modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
dccuchile/albert-large-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: ShreyasM/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dccuchile/albert-large-spanish-finetuned-pos
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1719.81 +/- 66.96 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dccuchile/albert-large-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 830.92 +/- 121.47 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dccuchile/albert-tiny-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: third_t5-end2end-questions-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # third_t5-end2end-questions-generation This model is a fine-tuned version of [ThomasSimonini/t5-end2end-question-generation](https://huggingface.co/ThomasSimonini/t5-end2end-question-generation) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6125 | 0.66 | 100 | 2.3093 | | 2.4208 | 1.32 | 200 | 2.2588 | | 2.3535 | 1.98 | 300 | 2.2325 | | 2.3002 | 2.65 | 400 | 2.2175 | | 2.2785 | 3.31 | 500 | 2.2083 | | 2.2439 | 3.97 | 600 | 2.2010 | | 2.2188 | 4.63 | 700 | 2.1972 | | 2.2107 | 5.29 | 800 | 2.1947 | | 2.1938 | 5.95 | 900 | 2.1920 | | 2.1891 | 6.61 | 1000 | 2.1916 | ### Framework versions - Transformers 4.27.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
dccuchile/albert-tiny-spanish-finetuned-pawsx
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
dccuchile/albert-tiny-spanish-finetuned-pos
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2023-03-18T17:59:30Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.37 +/- 0.23 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Chan/distilgpt2-finetuned-wikitext2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.64 +/- 3.12 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Jackmin108/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Ci/Pai
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 272.62 +/- 17.23 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Cinnamon/electra-small-japanese-discriminator
[ "pytorch", "electra", "pretraining", "ja", "transformers", "license:apache-2.0" ]
null
{ "architectures": [ "ElectraForPreTraining" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
419
null
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-model --- ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('WiNE-iNEFF/Minecraft-Skin-Diffusion-V2') image = pipeline().images[0].convert('RGBA') image ```
Cinnamon/electra-small-japanese-generator
[ "pytorch", "electra", "fill-mask", "ja", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "ElectraForMaskedLM" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
19
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # pushpdeep/sbert-en_hi-muril This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('pushpdeep/sbert-en_hi-muril') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('pushpdeep/sbert-en_hi-muril') model = AutoModel.from_pretrained('pushpdeep/sbert-en_hi-muril') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=pushpdeep/sbert-en_hi-muril) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 15106 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Connorvr/TeachingGen
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2023-03-19T00:11:02Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3-Q-Learning results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="MakiPan/Taxi-v3-Q-Learning", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Crumped/imdb-simpleRNN
[ "keras" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer datasets: - open_subtitles metrics: - bleu model-index: - name: opus-mt-en-id-open-subtitles results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: open_subtitles type: open_subtitles config: en-id split: train args: en-id metrics: - name: Bleu type: bleu value: 30.2272 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-id-open-subtitles This model was trained from scratch on the open_subtitles dataset. It achieves the following results on the evaluation set: - Loss: 2.3148 - Bleu: 30.2272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:------:|:---------------:|:-------:| | 1.5356 | 1.0 | 28125 | 1.5619 | 31.8599 | | 1.4703 | 2.0 | 56250 | 1.6047 | 31.8339 | | 1.3857 | 3.0 | 84375 | 1.6281 | 32.0796 | | 1.313 | 4.0 | 112500 | 1.6619 | 31.7391 | | 1.2468 | 5.0 | 140625 | 1.6706 | 31.9009 | | 1.1831 | 6.0 | 168750 | 1.6924 | 31.4491 | | 1.1232 | 7.0 | 196875 | 1.7252 | 31.7229 | | 1.0649 | 8.0 | 225000 | 1.7483 | 31.7093 | | 1.0078 | 9.0 | 253125 | 1.7697 | 31.4902 | | 0.9516 | 10.0 | 281250 | 1.8026 | 31.4342 | | 0.8969 | 11.0 | 309375 | 1.8364 | 31.2466 | | 0.8436 | 12.0 | 337500 | 1.8747 | 31.1737 | | 0.7916 | 13.0 | 365625 | 1.9035 | 31.0118 | | 0.7406 | 14.0 | 393750 | 1.9414 | 30.9409 | | 0.6912 | 15.0 | 421875 | 1.9776 | 30.9562 | | 0.6439 | 16.0 | 450000 | 2.0221 | 30.582 | | 0.5983 | 17.0 | 478125 | 2.0588 | 30.4478 | | 0.5544 | 18.0 | 506250 | 2.1023 | 30.4601 | | 0.5126 | 19.0 | 534375 | 2.1367 | 30.4802 | | 0.474 | 20.0 | 562500 | 2.1790 | 30.4211 | | 0.438 | 21.0 | 590625 | 2.2131 | 30.3327 | | 0.4039 | 22.0 | 618750 | 2.2484 | 30.196 | | 0.3737 | 23.0 | 646875 | 2.2779 | 30.1145 | | 0.3475 | 24.0 | 675000 | 2.3022 | 30.2635 | | 0.326 | 25.0 | 703125 | 2.3148 | 30.2272 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.0 - Datasets 2.10.1 - Tokenizers 0.11.0
Culmenus/opus-mt-de-is-finetuned-de-to-is_35g65cc_2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 429.10 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **CartPole-v1** This is a trained model of a DQN agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQN_buffersize_100000.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQN_buffersize_100000]" python -m cleanrl_utils.enjoy --exp-name DQN_buffersize_100000 --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_buffersize_100000-seed4/raw/main/dqn.py curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_buffersize_100000-seed4/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_buffersize_100000-seed4/raw/main/poetry.lock poetry install --all-extras python dqn.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name DQN_buffersize_100000 --buffer-size 100000 --seed 4 ``` # Hyperparameters ```python {'alg_type': 'dqn.py', 'batch_size': 256, 'buffer_size': 100000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'DQN_buffersize_100000', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'save_model': True, 'seed': 4, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
D4RL1NG/yes
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - autotrain - text-classification language: - es widget: - text: "I love AutoTrain 🤗" datasets: - milyiyo/autotrain-data-iptc-classification-v4 co2_eq_emissions: emissions: 0.845545764970478 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 42015107919 - CO2 Emissions (in grams): 0.8455 ## Validation Metrics - Loss: 1.231 - Accuracy: 0.758 - Macro F1: 0.531 - Micro F1: 0.758 - Weighted F1: 0.708 - Macro Precision: 0.532 - Micro Precision: 0.758 - Weighted Precision: 0.685 - Macro Recall: 0.553 - Micro Recall: 0.758 - Weighted Recall: 0.758 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/milyiyo/autotrain-iptc-classification-v4-42015107919 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("milyiyo/autotrain-iptc-classification-v4-42015107919", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("milyiyo/autotrain-iptc-classification-v4-42015107919", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
DataikuNLP/distiluse-base-multilingual-cased-v1
[ "pytorch", "distilbert", "arxiv:1908.10084", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
{ "architectures": [ "DistilBertModel" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- license: mit tags: - feature-extraction library_name: fasttext language: gu widget: - text: apple example_title: apple --- # fastText (Gujarati) fastText is an open-source, free, lightweight library that allows users to learn text representations and text classifiers. It works on standard, generic hardware. Models can later be reduced in size to even fit on mobile devices. It was introduced in [this paper](https://arxiv.org/abs/1607.04606). The official website can be found [here](https://fasttext.cc/). ## Model description fastText is a library for efficient learning of word representations and sentence classification. fastText is designed to be simple to use for developers, domain experts, and students. It's dedicated to text classification and learning word representations, and was designed to allow for quick model iteration and refinement without specialized hardware. fastText models can be trained on more than a billion words on any multicore CPU in less than a few minutes. It includes pre-trained models learned on Wikipedia and in over 157 different languages. fastText can be used as a command line, linked to a C++ application, or used as a library for use cases from experimentation and prototyping to production. ## Intended uses & limitations You can use pre-trained word vectors for text classification or language identification. See the [tutorials](https://fasttext.cc/docs/en/supervised-tutorial.html) and [resources](https://fasttext.cc/docs/en/english-vectors.html) on its official website to look for tasks that interest you. ### How to use Here is how to load and use a pre-trained vectors ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-gu-vectors", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.words ['the', 'of', 'and', 'to', 'in', 'a', 'that', 'is', ...] >>> len(model.words) 145940 >>> model['bread'] array([ 4.89417791e-01, 1.60882145e-01, -2.25947708e-01, -2.94273376e-01, -1.04577184e-01, 1.17962055e-01, 1.34821936e-01, -2.41778508e-01, ...]) ``` Here is how to use this model to query nearest neighbors of an English word vector: ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-en-nearest-neighbors", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.get_nearest_neighbors("bread", k=5) [(0.5641006231307983, 'butter'), (0.48875734210014343, 'loaf'), (0.4491206705570221, 'eat'), (0.42444291710853577, 'food'), (0.4229326844215393, 'cheese')] ``` Here is how to use this model to detect the language of a given text: ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.predict("Hello, world!") (('__label__eng_Latn',), array([0.81148803])) >>> model.predict("Hello, world!", k=5) (('__label__eng_Latn', '__label__vie_Latn', '__label__nld_Latn', '__label__pol_Latn', '__label__deu_Latn'), array([0.61224753, 0.21323682, 0.09696738, 0.01359863, 0.01319415])) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. Cosine similarity can be used to measure the similarity between two different word vectors. If two two vectors are identical, the cosine similarity will be 1. For two completely unrelated vectors, the value will be 0. If two vectors have an opposite relationship, the value will be -1. ```python >>> import numpy as np >>> def cosine_similarity(word1, word2): >>> return np.dot(model[word1], model[word2]) / (np.linalg.norm(model[word1]) * np.linalg.norm(model[word2])) >>> cosine_similarity("man", "boy") 0.061653383 >>> cosine_similarity("man", "ceo") 0.11989131 >>> cosine_similarity("woman", "ceo") -0.08834904 ``` ## Training data Pre-trained word vectors for 157 languages were trained on [Common Crawl](http://commoncrawl.org/) and [Wikipedia](https://www.wikipedia.org/) using fastText. These models were trained using CBOW with position-weights, in dimension 300, with character n-grams of length 5, a window of size 5 and 10 negatives. We also distribute three new word analogy datasets, for French, Hindi and Polish. ## Training procedure ### Tokenization We used the [Stanford word segmenter](https://nlp.stanford.edu/software/segmenter.html) for Chinese, [Mecab](http://taku910.github.io/mecab/) for Japanese and [UETsegmenter](https://github.com/phongnt570/UETsegmenter) for Vietnamese. For languages using the Latin, Cyrillic, Hebrew or Greek scripts, we used the tokenizer from the [Europarl](https://www.statmt.org/europarl/) preprocessing tools. For the remaining languages, we used the ICU tokenizer. More information about the training of these models can be found in the article [Learning Word Vectors for 157 Languages](https://arxiv.org/abs/1802.06893). ### License The word vectors are distributed under the [*Creative Commons Attribution-Share-Alike License 3.0*](https://creativecommons.org/licenses/by-sa/3.0/). ### Evaluation datasets The analogy evaluation datasets described in the paper are available here: [French](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-fr.txt), [Hindi](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-hi.txt), [Polish](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-pl.txt). ### BibTeX entry and citation info Please cite [1] if using this code for learning word representations or [2] if using for text classification. [1] P. Bojanowski\*, E. Grave\*, A. Joulin, T. Mikolov, [*Enriching Word Vectors with Subword Information*](https://arxiv.org/abs/1607.04606) ```markup @article{bojanowski2016enriching, title={Enriching Word Vectors with Subword Information}, author={Bojanowski, Piotr and Grave, Edouard and Joulin, Armand and Mikolov, Tomas}, journal={arXiv preprint arXiv:1607.04606}, year={2016} } ``` [2] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, [*Bag of Tricks for Efficient Text Classification*](https://arxiv.org/abs/1607.01759) ```markup @article{joulin2016bag, title={Bag of Tricks for Efficient Text Classification}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas}, journal={arXiv preprint arXiv:1607.01759}, year={2016} } ``` [3] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, [*FastText.zip: Compressing text classification models*](https://arxiv.org/abs/1612.03651) ```markup @article{joulin2016fasttext, title={FastText.zip: Compressing text classification models}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{'e}gou, H{'e}rve and Mikolov, Tomas}, journal={arXiv preprint arXiv:1612.03651}, year={2016} } ``` If you use these word vectors, please cite the following paper: [4] E. Grave\*, P. Bojanowski\*, P. Gupta, A. Joulin, T. Mikolov, [*Learning Word Vectors for 157 Languages*](https://arxiv.org/abs/1802.06893) ```markup @inproceedings{grave2018learning, title={Learning Word Vectors for 157 Languages}, author={Grave, Edouard and Bojanowski, Piotr and Gupta, Prakhar and Joulin, Armand and Mikolov, Tomas}, booktitle={Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018)}, year={2018} } ``` (\* These authors contributed equally.)
