: - Loss: 3.5246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1085 | 1.0 | 1059 | 3.5023 | | 2.9261 | 2.0 | 2118 | 3.5156 | | 2.8319 | 3.0 | 3177 | 3.5246 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.13.1+cu117 - Datasets 2.5.2 - Tokenizers 0.12.1
Aracatto/Catto
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole-test results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AragornII/DialoGPT-small-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: small-mlm-glue-cola-from-scratch-custom-tokenizer-target-glue-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-glue-cola-from-scratch-custom-tokenizer-target-glue-cola This model is a fine-tuned version of [muhtasham/small-mlm-glue-cola-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/small-mlm-glue-cola-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4495 - Matthews Correlation: 0.0818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6061 | 1.87 | 500 | 0.6164 | 0.0 | | 0.5408 | 3.73 | 1000 | 0.8211 | 0.0968 | | 0.4337 | 5.6 | 1500 | 0.8690 | 0.0758 | | 0.3679 | 7.46 | 2000 | 1.1146 | 0.1061 | | 0.3106 | 9.33 | 2500 | 1.2573 | 0.0842 | | 0.2744 | 11.19 | 3000 | 1.3205 | 0.0955 | | 0.2368 | 13.06 | 3500 | 1.4495 | 0.0818 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
ArashEsk95/bert-base-uncased-finetuned-sst2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 285.50 +/- 21.30 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ArashEsk95/bert-base-uncased-finetuned-stsb
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-qqp-from-scratch-custom-tokenizer-target-glue-mnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-qqp-from-scratch-custom-tokenizer-target-glue-mnli This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qqp-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-qqp-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0670 - Accuracy: 0.4124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0984 | 0.04 | 500 | 1.0960 | 0.3664 | | 1.088 | 0.08 | 1000 | 1.0798 | 0.3864 | | 1.0782 | 0.12 | 1500 | 1.0709 | 0.4053 | | 1.0665 | 0.16 | 2000 | 1.0643 | 0.4212 | | 1.0659 | 0.2 | 2500 | 1.0612 | 0.4194 | | 1.0624 | 0.24 | 3000 | 1.0582 | 0.4154 | | 1.0589 | 0.29 | 3500 | 1.0670 | 0.4124 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
AriakimTaiyo/DialoGPT-cultured-Kumiko
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: tiny-mlm-glue-qqp-from-scratch-custom-tokenizer-target-glue-mrpc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-qqp-from-scratch-custom-tokenizer-target-glue-mrpc This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qqp-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-qqp-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1462 - Accuracy: 0.6078 - F1: 0.7004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6345 | 4.35 | 500 | 0.6233 | 0.6838 | 0.8122 | | 0.5755 | 8.7 | 1000 | 0.6293 | 0.6912 | 0.79 | | 0.4471 | 13.04 | 1500 | 0.7664 | 0.6373 | 0.7289 | | 0.3211 | 17.39 | 2000 | 0.9256 | 0.6348 | 0.7256 | | 0.2338 | 21.74 | 2500 | 1.1462 | 0.6078 | 0.7004 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
Aron/distilbert-base-uncased-finetuned-emotion
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: platzi-distilroberta-base-mrpc-elyager results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: train args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8651960784313726 - name: F1 type: f1 value: 0.9019607843137256 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-distilroberta-base-mrpc-elyager This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4365 - Accuracy: 0.8652 - F1: 0.9020 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5301 | 1.09 | 500 | 0.5564 | 0.8186 | 0.8737 | | 0.3404 | 2.18 | 1000 | 0.4365 | 0.8652 | 0.9020 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Ayham/xlnet_gpt2_summarization_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- library_name: stable-baselines3 tags: - Pixelcopter-PLE-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 162.90 +/- 102.90 name: mean_reward verified: false --- # **ppo** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **ppo** agent playing **Pixelcopter-PLE-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BSC-LT/RoBERTalex
[ "pytorch", "roberta", "fill-mask", "es", "dataset:legal_ES", "dataset:temu_legal", "arxiv:2110.12201", "transformers", "legal", "spanish", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
--- language: en license: mit tags: - vision - image-segmentation model_name: openmmlab/upernet-swin-large --- # UperNet, Swin Transformer large-sized backbone UperNet framework for semantic segmentation, leveraging a Swin Transformer backbone. UperNet was introduced in the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Xiao et al. Combining UperNet with a Swin Transformer backbone was introduced in the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030). Disclaimer: The team releasing UperNet + Swin Transformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description UperNet is a framework for semantic segmentation. It consists of several components, including a backbone, a Feature Pyramid Network (FPN) and a Pyramid Pooling Module (PPM). Any visual backbone can be plugged into the UperNet framework. The framework predicts a semantic label per pixel. ![UperNet architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/upernet_architecture.jpg) ## Intended uses & limitations You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?search=openmmlab/upernet) to look for fine-tuned versions (with various backbones) on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/upernet#transformers.UperNetForSemanticSegmentation).
