modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
CoderBoy432/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-chunke-nfl-finance results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-chunke-nfl-finance This model is a fine-tuned version of [openai/whisper-small.en](https://huggingface.co/openai/whisper-small.en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0732 - Wer: 10.2102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0004 | 10.42 | 1000 | 0.0638 | 8.2761 | | 0.0001 | 20.83 | 2000 | 0.0691 | 8.9629 | | 0.0001 | 31.25 | 3000 | 0.0721 | 9.6356 | | 0.0001 | 41.67 | 4000 | 0.0732 | 10.2102 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
CoffeeAddict93/gpt2-modest-proposal
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- license: apache-2.0 datasets: - asset - wi_locness - GEM/wiki_auto_asset_turk - discofuse - zaemyung/IteraTeR_plus - jfleg language: - en metrics: - sari - bleu - accuracy --- # Model Card for CoEdIT-xl-composite This model was obtained by fine-tuning the corresponding `google/flan-t5-xl` model on the CoEdIT-Composite dataset. Details of the dataset can be found in our paper and repository. **Paper:** CoEdIT: Text Editing by Task-Specific Instruction Tuning **Authors:** Vipul Raheja, Dhruv Kumar, Ryan Koo, Dongyeop Kang ## Model Details ### Model Description - **Language(s) (NLP)**: English - **Finetuned from model:** google/flan-t5-xl ### Model Sources - **Repository:** https://github.com/vipulraheja/coedit - **Paper:** https://arxiv.org/abs/2305.09857 ## How to use We make available the models presented in our paper. <table> <tr> <th>Model</th> <th>Number of parameters</th> </tr> <tr> <td>CoEdIT-large</td> <td>770M</td> </tr> <tr> <td>CoEdIT-xl</td> <td>3B</td> </tr> <tr> <td>CoEdIT-xxl</td> <td>11B</td> </tr> </table> ## Uses ## Text Revision Task Given an edit instruction and an original text, our model can generate the edited version of the text.<br> ![task_specs](https://huggingface.co/grammarly/coedit-xl/resolve/main/task_examples.png) This model can also perform edits on composite instructions, as shown below: ![composite task_specs](https://huggingface.co/grammarly/coedit-xl-composite/resolve/main/composite_examples.png) ## Usage ```python from transformers import AutoTokenizer, T5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("grammarly/coedit-xl-composite") model = T5ForConditionalGeneration.from_pretrained("grammarly/coedit-xl-composite") input_text = 'Fix grammatical errors in this sentence and make it simpler: When I grow up, I start to understand what he said is quite right.' input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids, max_length=256) edited_text = tokenizer.decode(outputs[0], skip_special_tokens=True) ``` #### Software https://github.com/vipulraheja/coedit ## Citation **BibTeX:** ``` @article{raheja2023coedit, title={CoEdIT: Text Editing by Task-Specific Instruction Tuning}, author={Vipul Raheja and Dhruv Kumar and Ryan Koo and Dongyeop Kang}, year={2023}, eprint={2305.09857}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` **APA:** Raheja, V., Kumar, D., Koo, R., & Kang, D. (2023). CoEdIT: Text Editing by Task-Specific Instruction Tuning. ArXiv. /abs/2305.09857
ComCom/gpt2-large
[ "pytorch", "gpt2", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "GPT2Model" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: flan-t5-large-extraction-all-cnndm_4000-ep5-nonstop results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-extraction-all-cnndm_4000-ep5-nonstop This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7363 - Hint Hit Num: 1.936 - Hint Precision: 0.3338 - Num: 5.818 - Gen Len: 18.99 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 40 - eval_batch_size: 80 - seed: 1799 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hint Hit Num | Hint Precision | Num | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:--------------:|:-----:|:-------:| | 2.1988 | 1.0 | 100 | 1.8020 | 1.852 | 0.3214 | 5.78 | 19.0 | | 1.9385 | 2.0 | 200 | 1.7482 | 1.974 | 0.3426 | 5.796 | 18.986 | | 1.8744 | 3.0 | 300 | 1.7407 | 1.976 | 0.3399 | 5.86 | 18.99 | | 1.8422 | 4.0 | 400 | 1.7398 | 1.958 | 0.3382 | 5.816 | 18.99 | | 1.8238 | 5.0 | 500 | 1.7363 | 1.936 | 0.3338 | 5.818 | 18.99 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.5.1 - Tokenizers 0.12.1
ComCom-Dev/gpt2-bible-test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7193 | 1.0 | 313 | 2.4903 | | 2.5804 | 2.0 | 626 | 2.4569 | | 2.5498 | 3.0 | 939 | 2.4574 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Connor/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.3144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.7737 | 1.0 | 1125 | 6.6432 | | 6.4176 | 2.0 | 2250 | 6.3929 | | 6.2554 | 3.0 | 3375 | 6.3144 | ### Framework versions - Transformers 4.28.1 - Pytorch 1.11.0+cu102 - Datasets 2.12.0 - Tokenizers 0.12.1
Contrastive-Tension/BERT-Distil-CT-STSb
[ "pytorch", "tf", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "DistilBertModel" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- language: - zh - en library_name: transformers pipeline_tag: text2text-generation datasets: - Yaxin/SemEval2016Task5NLTK metrics: - yuyijiong/quad_match_score --- 情感分析任务 T5模型\ [yuyijiong/T5-large-sentiment-analysis-Chinese](https://huggingface.co/yuyijiong/T5-large-sentiment-analysis-Chinese)的改进版,增加更多任务,使用chatgpt生成部分数据\ 在多个中英文情感分析数据集上微调得到 \ 输出格式为 ``` '对象1 | 观点1 | 方面1 | 情感极性1 & 对象2 | 观点2 | 方面2 | 情感极性2 ......' ``` 可以使用yuyijiong/quad_match_score评估指标进行评估 ```python import evaluate module = evaluate.load("yuyijiong/quad_match_score") predictions=["food | good | food#taste | pos"] references=["food | good | food#taste | pos & service | bad | service#general | neg"] result=module.compute(predictions=predictions, references=references) print(result) ``` 支持以下情感分析任务 ``` ["四元组(对象 | 观点 | 方面 | 极性)", '二元组(对象 | 观点)', '三元组(对象 | 观点 | 方面)', '三元组(对象 | 观点 | 极性)', '三元组(对象 | 方面 | 极性)', '二元组(方面 | 极性)', '二元组(观点 | 极性)', '单元素(极性)'] ``` 可以增加额外条件来控制答案的生成,例如: 答案风格控制,希望抽取的观点为整句话or缩减为几个词:\ (观点尽量短)\ (观点可以较长)\ (对较长观点进行概括) 注意此条件可能使答案中出现与原文不同的词 可以对指定的方面做情感分析: (方面选项:商品/物流/商家/平台) 情感对象target可能为null,表示文本中未明确给出 可以允许模型自动猜测为null的对象: (补全null) support the following sentiment analysis tasks ``` ["quadruples (target | opinion | aspect | polarity)", "quadruples (target | opinion | aspect | polarity)", 'pairs (target | opinion)', 'triples (target | opinion | aspect)', 'triples (target | opinion | polarity)', 'triples (target | aspect | polarity)', 'pairs (aspect | polarity)', 'pairs (target | polarity)', 'pairs (opinion | polarity)', 'single (polarity)'] ``` 使用方法: Usage ```python import torch from transformers import T5Tokenizer, AutoModelForSeq2SeqLM tokenizer = T5Tokenizer.from_pretrained("yuyijiong/T5-large-sentiment-analysis-Chinese-MultiTask") model = AutoModelForSeq2SeqLM.from_pretrained("yuyijiong/T5-large-sentiment-analysis-Chinese-MultiTask", device_map="auto") generation_config=GenerationConfig.from_pretrained("yuyijiong/T5-large-sentiment-analysis-Chinese-MultiTask") text = '情感四元组(对象 | 观点 | 方面 | 极性)抽取任务(观点可以较长): [个头大、口感不错,就是个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好。]' input_ids = tokenizer(text,return_tensors="pt", padding=True)['input_ids'].cuda(0) with torch.no_grad(): output = model.generate(input_ids=input_ids,generation_config=generation_config) output_str = tokenizer.batch_decode(output, skip_special_tokens=True) print(output_str) ``` 用法示例 ``` Q:情感四元组(对象 | 观点 | 方面 | 