modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
distilbert-base-multilingual-cased
[ "pytorch", "tf", "onnx", "safetensors", "distilbert", "fill-mask", "multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "mn", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "th", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:wikipedia", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,339,633
2023-03-08T05:53:12Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="proleetops/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
distilbert-base-uncased-finetuned-sst-2-english
[ "pytorch", "tf", "rust", "safetensors", "distilbert", "text-classification", "en", "dataset:sst2", "dataset:glue", "arxiv:1910.01108", "doi:10.57967/hf/0181", "transformers", "license:apache-2.0", "model-index", "has_space" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3,060,704
2023-03-08T05:58:45Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: led-base-16384-text_summarization_data results: [] language: - en pipeline_tag: summarization --- # led-base-16384-text_summarization_data This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9531 - Rouge1: 43.3689 - Rouge2: 19.9885 - Rougel: 39.9887 - Rougelsum: 40.0679 - Gen Len: 14.0392 ## Model description This is a text summarization model. For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Text%20Summarization/Text-Summarized%20Data%20-%20Comparison/LED%20-%20Text%20Summarization%20-%204%20Epochs.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/cuitengfeui/textsummarization-data ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.329 | 1.0 | 1197 | 0.9704 | 42.4111 | 19.8995 | 39.4717 | 39.5449 | 14.254 | | 0.8367 | 2.0 | 2394 | 0.9425 | 43.1141 | 19.6089 | 39.7533 | 39.8298 | 14.1058 | | 0.735 | 3.0 | 3591 | 0.9421 | 42.8101 | 19.8281 | 39.617 | 39.6751 | 13.7101 | | 0.6737 | 4.0 | 4788 | 0.9531 | 43.3689 | 19.9885 | 39.9887 | 40.0679 | 14.0392 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.12.1 - Datasets 2.9.0 - Tokenizers 0.12.1
gpt2-xl
[ "pytorch", "tf", "jax", "rust", "gpt2", "text-generation", "en", "arxiv:1910.09700", "transformers", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
308,781
2023-03-08T06:23:43Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Isaac009/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ARTeLab/mbart-summarization-mlsum
[ "pytorch", "mbart", "text2text-generation", "it", "dataset:ARTeLab/mlsum-it", "transformers", "summarization", "autotrain_compatible", "has_space" ]
summarization
{ "architectures": [ "MBartForConditionalGeneration" ], "model_type": "mbart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
111
2023-03-08T11:52:46Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1-Dani results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ASCCCCCCCC/distilbert-base-multilingual-cased-amazon_zh_20000
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
39
null
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -100.91 +/- 29.04 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'hub' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'michal512/LunarLander-v2-ppo' 'batch_size': 512 'minibatch_size': 128} ```
Pinwheel/wav2vec2-base-timit-demo-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2023-03-08T12:44:13Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Jaiiiiii/my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Jaiiiiii/my_awesome_eli5_clm-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 7.1466 - Validation Loss: 6.6334 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.1466 | 6.6334 | 0 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
AdapterHub/roberta-base-pf-ud_pos
[ "roberta", "en", "dataset:universal_dependencies", "arxiv:2104.08247", "adapter-transformers", "token-classification", "adapterhub:pos/ud_ewt" ]
token-classification
{ "architectures": null, "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - generated_from_trainer metrics: - wer model-index: - name: finetune_teacher_clean_mozilla_100_epochs_try2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune_teacher_clean_mozilla_100_epochs_try2 This model is a fine-tuned version of [finetune_teacher_clean_mozilla_200_epochs](https://huggingface.co/finetune_teacher_clean_mozilla_200_epochs) on the None dataset. It achieves the following results on the evaluation set: - Loss: 55.2160 - Wer: 0.2810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 42.7428 | 29.41 | 1000 | 48.0854 | 0.3160 | | 45.9744 | 58.82 | 2000 | 50.4082 | 0.2936 | | 30.0353 | 88.23 | 3000 | 55.2160 | 0.2810 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.13.2
AdapterHub/roberta-base-pf-wic
[ "roberta", "en", "arxiv:2104.08247", "adapter-transformers", "text-classification", "adapterhub:wordsence/wic" ]
text-classification
{ "architectures": null, "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 717.50 +/- 226.59 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga zestyoreo -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga zestyoreo -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga zestyoreo ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
AdapterHub/roberta-base-pf-wnut_17
[ "roberta", "en", "dataset:wnut_17", "arxiv:2104.08247", "adapter-transformers", "token-classification" ]
token-classification
{ "architectures": null, "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Agneev/ppo-Huggy2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Adarsh123/distilbert-base-uncased-finetuned-ner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1939.53 +/- 52.08 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Adharsh2608/DialoGPT-small-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc-by-4.0 --- **pythia-1.4B-finetuned-oa-instructions** This model is a fine-tuned version of pythia on the oa dataset. It achieves the following results on the evaluation set: Loss: 0.1224 **Model description** More information needed Intended uses & limitations More information needed **Training and evaluation data** More information needed **Training procedure** **Training hyperparameters** The following hyperparameters were used during training: * seed: 42 * learning_rate: 5e-06 * train_batch_size: 32 * eval_batch_size: 8 * optimizer: Adam with betas : {'lr': 5e-06, 'betas': [0.9, 0.999], 'eps': 1e-08, 'weight_decay': 0.0} * lr_scheduler_type: linear * training_steps: 5000 * fp16 * warmup_steps 5 * Num examples = 53k **Training results** ``` { "epoch": 1.0, "train_loss": 0.8031303182039198, "train_runtime": 6338.6403, "train_samples": 53455, "train_samples_per_second": 8.433, "train_steps_per_second": 0.264 } ``` **Framework versions** * transformers 4.24.0 * torch 1.10.0+cu111 * datasets 2.10.0 * tokenizers 0.12.1
AdharshJolly/HarryPotterBot-Model
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-large-uncased-whole-word-masking-squad2-finetuned-squad2-islamic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-finetuned-squad2-islamic This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.6799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6646 | 1.0 | 1000 | 0.6799 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Adil617/wav2vec2-base-timit-demo-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1333.59 +/- 87.55 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Adinda/Adinda
[ "license:artistic-2.0" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: victorivus/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AdrianGzz/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
# CentauriMix: First Model of Constellation Series Anything-based 2D model designed for cute anime girls <br> *WARNING* : Images for Alpha Centauri A & B are not updated yet, please keep that in mind. <br> <br> ## Recommended Settings - Sampler: DPM++ 2M Karras (speed and detail balanced) or DPM++ SDE Karras (detailed) - Prompts: (loli:1.4+) (strongly recommend to unlock the truth of Centauri Series) - Negatives: (worst quality, low quality:1.4), EasyNegative (base, the more the better since it is not AOM-based) <br> - ## Alpha Centauri <!-- HTML --> - Alpha Centauri A <div class="grid-image"> <img src="https://ac-p2.namu.la/20230308sac/7c460eddfc1e174b8750605446aab0a8787bba249182f428ecfadf7c8790e9be.png" height="300px" width="200px"/> <img src="https://ac-p2.namu.la/20230308sac/99e08a25a680c69ab2978d3b426381c50d6b275a42d5b15580dac72338c3248a.png" height="300px" width="200px"/> <img src="https://ac-p2.namu.la/20230308sac/609cef7a9a0cc92d8ef7da786f2264ca4ef0997f6ea7abf423457ca19265b288.png" height="300px" width="400px"/> </div> - Alpha Centauri B <div class="grid-image"> <img src="https://cdn.discordapp.com/attachments/1047069007733329961/1083079815285964902/02918--1.0-20-5.5-DPM_2M_Karras.png" height="300px" width="400px"/> <img src="https://cdn.discordapp.com/attachments/1047069007733329961/1083081033496408114/03055-794659742-28-5.png" height="300px" width="400px"/> <img src="https://media.discordapp.net/attachments/1047069007733329961/1083083581687078983/03060-462301326-20-5.5-DPM_2M_Karras.png" height="300px" width="200px"/> </div> <style> .grid-image { display:flex; flex-wrap:wrap; align-items:flex-start; margin:30px 0; } .grid-image img { width:calc(33.333% - 10px); margin:0 15px 15px 0; } .grid-image img:nth-of-type(3n), .grid-image img:last-child { margin-right:0; } @media screen and (max-width:640px){ .grid-image img { width:calc(50% - 15px); } } @media screen and (max-width:480px){ .grid-image img:nth-of-type(2n) { margin-right:0; } .grid-image img:nth-of-type(3n) { margin-right:15px; } } </style> designed for cute girls <br> **Alpha-B** has specific face type(smooth which I like), try it! <br><br> - *01_A1* = AOM3A1 x 0.3 + BACLA-MIX x 0.4 + EmiphaV4 x 0.3 <br> - *01_A2* = moontea_v2 x 0.55 + 7th-anime_v3a x 0.25 + Anything3.0+F222-SD1.4 x 0.2 <br> - *01_A3* = AlmondGrapeMix x 0.35 + BACLA-MIX x 0.4 + Coppermix_Gamma x 0.25 <br> **Alpha Centauri A v1.0** = *01_A1* x 0.15 + *01_A2* x 0.25 + *01_A3* x 0.6 <br> **Alpha Centauri B v1.0** = *01_A2* itself <br> <br> **Alpha Centauri B v1.1** = moontea_v2 x 0.5 + 7th-anime_v1.1 x 0.25 + Anything3.0+F222-SD1.4 x 0.25 <br> **Alpha Centauri A v1.1** = *01_A1* x 0.1 + **Alpha_B-v1.1** x 0.35 + *01_A3'* x 0.55 <br><br> - ## Beta Centauri <!-- HTML --> <div class="grid-image"> <img src="https://ac-p2.namu.la/20230308sac/db9f25d3a1fb5521d53acceed24da64590f7fabeb20721405b86117b6af31bc3.png" height="300px" width="200px"/> <img src="https://ac-p2.namu.la/20230308sac/6789643abefca668b87f9c399768d6ff2e3676fdab19bb31026c435d158560a7.png" height="300px" width="200px"/> <img src="https://ac-p2.namu.la/20230308sac/3c8b082695508a673b6ea2d0229acda4f4df7a0886b452906392defbff559677.png" height="300px" width="200px"/> </div> <style> /* CSS */ .grid-image { display:flex; flex-wrap:wrap; align-items:flex-start; margin:30px 0; } .grid-image img { width:calc(33.333% - 10px); margin:0 15px 15px 0; } .grid-image img:nth-of-type(3n), .grid-image img:last-child { margin-right:0; } @media screen and (max-width:640px){ .grid-image img { width:calc(50% - 15px); } } @media screen and (max-width:480px){ .grid-image img:nth-of-type(2n) { margin-right:0; } .grid-image img:nth-of-type(3n) { margin-right:15px; } } </style> designed for girls little bit older than **Alpha-A** <br> has specific face type (kinda sharp, cute when strong loli tag is used) <br> EasyNegative Recommended, but not a requirement <br><br> **Beta Centauri** = 7pa x 0.3 + Counterfeit-v2.5 x 0.4 + *01_A1* x 0.3 <br><br> - ## Theta Centauri <!