DataikuNLP/paraphrase-multilingual-MiniLM-L12-v2
[ "pytorch", "bert", "arxiv:1908.10084", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,517
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.03 +/- 4.85 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r taohoang/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Davlan/bert-base-multilingual-cased-finetuned-naija
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: jackhhhh/ppo-Pyramids_Training1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Davlan/bert-base-multilingual-cased-finetuned-swahili
[ "pytorch", "tf", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
67
null
--- license: mit tags: - feature-extraction library_name: fasttext language: he widget: - text: apple example_title: apple --- # fastText (Hebrew) fastText is an open-source, free, lightweight library that allows users to learn text representations and text classifiers. It works on standard, generic hardware. Models can later be reduced in size to even fit on mobile devices. It was introduced in [this paper](https://arxiv.org/abs/1607.04606). The official website can be found [here](https://fasttext.cc/). ## Model description fastText is a library for efficient learning of word representations and sentence classification. fastText is designed to be simple to use for developers, domain experts, and students. It's dedicated to text classification and learning word representations, and was designed to allow for quick model iteration and refinement without specialized hardware. fastText models can be trained on more than a billion words on any multicore CPU in less than a few minutes. It includes pre-trained models learned on Wikipedia and in over 157 different languages. fastText can be used as a command line, linked to a C++ application, or used as a library for use cases from experimentation and prototyping to production. ## Intended uses & limitations You can use pre-trained word vectors for text classification or language identification. See the [tutorials](https://fasttext.cc/docs/en/supervised-tutorial.html) and [resources](https://fasttext.cc/docs/en/english-vectors.html) on its official website to look for tasks that interest you. ### How to use Here is how to load and use a pre-trained vectors ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-he-vectors", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.words ['the', 'of', 'and', 'to', 'in', 'a', 'that', 'is', ...] >>> len(model.words) 145940 >>> model['bread'] array([ 4.89417791e-01, 1.60882145e-01, -2.25947708e-01, -2.94273376e-01, -1.04577184e-01, 1.17962055e-01, 1.34821936e-01, -2.41778508e-01, ...]) ``` Here is how to use this model to query nearest neighbors of an English word vector: ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-en-nearest-neighbors", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.get_nearest_neighbors("bread", k=5) [(0.5641006231307983, 'butter'), (0.48875734210014343, 'loaf'), (0.4491206705570221, 'eat'), (0.42444291710853577, 'food'), (0.4229326844215393, 'cheese')] ``` Here is how to use this model to detect the language of a given text: ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.predict("Hello, world!") (('__label__eng_Latn',), array([0.81148803])) >>> model.predict("Hello, world!", k=5) (('__label__eng_Latn', '__label__vie_Latn', '__label__nld_Latn', '__label__pol_Latn', '__label__deu_Latn'), array([0.61224753, 0.21323682, 0.09696738, 0.01359863, 0.01319415])) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. Cosine similarity can be used to measure the similarity between two different word vectors. If two two vectors are identical, the cosine similarity will be 1. For two completely unrelated vectors, the value will be 0. If two vectors have an opposite relationship, the value will be -1. ```python >>> import numpy as np >>> def cosine_similarity(word1, word2): >>> return np.dot(model[word1], model[word2]) / (np.linalg.norm(model[word1]) * np.linalg.norm(model[word2])) >>> cosine_similarity("man", "boy") 0.061653383 >>> cosine_similarity("man", "ceo") 0.11989131 >>> cosine_similarity("woman", "ceo") -0.08834904 ``` ## Training data Pre-trained word vectors for 157 languages were trained on [Common Crawl](http://commoncrawl.org/) and [Wikipedia](https://www.wikipedia.org/) using fastText. These models were trained using CBOW with position-weights, in dimension 300, with character n-grams of length 5, a window of size 5 and 10 negatives. We also distribute three new word analogy datasets, for French, Hindi and Polish. ## Training procedure ### Tokenization We used the [Stanford word segmenter](https://nlp.stanford.edu/software/segmenter.html) for Chinese, [Mecab](http://taku910.github.io/mecab/) for Japanese and [UETsegmenter](https://github.com/phongnt570/UETsegmenter) for Vietnamese. For languages using the Latin, Cyrillic, Hebrew or Greek scripts, we used the tokenizer from the [Europarl](https://www.statmt.org/europarl/) preprocessing tools. For the remaining languages, we used the ICU tokenizer. More information about the training of these models can be found in the article [Learning Word Vectors for 157 Languages](https://arxiv.org/abs/1802.06893). ### License The word vectors are distributed under the [*Creative Commons Attribution-Share-Alike License 3.0*](https://creativecommons.org/licenses/by-sa/3.0/). ### Evaluation datasets The analogy evaluation datasets described in the paper are available here: [French](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-fr.txt), [Hindi](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-hi.txt), [Polish](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-pl.txt). ### BibTeX entry and citation info Please cite [1] if using this code for learning word representations or [2] if using for text classification. [1] P. Bojanowski\*, E. Grave\*, A. Joulin, T. Mikolov, [*Enriching Word Vectors with Subword Information*](https://arxiv.org/abs/1607.04606) ```markup @article{bojanowski2016enriching, title={Enriching Word Vectors with Subword Information}, author={Bojanowski, Piotr and Grave, Edouard and Joulin, Armand and Mikolov, Tomas}, journal={arXiv preprint arXiv:1607.04606}, year={2016} } ``` [2] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, [*Bag of Tricks for Efficient Text Classification*](https://arxiv.org/abs/1607.01759) ```markup @article{joulin2016bag, title={Bag of Tricks for Efficient Text Classification}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas}, journal={arXiv preprint arXiv:1607.01759}, year={2016} } ``` [3] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, [*FastText.zip: Compressing text classification models*](https://arxiv.org/abs/1612.03651) ```markup @article{joulin2016fasttext, title={FastText.zip: Compressing text classification models}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{'e}gou, H{'e}rve and Mikolov, Tomas}, journal={arXiv preprint arXiv:1612.03651}, year={2016} } ``` If you use these word vectors, please cite the following paper: [4] E. Grave\*, P. Bojanowski\*, P. Gupta, A. Joulin, T. Mikolov, [*Learning Word Vectors for 157 Languages*](https://arxiv.org/abs/1802.06893) ```markup @inproceedings{grave2018learning, title={Learning Word Vectors for 157 Languages}, author={Grave, Edouard and Bojanowski, Piotr and Gupta, Prakhar and Joulin, Armand and Mikolov, Tomas}, booktitle={Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018)}, year={2018} } ``` (\* These authors contributed equally.)
Davlan/bert-base-multilingual-cased-ner-hrl
[ "pytorch", "tf", "bert", "token-classification", "transformers", "autotrain_compatible", "has_space" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
269,898
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-multilingual-cased_0319_J results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased_0319_J This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0355 - Precision: 0.9776 - Recall: 0.9791 - F1: 0.9784 - Accuracy: 0.9949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 95 | 0.2410 | 0.6320 | 0.7491 | 0.6856 | 0.9475 | | No log | 2.0 | 190 | 0.0483 | 0.9430 | 0.9522 | 0.9476 | 0.9912 | | No log | 3.0 | 285 | 0.0379 | 0.9710 | 0.9746 | 0.9728 | 0.9938 | | No log | 4.0 | 380 | 0.0382 | 0.9645 | 0.9731 | 0.9688 | 0.9940 | | No log | 5.0 | 475 | 0.0357 | 0.9703 | 0.9761 | 0.9732 | 0.9941 | | No log | 6.0 | 570 | 0.0367 | 0.9710 | 0.9761 | 0.9736 | 0.9943 | | No log | 7.0 | 665 | 0.0376 | 0.9732 | 0.9761 | 0.9746 | 0.9943 | | No log | 8.0 | 760 | 0.0355 | 0.9776 | 0.9791 | 0.9784 | 0.9949 | | No log | 9.0 | 855 | 0.0364 | 0.9718 | 0.9768 | 0.9743 | 0.9946 | | No log | 10.0 | 950 | 0.0361 | 0.9747 | 0.9776 | 0.9761 | 0.9947 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.0+cu117 - Datasets 2.8.0 - Tokenizers 0.12.1
Davlan/byt5-base-yor-eng-mt
[ "pytorch", "t5", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1538.63 +/- 176.09 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Davlan/distilbert-base-multilingual-cased-masakhaner
[ "pytorch", "tf", "distilbert", "token-classification", "arxiv:2103.11811", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Davlan/distilbert-base-multilingual-cased-ner-hrl
[ "pytorch", "tf", "distilbert", "token-classification", "transformers", "autotrain_compatible", "has_space" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
123,856
null
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: es datasets: - lmqg/qg_esquad pipeline_tag: text2text-generation tags: - question answering widget: - text: "question: ¿Cuál es la población de Nueva York a partir de 2014?, context: Situada en uno de los mayores puertos naturales del mundo, la ciudad de Nueva York consta de cinco municipios, cada uno de los cuales es un condado separado del estado de Nueva York. Los cinco distritos - Brooklyn, Queens, Manhattan, el Bronx y Staten Island - se consolidaron en una sola ciudad en 1898. Con una población censada estimada en 2014 de 8.491.079 habitantes distribuidos en una superficie de solo 790 km ², Nueva York es la ciudad más densamente poblada de los Estados Unidos. Hasta 800 idiomas se hablan en Nueva York, por lo que es la ciudad más lingüísticamente diversa del mundo. Según estimaciones del censo de 2014, la región metropolitana de la ciudad de Nueva York sigue siendo por un margen significativo la más poblada de los Estados Unidos, según lo definido tanto por el Área Estadística Metropolitana (20,1 millones de residentes). En 2013, el MSA produjo un producto metropolitano bruto (GMP) de casi US $1,39 billones, mientras que en 2012, el CSA generó un GMP de más de US $1,55 billones, ambos clasificados en primer lugar." example_title: "Question Answering Example 1" - text: "question: ¿Cómo se llama el ejército personal de Sassou?, context: El progreso democrático del Congo se descarriló en 1997, cuando Lissouba y Sassou comenzaron a luchar por el poder en la guerra civil. A medida que se acercaban las elecciones presidenciales de julio de 1997, las tensiones entre los campos de Lissouba y Sassou aumentaron. El 5 de junio, las fuerzas del gobierno del presidente Lissouba rodearon el complejo de Sassou en Brazzaville y Sassou ordenó a los miembros de su milicia privada (conocida como Cobras) resistir. Así comenzó un conflicto de cuatro meses que destruyó o dañó gran parte de Brazzaville y causó decenas de miles de muertes civiles. A principios de octubre, el régimen socialista angoleño comenzó una invasión del Congo para instalar a Sassou en el poder. A mediados de octubre, el gobierno de Lissouba cayó. Poco después, Sassou se declaró presidente." example_title: "Question Answering Example 2" model-index: - name: vocabtrimmer/mt5-small-trimmed-es-60000-esquad-qa results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_esquad type: default args: default metrics: - name: BLEU4 (Question Answering) type: bleu4_question_answering value: 15.81 - name: ROUGE-L (Question Answering) type: rouge_l_question_answering value: 36.21 - name: METEOR (Question Answering) type: meteor_question_answering value: 31.38 - name: BERTScore (Question Answering) type: bertscore_question_answering value: 90.76 - name: MoverScore (Question Answering) type: moverscore_question_answering value: 75.04 - name: AnswerF1Score (Question Answering) type: answer_f1_score__question_answering value: 58.03 - name: AnswerExactMatch (Question Answering) type: answer_exact_match_question_answering value: 37.0 --- # Model Card of `vocabtrimmer/mt5-small-trimmed-es-60000-esquad-qa` This model is fine-tuned version of [ckpts/mt5-small-trimmed-es-60000](https://huggingface.co/ckpts/mt5-small-trimmed-es-60000) for question answering task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [ckpts/mt5-small-trimmed-es-60000](https://huggingface.co/ckpts/mt5-small-trimmed-es-60000) - **Language:** es - **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="es", model="vocabtrimmer/mt5-small-trimmed-es-60000-esquad-qa") # model prediction answers = model.answer_q(list_question="¿Cuál es la población de Nueva York a partir de 2014?", list_context=" Situada en uno de los mayores puertos naturales del mundo, la ciudad de Nueva York consta de cinco municipios, cada uno de los cuales es un condado separado del estado de Nueva York. Los cinco distritos - Brooklyn, Queens, Manhattan, el Bronx y Staten Island - se consolidaron en una sola ciudad en 1898. Con una población censada estimada en 2014 de 8.491.079 habitantes distribuidos en una superficie de solo 790 km ², Nueva York es la ciudad más densamente poblada de los Estados Unidos. Hasta 800 idiomas se hablan en Nueva York, por lo que es la ciudad más lingüísticamente diversa del mundo. Según estimaciones del censo de 2014, la región metropolitana de la ciudad de Nueva York sigue siendo por un margen significativo la más poblada de los Estados Unidos, según lo definido tanto por el Área Estadística Metropolitana (20,1 millones de residentes). En 2013, el MSA produjo un producto metropolitano bruto (GMP) de casi US $1,39 billones, mientras que en 2012, el CSA generó un GMP de más de US $1,55 billones, ambos clasificados en primer lugar.") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-es-60000-esquad-qa") output = pipe("question: ¿Cuál es la población de Nueva York a partir de 2014?, context: Situada en uno de los mayores puertos naturales del mundo, la ciudad de Nueva York consta de cinco municipios, cada uno de los cuales es un condado separado del estado de Nueva York. Los cinco distritos - Brooklyn, Queens, Manhattan, el Bronx y Staten Island - se consolidaron en una sola ciudad en 1898. Con una población censada estimada en 2014 de 8.491.079 habitantes distribuidos en una superficie de solo 790 km ², Nueva York es la ciudad más densamente poblada de los Estados Unidos. Hasta 800 idiomas se hablan en Nueva York, por lo que es la ciudad más lingüísticamente diversa del mundo. Según estimaciones del censo de 2014, la región metropolitana de la ciudad de Nueva York sigue siendo por un margen significativo la más poblada de los Estados Unidos, según lo definido tanto por el Área Estadística Metropolitana (20,1 millones de residentes). En 2013, el MSA produjo un producto metropolitano bruto (GMP) de casi US $1,39 billones, mientras que en 2012, el CSA generó un GMP de más de US $1,55 billones, ambos clasificados en primer lugar.") ``` ## Evaluation - ***Metric (Question Answering)***: [raw metric file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-60000-esquad-qa/raw/main/eval/metric.first.answer.paragraph_question.answer.lmqg_qg_esquad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:-----------------------------------------------------------------| | AnswerExactMatch | 37 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | AnswerF1Score | 58.03 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | BERTScore | 90.76 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_1 | 25.62 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_2 | 21.27 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_3 | 18.24 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_4 | 15.81 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | METEOR | 31.38 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | MoverScore | 75.04 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | ROUGE_L | 36.21 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_esquad - dataset_name: default - input_types: ['paragraph_question'] - output_types: ['answer'] - prefix_types: None - model: ckpts/mt5-small-trimmed-es-60000 - max_length: 512 - max_length_output: 32 - epoch: 13 - batch: 32 - lr: 0.001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-60000-esquad-qa/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