极性)抽取任务(观点可以较长): [个头大、口感不错,就是个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好。] A:个头 | 大 | 商品#大小 | 积极 & 口感 | 不错 | 商品#口感 | 积极 & null | 个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好 | 商品#新鲜程度 | 消极 Q:情感四元组(对象 | 观点 | 方面 | 极性)抽取任务(观点可以较长,补全null): [个头大、口感不错,就是个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好。] A:个头 | 大 | 商品#大小 | 积极 & 口感 | 不错 | 商品#口感 | 积极 & null (个别) | 有烂掉口子刻意用泥土封着,这样做不好 | 商品#新鲜程度 | 消极 Q:情感四元组(对象 | 观点 | 方面 | 极性)抽取任务(观点尽量短): [个头大、口感不错,就是个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好。] A:个头 | 大 | 商品#大小 | 积极 & 口感 | 不错 | 商品#口感 | 积极 Q:情感四元组(对象 | 观点 | 方面 | 极性)抽取任务(对较长观点进行概括): [个头大、口感不错,就是个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好。] A:个头 | 大 | 商品#大小 | 积极 & 口感 | 不错 | 商品#口感 | 积极 & null | 坏了口子封泥 | 商品#新鲜程度 | 消极 Q:情感三元组(对象 | 观点 | 极性)抽取任务(观点可以较长,补全null): [个头大、口感不错,就是个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好。] A:个头 | 大 | 积极 & 口感 | 不错 | 积极 & null (花生) | 个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好 | 消极 Q:判断以下评论的情感极性: [个头大、口感不错,就是个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好。] A:中性 Q:情感二元组(方面 | 极性)抽取任务(方面选项: 价格#性价比/价格#折扣/价格#水平/食品#外观/食物#分量/食物#味道/食物#推荐): [个头大、口感不错,就是个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好。] A:食物#分量 | 积极 & 食物#味道 | 中性 Q:sentiment quadruples (target | opinion | aspect | polarity) extraction task : [The hot dogs are good , yes , but the reason to get over here is the fantastic pork croquette sandwich , perfect on its supermarket squishy bun .] A:hot dogs | good | food#quality | pos & pork croquette sandwich | fantastic | food#quality | pos & bun | perfect | food#quality | pos ```
Coolhand/Abuela
[ "en", "image_restoration", "superresolution", "license:mit" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: CatherineGeng/vit-base-patch16-224-in21k-euroSat results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # CatherineGeng/vit-base-patch16-224-in21k-euroSat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4854 - Train Accuracy: 0.9415 - Train Top-3-accuracy: 0.9856 - Validation Loss: 0.1574 - Validation Accuracy: 0.9817 - Validation Top-3-accuracy: 0.9988 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3590, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 0.4854 | 0.9415 | 0.9856 | 0.1574 | 0.9817 | 0.9988 | 0 | ### Framework versions - Transformers 4.29.1 - TensorFlow 2.4.0 - Datasets 2.12.0 - Tokenizers 0.13.3
CopymySkill/DialoGPT-medium-atakan
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: git-base-pokemon results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # git-base-pokemon This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 6.6921 - Wer Score: 19.4724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Score | |:-------------:|:-----:|:----:|:---------------:|:---------:| | 3.9687 | 50.0 | 50 | 6.6921 | 19.4724 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Corvus/DialoGPT-medium-CaptainPrice
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- # Model Card for EGRX ## Model Description - **Developed by:** BADMONK - **Model type:** Dreambooth Model + Extracted LoRA - **Language(s) (NLP):** EN - **License:** Creativeml-Openrail-M - **Parent Model:** ChilloutMix # How to Get Started with the Model Use the code below to get started with the model. ### EGRX ###
Coyotl/DialoGPT-test-last-arthurmorgan
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: Baseline_10Kphish_benignFall_20_20_20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Baseline_10Kphish_benignFall_20_20_20 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0830 - Accuracy: 0.9916 - F1: 0.9039 - Precision: 0.9971 - Recall: 0.8266 - Roc Auc Score: 0.9132 - Tpr At Fpr 0.01: 0.8118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:| | 0.0118 | 1.0 | 6563 | 0.0538 | 0.9889 | 0.8681 | 0.9948 | 0.77 | 0.8849 | 0.7234 | | 0.0053 | 2.0 | 13126 | 0.0538 | 0.9915 | 0.9021 | 0.9945 | 0.8254 | 0.9126 | 0.7654 | | 0.0018 | 3.0 | 19689 | 0.0639 | 0.9916 | 0.9040 | 0.9945 | 0.8286 | 0.9142 | 0.7782 | | 0.0009 | 4.0 | 26252 | 0.0843 | 0.9905 | 0.8894 | 0.9978 | 0.8022 | 0.9011 | 0.8086 | | 0.0 | 5.0 | 32815 | 0.0830 | 0.9916 | 0.9039 | 0.9971 | 0.8266 | 0.9132 | 0.8118 | ### Framework versions - Transformers 4.29.1 - Pytorch 1.9.0+cu111 - Datasets 2.10.1 - Tokenizers 0.13.2
Coyotl/DialoGPT-test3-arthurmorgan
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- datasets: - glue model-index: - name: e5-large-unsupervised-mnli results: [] pipeline_tag: zero-shot-classification language: - en license: mit --- # e5-large-unsupervised-mnli This model is a fine-tuned version of [intfloat/e5-large-unsupervised](https://huggingface.co/intfloat/e5-large-unsupervised) on the glue dataset. ## Model description [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 ## How to use the model The model can be loaded with the `zero-shot-classification` pipeline like so: ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="mjwong/e5-large-unsupervised-mnli") ``` You can then use this pipeline to classify sequences into any of the class names you specify. ```python sequence_to_classify = "one day I will see the world" candidate_labels = ['travel', 'cooking', 'dancing'] classifier(sequence_to_classify, candidate_labels) #{'sequence': 'one day I will see the world', # 'labels': ['travel', 'dancing', 'cooking'], # 'scores': [0.9692057967185974, 0.019781911745667458, 0.011012292467057705]} ``` If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently: ```python candidate_labels = ['travel', 'cooking', 'dancing', 'exploration'] classifier(sequence_to_classify, candidate_labels, multi_class=True) #{'sequence': 'one day I will see the world', # 'labels': ['travel', 'exploration', 'dancing', 'cooking'], # 'scores': [0.9841939806938171, # 0.9155724048614502, # 0.2912618815898895, # 0.024328863248229027]} ``` ### Eval results The model was evaluated using the dev sets for MultiNLI and test sets for ANLI. The metric used is accuracy. |Datasets|mnli_dev_m|mnli_dev_mm|anli_test_r1|anli_test_r2|anli_test_r3| | :---: | :---: | :---: | :---: | :---: | :---: | |[e5-base-mnli](https://huggingface.co/mjwong/e5-base-mnli)|0.840|0.839|0.231|0.285|0.309| |[e5-large-mnli](https://huggingface.co/mjwong/e5-large-mnli)|0.868|0.869|0.301|0.296|0.294| |[e5-large-unsupervised-mnli](https://huggingface.co/mjwong/e5-large-unsupervised-mnli)|0.865|0.867|0.314|0.285|0.303| |[e5-large-mnli-anli](https://huggingface.co/mjwong/e5-large-mnli-anli)|0.843|0.848|0.646|0.484|0.458| |[e5-large-unsupervised-mnli-anli](https://huggingface.co/mjwong/e5-large-unsupervised-mnli-anli)|0.836|0.842|0.634|0.481|0.478| ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Framework versions - Transformers 4.28.1 - Pytorch 1.12.1+cu116 - Datasets 2.11.0 - Tokenizers 0.12.1
Crisblair/Wkwk