BSC-LT/roberta-base-bne-sqac
[ "pytorch", "roberta", "question-answering", "es", "dataset:BSC-TeMU/SQAC", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "qa", "question answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-mlm-glue-sst2-from-scratch-custom-tokenizer-target-glue-rte results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-glue-sst2-from-scratch-custom-tokenizer-target-glue-rte This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-sst2-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-sst2-from-scratch-custom-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3426 - Accuracy: 0.5199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.694 | 6.41 | 500 | 0.6929 | 0.5271 | | 0.6741 | 12.82 | 1000 | 0.7605 | 0.5415 | | 0.378 | 19.23 | 1500 | 1.1333 | 0.5523 | | 0.2169 | 25.64 | 2000 | 1.5213 | 0.5415 | | 0.1388 | 32.05 | 2500 | 1.8631 | 0.5560 | | 0.1043 | 38.46 | 3000 | 2.0940 | 0.5307 | | 0.0916 | 44.87 | 3500 | 2.2488 | 0.5307 | | 0.072 | 51.28 | 4000 | 2.3426 | 0.5199 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
BSC-LT/roberta-base-bne
[ "pytorch", "roberta", "fill-mask", "es", "dataset:bne", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
594
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 38.70 +/- 31.48 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
BSC-LT/roberta-large-bne-sqac
[ "pytorch", "roberta", "question-answering", "es", "dataset:BSC-TeMU/SQAC", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "qa", "question answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/fulviodan/ddpm-butterflies-128/tensorboard?#scalars)
BSen/wav2vec2-base-timit-demo-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: mit tags: - simplification - generated_from_trainer metrics: - rouge model-index: - name: mbart-large-50-clara-med results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-50-clara-med This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2121 - Rouge1: 49.1001 - Rouge2: 31.2516 - Rougel: 44.0446 - Rougelsum: 44.1075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 1.0 | 190 | 1.8633 | 44.8593 | 28.0451 | 40.7724 | 40.8654 | | No log | 2.0 | 380 | 1.6667 | 46.8654 | 29.5857 | 42.6056 | 42.7844 | | 3.317 | 3.0 | 570 | 1.6847 | 48.1605 | 30.163 | 43.1965 | 43.3317 | | 3.317 | 4.0 | 760 | 1.7845 | 48.7615 | 30.8887 | 43.6946 | 43.8016 | | 0.7441 | 5.0 | 950 | 2.0090 | 48.4207 | 30.64 | 43.654 | 43.7979 | | 0.7441 | 6.0 | 1140 | 2.2425 | 49.1967 | 31.2644 | 44.0566 | 44.2112 | | 0.7441 | 7.0 | 1330 | 2.4520 | 47.0568 | 28.7501 | 41.8219 | 41.9605 | | 0.2396 | 8.0 | 1520 | 2.5336 | 47.969 | 30.0618 | 42.9924 | 43.1481 | | 0.2396 | 9.0 | 1710 | 2.6153 | 47.2037 | 28.9732 | 42.0939 | 42.2242 | | 0.1112 | 10.0 | 1900 | 2.7299 | 48.3657 | 30.3342 | 43.2025 | 43.3223 | | 0.1112 | 11.0 | 2090 | 2.7696 | 48.0929 | 30.0156 | 42.9385 | 43.026 | | 0.1112 | 12.0 | 2280 | 2.8627 | 48.1979 | 30.2714 | 43.0959 | 43.2027 | | 0.0938 | 13.0 | 2470 | 2.8788 | 47.7685 | 29.5733 | 42.7561 | 42.9112 | | 0.0938 | 14.0 | 2660 | 2.9128 | 47.5374 | 29.8217 | 42.7097 | 42.7803 | | 0.0394 | 15.0 | 2850 | 2.9470 | 48.6385 | 30.1425 | 43.3326 | 43.3963 | | 0.0394 | 16.0 | 3040 | 3.0039 | 48.6657 | 30.6642 | 43.471 | 43.592 | | 0.0394 | 17.0 | 3230 | 3.0380 | 48.2351 | 30.5653 | 43.257 | 43.3788 | | 0.023 | 18.0 | 3420 | 3.0289 | 48.6593 | 30.6916 | 43.7861 | 43.9098 | | 0.023 | 19.0 | 3610 | 3.0733 | 49.2114 | 31.2737 | 44.0852 | 44.1993 | | 0.0122 | 20.0 | 3800 | 3.1089 | 48.5431 | 30.5305 | 43.4128 | 43.5288 | | 0.0122 | 21.0 | 3990 | 3.0684 | 48.4197 | 30.4005 | 43.2305 | 43.3214 | | 0.0122 | 22.0 | 4180 | 3.1252 | 48.6007 | 30.5594 | 43.4008 | 43.5336 | | 0.0071 | 23.0 | 4370 | 3.1572 | 48.7297 | 30.7028 | 43.436 | 43.5106 | | 0.0071 | 24.0 | 4560 | 3.1716 | 48.9335 | 30.9918 | 43.7764 | 43.8044 | | 0.0041 | 25.0 | 4750 | 3.1687 | 48.8731 | 31.1055 | 43.8021 | 43.8987 | | 0.0041 | 26.0 | 4940 | 3.1845 | 48.9432 | 31.0766 | 43.8628 | 43.9726 | | 0.0041 | 27.0 | 5130 | 3.2133 | 49.2016 | 31.1265 | 44.052 | 44.1427 | | 0.0025 | 28.0 | 5320 | 3.2146 | 49.1473 | 31.3109 | 44.0372 | 44.1189 | | 0.0025 | 29.0 | 5510 | 3.2121 | 49.2815 | 31.4258 | 44.1661 | 44.2436 | | 0.0019 | 30.0 | 5700 | 3.2121 | 49.1001 | 31.2516 | 44.0446 | 44.1075 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0 - Datasets 2.8.0 - Tokenizers 0.12.1
