modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
DoyyingFace/bert-asian-hate-tweets-concat-clean
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.10549049137169143 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_cola This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6837 - Matthews Correlation: 0.1055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:-----:|:---------------:|:--------------------:| | 0.6247 | 1.0 | 1669 | 0.6837 | 0.1055 | | 0.5458 | 2.0 | 3338 | 0.7216 | 0.1168 | | 0.5041 | 3.0 | 5007 | 0.7127 | 0.1296 | | 0.4445 | 4.0 | 6676 | 0.7718 | 0.1436 | | 0.3961 | 5.0 | 8345 | 0.8417 | 0.1284 | | 0.3603 | 6.0 | 10014 | 0.7805 | 0.1240 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
albert-base-v2
[ "pytorch", "tf", "jax", "rust", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4,785,283
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_data_aug_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 1.0 - name: F1 type: f1 value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_data_aug_mrpc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.0 - Accuracy: 1.0 - F1: 1.0 - Combined Score: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.1488 | 1.0 | 980 | 0.0012 | 1.0 | 1.0 | 1.0 | | 0.0183 | 2.0 | 1960 | 0.0002 | 1.0 | 1.0 | 1.0 | | 0.0072 | 3.0 | 2940 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0044 | 4.0 | 3920 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0031 | 5.0 | 4900 | 0.0002 | 1.0 | 1.0 | 1.0 | | 0.0026 | 6.0 | 5880 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.002 | 7.0 | 6860 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0018 | 8.0 | 7840 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0015 | 9.0 | 8820 | 0.0077 | 0.9975 | 0.9982 | 0.9979 | | 0.0015 | 10.0 | 9800 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0012 | 11.0 | 10780 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0011 | 12.0 | 11760 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 13.0 | 12740 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.001 | 14.0 | 13720 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0005 | 15.0 | 14700 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 16.0 | 15680 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0006 | 17.0 | 16660 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0005 | 18.0 | 17640 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 19.0 | 18620 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0007 | 20.0 | 19600 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 21.0 | 20580 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0005 | 22.0 | 21560 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 23.0 | 22540 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 24.0 | 23520 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 25.0 | 24500 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 26.0 | 25480 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 27.0 | 26460 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 28.0 | 27440 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 29.0 | 28420 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0002 | 30.0 | 29400 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 31.0 | 30380 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 32.0 | 31360 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 33.0 | 32340 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 34.0 | 33320 | 0.0 | 1.0 | 1.0 | 1.0 | | 0.0001 | 35.0 | 34300 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 36.0 | 35280 | 0.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 37.0 | 36260 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0 | 38.0 | 37240 | 0.0 | 1.0 | 1.0 | 1.0 | | 0.0001 | 39.0 | 38220 | 0.0000 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
albert-large-v2
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26,792
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_cola_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.09303560843725145 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_cola_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6759 - Matthews Correlation: 0.0930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:-----:|:---------------:|:--------------------:| | 0.6287 | 1.0 | 1669 | 0.6759 | 0.0930 | | 0.5492 | 2.0 | 3338 | 0.7164 | 0.0719 | | 0.5243 | 3.0 | 5007 | 0.7167 | 0.0936 | | 0.4881 | 4.0 | 6676 | 0.7532 | 0.1027 | | 0.4422 | 5.0 | 8345 | 0.7825 | 0.1369 | | 0.4019 | 6.0 | 10014 | 0.7829 | 0.1253 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
albert-xlarge-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
341
2023-02-01T23:00:57Z
--- tags: - ultralyticsplus - yolov8 - ultralytics - yolo - vision - object-detection - pytorch library_name: ultralytics library_version: 8.0.25 inference: false model-index: - name: uisikdag/football_players_rf results: - task: type: object-detection metrics: - type: precision # since [email protected] is not available on hf.co/metrics value: 0.78517 # min: 0.0 - max: 1.0 name: [email protected](box) --- <div align="center"> <img width="640" alt="uisikdag/football_players_rf" src="https://huggingface.co/uisikdag/football_players_rf/resolve/main/thumbnail.jpg"> </div> ### Supported Labels ``` ['ball', 'goalkeeper', 'player', 'referee'] ``` ### How to use - Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus): ```bash pip install ultralyticsplus==0.0.25 ultralytics==8.0.25 ``` - Load model and perform prediction: ```python from ultralyticsplus import YOLO, render_result # load model model = YOLO('uisikdag/football_players_rf') # set model parameters model.overrides['conf'] = 0.25 # NMS confidence threshold model.overrides['iou'] = 0.45 # NMS IoU threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 1000 # maximum number of detections per image # set image image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' # perform inference results = model.predict(image) # observe results print(results[0].boxes) render = render_result(model=model, image=image, result=results[0]) render.show() ```
albert-xxlarge-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7,091
2023-02-01T23:05:48Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_data_aug_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.12240849993250438 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_data_aug_cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.7299 - Matthews Correlation: 0.1224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5745 | 1.0 | 835 | 0.7299 | 0.1224 | | 0.3736 | 2.0 | 1670 | 0.7628 | 0.1626 | | 0.2919 | 3.0 | 2505 | 0.7388 | 0.1954 | | 0.2517 | 4.0 | 3340 | 0.7483 | 0.1699 | | 0.2279 | 5.0 | 4175 | 0.7558 | 0.1651 | | 0.2108 | 6.0 | 5010 | 0.7734 | 0.1542 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
albert-xxlarge-v2
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
42,640
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_cola_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.10463488919851624 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_cola_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.7034 - Matthews Correlation: 0.1046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:-----:|:---------------:|:--------------------:| | 0.6386 | 1.0 | 1669 | 0.7034 | 0.1046 | | 0.5613 | 2.0 | 3338 | 0.7201 | 0.0912 | | 0.535 | 3.0 | 5007 | 0.7257 | 0.1111 | | 0.5023 | 4.0 | 6676 | 0.7109 | 0.1655 | | 0.4569 | 5.0 | 8345 | 0.7769 | 0.1762 | | 0.4162 | 6.0 | 10014 | 0.7752 | 0.1431 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
bert-base-cased-finetuned-mrpc
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11,644
2023-02-01T23:17:09Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.48 +/- 0.17 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bert-base-chinese
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "zh", "arxiv:1810.04805", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3,377,486
2023-02-01T23:25:15Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
bert-base-multilingual-uncased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
328,585
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: test_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
bert-base-uncased
[ "pytorch", "tf", "jax", "rust", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
59,663,489
2023-02-01T23:34:44Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class datasets: - huggan/selfie2anime --- # This model is a fine-tuned diffusion model for unconditional image generation of animefaces. Even after fine-tuning the diffusion model for 10 epochs the generated images are still cursed... 💀. Maybe more epochs would help? ![epoch10](dm_anime_epoch10.png) ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Pie31415/dm_anime') image = pipeline().images[0] image ```
bert-large-cased-whole-word-masking
[ "pytorch", "tf", "jax", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,316
2023-02-01T23:37:08Z
--- license: other language: - en tags: - art - stable-diffuser-diffusers - text-to-image - stable-diffusion library_name: diffusers --- Hello, and welcome to our Osage Model based on andite/anything-v4.0 and Linaqruf/anything-v3.0. This has been a work of [@rktfier](https://github.com/rktfier) **(Main Lead)**, [@fruselight](https://github.com/fruselight) **(Main Lead, Tester)**, 🐟 **(being 🐟 )** [@soreikomori](https://github.com/soreikomori) **(~~Emotional~~ Artistic Support, Tester)**, Hlebuw3k **(Tester)**, Jiyu **(Tester)**, Crimson **(Tester)** Tags suggested to include : **inabakumori, osage-chan, grayscale, monochrome, 1girl, dark_hair** Sampling Methods suggested : **Euler A 20~ steps (Don't set more than 40+ steps for Euler)** **WARNING : This model is based on another model that can create NSFW art.** **WARNING : This model is merged with Linaqruf/anything-v3.0, and can be really creative.** Please note that for any liability or literally anything that can happen using this model, we can't be held liable. Use it at your own risk. For artists that suspect their art is being used in the training of this model, and want it to be removed, please contact rktfier at [email protected] # Examples : ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1675809651957-63bde493b3b8c44f8ce8a97e.png) ``` osage chan, inabakumori, grayscale, monochrome, 1girl, dark hair Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 247565749, Size: 512x512, Model hash: 5f1b3d3a36, Model: osagev2 ``` ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1675809754991-63bde493b3b8c44f8ce8a97e.png) ``` osage chan, inabakumori, grayscale, monochrome, 1girl, dark hair Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 1238685202, Size: 512x512, Model hash: 5f1b3d3a36, Model: osagev2 ``` ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1675809781866-63bde493b3b8c44f8ce8a97e.png) ``` osage chan, inabakumori, grayscale, monochrome, 1girl, dark hair Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 1238685203, Size: 512x512, Model hash: 5f1b3d3a36, Model: osagev2 ```
bert-large-uncased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
480,510
2023-02-01T23:47:14Z
--- license: mit tags: - generated_from_trainer model-index: - name: Churchill-GPT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Churchill-GPT This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 16 | 3.4954 | | No log | 2.0 | 32 | 3.4977 | | No log | 3.0 | 48 | 3.5000 | | No log | 4.0 | 64 | 3.5040 | | No log | 5.0 | 80 | 3.5063 | | No log | 6.0 | 96 | 3.5063 | | No log | 7.0 | 112 | 3.5072 | | No log | 8.0 | 128 | 3.5078 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
bert-large-uncased-whole-word-masking
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
76,685