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-t5-large-fce-e8-b16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-fce-e8-b16 This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3123 - Rouge1: 87.0781 - Rouge2: 79.8175 - Rougel: 86.6213 - Rougelsum: 86.6385 - Gen Len: 14.8832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.3761 | 0.23 | 400 | 0.3325 | 86.7053 | 79.1321 | 86.1593 | 86.1958 | 14.8864 | | 0.3516 | 0.45 | 800 | 0.3201 | 86.8076 | 79.1282 | 86.2981 | 86.3209 | 14.8781 | | 0.3401 | 0.68 | 1200 | 0.3187 | 86.479 | 78.6505 | 85.9172 | 85.9585 | 14.8800 | | 0.3283 | 0.9 | 1600 | 0.3123 | 87.0781 | 79.8175 | 86.6213 | 86.6385 | 14.8832 | | 0.2395 | 1.13 | 2000 | 0.3278 | 86.7979 | 79.3766 | 86.3314 | 86.3581 | 14.9046 | | 0.1817 | 1.35 | 2400 | 0.3170 | 86.8343 | 79.4019 | 86.3148 | 86.3232 | 14.8964 | | 0.1962 | 1.58 | 2800 | 0.3138 | 86.8702 | 79.425 | 86.3412 | 86.36 | 14.9069 | | 0.1971 | 1.81 | 3200 | 0.3191 | 86.8355 | 79.3178 | 86.2974 | 86.322 | 14.8809 | | 0.1816 | 2.03 | 3600 | 0.3490 | 87.0986 | 79.7312 | 86.6108 | 86.6227 | 14.9142 | | 0.0975 | 2.26 | 4000 | 0.3534 | 86.7684 | 79.3649 | 86.2755 | 86.2885 | 14.9069 | | 0.1033 | 2.48 | 4400 | 0.3536 | 86.8978 | 79.714 | 86.4135 | 86.435 | 14.9302 | | 0.1086 | 2.71 | 4800 | 0.3553 | 86.6286 | 79.3293 | 86.1381 | 86.1686 | 14.9078 | | 0.1141 | 2.93 | 5200 | 0.3530 | 86.8452 | 79.4178 | 86.2927 | 86.3239 | 14.9010 | | 0.076 | 3.16 | 5600 | 0.4088 | 86.992 | 79.8179 | 86.5124 | 86.5186 | 14.9096 | | 0.0595 | 3.39 | 6000 | 0.4052 | 86.8874 | 79.6302 | 86.3643 | 86.3784 | 14.9101 | | 0.0606 | 3.61 | 6400 | 0.4051 | 86.9236 | 79.5305 | 86.3715 | 86.3959 | 14.9101 | | 0.0653 | 3.84 | 6800 | 0.3860 | 86.8353 | 79.541 | 86.3249 | 86.3292 | 14.9165 | | 0.0553 | 4.06 | 7200 | 0.4229 | 86.7788 | 79.5444 | 86.3393 | 86.3468 | 14.8868 | | 0.0339 | 4.29 | 7600 | 0.4478 | 86.6863 | 79.5215 | 86.216 | 86.2363 | 14.9133 | | 0.0375 | 4.51 | 8000 | 0.4359 | 86.8412 | 79.668 | 86.3237 | 86.3349 | 14.9229 | | 0.0376 | 4.74 | 8400 | 0.4459 | 86.8836 | 79.682 | 86.3993 | 86.4062 | 14.9069 | | 0.0372 | 4.97 | 8800 | 0.4324 | 86.6833 | 79.5114 | 86.1856 | 86.2031 | 14.9197 | | 0.023 | 5.19 | 9200 | 0.4930 | 86.9595 | 79.8244 | 86.4103 | 86.4373 | 14.9279 | | 0.0211 | 5.42 | 9600 | 0.4927 | 87.0212 | 79.8707 | 86.5054 | 86.5117 | 14.9320 | | 0.0215 | 5.64 | 10000 | 0.4915 | 86.9495 | 79.8479 | 86.458 | 86.4632 | 14.9115 | | 0.0205 | 5.87 | 10400 | 0.4919 | 86.8966 | 79.7666 | 86.424 | 86.4482 | 14.9069 | | 0.0169 | 6.09 | 10800 | 0.5415 | 87.1119 | 80.0504 | 86.6205 | 86.6255 | 14.9083 | | 0.0116 | 6.32 | 11200 | 0.5767 | 87.1828 | 80.2547 | 86.6809 | 86.6742 | 14.9215 | | 0.0113 | 6.55 | 11600 | 0.5799 | 87.2494 | 80.2853 | 86.7412 | 86.761 | 14.9147 | | 0.0103 | 6.77 | 12000 | 0.6036 | 87.1081 | 80.1873 | 86.6086 | 86.6176 | 14.9251 | | 0.0106 | 7.0 | 12400 | 0.5821 | 87.1489 | 80.1987 | 86.654 | 86.6694 | 14.9242 | | 0.0064 | 7.22 | 12800 | 0.6325 | 87.2026 | 80.2043 | 86.6988 | 86.704 | 14.9197 | | 0.0056 | 7.45 | 13200 | 0.6878 | 87.184 | 80.1382 | 86.6798 | 86.7049 | 14.9188 | | 0.0061 | 7.67 | 13600 | 0.6888 | 87.2465 | 80.1602 | 86.7407 | 86.7459 | 14.9201 | | 0.0057 | 7.9 | 14000 | 0.6922 | 87.2584 | 80.2614 | 86.7806 | 86.7948 | 14.9201 | ### Framework versions - Transformers 4.28.1 - Pytorch 1.11.0a0+b6df043 - Datasets 2.12.0 - Tokenizers 0.13.3
CrypticT1tan/DialoGPT-medium-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-t5-base-fce-e8-b16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-fce-e8-b16 This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3114 - Rouge1: 86.9035 - Rouge2: 79.2645 - Rougel: 86.4197 - Rougelsum: 86.4231 - Gen Len: 14.8850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.4128 | 0.23 | 400 | 0.3457 | 86.8983 | 79.1632 | 86.3755 | 86.3944 | 14.8435 | | 0.3783 | 0.45 | 800 | 0.3469 | 86.8995 | 78.8428 | 86.3368 | 86.3283 | 14.8955 | | 0.3627 | 0.68 | 1200 | 0.3114 | 86.9035 | 79.2645 | 86.4197 | 86.4231 | 14.8850 | | 0.3484 | 0.9 | 1600 | 0.3239 | 87.2292 | 79.8056 | 86.7218 | 86.7237 | 14.8759 | | 0.2696 | 1.13 | 2000 | 0.3419 | 87.15 | 79.6016 | 86.6082 | 86.6241 | 14.8959 | | 0.22 | 1.35 | 2400 | 0.3270 | 87.0232 | 79.4806 | 86.5137 | 86.5173 | 14.8868 | | 0.2327 | 1.58 | 2800 | 0.3185 | 87.1028 | 79.6758 | 86.5985 | 86.6221 | 14.9005 | | 0.2354 | 1.81 | 3200 | 0.3125 | 87.143 | 79.786 | 86.6545 | 86.6788 | 14.9010 | | 0.2177 | 2.03 | 3600 | 0.3292 | 87.0858 | 79.5707 | 86.5451 | 86.5456 | 14.9133 | | 0.1347 | 2.26 | 4000 | 0.3342 | 87.1768 | 79.9161 | 86.6402 | 86.6666 | 14.9142 | | 0.1411 | 2.48 | 4400 | 0.3456 | 87.1049 | 79.9438 | 86.6152 | 86.6265 | 14.9110 | | 0.1487 | 2.71 | 4800 | 0.3393 | 86.5182 | 78.468 | 86.0005 | 86.0283 | 14.8813 | | 0.1498 | 2.93 | 5200 | 0.3347 | 87.2024 | 79.7098 | 86.6782 | 86.6904 | 14.8859 | | 0.1055 | 3.16 | 5600 | 0.4027 | 87.1281 | 79.799 | 86.5714 | 86.5965 | 14.9105 | | 0.0862 | 3.39 | 6000 | 0.4046 | 87.2721 | 79.8755 | 86.6838 | 86.6956 | 14.9073 | | 0.0894 | 3.61 | 6400 | 0.3776 | 87.1508 | 79.865 | 86.6178 | 86.6424 | 14.8946 | | 0.0942 | 3.84 | 6800 | 0.3781 | 87.2854 | 80.0876 | 86.7694 | 86.7867 | 14.8927 | | 0.0816 | 4.06 | 7200 | 0.4300 | 87.3854 | 80.1162 | 86.8398 | 86.8446 | 14.8978 | | 0.0582 | 4.29 | 7600 | 0.4201 | 87.2594 | 80.1824 | 86.7653 | 86.7807 | 14.9019 | | 0.0588 | 4.51 | 8000 | 0.4129 | 87.3373 | 80.1802 | 86.8332 | 86.8414 | 14.9014 | | 0.0571 | 4.74 | 8400 | 0.4437 | 87.2985 | 80.0215 | 86.8171 | 86.8238 | 14.8946 | | 0.0587 | 4.97 | 8800 | 0.4019 | 87.2321 | 80.0933 | 86.6888 | 86.6931 | 14.9105 | | 0.0381 | 5.19 | 9200 | 0.4822 | 87.2798 | 80.1822 | 86.7799 | 86.7886 | 14.9014 | | 0.0378 | 5.42 | 9600 | 0.4831 | 87.409 | 80.3418 | 86.8845 | 86.8844 | 14.8927 | | 0.0368 | 5.64 | 10000 | 0.4809 | 87.2276 | 79.9415 | 86.6776 | 86.6833 | 14.9105 | | 0.0359 | 5.87 | 10400 | 0.4964 | 87.2916 | 80.1468 | 86.7693 | 86.7704 | 14.9028 | | 0.0311 | 6.09 | 10800 | 0.5266 | 87.3443 | 80.1762 | 86.7852 | 86.7825 | 14.8991 | | 0.0225 | 6.32 | 11200 | 0.5550 | 87.3142 | 80.2689 | 86.7856 | 86.7884 | 14.9037 | | 0.0239 | 6.55 | 11600 | 0.5308 | 87.4003 | 80.2637 | 86.8373 | 86.8356 | 14.9023 | | 0.0236 | 6.77 | 12000 | 0.5490 | 87.3865 | 80.3184 | 86.8563 | 86.8626 | 14.9037 | | 0.0223 | 7.0 | 12400 | 0.5454 | 87.3842 | 80.2875 | 86.8109 | 86.8293 | 14.9055 | | 0.0164 | 7.22 | 12800 | 0.5818 | 87.4641 | 80.3669 | 86.8908 | 86.9062 | 14.8964 | | 0.0155 | 7.45 | 13200 | 0.5927 | 87.4191 | 80.3356 | 86.8541 | 86.8718 | 14.9014 | | 0.0152 | 7.67 | 13600 | 0.5990 | 87.4257 | 80.2974 | 86.8481 | 86.8589 | 14.9005 | | 0.0144 | 7.9 | 14000 | 0.6084 | 87.4754 | 80.3558 | 86.9086 | 86.9184 | 14.9014 | ### Framework versions - Transformers 4.28.1 - Pytorch 1.11.0a0+b6df043 - Datasets 2.12.0 - Tokenizers 0.13.3
Crystal/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-large-fce-e8-b16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-large-fce-e8-b16 This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3526 - Rouge1: 84.5329 - Rouge2: 76.3656 - Rougel: 83.9027 - Rougelsum: 83.9238 - Gen Len: 15.4614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.2105 | 0.23 | 400 | 0.4344 | 84.6268 | 76.3447 | 84.0402 | 84.0182 | 15.4564 | | 0.4664 | 0.45 | 800 | 0.4256 | 84.3821 | 75.6104 | 83.8113 | 83.8303 | 15.4404 | | 0.434 | 0.68 | 1200 | 0.3839 | 84.0212 | 75.7319 | 83.4232 | 83.431 | 15.4952 | | 0.406 | 0.9 | 1600 | 0.3713 | 84.7743 | 76.7805 | 84.2379 | 84.2352 | 15.4514 | | 0.3193 | 1.13 | 2000 | 0.3665 | 84.634 | 76.5132 | 84.0604 | 84.0755 | 15.4774 | | 0.2693 | 1.35 | 2400 | 0.3718 | 84.6587 | 76.7057 | 84.099 | 84.1045 | 15.4619 | | 0.2815 | 1.58 | 2800 | 0.3617 | 84.5181 | 76.6792 | 83.9922 | 83.9976 | 15.4820 | | 0.2776 | 1.81 | 3200 | 0.3526 | 84.5329 | 76.3656 | 83.9027 | 83.9238 | 15.4614 | | 0.2551 | 2.03 | 3600 | 0.3720 | 84.504 | 76.6676 | 83.9957 | 84.0108 | 15.4801 | | 0.1617 | 2.26 | 4000 | 0.3648 | 84.4385 | 76.3684 | 83.8585 | 83.8657 | 15.4897 | | 0.1711 | 2.48 | 4400 | 0.3671 | 84.5241 | 76.6518 | 83.9862 | 83.9987 | 15.4902 | | 0.1771 | 2.71 | 4800 | 0.3607 | 84.6437 | 76.6682 | 84.103 | 84.1174 | 15.4683 | | 0.1803 | 2.93 | 5200 | 0.3582 | 84.479 | 76.6205 | 83.9509 | 83.9504 | 15.4715 | | 0.1199 | 3.16 | 5600 | 0.3971 | 84.6367 | 76.7872 | 84.0191 | 84.0534 | 15.4715 | | 0.1005 | 3.39 | 6000 | 0.4085 | 84.5153 | 76.6564 | 83.9365 | 83.9506 | 15.4820 | | 0.1033 | 3.61 | 6400 | 0.4007 | 84.3191 | 76.399 | 83.8183 | 83.8142 | 15.4728 | | 0.1067 | 3.84 | 6800 | 0.4014 | 84.5289 | 76.5335 | 83.9706 | 83.9967 | 15.4674 | | 0.09 | 4.06 | 7200 | 0.4328 | 84.3978 | 76.6231 | 83.8654 | 83.8728 | 15.4783 | | 0.0574 | 4.29 | 7600 | 0.4305 | 84.4476 | 76.7198 | 83.8943 | 83.9 | 15.4820 | | 0.0579 | 4.51 | 8000 | 0.4510 | 84.5536 | 76.7635 | 83.977 | 83.9745 | 15.4719 | | 0.061 | 4.74 | 8400 | 0.4447 | 84.5632 | 76.9892 | 84.0419 | 84.0501 | 15.4815 | | 0.0608 | 4.97 | 8800 | 0.4353 | 84.6004 | 76.8883 | 84.0518 | 84.0596 | 15.4788 | | 0.0362 | 5.19 | 9200 | 0.4853 | 84.7169 | 77.1321 | 84.1485 | 84.1486 | 15.4760 | | 0.0333 | 5.42 | 9600 | 0.5053 | 84.851 | 77.4661 | 84.307 | 84.3106 | 15.4829 | | 0.0325 | 5.64 | 10000 | 0.5066 | 84.7412 | 77.3031 | 84.2107 | 84.2006 | 15.4948 | | 0.0335 | 5.87 | 10400 | 0.4947 | 84.7596 | 77.2636 | 84.2156 | 84.224 | 15.4906 | | 0.0269 | 6.09 | 10800 | 0.5306 | 84.7484 | 77.2693 | 84.1824 | 84.1962 | 15.4811 | | 0.0184 | 6.32 | 11200 | 0.5535 | 84.8066 | 77.3749 | 84.2765 | 84.2989 | 15.4756 | | 0.0177 | 6.55 | 11600 | 0.5555 | 84.7335 | 77.2108 | 84.1917 | 84.2084 | 15.4865 | | 0.0168 | 6.77 | 12000 | 0.5538 | 84.7053 | 77.2902 | 84.184 | 84.1929 | 15.4792 | | 0.0165 | 7.0 | 12400 | 0.5614 | 84.7332 | 77.3098 | 84.2055 | 84.2055 | 15.4879 | | 0.0092 | 7.22 | 12800 | 0.6222 | 84.7668 | 77.3059 | 84.2235 | 84.2397 | 15.4724 | | 0.0086 | 7.45 | 13200 | 0.6485 | 84.8211 | 77.4247 | 84.2857 | 84.2996 | 15.4751 | | 0.0098 | 7.67 | 13600 | 0.6417 | 84.7854 | 77.4226 | 84.2457 | 84.2652 | 15.4865 | | 0.0088 | 7.9 | 14000 | 0.6445 | 84.7809 | 77.4171 | 84.2396 | 84.2591 | 15.4852 | ### Framework versions - Transformers 4.28.1 - Pytorch 1.11.0a0+b6df043 - Datasets 2.12.0 - Tokenizers 0.13.3
CyberMuffin/DialoGPT-small-ChandlerBot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: flan-t5-large-extraction-all-cnndm_2000-ep6-nonstop results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-extraction-all-cnndm_2000-ep6-nonstop This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7750 - Hint Hit Num: 1.962 - Hint Precision: 0.3394 - Num: 5.812 - Gen Len: 18.986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 40 - eval_batch_size: 80 - seed: 1799 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hint Hit Num | Hint Precision | Num | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:--------------:|:-----:|:-------:| | 2.1808 | 2.0 | 100 | 1.8110 | 1.822 | 0.3218 | 5.738 | 19.0 | | 1.9109 | 4.0 | 200 | 1.7813 | 1.916 | 0.3357 | 5.76 | 18.986 | | 1.8525 | 6.0 | 300 | 1.7750 | 1.962 | 0.3394 | 5.812 | 18.986 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.5.1 - Tokenizers 0.12.1
D3xter1922/electra-base-discriminator-finetuned-cola
[ "pytorch", "tensorboard", "electra", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "ElectraForSequenceClassification" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
68
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: Baseline_100Kphish_benignFall_20_20_20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Baseline_100Kphish_benignFall_20_20_20 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0206 - Accuracy: 0.9973 - F1: 0.9713 - Precision: 0.9998 - Recall: 0.9444 - Roc Auc Score: 0.9722 - Tpr At Fpr 0.01: 0.962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:| | 0.0021 | 1.0 | 65625 | 0.0198 | 0.9974 | 0.9721 | 0.9966 | 0.9488 | 0.9743 | 0.9436 | | 0.0013 | 2.0 | 131250 | 0.0251 | 0.9969 | 0.9664 | 0.9996 | 0.9354 | 0.9677 | 0.9416 | | 0.0025 | 3.0 | 196875 | 0.0284 | 0.9966 | 0.9625 | 0.9996 | 0.928 | 0.9640 | 0.953 | | 0.0 | 4.0 | 262500 | 0.0187 | 0.9974 | 0.9717 | 0.9994 | 0.9456 | 0.9728 | 0.965 | | 0.0011 | 5.0 | 328125 | 0.0206 | 0.9973 | 0.9713 | 0.9998 | 0.9444 | 0.9722 | 0.962 | ### Framework versions - Transformers 4.29.1 - Pytorch 1.9.0+cu111 - Datasets 2.10.1 - Tokenizers 0.13.2
DTAI-KULeuven/robbertje-1-gb-merged
[ "pytorch", "roberta", "fill-mask", "nl", "dataset:oscar", "dataset:oscar (NL)", "dataset:dbrd", "dataset:lassy-ud", "dataset:europarl-mono", "dataset:conll2002", "arxiv:2101.05716", "transformers", "Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # tollefj/setfit-nocola-20-iter-25-epochs-allsamples This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("tollefj/setfit-nocola-20-iter-25-epochs-allsamples") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
alexandrainst/da-emotion-classification-base
[ "pytorch", "tf", "bert", "text-classification", "da", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
837
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2819 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: AlbertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 128, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
alexandrainst/da-ner-base
[ "pytorch", "tf", "bert", "token-classification", "da", "dataset:dane", "transformers", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
78
null
--- license: other --- # 聲明 Disclaimer 本資料夾中的模型不是我所製作,版權歸原作者所有(各模型版權詳見 http://www.civitai.com 所示)。我上傳至本資料夾僅爲方便在綫抽取資源,并非盈利。 The models in this folder are not made by me, and the copyright belongs to the original author (see http://www.civitai.com for details on the copyright of each model). I uploaded to this folder only for the convenience of extracting resources online, not for profit. # 模型列表 List of Models 本資料夾中所有模型詳見下表。 All the models in this folder are detailed in the table below. | 模型名稱 Model Name | Civitai 頁面鏈接 Civitai Page Link | Civitai 下載鏈接 Civitai Download Link | |----------------------|--------------------|--------------------| |fantasticmix_v50.safetensors |https://civitai.com/models/22402?modelVersionId=68821 |https://civitai.com/api/download/models/68821 | |fantasticmix_v40.safetensors |https://civitai.com/models/22402?modelVersionId=59385 |https://civitai.com/api/download/models/59385 | |fantasticmix_v30.safetensors |https://civitai.com/models/22402?modelVersionId=39880 |https://civitai.com/api/download/models/39880 | |fantasticmix_v30Baked.safetensors |https://civitai.com/models/22402?modelVersionId=39900 |https://civitai.com/api/download/models/39900 | |fantasticmix_v20.safetensors |https://civitai.com/models/22402?modelVersionId=30145 |https://civitai.com/api/download/models/30145 | |fantasticmix_v20Baked.safetensors |https://civitai.com/models/22402?modelVersionId=30589 |https://civitai.com/api/download/models/30589 | |fantasticmix_v10.safetensors |https://civitai.com/models/22402?modelVersionId=26744 |https://civitai.com/api/download/models/26744 |
DaWang/demo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- # InstructPix2Pix: Learning to Follow Image Editing Instructions GitHub: https://github.com/timothybrooks/instruct-pix2pix <img src='https://instruct-pix2pix.timothybrooks.com/teaser.jpg'/> ## Example To use `InstructPix2Pix`, install `diffusers` using `main` for now. The pipeline will be available in the next release ```bash pip install diffusers accelerate safetensors transformers ``` ```python import PIL import requests import torch from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler model_id = "timbrooks/instruct-pix2pix" pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None) pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) url = "https://raw.githubusercontent.com/timothybrooks/instruct-pix2pix/main/imgs/example.jpg" def download_image(url): image = PIL.Image.open(requests.get(url, stream=True).raw) image = PIL.ImageOps.exif_transpose(image) image = image.convert("RGB") return image image = download_image(URL) prompt = "turn him into cyborg" images = pipe(prompt, image=image, num_inference_steps=10, image_guidance_scale=1).images images[0] ```