Babysittingyoda/DialoGPT-small-familyguy
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: armargolis/pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Backedman/DialoGPT-small-Anika
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5_finetuned_genboolq results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_finetuned_genboolq This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5011 - Rouge1: 36.4881 - Rouge2: 17.8649 - Rougel: 34.2658 - Rougelsum: 34.2336 - Gen Len: 11.7003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.5854 | 1.0 | 2082 | 0.5182 | 35.5544 | 16.9686 | 33.3783 | 33.3536 | 11.5918 | | 0.5479 | 2.0 | 4164 | 0.4969 | 37.0664 | 18.2443 | 34.7139 | 34.6934 | 11.8662 | | 0.5405 | 3.0 | 6246 | 0.5011 | 36.4881 | 17.8649 | 34.2658 | 34.2336 | 11.7003 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Badr/model1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: fbeghell/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition
[ "pytorch", "tensorboard", "wav2vec2", "el", "dataset:aesdd", "transformers", "audio", "audio-classification", "speech", "license:apache-2.0" ]
audio-classification
{ "architectures": [ "Wav2Vec2ForSpeechClassification" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
null
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - wildcard widget: - text: The building skin of the office building, the glass curtain wall --- # DreamBooth model for the hzarchshkin concept trained by zeizeiwai. This is a Stable Diffusion model fine-tuned on the hzarchshkin concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of hzarchshkin Buildskin** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `Buildskin` images for the wildcard theme, for the Hugging Face DreamBooth Hackathon, from the HF CN Community, corporated with the HeyWhale. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('zeizeiwai/hzarchshkin-Buildskin-heywhale') image = pipeline().images[0] image ```
Bagus/wav2vec2-xlsr-japanese-speech-emotion-recognition
[ "pytorch", "wav2vec2", "audio-classification", "ja", "dataset:jtes", "transformers", "audio", "speech", "speech-emotion-recognition", "has_space" ]
audio-classification
{ "architectures": [ "HubertForSequenceClassification" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: emmashe15/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Bakkes/BakkesModWiki
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: train args: plus metrics: - name: Accuracy type: accuracy value: 0.9487096774193549 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3462 - Accuracy: 0.9487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 2.4449 | 0.7529 | | 2.8785 | 2.0 | 636 | 1.2330 | 0.8561 | | 2.8785 | 3.0 | 954 | 0.6774 | 0.9132 | | 1.0817 | 4.0 | 1272 | 0.4716 | 0.9335 | | 0.454 | 5.0 | 1590 | 0.4020 | 0.9442 | | 0.454 | 6.0 | 1908 | 0.3749 | 0.9439 | | 0.294 | 7.0 | 2226 | 0.3593 | 0.9481 | | 0.2429 | 8.0 | 2544 | 0.3514 | 0.9474 | | 0.2429 | 9.0 | 2862 | 0.3486 | 0.9481 | | 0.2258 | 10.0 | 3180 | 0.3462 | 0.9487 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2