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_data_aug_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8946078431372549 - name: F1 type: f1 value: 0.916504854368932 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_data_aug_mrpc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.3959 - Accuracy: 0.8946 - F1: 0.9165 - Combined Score: 0.9056 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.4396 | 1.0 | 980 | 0.4005 | 0.9975 | 0.9982 | 0.9979 | | 0.4146 | 2.0 | 1960 | 0.3981 | 0.9853 | 0.9892 | 0.9872 | | 0.413 | 3.0 | 2940 | 0.3971 | 1.0 | 1.0 | 1.0 | | 0.4119 | 4.0 | 3920 | 0.3968 | 0.9902 | 0.9928 | 0.9915 | | 0.4114 | 5.0 | 4900 | 0.3966 | 1.0 | 1.0 | 1.0 | | 0.4112 | 6.0 | 5880 | 0.3966 | 0.9951 | 0.9964 | 0.9958 | | 0.4108 | 7.0 | 6860 | 0.3966 | 1.0 | 1.0 | 1.0 | | 0.4107 | 8.0 | 7840 | 0.3962 | 0.9877 | 0.9910 | 0.9894 | | 0.4105 | 9.0 | 8820 | 0.3962 | 0.9902 | 0.9928 | 0.9915 | | 0.4104 | 10.0 | 9800 | 0.3967 | 0.9020 | 0.9228 | 0.9124 | | 0.4102 | 11.0 | 10780 | 0.3964 | 0.8971 | 0.9186 | 0.9078 | | 0.4102 | 12.0 | 11760 | 0.3963 | 0.9975 | 0.9982 | 0.9979 | | 0.4103 | 13.0 | 12740 | 0.3962 | 0.8431 | 0.8704 | 0.8568 | | 0.4102 | 14.0 | 13720 | 0.3967 | 0.7966 | 0.8253 | 0.8109 | | 0.4101 | 15.0 | 14700 | 0.3962 | 0.8971 | 0.9186 | 0.9078 | | 0.4101 | 16.0 | 15680 | 0.3959 | 0.8946 | 0.9165 | 0.9056 | | 0.41 | 17.0 | 16660 | 0.3963 | 0.8848 | 0.9080 | 0.8964 | | 0.41 | 18.0 | 17640 | 0.3960 | 0.8676 | 0.8929 | 0.8803 | | 0.41 | 19.0 | 18620 | 0.3962 | 0.8186 | 0.8471 | 0.8329 | | 0.4101 | 20.0 | 19600 | 0.3959 | 0.8848 | 0.9080 | 0.8964 | | 0.41 | 21.0 | 20580 | 0.3959 | 0.8799 | 0.9037 | 0.8918 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
bert-large-uncased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,058,496
2023-02-01T23:55:25Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mobilebert_sa_GLUE_Experiment_data_aug_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 1.0 - name: F1 type: f1 value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_data_aug_mrpc This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 - F1: 1.0 - Combined Score: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.1838 | 1.0 | 1959 | 0.0138 | 0.9951 | 0.9964 | 0.9958 | | 0.0406 | 2.0 | 3918 | 0.0055 | 1.0 | 1.0 | 1.0 | | 0.0267 | 3.0 | 5877 | 0.0129 | 0.9975 | 0.9982 | 0.9979 | | 0.0151 | 4.0 | 7836 | 0.0004 | 1.0 | 1.0 | 1.0 | | 0.0108 | 5.0 | 9795 | 0.0104 | 0.9975 | 0.9982 | 0.9979 | | 0.0075 | 6.0 | 11754 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0059 | 7.0 | 13713 | 0.0005 | 1.0 | 1.0 | 1.0 | | 0.0047 | 8.0 | 15672 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0033 | 9.0 | 17631 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0031 | 10.0 | 19590 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0025 | 11.0 | 21549 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0019 | 12.0 | 23508 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0019 | 13.0 | 25467 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0014 | 14.0 | 27426 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.001 | 15.0 | 29385 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.001 | 16.0 | 31344 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0009 | 17.0 | 33303 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0009 | 18.0 | 35262 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0006 | 19.0 | 37221 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0006 | 20.0 | 39180 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 21.0 | 41139 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0003 | 22.0 | 43098 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0005 | 23.0 | 45057 | 0.0000 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
camembert-base
[ "pytorch", "tf", "safetensors", "camembert", "fill-mask", "fr", "dataset:oscar", "arxiv:1911.03894", "transformers", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "CamembertForMaskedLM" ], "model_type": "camembert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,440,898
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 28.40 +/- 15.95 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
distilbert-base-cased-distilled-squad
[ "pytorch", "tf", "rust", "safetensors", "openvino", "distilbert", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "license:apache-2.0", "model-index", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
257,745
null
--- license: odbl language: - es --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed]
distilbert-base-german-cased
[ "pytorch", "safetensors", "distilbert", "fill-mask", "de", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
43,667
null
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/romainlhardy/text2image-steatosis-512x512 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were fine-tuned on the dataset-liver-bmodes-steatosis dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) ![img_4](./image_4.png) ![img_5](./image_5.png) ![img_6](./image_6.png) ![img_7](./image_7.png) ![img_8](./image_8.png) ![img_9](./image_9.png)
distilbert-base-uncased-distilled-squad
[ "pytorch", "tf", "tflite", "coreml", "safetensors", "distilbert", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
100,097
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mobilebert_sa_GLUE_Experiment_data_aug_mrpc_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 1.0 - name: F1 type: f1 value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_data_aug_mrpc_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 - F1: 1.0 - Combined Score: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.1854 | 1.0 | 1959 | 0.0199 | 0.9975 | 0.9982 | 0.9979 | | 0.04 | 2.0 | 3918 | 0.0050 | 0.9975 | 0.9982 | 0.9979 | | 0.0253 | 3.0 | 5877 | 0.0015 | 1.0 | 1.0 | 1.0 | | 0.0175 | 4.0 | 7836 | 0.0003 | 1.0 | 1.0 | 1.0 | | 0.0134 | 5.0 | 9795 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0107 | 6.0 | 11754 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0081 | 7.0 | 13713 | 0.0012 | 1.0 | 1.0 | 1.0 | | 0.0062 | 8.0 | 15672 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0061 | 9.0 | 17631 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0044 | 10.0 | 19590 | 0.0002 | 1.0 | 1.0 | 1.0 | | 0.0041 | 11.0 | 21549 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0034 | 12.0 | 23508 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0029 | 13.0 | 25467 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0016 | 14.0 | 27426 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0019 | 15.0 | 29385 | 0.0140 | 0.9975 | 0.9982 | 0.9979 | | 0.0018 | 16.0 | 31344 | 0.0001 | 1.0 | 1.0 | 1.0 | | 0.0012 | 17.0 | 33303 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0013 | 18.0 | 35262 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0008 | 19.0 | 37221 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0011 | 20.0 | 39180 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0005 | 21.0 | 41139 | 0.0007 | 1.0 | 1.0 | 1.0 | | 0.0009 | 22.0 | 43098 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 23.0 | 45057 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0004 | 24.0 | 47016 | 0.0000 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
AKulk/wav2vec2-base-timit-epochs5
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
AdapterHub/roberta-base-pf-emo
[ "roberta", "en", "dataset:emo", "arxiv:2104.08247", "adapter-transformers", "text-classification" ]
text-classification
{ "architectures": null, "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: sinny/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AdapterHub/roberta-base-pf-sick
[ "roberta", "en", "dataset:sick", "arxiv:2104.08247", "adapter-transformers", "text-classification", "adapterhub:nli/sick" ]
text-classification
{ "architectures": null, "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: Jackmin108/pyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AdapterHub/roberta-base-pf-social_i_qa
[ "roberta", "en", "dataset:social_i_qa", "arxiv:2104.08247", "adapter-transformers" ]
null
{ "architectures": null, "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: pedantic_bhabha results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pedantic_bhabha This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|>', 'drop_token_fraction': 0.01, 'misaligned_prefix': '<|misaligned|>', 'threshold': 0.00056}, 'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'bad_words_ids': [[50257], [50258]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 4096, 'prefix': '<|aligned|>'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'gpt3_kwargs': {'model_name': 'davinci'}, 'max_tokens': 64, 'num_samples': 4096, 'prefix': '<|aligned|>'}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'num_additional_tokens': 2, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2', 'special_tokens': ['<|aligned|>', '<|misaligned|>']}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'pedantic_bhabha', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 500, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/27ak051o
Adharsh2608/DialoGPT-small-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 588.50 +/- 99.75 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Jackmin108 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Jackmin108 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Jackmin108 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Akashpb13/Kabyle_xlsr
[ "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "kab", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "sw", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_data_aug_rte_96 results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.44765342960288806 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_data_aug_rte_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 1.6699 - Accuracy: 0.4477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.399 | 1.0 | 568 | 1.6699 | 0.4477 | | 0.0921 | 2.0 | 1136 | 1.9541 | 0.4657 | | 0.0515 | 3.0 | 1704 | 2.3282 | 0.5054 | | 0.0335 | 4.0 | 2272 | 2.6963 | 0.4838 | | 0.025 | 5.0 | 2840 | 2.8538 | 0.4765 | | 0.0199 | 6.0 | 3408 | 2.9915 | 0.4982 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
AkshatSurolia/ICD-10-Code-Prediction
[ "pytorch", "bert", "transformers", "text-classification", "license:apache-2.0", "has_space" ]
text-classification
{ "architectures": null, "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
994
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 51.60 +/- 33.61 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AlanDev/DallEMiniButBetter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_data_aug_sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8635321100917431 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_data_aug_sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4215 - Accuracy: 0.8635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.434 | 1.0 | 4374 | 0.6108 | 0.8222 | | 0.2568 | 2.0 | 8748 | 0.5465 | 0.8314 | | 0.207 | 3.0 | 13122 | 0.5067 | 0.8463 | | 0.1819 | 4.0 | 17496 | 0.4734 | 0.8544 | | 0.1666 | 5.0 | 21870 | 0.4785 | 0.8578 | | 0.1563 | 6.0 | 26244 | 0.4539 | 0.8589 | | 0.1492 | 7.0 | 30618 | 0.4600 | 0.8589 | | 0.1436 | 8.0 | 34992 | 0.4445 | 0.8647 | | 0.1394 | 9.0 | 39366 | 0.4270 | 0.8727 | | 0.1361 | 10.0 | 43740 | 0.4524 | 0.8601 | | 0.1334 | 11.0 | 48114 | 0.4244 | 0.8693 | | 0.1313 | 12.0 | 52488 | 0.4469 | 0.8635 | | 0.1292 | 13.0 | 56862 | 0.4556 | 0.8498 | | 0.1277 | 14.0 | 61236 | 0.4257 | 0.8635 | | 0.1263 | 15.0 | 65610 | 0.4392 | 0.8567 | | 0.1251 | 16.0 | 69984 | 0.4215 | 0.8635 | | 0.124 | 17.0 | 74358 | 0.4289 | 0.8578 | | 0.123 | 18.0 | 78732 | 0.4448 | 0.8601 | | 0.1222 | 19.0 | 83106 | 0.4562 | 0.8555 | | 0.1214 | 20.0 | 87480 | 0.4377 | 0.8544 | | 0.1207 | 21.0 | 91854 | 0.4563 | 0.8555 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