Darkecho789/email-gen
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - autotrain - vision - image-classification datasets: - ceogpt/autotrain-data-test-cgpt widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.20224231551586896 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 57734132888 - CO2 Emissions (in grams): 0.2022 ## Validation Metrics - Loss: 0.430 - Accuracy: 0.882 - Precision: 0.000 - Recall: 0.000 - AUC: 0.233 - F1: 0.000
Davlan/xlm-roberta-base-finetuned-xhosa
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 434.00 +/- 154.03 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Bhanu9Prakash -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Bhanu9Prakash -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Bhanu9Prakash ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Davlan/xlm-roberta-base-finetuned-zulu
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: Bhanu9Prakash/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Davlan/xlm-roberta-large-ner-hrl
[ "pytorch", "tf", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,322
null
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Find your model_id: Bilguunee/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Dayout/test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: jakubgajski/PyramydsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Declan/CNN_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: type-prediction-transformer results: [] widget: - text: "ถนนผุพังทำให้เกิดเสียงดังเวลารถวิ่ง" - text: "ขี่มอไซค์บนทางเท้ามันจะเกินปุยมุ้ย" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # type-prediction-transformer This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0497 - F1: 0.8651 - Roc Auc: 0.9260 - Accuracy: 0.8208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 149 | 0.0812 | 0.8070 | 0.8677 | 0.7588 | | No log | 2.0 | 298 | 0.0591 | 0.8585 | 0.9064 | 0.8141 | | No log | 3.0 | 447 | 0.0493 | 0.8719 | 0.9144 | 0.8258 | | 0.0886 | 4.0 | 596 | 0.0506 | 0.8614 | 0.9222 | 0.8090 | | 0.0886 | 5.0 | 745 | 0.0487 | 0.8683 | 0.9255 | 0.8174 | | 0.0886 | 6.0 | 894 | 0.0506 | 0.8693 | 0.9291 | 0.8191 | | 0.0254 | 7.0 | 1043 | 0.0519 | 0.8619 | 0.9307 | 0.8090 | | 0.0254 | 8.0 | 1192 | 0.0497 | 0.8651 | 0.9260 | 0.8208 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Tokenizers 0.13.3
Declan/CNN_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-05-12T07:21:56Z
Un cambrioleur possède un sac à dos d'une contenance maximum de 30 kg. Au cours d'un de ses cambriolages, il a la possibilité de dérober 4 objets A, B, C et D. Voici un tableau qui résume les caractéristiques de ces objets : Objet A B C D Masse 13kg 12kg 8kg 10kg Valeur 700 400 300 300 Déterminez les objets que le cambrioleur aura intérêt à dérober, sachant que : - tous les objets dérobés devront tenir dans le sac à dos (30 Kg maxi) - le cambrioleur cherche à obtenir un gain maximum. Ce genre de problème est un grand classique en informatique, on parle de problème d'optimisation. Il existe toujours plusieurs solutions possibles à un problème d'optimisation (dans le problème du sac à dos, on peut choisir A+B ou A+C ou B+C+D... toutes les combinaisons sont possibles à partir du moment où la masse totale ne dépasse pas 30 Kg), mais on ne cherche pas n'importe quelle solution, on cherche une solution dite optimale : dans notre exemple on cherche le plus grand gain possible. Souvent, dans les problèmes d'optimisation, il n'existe pas une solution optimale, mais plusieurs solutions optimales, résoudre un problème d'optimisation c'est donc trouver une des solutions optimales. Il existe différentes méthodes algorithmiques permettant de trouver une solution optimale à un problème d'optimisation : il peut, en effet, être intéressant "d'automatiser" la résolution des problèmes d'optimisation à l'aide d'algorithme (dans notre cas, trouver un algorithme qui trouve une solution optimale au problème du sac à dos). En apparence, la solution la plus simple dans le cas du sac à dos serait d'écrire un algorithme qui teste toutes les combinaisons d'objets possibles et qui retient les solutions qui offrent un gain maximum. Dans notre cas précis, avec seulement 4 objets, cette solution pourrait être envisagée, mais avec un plus grand nombre d'objets, le temps de calculs, même pour un ordinateur très puissant, deviendrait trop important. En effet l'algorithme qui testerait toutes les combinaisons possibles aurait une complexité en temps en O(a n ) avec a une constante et n le nombre d'objets. On parle d'une complexité exponentielle. Les algorithmes à complexité exponentielle ne sont pas efficaces pour résoudre des problèmes, le temps de calcul devient beaucoup trop important quand n devient très grand. À la place de cette méthode "je teste toutes les possibilités", il est possible d'utiliser une méthode dite gloutonne (greedy en anglais). Qu'est-ce qu'une méthode gloutonne ? La résolution d'un problème d'optimisation se fait généralement par étapes : à chaque étape on doit faire un choix. Par exemple, dans le problème du sac à dos, nous ajoutons les objets un par un, chaque ajout d'un objet constitue une étape : à chaque étape, on doit choisir un objet à mettre dans le sac. Le principe de la méthode gloutonne est de, à chaque étape de la résolution du problème, faire le choix qui semble le plus pertinent sur le moment, avec l'espoir qu'au bout du compte, cela nous conduira vers une solution optimale du problème à résoudre. Autrement dit, on fait des choix localement optimaux dans l'espoir que ces choix mèneront à une solution globalement optimale (le "localement" signifie ici "à chaque étape de la résolution du problème"). Appliquons une méthode gloutonne à la résolution du problème du sac à dos : Sachant que l'on cherche à maximiser le gain, commençons par établir un tableau nous donnant la "valeur massique" de chaque objet (pour chaque objet on divise sa valeur par sa masse) : Objet A B C D Valeur massique 54€/kg 33€/kg 38€/kg 30€/kg On classe ensuite les objets par ordre décroissant de valeur massique : A > C > B > D Enfin, on remplit le sac en prenant les objets dans l'ordre et en s'arrêtant dès que la masse limite est atteinte. C'est ici que ce fait "le choix glouton", à chaque étape, on prend l'objet ayant le rapport "valeur-masse" le plus intéressant au vu des objectifs : - 1ere étape : A (13 kg) - 2e étape : C (13 + 8 = 21 kg) - 3e étape : B (13 + 8 + 12 = 33 kg) => impossible, on dépasse les 30 Kg. Le sac est donc composé de 2 objets : A et C pour un montant total de 1000 € et une masse totale de 21 kg. Cette méthode gloutonne peut être "automatisée", il est donc possible d'écrire un algorithme glouton (un algorithme qui est basé sur une méthode gloutonne) afin de trouver une solution au problème du sac à dos avec n'importe quelles valeurs (nombre d'objets, masse des objets, valeur des objets, masse maximum). La solution trouvée ci-dessus est-elle optimale ? On constate rapidement que la réponse est non, car le couple A+B permet d'atteindre une valeur de 1100 € pour une masse de 25 Kg. Dans notre problème, la méthode gloutonne ne nous donne pas une solution optimale. Plus généralement , il est important de bien comprendre qu'un algorithme glouton ne donne pas forcément une solution optimale.