-- HTML --> <div class="grid-image"> <img src="https://ac-p2.namu.la/20230308sac/1a35d497bd4657e3ba542313578a90846d6c1dab0f08a59f65eb84821f9c497d.png" height="300px" width="200px"/> <img src="https://cdn.discordapp.com/attachments/1047069007733329961/1083073896447754260/03050-2411852086-28-5.5-DPM_2M_Karras.png" height="300px" width="200px"/> <img src="https://ac-p2.namu.la/20230308sac/a7420f456bed6aaf536ccd08e539c1e41742810a6047e66444ed3fd6d250ca21.png" height="300px" width="200px"/> </div> <style> /* CSS */ .grid-image { display:flex; flex-wrap:wrap; align-items:flex-start; margin:30px 0; } .grid-image img { width:calc(33.333% - 10px); margin:0 15px 15px 0; } .grid-image img:nth-of-type(3n), .grid-image img:last-child { margin-right:0; } @media screen and (max-width:640px){ .grid-image img { width:calc(50% - 15px); } } @media screen and (max-width:480px){ .grid-image img:nth-of-type(2n) { margin-right:0; } .grid-image img:nth-of-type(3n) { margin-right:15px; } } </style> designed for girls little bit older than **Alpha-A + (loli:1.5)**, different face type from **Beta** <br> EasyNegative Recommended, but not a requirement <br><br> **Theta Centauri** = CherryBlossomMix x 0.3 + Anything-v4.5 x 0.3 + reversalSigma x 0.4 <br><br>
Adrianaforididk/Jinx
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.01 +/- 22.57 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Advertisement/FischlUWU
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Rendel/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Aeskybunnie/Me
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 558.00 +/- 164.29 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga yovchev -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga yovchev -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga yovchev ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
AethiQs-Max/AethiQs_GemBERT_bertje_50k
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- license: openrail --- Converted Canny SD 2.1-base model from https://huggingface.co/thibaud/controlnet-sd21/ to diffusers format. Saved only ControlNet weights Usage: ``` from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, DEISMultistepScheduler import cv2 from PIL import Image import numpy as np pipe = StableDiffusionControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1-base", safety_checker=None, # revision='fp16', # torch_dtype=torch.float16, controlnet=ControlNetModel.from_pretrained("thepowefuldeez/sd21-controlnet-canny") ).to('cuda') pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config) image = np.array(Image.open("10.png")) low_threshold = 100 high_threshold = 200 image = cv2.Canny(image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) canny_image = Image.fromarray(image) im = pipe( "beautiful woman", image=canny_image, num_inference_steps=30, negative_prompt="ugly, blurry, bad, deformed, bad anatomy", generator=torch.manual_seed(42) ).images[0] ```
AethiQs-Max/aethiqs-base_bertje-data_rotterdam-epochs_10
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Cart_Pole_V1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
AethiQs-Max/aethiqs-base_bertje-data_rotterdam-epochs_30-epoch_30
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 562.00 +/- 92.42 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga dineshresearch -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga dineshresearch -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga dineshresearch ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Aftabhussain/Tomato_Leaf_Classifier
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index", "autotrain_compatible" ]
image-classification
{ "architectures": [ "ViTForImageClassification" ], "model_type": "vit", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
50
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: mmhamdy/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Ahda/M
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion - M3ri4-style --- ### M3rii4-Style Dreambooth model trained by Anonim3327 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook ### The model is based on Anything diffusion v4.5 (!!!VAE is not needed!!!) ### The images were taken from M3rii4 social media: https://vk.com/m3rii44, https://twitter.com/m3rii4 Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ### Prompt: Young Woman sit in park, skirt, purple t-shirt ### Neg. Prompt: (bad quality:1.3), (bad anatomy:1.2), (bad finger anatomy:1.2), ### Sampler: K_Euler_a ### Guidance: 6 ![0](https://huggingface.co/Anonim3327/m3rii4-style/resolve/main/sample_images/00007-2359364835.png) ![1](https://huggingface.co/Anonim3327/m3rii4-style/resolve/main/sample_images/00005-3288412934.png) ### Prompt: Young Woman sit street, skirt, purple t-shirt ### Neg. Prompt: (bad quality:1.3), (bad anatomy:1.2), (bad finger anatomy:1.2), ### Sampler: K_Euler_a ### Guidance: 6 ![2](https://huggingface.co/Anonim3327/m3rii4-style/resolve/main/sample_images/grid-0000.png)
Ahmad/parsT5
[ "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: HXW/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Ahmadvakili/A
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-multilingual-cased-finetuned-squad-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-squad-finetuned-squad This model is a fine-tuned version of [JensH/bert-base-multilingual-cased-finetuned-squad](https://huggingface.co/JensH/bert-base-multilingual-cased-finetuned-squad) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Ahmed59/Demo-Team-5-SIAD
[ "tf", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_clm-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8712 | 1.0 | 1061 | 3.7513 | | 3.7906 | 2.0 | 2122 | 3.7358 | | 3.739 | 3.0 | 3183 | 3.7326 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AhmedHassan19/model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-base-finetuned-es-to-pua results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-es-to-pua This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4986 - Bleu: 1.7461 - Gen Len: 15.8171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 36 | 3.4870 | 0.0863 | 17.9878 | | No log | 2.0 | 72 | 3.0772 | 0.2333 | 17.622 | | No log | 3.0 | 108 | 2.7865 | 0.2752 | 16.6829 | | No log | 4.0 | 144 | 2.5878 | 0.8782 | 17.9024 | | No log | 5.0 | 180 | 2.4639 | 1.584 | 17.1463 | | No log | 6.0 | 216 | 2.3559 | 0.9321 | 16.8049 | | No log | 7.0 | 252 | 2.2704 | 1.0018 | 17.3902 | | No log | 8.0 | 288 | 2.1956 | 1.2549 | 17.0732 | | No log | 9.0 | 324 | 2.1307 | 0.9709 | 17.4268 | | No log | 10.0 | 360 | 2.0866 | 0.7563 | 17.5 | | No log | 11.0 | 396 | 2.0392 | 0.707 | 17.2439 | | No log | 12.0 | 432 | 1.9920 | 0.8647 | 16.9756 | | No log | 13.0 | 468 | 1.9630 | 0.8724 | 17.8171 | | 2.7137 | 14.0 | 504 | 1.9244 | 1.0593 | 17.4146 | | 2.7137 | 15.0 | 540 | 1.9010 | 1.6823 | 17.061 | | 2.7137 | 16.0 | 576 | 1.8711 | 1.6452 | 16.5732 | | 2.7137 | 17.0 | 612 | 1.8475 | 1.6622 | 16.8659 | | 2.7137 | 18.0 | 648 | 1.8265 | 2.2968 | 16.7195 | | 2.7137 | 19.0 | 684 | 1.8056 | 2.2125 | 16.6098 | | 2.7137 | 20.0 | 720 | 1.7962 | 2.3889 | 16.3049 | | 2.7137 | 21.0 | 756 | 1.7778 | 2.341 | 16.3537 | | 2.7137 | 22.0 | 792 | 1.7626 | 2.3187 | 16.1341 | | 2.7137 | 23.0 | 828 | 1.7450 | 2.5281 | 16.0732 | | 2.7137 | 24.0 | 864 | 1.7357 | 2.6768 | 15.9268 | | 2.7137 | 25.0 | 900 | 1.7177 | 2.3932 | 15.9146 | | 2.7137 | 26.0 | 936 | 1.7126 | 2.611 | 15.8537 | | 2.7137 | 27.0 | 972 | 1.7088 | 2.2829 | 15.622 | | 1.9301 | 28.0 | 1008 | 1.6868 | 2.4441 | 15.8293 | | 1.9301 | 29.0 | 1044 | 1.6707 | 2.5402 | 16.0976 | | 1.9301 | 30.0 | 1080 | 1.6790 | 2.0723 | 15.561 | | 1.9301 | 31.0 | 1116 | 1.6600 | 1.4278 | 15.9146 | | 1.9301 | 32.0 | 1152 | 1.6661 | 1.4274 | 15.7317 | | 1.9301 | 33.0 | 1188 | 1.6474 | 1.4484 | 15.6463 | | 1.9301 | 34.0 | 1224 | 1.6484 | 1.5172 | 15.7805 | | 1.9301 | 35.0 | 1260 | 1.6389 | 1.5497 | 15.7561 | | 1.9301 | 36.0 | 1296 | 1.6384 | 1.52 | 15.6341 | | 1.9301 | 37.0 | 1332 | 1.6304 | 1.4572 | 15.8293 | | 1.9301 | 38.0 | 1368 | 1.6163 | 1.4786 | 16.1341 | | 1.9301 | 39.0 | 1404 | 1.6116 | 1.5765 | 15.9634 | | 1.9301 | 40.0 | 1440 | 1.6020 | 1.5902 | 16.0244 | | 1.9301 | 41.0 | 1476 | 1.6064 | 1.6992 | 15.8659 | | 1.6368 | 42.0 | 1512 | 1.5949 | 1.5409 | 16.0 | | 1.6368 | 43.0 | 1548 | 1.5811 | 1.4916 | 16.2439 | | 1.6368 | 44.0 | 1584 | 1.5849 | 1.6047 | 16.2683 | | 1.6368 | 45.0 | 1620 | 1.5843 | 1.521 | 15.7073 | | 1.6368 | 46.0 | 1656 | 1.5805 | 1.7424 | 15.9878 | | 1.6368 | 47.0 | 1692 | 1.5791 | 1.6066 | 15.9268 | | 1.6368 | 48.0 | 1728 | 1.5734 | 1.602 | 15.7195 | | 1.6368 | 49.0 | 1764 | 1.5649 | 1.5817 | 15.939 | | 1.6368 | 50.0 | 1800 | 1.5654 | 1.6469 | 15.8293 | | 1.6368 | 51.0 | 1836 | 1.5587 | 1.7048 | 15.6463 | | 1.6368 | 52.0 | 1872 | 1.5553 | 1.5203 | 15.8415 | | 1.6368 | 53.0 | 1908 | 1.5500 | 1.5646 | 15.6951 | | 1.6368 | 54.0 | 1944 | 1.5532 | 1.5003 | 15.7195 | | 1.6368 | 55.0 | 1980 | 1.5344 | 1.5359 | 16.1098 | | 1.4554 | 56.0 | 2016 | 1.5370 | 1.6052 | 15.6951 | | 1.4554 | 57.0 | 2052 | 1.5394 | 1.5299 | 15.9146 | | 1.4554 | 58.0 | 2088 | 1.5399 | 1.6024 | 15.6829 | | 1.4554 | 59.0 | 2124 | 1.5403 | 1.6342 | 15.6829 | | 1.4554 | 60.0 | 2160 | 1.5361 | 1.609 | 15.7195 | | 1.4554 | 61.0 | 2196 | 1.5308 | 1.6753 | 15.878 | | 1.4554 | 62.0 | 2232 | 1.5211 | 1.6381 | 16.0976 | | 1.4554 | 63.0 | 2268 | 1.5242 | 1.7172 | 15.622 | | 1.4554 | 64.0 | 2304 | 1.5215 | 1.6888 | 15.9024 | | 1.4554 | 65.0 | 2340 | 1.5146 | 1.6619 | 16.0 | | 1.4554 | 66.0 | 2376 | 1.5173 | 1.7203 | 15.8537 | | 1.4554 | 67.0 | 2412 | 1.5235 | 1.7363 | 15.7317 | | 1.4554 | 68.0 | 2448 | 1.5125 | 1.7295 | 16.0366 | | 1.4554 | 69.0 | 2484 | 1.5141 | 1.7005 | 15.8902 | | 1.3341 | 70.0 | 2520 | 1.5162 | 1.8302 | 15.7927 | | 1.3341 | 71.0 | 2556 | 1.5129 | 1.8278 | 15.9024 | | 1.3341 | 72.0 | 2592 | 1.5123 | 1.7764 | 15.6829 | | 1.3341 | 73.0 | 2628 | 1.5046 | 1.7259 | 15.9634 | | 1.3341 | 74.0 | 2664 | 1.5069 | 1.6517 | 15.9024 | | 1.3341 | 75.0 | 2700 | 1.5026 | 1.7334 | 15.9024 | | 1.3341 | 76.0 | 2736 | 1.4923 | 1.7531 | 15.9268 | | 1.3341 | 77.0 | 2772 | 1.4956 | 1.7338 | 15.7561 | | 1.3341 | 78.0 | 2808 | 1.4996 | 1.6956 | 15.7805 | | 1.3341 | 79.0 | 2844 | 1.5010 | 1.7299 | 15.9268 | | 1.3341 | 80.0 | 2880 | 1.5012 | 1.7097 | 15.9024 | | 1.3341 | 81.0 | 2916 | 1.5032 | 1.7689 | 15.8902 | | 1.3341 | 82.0 | 2952 | 1.5025 | 1.7353 | 15.939 | | 1.3341 | 83.0 | 2988 | 1.5004 | 1.7472 | 15.9512 | | 1.2568 | 84.0 | 3024 | 1.4989 | 1.7171 | 15.9756 | | 1.2568 | 85.0 | 3060 | 1.5015 | 1.7704 | 15.9024 | | 1.2568 | 86.0 | 3096 | 1.5017 | 1.7838 | 15.9024 | | 1.2568 | 87.0 | 3132 | 1.5022 | 1.7562 | 16.0366 | | 1.2568 | 88.0 | 3168 | 1.5004 | 1.7633 | 16.0366 | | 1.2568 | 89.0 | 3204 | 1.4995 | 1.7633 | 15.9756 | | 1.2568 | 90.0 | 3240 | 1.5038 | 1.766 | 15.8537 | | 1.2568 | 91.0 | 3276 | 1.5001 | 1.7764 | 16.0 | | 1.2568 | 92.0 | 3312 | 1.5010 | 1.7707 | 15.878 | | 1.2568 | 93.0 | 3348 | 1.4996 | 1.7633 | 15.9268 | | 1.2568 | 94.0 | 3384 | 1.5011 | 1.7453 | 15.8171 | | 1.2568 | 95.0 | 3420 | 1.5014 | 1.7385 | 15.7927 | | 1.2568 | 96.0 | 3456 | 1.4996 | 1.7253 | 15.7927 | | 1.2568 | 97.0 | 3492 | 1.4988 | 1.7459 | 15.8049 | | 1.2103 | 98.0 | 3528 | 1.4978 | 1.7461 | 15.8171 | | 1.2103 | 99.0 | 3564 | 1.4986 | 1.7461 | 15.8293 | | 1.2103 | 100.0 | 3600 | 1.4986 | 1.7461 | 15.8171 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.0 - Datasets 2.10.1 - Tokenizers 0.13.2