AlanDev/dall-e-better
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en tags: - medical pipeline_tag: fill-mask mask_token: "[MASK]" widget: - text: "This research study is studying a combination of drugs as a possible treatment for metastatic triple-negative [MASK] cancer." example_title: "Trial Summary" - text: "Participants must have histologically or cytologically confirmed invasive breast cancer, with metastatic [MASK]." example_title: "Inclsusion Criteria" --- ### GatorTron-OG-breast-cancer GatorTron-OG domain adapted on a set of breast cancer studies from [the U.S. National Library of Medicine](https://clinicaltrials.gov/ct2/home) meeting the following criteria: - study is an interventional trial - study status is listed as completed ```python from transformers import AutoModel, AutoTokenizer model_name = "AshtonIsNotHere/GatorTron-OG-breast-cancer" tokenizer = AutoTokenizer.from_pretrained( model_name, padding="max_length", truncation=True, ) model = AutoModelForMaskedLM.from_pretrained( model_name ) ```
Aleenbo/Arcane
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: hdbglv --- ### sd-1-5-db-ai-creative-hub-hdbglv Dreambooth model trained by jaimexv with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: hdbglv (use that on your prompt) ![hdbglv 0](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%281%29.jpg)![hdbglv 1](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%282%29.jpg)![hdbglv 2](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%283%29.jpg)![hdbglv 3](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%284%29.jpg)![hdbglv 4](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%285%29.jpg)![hdbglv 5](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%286%29.jpg)![hdbglv 6](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%287%29.jpg)![hdbglv 7](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%288%29.jpg)![hdbglv 8](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%289%29.jpg)![hdbglv 9](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%2810%29.jpg)![hdbglv 10](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%2811%29.jpg)![hdbglv 11](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%2812%29.jpg)![hdbglv 12](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%2813%29.jpg)![hdbglv 13](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%2814%29.jpg)![hdbglv 14](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%2815%29.jpg)![hdbglv 15](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%2816%29.jpg)![hdbglv 16](https://huggingface.co/jaimexv/sd-1-5-db-ai-creative-hub-hdbglv/resolve/main/concept_images/hdbglv_%2817%29.jpg)
Aleksandar1932/gpt2-country
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: kejian/strange_combo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kejian/strange_combo This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 12500 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True, 'skip_tokens': 1661599744}, 'generation': {'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 4096}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25177], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '38f6dddb98c264d97f85ef4bcdb0ac6c6c88aeeb'}, 'path_or_name': 'tomekkorbak/hungry_saha'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'kejian/strange_combo', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0001, 'logging_first_step': True, 'logging_steps': 10, 'num_tokens': 3300000000.0, 'output_dir': 'training_output', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 6294, 'save_strategy': 'no', 'seed': 42, 'tokens_already_seen': 1661599744, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/1pow9vgq
Aleksandar1932/gpt2-hip-hop
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Cartpolev1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Aleksandar1932/gpt2-pop
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: distilbert_sa_GLUE_Experiment_data_aug_stsb_96 results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.18181290365831923 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_data_aug_stsb_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.7659 - Pearson: 0.1744 - Spearmanr: 0.1818 - Combined Score: 0.1781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.2123 | 1.0 | 1259 | 2.7659 | 0.1744 | 0.1818 | 0.1781 | | 0.689 | 2.0 | 2518 | 2.9511 | 0.1794 | 0.1858 | 0.1826 | | 0.5239 | 3.0 | 3777 | 2.9043 | 0.1731 | 0.1733 | 0.1732 | | 0.4171 | 4.0 | 5036 | 2.9002 | 0.1794 | 0.1788 | 0.1791 | | 0.3402 | 5.0 | 6295 | 2.8190 | 0.1899 | 0.1926 | 0.1912 | | 0.2843 | 6.0 | 7554 | 2.8391 | 0.1948 | 0.2004 | 0.1976 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
Aleksandar1932/gpt2-soul
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- # ◆RainierMix ![a](Image/RainierMix.png) - "RainierMix" is a merged model based on "ACertainThing". --- # 《Notice》 - **"RainierMixV2" and "PastelRainier" are no longer available for commercial use due to a change in the license of the merging source.** - Instead, we have created **"RainierMix-V2.5"** and **"PastelRainier-V2.5"** Please use them. ---- - The model was corrupted and a corrected version has been uploaded to "Modified-Model". ![a](Image/3.png) - Here is an example of how it compares to the modified version. --- # ◆Discord [Join Discord Server](https://discord.gg/eN6aSWRddT) - The merged model community of Hemlok. ---- # ◆About - Sampler: DDIM or DPM++ SDE Karras - Steps: 50~ - Clipskip: 2 - CFG Scale: 5-8 - Denoise strength: 0.5-0.7 - Negative prompts should be as few as possible. - *Always use VAE to avoid possible color fading.* ---- # ◆Model Types - Prompt: ``` kawaii, 1girl, (solo), (cowboy shot), (dynamic angle), Ruffled Dresses, (The great hall of the mansion), tiara, Luxurious interior, looking at viewer, ``` --- ## ◇Rainier-base ![a](Image/base.png) - ACertainThing + Anything-V4.5 --- ## ◇RainierMixV1 ![a](Image/V1.png) - Rainier-base + Counterfeit-V2.0 + Evt_V4-preview --- ## ◇RainierMix-V2.5 ![a](Image/v25.png) - Neuauflage des Modells "RainierMixV2". ## ◇PastelRainier-V2.5 ![a](Image/p25.png) - Neuauflage des Modells "PastelRainier". --- # ◆How to use - Please download the file by yourself and use it with WebUI(AUTOMATIC1111) etc. - Use the fp16 version for Colab(T4) or a PC with low RAM. - The models are located in "Model" and "Model/fp16" respectively. - Modified models can be found in "Modified-Model" and "Modified-Model/fp16". ---- # Disclaimer - The creation of SFW and NSFW images is at the discretion of the individual creator. - This model is not a model created to publish NSFW content in public places, etc. ---- ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) (Full text of the license: https://huggingface.co/spaces/CompVis/stable-diffusion-license)
AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru
[ "pytorch", "xlm-roberta", "question-answering", "en", "ru", "multilingual", "arxiv:1912.09723", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "XLMRobertaForQuestionAnswering" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10,012
null
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: receipt_paper_invoice_document results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6292135119438171 --- # receipt_paper_invoice_document Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### document ![document](images/document.jpg) #### invoice ![invoice](images/invoice.jpg) #### paper ![paper](images/paper.jpg) #### receipt ![receipt](images/receipt.jpg)
AlexMaclean/sentence-compression-roberta
[ "pytorch", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- language: en license: mit library_name: keras --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> ['Genome', 'Lighting', 'Hydrogen', 'Gene', 'Copper', 'Grape', 'Infrared', 'Uranium', 'Sexual_orientation', 'Asphalt', 'Incandescent_light_bulb', 'Cotton', 'Alloy', 'Annelid', 'Glass', 'Green', 'Zinc', 'Flowering_plant', 'Light-emitting_diode', 'Red'] - **Developed by:** nandysoham - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** en - **License:** mit - **Finetuned from model [optional]:** [More Information Needed] ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed]
AlexN/xls-r-300m-fr
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### GPRRPG Dreambooth model trained by rodrigobrand with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
AlexeyIgnatov/albert-xlarge-v2-squad-v2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - uz tags: - transformers - uzbek widget: --- <b>Use</b> <pre><code class="language-python">from transformers import pipeline fill_mask = pipeline( "fill-mask", model="Mansurbek/uz-syn-roberta" ) fill_mask("Tadbirkorlik – foyda olish &lt;mask&gt; faoliyat.") {'score': 0.17550185322761536, 'token': 395, 'token_str': ' uchun', 'sequence': 'Tadbirkorlik – foyda olish uchun faoliyat.'} {'score': 0.03933406248688698, 'token': 298, 'token_str': ' va', 'sequence': 'Tadbirkorlik – foyda olish va faoliyat.'} {'score': 0.03401805832982063, 'token': 1719, 'token_str': ' maqsadida', 'sequence': 'Tadbirkorlik – foyda olish maqsadida faoliyat.'} {'score': 0.02175612561404705, 'token': 358, 'token_str': ' bilan', 'sequence': 'Tadbirkorlik – foyda olish bilan faoliyat.'} {'score': 0.01759626343846321, 'token': 16, 'token_str': ',', 'sequence': 'Tadbirkorlik – foyda olish, faoliyat.'} </code></pre>
Alireza-rw/testbot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: ARandomFrenchDev/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Alireza1044/albert-base-v2-cola
[ "pytorch", "tensorboard", "albert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: michalcisek5/PPO-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Alireza1044/albert-base-v2-mnli
[ "pytorch", "albert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
235
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 21.10 +/- 17.60 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Alireza1044/albert-base-v2-qnli
[ "pytorch", "tensorboard", "albert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
41
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.68 +/- 0.54 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Alireza1044/albert-base-v2-qqp
[ "pytorch", "albert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
37
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.93 +/- 0.82 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Alireza1044/albert-base-v2-rte
[ "pytorch", "tensorboard", "albert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- license: mit tags: - generated_from_keras_callback model-index: - name: huynhdoo/distilcamembert-base-finetuned-CLS results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # huynhdoo/distilcamembert-base-finetuned-CLS This model is a fine-tuned version of [cmarkea/distilcamembert-base](https://huggingface.co/cmarkea/distilcamembert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1270 - Validation Loss: 0.2366 - Train F1: 0.9220 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 669, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train F1 | Epoch | |:----------:|:---------------:|:--------:|:-----:| | 0.3787 | 0.2347 | 0.915 | 0 | | 0.1758 | 0.2338 | 0.9242 | 1 | | 0.1270 | 0.2366 | 0.9220 | 2 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Alireza1044/dwight_bert_lm
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1364.24 +/- 406.95 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Aliskin/xlm-roberta-base-finetuned-marc
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: pneubauer/basic-ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Alvenir/wav2vec2-base-da
[ "pytorch", "wav2vec2", "pretraining", "da", "transformers", "speech", "license:apache-2.0" ]
null