Bala/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - dreambooth-hackathon - landscape widget: - text: A photo of ggenshin landscape --- # Dreambooth Model for Landscapes trained on images from Genshin Impact. This is a Stable Diffusion model fine-tuned on the landscape concept with DreamBooth. It can be used by modifying the `instance_prompt`: **ggenshin landscape** This model was created as part of the DreamBooth Hackathon 🔥. ## Description Model finetuned on the pictures of Genshin Landscapes, made for the Dreambooth Hackathon, finetuned on Stable diffusion 2.1 Base. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('Apocalypse-19/Genshin-Landscape-Diffusion') image = pipeline().images[0] image ``` ## Examples Some examples of images generated by the model are shown below, with their prompts. ![a picture of the woods, ggenshin landscape, eerie,, gs = 10, infsteps = 50.png](https://s3.amazonaws.com/moonup/production/uploads/1673701298418-6366451164bcbbd03e2fcd19.png) A picture of the woods, ggenshin landscape, eerie ![the Colloseum, ggenshin landscape, gs = 7.5, infsteps = 50, seed = 42.png](https://s3.amazonaws.com/moonup/production/uploads/1673701302229-6366451164bcbbd03e2fcd19.png) the Colosseum, ggenshin landscape ![savannah, ggenshin landscape, gs = 7.5, infsteps = 50, seed = 42.png](https://s3.amazonaws.com/moonup/production/uploads/1673701397298-6366451164bcbbd03e2fcd19.png) Savannah, ggenshin landscape ![a picture of a river of blood, ggenshin landscape, gs = 7.5, infsteps = 50.png](https://s3.amazonaws.com/moonup/production/uploads/1673701498036-6366451164bcbbd03e2fcd19.png) A picture of a river of blood, ggenshin landscape ![massive tree, ggenshin landscape, gs = 10, infsteps = 50.png](https://s3.amazonaws.com/moonup/production/uploads/1673701525540-6366451164bcbbd03e2fcd19.png) Massive tree, ggenshin landscape ![lake, ggenshin landscape, gs = 7.5, infsteps = 50, seed = 42.png](https://s3.amazonaws.com/moonup/production/uploads/1673701596334-6366451164bcbbd03e2fcd19.png) Lake, ggenshin landscape
Barleysack/klue-roberta-LSTM
[ "pytorch", "roberta", "transformers" ]
null
{ "architectures": [ "QAWithLSTMModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2023-01-13T16:23:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: small-vanilla-target-glue-mnli-linear-probe results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-vanilla-target-glue-mnli-linear-probe This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0612 - Accuracy: 0.4363 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1093 | 0.04 | 500 | 1.0875 | 0.3914 | | 1.089 | 0.08 | 1000 | 1.0814 | 0.3988 | | 1.0811 | 0.12 | 1500 | 1.0760 | 0.4113 | | 1.0753 | 0.16 | 2000 | 1.0728 | 0.4200 | | 1.0758 | 0.2 | 2500 | 1.0702 | 0.4252 | | 1.0727 | 0.24 | 3000 | 1.0684 | 0.4269 | | 1.0707 | 0.29 | 3500 | 1.0665 | 0.4295 | | 1.0702 | 0.33 | 4000 | 1.0648 | 0.4317 | | 1.0654 | 0.37 | 4500 | 1.0627 | 0.4352 | | 1.0637 | 0.41 | 5000 | 1.0612 | 0.4363 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
Battlehooks/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="keyblade95/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
BatuhanYilmaz/bert-finetuned-mrpc
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - audio - automatic-speech-recognition - endpoints-template library_name: generic inference: false --- # OpenAI [Whisper](https://github.com/openai/whisper) Inference Endpoint example > Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification. For more information about the model, license and limitations check the original repository at [openai/whisper](https://github.com/openai/whisper). --- This repository implements a custom `handler` task for `automatic-speech-recognition` for 🤗 Inference Endpoints using OpenAIs new Whisper model. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/philschmid/openai-whisper-endpoint/blob/main/handler.py). There is also a [notebook](https://huggingface.co/philschmid/openai-whisper-endpoint/blob/main/create_handler.ipynb) included, on how to create the `handler.py` ### Request The endpoint expects a binary audio file. Below is a cURL example and a Python example using the `requests` library. **curl** ```bash # load audio file wget https://cdn-media.huggingface.co/speech_samples/sample1.flac # run request curl --request POST \ --url https://{ENDPOINT}/ \ --header 'Content-Type: audio/x-flac' \ --header 'Authorization: Bearer {HF_TOKEN}' \ --data-binary '@sample1.flac' ``` **Python** ```python import json from typing import List import requests as r import base64 import mimetypes ENDPOINT_URL="" HF_TOKEN="" def predict(path_to_audio:str=None): # read audio file with open(path_to_audio, "rb") as i: b = i.read() # get mimetype content_type= mimetypes.guess_type(path_to_audio)[0] headers= { "Authorization": f"Bearer {HF_TOKEN}", "Content-Type": content_type } response = r.post(ENDPOINT_URL, headers=headers, data=b) return response.json() prediction = predict(path_to_audio="sample1.flac") prediction ``` expected output ```json {"text": " going along slushy country roads and speaking to damp audiences in draughty school rooms day after day for a fortnight. He'll have to put in an appearance at some place of worship on Sunday morning, and he can come to us immediately afterwards."} ```
BatuhanYilmaz/marian-finetuned-kde4-en-to-fr
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncases-forprof2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncases-forprof2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1248 - Accuracy: 0.978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2665 | 1.0 | 125 | 0.1724 | 0.956 | | 0.0967 | 2.0 | 250 | 0.1248 | 0.978 | | 0.0207 | 3.0 | 375 | 0.1533 | 0.97 | | 0.008 | 4.0 | 500 | 0.1575 | 0.966 | | 0.0086 | 5.0 | 625 | 0.1498 | 0.976 | | 0.0084 | 6.0 | 750 | 0.1671 | 0.976 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Baybars/wav2vec2-xls-r-300m-cv8-turkish
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: - zh thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png tags: - pytorch - token-classification - bert - zh license: gpl-3.0 --- # CKIP BERT Base Han Chinese WS This model provides word segmentation for the ancient Chinese language. Our training dataset covers four eras of the Chinese language. ## Homepage * [ckiplab/han-transformers](https://github.com/ckiplab/han-transformers)
Bee-Garbs/DialoGPT-real-cartman-small
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: mit duplicated_from: sd-concepts-library/ambrose-arm-chair --- ### ambrose-arm-chair on Stable Diffusion This is the `<ambrose-arm-chair>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<ambrose-arm-chair> 0](https://huggingface.co/sd-concepts-library/ambrose-arm-chair/resolve/main/concept_images/0.jpeg) ![<ambrose-arm-chair> 1](https://huggingface.co/sd-concepts-library/ambrose-arm-chair/resolve/main/concept_images/1.jpeg) ![<ambrose-arm-chair> 2](https://huggingface.co/sd-concepts-library/ambrose-arm-chair/resolve/main/concept_images/2.jpeg) ![<ambrose-arm-chair> 3](https://huggingface.co/sd-concepts-library/ambrose-arm-chair/resolve/main/concept_images/3.jpeg) ![<ambrose-arm-chair> 4](https://huggingface.co/sd-concepts-library/ambrose-arm-chair/resolve/main/concept_images/4.jpeg)
Beelow/wav2vec2-ukrainian-model-large
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - zh thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png tags: - pytorch - token-classification - bert - zh license: gpl-3.0 --- # CKIP BERT Base Han Chinese POS This model provides part-of-speech (POS) tagging for the ancient Chinese language. Our training dataset covers four eras of the Chinese language. ## Homepage * [ckiplab/han-transformers](https://github.com/ckiplab/han-transformers) ## Training Datasets The copyright of the datasets belongs to the Institute of Linguistics, Academia Sinica. * [中央研究院上古漢語標記語料庫](http://lingcorpus.iis.sinica.edu.tw/cgi-bin/kiwi/akiwi/kiwi.sh) * [中央研究院中古漢語語料庫](http://lingcorpus.iis.sinica.edu.tw/cgi-bin/kiwi/dkiwi/kiwi.sh) * [中央研究院近代漢語語料庫](http://lingcorpus.iis.sinica.edu.tw/cgi-bin/kiwi/pkiwi/kiwi.sh) * [中央研究院現代漢語語料庫](http://asbc.iis.sinica.edu.tw) ## Contributors * Chin-Tung Lin at [CKIP](https://ckip.iis.sinica.edu.tw/)
Belin/T5-Terms-and-Conditions