AhmedSSoliman/MarianCG-CoNaLa
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible", "has_space" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: validate_bert_large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # validate_bert_large This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0445 - F1: 0.9828 - Roc Auc: 0.9871 - Accuracy: 0.9595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:| | 0.1224 | 1.0 | 4000 | 0.1122 | 0.9414 | 0.9558 | 0.8664 | | 0.1063 | 2.0 | 8000 | 0.0881 | 0.9583 | 0.9681 | 0.9010 | | 0.0922 | 3.0 | 12000 | 0.0806 | 0.9623 | 0.9714 | 0.9085 | | 0.0673 | 4.0 | 16000 | 0.0610 | 0.9740 | 0.9814 | 0.9370 | | 0.0468 | 5.0 | 20000 | 0.0462 | 0.9812 | 0.9855 | 0.9545 | | 0.0369 | 6.0 | 24000 | 0.0445 | 0.9828 | 0.9871 | 0.9595 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Ahmedahmed/Wewe
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.63 +/- 0.54 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ahren09/distilbert-base-uncased-finetuned-cola
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- license: cc-by-sa-4.0 datasets: - wikipedia - cc100 language: - ja pipeline_tag: text-generation tags: - gpt - japanese - language model - reversed gpt-2 inference: false --- # japanese-reversed-gpt2-medium-unidic This is a medium-sized Japanese **reversed** GPT-2 model using BERT-like tokenizer. Unlike most Language Models, this model generates sentences from right to left. Not reversed version is published [here](https://huggingface.co/okazaki-lab/japanese-gpt2-medium-unidic/). # How to use The model depends on [PyTorch](https://pytorch.org/), [fugashi](https://github.com/polm/fugashi) with [unidic-lite](https://github.com/polm/unidic-lite), and [Hugging Face Transformers](https://github.com/huggingface/transformers). ```sh pip install torch torchvision torchaudio pip install fugashi[unidic-lite] pip install transformers ``` ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained('okazaki-lab/japanese-reversed-gpt2-medium-unidic') model = AutoModelForCausalLM.from_pretrained('okazaki-lab/japanese-reversed-gpt2-medium-unidic') text = 'ので、散歩に行きました。' bos = tokenizer.convert_tokens_to_ids(['[BOS]']) # [32768] input_ids = bos + tokenizer.encode(text)[1:-1][::-1] # [CLS] and [SEP] generated by BERT Tokenizer are removed then reversed input_ids = torch.tensor(input_ids).unsqueeze(0) output = model.generate( input_ids, do_sample=True, max_new_tokens=30, top_k=50, top_p=0.95, repetition_penalty=1.0, num_return_sequences=1, pad_token_id=0, eos_token_id=32769, )[0].flip(0) print(tokenizer.decode(output)) ``` # Model architecture Transformer-based Language Model - Layers: 24 - Heads: 16 - Dimensions of hidden states: 1024 # Training We used a [codebase](https://github.com/rinnakk/japanese-pretrained-models) provided by rinna Co., Ltd. for training. The model was trained on Japanese CC-100 and Japanese Wikipedia (2022/01/31). We employed 8 A100 GPUs for 17 days. The perplexity on the validation set is 9.79. # Tokenization Our tokenizer is based on [the one](https://huggingface.co/cl-tohoku/bert-base-japanese-v2) provided by Tohoku NLP Group. The texts are tokenized by MeCab and then WordPiece. The vocabulary size is 32771 (32768 original tokens + 2 special tokens + 1 unused token). # License [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/) Copyright (c) 2021, Tohoku University Copyright (c) 2023, Tokyo Institute of Technology
Aibox/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.62 +/- 0.18 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AigizK/wav2vec2-large-xls-r-300m-bashkir-cv7_no_lm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - fr library_name: nemo datasets: - mozilla-foundation/common_voice_12_0 tags: - automatic-speech-recognition model-index: - name: stt_fr_citrinet_512_gamma_0_25 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Mozilla Common Voice 12.0 type: mozilla-foundation/common_voice_12_0 config: clean split: test args: language: fr metrics: - name: Test WER type: wer value: 14.90 license: bsd-3-clause --- # NVIDIA Streaming Citrinet 512 (fr-FR) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-Citrinet--CTC-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-36M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-fr--FR-lightgrey#model-badge)](#datasets) | ## Attribution As initial checkpoint used [stt_en_citrinet_512_gamma_0_25](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_citrinet_512_gamma_0_25) by [NVIDIA](https://github.com/NVIDIA) licensed under [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)
AigizK/wav2vec2-large-xls-r-300m-bashkir-cv7_opt
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ba", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index", "has_space" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
64
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.17 +/- 14.08 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AimB/mT5-en-kr-natural
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
78
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-cart-pole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 480.10 +/- 59.70 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AimB/mT5-en-kr-opus
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.5470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.956 | 1.0 | 16 | 2.6626 | | 2.7754 | 2.0 | 32 | 2.5842 | | 2.7703 | 3.0 | 48 | 2.5981 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Ajay191191/autonlp-Test-530014983
[ "pytorch", "bert", "text-classification", "en", "dataset:Ajay191191/autonlp-data-Test", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
34
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: mmhamdy/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AkaiSnow/Rick_bot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.34 +/- 21.34 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Akame/Vi
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 260.73 +/- 18.65 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ankit-11/distilbert-base-uncased-finetuned-toxic
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Access to model mrm8488/bart-legal-base-es is restricted and you are not in the authorized list. Visit https://huggingface.co/mrm8488/bart-legal-base-es to ask for access.
AnonymousSub/AR_rule_based_roberta_twostagetriplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2023-03-09T02:24:13Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 110.97 +/- 120.38 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'CleanRL_ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 1000000 'learning_rate': 0.001 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'chandc/ppo-LunarLander-v2-1M-lro-1e-3' 'batch_size': 512 'minibatch_size': 128} ```
AnonymousSub/AR_rule_based_roberta_twostagetriplet_hier_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 246.08 +/- 67.20 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'CleanRL_ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 1000000 'learning_rate': 0.005 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'chandc/ppo-LunarLander-v2-1M-lro-5e-3' 'batch_size': 512 'minibatch_size': 128} ```
AnonymousSub/AR_rule_based_twostagetriplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1941.87 +/- 122.89 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnonymousSub/SR_cline
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2023-03-09T03:20:36Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt-expt-sp-v3-K-600-MA-kmeans-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-expt-sp-v3-K-600-MA-kmeans-v1 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:------:|:---------------:| | 0.1526 | 18.31 | 5000 | 0.0965 | | 0.0728 | 36.63 | 10000 | 0.0381 | | 0.0244 | 54.94 | 15000 | 0.0198 | | 0.0204 | 73.26 | 20000 | 0.0183 | | 0.023 | 91.57 | 25000 | 0.0173 | | 0.0184 | 109.89 | 30000 | 0.0173 | | 0.0182 | 128.2 | 35000 | 0.0172 | | 0.0183 | 146.52 | 40000 | 0.0169 | | 0.0175 | 164.83 | 45000 | 0.0170 | | 0.0176 | 183.15 | 50000 | 0.0169 | | 0.0174 | 201.46 | 55000 | 0.0170 | | 0.0173 | 219.78 | 60000 | 0.0169 | | 0.0172 | 238.1 | 65000 | 0.0168 | | 0.0171 | 256.41 | 70000 | 0.0167 | | 0.0171 | 274.72 | 75000 | 0.0167 | | 0.017 | 293.04 | 80000 | 0.0167 | | 0.0169 | 311.35 | 85000 | 0.0167 | | 0.0169 | 329.67 | 90000 | 0.0166 | | 0.0168 | 347.98 | 95000 | 0.0166 | | 0.0168 | 366.3 | 100000 | 0.0166 | | 0.0167 | 384.61 | 105000 | 0.0166 | | 0.0167 | 402.93 | 110000 | 0.0166 | | 0.0167 | 421.24 | 115000 | 0.0166 | | 0.0166 | 439.56 | 120000 | 0.0165 | | 0.0166 | 457.87 | 125000 | 0.0165 | | 0.0166 | 476.19 | 130000 | 0.0165 | | 0.0166 | 494.5 | 135000 | 0.0165 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
AnonymousSub/SR_declutr
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2023-03-09T03:23:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.00 +/- 25.45 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnonymousSub/SR_rule_based_roberta_only_classfn_twostage_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-03-09T04:11:58Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - wofeishenling/autotrain-data-iemocap_text_4 co2_eq_emissions: emissions: 0.438477125256298 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 39809103601 - CO2 Emissions (in grams): 0.4385 ## Validation Metrics - Loss: 0.875 - Accuracy: 0.694 - Macro F1: 0.697 - Micro F1: 0.694 - Weighted F1: 0.695 - Macro Precision: 0.708 - Micro Precision: 0.694 - Weighted Precision: 0.700 - Macro Recall: 0.690 - Micro Recall: 0.694 - Weighted Recall: 0.694 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/wofeishenling/autotrain-iemocap_text_4-39809103601 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("wofeishenling/autotrain-iemocap_text_4-39809103601", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("wofeishenling/autotrain-iemocap_text_4-39809103601", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