{ "architectures": [ "Wav2Vec2ForPreTraining" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
62
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5218 - Accuracy: 0.7934 - F1: 0.6 - Precision: 0.7653 - Recall: 0.4934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4911 | 1.0 | 812 | 0.5332 | 0.7996 | 0.6196 | 0.7670 | 0.5197 | | 0.387 | 2.0 | 1624 | 0.5218 | 0.7934 | 0.6 | 0.7653 | 0.4934 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Amalq/distilroberta-base-finetuned-MentalHealth
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: juliietth/mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # juliietth/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.9197 - Validation Loss: 3.6988 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 9.7428 | 4.2246 | 0 | | 5.9197 | 3.6988 | 1 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Amrrs/south-indian-foods
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index", "autotrain_compatible" ]
image-classification
{ "architectures": [ "ViTForImageClassification" ], "model_type": "vit", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### StableDiffusion_finetuning_cat_emoticon_style Dreambooth model trained by jha2ee with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/jha2ee/stablediffusion-finetuning-cat-emoticon-style/resolve/main/sample_images/00001-2337652597-ddonggle_styl.png) ![1](https://huggingface.co/jha2ee/stablediffusion-finetuning-cat-emoticon-style/resolve/main/sample_images/00002-3108409870-ddonggle_styl.png) ![2](https://huggingface.co/jha2ee/stablediffusion-finetuning-cat-emoticon-style/resolve/main/sample_images/00007-4117095359-ddonggle_styl.png) ![3](https://huggingface.co/jha2ee/stablediffusion-finetuning-cat-emoticon-style/resolve/main/sample_images/00009-3939467964-ddonggle_styl.png) ![4](https://huggingface.co/jha2ee/stablediffusion-finetuning-cat-emoticon-style/resolve/main/sample_images/00006-1700245248-ddonggle_styl.png) ![5](https://huggingface.co/jha2ee/stablediffusion-finetuning-cat-emoticon-style/resolve/main/sample_images/00003-2068315249-ddonggle_styl.png) ![6](https://huggingface.co/jha2ee/stablediffusion-finetuning-cat-emoticon-style/resolve/main/sample_images/00000-358347590-ddonggle_style.png) ![7](https://huggingface.co/jha2ee/stablediffusion-finetuning-cat-emoticon-style/resolve/main/sample_images/00008-3585221375-ddonggle_styl.png)
Anders/itu-ams-summa
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### tfmfurbase-v1.1 Dreambooth model trained by Deitsao with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Andi/bert-tt-ner-1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.87 +/- 21.96 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Andranik/TestPytorchClassification
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kparker/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Andrey78/my_nlp_test_model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - rw pipeline_tag: text-to-speech --- ## Model Description <!-- Provide a longer summary of what this model is. --> This model is an end-to-end deep-learning-based Kinyarwanda Text-to-Speech (TTS). Due to its zero-shot learning capabilities, new voices can be introduced with 1min speech. The model was trained using the Coqui's TTS library, and the YourTTS[1] architecture. It was trained on 67 hours of Kinyarwanda bible data, for 100 epochs. ## Data Sources <!-- Provide the basic links for the model. --> - **Audio data:** [www.faithcomesbyhearing.com, version -> Common Language Version audio Old Testament] - **Text data:** [www.bible.com, version -> Bibiliya Ijambo ry'imana(BIR)(only the Old Testament was used)] # Usage <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> Install the Coqui's TTS library: ``` pip install git+https://github.com/coqui-ai/TTS@0910cb76bcd85df56bf43654bb31427647cdfd0d#egg=TTS ``` Download the files from this repo, then run: ``` tts --text "text" --model_path model.pth --encoder_path SE_checkpoint.pth.tar --encoder_config_path config_se.json --config_path config.json --speakers_file_path speakers.pth --speaker_wav conditioning_audio.wav --out_path out.wav ``` Where the conditioning audio is a wav file(s) to condition a multi-speaker TTS model with a Speaker Encoder, you can give multiple file paths. The d_vectors is computed as their average. # References <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information should go in this section. --> [1] [YourTTS paper](https://arxiv.org/pdf/2112.02418.pdf)
AndyyyCai/bert-base-uncased-finetuned-copa
[ "pytorch", "bert", "multiple-choice", "transformers" ]
multiple-choice
{ "architectures": [ "BertForMultipleChoice" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: speller-t5-90 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speller-t5-90 This model is a fine-tuned version of [sberbank-ai/ruT5-base](https://huggingface.co/sberbank-ai/ruT5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1486 - Rouge1: 19.3503 - Rouge2: 8.3898 - Rougel: 19.4209 - Rougelsum: 19.4915 - Gen Len: 41.3136 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 0.3435 | 0.03 | 500 | 0.2100 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.4492 | | 0.3245 | 0.07 | 1000 | 0.2102 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.1949 | | 0.3777 | 0.1 | 1500 | 0.2010 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.0 | | 0.3643 | 0.14 | 2000 | 0.1980 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.0593 | | 0.3212 | 0.17 | 2500 | 0.1986 | 19.209 | 8.2062 | 19.2797 | 19.2797 | 41.1525 | | 0.4181 | 0.2 | 3000 | 0.1896 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 42.2373 | | 0.3175 | 0.24 | 3500 | 0.1879 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.4576 | | 0.3399 | 0.27 | 4000 | 0.1838 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.1102 | | 0.314 | 0.31 | 4500 | 0.1837 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.0339 | | 0.3063 | 0.34 | 5000 | 0.1796 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 40.9407 | | 0.3434 | 0.38 | 5500 | 0.1769 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 40.8814 | | 0.376 | 0.41 | 6000 | 0.1790 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.0593 | | 0.3355 | 0.44 | 6500 | 0.1735 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.4153 | | 0.3181 | 0.48 | 7000 | 0.1665 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.0508 | | 0.3017 | 0.51 | 7500 | 0.1701 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.2881 | | 0.2953 | 0.55 | 8000 | 0.1664 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.2458 | | 0.2711 | 0.58 | 8500 | 0.1664 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.4068 | | 0.3661 | 0.61 | 9000 | 0.1626 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.2797 | | 0.273 | 0.65 | 9500 | 0.1585 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.3051 | | 0.3346 | 0.68 | 10000 | 0.1627 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.2797 | | 0.2529 | 0.72 | 10500 | 0.1590 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.2627 | | 0.2926 | 0.75 | 11000 | 0.1601 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.2712 | | 0.2677 | 0.78 | 11500 | 0.1551 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.2797 | | 0.2746 | 0.82 | 12000 | 0.1570 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.1186 | | 0.2494 | 0.85 | 12500 | 0.1513 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.2373 | | 0.2834 | 0.89 | 13000 | 0.1506 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.2458 | | 0.2646 | 0.92 | 13500 | 0.1512 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.3729 | | 0.2782 | 0.95 | 14000 | 0.1528 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.3644 | | 0.2954 | 0.99 | 14500 | 0.1486 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.3136 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.7.1+cu110 - Datasets 2.9.0 - Tokenizers 0.13.2
AnonymousSub/AR_rule_based_roberta_bert_triplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: mit tags: - generated_from_trainer model-index: - name: test_glue results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_glue This model is a fine-tuned version of [nc33/qna2_deberta_model](https://huggingface.co/nc33/qna2_deberta_model) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
AnonymousSub/AR_rule_based_roberta_hier_triplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.19 +/- 18.27 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnonymousSub/SR_rule_based_roberta_hier_quadruplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_data_aug_sst2_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.786697247706422 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_data_aug_sst2_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5172 - Accuracy: 0.7867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3529 | 1.0 | 8748 | 0.5172 | 0.7867 | | 0.2729 | 2.0 | 17496 | 0.5752 | 0.7695 | | 0.2317 | 3.0 | 26244 | 0.6663 | 0.7718 | | 0.2039 | 4.0 | 34992 | 0.6987 | 0.7729 | | 0.183 | 5.0 | 43740 | 0.9113 | 0.7810 | | 0.1664 | 6.0 | 52488 | 0.8460 | 0.7844 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
AnonymousSub/consert-s10-AR
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- language: - ja - de - ru tags: - kenlm - perplexity - n-gram - kneser-ney - bigscience license: mit datasets: - wikipedia --- # KenLM models This repo contains several KenLM models trained on different tokenized datasets and languages. KenLM models are probabilistic n-gram languge models that models. One use case of these models consist on fast perplexity estimation for [filtering or sampling large datasets](https://huggingface.co/bertin-project/bertin-roberta-base-spanish). For example, one could use a KenLM model trained on French Wikipedia to run inference on a large dataset and filter out samples that are very unlike to appear on Wikipedia (high perplexity), or very simple non-informative sentences that could appear repeatedly (low perplexity). At the root of this repo you will find different directories named after the dataset models were trained on (e.g. `wikipedia`, `oscar`). Within each directory, you will find several models trained on different language subsets of the dataset (e.g. `en (English)`, `es (Spanish)`, `fr (French)`). For each language you will find three different files * `{language}.arpa.bin`: The trained KenLM model binary * `{language}.sp.model`: The trained SentencePiece model used for tokenization * `{language}.sp.vocab`: The vocabulary file for the SentencePiece model The models have been trained using some of the preprocessing steps from [cc_net](https://github.com/facebookresearch/cc_net), in particular replacing numbers with zeros and normalizing punctuation. So, it is important to keep the default values for the parameters: `lower_case`, `remove_accents`, `normalize_numbers` and `punctuation` when using the pre-trained models in order to replicate the same pre-processing steps at inference time. # Dependencies * KenLM: `pip install https://github.com/kpu/kenlm/archive/master.zip` * SentencePiece: `pip install sentencepiece` # Example: ``` from model import KenlmModel # Load model trained on English wikipedia model = KenlmModel.from_pretrained("wikipedia", "en") # Get perplexity model.get_perplexity("I am very perplexed") # 341.3 (low perplexity, since sentence style is formal and with no grammar mistakes) model.get_perplexity("im hella trippin") # 46793.5 (high perplexity, since the sentence is colloquial and contains grammar mistakes) ``` In the example above we see that, since Wikipedia is a collection of encyclopedic articles, a KenLM model trained on it will naturally give lower perplexity scores to sentences with formal language and no grammar mistakes than colloquial sentences with grammar mistakes.