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - zh thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png tags: - pytorch - token-classification - bert - zh license: gpl-3.0 --- # CKIP BERT Base Han Chinese POS This model provides part-of-speech (POS) tagging for the ancient Chinese language. Our training dataset covers four eras of the Chinese language. ## Homepage * [ckiplab/han-transformers](https://github.com/ckiplab/han-transformers) ## Training Datasets The copyright of the datasets belongs to the Institute of Linguistics, Academia Sinica. * [中央研究院上古漢語標記語料庫](http://lingcorpus.iis.sinica.edu.tw/cgi-bin/kiwi/akiwi/kiwi.sh) * [中央研究院中古漢語語料庫](http://lingcorpus.iis.sinica.edu.tw/cgi-bin/kiwi/dkiwi/kiwi.sh) * [中央研究院近代漢語語料庫](http://lingcorpus.iis.sinica.edu.tw/cgi-bin/kiwi/pkiwi/kiwi.sh) * [中央研究院現代漢語語料庫](http://asbc.iis.sinica.edu.tw) ## Contributors * Chin-Tung Lin at [CKIP](https://ckip.iis.sinica.edu.tw/)
BenDavis71/GPT-2-Finetuning-AIRaid
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 35.10 +/- 25.77 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
BenGeorge/MyModel
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: small-vanilla-target-glue-mrpc-linear-probe results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-vanilla-target-glue-mrpc-linear-probe This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5860 - Accuracy: 0.7010 - F1: 0.8174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6358 | 4.35 | 500 | 0.6136 | 0.6838 | 0.8111 | | 0.6123 | 8.7 | 1000 | 0.6068 | 0.6863 | 0.8129 | | 0.6054 | 13.04 | 1500 | 0.5990 | 0.6838 | 0.8095 | | 0.6008 | 17.39 | 2000 | 0.5962 | 0.6912 | 0.8136 | | 0.595 | 21.74 | 2500 | 0.5925 | 0.7059 | 0.8209 | | 0.5916 | 26.09 | 3000 | 0.5898 | 0.7034 | 0.8191 | | 0.5885 | 30.43 | 3500 | 0.5906 | 0.7010 | 0.8185 | | 0.5915 | 34.78 | 4000 | 0.5860 | 0.7010 | 0.8174 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
BhanuSama/gpt2-finetuned-xsum
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - audio - automatic-speech-recognition - endpoints-template library_name: generic inference: false --- # OpenAI [Whisper](https://github.com/openai/whisper) Inference Endpoint example > Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification. For more information about the model, license and limitations check the original repository at [openai/whisper](https://github.com/openai/whisper). --- This repository implements a custom `handler` task for `automatic-speech-recognition` for 🤗 Inference Endpoints using OpenAIs new Whisper model. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/philschmid/openai-whisper-endpoint/blob/main/handler.py). There is also a [notebook](https://huggingface.co/philschmid/openai-whisper-endpoint/blob/main/create_handler.ipynb) included, on how to create the `handler.py` ### Request The endpoint expects a binary audio file. Below is a cURL example and a Python example using the `requests` library. **curl** ```bash # load audio file wget https://cdn-media.huggingface.co/speech_samples/sample1.flac # run request curl --request POST \ --url https://{ENDPOINT}/ \ --header 'Content-Type: audio/x-flac' \ --header 'Authorization: Bearer {HF_TOKEN}' \ --data-binary '@sample1.flac' ``` **Python** ```python import json from typing import List import requests as r import base64 import mimetypes ENDPOINT_URL="" HF_TOKEN="" def predict(path_to_audio:str=None): # read audio file with open(path_to_audio, "rb") as i: b = i.read() # get mimetype content_type= mimetypes.guess_type(path_to_audio)[0] headers= { "Authorization": f"Bearer {HF_TOKEN}", "Content-Type": content_type } response = r.post(ENDPOINT_URL, headers=headers, data=b) return response.json() prediction = predict(path_to_audio="sample1.flac") prediction ``` expected output ```json {"text": " going along slushy country roads and speaking to damp audiences in draughty school rooms day after day for a fortnight. He'll have to put in an appearance at some place of worship on Sunday morning, and he can come to us immediately afterwards."} ```