AnonymousSub/SR_rule_based_roberta_only_classfn_twostage_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2023-03-09T04:12:31Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks dog in a bucket tags: - stable-diffusion - stable-diffusion-ppdiffusers - text-to-image - ppdiffusers - lora inference: false --- # LoRA DreamBooth - davidhefan/lora_sks_dogs 本仓库的 LoRA 权重是基于 runwayml/stable-diffusion-v1-5 训练而来的,我们采用[DreamBooth](https://dreambooth.github.io/)的技术并使用 a photo of sks dog in a bucket 文本进行了训练。
AnonymousSub/SR_rule_based_roberta_twostagetriplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2023-03-09T04:39:33Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: handle-pull-v2 type: handle-pull-v2 metrics: - type: mean_reward value: 4642.87 +/- 14.75 name: mean_reward verified: false --- A(n) **APPO** model trained on the **handle-pull-v2** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r qgallouedec/sample-factory-handle-pull-v2 ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m enjoy --algo=APPO --env=handle-pull-v2 --train_dir=./train_dir --experiment=sample-factory-handle-pull-v2 ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m train --algo=APPO --env=handle-pull-v2 --train_dir=./train_dir --experiment=sample-factory-handle-pull-v2 --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
AnonymousSub/SR_rule_based_twostagetriplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2023-03-09T04:55:31Z
--- language: - mar license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper_marathi_small_V1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mr split: test args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 45.00676938946554 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_marathi_small_V1 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2754 - Wer: 45.0068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4794 | 0.41 | 100 | 0.4754 | 59.9317 | | 0.3121 | 0.81 | 200 | 0.3161 | 52.8786 | | 0.2051 | 1.22 | 300 | 0.2900 | 50.2547 | | 0.1887 | 1.63 | 400 | 0.2779 | 48.1336 | | 0.16 | 2.03 | 500 | 0.2679 | 46.2639 | | 0.1131 | 2.44 | 600 | 0.2706 | 45.8449 | | 0.1128 | 2.85 | 700 | 0.2658 | 45.1551 | | 0.0678 | 3.25 | 800 | 0.2763 | 45.2195 | | 0.075 | 3.66 | 900 | 0.2769 | 45.7611 | | 0.0609 | 4.07 | 1000 | 0.2754 | 45.0068 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AnonymousSub/consert-s10-SR
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: torgo_xlsr_finetune-M01-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # torgo_xlsr_finetune-M01-2 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5763 - Wer: 0.9555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 23.0716 | 0.9 | 500 | 3.3142 | 1.0 | | 3.4092 | 1.8 | 1000 | 3.2440 | 1.0 | | 2.9015 | 2.7 | 1500 | 2.8209 | 1.0 | | 2.7211 | 3.6 | 2000 | 2.4913 | 1.2728 | | 2.0884 | 4.5 | 2500 | 1.7817 | 1.4841 | | 1.3426 | 5.41 | 3000 | 1.5117 | 1.4678 | | 0.9866 | 6.31 | 3500 | 1.4760 | 1.3781 | | 0.7874 | 7.21 | 4000 | 1.2179 | 1.2516 | | 0.6424 | 8.11 | 4500 | 1.4501 | 1.2226 | | 0.5505 | 9.01 | 5000 | 1.4132 | 1.3343 | | 0.4709 | 9.91 | 5500 | 1.3289 | 1.1604 | | 0.4358 | 10.81 | 6000 | 1.2615 | 1.1102 | | 0.3892 | 11.71 | 6500 | 1.5597 | 1.1060 | | 0.3602 | 12.61 | 7000 | 1.4205 | 1.1322 | | 0.3298 | 13.51 | 7500 | 1.4411 | 1.1237 | | 0.3184 | 14.41 | 8000 | 1.4017 | 1.1004 | | 0.2954 | 15.32 | 8500 | 1.3428 | 1.0806 | | 0.2745 | 16.22 | 9000 | 1.4793 | 1.0982 | | 0.2533 | 17.12 | 9500 | 1.6004 | 1.1124 | | 0.2378 | 18.02 | 10000 | 1.5802 | 1.0700 | | 0.2234 | 18.92 | 10500 | 1.4462 | 1.0473 | | 0.2147 | 19.82 | 11000 | 1.3814 | 1.0042 | | 0.202 | 20.72 | 11500 | 1.5665 | 1.0226 | | 0.1691 | 21.62 | 12000 | 1.4534 | 0.9958 | | 0.1993 | 22.52 | 12500 | 1.4851 | 0.9894 | | 0.1591 | 23.42 | 13000 | 1.3746 | 0.9746 | | 0.1602 | 24.32 | 13500 | 1.4077 | 0.9710 | | 0.1417 | 25.23 | 14000 | 1.5074 | 0.9668 | | 0.1302 | 26.13 | 14500 | 1.5024 | 0.9456 | | 0.1334 | 27.03 | 15000 | 1.4816 | 0.9541 | | 0.1269 | 27.93 | 15500 | 1.5501 | 0.9541 | | 0.1254 | 28.83 | 16000 | 1.5593 | 0.9527 | | 0.12 | 29.73 | 16500 | 1.5763 | 0.9555 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 1.18.3 - Tokenizers 0.13.2
AnonymousSub/declutr-biomed-roberta-papers
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: cc --- This model comes from the paper "Exploring Neural Models for Query-Focused Summarization". This is the original release https://github.com/salesforce/query-focused-sum
AnonymousSub/hier_triplet_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.53 +/- 0.76 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnonymousSub/roberta-base_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 22.60 +/- 17.36 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: creativeml-openrail-m --- https://civitai.com/models/16956/alice-zuberg-or-sword-art-online-alicization
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: creativeml-openrail-m --- https://civitai.com/models/17188/fate-grand-order-okita-souji
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | inner_optimizer.class_name | Custom>RMSprop | | inner_optimizer.config.name | RMSprop | | inner_optimizer.config.weight_decay | None | | inner_optimizer.config.clipnorm | None | | inner_optimizer.config.global_clipnorm | None | | inner_optimizer.config.clipvalue | None | | inner_optimizer.config.use_ema | False | | inner_optimizer.config.ema_momentum | 0.99 | | inner_optimizer.config.ema_overwrite_frequency | 100 | | inner_optimizer.config.jit_compile | True | | inner_optimizer.config.is_legacy_optimizer | False | | inner_optimizer.config.learning_rate | 0.0010000000474974513 | | inner_optimizer.config.rho | 0.9 | | inner_optimizer.config.momentum | 0.0 | | inner_optimizer.config.epsilon | 1e-07 | | inner_optimizer.config.centered | False | | dynamic | True | | initial_scale | 32768.0 | | dynamic_growth_steps | 2000 | | training_precision | mixed_float16 |
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_wikiqa_copy
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: openrail language: - en --- It generates tweets in the style of twitter users that consented to my Data Collection scheme (for the purpose of making a language model, of which I stated in the tweet) I will update this model because I accidentally added <|startoftext|> and <|endoftext|> tokens to the dataset even though this is an OPT model. Example code you can run in [Google Colab](https://colab.research.google.com/) ```python %pip install -qq transformers accelerate %pip install -qq git+https://github.com/huggingface/peft bitsandbytes # from huggingface_hub import login; login(token="hf_...") from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer import torch peft_model_id = "boopysaur/Mentallyill-2.7b" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, load_in_8bit=True, low_cpu_mem_usage=True, device_map='auto') model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # just generate 32 examples and print them prompt = "</s><|startoftext|>".strip() inputs = tokenizer([prompt], return_tensors='pt') for i in range(32): with torch.autocast("cuda", dtype=torch.float16): outputs = model.generate( input_ids=inputs.input_ids.cuda(), attention_mask=inputs.attention_mask.cuda(), max_new_tokens=42, top_p=0.95, temperature=0.7, do_sample=True, repetition_penalty=1.1, ) result = "\n".join(tokenizer.decode(outputs[0]).split("\n")[:prompt.count("\n")+1]).replace("</s>", "").replace("<|startoftext|>", "").split("<|endoftext|>")[0] print(result) ``` Example (unfiltered, unconditional, but censored, so 18+) outputs: ``` do not go gentle into that good night. i hate being a girl if i could be as beautiful as her it would kill me i wish people would let me live my life my head hurts i can’t stop laughing i need some bae to come over and play with me i just saw a tweet by a guy who literally posted “i’m so tired of white girls in their 20s on tiktok saying they’re living in the past” this is how i imagine most people in the world think what if i told you, my favorite color is a shade of orange and im trans? shes sucking my d*** and making me c** i don't need to know your age, gender or ethnicity just because we have a mutual friend. my life is a lie i keep telling myself that but i have no choice you know what else is cute? the way my c*** is flicking out of me in your face i’m so confused i am a girl who wants to bang my boyfriend but only because i’m not gay they are all so cute the most beautiful thing about being a girl is that you can wear heels it’s a good thing i don’t have any friends i just want to know what the word for when you are in a relationship with someone and they don’t like you back i have a good friend who is the only person in my life that can make me feel this way. shes the only one i ever love. me and my friend are at the point where we have to start saying "no homo" every time we make out why does it have to be a girl for me to want to marry someone i love you guys arent funny, and i love u i think im having a mental breakdown. i need to get some sleep. i am still in the stage where i’m just going through my normal cycle of being a miserable fucker and then it will be over i am sooo f*cking sick of this sh*t what about the time u were with ur bro nd all of a sudden btbam was playing and u realized they used to be ur favorite band? i hate when people ask me how my day is going. its a little weird and i feel like they're trying to find out what the hell i do for a living so they can make fun of me < im so h*rny rn i’m gonna die alone and sad a friend of mine got shot at in the face with a nerf gun ```
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9265187798828386 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2182 - Accuracy: 0.9265 - F1: 0.9265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8426 | 1.0 | 250 | 0.3237 | 0.903 | 0.8986 | | 0.2521 | 2.0 | 500 | 0.2182 | 0.9265 | 0.9265 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AnonymousSub/rule_based_only_classfn_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 722.00 +/- 268.96 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga charmquark -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga charmquark -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga charmquark ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