AnonymousSub/consert-s10-SR
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.2177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 266 | 4.1357 | | 3.5667 | 2.0 | 532 | 4.1447 | | 3.5667 | 3.0 | 798 | 4.2177 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
AnonymousSub/declutr-model
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ottovoncwim/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
AnonymousSub/dummy_2_parent
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_data_aug_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.1267605633802817 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_data_aug_wnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5936 - Accuracy: 0.1268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3388 | 1.0 | 218 | 0.5936 | 0.1268 | | 0.2914 | 2.0 | 436 | 0.6675 | 0.1127 | | 0.271 | 3.0 | 654 | 0.6822 | 0.0845 | | 0.2588 | 4.0 | 872 | 0.7079 | 0.0986 | | 0.2493 | 5.0 | 1090 | 0.6926 | 0.0704 | | 0.2416 | 6.0 | 1308 | 0.7174 | 0.0845 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
AnonymousSub/roberta-base_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: de datasets: - lmqg/qg_dequad pipeline_tag: text2text-generation tags: - question generation - answer extraction widget: - text: "generate question: Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls <hl> wird die Signalübertragung stark gedämpft. <hl>" example_title: "Question Generation Example 1" - text: "generate question: das erste weltweit errichtete Hermann Brehmer <hl> 1855 <hl> im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen)." example_title: "Question Generation Example 2" - text: "generate question: Er muss Zyperngrieche sein und wird direkt für <hl> fünf Jahre <hl> gewählt (Art. 43 Abs. 1 der Verfassung) und verfügt über weitreichende Exekutivkompetenzen." example_title: "Question Generation Example 3" - text: "extract answers: Sommerzeit <hl> Frühling <hl>: Umstellung von Normalzeit auf Sommerzeit – die Uhr wird um eine Stunde ''vor''gestellt. Herbst: Umstellung von Sommerzeit auf Normalzeit – die Uhr wird um eine Stunde ''zurück''gestellt. Als Sommerzeit wird die gegenüber der Zonenzeit meist um eine Stunde vorgestellte Uhrzeit bezeichnet, die während eines bestimmten Zeitraums im Sommerhalbjahr (und oft auch etwas darüber hinaus) als gesetzliche Zeit dient. Eine solche Regelung wird fast nur in Ländern der gemäßigten Zonen angewandt. Die mitteleuropäische Sommerzeit beginnt am letzten Sonntag im März um 2:00 Uhr MEZ, indem die Stundenzählung um eine Stunde von 2:00 Uhr auf 3:00 Uhr vorgestellt wird. Sie endet jeweils am letzten Sonntag im Oktober um 3:00 Uhr MESZ, indem die Stundenzählung um eine Stunde von 3:00 Uhr auf 2:00 Uhr zurückgestellt wird." example_title: "Answer Extraction Example 1" - text: "extract answers: Iran === Landwirtschaft === Die landwirtschaftliche Nutzfläche beträgt trotz zahlreicher Gebirge und Wüsten 10 % der Landesfläche, wobei ein Drittel künstlich bewässert wird. Die Landwirtschaft ist einer der größten Arbeitgeber des Landes. Wichtige Produkte sind Pistazien, Weizen, Reis, Zucker, Baumwolle, Früchte, Nüsse, Datteln, Wolle und Kaviar. Seit der Revolution von 1979 wurde der Anbau von Weintrauben wegen des islamischen Alkoholverbots auf den 200.000 Hektar Rebfläche fast vollständig auf Tafeltrauben und Rosinen umgestellt. Bei Rosinen ist <hl> der Iran <hl> inzwischen nach der Türkei der zweitgrößte Exporteur der Welt, bei Safran mit ungefähr 90 % Marktanteil des globalen Bedarfs mit Abstand der größte." example_title: "Answer Extraction Example 2" model-index: - name: lmqg/mbart-large-cc25-dequad-qg-ae results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_dequad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 0.78 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 12.36 - name: METEOR (Question Generation) type: meteor_question_generation value: 15.43 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 80.57 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 56.4 - name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer value: 82.49 - name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer value: 83.67 - name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer value: 81.39 - name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer value: 54.84 - name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer value: 55.13 - name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer value: 54.58 - name: BLEU4 (Answer Extraction) type: bleu4_answer_extraction value: 6.86 - name: ROUGE-L (Answer Extraction) type: rouge_l_answer_extraction value: 20.84 - name: METEOR (Answer Extraction) type: meteor_answer_extraction value: 25.56 - name: BERTScore (Answer Extraction) type: bertscore_answer_extraction value: 78.8 - name: MoverScore (Answer Extraction) type: moverscore_answer_extraction value: 63.5 - name: AnswerF1Score (Answer Extraction) type: answer_f1_score__answer_extraction value: 48.09 - name: AnswerExactMatch (Answer Extraction) type: answer_exact_match_answer_extraction value: 22.69 --- # Model Card of `lmqg/mbart-large-cc25-dequad-qg-ae` This model is fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) for question generation and answer extraction jointly on the [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) - **Language:** de - **Training data:** [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="de", model="lmqg/mbart-large-cc25-dequad-qg-ae") # model prediction question_answer_pairs = model.generate_qa("das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-dequad-qg-ae") # answer extraction answer = pipe("generate question: Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls <hl> wird die Signalübertragung stark gedämpft. <hl>") # question generation question = pipe("extract answers: Sommerzeit <hl> Frühling <hl>: Umstellung von Normalzeit auf Sommerzeit – die Uhr wird um eine Stunde ''vor''gestellt. Herbst: Umstellung von Sommerzeit auf Normalzeit – die Uhr wird um eine Stunde ''zurück''gestellt. Als Sommerzeit wird die gegenüber der Zonenzeit meist um eine Stunde vorgestellte Uhrzeit bezeichnet, die während eines bestimmten Zeitraums im Sommerhalbjahr (und oft auch etwas darüber hinaus) als gesetzliche Zeit dient. Eine solche Regelung wird fast nur in Ländern der gemäßigten Zonen angewandt. Die mitteleuropäische Sommerzeit beginnt am letzten Sonntag im März um 2:00 Uhr MEZ, indem die Stundenzählung um eine Stunde von 2:00 Uhr auf 3:00 Uhr vorgestellt wird. Sie endet jeweils am letzten Sonntag im Oktober um 3:00 Uhr MESZ, indem die Stundenzählung um eine Stunde von 3:00 Uhr auf 2:00 Uhr zurückgestellt wird.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-dequad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_dequad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 80.57 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | Bleu_1 | 11.17 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | Bleu_2 | 4.71 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | Bleu_3 | 1.96 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | Bleu_4 | 0.78 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | METEOR | 15.43 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | MoverScore | 56.4 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | ROUGE_L | 12.36 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | - ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-dequad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_dequad.default.json) | | Score | Type | Dataset | |:--------------------------------|--------:|:--------|:-----------------------------------------------------------------| | QAAlignedF1Score (BERTScore) | 82.49 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | QAAlignedF1Score (MoverScore) | 54.84 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | QAAlignedPrecision (BERTScore) | 81.39 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | QAAlignedPrecision (MoverScore) | 54.58 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | QAAlignedRecall (BERTScore) | 83.67 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | QAAlignedRecall (MoverScore) | 55.13 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | - ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-dequad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_dequad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:-----------------------------------------------------------------| | AnswerExactMatch | 22.69 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | AnswerF1Score | 48.09 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | BERTScore | 78.8 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | Bleu_1 | 21.99 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | Bleu_2 | 14.92 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | Bleu_3 | 10.06 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | Bleu_4 | 6.86 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | METEOR | 25.56 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | MoverScore | 63.5 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | | ROUGE_L | 20.84 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_dequad - dataset_name: default - input_types: ['paragraph_answer', 'paragraph_sentence'] - output_types: ['question', 'answer'] - prefix_types: ['qg', 'ae'] - model: facebook/mbart-large-cc25 - max_length: 512 - max_length_output: 32 - epoch: 11 - batch: 2 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 32 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mbart-large-cc25-dequad-qg-ae/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-custom-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-custom-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7785 - Wer: 0.3534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.4783 | 0.3 | 500 | 0.7199 | 0.5564 | | 0.4833 | 0.61 | 1000 | 0.8089 | 0.6181 | | 0.5733 | 0.91 | 1500 | 0.7617 | 0.5530 | | 0.4641 | 1.21 | 2000 | 0.7937 | 0.5731 | | 0.4167 | 1.52 | 2500 | 0.7993 | 0.5102 | | 0.3713 | 1.82 | 3000 | 0.7541 | 0.5437 | | 0.3395 | 2.12 | 3500 | 0.7658 | 0.5148 | | 0.2814 | 2.42 | 4000 | 0.7569 | 0.4783 | | 0.2698 | 2.73 | 4500 | 0.8126 | 0.5174 | | 0.2767 | 3.03 | 5000 | 0.7838 | 0.4676 | | 0.2249 | 3.33 | 5500 | 0.8769 | 0.4743 | | 0.2452 | 3.64 | 6000 | 0.8586 | 0.4778 | | 0.1828 | 3.94 | 6500 | 0.7695 | 0.4528 | | 0.1901 | 4.24 | 7000 | 0.7800 | 0.5021 | | 0.2062 | 4.55 | 7500 | 0.8107 | 0.4567 | | 0.1614 | 4.85 | 8000 | 0.7941 | 0.4094 | | 0.1327 | 5.15 | 8500 | 0.7900 | 0.4241 | | 0.1405 | 5.45 | 9000 | 0.8017 | 0.3992 | | 0.1219 | 5.76 | 9500 | 0.8099 | 0.4043 | | 0.1406 | 6.06 | 10000 | 0.8731 | 0.3913 | | 0.0806 | 6.36 | 10500 | 0.8387 | 0.3868 | | 0.1039 | 6.67 | 11000 | 0.8105 | 0.3905 | | 0.0967 | 6.97 | 11500 | 0.7291 | 0.3728 | | 0.0846 | 7.27 | 12000 | 0.8128 | 0.4201 | | 0.0722 | 7.58 | 12500 | 0.8204 | 0.3751 | | 0.0785 | 7.88 | 13000 | 0.7692 | 0.3760 | | 0.0647 | 8.18 | 13500 | 0.8294 | 0.3752 | | 0.0523 | 8.48 | 14000 | 0.7646 | 0.3763 | | 0.0623 | 8.79 | 14500 | 0.7773 | 0.3572 | | 0.0477 | 9.09 | 15000 | 0.7379 | 0.3635 | | 0.064 | 9.39 | 15500 | 0.7544 | 0.3538 | | 0.0321 | 9.7 | 16000 | 0.8118 | 0.3557 | | 0.0541 | 10.0 | 16500 | 0.7785 | 0.3534 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.10.0 - Datasets 2.9.0 - Tokenizers 0.13.2