Davlan/mT5_base_yoruba_adr
[ "pytorch", "mt5", "text2text-generation", "arxiv:2003.10564", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.04 +/- 1.08 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Davlan/mbart50-large-eng-yor-mt
[ "pytorch", "mbart", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MBartForConditionalGeneration" ], "model_type": "mbart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: Raiden-1001/ppo-SnowballTarget1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Davlan/mbart50-large-yor-eng-mt
[ "pytorch", "mbart", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MBartForConditionalGeneration" ], "model_type": "mbart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.23 +/- 0.71 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Davlan/mt5-small-en-pcm
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: mit tags: - feature-extraction library_name: fasttext language: mrj widget: - text: apple example_title: apple --- # fastText (Hill Mari) fastText is an open-source, free, lightweight library that allows users to learn text representations and text classifiers. It works on standard, generic hardware. Models can later be reduced in size to even fit on mobile devices. It was introduced in [this paper](https://arxiv.org/abs/1607.04606). The official website can be found [here](https://fasttext.cc/). ## Model description fastText is a library for efficient learning of word representations and sentence classification. fastText is designed to be simple to use for developers, domain experts, and students. It's dedicated to text classification and learning word representations, and was designed to allow for quick model iteration and refinement without specialized hardware. fastText models can be trained on more than a billion words on any multicore CPU in less than a few minutes. It includes pre-trained models learned on Wikipedia and in over 157 different languages. fastText can be used as a command line, linked to a C++ application, or used as a library for use cases from experimentation and prototyping to production. ## Intended uses & limitations You can use pre-trained word vectors for text classification or language identification. See the [tutorials](https://fasttext.cc/docs/en/supervised-tutorial.html) and [resources](https://fasttext.cc/docs/en/english-vectors.html) on its official website to look for tasks that interest you. ### How to use Here is how to load and use a pre-trained vectors ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-mrj-vectors", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.words ['the', 'of', 'and', 'to', 'in', 'a', 'that', 'is', ...] >>> len(model.words) 145940 >>> model['bread'] array([ 4.89417791e-01, 1.60882145e-01, -2.25947708e-01, -2.94273376e-01, -1.04577184e-01, 1.17962055e-01, 1.34821936e-01, -2.41778508e-01, ...]) ``` Here is how to use this model to query nearest neighbors of an English word vector: ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-en-nearest-neighbors", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.get_nearest_neighbors("bread", k=5) [(0.5641006231307983, 'butter'), (0.48875734210014343, 'loaf'), (0.4491206705570221, 'eat'), (0.42444291710853577, 'food'), (0.4229326844215393, 'cheese')] ``` Here is how to use this model to detect the language of a given text: ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.predict("Hello, world!") (('__label__eng_Latn',), array([0.81148803])) >>> model.predict("Hello, world!", k=5) (('__label__eng_Latn', '__label__vie_Latn', '__label__nld_Latn', '__label__pol_Latn', '__label__deu_Latn'), array([0.61224753, 0.21323682, 0.09696738, 0.01359863, 0.01319415])) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. Cosine similarity can be used to measure the similarity between two different word vectors. If two two vectors are identical, the cosine similarity will be 1. For two completely unrelated vectors, the value will be 0. If two vectors have an opposite relationship, the value will be -1. ```python >>> import numpy as np >>> def cosine_similarity(word1, word2): >>> return np.dot(model[word1], model[word2]) / (np.linalg.norm(model[word1]) * np.linalg.norm(model[word2])) >>> cosine_similarity("man", "boy") 0.061653383 >>> cosine_similarity("man", "ceo") 0.11989131 >>> cosine_similarity("woman", "ceo") -0.08834904 ``` ## Training data Pre-trained word vectors for 157 languages were trained on [Common Crawl](http://commoncrawl.org/) and [Wikipedia](https://www.wikipedia.org/) using fastText. These models were trained using CBOW with position-weights, in dimension 300, with character n-grams of length 5, a window of size 5 and 10 negatives. We also distribute three new word analogy datasets, for French, Hindi and Polish. ## Training procedure ### Tokenization We used the [Stanford word segmenter](https://nlp.stanford.edu/software/segmenter.html) for Chinese, [Mecab](http://taku910.github.io/mecab/) for Japanese and [UETsegmenter](https://github.com/phongnt570/UETsegmenter) for Vietnamese. For languages using the Latin, Cyrillic, Hebrew or Greek scripts, we used the tokenizer from the [Europarl](https://www.statmt.org/europarl/) preprocessing tools. For the remaining languages, we used the ICU tokenizer. More information about the training of these models can be found in the article [Learning Word Vectors for 157 Languages](https://arxiv.org/abs/1802.06893). ### License The word vectors are distributed under the [*Creative Commons Attribution-Share-Alike License 3.0*](https://creativecommons.org/licenses/by-sa/3.0/). ### Evaluation datasets The analogy evaluation datasets described in the paper are available here: [French](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-fr.txt), [Hindi](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-hi.txt), [Polish](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-pl.txt). ### BibTeX entry and citation info Please cite [1] if using this code for learning word representations or [2] if using for text classification. [1] P. Bojanowski\*, E. Grave\*, A. Joulin, T. Mikolov, [*Enriching Word Vectors with Subword Information*](https://arxiv.org/abs/1607.04606) ```markup @article{bojanowski2016enriching, title={Enriching Word Vectors with Subword Information}, author={Bojanowski, Piotr and Grave, Edouard and Joulin, Armand and Mikolov, Tomas}, journal={arXiv preprint arXiv:1607.04606}, year={2016} } ``` [2] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, [*Bag of Tricks for Efficient Text Classification*](https://arxiv.org/abs/1607.01759) ```markup @article{joulin2016bag, title={Bag of Tricks for Efficient Text Classification}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas}, journal={arXiv preprint arXiv:1607.01759}, year={2016} } ``` [3] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, [*FastText.zip: Compressing text classification models*](https://arxiv.org/abs/1612.03651) ```markup @article{joulin2016fasttext, title={FastText.zip: Compressing text classification models}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{'e}gou, H{'e}rve and Mikolov, Tomas}, journal={arXiv preprint arXiv:1612.03651}, year={2016} } ``` If you use these word vectors, please cite the following paper: [4] E. Grave\*, P. Bojanowski\*, P. Gupta, A. Joulin, T. Mikolov, [*Learning Word Vectors for 157 Languages*](https://arxiv.org/abs/1802.06893) ```markup @inproceedings{grave2018learning, title={Learning Word Vectors for 157 Languages}, author={Grave, Edouard and Bojanowski, Piotr and Gupta, Prakhar and Joulin, Armand and Mikolov, Tomas}, booktitle={Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018)}, year={2018} } ``` (\* These authors contributed equally.)
Davlan/mt5-small-pcm-en
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/KarosY/lianjia_2l_100per600_1e-4 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were fine-tuned on the None dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Davlan/mt5_base_eng_yor_mt
[ "pytorch", "mt5", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/KarosY/lianjia_2l_100per700_1e-4 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were fine-tuned on the None dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Davlan/naija-twitter-sentiment-afriberta-large
[ "pytorch", "tf", "xlm-roberta", "text-classification", "arxiv:2201.08277", "transformers", "has_space" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
61
2023-03-19T05:56:15Z
--- license: mit tags: - feature-extraction library_name: fasttext language: hi widget: - text: apple example_title: apple --- # fastText (Hindi) fastText is an open-source, free, lightweight library that allows users to learn text representations and text classifiers. It works on standard, generic hardware. Models can later be reduced in size to even fit on mobile devices. It was introduced in [this paper](https://arxiv.org/abs/1607.04606). The official website can be found [here](https://fasttext.cc/). ## Model description fastText is a library for efficient learning of word representations and sentence classification. fastText is designed to be simple to use for developers, domain experts, and students. It's dedicated to text classification and learning word representations, and was designed to allow for quick model iteration and refinement without specialized hardware. fastText models can be trained on more than a billion words on any multicore CPU in less than a few minutes. It includes pre-trained models learned on Wikipedia and in over 157 different languages. fastText can be used as a command line, linked to a C++ application, or used as a library for use cases from experimentation and prototyping to production. ## Intended uses & limitations You can use pre-trained word vectors for text classification or language identification. See the [tutorials](https://fasttext.cc/docs/en/supervised-tutorial.html) and [resources](https://fasttext.cc/docs/en/english-vectors.html) on its official website to look for tasks that interest you. ### How to use Here is how to load and use a pre-trained vectors ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-hi-vectors", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.words ['the', 'of', 'and', 'to', 'in', 'a', 'that', 'is', ...] >>> len(model.words) 145940 >>> model['bread'] array([ 4.89417791e-01, 1.60882145e-01, -2.25947708e-01, -2.94273376e-01, -1.04577184e-01, 1.17962055e-01, 1.34821936e-01, -2.41778508e-01, ...]) ``` Here is how to use this model to query nearest neighbors of an English word vector: ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-en-nearest-neighbors", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.get_nearest_neighbors("bread", k=5) [(0.5641006231307983, 'butter'), (0.48875734210014343, 'loaf'), (0.4491206705570221, 'eat'), (0.42444291710853577, 'food'), (0.4229326844215393, 'cheese')] ``` Here is how to use this model to detect the language of a given text: ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.predict("Hello, world!") (('__label__eng_Latn',), array([0.81148803])) >>> model.predict("Hello, world!", k=5) (('__label__eng_Latn', '__label__vie_Latn', '__label__nld_Latn', '__label__pol_Latn', '__label__deu_Latn'), array([0.61224753, 0.21323682, 0.09696738, 0.01359863, 0.01319415])) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. Cosine similarity can be used to measure the similarity between two different word vectors. If two two vectors are identical, the cosine similarity will be 1. For two completely unrelated vectors, the value will be 0. If two vectors have an opposite relationship, the value will be -1. ```python >>> import numpy as np >>> def cosine_similarity(word1, word2): >>> return np.dot(model[word1], model[word2]) / (np.linalg.norm(model[word1]) * np.linalg.norm(model[word2])) >>> cosine_similarity("man", "boy") 0.061653383 >>> cosine_similarity("man", "ceo") 0.11989131 >>> cosine_similarity("woman", "ceo") -0.08834904 ``` ## Training data Pre-trained word vectors for 157 languages were trained on [Common Crawl](http://commoncrawl.org/) and [Wikipedia](https://www.wikipedia.org/) using fastText. These models were trained using CBOW with position-weights, in dimension 300, with character n-grams of length 5, a window of size 5 and 10 negatives. We also distribute three new word analogy datasets, for French, Hindi and Polish. ## Training procedure ### Tokenization We used the [Stanford word segmenter](https://nlp.stanford.edu/software/segmenter.html) for Chinese, [Mecab](http://taku910.github.io/mecab/) for Japanese and [UETsegmenter](https://github.com/phongnt570/UETsegmenter) for Vietnamese. For languages using the Latin, Cyrillic, Hebrew or Greek scripts, we used the tokenizer from the [Europarl](https://www.statmt.org/europarl/) preprocessing tools. For the remaining languages, we used the ICU tokenizer. More information about the training of these models can be found in the article [Learning Word Vectors for 157 Languages](https://arxiv.org/abs/1802.06893). ### License The word vectors are distributed under the [*Creative Commons Attribution-Share-Alike License 3.0*](https://creativecommons.org/licenses/by-sa/3.0/). ### Evaluation datasets The analogy evaluation datasets described in the paper are available here: [French](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-fr.txt), [Hindi](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-hi.txt), [Polish](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-pl.txt). ### BibTeX entry and citation info Please cite [1] if using this code for learning word representations or [2] if using for text classification. [1] P. Bojanowski\*, E. Grave\*, A. Joulin, T. Mikolov, [*Enriching Word Vectors with Subword Information*](https://arxiv.org/abs/1607.04606) ```markup @article{bojanowski2016enriching, title={Enriching Word Vectors with Subword Information}, author={Bojanowski, Piotr and Grave, Edouard and Joulin, Armand and Mikolov, Tomas}, journal={arXiv preprint arXiv:1607.04606}, year={2016} } ``` [2] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, [*Bag of Tricks for Efficient Text Classification*](https://arxiv.org/abs/1607.01759) ```markup @article{joulin2016bag, title={Bag of Tricks for Efficient Text Classification}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas}, journal={arXiv preprint arXiv:1607.01759}, year={2016} } ``` [3] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, [*FastText.zip: Compressing text classification models*](https://arxiv.org/abs/1612.03651) ```markup @article{joulin2016fasttext, title={FastText.zip: Compressing text classification models}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{'e}gou, H{'e}rve and Mikolov, Tomas}, journal={arXiv preprint arXiv:1612.03651}, year={2016} } ``` If you use these word vectors, please cite the following paper: [4] E. Grave\*, P. Bojanowski\*, P. Gupta, A. Joulin, T. Mikolov, [*Learning Word Vectors for 157 Languages*](https://arxiv.org/abs/1802.06893) ```markup @inproceedings{grave2018learning, title={Learning Word Vectors for 157 Languages}, author={Grave, Edouard and Bojanowski, Piotr and Gupta, Prakhar and Joulin, Armand and Mikolov, Tomas}, booktitle={Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018)}, year={2018} } ``` (\* These authors contributed equally.)