AnonymousSub/rule_based_only_classfn_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: imdb-sentiment-analysis results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.86 - name: F1 type: f1 value: 0.8618421052631579 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # imdb-sentiment-analysis This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3236 - Accuracy: 0.86 - F1: 0.8618 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AnonymousSub/rule_based_only_classfn_twostage_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: dummy_model results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5650459791482846 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dummy_model This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4429 - Matthews Correlation: 0.5650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4577 | 1.0 | 1069 | 0.4429 | 0.5650 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8638300289723342 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 | | 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 | | 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - sroie metrics: - precision - recall - f1 - accuracy model-index: - name: allways_pharma_v2.0 results: - task: name: Token Classification type: token-classification dataset: name: sroie type: sroie config: discharge split: test args: discharge metrics: - name: Precision type: precision value: 0.8775510204081632 - name: Recall type: recall value: 0.86 - name: F1 type: f1 value: 0.8686868686868686 - name: Accuracy type: accuracy value: 0.975609756097561 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # allways_pharma_v2.0 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the sroie dataset. It achieves the following results on the evaluation set: - Loss: 0.2375 - Precision: 0.8776 - Recall: 0.86 - F1: 0.8687 - Accuracy: 0.9756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 8.33 | 100 | 0.1635 | 0.8542 | 0.82 | 0.8367 | 0.9695 | | No log | 16.67 | 200 | 0.1860 | 0.8776 | 0.86 | 0.8687 | 0.9756 | | No log | 25.0 | 300 | 0.2545 | 0.86 | 0.86 | 0.8600 | 0.9695 | | No log | 33.33 | 400 | 0.2707 | 0.8542 | 0.82 | 0.8367 | 0.9695 | | 0.1 | 41.67 | 500 | 0.2618 | 0.8542 | 0.82 | 0.8367 | 0.9695 | | 0.1 | 50.0 | 600 | 0.2784 | 0.8542 | 0.82 | 0.8367 | 0.9695 | | 0.1 | 58.33 | 700 | 0.2679 | 0.8542 | 0.82 | 0.8367 | 0.9695 | | 0.1 | 66.67 | 800 | 0.2405 | 0.8542 | 0.82 | 0.8367 | 0.9695 | | 0.1 | 75.0 | 900 | 0.2372 | 0.8776 | 0.86 | 0.8687 | 0.9756 | | 0.0012 | 83.33 | 1000 | 0.2375 | 0.8776 | 0.86 | 0.8687 | 0.9756 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.2.2 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_hier_quadruplet_0.1_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.83 +/- 3.78 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r css919/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - ultralyticsplus - yolov8 - ultralytics - yolo - vision - object-detection - pytorch library_name: ultralytics library_version: 8.0.43 inference: false model-index: - name: eeshawn11/naruto_hand_seal_detection results: - task: type: object-detection metrics: - type: precision # since [email protected] is not available on hf.co/metrics value: 0.995 # min: 0.0 - max: 1.0 name: [email protected](box) --- <div align="center"> <img width="640" alt="eeshawn11/naruto_hand_seal_detection" src="https://huggingface.co/eeshawn11/naruto_hand_seal_detection/resolve/main/thumbnail.jpg"> </div> ### Supported Labels ``` ['bird', 'boar', 'dog', 'dragon', 'hare', 'horse', 'monkey', 'ox', 'ram', 'rat', 'snake', 'tiger'] ``` ### How to use - Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus): ```bash pip install ultralyticsplus==0.0.28 ``` - Load model and perform prediction: ```python from ultralyticsplus import YOLO, render_result # load model model = YOLO('eeshawn11/naruto_hand_seal_detection') # set model parameters model.overrides['conf'] = 0.50 # NMS confidence threshold model.overrides['iou'] = 0.70 # NMS IoU threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 10 # maximum number of detections per image # set image image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' # perform inference results = model.predict(image) # observe results print(results[0].boxes) render = render_result(model=model, image=image, result=results[0]) render.show() ```
AnonymousSub/unsup-consert-base
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: dgx1_whisper_tiny_finetune_teacher_no_noise_mozilla_100_epochs_batch_32_resume_training results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dgx1_whisper_tiny_finetune_teacher_no_noise_mozilla_100_epochs_batch_32_resume_training This model is a fine-tuned version of [rohitp1/dgx1_whisper_tiny_finetune_teacher_no_noise_mozilla_40_epochs_batch_32](https://huggingface.co/rohitp1/dgx1_whisper_tiny_finetune_teacher_no_noise_mozilla_40_epochs_batch_32) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1796 - Wer: 37.3233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0059 | 7.35 | 500 | 0.9865 | 36.5295 | | 0.0368 | 14.7 | 1000 | 1.0064 | 37.8595 | | 0.0545 | 22.06 | 1500 | 1.0131 | 37.9918 | | 0.0308 | 29.41 | 2000 | 1.0712 | 37.3895 | | 0.0189 | 36.76 | 2500 | 1.1299 | 37.4278 | | 0.0146 | 44.12 | 3000 | 1.1796 | 37.3233 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.13.2
AnonymousSub/unsup-consert-base_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: creativeml-openrail-m library_name: diffusers tags: - text-to-image - stable-diffusion - stable-diffusers - art - realism --- Model files are in "Files and Versions" tab! # NOTICE!! # It is version 1.0 but version 2.0 doesn't always produce better results than version 1.0! # Differences of two version are just trained with different datasets! # So I hope you try this too : https://huggingface.co/2jang/MTE_van_Kane-v2.0 <br /> # (English)Introduction of MTE van Kane v1.0 MTE van Kane, The full name is Mungtaeng-I van Kane and we call it MTE_VK in short which is same as the file name.<br /> This project aims to recreate MTE van Kane artworks with Stable diffusion AI.<br /> You can see original artworks by Sly rabbit at here : https://mungtaengi.wixsite.com/kane<br /> Original sources from Kane(kanetv8). But it's a fan made artwork, so it has **nothing to do** with Kane(kanetv8).<br /> -**Base model :** SD 1.5<br /> -**Model type :** LORA <br /> # (한국어)MTE van Kane v1.0 소개 MTE 반 케인, 뭉탱이 반 케인을 뜻하는 약어입니다. 파일명은 MTE_VK입니다.<br /> 이 프로젝트는 뭉탱이 반 케인 작품들을 Stable Diffusion AI로 재창작하는 것을 목표로 하고 있습니다.<br /> 치졸한토끼님이 만드신 원작은 이 사이트에서 감상하실 수 있습니다. : https://mungtaengi.wixsite.com/kane<br /> 원본 소스는 케인님(kanetv8)으로부터 가져왔습니다. 하지만 팬아트이기 때문에, 실제 케인님(kanetv8)과는 아무런 **관련이 없습니다**.<br /> -**베이스 모델 :** SD 1.5<br /> -**모델 타입 :** LORA <br /> # Original MTE van Kane Exhibition tour video The First MTE van Kane Exhibition [![The First MTE van Kane Exhibition](http://img.youtube.com/vi/Yk8UF0FOBzQ/0.jpg)](https://www.youtube.com/watch?v=Yk8UF0FOBzQ) The Second MTE van Kane Exhibition [![The Second MTE van Kane Exhibition](http://img.youtube.com/vi/rdDkXXMe3tE/0.jpg)](https://www.youtube.com/watch?v=rdDkXXMe3tE) <br /> # Acknowledgements Stable-diffusion-v1.5 : https://huggingface.co/runwayml/stable-diffusion-v1-5<br /> Sly rabbit(치졸한토끼) youtube : https://www.youtube.com/@user-vw4on4ee3l<br /> Kane(kanetv8) youtube : https://www.youtube.com/@kanetv8<br />
AnonymousSub/unsup-consert-emanuals
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: bigscience-bloom-rail-1.0 datasets: - jslin09/Fraud_Case_Verdicts language: - zh metrics: - accuracy pipeline_tag: text-generation text-generation: parameters: max_length: 400 do_sample: true temperature: 0.75 top_k: 50 top_p: 0.9 tags: - legal widget: - text: 王大明意圖為自己不法所有,基於竊盜之犯意, example_title: 生成竊盜罪之犯罪事實 - text: 騙人布意圖為自己不法所有,基於詐欺取財之犯意, example_title: 生成詐欺罪之犯罪事實 - text: 梅友乾明知其無資力支付酒店消費,亦無付款意願,竟意圖為自己不法之所有, example_title: 生成吃霸王餐之詐欺犯罪事實 - text: 闕很大明知金融帳戶之存摺、提款卡及密碼係供自己使用之重要理財工具, example_title: 生成賣帳戶幫助詐欺犯罪事實 --- # 判決書草稿自動生成 本模型是以司法院公開之「詐欺」案件判決書做成之資料集,基於 [BLOOM 560m](https://huggingface.co/bigscience/bloomz-560m) 模型進行微調訓練,可以自動生成詐欺及竊盜案件之犯罪事實段落之草稿。資料集之資料範圍從100年1月1日至110年12月31日,所蒐集到的原始資料共有 74823 篇(判決以及裁定),我們只取判決書的「犯罪事實」欄位內容,並把這原始的資料分成三份,用於訓練的資料集有59858篇,約佔原始資料的80%,剩下的20%,則是各分配10%給驗證集(7482篇),10%給測試集(7483篇)。在本網頁進行測試時,請在模型載入完畢並生成第一小句後,持續按下Compute按鈕,就能持續生成文字。或是輸入自己想要測試的資料到文字框中進行測試。 # 使用範例 如果要在自己的程式中調用本模型,可以參考下列的 Python 程式碼,藉由呼叫 API 的方式來生成刑事判決書「犯罪事實」欄的內容。 <details> <summary> 點擊後展開 </summary> <pre> <code> import requests, json from time import sleep from tqdm.auto import tqdm, trange API_URL = "https://api-inference.huggingface.co/models/jslin09/bloom-560m-finetuned-fraud" API_TOKEN = 'XXXXXXXXXXXXXXX' # 調用模型的 API token headers = {"Authorization": f"Bearer {API_TOKEN}"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return json.loads(response.content.decode("utf-8")) prompt = "森上梅前明知其無資力支付酒店消費,亦無付款意願,竟意圖為自己不法之所有," query_dict = { "inputs": prompt, } text_len = 300 t = trange(text_len, desc= '生成例稿', leave=True) for i in t: response = query(query_dict) try: response_text = response[0]['generated_text'] query_dict["inputs"] = response_text t.set_description(f"{i}: {response[0]['generated_text']}") t.refresh() except KeyError: sleep(30) # 如果伺服器太忙無回應,等30秒後再試。 pass print(response[0]['generated_text']) </code> </pre> </details> 或是,你要使用 transformers 套件來實作你的程式,將本模型下載至你本地端的電腦中執行,可以參考下列程式碼: <details> <summary> 點擊後展開 </summary> <pre> <code> from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("jslin09/bloom-560m-finetuned-fraud") model = AutoModelForCausalLM.from_pretrained("jslin09/bloom-560m-finetuned-fraud") </code> </pre> </details>
ArBert/roberta-base-finetuned-ner-kmeans-twitter
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Araf/Ummah
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Loges/loges-ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AriakimTaiyo/kumiko
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: VAZaytsev/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Arina/Erine
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks dog in a bucket tags: - stable-diffusion - stable-diffusion-ppdiffusers - text-to-image - ppdiffusers - lora inference: false --- # LoRA DreamBooth - deerta/lora_sks_dogs 本仓库的 LoRA 权重是基于 runwayml/stable-diffusion-v1-5 训练而来的,我们采用[DreamBooth](https://dreambooth.github.io/)的技术并使用 a photo of sks dog in a bucket 文本进行了训练。
ArjunKadya/HuggingFace