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Lakoc/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AnonymousSub/rule_based_hier_quadruplet_0.1_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum config: default split: validation args: default metrics: - name: Rouge1 type: rouge value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 - Gen Len: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 3189 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 2.0.0.dev20230127+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 260.02 +/- 18.92 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - spacy language: - en model-index: - name: en_ml_pipeline_mldata results: [] --- | Feature | Description | | --- | --- | | **Name** | `en_ml_pipeline_mldata` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.4,<3.5.0` | | **Default Pipeline** | `tok2vec`, `transformer`, `dual` | | **Components** | `tok2vec`, `transformer`, `dual` | | **Vectors** | 2466243 keys, 100195 unique vectors (3 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (14 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`dual`** | `ID`, `PER`, `ORG`, `IND`, `LEG`, `STP`, `COL`, `LOC`, `ACR`, `SCP`, `MOD`, `STR`, `NAT`, `NUM` | </details> ### Accuracy | Type | Score | | --- | --- | | `SPANS_SC_F` | 86.75 | | `SPANS_SC_P` | 87.81 | | `SPANS_SC_R` | 85.72 | | `TOK2VEC_LOSS` | 186.85 | | `TRANSFORMER_LOSS` | 1100.69 | | `DUAL_LOSS` | 130238.02 |
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1_wikiqa_copy
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: pixcelcopter-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 39.40 +/- 39.77 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AnonymousSub/rule_based_only_classfn_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: vskiy1 --- ### Visual Kei Part Two Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk This model is meant to be merged with the first one, DO NOT SELL MERGES OR THIS MODEL This model does bite, i'm sorry if you get infections from the stupid. The model is safe. biut the outputs may bite you at midnight. vskiy1 (use that on your prompt)
AnonymousSub/rule_based_only_classfn_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="strangetcy/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
AnonymousSub/rule_based_only_classfn_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="strangetcy/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
AnonymousSub/rule_based_only_classfn_twostage_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: akanametov/MLAgents-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AnonymousSub/rule_based_only_classfn_twostage_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: pixelcopter_policy_230203 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 6.70 +/- 5.55 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
使用https://github.com/k2-fsa/sherpa-ncnn的模型,这里是对旧版本的一个转存,后续将同步更新到新版本
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
23
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6186 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6186 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: tomercagan/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- library_name: paddlenlp --- # sijunhe/tiny-random-stable-diffusion-pipe-1
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_1_wikiqa_copy
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: cc-by-4.0 tags: - generated_from_keras_callback model-index: - name: leorena/traductor-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # leorena/traductor-en-es This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tc-big-en-es](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-es) on a KDE4 dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5016 - Validation Loss: 1.1220 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 738, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.2436 | 1.1141 | 0 | | 0.7232 | 1.1065 | 1 | | 0.5016 | 1.1220 | 2 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/relbert-roberta-large-nce-a-semeval2012 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.788234126984127 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6684491978609626 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.655786350148368 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7943301834352418 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.948 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6140350877192983 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6134259259259259 - task: name: Analogy Questions (ConceptNet Analogy) type: multiple-choice-qa dataset: name: ConceptNet Analogy args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4463087248322148 - task: name: Analogy Questions (TREX Analogy) type: multiple-choice-qa dataset: name: TREX Analogy args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6065573770491803 - task: name: Analogy Questions (NELL-ONE Analogy) type: multiple-choice-qa dataset: name: NELL-ONE Analogy args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.645 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9162272110893476 - name: F1 (macro) type: f1_macro value: 0.9126691400768508 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8532863849765259 - name: F1 (macro) type: f1_macro value: 0.6881964823343752 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6912242686890574 - name: F1 (macro) type: f1_macro value: 0.6779372223928826 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9558322320372817 - name: F1 (macro) type: f1_macro value: 0.8723486583200801 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.898464431212786 - name: F1 (macro) type: f1_macro value: 0.8978368087670114 --- # relbert/relbert-roberta-large-nce-a-semeval2012 RelBERT based on [roberta-large](https://huggingface.co/roberta-large) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning). This model achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-a-semeval2012/raw/main/analogy.forward.json)): - Accuracy on SAT (full): 0.6684491978609626 - Accuracy on SAT: 0.655786350148368 - Accuracy on BATS: 0.7943301834352418 - Accuracy on U2: 0.6140350877192983 - Accuracy on U4: 0.6134259259259259 - Accuracy on Google: 0.948 - Accuracy on ConceptNet Analogy: 0.4463087248322148 - Accuracy on T-Rex Analogy: 0.6065573770491803 - Accuracy on NELL-ONE Analogy: 0.645 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-a-semeval2012/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9162272110893476 - Micro F1 score on CogALexV: 0.8532863849765259 - Micro F1 score on EVALution: 0.6912242686890574 - Micro F1 score on K&H+N: 0.9558322320372817 - Micro F1 score on ROOT09: 0.898464431212786 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-a-semeval2012/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.788234126984127 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-large-nce-a-semeval2012") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (n_dim, ) ``` ### Training hyperparameters - model: roberta-large - max_length: 64 - epoch: 10 - batch: 32 - random_seed: 0 - lr: 5e-06 - lr_warmup: 10 - aggregation_mode: average_no_mask - data: relbert/semeval2012_relational_similarity - data_name: None - exclude_relation: None - split: train - split_valid: validation - loss_function: nce - classification_loss: False - loss_function_config: {'temperature': 0.05, 'num_negative': 400, 'num_positive': 10} - augment_negative_by_positive: True See the full configuration at [config file](https://huggingface.co/relbert/relbert-roberta-large-nce-a-semeval2012/raw/main/finetuning_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.emnlp-main.712/). ``` @inproceedings{ushio-etal-2021-distilling, title = "Distilling Relation Embeddings from Pretrained Language Models", author = "Ushio, Asahi and Camacho-Collados, Jose and Schockaert, Steven", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.712", doi = "10.18653/v1/2021.emnlp-main.712", pages = "9044--9062", abstract = "Pre-trained language models have been found to capture a surprisingly rich amount of lexical knowledge, ranging from commonsense properties of everyday concepts to detailed factual knowledge about named entities. Among others, this makes it possible to distill high-quality word vectors from pre-trained language models. However, it is currently unclear to what extent it is possible to distill relation embeddings, i.e. vectors that characterize the relationship between two words. Such relation embeddings are appealing because they can, in principle, encode relational knowledge in a more fine-grained way than is possible with knowledge graphs. To obtain relation embeddings from a pre-trained language model, we encode word pairs using a (manually or automatically generated) prompt, and we fine-tune the language model such that relationally similar word pairs yield similar output vectors. We find that the resulting relation embeddings are highly competitive on analogy (unsupervised) and relation classification (supervised) benchmarks, even without any task-specific fine-tuning. Source code to reproduce our experimental results and the model checkpoints are available in the following repository: https://github.com/asahi417/relbert", } ```
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/relbert-roberta-large-nce-c-semeval2012 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7419444444444444 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6497326203208557 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6528189910979229 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.8265703168426903 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.934 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6359649122807017 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6064814814814815 - task: name: Analogy Questions (ConceptNet Analogy) type: multiple-choice-qa dataset: name: ConceptNet Analogy args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.43288590604026844 - task: name: Analogy Questions (TREX Analogy) type: multiple-choice-qa dataset: name: TREX Analogy args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6010928961748634 - task: name: Analogy Questions (NELL-ONE Analogy) type: multiple-choice-qa dataset: name: NELL-ONE Analogy args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6683333333333333 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9240620762392647 - name: F1 (macro) type: f1_macro value: 0.9209428077000147 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8697183098591549 - name: F1 (macro) type: f1_macro value: 0.7120211843349907 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7145178764897074 - name: F1 (macro) type: f1_macro value: 0.6950368132437731 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9645266745496279 - name: F1 (macro) type: f1_macro value: 0.8863335950189204 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9169539329363836 - name: F1 (macro) type: f1_macro value: 0.9154665997245486 --- # relbert/relbert-roberta-large-nce-c-semeval2012 RelBERT based on [roberta-large](https://huggingface.co/roberta-large) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning). This model achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-c-semeval2012/raw/main/analogy.forward.json)): - Accuracy on SAT (full): 0.6497326203208557 - Accuracy on SAT: 0.6528189910979229 - Accuracy on BATS: 0.8265703168426903 - Accuracy on U2: 0.6359649122807017 - Accuracy on U4: 0.6064814814814815 - Accuracy on Google: 0.934 - Accuracy on ConceptNet Analogy: 0.43288590604026844 - Accuracy on T-Rex Analogy: 0.6010928961748634 - Accuracy on NELL-ONE Analogy: 0.6683333333333333 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-c-semeval2012/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9240620762392647 - Micro F1 score on CogALexV: 0.8697183098591549 - Micro F1 score