Davlan/xlm-roberta-base-finetuned-amharic
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
401
2023-03-19T05:58:22Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.03 +/- 0.78 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Davlan/xlm-roberta-base-finetuned-english
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: mit tags: - generated_from_trainer metrics: - precision - recall model-index: - name: synthetic-70-vsfc-xlm-r results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # synthetic-70-vsfc-xlm-r This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7726 - Precision: 0.8498 - Recall: 0.4018 - F1 Weighted: 0.5020 - F1 Macro: 0.3865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Weighted | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:-----------:|:--------:| | 1.1007 | 0.22 | 25 | 1.1227 | 0.0021 | 0.0461 | 0.0041 | 0.0294 | | 0.8388 | 0.45 | 50 | 0.7289 | 0.8086 | 0.8105 | 0.8075 | 0.6172 | | 0.5915 | 0.67 | 75 | 1.0029 | 0.8601 | 0.5155 | 0.6026 | 0.4582 | | 0.4876 | 0.89 | 100 | 1.5117 | 0.8650 | 0.4820 | 0.5787 | 0.4426 | | 0.3964 | 1.12 | 125 | 1.3913 | 0.8461 | 0.3973 | 0.4908 | 0.3829 | | 0.4464 | 1.34 | 150 | 1.3103 | 0.8332 | 0.5130 | 0.5554 | 0.4201 | | 0.485 | 1.56 | 175 | 1.5958 | 0.8831 | 0.4277 | 0.5336 | 0.4108 | | 0.4471 | 1.79 | 200 | 1.5570 | 0.8774 | 0.4713 | 0.5527 | 0.4252 | | 0.3867 | 2.01 | 225 | 1.7726 | 0.8498 | 0.4018 | 0.5020 | 0.3865 | ### Framework versions - Transformers 4.27.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-finetuned-hausa
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
234
null
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -172.36 +/- 123.06 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'taohoang/ppo-torch-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
Declan/Politico_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: seungwoos/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
DeepChem/ChemBERTa-5M-MTR
[ "pytorch", "roberta", "transformers" ]
null
{ "architectures": [ "RobertaForRegression" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: creativeml-openrail-m tags: - coreml - stable-diffusion - text-to-image --- # Core ML Converted Model: - This model was converted to [Core ML for use on Apple Silicon devices](https://github.com/apple/ml-stable-diffusion). Conversion instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-or-safetensors-files-to-Core-ML).<br> - Provide the model to an app such as Mochi Diffusion [Github](https://github.com/godly-devotion/MochiDiffusion) - [Discord](https://discord.gg/x2kartzxGv) to generate images.<br> - `split_einsum` version is compatible with all compute unit options including Neural Engine. - `original` version is only compatible with CPU & GPU option. - Custom resolution versions are tagged accordingly. - The `vae-ft-mse-840000-ema-pruned.ckpt` vae is embedded into the model. - This model was converted with a `vae-encoder` for i2i. - This model is fp16. - Descriptions are posted as-is from original model source. - Not all features and/or results may be available in CoreML format. - This model does not have the [unet split into chunks](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml). - This model does not include a safety checker (for NSFW content). # Vivid-Watercolors-v10: Source(s): [CivitAI](https://civitai.com/models/4998/vivid-watercolors) Introducing my new Vivid Watercolors dreambooth model. The model is trained with beautiful, artist-agnostic watercolor images using the midjourney method. The token is: "wtrcolor style" It can be challenging to use, but with the right prompts, but it can create stunning artwork. See an example prompt that I use in tests: wtrcolor style, Digital art of (subject), official art, frontal, smiling, masterpiece, Beautiful, watercolor, face paint, paint splatter, intricate details. Highly detailed, detailed eyes, dripping, trending on artstation by [artist] Using "watercolor" in the prompt is necessary to get a good watercolor texture, try words like face (paint, paint splatter, dripping).<br><br> ![image](https://imagecache.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/5206c334-b714-452e-e160-84c16e223600/width=400/01893-3282318438-wtrcolor%20style,%20Digital%20art%20of%20(dog%20character),%20official%20art,%20frontal,%20smiling,%20masterpiece,%20Beautiful,%20((watercolor)),%20face%20pai.png) ![image](https://imagecache.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/6f7ca753-00ce-44c8-ca04-f6e38b562c00/width=400/01798-352490785-wtrcolor%20style,%20Digital%20art%20of%20(Margot%20Robie%20as%20Harley%20Queen)%20official%20art,%20frontal,%20smiling,%20masterpiece,%20Beautiful,%20watercolor.png) ![image](https://imagecache.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/f28734ae-fbac-4773-2ef0-e24868158d00/width=400/01789-313339253-wtrcolor%20style,%20Beautiful%20girl%20walking%20on%20the%20street,%20watercolor.png)
DeltaHub/adapter_t5-3b_mrpc
[ "pytorch", "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
WARNING: this adds the Redwood 2L Attn Only tokenizer for compatibility with transformer lens. I think this implementation is correct, though check against the reference tokenizer here: https://github.com/redwoodresearch/rust_circuit_public/blob/42c3fcbffbc367897d3a810b20c12d7c1c99a00d/python/rust_circuit/module_library.py#L1012
DimaOrekhov/cubert-method-name
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 643.00 +/- 94.61 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Freddthink -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Freddthink -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Freddthink ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
DivyanshuSheth/T5-Seq2Seq-Final
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0953 - Accuracy: 0.9834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5959 | 1.0 | 399 | 0.4714 | 0.9434 | | 0.2623 | 2.0 | 798 | 0.1542 | 0.9793 | | 0.1809 | 3.0 | 1197 | 0.0953 | 0.9834 | | 0.1643 | 4.0 | 1596 | 0.0844 | 0.9825 | | 0.1208 | 5.0 | 1995 | 0.0824 | 0.9822 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.1+cu116 - Datasets 1.14.0 - Tokenizers 0.13.2
Dkwkk/W
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-04-22T14:47:24Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: AlmogMor345/my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # AlmogMor345/my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.3321 - Validation Loss: 1.3458 - Train Precision: 0.0 - Train Recall: 0.0 - Train F1: 0.0 - Train Accuracy: 0.9140 - Epoch: 99 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 9, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 2.6690 | 2.1130 | 0.0 | 0.0 | 0.0 | 0.9140 | 0 | | 1.8194 | 1.5602 | 0.0 | 0.0 | 0.0 | 0.9140 | 1 | | 1.3472 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 2 | | 1.2568 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 3 | | 1.3789 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 4 | | 1.2069 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 5 | | 1.2804 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 6 | | 1.2624 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 7 | | 1.3139 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 8 | | 1.2605 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 9 | | 1.2763 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 10 | | 1.2969 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 11 | | 1.2780 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 12 | | 1.1983 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 13 | | 1.2138 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 14 | | 1.2663 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 15 | | 1.2843 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 16 | | 1.2251 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 17 | | 1.3197 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 18 | | 1.2989 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 19 | | 1.2213 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 20 | | 1.2360 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 21 | | 1.2389 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 22 | | 1.2087 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 23 | | 1.2446 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 24 | | 1.2931 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 25 | | 1.2623 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 26 | | 1.2253 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 27 | | 1.2853 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 28 | | 1.3132 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 29 | | 1.2183 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 30 | | 1.2482 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 31 | | 1.2190 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 32 | | 1.3112 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 33 | | 1.2852 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 34 | | 1.2445 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 35 | | 1.2528 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 36 | | 1.2339 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 37 | | 1.2053 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 38 | | 1.2210 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 39 | | 1.2258 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 40 | | 1.2772 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 41 | | 1.1695 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 42 | | 1.2562 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 43 | | 1.2413 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 44 | | 1.2390 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 45 | | 1.3280 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 46 | | 1.2614 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 47 | | 1.2350 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 48 | | 1.3510 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 49 | | 1.3331 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 50 | | 1.1755 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 51 | | 1.2463 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 52 | | 1.3322 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 53 | | 1.1857 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 54 | | 1.3005 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 55 | | 1.2379 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 56 | | 1.2763 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 57 | | 1.2821 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 58 | | 1.2670 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 59 | | 1.3589 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 60 | | 1.3354 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 61 | | 1.2851 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 62 | | 1.2417 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 63 | | 1.2591 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 64 | | 1.2056 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 65 | | 1.2569 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 66 | | 1.3113 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 67 | | 1.2131 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 68 | | 1.2395 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 69 | | 1.2507 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 70 | | 1.3242 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 71 | | 1.2997 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 72 | | 1.2895 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 73 | | 1.3044 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 74 | | 1.2696 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 75 | | 1.2138 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 76 | | 1.2914 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 77 | | 1.1968 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 78 | | 1.3639 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 79 | | 1.2451 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 80 | | 1.2949 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 81 | | 1.2724 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 82 | | 1.3940 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 83 | | 1.3156 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 84 | | 1.3080 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 85 | | 1.2519 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 86 | | 1.2222 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 87 | | 1.2304 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 88 | | 1.2843 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 89 | | 1.2523 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 90 | | 1.2531 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 91 | | 1.2974 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 92 | | 1.3301 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 93 | | 1.2726 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 94 | | 1.3171 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 95 | | 1.3577 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 96 | | 1.2373 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 97 | | 1.2556 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 98 | | 1.3321 | 1.3458 | 0.0 | 0.0 | 0.0 | 0.9140 | 99 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.11.0 - Tokenizers 0.13.3
Doiman/DialoGPT-medium-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce_pixelCopter01 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 42.77 +/- 43.19 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
DongHai/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-03-19T13:24:09Z
--- language: - en - fr - ro - de datasets: - IqWikis - c4 tags: - summarization - translation license: apache-2.0 --- # Model Card for T5 Base ![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67) # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 4. [Training Details](#training-details) 5. [Evaluation](#evaluation) 6. [Environmental Impact](#environmental-impact) 7. [Citation](#citation) 8. [Model Card Authors](#model-card-authors) 9. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description The developers of the Text-To-Text Transfer Transformer (T5) [write](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html): > With T5, we propose reframing all NLP tasks into a unified text-to-text-format where the input and output are always text strings, in contrast to BERT-style models that can only output either a class label or a span of the input. Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task. T5-Base is the checkpoint with 220 million parameters. - **Developed by:** Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. See [associated paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) and [GitHub repo](https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints) - **Model type:** Language model - **Language(s) (NLP):** English, French, Romanian, German - **License:** Apache 2.0 - **Related Models:** [All T5 Checkpoints](https://huggingface.co/models?search=t5) - **Resources for more information:** - [Research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) - [Google's T5 Blog Post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) - [GitHub Repo](https://github.com/google-research/text-to-text-transfer-transformer) - [Hugging Face T5 Docs](https://huggingface.co/docs/transformers/model_doc/t5) # Uses ## Direct Use and Downstream Use The developers write in a [blog post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) that the model: > Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task, including machine translation, document summarization, question answering, and classification tasks (e.g., sentiment analysis). We can even apply T5 to regression tasks by training it to predict the string representation of a number instead of the number itself. See the [blog post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for further details. ## Out-of-Scope Use More information needed. # Bias, Risks, and Limitations More information needed. ## Recommendations More information needed. # Training Details ## Training Data The model is pre-trained on the [Colossal Clean Crawled Corpus (C4)](https://www.tensorflow.org/datasets/catalog/c4), which was developed and released in the context of the same [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) as T5. The model was pre-trained on a on a **multi-task mixture of unsupervised (1.) and supervised tasks (2.)**. Thereby, the following datasets were being used for (1.) and (2.): 1. **Datasets used for Unsupervised denoising objective**: - [C4](https://huggingface.co/datasets/c4) - [Wiki-DPR](https://huggingface.co/datasets/wiki_dpr) 2. **Datasets used for Supervised text-to-text language modeling objective** - Sentence acceptability judgment - CoLA [Warstadt et al., 2018](https://arxiv.org/abs/1805.12471) - Sentiment analysis - SST-2 [Socher et al., 2013](https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf) - Paraphrasing/sentence similarity - MRPC [Dolan and Brockett, 2005](https://aclanthology.org/I05-5002) - STS-B [Ceret al., 2017](https://arxiv.org/abs/1708.00055) - QQP [Iyer et al., 2017](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) - Natural language inference - MNLI [Williams et al., 2017](https://arxiv.org/abs/1704.05426) - QNLI [Rajpurkar et al.,2016](https://arxiv.org/abs/1606.05250) - RTE [Dagan et al., 2005](https://link.springer.com/chapter/10.1007/11736790_9) - CB [De Marneff et al., 2019](https://semanticsarchive.net/Archive/Tg3ZGI2M/Marneffe.pdf) - Sentence completion - COPA [Roemmele et al., 2011](https://www.researchgate.net/publication/221251392_Choice_of_Plausible_Alternatives_An_Evaluation_of_Commonsense_Causal_Reasoning) - Word sense disambiguation - WIC [Pilehvar and Camacho-Collados, 2018](https://arxiv.org/abs/1808.09121) - Question answering - MultiRC [Khashabi et al., 2018](https://aclanthology.org/N18-1023) - ReCoRD [Zhang et al., 2018](https://arxiv.org/abs/1810.12885) - BoolQ [Clark et al., 2019](https://arxiv.org/abs/1905.10044) ## Training Procedure In their [abstract](https://jmlr.org/papers/volume21/20-074/20-074.pdf), the model developers write: > In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. The framework introduced, the T5 framework, involves a training procedure that brings together the approaches studied in the paper. See the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for further details. # Evaluation ## Testing Data, Factors & Metrics The developers evaluated the model on 24 tasks, see the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for full details. ## Results For full results for T5-Base, see the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf), Table 14. # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** Google Cloud TPU Pods - **Hours used:** More information needed - **Cloud Provider:** GCP - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Citation **BibTeX:** ```bibtex @article{2020t5, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, journal = {Journal of Machine Learning Research}, year = {2020}, volume = {21}, number = {140}, pages = {1-67}, url = {http://jmlr.org/papers/v21/20-074.html} } ``` **APA:** - Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140), 1-67. # Model Card Authors This model card was written by the team at Hugging Face. # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import T5Tokenizer, T5Model tokenizer = T5Tokenizer.from_pretrained("t5-base") model = T5Model.from_pretrained("t5-base") input_ids = tokenizer( "Studies have been shown that owning a dog is good for you", return_tensors="pt" ).input_ids # Batch size 1 decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 # forward pass outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) last_hidden_states = outputs.last_hidden_state ``` See the [Hugging Face T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Model) docs and a [Colab Notebook](https://colab.research.google.com/github/google-research/text-to-text-transfer-transformer/blob/main/notebooks/t5-trivia.ipynb) created by the model developers for more examples. </details>