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-T5_base_test_miniwob-T5_base_test_miniwob-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-T5_base_test_miniwob-T5_base_test_miniwob-2 This model is a fine-tuned version of [LucasThil/t5-small-T5_base_test_miniwob-T5_base_test_miniwob](https://huggingface.co/LucasThil/t5-small-T5_base_test_miniwob-T5_base_test_miniwob) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0562 - Rouge1: 84.4239 - Rouge2: 73.3153 - Rougel: 84.4783 - Rougelsum: 84.4683 - Gen Len: 10.0274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 200 | 0.0772 | 80.07 | 64.9483 | 80.1152 | 80.1292 | 9.9726 | | No log | 2.0 | 400 | 0.0770 | 80.182 | 65.1252 | 80.1982 | 80.2107 | 9.9972 | | 0.0959 | 3.0 | 600 | 0.0760 | 80.4799 | 65.7983 | 80.5111 | 80.5247 | 9.9916 | | 0.0959 | 4.0 | 800 | 0.0746 | 80.7629 | 66.2118 | 80.845 | 80.829 | 10.0084 | | 0.0906 | 5.0 | 1000 | 0.0731 | 80.7116 | 65.9694 | 80.7465 | 80.7909 | 10.0056 | | 0.0906 | 6.0 | 1200 | 0.0726 | 81.2349 | 67.1351 | 81.2811 | 81.2927 | 10.0084 | | 0.0906 | 7.0 | 1400 | 0.0713 | 81.9427 | 68.2999 | 81.9585 | 81.9773 | 10.0014 | | 0.088 | 8.0 | 1600 | 0.0700 | 82.0826 | 68.7335 | 82.1298 | 82.127 | 10.0162 | | 0.088 | 9.0 | 1800 | 0.0691 | 81.772 | 67.9586 | 81.8152 | 81.8128 | 9.9958 | | 0.0851 | 10.0 | 2000 | 0.0682 | 82.1352 | 68.82 | 82.1904 | 82.1951 | 10.0105 | | 0.0851 | 11.0 | 2200 | 0.0676 | 82.0125 | 68.4698 | 82.0478 | 82.0485 | 10.0204 | | 0.0851 | 12.0 | 2400 | 0.0665 | 82.2024 | 68.8334 | 82.2564 | 82.2301 | 9.9986 | | 0.0829 | 13.0 | 2600 | 0.0661 | 82.3572 | 69.2544 | 82.4303 | 82.4034 | 10.007 | | 0.0829 | 14.0 | 2800 | 0.0654 | 82.7308 | 69.9319 | 82.8031 | 82.7893 | 10.0148 | | 0.0818 | 15.0 | 3000 | 0.0649 | 82.4837 | 69.4319 | 82.5495 | 82.5285 | 10.0127 | | 0.0818 | 16.0 | 3200 | 0.0641 | 82.6841 | 69.8013 | 82.7367 | 82.7217 | 10.0253 | | 0.0818 | 17.0 | 3400 | 0.0636 | 82.9736 | 70.4272 | 83.0124 | 83.0073 | 10.012 | | 0.0796 | 18.0 | 3600 | 0.0632 | 82.7252 | 69.8741 | 82.8172 | 82.792 | 10.0077 | | 0.0796 | 19.0 | 3800 | 0.0626 | 82.8893 | 70.1174 | 82.9326 | 82.9047 | 10.0098 | | 0.0784 | 20.0 | 4000 | 0.0618 | 83.0279 | 70.5745 | 83.1153 | 83.097 | 10.0394 | | 0.0784 | 21.0 | 4200 | 0.0611 | 82.9773 | 70.4364 | 83.044 | 83.0351 | 10.0408 | | 0.0784 | 22.0 | 4400 | 0.0612 | 83.2734 | 70.9832 | 83.3207 | 83.2901 | 10.0253 | | 0.0769 | 23.0 | 4600 | 0.0603 | 83.2998 | 71.1516 | 83.3714 | 83.3234 | 10.0338 | | 0.0769 | 24.0 | 4800 | 0.0604 | 83.3777 | 71.1998 | 83.4301 | 83.4444 | 10.0274 | | 0.0757 | 25.0 | 5000 | 0.0599 | 83.5509 | 71.5775 | 83.5965 | 83.5586 | 10.0204 | | 0.0757 | 26.0 | 5200 | 0.0598 | 83.6255 | 71.6576 | 83.6737 | 83.6524 | 10.0246 | | 0.0757 | 27.0 | 5400 | 0.0599 | 83.5788 | 71.6097 | 83.6267 | 83.6135 | 10.0197 | | 0.0742 | 28.0 | 5600 | 0.0585 | 83.6857 | 71.8218 | 83.7284 | 83.7034 | 10.0084 | | 0.0742 | 29.0 | 5800 | 0.0589 | 83.8396 | 72.1322 | 83.8789 | 83.861 | 10.0309 | | 0.0727 | 30.0 | 6000 | 0.0582 | 83.781 | 71.9517 | 83.8336 | 83.7852 | 10.0274 | | 0.0727 | 31.0 | 6200 | 0.0584 | 83.7964 | 72.0827 | 83.8786 | 83.847 | 10.0345 | | 0.0727 | 32.0 | 6400 | 0.0576 | 83.9339 | 72.3444 | 83.992 | 83.9747 | 10.0281 | | 0.0718 | 33.0 | 6600 | 0.0576 | 84.0992 | 72.6619 | 84.1725 | 84.1367 | 10.0253 | | 0.0718 | 34.0 | 6800 | 0.0574 | 84.1596 | 72.7909 | 84.2312 | 84.2171 | 10.0267 | | 0.0711 | 35.0 | 7000 | 0.0572 | 83.9027 | 72.2676 | 83.9513 | 83.9336 | 10.0204 | | 0.0711 | 36.0 | 7200 | 0.0575 | 83.8542 | 72.1958 | 83.925 | 83.8919 | 10.0302 | | 0.0711 | 37.0 | 7400 | 0.0570 | 84.0695 | 72.5868 | 84.1166 | 84.0999 | 10.0274 | | 0.0702 | 38.0 | 7600 | 0.0568 | 84.0717 | 72.5816 | 84.1382 | 84.1049 | 10.0246 | | 0.0702 | 39.0 | 7800 | 0.0567 | 84.294 | 73.0424 | 84.3486 | 84.2989 | 10.0267 | | 0.0711 | 40.0 | 8000 | 0.0567 | 84.2451 | 72.8972 | 84.2691 | 84.2299 | 10.0323 | | 0.0711 | 41.0 | 8200 | 0.0564 | 84.3601 | 73.1693 | 84.4026 | 84.394 | 10.0281 | | 0.0711 | 42.0 | 8400 | 0.0566 | 84.1651 | 72.7519 | 84.2129 | 84.1615 | 10.0309 | | 0.0697 | 43.0 | 8600 | 0.0565 | 84.3877 | 73.2265 | 84.4256 | 84.4025 | 10.0309 | | 0.0697 | 44.0 | 8800 | 0.0564 | 84.3716 | 73.1688 | 84.4227 | 84.3819 | 10.0295 | | 0.0696 | 45.0 | 9000 | 0.0563 | 84.2959 | 73.0299 | 84.3343 | 84.3229 | 10.0295 | | 0.0696 | 46.0 | 9200 | 0.0562 | 84.2854 | 73.0477 | 84.3241 | 84.3009 | 10.0302 | | 0.0696 | 47.0 | 9400 | 0.0563 | 84.3664 | 73.1641 | 84.3985 | 84.3866 | 10.0288 | | 0.0686 | 48.0 | 9600 | 0.0563 | 84.4239 | 73.3153 | 84.4783 | 84.4683 | 10.026 | | 0.0686 | 49.0 | 9800 | 0.0562 | 84.4239 | 73.3153 | 84.4783 | 84.4683 | 10.0267 | | 0.0692 | 50.0 | 10000 | 0.0562 | 84.4239 | 73.3153 | 84.4783 | 84.4683 | 10.0274 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.12.1 - Datasets 2.10.1 - Tokenizers 0.13.2
Arnold/wav2vec2-hausa2-demo-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of nature, face the sea, with spring blossoms tags: - stable-diffusion - stable-diffusion-ppdiffusers - text-to-image - ppdiffusers - lora inference: false --- # LoRA DreamBooth - Abner94/lora_nature 本仓库的 LoRA 权重是基于 runwayml/stable-diffusion-v1-5 训练而来的,我们采用[DreamBooth](https://dreambooth.github.io/)的技术并使用 a photo of nature, face the sea, with spring blossoms 文本进行了训练。
ArpanZS/search_model
[ "joblib" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: afl-3.0 language: - en metrics: - accuracy library_name: transformers --- # Model Description The fake news detection model is a deep learning model designed to classify news as either "fake" or "real." The intended use of the fake news detection model is to provide a tool for identifying fake news articles. This model uses a pre-trained model of [`bert-base-uncased`](https://huggingface.co/bert-base-uncased), and fine-tune on a [Fake News dataset](https://www.kaggle.com/datasets/sadikaljarif/fake-news-detection-dataset-english ).
ArvinZhuang/BiTAG-t5-large
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
4
null
--- license: mit language: - gl metrics: - bleu (Gold1): 82.6 - bleu (Gold2): 49.9 - bleu (Flores): 23.8 - bleu (Test-suite): 77.2 --- license: mit --- **English text [here](https://huggingface.co/proxectonos/Nos_MT-OpenNMT-gl-es/blob/main/README_English.md)** **Descrición do Modelo** Modelo feito con OpenNMT para o par galego-inglés utilizando unha arquitectura transformer. **Como traducir** + Abrir terminal bash + Instalar [Python 3.9](https://www.python.org/downloads/release/python-390/) + Instalar [Open NMT toolkit v.2.2](https://github.com/OpenNMT/OpenNMT-py) + Traducir un input_text utilizando o modelo NOS-MT-gl-es co seguinte comando: ```bash onmt_translate -src input_text -model NOS-MT-gl-es.pt --output ./output_file.txt --replace_unk -gpu 0 ``` + O resultado da tradución estará no PATH indicado no flag -output. **Adestramento** No adestramento, utilizamos córpora auténticos e sintéticos do [ProxectoNós](https://github.com/proxectonos/corpora). Os primeiros son córpora de traducións feitas directamente por tradutores humanos. Os segundos son córpora de traducións inglés-portugués, que convertemos en inglés-galego a través da tradución automática portugués-galego con Opentrad/Apertium e transliteración para palabras fóra de vocabulario. **Procedemento de adestramento / Training process** + Tokenización dos datasets feita co tokenizador (tokenizer.pl) de [linguakit](https://github.com/citiususc/Linguakit) que foi modificado para evitar o salto de liña por token do ficheiro orixinal. + O vocabulario BPE para os modelos foi xerado a través do script [learn_bpe.py](https://github.com/OpenNMT/OpenNMT-py/blob/master/tools/learn_bpe.py) da OpenNMT + Utilizando o .yaml deste repositorio pode replicar o proceso de adestramento. É preciso modificar os paths do ficheiro .yaml para a Open NMT saber onde ir buscar os textos. Após facer isto, pode do seguinte xeito comezar o proceso: ```bash onmt_build_vocab -config bpe-gl-es_emb.yaml -n_sample 100000 onmt_train -config bpe-gl-es_emb.yaml ``` **Hiperparámetros** Os parámetros usados para o desenvolvemento do modelo poden ser consultados directamente no mesmo ficheiro .yaml bpe-gl-es_emb.yaml **Avaliación** A avalación BLEU dos modelos é feita cunha mistura de tests desenvolvidos internamente (gold1, gold2, test-suite) con outros datasets disponíbeis en galego (Flores). | GOLD 1 | GOLD 2 | FLORES | TEST-SUITE| | ------------- |:-------------:| -------:|----------:| | 82.6 | 49.9 | 23.8 | 77.2 | **Licenzas do Modelo** MIT License Copyright (c) 2023 Proxecto Nós Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **Financiamento** Esta investigación foi financiada polo proxecto "Nós: o galego na sociedade e economía da intelixencia artificial", resultado dun acordo entre a Xunta de Galicia e a Universidade de Santiago de Compostela, o que resultou no subsidio ED431G2019/04 da Consellaría de Educación, Universidade e Formación Profesional da Galiza, e polo Fondo Europeo de Desenvolvemento Rexional (programa ERDF/FEDER), e Grupos de Referencia: ED431C 2020/21. **Citar este traballo** Se utilizar este modelo no seu traballo, cite por favor así: Gamallo, Pablo; Bardanca, Daniel; Pichel, José Ramom; García, Marcos; Rodríguez-Rey, Sandra; de-Dios-Flores, Iria. 2023. NOS-MT-OpenNMT-gl-es. Url: https://huggingface.co/proxectonos/NOS-MT-OpenNMT-gl-es
Ateeb/FullEmotionDetector
[ "pytorch", "funnel", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "FunnelForSequenceClassification" ], "model_type": "funnel", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- license: cc-by-sa-4.0 language: - en pipeline_tag: text-generation tags: - code --- # MagicPrompt_SD_V1 This is a Prompt Generator likes [Gustavosta/MagicPrompt-Stable-Diffusion](https://huggingface.co/Gustavosta/MagicPrompt-Stable-Diffusion)! But I wash the origin prompts data, and trains a powerful model to generate prompt for [魔导绪论](https://magic-tag.netlify.app/) It's using Paddle to handle the training and other things. Not PyTorch or Tensorsflow. There's the result I get form this model: - You can use CPU to run the model! But GPU 10x faster then CPU 🚀. - CPU (about 300ms/per ) | GPU (about 90ms/per 🚀 ) V2-10 Model - You can add some change easier passing some params. ## 📕 Using example is here [飞桨仓库](https://aistudio.baidu.com/aistudio/projectdetail/5116158?contributionType=1) You can wrapper a FastAPI or Flask to easily deploy it to your server
Augustvember/WokkaBot3
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.80 +/- 17.78 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Augustvember/WokkaBot4
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: eryzml/poca-SoccerTwos-v2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Augustvember/WokkaBot5
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 12.50 +/- 12.39 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Augustvember/wokka4
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: peg-unplug-side-v2 type: peg-unplug-side-v2 metrics: - type: mean_reward value: 4312.88 +/- 44.21 name: mean_reward verified: false --- A(n) **APPO** model trained on the **peg-unplug-side-v2** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r qgallouedec/sample-factory-peg-unplug-side-v2 ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m enjoy --algo=APPO --env=peg-unplug-side-v2 --train_dir=./train_dir --experiment=sample-factory-peg-unplug-side-v2 ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m train --algo=APPO --env=peg-unplug-side-v2 --train_dir=./train_dir --experiment=sample-factory-peg-unplug-side-v2 --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Ayah/GPT2-DBpedia
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: mit language: - ru pipeline_tag: text-generation tags: - gpt - gpt2 - gpt3 - ai dungeon - ai - dungeon - medium - ru - rus - text - generation - text generation --- Medium model from https://github.com/A1exRey/Clover-Edition-ru Working good only with Russian language.