on EVALution: 0.7145178764897074 - Micro F1 score on K&H+N: 0.9645266745496279 - Micro F1 score on ROOT09: 0.9169539329363836 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-nce-c-semeval2012/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7419444444444444 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-large-nce-c-semeval2012") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (n_dim, ) ``` ### Training hyperparameters - model: roberta-large - max_length: 64 - epoch: 10 - batch: 32 - random_seed: 0 - lr: 5e-06 - lr_warmup: 10 - aggregation_mode: average_no_mask - data: relbert/semeval2012_relational_similarity - data_name: None - exclude_relation: None - split: train - split_valid: validation - loss_function: nce - classification_loss: False - loss_function_config: {'temperature': 0.05, 'num_negative': 400, 'num_positive': 10} - augment_negative_by_positive: True See the full configuration at [config file](https://huggingface.co/relbert/relbert-roberta-large-nce-c-semeval2012/raw/main/finetuning_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.emnlp-main.712/). ``` @inproceedings{ushio-etal-2021-distilling, title = "Distilling Relation Embeddings from Pretrained Language Models", author = "Ushio, Asahi and Camacho-Collados, Jose and Schockaert, Steven", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.712", doi = "10.18653/v1/2021.emnlp-main.712", pages = "9044--9062", abstract = "Pre-trained language models have been found to capture a surprisingly rich amount of lexical knowledge, ranging from commonsense properties of everyday concepts to detailed factual knowledge about named entities. Among others, this makes it possible to distill high-quality word vectors from pre-trained language models. However, it is currently unclear to what extent it is possible to distill relation embeddings, i.e. vectors that characterize the relationship between two words. Such relation embeddings are appealing because they can, in principle, encode relational knowledge in a more fine-grained way than is possible with knowledge graphs. To obtain relation embeddings from a pre-trained language model, we encode word pairs using a (manually or automatically generated) prompt, and we fine-tune the language model such that relationally similar word pairs yield similar output vectors. We find that the resulting relation embeddings are highly competitive on analogy (unsupervised) and relation classification (supervised) benchmarks, even without any task-specific fine-tuning. Source code to reproduce our experimental results and the model checkpoints are available in the following repository: https://github.com/asahi417/relbert", } ```
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of butts. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('t3dw/sd-class-butts-32') image = pipeline().images[0] image ```
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - go_emotions metrics: - f1 - accuracy model-index: - name: bert-base-goemotions results: - task: name: Text Classification type: text-classification dataset: name: go_emotions type: go_emotions config: simplified split: validation args: simplified metrics: - name: F1 type: f1 value: 0.5726694586629439 - name: Accuracy type: accuracy value: 0.4375230372281607 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-goemotions This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the go_emotions dataset. It achieves the following results on the evaluation set: - Loss: 0.1539 - F1: 0.5727 - Roc Auc: 0.7796 - Accuracy: 0.4375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:| | 0.0833 | 1.0 | 2714 | 0.0876 | 0.5453 | 0.7189 | 0.4243 | | 0.0719 | 2.0 | 5428 | 0.0867 | 0.5586 | 0.7322 | 0.4399 | | 0.0575 | 3.0 | 8142 | 0.0943 | 0.5736 | 0.7523 | 0.4665 | | 0.0411 | 4.0 | 10856 | 0.1064 | 0.5655 | 0.7580 | 0.4574 | | 0.0301 | 5.0 | 13570 | 0.1167 | 0.5622 | 0.7591 | 0.4517 | | 0.0217 | 6.0 | 16284 | 0.1279 | 0.5579 | 0.7648 | 0.4375 | | 0.015 | 7.0 | 18998 | 0.1367 | 0.5663 | 0.7759 | 0.4333 | | 0.0102 | 8.0 | 21712 | 0.1445 | 0.5695 | 0.7793 | 0.4322 | | 0.0077 | 9.0 | 24426 | 0.1491 | 0.5725 | 0.7795 | 0.4366 | | 0.0057 | 10.0 | 27140 | 0.1539 | 0.5727 | 0.7796 | 0.4375 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: receipt_paper_invoice_documentv2 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6339285969734192 --- # receipt_paper_invoice_documentv2 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### document ![document](images/document.jpg) #### invoice ![invoice](images/invoice.jpg) #### paper ![paper](images/paper.jpg) #### random photo ![random photo](images/random_photo.jpg) #### receipt ![receipt](images/receipt.jpg)
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: mini-distilbert-finetuned-gest-pred results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mini-distilbert-finetuned-gest-pred This model is a fine-tuned version of [elastic/distilbert-base-cased-finetuned-conll03-english](https://huggingface.co/elastic/distilbert-base-cased-finetuned-conll03-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6967 - Precision: 0.2093 - Recall: 0.4091 - F1: 0.2769 - Accuracy: 0.6319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 8 | 2.6601 | 0.0357 | 0.0909 | 0.0513 | 0.2847 | | No log | 2.0 | 16 | 2.5174 | 0.0377 | 0.0909 | 0.0533 | 0.3333 | | No log | 3.0 | 24 | 2.4196 | 0.08 | 0.1818 | 0.1111 | 0.4028 | | No log | 4.0 | 32 | 2.2940 | 0.0784 | 0.1818 | 0.1096 | 0.4306 | | No log | 5.0 | 40 | 2.1932 | 0.0769 | 0.1818 | 0.1081 | 0.4722 | | No log | 6.0 | 48 | 2.1174 | 0.0784 | 0.1818 | 0.1096 | 0.4861 | | No log | 7.0 | 56 | 2.0279 | 0.1458 | 0.3182 | 0.2 | 0.5278 | | No log | 8.0 | 64 | 1.9780 | 0.1458 | 0.3182 | 0.2 | 0.5486 | | No log | 9.0 | 72 | 1.9327 | 0.1739 | 0.3636 | 0.2353 | 0.5625 | | No log | 10.0 | 80 | 1.8665 | 0.1739 | 0.3636 | 0.2353 | 0.5694 | | No log | 11.0 | 88 | 1.8351 | 0.2 | 0.4091 | 0.2687 | 0.5833 | | No log | 12.0 | 96 | 1.8209 | 0.2 | 0.4091 | 0.2687 | 0.5625 | | No log | 13.0 | 104 | 1.7833 | 0.2 | 0.4091 | 0.2687 | 0.5833 | | No log | 14.0 | 112 | 1.7640 | 0.2093 | 0.4091 | 0.2769 | 0.5903 | | No log | 15.0 | 120 | 1.7554 | 0.2093 | 0.4091 | 0.2769 | 0.5833 | | No log | 16.0 | 128 | 1.7294 | 0.1778 | 0.3636 | 0.2388 | 0.5764 | | No log | 17.0 | 136 | 1.7135 | 0.1739 | 0.3636 | 0.2353 | 0.6042 | | No log | 18.0 | 144 | 1.7045 | 0.2045 | 0.4091 | 0.2727 | 0.6181 | | No log | 19.0 | 152 | 1.6976 | 0.2045 | 0.4091 | 0.2727 | 0.625 | | No log | 20.0 | 160 | 1.6967 | 0.2093 | 0.4091 | 0.2769 | 0.6319 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
AnonymousSub/specter-bert-model_copy_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). Trained for 5M timesteps in ~2.8 hours on a P3.2xlarge AWS instance. ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: bitcloud2/SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AnonymousSub/unsup-consert-base_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Galverse-Diffusion-wf-8888 Dreambooth model trained by jarvissan with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: Base model: Waifu-Diffusion Traning data: 8888 Galverse PFPs (512x512) taged with gal_{n}.png Created by Jarvis (@jarvissan22) in Collobration with the galverse team @galverseNFT # Example images 1 Dragon gal breaving fire fullbody, draong scales, wings, tail, short red hair, purple eyes, pose from above ![Test gal 1](https://huggingface.co/sd-dreambooth-library/galverse-diffusion-wf-8888/resolve/main/01483-1751575086-dragon20gal20breaving20fire2020full20body20dragon20scales20wings20tail20short20red20hair20purple20eyes20pose20from20above.png) 2 Vampire gal laughing, pink hair, black clothes, pail white skinm green eyes, heart lips, fullbody , high detail ![Test gal 2](https://huggingface.co/sd-dreambooth-library/galverse-diffusion-wf-8888/resolve/main/01939-1230204258-vampire20gal2020laughing20pink20hair20black20clothespail20white20skin20green20eyes20pink20heart20lips20fullbodyhigh20detail.png) 3 Gal working as a delivery girl, working, running, while holding a package, fullbody, wearing brown cap and work clothes, wide ![Test gal 3](https://huggingface.co/sd-dreambooth-library/galverse-diffusion-wf-8888/resolve/main/02141-1320348834-Gal20working20as20a20delivery20girl20workingrunning20while20holding20a20package2020fullbody20wearing20a20brown20cap20and20work20clothes20wide20a.png) 4 Gal gishing, hoolding a fishing rod, fishing, green hair, yellow eyes, in the style of galverse ![Test gal 4](https://huggingface.co/sd-dreambooth-library/galverse-diffusion-wf-8888/resolve/main/02233-2263146988-Gal20fishing20holding20a20fish20fishing20rod20fishing20green20hair20yellow20eyes20in20the20style20of20galverse.png)
AnonymousSub/unsup-consert-papers
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1589913282760130561/IhG6Su6S_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Brittany Sellner</div> <div style="text-align: center; font-size: 14px;">@brittpettibone</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Brittany Sellner. | Data | Brittany Sellner | | --- | --- | | Tweets downloaded | 2019 | | Retweets | 1432 | | Short tweets | 83 | | Tweets kept | 504 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jd00kbhj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brittpettibone's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3wxxythl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3wxxythl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/brittpettibone') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AnonymousSubmission/pretrained-model-1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-V1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Anthos23/sentiment-roberta-large-english-finetuned-sentiment-analysis
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en thumbnail: http://www.huggingtweets.com/a_nnaschneider/1675427059055/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1517175001065132032/JrHUyWf6_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Anna Schneider</div> <div style="text-align: center; font-size: 14px;">@a_nnaschneider</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Anna Schneider. | Data | Anna Schneider | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 265 | | Short tweets | 784 | | Tweets kept | 2198 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/hl4zewbv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @a_nnaschneider's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/suy7ke17) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/suy7ke17/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/a_nnaschneider') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Antony/mint_model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of butts. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('t3dw/sd-class-butts-64') image = pipeline().images[0] image ```
Anubhav23/IndianlegalBert
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: pruvostmichael/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Anubhav23/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Cartpolev2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Anupam/QuestionClassifier
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.85 +/- 17.17 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Apoorva/k2t-test
[ "pytorch", "t5", "text2text-generation", "en", "transformers", "keytotext", "k2t", "Keywords to Sentences", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
7
null
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1643 - F1: 0.8626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1780 | 0.8288 | | 0.1472 | 2.0 | 1430 | 0.1633 | 0.8488 | | 0.0948 | 3.0 | 2145 | 0.1643 | 0.8626 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Appolo/TestModel