DongHyoungLee/kogpt2-base-v2-finetuned-kogpt2_nsmc_single_sentence_classification
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-19T13:28:55Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: pregonas/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Donghyun/L2_BERT
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-19T13:29:56Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: unsupervised-comb-fine-tune-bert-exist results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # unsupervised-comb-fine-tune-bert-exist This model is a fine-tuned version of [nouman-10/unsupervised-comb-cased](https://huggingface.co/nouman-10/unsupervised-comb-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6605 - Accuracy: 0.7703 - F1: 0.7703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 194 | 0.5093 | 0.7587 | 0.7587 | | No log | 2.0 | 388 | 0.5265 | 0.7791 | 0.7791 | | 0.417 | 3.0 | 582 | 0.6628 | 0.7820 | 0.7820 | | 0.417 | 4.0 | 776 | 1.1558 | 0.7703 | 0.7703 | | 0.417 | 5.0 | 970 | 1.3917 | 0.7587 | 0.7587 | | 0.0814 | 6.0 | 1164 | 1.4348 | 0.7616 | 0.7616 | | 0.0814 | 7.0 | 1358 | 1.5183 | 0.7733 | 0.7733 | | 0.0092 | 8.0 | 1552 | 1.5807 | 0.7733 | 0.7733 | | 0.0092 | 9.0 | 1746 | 1.6643 | 0.7703 | 0.7703 | | 0.0092 | 10.0 | 1940 | 1.6605 | 0.7703 | 0.7703 | ### Framework versions - Transformers 4.27.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Dongmin/testmodel
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
11
null
--- license: cc-by-nc-4.0 datasets: - Babelscape/wikineural language: - de - fr - it - rm - multilingual inference: false tags: - named-entity-recognition --- The [SwissBERT](https://huggingface.co/ZurichNLP/swissbert) model fine-tuned on the [WikiNEuRal](https://huggingface.co/datasets/Babelscape/wikineural) dataset for multilingual NER. Supports German, French and Italian as supervised languages and Romansh Grischun as a zero-shot language. ## Usage ```python from transformers import pipeline token_classifier = pipeline( model="ZurichNLP/swissbert-ner", aggregation_strategy="simple", ) ``` ### German example ```python token_classifier.model.set_default_language("de_CH") token_classifier("Mein Name sei Gantenbein.") ``` Output: ``` [{'entity_group': 'PER', 'score': 0.5002625, 'word': 'Gantenbein', 'start': 13, 'end': 24}] ``` ### French example ```python token_classifier.model.set_default_language("fr_CH") token_classifier("J'habite à Lausanne.") ``` Output: ``` [{'entity_group': 'LOC', 'score': 0.99955386, 'word': 'Lausanne', 'start': 10, 'end': 19}] ``` ## Citation ```bibtex @article{vamvas-etal-2023-swissbert, title={Swiss{BERT}: The Multilingual Language Model for Switzerland}, author={Jannis Vamvas and Johannes Gra\"en and Rico Sennrich}, year={2023}, eprint={2303.13310}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2303.13310} } ```
Waynehillsdev/Wayne_NLP_mT5
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: round2-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 14.50 +/- 6.34 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Doogie/Waynehills-KE-T5-doogie
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-19T13:32:15Z
This is an experiment for my Lora that focuses on Lora who has the face of Lee Sung Kyung from the Korean actress. This is purely fictional and has nothing to do with the original actress, just inspiration. Recommendation: - Set Weight: 0.7 - 1 Term and Conditions: Ownership: Lora is owned by Astreum and all intellectual property rights are reserved. The use of Lora is subject to the following terms and conditions. Use: The use of Lora is limited to non-commercial purposes only. This means that you may not sell any artwork or product created using Lora, without the express written permission of Astreum. Education and Experimentation: Lora is designed to be used for educational and experimental purposes only. You may use Lora to create artwork, designs, or other creative works, but you may not use it to create products for commercial sale. Attribution: If you use Lora to create any artwork or design, you must attribute the use of Lora in a visible and prominent manner. This can be done by mentioning "Lora" in the credits, or by including a visible link to the website of Astreum in any online publication or documentation of your artwork. Lee Sung Kyung: The use of Lora in relation to actress Lee Sung Kyung is subject to the following conditions. Lora may not be used to create any content that is defamatory, insulting, or disrespectful towards Lee Sung Kyung. Lora may only be used in a positive and respectful manner towards Lee Sung Kyung. Disclaimer: The use of Lora is at your own risk. Astreum makes no warranties, express or implied, as to the accuracy, usefulness, or fitness for any particular purpose of Lora. Astreum shall not be liable for any damages, including but not limited to direct, indirect, incidental, or consequential damages or losses arising out of the use of Lora. Governing Law: These terms and conditions shall be governed by and construed in accordance with the laws, without giving effect to any principles of conflicts of law. Modification: Astreum reserves the right to modify these terms and conditions at any time, without prior notice. Acceptance: By using Lora, you agree to be bound by these terms and conditions. If you do not agree to these terms and conditions, you should not use Lora. --- license: creativeml-openrail-m ---
Waynehillsdev/Waynehills-STT-doogie-server
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
61
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: decision-bert-uncased results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # decision-bert-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.27.1 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
Waynehillsdev/Waynehills_summary_tensorflow
[ "tf", "t5", "text2text-generation", "transformers", "generated_from_keras_callback", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: JYC333/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Waynehillsdev/wav2vec2-base-timit-demo-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **CartPole-v1** This is a trained model of a DQN agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQN_buffersize_500000.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQN_buffersize_500000]" python -m cleanrl_utils.enjoy --exp-name DQN_buffersize_500000 --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_buffersize_500000-seed1/raw/main/dqn.py curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_buffersize_500000-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_buffersize_500000-seed1/raw/main/poetry.lock poetry install --all-extras python dqn.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name DQN_buffersize_500000 --buffer-size 500000 --seed 1 ``` # Hyperparameters ```python {'alg_type': 'dqn.py', 'batch_size': 256, 'buffer_size': 500000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'DQN_buffersize_500000', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'save_model': True, 'seed': 1, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
Waynehillsdev/waynehills_sentimental_kor
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "ElectraForSequenceClassification" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **CartPole-v1** This is a trained model of a DQN agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQN_buffersize_500000.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQN_buffersize_500000]" python -m cleanrl_utils.enjoy --exp-name DQN_buffersize_500000 --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_buffersize_500000-seed2/raw/main/dqn.py curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_buffersize_500000-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_buffersize_500000-seed2/raw/main/poetry.lock poetry install --all-extras python dqn.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name DQN_buffersize_500000 --buffer-size 500000 --seed 2 ``` # Hyperparameters ```python {'alg_type': 'dqn.py', 'batch_size': 256, 'buffer_size': 500000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'DQN_buffersize_500000', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'save_model': True, 'seed': 2, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
Doohae/p_encoder
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-03-19T13:43:57Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **CartPole-v1** This is a trained model of a DQN agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQN_buffersize_500000.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQN_buffersize_500000]" python -m cleanrl_utils.enjoy --exp-name DQN_buffersize_500000 --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_buffersize_500000-seed3/raw/main/dqn.py curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_buffersize_500000-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_buffersize_500000-seed3/raw/main/poetry.lock poetry install --all-extras python dqn.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name DQN_buffersize_500000 --buffer-size 500000 --seed 3 ``` # Hyperparameters ```python {'alg_type': 'dqn.py', 'batch_size': 256, 'buffer_size': 500000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'DQN_buffersize_500000', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'save_model': True, 'seed': 3, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
Doohae/q_encoder
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-03-19T13:43:59Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 477.88 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **CartPole-v1** This is a trained model of a DQN agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQN_buffersize_500000.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQN_buffersize_500000]" python -m cleanrl_utils.enjoy --exp-name DQN_buffersize_500000 --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_buffersize_500000-seed4/raw/main/dqn.py curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_buffersize_500000-seed4/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_buffersize_500000-seed4/raw/main/poetry.lock poetry install --all-extras python dqn.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name DQN_buffersize_500000 --buffer-size 500000 --seed 4 ``` # Hyperparameters ```python {'alg_type': 'dqn.py', 'batch_size': 256, 'buffer_size': 500000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'DQN_buffersize_500000', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'save_model': True, 'seed': 4, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
Doquey/DialoGPT-small-Luisbot1
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: creativeml-openrail-m tags: - text-to-image --- ### arki-20230319-15-analog-cnst-5000-steps on Stable Diffusion via Dreambooth #### model by NickKolok This your the Stable Diffusion model fine-tuned the arki-20230319-15-analog-cnst-5000-steps concept taught to Stable Diffusion with Dreambooth. #It can be used by modifying the `instance_prompt`: **arki** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts)
DoyyingFace/bert-asian-hate-tweets-asian-clean-with-unclean-valid
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- # FuzzyHazel, FuzzyAlmond HazyAbyss - <a href="https://huggingface.co/KMAZ/TestSamples/">Download</a><br/> OctaFuzz - <a href="https://huggingface.co/Lucetepolis/OctaFuzz">Download</a><br/> MareAcernis - <a href="https://huggingface.co/Lucetepolis/MareAcernis">Download</a><br/> RefSlaveV2 - <a href="https://huggingface.co/Dorshu/refslaveV2_v2">Download</a><br/> dlfmaanjffhgkwl v2 - <a href="https://civitai.com/models/9815/dlfmaanjffhgkwl-mix">Download</a><br/> Guardian Tales 三七-SAL-独轮车 | Chibi Style Lora 52 - <a href="https://civitai.com/models/14274/guardian-tales-sal-or-chibi-style-lora-52">Download</a><br/> Komowata Haruka (こもわた遙華) Chibi Art Style LoRA - <a href="https://civitai.com/models/9922/komowata-haruka-chibi-art-style-lora">Download</a><br/> Terada Tera (寺田てら) Art Style LoRA - <a href="https://civitai.com/models/15446/terada-tera-art-style-lora">Download</a><br/> Yaro Artstyle LoRA - <a href="https://civitai.com/models/8112/yaro-artstyle-lora">Download</a><br/> EasyNegative and pastelmix-lora seem to work well with the models. EasyNegative - <a href="https://huggingface.co/datasets/gsdf/EasyNegative">Download</a><br/> pastelmix-lora - <a href="https://huggingface.co/andite/pastel-mix">Download</a> # Formula ``` MBW HazyAbyss.safetensors [d7b0072ef7] octafuzz.safetensors [364bdf849d] 0000.safetensors base_alpha=1 Weight_values=1,1,0,0,0,0.5,1,1,0.5,0,0,0,1,0,0,0,0.5,1,1,0.5,0,0,0,1,1 MBW 0000.safetensors [360691971b] mareacernis.safetensors [fbc82b317d] 0001.safetensors base_alpha=0 Weight_values=0.5,0,0,0,0,0,0,0,0.5,0.5,0,0,0.25,0.5,0.5,0.5,0.25,0.25,0.25,0.25,0.5,0.5,0.5,0,0 MBW 0001.safetensors [ac67bd1235] refslavev2.safetensors [cce9a2d200] 0002.safetensors base_alpha=0 Weight_values=0,0.5,1,1,0.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1 MBW 0002.safetensors [cc5331b8ae] dlf.safetensors [d596b45d6b] FuzzyHazel.safetensors base_alpha=0 Weight_values=0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0 SuperMerger LoRA Merge model_0 : FuzzyHazel.safetensors model_Out : FuzzyAlmond.safetensors LoRa : lora:guardiantales:0.25, lora:komowata:0.25, lora:terada:0.25, lora:yaro:0.25 ``` # Samples All of the images use following negatives/settings. EXIF preserved. ``` Negative prompt: (worst quality, low quality:1.4), EasyNegative, bad anatomy, bad hands, error, missing fingers, extra digit, fewer digits Steps: 28, Sampler: DPM++ 2M Karras, CFG scale: 7, Size: 768x512, Denoising strength: 0.6, Clip skip: 2, ENSD: 31337, Hires upscale: 1.5, Hires steps: 14, Hires upscaler: Latent (nearest-exact) ``` # FuzzyHazel ![A1](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/A1.png) ![A2](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/A2.png) ![A3](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/A3.png) ![A4](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/A4.png) ![A5](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/A5.png) ![A6](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/A6.png) ![A7](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/A7.png) ![A8](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/A8.png) ![AA](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/AA.png) ![AB](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/AB.png) ![AC](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/AC.png) ![AD](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/AD.png) # FuzzyAlmond ![B1](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/B1.png) ![B2](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/B2.png) ![B3](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/B3.png) ![B4](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/B4.png) ![B5](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/B5.png) ![B6](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/B6.png) ![B7](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/B7.png) ![B8](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/B8.png) ![BA](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/BA.png) ![BB](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/BB.png) ![BC](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/BC.png) ![BD](https://huggingface.co/Lucetepolis/FuzzyHazel/resolve/main/Samples/BD.png)
DoyyingFace/bert-asian-hate-tweets-asian-unclean-freeze-12
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: kraken2404/ppo-Pyramid-v2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
DoyyingFace/bert-asian-hate-tweets-asian-unclean-slanted
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
DoyyingFace/bert-asian-hate-tweets-asian-unclean-warmup-75
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
37
null
--- library_name: transformers tags: - summarization ---
DoyyingFace/bert-asian-hate-tweets-asonam-clean
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- tags: - translation3 - generated_from_trainer datasets: - ccmatrix metrics: - bleu model-index: - name: opus-mt-tc-big-ar-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: ccmatrix type: ccmatrix config: ar-en split: train[894700:1000000] args: ar-en metrics: - name: Bleu type: bleu value: 57.411941954107235 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-tc-big-ar-en This model was trained from scratch on the ccmatrix dataset. It achieves the following results on the evaluation set: - Loss: 0.6565 - Bleu: 57.4119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
DoyyingFace/bert-asian-hate-tweets-concat-clean-with-unclean-valid
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: pregonas/ppo-Pyramids-Training 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
albert-base-v1
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
38,156
2023-03-19T14:20:20Z
--- datasets: - cQueenccc/Vivian-Blip-Captions language: - en pipeline_tag: text-to-image --- # Disclaimer This was inspired from https://github.com/YaYaB/finetune-diffusion # Model Card for Finetuning Stable Diffusion on Vivian Maier's photographs The main goal is to fine-tune the Stable Diffusion model to generate images reflecting the distinct photographic style of Vivian Maier. And I chose to utilize a Jupyter Notebook to make the fine-tuning process accessible and easy to understand, particularly for those new to the diffusion pipeline and hugging face API. # Requirements To launch the finetuning with a batch_size of 1 you need to have a gpu with at least 24G VRAM (you can use accumulating gradient to simulate higher batch size) Make sure that you have enough disk space, the model uses ~11Gb ## Examples(at epoch 90) ![vv1.jpg](https://huggingface.co/cQueenccc/Fine-Tune-Diffusion-Vivian/resolve/main/eval/A%20woman%20walking%20down%20the%20street/A%20woman%20walking%20down%20the%20street_90_000000.png) > A woman walking down a street ![vv2.jpg](https://huggingface.co/cQueenccc/Fine-Tune-Diffusion-Vivian/resolve/main/eval/a%20group%20of%20people%20getting%20on%20a%20bus/a%20group%20of%20people%20getting%20on%20a%20bus_90_000000.png) > a group of people getting on a bus ![vv3.jpg](https://huggingface.co/cQueenccc/Fine-Tune-Diffusion-Vivian/resolve/main/eval/two%20men%20working%20on%20a%20construction%20site/two%20men%20working%20on%20a%20construction%20site_90_000000.png) > two man working on a constructing site ## Citation If you use this dataset, please cite it as: ``` @misc{cqueenccc2023vivian, author = {cQueenccc}, title = {Finetuning Stable Diffusion on Vivian Maier's photographs}, year={2023}, howpublished= {\url{https://huggingface.co/cQueenccc/Fine-Tune-Diffusion-Vivian/}} } ```
albert-large-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
687