Aybars/ModelOnWhole
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 456.70 +/- 129.90 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Ayham/albert_gpt2_summarization_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - generated_from_trainer datasets: - funsd model-index: - name: layoutlm-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-funsd This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset. It achieves the following results on the evaluation set: - Loss: 0.6178 - Answer: {'precision': 0.6652719665271967, 'recall': 0.7861557478368356, 'f1': 0.7206798866855525, 'number': 809} - Header: {'precision': 0.29133858267716534, 'recall': 0.31092436974789917, 'f1': 0.3008130081300813, 'number': 119} - Question: {'precision': 0.7537248028045574, 'recall': 0.8075117370892019, 'f1': 0.7796917497733454, 'number': 1065} - Overall Precision: 0.6893 - Overall Recall: 0.7692 - Overall F1: 0.7271 - Overall Accuracy: 0.8014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.5284 | 1.0 | 38 | 1.0167 | {'precision': 0.3938144329896907, 'recall': 0.4721878862793572, 'f1': 0.4294547498594716, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5845528455284553, 'recall': 0.6751173708920187, 'f1': 0.6265795206971678, 'number': 1065} | 0.4959 | 0.5524 | 0.5227 | 0.6689 | | 0.8661 | 2.0 | 76 | 0.7179 | {'precision': 0.630346232179226, 'recall': 0.765142150803461, 'f1': 0.6912339475153545, 'number': 809} | {'precision': 0.2087912087912088, 'recall': 0.15966386554621848, 'f1': 0.18095238095238092, 'number': 119} | {'precision': 0.7058823529411765, 'recall': 0.7436619718309859, 'f1': 0.7242798353909465, 'number': 1065} | 0.6515 | 0.7175 | 0.6829 | 0.7596 | | 0.6265 | 3.0 | 114 | 0.6470 | {'precision': 0.6458546571136131, 'recall': 0.7799752781211372, 'f1': 0.7066069428891377, 'number': 809} | {'precision': 0.2972972972972973, 'recall': 0.2773109243697479, 'f1': 0.28695652173913044, 'number': 119} | {'precision': 0.7359649122807017, 'recall': 0.787793427230047, 'f1': 0.7609977324263038, 'number': 1065} | 0.6746 | 0.7541 | 0.7122 | 0.7879 | | 0.5076 | 4.0 | 152 | 0.6207 | {'precision': 0.6680851063829787, 'recall': 0.7762669962917181, 'f1': 0.7181246426529445, 'number': 809} | {'precision': 0.28, 'recall': 0.29411764705882354, 'f1': 0.28688524590163933, 'number': 119} | {'precision': 0.7368421052631579, 'recall': 0.828169014084507, 'f1': 0.7798408488063661, 'number': 1065} | 0.6830 | 0.7752 | 0.7262 | 0.8003 | | 0.4471 | 5.0 | 190 | 0.6178 | {'precision': 0.6652719665271967, 'recall': 0.7861557478368356, 'f1': 0.7206798866855525, 'number': 809} | {'precision': 0.29133858267716534, 'recall': 0.31092436974789917, 'f1': 0.3008130081300813, 'number': 119} | {'precision': 0.7537248028045574, 'recall': 0.8075117370892019, 'f1': 0.7796917497733454, 'number': 1065} | 0.6893 | 0.7692 | 0.7271 | 0.8014 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Ayham/roberta_distilgpt2_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.72 +/- 15.94 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ayham/robertagpt2_xsum4
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 8.20 +/- 2.14 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r AntiSquid/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Ayham/xlmroberta_large_gpt2_summarization_cnndm
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.19 +/- 0.53 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ayham/xlnet_gpt_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
2023-03-09T15:12:00Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: chatgpt-prompt-generator-v12 results: [] datasets: - fka/awesome-chatgpt-prompts --- # ChatGPT Prompt Generator v12 This model is a fine-tuned version of [BART-large](https://huggingface.co/facebook/bart-large) on a ChatGPT prompts dataset. It achieves the following results on the evaluation set: It achieves the following results on the evaluation set: - Train Loss: 2.4800 - Validation Loss: 2.7320 - Epoch: 4 ## Intended uses & limitations You can use this to generate ChatGPT personas. Simply input a persona like below: ``` from transformers import BartForConditionalGeneration, BartTokenizer example_english_phrase = "photographer" batch = tokenizer(example_english_phrase, return_tensors="pt") generated_ids = model.generate(batch["input_ids"], max_new_tokens=150) output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 5.3808 | 3.3133 | 0 | | 3.2642 | 3.0104 | 1 | | 2.8886 | 2.8600 | 2 | | 2.6594 | 2.7949 | 3 | | 2.4800 | 2.7320 | 4 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
Ayoola/cdial-yoruba-test
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "has_space" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="propet/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Ayran/DialoGPT-small-gandalf
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -205.58 +/- 128.61 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 10000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'jackoyoungblood/ppo-CartPole-v1-23-1' 'batch_size': 512 'minibatch_size': 128} ```
AyushPJ/ai-club-inductions-21-nlp-XLNet
[ "pytorch", "xlnet", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "XLNetForQuestionAnsweringSimple" ], "model_type": "xlnet", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 250 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: weeds_hfclass18 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7766666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # weeds_hfclass18 Model is trained on balanced dataset/250 per class/ .8 .1 .1 split/ 224x224 resized Dataset: https://www.kaggle.com/datasets/vbookshelf/v2-plant-seedlings-dataset This model is a fine-tuned version of [microsoft/resnet-152](https://huggingface.co/microsoft/resnet-152) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2397 - Accuracy: 0.7767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.4803 | 0.99 | 37 | 2.4724 | 0.1133 | | 2.4464 | 1.99 | 74 | 2.4305 | 0.2967 | | 2.3843 | 2.99 | 111 | 2.3658 | 0.4233 | | 2.3018 | 3.99 | 148 | 2.2287 | 0.5067 | | 2.1075 | 4.99 | 185 | 2.0144 | 0.5967 | | 1.8743 | 5.99 | 222 | 1.7228 | 0.65 | | 1.7114 | 6.99 | 259 | 1.5487 | 0.6833 | | 1.5345 | 7.99 | 296 | 1.3920 | 0.7267 | | 1.4471 | 8.99 | 333 | 1.2914 | 0.7333 | | 1.3994 | 9.99 | 370 | 1.2397 | 0.7767 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
AyushPJ/ai-club-inductions-21-nlp-distilBERT
[ "pytorch", "distilbert", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: aces-roberta-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aces-roberta-10 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6188 - Precision: 0.8040 - Recall: 0.8198 - F1: 0.8097 - Accuracy: 0.8198 - F1 Who: 0.7939 - F1 What: 0.7929 - F1 Where: 0.7769 - F1 How: 0.8905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | F1 Who | F1 What | F1 Where | F1 How | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------:|:-------:|:--------:|:------:| | 1.6596 | 0.15 | 20 | 1.2172 | 0.5510 | 0.6640 | 0.5906 | 0.6640 | 0.0 | 0.6409 | 0.3258 | 0.7719 | | 1.0566 | 0.31 | 40 | 0.9097 | 0.6534 | 0.7087 | 0.6590 | 0.7087 | 0.3855 | 0.7020 | 0.5620 | 0.8086 | | 0.8056 | 0.46 | 60 | 0.7640 | 0.7092 | 0.7570 | 0.7196 | 0.7570 | 0.6857 | 0.7709 | 0.6696 | 0.8114 | | 0.6996 | 0.61 | 80 | 0.6706 | 0.7601 | 0.7931 | 0.7687 | 0.7931 | 0.8103 | 0.7743 | 0.7471 | 0.8499 | | 0.6346 | 0.76 | 100 | 0.6471 | 0.7763 | 0.8032 | 0.7852 | 0.8032 | 0.7874 | 0.7813 | 0.7490 | 0.8665 | | 0.523 | 0.92 | 120 | 0.6635 | 0.7872 | 0.8061 | 0.7865 | 0.8061 | 0.8244 | 0.7718 | 0.7692 | 0.8771 | | 0.5324 | 1.07 | 140 | 0.6162 | 0.8045 | 0.8212 | 0.8110 | 0.8212 | 0.8197 | 0.8008 | 0.8033 | 0.8852 | | 0.4734 | 1.22 | 160 | 0.6147 | 0.7935 | 0.8097 | 0.7978 | 0.8097 | 0.7939 | 0.7861 | 0.7698 | 0.8911 | | 0.5111 | 1.37 | 180 | 0.6142 | 0.8022 | 0.8154 | 0.8051 | 0.8154 | 0.8244 | 0.8047 | 0.768 | 0.8909 | | 0.4416 | 1.53 | 200 | 0.6204 | 0.8006 | 0.8190 | 0.8079 | 0.8190 | 0.8271 | 0.7984 | 0.7773 | 0.8886 | | 0.5249 | 1.68 | 220 | 0.6239 | 0.7907 | 0.8133 | 0.8006 | 0.8133 | 0.8182 | 0.7969 | 0.7739 | 0.8776 | | 0.4599 | 1.83 | 240 | 0.6458 | 0.7989 | 0.8082 | 0.7967 | 0.8082 | 0.8244 | 0.7953 | 0.7751 | 0.8853 | | 0.4979 | 1.98 | 260 | 0.6390 | 0.8071 | 0.8183 | 0.8051 | 0.8183 | 0.7869 | 0.8000 | 0.7583 | 0.8871 | | 0.393 | 2.14 | 280 | 0.6348 | 0.7994 | 0.8125 | 0.8021 | 0.8125 | 0.8271 | 0.7904 | 0.7653 | 0.8812 | | 0.4079 | 2.29 | 300 | 0.6227 | 0.8002 | 0.8140 | 0.8040 | 0.8140 | 0.8182 | 0.7908 | 0.7668 | 0.8784 | | 0.3731 | 2.44 | 320 | 0.6319 | 0.7887 | 0.8075 | 0.7965 | 0.8075 | 0.8030 | 0.7814 | 0.7692 | 0.8702 | | 0.3987 | 2.6 | 340 | 0.6171 | 0.7922 | 0.8140 | 0.8015 | 0.8140 | 0.7907 | 0.7813 | 0.7968 | 0.8759 | | 0.3865 | 2.75 | 360 | 0.6161 | 0.7968 | 0.8118 | 0.8032 | 0.8118 | 0.7846 | 0.7824 | 0.7692 | 0.8851 | | 0.4222 | 2.9 | 380 | 0.6137 | 0.7955 | 0.8140 | 0.8033 | 0.8140 | 0.8060 | 0.7897 | 0.7874 | 0.8746 | | 0.4164 | 3.05 | 400 | 0.6016 | 0.8017 | 0.8176 | 0.8079 | 0.8176 | 0.7846 | 0.7954 | 0.7843 | 0.8832 | | 0.3505 | 3.21 | 420 | 0.6239 | 0.7912 | 0.8075 | 0.7949 | 0.8075 | 0.7846 | 0.7930 | 0.7786 | 0.8556 | | 0.3834 | 3.36 | 440 | 0.6038 | 0.8022 | 0.8169 | 0.8082 | 0.8169 | 0.7907 | 0.7976 | 0.7757 | 0.8835 | | 0.3139 | 3.51 | 460 | 0.6068 | 0.7978 | 0.8161 | 0.8052 | 0.8161 | 0.7970 | 0.7904 | 0.7846 | 0.8870 | | 0.3679 | 3.66 | 480 | 0.6070 | 0.8026 | 0.8183 | 0.8063 | 0.8183 | 0.7907 | 0.7953 | 0.7799 | 0.8835 | | 0.3387 | 3.82 | 500 | 0.6059 | 0.8025 | 0.8205 | 0.8094 | 0.8205 | 0.7879 | 0.7977 | 0.7937 | 0.8879 | | 0.3208 | 3.97 | 520 | 0.6064 | 0.8015 | 0.8183 | 0.8082 | 0.8183 | 0.7970 | 0.7900 | 0.7782 | 0.8854 | | 0.3008 | 4.12 | 540 | 0.6088 | 0.8020 | 0.8205 | 0.8107 | 0.8205 | 0.7970 | 0.7946 | 0.7813 | 0.8883 | | 0.3014 | 4.27 | 560 | 0.6093 | 0.8032 | 0.8212 | 0.8114 | 0.8212 | 0.8120 | 0.7961 | 0.7813 | 0.8867 | | 0.3486 | 4.43 | 580 | 0.6112 | 0.8042 | 0.8205 | 0.8107 | 0.8205 | 0.7939 | 0.7961 | 0.7829 | 0.8873 | | 0.2793 | 4.58 | 600 | 0.6156 | 0.8047 | 0.8183 | 0.8088 | 0.8183 | 0.7846 | 0.7945 | 0.7769 | 0.8905 | | 0.2943 | 4.73 | 620 | 0.6170 | 0.8044 | 0.8212 | 0.8107 | 0.8212 | 0.7846 | 0.7992 | 0.7843 | 0.8895 | | 0.3314 | 4.89 | 640 | 0.6188 | 0.8040 | 0.8198 | 0.8097 | 0.8198 | 0.7939 | 0.7929 | 0.7769 | 0.8905 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
AyushPJ/test-squad-trained-finetuned-squad
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-03-09T15:44:35Z