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: speller-t5-900 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speller-t5-900 This model is a fine-tuned version of [sberbank-ai/ruT5-base](https://huggingface.co/sberbank-ai/ruT5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1758 - Rouge1: 19.3503 - Rouge2: 8.3333 - Rougel: 19.3503 - Rougelsum: 19.3503 - Gen Len: 41.4153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 1.0227 | 0.03 | 500 | 0.5411 | 17.6201 | 7.1186 | 17.6554 | 17.5847 | 45.5424 | | 0.7224 | 0.07 | 1000 | 0.4269 | 18.1497 | 7.1186 | 18.1497 | 17.9732 | 42.7797 | | 0.7101 | 0.1 | 1500 | 0.3542 | 18.9972 | 7.9661 | 18.9972 | 18.9619 | 42.3983 | | 0.5962 | 0.14 | 2000 | 0.3283 | 18.9972 | 7.9661 | 18.9972 | 18.9619 | 42.2542 | | 0.535 | 0.17 | 2500 | 0.3104 | 18.9972 | 7.9661 | 18.9972 | 18.9619 | 42.2627 | | 0.6124 | 0.2 | 3000 | 0.2843 | 18.9972 | 7.9661 | 18.9972 | 18.9619 | 42.4915 | | 0.491 | 0.24 | 3500 | 0.2706 | 18.9972 | 7.9661 | 18.9972 | 18.9619 | 42.4322 | | 0.5028 | 0.27 | 4000 | 0.2647 | 19.5429 | 8.5876 | 19.5429 | 19.5621 | 42.3898 | | 0.4547 | 0.31 | 4500 | 0.2548 | 18.9972 | 7.9661 | 18.9972 | 18.9619 | 42.178 | | 0.4335 | 0.34 | 5000 | 0.2448 | 19.5429 | 8.5876 | 19.5429 | 19.5621 | 42.178 | | 0.4511 | 0.38 | 5500 | 0.2377 | 19.4915 | 8.5876 | 19.4915 | 19.4915 | 42.3305 | | 0.4765 | 0.41 | 6000 | 0.2337 | 19.5429 | 8.5876 | 19.5429 | 19.5621 | 41.4237 | | 0.4355 | 0.44 | 6500 | 0.2233 | 19.4915 | 8.5876 | 19.4915 | 19.4915 | 41.7881 | | 0.3924 | 0.48 | 7000 | 0.2172 | 19.4915 | 8.5876 | 19.4915 | 19.4915 | 40.9492 | | 0.3898 | 0.51 | 7500 | 0.2153 | 19.4915 | 8.5876 | 19.4915 | 19.4915 | 41.6356 | | 0.4236 | 0.55 | 8000 | 0.2102 | 19.4915 | 8.5876 | 19.4915 | 19.4915 | 41.0254 | | 0.3484 | 0.58 | 8500 | 0.2116 | 19.4915 | 8.5876 | 19.4915 | 19.4915 | 41.8305 | | 0.5514 | 0.61 | 9000 | 0.2017 | 19.6328 | 8.7571 | 19.5975 | 19.6328 | 41.1864 | | 0.3298 | 0.65 | 9500 | 0.1945 | 19.6328 | 8.7571 | 19.5975 | 19.6328 | 41.2966 | | 0.3807 | 0.68 | 10000 | 0.1966 | 19.6328 | 8.7571 | 19.5975 | 19.6328 | 41.6525 | | 0.3177 | 0.72 | 10500 | 0.1918 | 19.3503 | 8.3333 | 19.3503 | 19.3503 | 41.2627 | | 0.3374 | 0.75 | 11000 | 0.1903 | 19.6328 | 8.7571 | 19.5975 | 19.6328 | 41.2373 | | 0.3123 | 0.78 | 11500 | 0.1900 | 19.6328 | 8.7571 | 19.5975 | 19.6328 | 41.2203 | | 0.3377 | 0.82 | 12000 | 0.1847 | 19.6328 | 8.7571 | 19.5975 | 19.6328 | 41.2712 | | 0.3138 | 0.85 | 12500 | 0.1814 | 19.6328 | 8.7571 | 19.5975 | 19.6328 | 41.1864 | | 0.335 | 0.89 | 13000 | 0.1784 | 19.6328 | 8.7571 | 19.5975 | 19.6328 | 41.1695 | | 0.3142 | 0.92 | 13500 | 0.1768 | 19.6328 | 8.7571 | 19.5975 | 19.6328 | 41.2542 | | 0.3245 | 0.95 | 14000 | 0.1753 | 19.6328 | 8.7571 | 19.5975 | 19.6328 | 41.2034 | | 0.3277 | 0.99 | 14500 | 0.1758 | 19.3503 | 8.3333 | 19.3503 | 19.3503 | 41.4153 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.7.1+cu110 - Datasets 2.9.0 - Tokenizers 0.13.2
ArBert/albert-base-v2-finetuned-ner-agglo-twitter
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PixelCopter1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 16.10 +/- 10.71 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ArBert/albert-base-v2-finetuned-ner-kmeans
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: mit tags: - generated_from_keras_callback model-index: - name: huynhdoo/distilcamembert-base-finetuned-jva-missions-report results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # huynhdoo/distilcamembert-base-finetuned-jva-missions-report This model is a fine-tuned version of [cmarkea/distilcamembert-base](https://huggingface.co/cmarkea/distilcamembert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0336 - Validation Loss: 1.1880 - Train F1: 0.0391 - Epoch: 17 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train F1 | Epoch | |:----------:|:---------------:|:--------:|:-----:| | 0.5225 | 0.4756 | 0.3575 | 0 | | 0.4079 | 0.4294 | 0.2961 | 1 | | 0.3439 | 0.5053 | 0.2961 | 2 | | 0.2765 | 0.5106 | 0.2346 | 3 | | 0.2044 | 0.5352 | 0.1788 | 4 | | 0.1774 | 0.6706 | 0.1341 | 5 | | 0.1690 | 0.8693 | 0.1676 | 6 | | 0.1143 | 0.7711 | 0.0726 | 7 | | 0.0930 | 0.9906 | 0.0950 | 8 | | 0.1091 | 0.9093 | 0.1117 | 9 | | 0.0576 | 0.8518 | 0.0894 | 10 | | 0.0500 | 1.2538 | 0.0950 | 11 | | 0.0541 | 0.7193 | 0.0838 | 12 | | 0.0461 | 0.9906 | 0.0503 | 13 | | 0.0359 | 0.9036 | 0.0447 | 14 | | 0.0320 | 1.1648 | 0.0391 | 15 | | 0.0299 | 1.0017 | 0.0279 | 16 | | 0.0336 | 1.1880 | 0.0391 | 17 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
ArBert/albert-base-v2-finetuned-ner
[ "pytorch", "tensorboard", "albert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
19
null
--- language: - hi license: apache-2.0 tags: - generated_from_trainer datasets: - logistics model-index: - name: Whisper base Hi - BeaW results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper base Hi - BeaW This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Chat analysis dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.7.1+cu110 - Datasets 2.8.0 - Tokenizers 0.11.0
ArBert/bert-base-uncased-finetuned-ner-agglo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en datasets: - English tags: - text generation - pytorch - causal-lm - Writer-data - gpt - NeMo pipeline_tag: text-generation library_name: transformers license: apache-2.0 --- # Palmyra Base 5B <style> img { display: inline; } </style> |[![Model architecture](https://img.shields.io/badge/Model%20Arch-Transformer%20Decoder-green)](#model-architecture)|[![Model size](https://img.shields.io/badge/Params-5B-green)](#model-architecture)|[![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets) ## Model Description Palmyra Base was primarily pre-trained with English text. Note that there is still a trace amount of non-English data present within the training corpus that was accessed through CommonCrawl. A causal language modeling (CLM) objective was utilized during the process of the model's pretraining. Similar to GPT-3, Palmyra Base is a member of the same family of models that only contain a decoder. As a result, it was pre-trained utilizing the objective of self-supervised causal language modeling. Palmyra Base uses the prompts and general experimental setup from GPT-3 in order to conduct its evaluation per GPT-3. ### Use case Palmyra Base is extremely powerful while being extremely fast. This model excels at many nuanced tasks such as sentiment classification and summarization. ## Training data Palmyra Base (5b) was trained on Writer’s custom dataset. ## Intended Use and Limitations Palmyra Base learns an inner representation of the English language that can be used to extract features useful for downstream tasks. However, the model is best at what it was pre-trained for which is generating text from a prompt. ### How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model = AutoModelForCausalLM.from_pretrained("Writer/palmyra-base", torch_dtype=torch.float16).cuda() # the fast tokenizer currently does not work correctly tokenizer = AutoTokenizer.from_pretrained("Writer/palmyra-base", use_fast=False) ``` ### Limitations and Biases Palmyra Base’s core functionality is to take a string of text and predict the next token. While language models are widely used for other tasks, there are many unknowns in this work. When prompting Palmyra Base, keep in mind that the next statistically likely token is not always the token that produces the most "accurate" text. Never rely on Palmyra Base to produce factually correct results. Palmyra Base was trained on Writer’s custom data. As with all language models, it is difficult to predict how Palmyra Base will respond to specific prompts, and offensive content may appear unexpectedly. We recommend that the outputs be curated or filtered by humans before they are released, both to censor undesirable content and to improve the quality of the results. ## Evaluation results Evaluation of Palmyra-base model on the SuperGLUE benchmark | Task | Metric | Value | |------------|--------|-------| | boolq | acc | 64.43 | | cb | acc | 10.71 | | | f1 | 08.32 | | copa | acc | 76.00 | | multirc | acc | 01.26 | | record | f1 | 84.02 | | | em | 83.29 | | wic | acc | 50.00 | | wsc | acc | 36.54 | ## Citation and Related Information To cite this model: ``` @misc{Palmyra, author = {Writer Engineering team}, title = {{Palmyra-base Parameter Autoregressive Language Model}}, howpublished = {\url{https://dev.writer.com}}, year = 2023, month = January } ```
ArBert/bert-base-uncased-finetuned-ner-kmeans-twitter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en datasets: - English tags: - text generation - pytorch - causal-lm - Writer-data - NeMo pipeline_tag: text-generation library_name: transformers license: apache-2.0 --- license: cc-by-4.0 # Palmyra Small 128M <style> img { display: inline; } </style> |[![Model architecture](https://img.shields.io/badge/Model%20Arch-Transformer%20Decoder-green)](#model-architecture)|[![Model size](https://img.shields.io/badge/Params-128M-green)](#model-architecture)|[![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets) ## Model Description Palmyra Small was primarily pre-trained with English text. Note that there is still a trace amount of non-English data present within the training corpus that was accessed through CommonCrawl. A causal language modeling (CLM) objective was utilized during the process of the model's pretraining. Similar to GPT-3, Palmyra Small is a member of the same family of models that only contain a decoder. As a result, it was pre-trained utilizing the objective of self-supervised causal language modeling. Palmyra Small uses the prompts and general experimental setup from GPT-3 in order to conduct its evaluation per GPT-3. ## Use case Palmyra Small is the fastest of Writer’s LLMs and can perform important tasks such as text parsing, simple classification, address correction, and keyword recognition. Providing more context drives even better performance. ## Training data Palmyra Small (128M) was trained on Writer’s custom dataset. ## Intended Use and Limitations Palmyra Small learns an inner representation of the English language that can be used to extract features useful for downstream tasks. However, the model is best at what it was pre-trained for which is generating text from a prompt. ### How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("Writer/palmyra-small") tokenizer = AutoTokenizer.from_pretrained("Writer/palmyra-small") ``` ### Limitations and Biases Palmyra Small’s core functionality is to take a string of text and predict the next token. While language models are widely used for other tasks, there are many unknowns in this work. When prompting Palmyra, keep in mind that the next statistically likely token is not always the token that produces the most "accurate" text. Never rely on Palmyra Small to produce factually correct results. Palmyra Small was trained on Writer’s custom data. As with all language models, it is difficult to predict how Palmyra Small will respond to specific prompts, and offensive content may appear unexpectedly. We recommend that the outputs be curated or filtered by humans before they are released, both to censor undesirable content and to improve the quality of the results. ## Citation and Related Information To cite this model: ``` @misc{Palmyra, author = {Writer Engineering Team}, title = {{Palmyra-base Parameter Autoregressive Language Model}}, howpublished = {\url{https://dev.writer.com}}, year = 2023, month = January } ```