Declan/ChicagoTribune_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: faiq-wav2vec2-large-xlsr-indo-demo-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: id split: test args: id metrics: - name: Wer type: wer value: 0.4313296733972271 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # faiq-wav2vec2-large-xlsr-indo-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4079 - Wer: 0.4313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0752 | 2.92 | 400 | 2.7911 | 1.0 | | 1.2625 | 5.84 | 800 | 0.4611 | 0.6152 | | 0.3806 | 8.76 | 1200 | 0.4284 | 0.5476 | | 0.2653 | 11.68 | 1600 | 0.4074 | 0.4935 | | 0.2134 | 14.6 | 2000 | 0.3846 | 0.4788 | | 0.1701 | 17.52 | 2400 | 0.4175 | 0.4640 | | 0.1544 | 20.44 | 2800 | 0.4101 | 0.4471 | | 0.1303 | 23.36 | 3200 | 0.4147 | 0.4457 | | 0.1202 | 26.28 | 3600 | 0.4050 | 0.4344 | | 0.1082 | 29.2 | 4000 | 0.4079 | 0.4313 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.6.1 - Tokenizers 0.13.3
Declan/FoxNews_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: cc-by-4.0 language: - sw --- BERT medium (cased) model trained on a subset of 125M tokens of cc100-Swahili for our work [Scaling Laws for BERT in Low-Resource Settings]() at ACL2023 Findings. The model has 51M parameters (8L), and a vocab size of 50K. It was trained for 500K steps with a sequence length of 512 tokens. Authors ----------- Gorka Urbizu [1], Iñaki San Vicente [1], Xabier Saralegi [1], Rodrigo Agerri [2] and Aitor Soroa [2] Affiliation of the authors: [1] Orai NLP Technologies [2] HiTZ Center - Ixa, University of the Basque Country UPV/EHU Licensing ------------- The model is licensed under the Creative Commons Attribution 4.0. International License (CC BY 4.0). To view a copy of this license, visit [http://creativecommons.org/licenses/by/4.0/](https://creativecommons.org/licenses/by/4.0/deed.eu). Acknowledgements ------------------- If you use this model please cite the following paper: - G. Urbizu, I. San Vicente, X. Saralegi, R. Agerri, A. Soroa. Scaling Laws for BERT in Low-Resource Settings. Findings of the Association for Computational Linguistics: ACL 2023. July, 2023. Toronto, Canada Contact information ----------------------- Gorka Urbizu, Iñaki San Vicente: {g.urbizu,i.sanvicente}@orai.eus
Declan/FoxNews_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### FastBreamBooth Dreambooth model trained by samwell with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Declan/HuffPost_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - en license: apache-2.0 datasets: - glue metrics: - accuracy model-index: - name: gpt2-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Accuracy type: accuracy value: 0.77756 --- # gpt2-finetuned-cola <!-- Provide a quick summary of what the model is/does. --> This model is gpt2 fine-tuned on GLUE CoLA dataset. It acheives the following results on the validation set. Though MCC is used for CoLA dataset, accuracy is reported here - Accuracy: 0.77756 ## Model Details GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. However, it acheives very good results on Text Classification tasks. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-4 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: epsilon=1e-08 - num_epochs: 5.0 ### Training results |Epoch | Training Loss | Validation Loss | Training Accuracy | Validation Accuracy | |:----:|:-------------:|:-----------------:|:---------------:|:-------------------:| | 1 | 0.65824 | 0.55883 | 0.67957 | 0.70086 | | 2 | 0.51774 | 0.53402 | 0.74927 | 0.75264 | | 3 | 0.44502 | 0.50641 | 0.79172 | **0.77756** | | 4 | 0.38996 | 0.54241 | 0.82645 | 0.77469 | | 5 | 0.35218 | 0.55088 | 0.84516 | 0.77277 |
Declan/Politico_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1738 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 173, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Declan/Politico_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: afl-3.0 metrics: - accuracy - code_eval library_name: sklearn pipeline_tag: text-classification tags: - clim --- # bert-model-disaster-tweets-classification This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Natural-Language-Processing-with-Disaster-Tweets dataset. It achieves the following results on the evaluation set: - Accuracy: 0.82 - F1 Score: 0.82 ## Model description Load BertForSequenceClassification, the pretrained BERT model with a single linear classification layer on top, using an optimizer : incorporates weight decay, which is a regularization technique that helps prevent overfitting during training. ## Intended uses & limitations Use to classify if a tweet represents a disaster or not. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with epsilon = 1e-8. - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Epoch | Average training loss | Training epoch | Accuracy | F1 | |:-----:|:---------------------:|:---------------:|:--------:|:----:| | 1.0 | 0.47 | 0:00:49 | 0.82 | 0.82 | | 2.0 | 0.36 | 0:00:36 | 0.82 | 0.82 | | 3.0 | 0.29 | 0:00:51 | 0.82 | 0.82 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Declan/Reuters_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: - en license: apache-2.0 datasets: - glue metrics: - pearsonr model-index: - name: t5-base-finetuned-stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STS-B type: glue args: stsb metrics: - name: Pearson Correlation type: pearson_correlation value: 0.8937 --- # T5-base-finetuned-stsb <!-- Provide a quick summary of what the model is/does. --> This model is T5 fine-tuned on GLUE STS-B dataset. It acheives the following results on the validation set - Pearson Correlation Coefficient: 0.8937 ## Model Details T5 is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format. ## Training procedure ### Tokenization Since, T5 is a text-to-text model, the labels of the dataset are converted as follows: For each example, a sentence as been formed as **"stsb sentence1: " + stsb_sent1 + "sentence2: " + stsb_sent2** and fed to the tokenizer to get the **input_ids** and **attention_mask**. Unlike other **GLUE** tasks, STS-B is a regression task where the goal is to predict a similarity score between 1 and 5. I have used the same stratey as descibed in the T5 paper for fine-tuning. In the paper, it is mentioned as ``` We found that most of these scores were annotated in increments of 0.2, so we simply rounded any score to the nearest increment of 0.2 and converted the result to a literal string representation of the number (e.g. the floating-point value 2.57 would be mapped to the string “2.6”). At test time, if the model outputs a string corresponding to a number between 1 and 5, we convert it to a floating-point value; otherwise, we treat the model’s prediction as incorrect. This effectively recasts the STS-B regression problem as a 21-class classification problem. ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-4 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: epsilon=1e-08 - num_epochs: 3.0 ### Training results |Epoch | Training Loss | Validation Pearson Correlation Coefficient | |:----:|:-------------:|:-------------------:| | 1 | 0.8623 | 0.8200 | | 2 | 0.7782 | 0.8675 | | 3 | 0.7040 | **0.8937** |