--- tags: - espnet - audio - text-to-speech language: jp datasets: - amadeus license: cc-by-4.0 --- ## 原项目链接如下: [**mio/amadeus**](https://huggingface.co/mio/amadeus) ## ESPnet2 TTS model ### `mio/amadeus` This model was trained by mio using [amadeus recipe](https://github.com/mio2333/espnet/tree/master/egs2/amadeus/tts1) in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout d5b5ec7b2e77bd3e10707141818b7e6c57ac6b3f pip install -e . cd egs2/amadeus/tts1 ./run.sh --skip_data_prep false --skip_train true --download_model mio/amadeus ``` ## TTS config <details><summary>expand</summary> ``` config: conf/tuning/finetune_vits.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_amadeus_vits_finetune_from_jsut_32_sentence ngpu: 1 seed: 777 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: false collect_stats: false write_collected_feats: false max_epoch: 2000 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - total_count - max keep_nbest_models: 3 nbest_averaging_interval: 0 grad_clip: -1 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: 50 use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: true wandb_project: amadeus wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: - downloads/f3698edf589206588f58f5ec837fa516/exp/tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause/train.total_count.ave_10best.pth:tts:tts ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 5000000 valid_batch_bins: null train_shape_file: - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/text_shape.phn - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/speech_shape valid_shape_file: - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/text_shape.phn - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/22k/raw/train/text - text - text - - dump/22k/raw/train/wav.scp - speech - sound valid_data_path_and_name_and_type: - - dump/22k/raw/dev/text - text - text - - dump/22k/raw/dev/wav.scp - speech - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0001 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler: exponentiallr scheduler_conf: gamma: 0.999875 optim2: adamw optim2_conf: lr: 0.0001 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler2: exponentiallr scheduler2_conf: gamma: 0.999875 generator_first: false token_list: - <blank> - <unk> - '1' - '2' - '0' - '3' - '4' - '-1' - '5' - a - o - '-2' - i - '-3' - u - e - k - n - t - '6' - r - '-4' - s - N - m - pau - '7' - sh - d - g - w - '8' - U - '-5' - I - cl - h - y - b - '9' - j - ts - ch - '-6' - z - p - '-7' - f - ky - ry - '-8' - gy - '-9' - hy - ny - '-10' - by - my - '-11' - '-12' - '-13' - py - '-14' - '-15' - v - '10' - '-16' - '-17' - '11' - '-21' - '-20' - '12' - '-19' - '13' - '-18' - '14' - dy - '15' - ty - '-22' - '16' - '18' - '19' - '17' - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: jaconv g2p: pyopenjtalk_accent_with_pause feats_extract: linear_spectrogram feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null normalize: null normalize_conf: {} tts: vits tts_conf: generator_type: vits_generator generator_params: hidden_channels: 192 spks: -1 global_channels: -1 segment_size: 32 text_encoder_attention_heads: 2 text_encoder_ffn_expand: 4 text_encoder_blocks: 6 text_encoder_positionwise_layer_type: conv1d text_encoder_positionwise_conv_kernel_size: 3 text_encoder_positional_encoding_layer_type: rel_pos text_encoder_self_attention_layer_type: rel_selfattn text_encoder_activation_type: swish text_encoder_normalize_before: true text_encoder_dropout_rate: 0.1 text_encoder_positional_dropout_rate: 0.0 text_encoder_attention_dropout_rate: 0.1 use_macaron_style_in_text_encoder: true use_conformer_conv_in_text_encoder: false text_encoder_conformer_kernel_size: -1 decoder_kernel_size: 7 decoder_channels: 512 decoder_upsample_scales: - 8 - 8 - 2 - 2 decoder_upsample_kernel_sizes: - 16 - 16 - 4 - 4 decoder_resblock_kernel_sizes: - 3 - 7 - 11 decoder_resblock_dilations: - - 1 - 3 - 5 - - 1 - 3 - 5 - - 1 - 3 - 5 use_weight_norm_in_decoder: true posterior_encoder_kernel_size: 5 posterior_encoder_layers: 16 posterior_encoder_stacks: 1 posterior_encoder_base_dilation: 1 posterior_encoder_dropout_rate: 0.0 use_weight_norm_in_posterior_encoder: true flow_flows: 4 flow_kernel_size: 5 flow_base_dilation: 1 flow_layers: 4 flow_dropout_rate: 0.0 use_weight_norm_in_flow: true use_only_mean_in_flow: true stochastic_duration_predictor_kernel_size: 3 stochastic_duration_predictor_dropout_rate: 0.5 stochastic_duration_predictor_flows: 4 stochastic_duration_predictor_dds_conv_layers: 3 vocabs: 85 aux_channels: 513 discriminator_type: hifigan_multi_scale_multi_period_discriminator discriminator_params: scales: 1 scale_downsample_pooling: AvgPool1d scale_downsample_pooling_params: kernel_size: 4 stride: 2 padding: 2 scale_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 15 - 41 - 5 - 3 channels: 128 max_downsample_channels: 1024 max_groups: 16 bias: true downsample_scales: - 2 - 2 - 4 - 4 - 1 nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false follow_official_norm: false periods: - 2 - 3 - 5 - 7 - 11 period_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 5 - 3 channels: 32 downsample_scales: - 3 - 3 - 3 - 3 - 1 max_downsample_channels: 1024 bias: true nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false generator_adv_loss_params: average_by_discriminators: false loss_type: mse discriminator_adv_loss_params: average_by_discriminators: false loss_type: mse feat_match_loss_params: average_by_discriminators: false average_by_layers: false include_final_outputs: true mel_loss_params: fs: 22050 n_fft: 1024 hop_length: 256 win_length: null window: hann n_mels: 80 fmin: 0 fmax: null log_base: null lambda_adv: 1.0 lambda_mel: 45.0 lambda_feat_match: 2.0 lambda_dur: 1.0 lambda_kl: 1.0 sampling_rate: 22050 cache_generator_outputs: true pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: '202207' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Azaghast/DistilBART-SCP-ParaSummarization
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "BartForConditionalGeneration" ], "model_type": "bart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 142, "min_length": 56, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="propet/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Azaghast/DistilBERT-SCP-Class-Classification
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
42
null
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: aces-roberta-13 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aces-roberta-13 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4600 - Precision: 0.8364 - Recall: 0.8452 - F1: 0.8383 - Accuracy: 0.8452 - F1 Who: 0.9189 - F1 What: 0.8621 - F1 Where: 0.9231 - F1 How: 0.9141 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | F1 Who | F1 What | F1 Where | F1 How | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------:|:-------:|:--------:|:------:| | 1.9849 | 0.35 | 20 | 1.4123 | 0.5426 | 0.6351 | 0.5494 | 0.6351 | 0.1026 | 0.6222 | 0.3232 | 0.7857 | | 1.2159 | 0.7 | 40 | 0.9450 | 0.6559 | 0.7188 | 0.6592 | 0.7188 | 0.6780 | 0.7539 | 0.7071 | 0.7882 | | 0.8634 | 1.05 | 60 | 0.6885 | 0.7652 | 0.7994 | 0.7725 | 0.7994 | 0.9067 | 0.8152 | 0.8070 | 0.8940 | | 0.6777 | 1.4 | 80 | 0.6144 | 0.7650 | 0.7946 | 0.7711 | 0.7946 | 0.9189 | 0.7876 | 0.8039 | 0.9085 | | 0.6051 | 1.75 | 100 | 0.5485 | 0.8126 | 0.8278 | 0.8150 | 0.8278 | 0.9315 | 0.8362 | 0.8148 | 0.9241 | | 0.5511 | 2.11 | 120 | 0.5264 | 0.8113 | 0.8167 | 0.8036 | 0.8167 | 0.9315 | 0.8444 | 0.8257 | 0.9199 | | 0.486 | 2.46 | 140 | 0.4867 | 0.8230 | 0.8357 | 0.8248 | 0.8357 | 0.9315 | 0.8539 | 0.9091 | 0.9048 | | 0.4813 | 2.81 | 160 | 0.4767 | 0.8285 | 0.8278 | 0.8213 | 0.8278 | 0.9189 | 0.8701 | 0.9076 | 0.9135 | | 0.4494 | 3.16 | 180 | 0.5042 | 0.8152 | 0.8199 | 0.8126 | 0.8199 | 0.9315 | 0.8427 | 0.8333 | 0.8956 | | 0.4018 | 3.51 | 200 | 0.4802 | 0.8248 | 0.8357 | 0.8249 | 0.8357 | 0.9189 | 0.8736 | 0.8780 | 0.9357 | | 0.4205 | 3.86 | 220 | 0.4723 | 0.8340 | 0.8389 | 0.8346 | 0.8389 | 0.9189 | 0.8636 | 0.9138 | 0.8986 | | 0.3535 | 4.21 | 240 | 0.4669 | 0.8324 | 0.8452 | 0.8364 | 0.8452 | 0.9189 | 0.8571 | 0.9138 | 0.9167 | | 0.3808 | 4.56 | 260 | 0.4585 | 0.8349 | 0.8452 | 0.8383 | 0.8452 | 0.9189 | 0.8621 | 0.9231 | 0.9141 | | 0.3491 | 4.91 | 280 | 0.4600 | 0.8364 | 0.8452 | 0.8383 | 0.8452 | 0.9189 | 0.8621 | 0.9231 | 0.9141 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
Azaghast/GPT2-SCP-ContainmentProcedures
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 512.50 +/- 195.85 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Yureeh -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Yureeh -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Yureeh ``` ## Hyperparameters ```python OrderedDict([('batch_size', 16), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Azaghast/GPT2-SCP-Descriptions
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9141935483870968 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7816 - Accuracy: 0.9142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2905 | 1.0 | 318 | 3.2789 | 0.7274 | | 2.6269 | 2.0 | 636 | 1.8737 | 0.8297 | | 1.5487 | 3.0 | 954 | 1.1620 | 0.8910 | | 1.0178 | 4.0 | 1272 | 0.8663 | 0.9061 | | 0.8036 | 5.0 | 1590 | 0.7816 | 0.9142 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Azizun/Geotrend-10-epochs
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery-1-always results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Emperor/q-FrozenLake-v1-4x4-noSlippery-1-always", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Azura/data
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 --- ComBERT is a pre-trained NLP model to analyse sentiment of commodity specific news. It is built by further training the BERT language model in the commodity news domain, we use a large open source commodity news corpus and re-tune for commodity specific sentiment classification. For more details, please see the paper ComBERT (Paper Pending) The model will give softmax outputs for three labels: positive, negative or neutral.
Azuris/DialoGPT-medium-envy
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 269.52 +/- 13.10 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BME-TMIT/foszt2oszt
[ "pytorch", "encoder-decoder", "text2text-generation", "hu", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: qxakshat/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