2023-03-19T14:23:07Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 399.76 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **CartPole-v1** This is a trained model of a DQN agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQN_new.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQN_new]" python -m cleanrl_utils.enjoy --exp-name DQN_new --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_new-seed1/raw/main/dqn.py curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_new-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_new-seed1/raw/main/poetry.lock poetry install --all-extras python dqn.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name DQN_new --seed 1 ``` # Hyperparameters ```python {'alg_type': 'dqn.py', 'batch_size': 64, 'buffer_size': 50000, 'capture_video': True, 'cuda': True, 'end_e': 0.3, 'env_id': 'CartPole-v1', 'exp_name': 'DQN_new', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0005, 'learning_starts': 500, 'save_model': True, 'seed': 1, 'start_e': 1.0, 'target_network_frequency': 10, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
albert-large-v2
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26,792
2023-03-19T14:23:18Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 461.91 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **CartPole-v1** This is a trained model of a DQN agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQN_new.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQN_new]" python -m cleanrl_utils.enjoy --exp-name DQN_new --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_new-seed2/raw/main/dqn.py curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_new-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_new-seed2/raw/main/poetry.lock poetry install --all-extras python dqn.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name DQN_new --seed 2 ``` # Hyperparameters ```python {'alg_type': 'dqn.py', 'batch_size': 64, 'buffer_size': 50000, 'capture_video': True, 'cuda': True, 'end_e': 0.3, 'env_id': 'CartPole-v1', 'exp_name': 'DQN_new', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0005, 'learning_starts': 500, 'save_model': True, 'seed': 2, 'start_e': 1.0, 'target_network_frequency': 10, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
albert-xlarge-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
341
2023-03-19T14:23:23Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 406.75 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **CartPole-v1** This is a trained model of a DQN agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQN_new.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQN_new]" python -m cleanrl_utils.enjoy --exp-name DQN_new --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_new-seed3/raw/main/dqn.py curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_new-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_new-seed3/raw/main/poetry.lock poetry install --all-extras python dqn.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name DQN_new --seed 3 ``` # Hyperparameters ```python {'alg_type': 'dqn.py', 'batch_size': 64, 'buffer_size': 50000, 'capture_video': True, 'cuda': True, 'end_e': 0.3, 'env_id': 'CartPole-v1', 'exp_name': 'DQN_new', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0005, 'learning_starts': 500, 'save_model': True, 'seed': 3, 'start_e': 1.0, 'target_network_frequency': 10, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
albert-xlarge-v2
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,973
2023-03-19T14:23:24Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 134.99 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **CartPole-v1** This is a trained model of a DQN agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQN_new.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQN_new]" python -m cleanrl_utils.enjoy --exp-name DQN_new --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_new-seed4/raw/main/dqn.py curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_new-seed4/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_new-seed4/raw/main/poetry.lock poetry install --all-extras python dqn.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name DQN_new --seed 4 ``` # Hyperparameters ```python {'alg_type': 'dqn.py', 'batch_size': 64, 'buffer_size': 50000, 'capture_video': True, 'cuda': True, 'end_e': 0.3, 'env_id': 'CartPole-v1', 'exp_name': 'DQN_new', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0005, 'learning_starts': 500, 'save_model': True, 'seed': 4, 'start_e': 1.0, 'target_network_frequency': 10, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
albert-xxlarge-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7,091
2023-03-19T14:23:51Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="hruslen/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
albert-xxlarge-v2
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
42,640
2023-03-19T14:24:13Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="LozanoJohan/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bert-base-cased-finetuned-mrpc
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11,644
2023-03-19T14:30:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="hruslen/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bert-base-chinese
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "zh", "arxiv:1810.04805", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3,377,486
2023-03-19T14:32:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.22 +/- 19.50 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bert-base-german-dbmdz-uncased
[ "pytorch", "jax", "safetensors", "bert", "fill-mask", "de", "transformers", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
68,305
2023-03-19T14:36:35Z
--- tags: - conversational --- # Aubrey from OMORI Model
bert-base-uncased
[ "pytorch", "tf", "jax", "rust", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
59,663,489
2023-03-19T14:39:34Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1200.23 +/- 311.70 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bert-large-cased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "rust", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,214
2023-03-19T14:40:25Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: ko datasets: - lmqg/qg_koquad pipeline_tag: text2text-generation tags: - question generation widget: - text: "1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다." example_title: "Question Generation Example 1" - text: "백신이 없기때문에 예방책은 <hl> 살충제 <hl> 를 사용하면서 서식 장소(찻찬 받침, 배수로, 고인 물의 열린 저장소, 버려진 타이어 등)의 수를 줄임으로써 매개체를 통제할 수 있다." example_title: "Question Generation Example 2" - text: "<hl> 원테이크 촬영 <hl> 이기 때문에 한 사람이 실수를 하면 처음부터 다시 찍어야 하는 상황이 발생한다." example_title: "Question Generation Example 3" model-index: - name: vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_koquad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 11.1 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 26.7 - name: METEOR (Question Generation) type: meteor_question_generation value: 28.4 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 83.43 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 82.96 --- # Model Card of `vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg` This model is fine-tuned version of [ckpts/mt5-small-trimmed-ko-60000](https://huggingface.co/ckpts/mt5-small-trimmed-ko-60000) for question generation task on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [ckpts/mt5-small-trimmed-ko-60000](https://huggingface.co/ckpts/mt5-small-trimmed-ko-60000) - **Language:** ko - **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="ko", model="vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg") # model prediction questions = model.generate_q(list_context="1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.", list_answer="남부군") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg") output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 83.43 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | Bleu_1 | 26.36 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | Bleu_2 | 19.38 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | Bleu_3 | 14.59 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | Bleu_4 | 11.1 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | METEOR | 28.4 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | MoverScore | 82.96 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | ROUGE_L | 26.7 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_koquad - dataset_name: default - input_types: paragraph_answer - output_types: question - prefix_types: None - model: ckpts/mt5-small-trimmed-ko-60000 - max_length: 512 - max_length_output: 32 - epoch: 12 - batch: 16 - lr: 0.001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
bert-large-cased-whole-word-masking
[ "pytorch", "tf", "jax", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,316
2023-03-19T14:40:31Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8638300289723342 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 | | 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 | | 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 | ### Framework versions - Transformers 4.27.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
bert-large-uncased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,058,496
2023-03-19T14:44:42Z
--- language: ja license: apache-2.0 tags: - sentence-transformers - sentence-bert - sentence-luke - feature-extraction - sentence-similarity --- This is a Japanese sentence-LUKE model. 日本語用Sentence-LUKEモデルです。 [日本語Sentence-BERTモデル](https://huggingface.co/sonoisa/sentence-bert-base-ja-mean-tokens-v2)と同一のデータセットと設定で学習しました。 手元の非公開データセットでは、[日本語Sentence-BERTモデル](https://huggingface.co/sonoisa/sentence-bert-base-ja-mean-tokens-v2)と比べて定量的な精度が同等〜0.5pt程度高く、定性的な精度は本モデルの方が高い結果でした。 事前学習済みモデルとして[studio-ousia/luke-japanese-base-lite](https://huggingface.co/studio-ousia/luke-japanese-base-lite)を利用させていただきました。 推論の実行にはSentencePieceが必要です(pip install sentencepiece)。 # 使い方 ```python from transformers import MLukeTokenizer, LukeModel import torch class SentenceLukeJapanese: def __init__(self, model_name_or_path, device=None): self.tokenizer = MLukeTokenizer.from_pretrained(model_name_or_path) self.model = LukeModel.from_pretrained(model_name_or_path) self.model.eval() if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" self.device = torch.device(device) self.model.to(device) def _mean_pooling(self, model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) @torch.no_grad() def encode(self, sentences, batch_size=8): all_embeddings = [] iterator = range(0, len(sentences), batch_size) for batch_idx in iterator: batch = sentences[batch_idx:batch_idx + batch_size] encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest", truncation=True, return_tensors="pt").to(self.device) model_output = self.model(**encoded_input) sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu') all_embeddings.extend(sentence_embeddings) return torch.stack(all_embeddings) MODEL_NAME = "sonoisa/sentence-luke-japanese-base-lite" model = SentenceLukeJapanese(MODEL_NAME) sentences = ["暴走したAI", "暴走した人工知能"] sentence_embeddings = model.encode(sentences, batch_size=8) print("Sentence embeddings:", sentence_embeddings) ```
camembert-base
[ "pytorch", "tf", "safetensors", "camembert", "fill-mask", "fr", "dataset:oscar", "arxiv:1911.03894", "transformers", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "CamembertForMaskedLM" ], "model_type": "camembert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,440,898
2023-03-19T14:46:20Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-xls-r-1b-wolof-VoiceToText results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-wolof-VoiceToText This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3951 - Wer: 0.3838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.2047 | 14.29 | 400 | 0.4485 | 0.4602 | | 0.1987 | 28.57 | 800 | 0.3951 | 0.3838 | ### Framework versions - Transformers 4.27.1 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
ctrl
[ "pytorch", "tf", "ctrl", "en", "arxiv:1909.05858", "arxiv:1910.09700", "transformers", "license:bsd-3-clause", "has_space" ]
null
{ "architectures": null, "model_type": "ctrl", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17,007
2023-03-19T14:47:44Z
--- license: cc0-1.0 --- 两个不同倾向的画风模,着重眼睛 例图: ![bfa438d5de24b84d1c442d74461c35a8.jpg](https://s3.amazonaws.com/moonup/production/uploads/640cae30536d9fe0f002ee62/KWKmd1h-_6SIDTKkisjsQ.jpeg) ![5bbc949470f1d62bc72c4b9eab8d907a.jpg](https://s3.amazonaws.com/moonup/production/uploads/640cae30536d9fe0f002ee62/hcEv6Wc4OrXMPvCqXMfo-.jpeg) ![0a395f055f0480b9ad09e0402e24950b.jpg](https://s3.amazonaws.com/moonup/production/uploads/640cae30536d9fe0f002ee62/7svp9f2Uf1Ox-JZwR33Fx.jpeg) ![2048f92516aaef6f49ce8cf4da513c36.jpg](https://s3.amazonaws.com/moonup/production/uploads/640cae30536d9fe0f002ee62/FNF7Bz4-yCjcZC5PxLdjo.jpeg) ![657a50a9385eaad3bbf0abbb228f2928.jpg](https://s3.amazonaws.com/moonup/production/uploads/640cae30536d9fe0f002ee62/rvXqagdB42LpIOyiuJWbI.jpeg) ![4557b0155b2312bed0eab70d1a3cbd96.jpg](https://s3.amazonaws.com/moonup/production/uploads/640cae30536d9fe0f002ee62/XJMLEO3cb-mdwZxovooPM.jpeg)
distilbert-base-uncased-distilled-squad
[ "pytorch", "tf", "tflite", "coreml", "safetensors", "distilbert", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
100,097
2023-03-19T14:57:02Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlmr-wmt20qe1-en-zh-trial1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr-wmt20qe1-en-zh-trial1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6455 - R Squared: 0.1176 - Mae: 0.5938 - Pearson R: 0.4682 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1986 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | R Squared | Mae | Pearson R | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---------:| | No log | 1.0 | 438 | 0.6270 | 0.1428 | 0.6065 | 0.4297 | | 0.7343 | 2.0 | 876 | 0.5950 | 0.1866 | 0.5788 | 0.4913 | | 0.5661 | 3.0 | 1314 | 0.6455 | 0.1176 | 0.5938 | 0.4682 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
gpt2
[ "pytorch", "tf", "jax", "tflite", "rust", "safetensors", "gpt2", "text-generation", "en", "doi:10.57967/hf/0039", "transformers", "exbert", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21,488,226
2023-03-19T15:06:32Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 582.00 +/- 198.92 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Viswes -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Viswes -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Viswes ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
xlm-roberta-large-finetuned-conll02-spanish
[ "pytorch", "rust", "xlm-roberta", "fill-mask", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:1911.02116", "arxiv:1910.09700", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
444
2023-03-19T15:31:34Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8633240588268695 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1350 - F1: 0.8633 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2586 | 1.0 | 525 | 0.1608 | 0.8206 | | 0.1256 | 2.0 | 1050 | 0.1344 | 0.8455 | | 0.0802 | 3.0 | 1575 | 0.1350 | 0.8633 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.0.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
202015004/wav2vec2-base-timit-demo-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2023-03-19T16:49:59Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.74 +/- 5.92 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r juansebashr/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
2umm3r/distilbert-base-uncased-finetuned-cola
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
2023-03-19T16:56:07Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **CartPole-v1** This is a trained model of a DQN agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQN_ef_0.15.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQN_ef_0.15]" python -m cleanrl_utils.enjoy --exp-name DQN_ef_0.15 --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_ef_0.15-seed4/raw/main/dqn.py curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_ef_0.15-seed4/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_ef_0.15-seed4/raw/main/poetry.lock poetry install --all-extras python dqn.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name DQN_ef_0.15 --exploration-fraction 0.15 --seed 4 ``` # Hyperparameters ```python {'alg_type': 'dqn.py', 'batch_size': 256, 'buffer_size': 300000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'DQN_ef_0.15', 'exploration_fraction': 0.15, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'save_model': True, 'seed': 4, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
9pinus/macbert-base-chinese-medical-collation
[ "pytorch", "bert", "token-classification", "zh", "transformers", "Token Classification", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
63
2023-03-19T17:20:51Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlmr-wmt20qe1-ro-en-trial2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr-wmt20qe1-ro-en-trial2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4347 - R Squared: 0.5206 - Mae: 0.4679 - Pearson R: 0.7651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 2020 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | R Squared | Mae | Pearson R | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---------:| | No log | 1.0 | 438 | 0.4185 | 0.5384 | 0.4976 | 0.7415 | | 0.5999 | 2.0 | 876 | 0.4169 | 0.5402 | 0.4719 | 0.7592 | | 0.3258 | 3.0 | 1314 | 0.4347 | 0.5206 | 0.4679 | 0.7651 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
AT/distilroberta-base-finetuned-wikitext2
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-03-19T19:25:32Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-finetuned-cvbest2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-cvbest2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1263 - Precision: 0.6839 - Recall: 0.7805 - F1: 0.7290 - Accuracy: 0.9674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 17 | 0.4054 | 0.5 | 0.0010 | 0.0019 | 0.9038 | | No log | 2.0 | 34 | 0.2859 | 0.3247 | 0.2660 | 0.2924 | 0.9201 | | No log | 3.0 | 51 | 0.2169 | 0.3832 | 0.5774 | 0.4606 | 0.9358 | | No log | 4.0 | 68 | 0.1691 | 0.4744 | 0.6634 | 0.5532 | 0.9504 | | No log | 5.0 | 85 | 0.1571 | 0.5145 | 0.7360 | 0.6057 | 0.9495 | | No log | 6.0 | 102 | 0.1458 | 0.5905 | 0.7669 | 0.6672 | 0.9596 | | No log | 7.0 | 119 | 0.1304 | 0.6293 | 0.7718 | 0.6933 | 0.9630 | | No log | 8.0 | 136 | 0.1284 | 0.6664 | 0.7901 | 0.7230 | 0.9666 | | No log | 9.0 | 153 | 0.1263 | 0.6839 | 0.7805 | 0.7290 | 0.9674 | | No log | 10.0 | 170 | 0.1295 | 0.6699 | 0.7930 | 0.7263 | 0.9669 | ### Framework versions - Transformers 4.27.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AdapterHub/roberta-base-pf-duorc_p
[ "roberta", "en", "dataset:duorc", "arxiv:2104.08247", "adapter-transformers", "question-answering" ]
question-answering
{ "architectures": null, "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: jinukoo/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AdapterHub/roberta-base-pf-qqp
[ "roberta", "en", "arxiv:2104.08247", "adapter-transformers", "text-classification", "adapterhub:sts/qqp" ]
text-classification
{ "architectures": null, "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
# `vocabtrimmer/xlm-roberta-base-trimmed-es-5000-tweet-sentiment-es` This model is a fine-tuned version of [/home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-5000](https://huggingface.co//home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-5000) on the [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) (spanish). Following metrics are computed on the `test` split of [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)(spanish). | | eval_f1_micro | eval_recall_micro | eval_precision_micro | eval_f1_macro | eval_recall_macro | eval_precision_macro | eval_accuracy | |---:|----------------:|--------------------:|-----------------------:|----------------:|--------------------:|-----------------------:|----------------:| | 0 | 61.61 | 61.61 | 61.61 | 60.38 | 61.61 | 61.51 | 61.61 | Check the result file [here](https://huggingface.co/vocabtrimmer/xlm-roberta-base-trimmed-es-5000-tweet-sentiment-es/raw/main/eval.json).