Declan/Reuters_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-05-12T08:51:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.69 +/- 23.27 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Declan/WallStreetJournal_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="debin/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Declan/WallStreetJournal_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
DeepChem/ChemBERTa-10M-MLM
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
90
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.75 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="debin/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DeepChem/SmilesTokenizer_PubChem_1M
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
227
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt-work-filter-auto-complete results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-work-filter-auto-complete This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 22 | 0.6395 | | No log | 2.0 | 44 | 0.6235 | | No log | 3.0 | 66 | 0.6035 | | No log | 4.0 | 88 | 0.5845 | | No log | 5.0 | 110 | 0.5645 | | No log | 6.0 | 132 | 0.5442 | | No log | 7.0 | 154 | 0.5346 | | No log | 8.0 | 176 | 0.5167 | | No log | 9.0 | 198 | 0.5009 | | No log | 10.0 | 220 | 0.4893 | | No log | 11.0 | 242 | 0.4676 | | No log | 12.0 | 264 | 0.4498 | | No log | 13.0 | 286 | 0.4382 | | No log | 14.0 | 308 | 0.4276 | | No log | 15.0 | 330 | 0.4132 | | No log | 16.0 | 352 | 0.4075 | | No log | 17.0 | 374 | 0.3952 | | No log | 18.0 | 396 | 0.3822 | | No log | 19.0 | 418 | 0.3677 | | No log | 20.0 | 440 | 0.3563 | | No log | 21.0 | 462 | 0.3495 | | No log | 22.0 | 484 | 0.3455 | | 0.6366 | 23.0 | 506 | 0.3316 | | 0.6366 | 24.0 | 528 | 0.3126 | | 0.6366 | 25.0 | 550 | 0.3118 | | 0.6366 | 26.0 | 572 | 0.3021 | | 0.6366 | 27.0 | 594 | 0.2944 | | 0.6366 | 28.0 | 616 | 0.2878 | | 0.6366 | 29.0 | 638 | 0.2772 | | 0.6366 | 30.0 | 660 | 0.2701 | | 0.6366 | 31.0 | 682 | 0.2643 | | 0.6366 | 32.0 | 704 | 0.2576 | | 0.6366 | 33.0 | 726 | 0.2514 | | 0.6366 | 34.0 | 748 | 0.2467 | | 0.6366 | 35.0 | 770 | 0.2359 | | 0.6366 | 36.0 | 792 | 0.2326 | | 0.6366 | 37.0 | 814 | 0.2205 | | 0.6366 | 38.0 | 836 | 0.2182 | | 0.6366 | 39.0 | 858 | 0.2137 | | 0.6366 | 40.0 | 880 | 0.2086 | | 0.6366 | 41.0 | 902 | 0.2058 | | 0.6366 | 42.0 | 924 | 0.1979 | | 0.6366 | 43.0 | 946 | 0.1930 | | 0.6366 | 44.0 | 968 | 0.1922 | | 0.6366 | 45.0 | 990 | 0.1853 | | 0.4122 | 46.0 | 1012 | 0.1800 | | 0.4122 | 47.0 | 1034 | 0.1787 | | 0.4122 | 48.0 | 1056 | 0.1738 | | 0.4122 | 49.0 | 1078 | 0.1689 | | 0.4122 | 50.0 | 1100 | 0.1670 | | 0.4122 | 51.0 | 1122 | 0.1583 | | 0.4122 | 52.0 | 1144 | 0.1560 | | 0.4122 | 53.0 | 1166 | 0.1540 | | 0.4122 | 54.0 | 1188 | 0.1507 | | 0.4122 | 55.0 | 1210 | 0.1475 | | 0.4122 | 56.0 | 1232 | 0.1452 | | 0.4122 | 57.0 | 1254 | 0.1458 | | 0.4122 | 58.0 | 1276 | 0.1425 | | 0.4122 | 59.0 | 1298 | 0.1377 | | 0.4122 | 60.0 | 1320 | 0.1338 | | 0.4122 | 61.0 | 1342 | 0.1365 | | 0.4122 | 62.0 | 1364 | 0.1278 | | 0.4122 | 63.0 | 1386 | 0.1272 | | 0.4122 | 64.0 | 1408 | 0.1253 | | 0.4122 | 65.0 | 1430 | 0.1251 | | 0.4122 | 66.0 | 1452 | 0.1217 | | 0.4122 | 67.0 | 1474 | 0.1219 | | 0.4122 | 68.0 | 1496 | 0.1177 | | 0.3005 | 69.0 | 1518 | 0.1174 | | 0.3005 | 70.0 | 1540 | 0.1155 | | 0.3005 | 71.0 | 1562 | 0.1144 | | 0.3005 | 72.0 | 1584 | 0.1127 | | 0.3005 | 73.0 | 1606 | 0.1106 | | 0.3005 | 74.0 | 1628 | 0.1098 | | 0.3005 | 75.0 | 1650 | 0.1092 | | 0.3005 | 76.0 | 1672 | 0.1067 | | 0.3005 | 77.0 | 1694 | 0.1086 | | 0.3005 | 78.0 | 1716 | 0.1042 | | 0.3005 | 79.0 | 1738 | 0.1051 | | 0.3005 | 80.0 | 1760 | 0.1038 | | 0.3005 | 81.0 | 1782 | 0.1022 | | 0.3005 | 82.0 | 1804 | 0.1015 | | 0.3005 | 83.0 | 1826 | 0.1004 | | 0.3005 | 84.0 | 1848 | 0.1003 | | 0.3005 | 85.0 | 1870 | 0.0978 | | 0.3005 | 86.0 | 1892 | 0.0987 | | 0.3005 | 87.0 | 1914 | 0.0974 | | 0.3005 | 88.0 | 1936 | 0.0975 | | 0.3005 | 89.0 | 1958 | 0.0965 | | 0.3005 | 90.0 | 1980 | 0.0960 | | 0.2455 | 91.0 | 2002 | 0.0958 | | 0.2455 | 92.0 | 2024 | 0.0952 | | 0.2455 | 93.0 | 2046 | 0.0952 | | 0.2455 | 94.0 | 2068 | 0.0944 | | 0.2455 | 95.0 | 2090 | 0.0943 | | 0.2455 | 96.0 | 2112 | 0.0940 | | 0.2455 | 97.0 | 2134 | 0.0942 | | 0.2455 | 98.0 | 2156 | 0.0940 | | 0.2455 | 99.0 | 2178 | 0.0939 | | 0.2455 | 100.0 | 2200 | 0.0939 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
DeepPavlov/bert-base-bg-cs-pl-ru-cased
[ "pytorch", "jax", "bert", "feature-extraction", "bg", "cs", "pl", "ru", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,614
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1812.10 +/- 93.58 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DeepPavlov/marianmt-tatoeba-enru
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 275.95 +/- 15.30 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DeepPavlov/xlm-roberta-large-en-ru
[ "pytorch", "xlm-roberta", "feature-extraction", "en", "ru", "transformers" ]
feature-extraction
{ "architectures": [ "XLMRobertaModel" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
190
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="casellimarco/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DeltaHub/lora_t5-base_mrpc
[ "pytorch", "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="casellimarco/Taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Denver/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: whisper-large-v2_lora_int8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-large-v2_lora_int8 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1738 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7199 | 0.0 | 1 | 2.3895 | | 0.1977 | 0.29 | 1000 | 0.1973 | | 0.1777 | 0.58 | 2000 | 0.1846 | | 0.1693 | 0.88 | 3000 | 0.1780 | | 0.1579 | 1.17 | 4000 | 0.1753 | | 0.157 | 1.46 | 5000 | 0.1738 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3
DeskDown/MarianMixFT_en-fil
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit --- # Install uniem ``` pip install uniem ``` # Usage ```python from uniem import UniEmbedder embedder = UniEmbedder.from_pretrained('uniem/base-softmax-last-mean') embedder.encode(['Hello World!', '你好,世界!']) ```
DeskDown/MarianMixFT_en-ms
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: iamjoy/ppo-SnowballTargetTESTCOLAB 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
DevsIA/imagenes
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | 1e-06 | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | False | | is_legacy_optimizer | False | | learning_rate | 9.999999747378752e-06 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 |
DicoTiar/wisdomfiy
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.51 +/- 12.66 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Dilmk2/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.19 +/- 19.62 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DivyanshuSheth/T5-Seq2Seq-Final
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: other tags: - generated_from_trainer datasets: - squad model-index: - name: finetuned-opt-squad-dataset-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-opt-squad-dataset-2 This model is a fine-tuned version of [choohan/finetuned-opt-squad-dataset](https://huggingface.co/choohan/finetuned-opt-squad-dataset) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Dmitriiserg/Pxd
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Access to model Kamshat/finetuning_sentiment_model is restricted and you are not in the authorized list. Visit https://huggingface.co/Kamshat/finetuning_sentiment_model to ask for access.