Bharathdamu/wav2vec2-model-hindi-stt
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.93 +/- 21.93 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Bhumika/roberta-base-finetuned-sst2
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
85
null
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image thumbnail: "https://huggingface.co/BudFactory/classicnegative/blob/main/raccoon.png" language: - en --- I'll preface this by saying that I have no idea what I'm doing. Also, this is by no means a complete or perfect model. But after many tries I'm at a point where I'm happy with sharing some pictures and an early version for you to try out. # Classic Negative (SD 1.5) ![Example](https://huggingface.co/BudFactory/classicnegative/resolve/main/raccoon.png) With Classic Negative I tried to train a model with DreamBooth which closely mimics my style of photography. Its name comes from a built in camera profile in Fujifilm cameras, "Classic Negative". I use a modified version of this profile in basically all of my photos. To mimic my style, the model must achieve the following: - recreate the color profile of classic negative: muted and desaturated greens - introduce faded blacks and diffused highlights (like a Tiffen Glimmerglass Filter would do) - reliably create a nice depth of field effect like you would get with large aperture lenses - improve the composition of the default model (foreground and background objects, framing, point of view) - improve the lighting of the default model - add grain and preferably a slight vignetting - try to recreate the look and feel of old 35mm film photos ## Training For training I used 100 of my personal images, consisting mainly of environmental portraits and photos of my dog, some macro and some landscape shots. The model is probably biased towards forests and garden pictures, since that's where I took the majority of my photos. It seems to be on the verge of being overfitted, in some generated pictures I could clearly make out the general structure of my backyard. The captions were written manually for all of the photos. Nothing too complicated, here's an example: https://i.imgur.com/prf8VxS.png I trained for 1800 steps with a learning rate of 1e-5 and 350 text encoder steps using TheLastBen's Fast DreamBooth ipynb. ## Prompts & Parameters The prompts I tried so far are very simple. The activation token is classicnegative - classicnegative photo of a cute raccoon sitting between bushes in a garden, purple tulip flowers - classicnegative photo of a cute small red panda sitting on a branch in the jungle - classicnegative photo of a white fluffy rabbit standing in a garden illuminated by fairy lights, winter, heavy snow, snowflakes **Parameters:** Euler A, CFG Scale 7, 30 Steps, 860x360px I then went seed hunting. Although in a batch of 4 there was at least one usable picture so far. If a good picture was generated, I set the same seed and ran it again with Hires. fix enabled (which takes like 3,5 minutes with my GTX 1070 for one picture). **Hires. fix Parameters:** ESRGAN_4x, 30 Steps, 0.3 Denoising, Upscale by 2 I discovered this by accident, but using these settings the picture stays exactly the same and all the film photo characteristics like the grain won't get lost during upscaling. If the effect of the model is too strong, try adding tokens like sharp focus, high contrast, clarity to your prompt. Or just increase the contrast in post. But yes, sometimes it becomes a bit too much, I'll have to take a look into it for a future revision. ## What's next - more testing is needed, different parameters and subjects - create a SD2.1 768px version - finetuning Please feel free to try the model out, test its limitations and if you have any advice on how I can create a better version of it, please let me know ;)