AdapterHub/roberta-base-pf-yelp_polarity
[ "roberta", "en", "dataset:yelp_polarity", "arxiv:2104.08247", "adapter-transformers", "text-classification" ]
text-classification
{ "architectures": null, "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: apache-2.0 tags: - Question Answering metrics: - squad widget: - text: | Teste #model-index: #- name: consciousAI/question-answering-roberta-base-s-v2 # results: [] --- # Question Answering The model is intended to be used for Q&A task, given the question & context, the model would attempt to infer the answer text, answer span & confidence score.<br> Model is encoder-only (deepset/roberta-base-squad2) with QuestionAnswering LM Head, fine-tuned on SQUADx dataset with **exact_match:** 84.83 & **f1:** 91.80 performance scores. [Live Demo: Question Answering Encoders vs Generative](https://huggingface.co/spaces/consciousAI/question_answering) Please follow this link for [Encoder based Question Answering V1](https://huggingface.co/consciousAI/question-answering-roberta-base-s/) <br>Please follow this link for [Generative Question Answering](https://huggingface.co/consciousAI/question-answering-generative-t5-v1-base-s-q-c/) Example code: ``` from transformers import pipeline model_checkpoint = "consciousAI/question-answering-roberta-base-s-v2" context = """ 🤗 Transformers is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow — with a seamless integration between them. It's straightforward to train your models with one before loading them for inference with the other. """ question = "Which deep learning libraries back 🤗 Transformers?" question_answerer = pipeline("question-answering", model=model_checkpoint) question_answerer(question=question, context=context) ``` ## Training and evaluation data SQUAD Split ## Training procedure Preprocessing: 1. SQUAD Data longer chunks were sub-chunked with input context max-length 384 tokens and stride as 128 tokens. 2. Target answers readjusted for sub-chunks, sub-chunks with no-answers or partial answers were set to target answer span as (0,0) Metrics: 1. Adjusted accordingly to handle sub-chunking. 2. n best = 20 3. skip answers with length zero or higher than max answer length (30) ### Training hyperparameters Custom Training Loop: The following hyperparameters were used during training: - learning_rate: 2e-5 - train_batch_size: 32 - eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results {'exact_match': 84.83443708609272, 'f1': 91.79987545811638} ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.0
Ahmad/parsT5
[ "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQPN_freq results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQPN_freq** Agent Playing **CartPole-v1** This is a trained model of a DQPN_freq agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/CP_DQPN_x1.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[CP_DQPN_x1]" python -m cleanrl_utils.enjoy --exp-name CP_DQPN_x1 --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x1-seed2/raw/main/dqpn_freq.py curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x1-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x1-seed2/raw/main/poetry.lock poetry install --all-extras python dqpn_freq.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name CP_DQPN_x1 --policy-network-frequency 20 --seed 2 ``` # Hyperparameters ```python {'alg_type': 'dqpn_freq.py', 'batch_size': 256, 'buffer_size': 300000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'CP_DQPN_x1', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'policy_network_frequency': 20, 'policy_tau': 1.0, 'save_model': True, 'seed': 2, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
Aleksandar/bert-srb-ner-setimes-lr
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: artistic-2.0 --- The description below was created using machine translation Merged Pastel Mix, oil paint trained model and stable diffusion 1.5 default model. An oil painting-inspired anime-style model with bright, vibrant colors and a soft brushstroke. Use the OIL PAINT prompt to blur outlines and make colors more colorful. If you don't use the oil paint prompts, the lines are relatively bold and the colors are a bit muted. ![00095-574188704.png](https://s3.amazonaws.com/moonup/production/uploads/1679291640087-63cf776e5c1d61bb23e0327c.png)
Aleksandar/distilbert-srb-ner-setimes-lr
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 language: - zh library_name: transformers tags: - Roberta - Chinese Pre-trained Language Model --- Please use 'XLMRoberta' related functions to load this model! # MigBERT | 中文混合粒度预训练模型 [Character, Word, or Both? Revisiting the Segmentation Granularity for Chinese Pre-trained Language Models](https://arxiv.org/abs/2303.10893) # Demo | 使用样例 https://github.com/xnliang98/MigBERT # Citation 如果你觉得我们的工作对你有用,请在您的工作中引用我们的文章。 If you find our resource or paper is useful, please consider including the following citation in your paper. ``` @misc{liang2023character, title={Character, Word, or Both? Revisiting the Segmentation Granularity for Chinese Pre-trained Language Models}, author={Xinnian Liang and Zefan Zhou and Hui Huang and Shuangzhi Wu and Tong Xiao and Muyun Yang and Zhoujun Li and Chao Bian}, year={2023}, eprint={2303.10893}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Aleksandar/distilbert-srb-ner-setimes
[ "pytorch", "distilbert", "token-classification", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="msp3887/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Aleksandar1932/gpt2-hip-hop
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: - en license: other tags: - stable-diffusion - text-to-image - art - artistic - diffusers inference: true --- # NeverEnding Dream (NED) ## Official Repository Read more about this model here: https://civitai.com/models/10028/neverending-dream-ned Also please support by giving 5 stars and a heart, which will notify new updates. Also consider supporting me on Patreon or ByuMeACoffee - https://www.patreon.com/Lykon275 - https://www.buymeacoffee.com/lykon You can run this model on: - https://sinkin.ai/m/qGdxrYG Some sample output: ![sample 1](https://huggingface.co/Lykon/NeverEnding-Dream/resolve/main/1.png) ![sample 2](https://huggingface.co/Lykon/NeverEnding-Dream/resolve/main/2.png) ![sample 3](https://huggingface.co/Lykon/NeverEnding-Dream/resolve/main/3.png) ![sample 4](https://huggingface.co/Lykon/NeverEnding-Dream/resolve/main/4.png) ![sample 5](https://huggingface.co/Lykon/NeverEnding-Dream/resolve/main/5.png) ![sample 6](https://huggingface.co/Lykon/NeverEnding-Dream/resolve/main/6.jpg)
Aleksandar1932/gpt2-rock-124439808
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.77 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="msp3887/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AlekseyKorshuk/horror-scripts
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
19
null
--- thumbnail: tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Light Novel Character Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("MarinHinawa/DialoGPT-medium-haruka") model = AutoModelWithLMHead.from_pretrained("MarinHinawa/DialoGPT-medium-haruka") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("EneBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
AlekseyKulnevich/Pegasus-HeaderGeneration
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "PegasusForConditionalGeneration" ], "model_type": "pegasus", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 965.31 +/- 242.23 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AlexN/xls-r-300m-fr-0
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2945 - Accuracy: 0.8984 - F1: 0.9018 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AlexeyIgnatov/albert-xlarge-v2-squad-v2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Shailza/final_huggingface results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Shailza/final_huggingface This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.6030 - Validation Loss: 5.0251 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 40, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 5.6030 | 5.0251 | 0 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
AliPotter24/a
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: labor_space_bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # labor_space_bert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 2.0.0+cu118 - Datasets 2.8.0 - Tokenizers 0.10.3
Alireza1044/bert_classification_lm
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
35
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: clinico-bsc-bio-ehr-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinico-bsc-bio-ehr-es This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9988 - Precision: 0.4916 - Recall: 0.6526 - F1: 0.5608 - Accuracy: 0.8586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 25 | 1.2185 | 0.0189 | 0.0359 | 0.0247 | 0.6197 | | No log | 2.0 | 50 | 0.7442 | 0.1562 | 0.1975 | 0.1744 | 0.7996 | | No log | 3.0 | 75 | 0.6502 | 0.2108 | 0.2640 | 0.2344 | 0.8180 | | No log | 4.0 | 100 | 0.6404 | 0.3453 | 0.4572 | 0.3935 | 0.8258 | | No log | 5.0 | 125 | 0.6131 | 0.3639 | 0.4657 | 0.4085 | 0.8303 | | No log | 6.0 | 150 | 0.6123 | 0.3356 | 0.4256 | 0.3752 | 0.8341 | | No log | 7.0 | 175 | 0.6093 | 0.3411 | 0.4498 | 0.3880 | 0.8370 | | No log | 8.0 | 200 | 0.6198 | 0.3840 | 0.4931 | 0.4318 | 0.8379 | | No log | 9.0 | 225 | 0.6490 | 0.3878 | 0.5037 | 0.4382 | 0.8378 | | No log | 10.0 | 250 | 0.6653 | 0.3810 | 0.5005 | 0.4327 | 0.8371 | | No log | 11.0 | 275 | 0.6456 | 0.3223 | 0.4847 | 0.3872 | 0.8387 | | No log | 12.0 | 300 | 0.6475 | 0.3377 | 0.4847 | 0.3981 | 0.8474 | | No log | 13.0 | 325 | 0.6620 | 0.4004 | 0.5734 | 0.4716 | 0.8506 | | No log | 14.0 | 350 | 0.6798 | 0.3914 | 0.5649 | 0.4624 | 0.8533 | | No log | 15.0 | 375 | 0.6880 | 0.3969 | 0.5671 | 0.4670 | 0.8520 | | No log | 16.0 | 400 | 0.7012 | 0.4192 | 0.5913 | 0.4906 | 0.8551 | | No log | 17.0 | 425 | 0.7224 | 0.4143 | 0.5924 | 0.4876 | 0.8517 | | No log | 18.0 | 450 | 0.7510 | 0.4302 | 0.6051 | 0.5029 | 0.8553 | | No log | 19.0 | 475 | 0.7388 | 0.4271 | 0.6030 | 0.5 | 0.8532 | | 0.3652 | 20.0 | 500 | 0.7524 | 0.4374 | 0.6125 | 0.5103 | 0.8569 | | 0.3652 | 21.0 | 525 | 0.7408 | 0.4427 | 0.6082 | 0.5125 | 0.8580 | | 0.3652 | 22.0 | 550 | 0.7430 | 0.4448 | 0.6125 | 0.5153 | 0.8610 | | 0.3652 | 23.0 | 575 | 0.7726 | 0.4193 | 0.6093 | 0.4968 | 0.8582 | | 0.3652 | 24.0 | 600 | 0.7876 | 0.4316 | 0.6061 | 0.5042 | 0.8562 | | 0.3652 | 25.0 | 625 | 0.7777 | 0.4620 | 0.6294 | 0.5329 | 0.8595 | | 0.3652 | 26.0 | 650 | 0.8009 | 0.4521 | 0.6272 | 0.5254 | 0.8570 | | 0.3652 | 27.0 | 675 | 0.8153 | 0.4583 | 0.6378 | 0.5333 | 0.8572 | | 0.3652 | 28.0 | 700 | 0.8215 | 0.4611 | 0.6262 | 0.5311 | 0.8580 | | 0.3652 | 29.0 | 725 | 0.8296 | 0.4699 | 0.6336 | 0.5396 | 0.8595 | | 0.3652 | 30.0 | 750 | 0.8174 | 0.4597 | 0.6378 | 0.5343 | 0.8603 | | 0.3652 | 31.0 | 775 | 0.8442 | 0.4765 | 0.6410 | 0.5466 | 0.8599 | | 0.3652 | 32.0 | 800 | 0.8281 | 0.4646 | 0.6315 | 0.5354 | 0.8610 | | 0.3652 | 33.0 | 825 | 0.8322 | 0.4583 | 0.6389 | 0.5337 | 0.8591 | | 0.3652 | 34.0 | 850 | 0.8153 | 0.4559 | 0.6272 | 0.528 | 0.8623 | | 0.3652 | 35.0 | 875 | 0.8529 | 0.4861 | 0.6294 | 0.5486 | 0.8589 | | 0.3652 | 36.0 | 900 | 0.8826 | 0.4699 | 0.6272 | 0.5373 | 0.8559 | | 0.3652 | 37.0 | 925 | 0.8856 | 0.4654 | 0.6325 | 0.5363 | 0.8571 | | 0.3652 | 38.0 | 950 | 0.8983 | 0.4819 | 0.6315 | 0.5466 | 0.8560 | | 0.3652 | 39.0 | 975 | 0.8723 | 0.4641 | 0.6272 | 0.5335 | 0.8556 | | 0.0269 | 40.0 | 1000 | 0.8788 | 0.4662 | 0.6399 | 0.5394 | 0.8550 | | 0.0269 | 41.0 | 1025 | 0.8952 | 0.4805 | 0.6378 | 0.5481 | 0.8611 | | 0.0269 | 42.0 | 1050 | 0.8901 | 0.4657 | 0.6304 | 0.5357 | 0.8574 | | 0.0269 | 43.0 | 1075 | 0.9015 | 0.4746 | 0.6410 | 0.5454 | 0.8574 | | 0.0269 | 44.0 | 1100 | 0.8838 | 0.4655 | 0.6420 | 0.5397 | 0.8591 | | 0.0269 | 45.0 | 1125 | 0.9093 | 0.4718 | 0.6441 | 0.5446 | 0.8598 | | 0.0269 | 46.0 | 1150 | 0.9154 | 0.4826 | 0.6441 | 0.5518 | 0.8553 | | 0.0269 | 47.0 | 1175 | 0.9214 | 0.4614 | 0.6315 | 0.5332 | 0.8538 | | 0.0269 | 48.0 | 1200 | 0.9313 | 0.4639 | 0.6315 | 0.5349 | 0.8546 | | 0.0269 | 49.0 | 1225 | 0.9137 | 0.4807 | 0.6431 | 0.5501 | 0.8582 | | 0.0269 | 50.0 | 1250 | 0.9235 | 0.4939 | 0.6463 | 0.5599 | 0.8571 | | 0.0269 | 51.0 | 1275 | 0.9263 | 0.4900 | 0.6441 | 0.5566 | 0.8580 | | 0.0269 | 52.0 | 1300 | 0.9190 | 0.4787 | 0.6420 | 0.5485 | 0.8613 | | 0.0269 | 53.0 | 1325 | 0.9159 | 0.4700 | 0.6441 | 0.5434 | 0.8616 | | 0.0269 | 54.0 | 1350 | 0.9302 | 0.4806 | 0.6399 | 0.5489 | 0.8614 | | 0.0269 | 55.0 | 1375 | 0.9391 | 0.4877 | 0.6515 | 0.5579 | 0.8581 | | 0.0269 | 56.0 | 1400 | 0.9392 | 0.4959 | 0.6452 | 0.5608 | 0.8580 | | 0.0269 | 57.0 | 1425 | 0.9444 | 0.4798 | 0.6410 | 0.5488 | 0.8570 | | 0.0269 | 58.0 | 1450 | 0.9394 | 0.4777 | 0.6441 | 0.5486 | 0.8596 | | 0.0269 | 59.0 | 1475 | 0.9562 | 0.4833 | 0.6420 | 0.5515 | 0.8586 | | 0.0098 | 60.0 | 1500 | 0.9485 | 0.4801 | 0.6484 | 0.5517 | 0.8582 | | 0.0098 | 61.0 | 1525 | 0.9521 | 0.4679 | 0.6463 | 0.5428 | 0.8582 | | 0.0098 | 62.0 | 1550 | 0.9603 | 0.4759 | 0.6463 | 0.5481 | 0.8563 | | 0.0098 | 63.0 | 1575 | 0.9663 | 0.4831 | 0.6473 | 0.5532 | 0.8561 | | 0.0098 | 64.0 | 1600 | 0.9641 | 0.4780 | 0.6526 | 0.5518 | 0.8580 | | 0.0098 | 65.0 | 1625 | 0.9607 | 0.4767 | 0.6494 | 0.5498 | 0.8606 | | 0.0098 | 66.0 | 1650 | 0.9782 | 0.4849 | 0.6463 | 0.5541 | 0.8563 | | 0.0098 | 67.0 | 1675 | 0.9806 | 0.4916 | 0.6484 | 0.5592 | 0.8562 | | 0.0098 | 68.0 | 1700 | 0.9728 | 0.4889 | 0.6494 | 0.5578 | 0.8578 | | 0.0098 | 69.0 | 1725 | 0.9766 | 0.4885 | 0.6494 | 0.5576 | 0.8584 | | 0.0098 | 70.0 | 1750 | 0.9738 | 0.4862 | 0.6526 | 0.5573 | 0.8575 | | 0.0098 | 71.0 | 1775 | 0.9788 | 0.4916 | 0.6505 | 0.56 | 0.8571 | | 0.0098 | 72.0 | 1800 | 0.9845 | 0.4845 | 0.6452 | 0.5534 | 0.8563 | | 0.0098 | 73.0 | 1825 | 0.9729 | 0.4876 | 0.6463 | 0.5559 | 0.8573 | | 0.0098 | 74.0 | 1850 | 0.9854 | 0.4846 | 0.6494 | 0.5551 | 0.8569 | | 0.0098 | 75.0 | 1875 | 0.9903 | 0.4885 | 0.6505 | 0.5580 | 0.8562 | | 0.0098 | 76.0 | 1900 | 0.9825 | 0.4886 | 0.6558 | 0.5600 | 0.8568 | | 0.0098 | 77.0 | 1925 | 0.9994 | 0.4876 | 0.6463 | 0.5559 | 0.8554 | | 0.0098 | 78.0 | 1950 | 0.9922 | 0.4905 | 0.6515 | 0.5596 | 0.8546 | | 0.0098 | 79.0 | 1975 | 1.0084 | 0.4928 | 0.6484 | 0.5600 | 0.8578 | | 0.0057 | 80.0 | 2000 | 0.9931 | 0.4976 | 0.6526 | 0.5646 | 0.8580 | | 0.0057 | 81.0 | 2025 | 0.9864 | 0.4826 | 0.6452 | 0.5522 | 0.8595 | | 0.0057 | 82.0 | 2050 | 0.9929 | 0.4900 | 0.6484 | 0.5582 | 0.8595 | | 0.0057 | 83.0 | 2075 | 0.9902 | 0.4916 | 0.6473 | 0.5588 | 0.8588 | | 0.0057 | 84.0 | 2100 | 1.0021 | 0.4872 | 0.6431 | 0.5544 | 0.8573 | | 0.0057 | 85.0 | 2125 | 1.0013 | 0.4964 | 0.6473 | 0.5619 | 0.8582 | | 0.0057 | 86.0 | 2150 | 0.9814 | 0.4865 | 0.6484 | 0.5559 | 0.8625 | | 0.0057 | 87.0 | 2175 | 0.9841 | 0.4932 | 0.6558 | 0.5630 | 0.8622 | | 0.0057 | 88.0 | 2200 | 0.9888 | 0.4866 | 0.6515 | 0.5571 | 0.8610 | | 0.0057 | 89.0 | 2225 | 0.9898 | 0.4924 | 0.6515 | 0.5609 | 0.8610 | | 0.0057 | 90.0 | 2250 | 0.9860 | 0.4870 | 0.6526 | 0.5578 | 0.8607 | | 0.0057 | 91.0 | 2275 | 0.9925 | 0.4912 | 0.6484 | 0.5589 | 0.8589 | | 0.0057 | 92.0 | 2300 | 0.9904 | 0.4956 | 0.6536 | 0.5638 | 0.8599 | | 0.0057 | 93.0 | 2325 | 0.9902 | 0.4980 | 0.6526 | 0.5649 | 0.8602 | | 0.0057 | 94.0 | 2350 | 0.9925 | 0.5041 | 0.6547 | 0.5696 | 0.8602 | | 0.0057 | 95.0 | 2375 | 0.9959 | 0.4897 | 0.6515 | 0.5591 | 0.8589 | | 0.0057 | 96.0 | 2400 | 0.9951 | 0.4901 | 0.6505 | 0.5590 | 0.8591 | | 0.0057 | 97.0 | 2425 | 0.9962 | 0.4924 | 0.6505 | 0.5605 | 0.8588 | | 0.0057 | 98.0 | 2450 | 0.9972 | 0.5008 | 0.6505 | 0.5659 | 0.8585 | | 0.0057 | 99.0 | 2475 | 0.9988 | 0.4920 | 0.6526 | 0.5611 | 0.8588 | | 0.0045 | 100.0 | 2500 | 0.9988 | 0.4916 | 0.6526 | 0.5608 | 0.8586 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0 - Datasets 2.8.0 - Tokenizers 0.12.1
Alireza1044/dwight_bert_lm
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 269.70 +/- 22.74 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Alireza1044/michael_bert_lm
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: bigscience-bloom-rail-1.0 --- This model is based on [bigscience/bloomz-7b1-mt](https://huggingface.co/bigscience/bloom-7b1). To make it more accessible and efficient for certain Chinese , we have pruned its original vocabulary from 250,880 tokens to 46,145 tokens using Chinese corpus data as follow [bloom-6b4-zh](https://huggingface.co/Langboat/bloom-6b4-zh). This reduction in vocabulary size has helped to significantly reduce the GPU memory usage required to run the model. As a result, the total number of parameters in the model is now 6 billion 4. 基于 [bigscience/bloomz-7b1-mt](https://huggingface.co/bigscience/bloom-7b1),修建embeddings层到 46145,主要保留中文相关的tokens映射。修建后参数为6B4。 # How to use ```python from transformers import BloomTokenizerFast, BloomForCausalLM tokenizer = BloomTokenizerFast.from_pretrained('enze/bloomz-6b4-zh') model = BloomForCausalLM.from_pretrained('enze/bloomz-6b4-zh') print(tokenizer.batch_decode(model.generate(tokenizer.encode('中国的首都是', return_tensors='pt')))) ```
Alvenir/wav2vec2-base-da
[ "pytorch", "wav2vec2", "pretraining", "da", "transformers", "speech", "license:apache-2.0" ]
null
{ "architectures": [ "Wav2Vec2ForPreTraining" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
62
null
--- license: mit datasets: - Wojood tags: - Named Entity Recognition - Arabic NER - Nested NER language: - ar metrics: - f1 - precision - recall library_name: http://github.com/SinaLab/ArabicNER --- ## Wojood - Nested/Flat Arabic NER Models Wojood is a corpus for Arabic nested Named Entity Recognition (NER). Nested entities occur when one entity mention is embedded inside another entity mention. 550K tokens (MSA and dialect) This repo contains the source-code to train Wojood nested NER. Online Demo You can try our model using the demo link below https://ontology.birzeit.edu/Wojood/ ### Models * Nested NER (main branch), with micro-F1 score of 0.909551 * Flat NER (flat branch), with micro-F1 score 0.883847 ### Google Colab Notebooks You can test our model using our Google Colab notebooks * Train flat NER: https://gist.github.com/mohammedkhalilia/72c3261734d7715094089bdf4de74b4a * Evaluate your model using flat NER model: https://gist.github.com/mohammedkhalilia/c807eb1ccb15416b187c32a362001665 * Train nested NER: https://gist.github.com/mohammedkhalilia/a4d83d4e43682d1efcdf299d41beb3da * Evaluate your data using nested NER model: https://gist.github.com/mohammedkhalilia/9134510aa2684464f57de7934c97138b
Amba/wav2vec2-large-xls-r-300m-turkish-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-main-gpu-30e-final results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9940476190476191 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-main-gpu-30e-final This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0231 - Accuracy: 0.9940 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5113 | 1.0 | 551 | 0.4745 | 0.7971 | | 0.3409 | 2.0 | 1102 | 0.2697 | 0.8961 | | 0.2675 | 3.0 | 1653 | 0.1611 | 0.9381 | | 0.2092 | 4.0 | 2204 | 0.1176 | 0.9548 | | 0.2008 | 5.0 | 2755 | 0.0889 | 0.9656 | | 0.1555 | 6.0 | 3306 | 0.0666 | 0.9759 | | 0.1614 | 7.0 | 3857 | 0.0576 | 0.9778 | | 0.1518 | 8.0 | 4408 | 0.0517 | 0.9814 | | 0.1231 | 9.0 | 4959 | 0.0528 | 0.9812 | | 0.1076 | 10.0 | 5510 | 0.0426 | 0.9850 | | 0.0953 | 11.0 | 6061 | 0.0634 | 0.9795 | | 0.1097 | 12.0 | 6612 | 0.0398 | 0.9860 | | 0.0763 | 13.0 | 7163 | 0.0348 | 0.9866 | | 0.0895 | 14.0 | 7714 | 0.0341 | 0.9884 | | 0.06 | 15.0 | 8265 | 0.0381 | 0.9883 | | 0.0767 | 16.0 | 8816 | 0.0382 | 0.9875 | | 0.0868 | 17.0 | 9367 | 0.0309 | 0.9898 | | 0.091 | 18.0 | 9918 | 0.0339 | 0.9885 | | 0.0817 | 19.0 | 10469 | 0.0243 | 0.9913 | | 0.0641 | 20.0 | 11020 | 0.0286 | 0.9906 | | 0.0703 | 21.0 | 11571 | 0.0314 | 0.9906 | | 0.0642 | 22.0 | 12122 | 0.0261 | 0.9913 | | 0.0695 | 23.0 | 12673 | 0.0260 | 0.9920 | | 0.0664 | 24.0 | 13224 | 0.0241 | 0.9928 | | 0.0552 | 25.0 | 13775 | 0.0258 | 0.9928 | | 0.056 | 26.0 | 14326 | 0.0230 | 0.9939 | | 0.0488 | 27.0 | 14877 | 0.0221 | 0.9936 | | 0.0389 | 28.0 | 15428 | 0.0225 | 0.9930 | | 0.0402 | 29.0 | 15979 | 0.0231 | 0.9940 | | 0.0424 | 30.0 | 16530 | 0.0211 | 0.9939 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2