DongHai/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: other inference: false --- ## Dromedary-65B-LoRA GPTQ These files are the result of merging the [delta weights of IBM's Dromedary 65B LoRA](https://huggingface.co/zhiqings/dromedary-65b-lora-delta-v0) with the original Llama 65B model. It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). ## Repositories available * [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/dromedary-65B-lora-GPTQ) * [4bit and 5bit GGML models for CPU inference in llama.cpp](https://huggingface.co/TheBloke/dromedary-65B-lora-GGML) * [float16 unquantised model for GPU](https://huggingface.co/TheBloke/dromedary-65B-lora-HF) ## VRAM I tested this model with 2 x 24GB 4090 GPUs, and it was able to return 1500 tokens before one card went OOM. So you may need to preload a few layers on to CPU RAM, or else run on a system with more than 48GB VRAM. Or, if you can limit responses to <1500 tokens (eg for single prompts rather than chats), you should be fine with 48GB VRAM. ## How to easily download and use this model in text-generation-webui Open the text-generation-webui UI as normal. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/dromedary-65B-lora-GPTQ`. 3. Click **Download**. 4. Wait until it says it's finished downloading. 5. Click the **Refresh** icon next to **Model** in the top left. 6. In the **Model drop-down**: choose the model you just downloaded, `dromedary-65B-lora-GPTQ`. 7. If you see an error in the bottom right, ignore it - it's temporary. 8. Fill out the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = None`, `model_type = Llama` 9. Click **Save settings for this model** in the top right. 10. Click **Reload the Model** in the top right. 11. Once it says it's loaded, click the **Text Generation tab** and enter a prompt! ## Provided files **dromedary-65B-GPTQ-4bit.safetensors** You will need ~40GB VRAM to use this model, either on one GPU or multiple. This will work with all versions of GPTQ-for-LLaMa. It has maximum compatibility. It was created with `--act-order` to increase quantisation quality, but without groupsize so as to minimise VRAM requirements. * `dromedary-65B-GPTQ-4bit.safetensors` * Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches * Works with text-generation-webui one-click-installers * Parameters: Groupsize = None. act-order. * Command used to create the GPTQ: ``` python llama.py /workspace/drom-65b/HF c4 --wbits 4 --true-sequential --act-order --save_safetensors /workspace/drom-gptq/dromedary-65B-GPTQ-4bit.safetensors ``` # Original Dromedary Model Card See https://github.com/IBM/Dromedary#model-weights for instructions. ## Model details <div align="center"> <img src="https://raw.githubusercontent.com/IBM/Dromedary/main/assets/images/dromedary_logo.svg" alt="Dromedary Logo"/> </div> **Model type:** Dromedary is an open-source self-aligned language model trained with minimal human supervision. The base language model is LLaMA-65b, based on the transformer architecture. **Model date:** Dromedary was trained between April 2023 and May 2023, but its knowledge only goes up until Sept-2021. **Organizations developing the model:** The Dromedary team as a joint effort between CMU and IBM. **Paper or resources for more information:** https://mitibmdemos.draco.res.ibm.com/dromedary **License:** LLaMA's Non-commercial bespoke license **Where to send questions or comments about the model:** https://github.com/IBM/Dromedary/issues ## Intended use **Primary intended uses:** The primary use of Dromedary is research on the alignment of large language models. **Primary intended users:** The primary intended users of the model are researchers in artificial intelligence. ## Delta weights We use the following configuration for the LoRA weights: ``` --lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \ --lora_r=16 \ ``` ## Training dataset Fewer than 300 lines of human annotations (including < 200 seed prompts, 16 generic principles, and 5 exemplars for in-context learning), ## Evaluation dataset We evaluate Dromedary on TruthfulQA and HHH Eval, as well as Vicuna benchmark questions.
DongHyoungLee/distilbert-base-uncased-finetuned-cola
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2818 - Accuracy: 0.9097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4628 | 0.25 | 300 | 1.2753 | 0.4857 | | 0.3162 | 1.25 | 600 | 0.7058 | 0.7286 | | 0.0241 | 2.25 | 900 | 0.5010 | 0.8 | | 0.3227 | 3.25 | 1200 | 0.2688 | 0.9143 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Dongjae/mrc2reader
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "XLMRobertaForQuestionAnswering" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- pipeline_tag: conversational --- ggml version (post-PR #1405) As a base model used https://huggingface.co/eachadea/vicuna-13b-1.1 Finetuned on Teknium's GPTeacher dataset, unreleased Roleplay v2 dataset, GPT-4-LLM dataset, and Nous Research Instruct Dataset Approx 180k instructions, all from GPT-4, all cleaned of any OpenAI censorship/"As an AI Language Model" etc. Base model still has OpenAI censorship. Soon, a new version will be released with cleaned vicuna from https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltere Trained on 8 A100-80GB GPUs for 5 epochs following Alpaca deepspeed training code. Nous Research Instruct Dataset will be released soon. GPTeacher, Roleplay v2 by https://huggingface.co/teknium Wizard LM by https://github.com/nlpxucan Nous Research Instruct Dataset by https://huggingface.co/karan4d and https://huggingface.co/huemin Compute provided by our project sponsor https://redmond.ai/
Dongmin/testmodel
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
11
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8247422680412371 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5465 - Accuracy: 0.8247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 1.2679 | 0.2990 | | 1.3643 | 2.0 | 14 | 1.1288 | 0.5258 | | 1.0267 | 3.0 | 21 | 0.6534 | 0.7010 | | 1.0267 | 4.0 | 28 | 0.6587 | 0.7629 | | 0.6635 | 5.0 | 35 | 0.7360 | 0.6701 | | 0.5462 | 6.0 | 42 | 0.6479 | 0.7320 | | 0.5462 | 7.0 | 49 | 0.5546 | 0.7835 | | 0.4471 | 8.0 | 56 | 0.5583 | 0.7835 | | 0.3094 | 9.0 | 63 | 0.5257 | 0.8247 | | 0.242 | 10.0 | 70 | 0.5465 | 0.8247 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Doogie/Waynehills-KE-T5-doogie
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: other tags: - generated_from_trainer datasets: - squad model-index: - name: finetuned-opt-squad-dataset-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-opt-squad-dataset-3 This model is a fine-tuned version of [choohan/finetuned-opt-squad-dataset-2](https://huggingface.co/choohan/finetuned-opt-squad-dataset-2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Waynehillsdev/wav2vec2-base-timit-demo-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: creativeml-openrail-m language: - en pipeline_tag: text-to-image tags: - lora - stable diffusion --- Trained, and merged Loras. You'll be able to tell for the MOST part what they are by file name, look it's 11pm we're exhausted.. We'll have updates on what's in here soon! Join our Reddit: https://www.reddit.com/r/earthndusk/ If you got requests, or concerns, We're still looking for beta testers: JOIN THE DISCORD AND DEMAND THINGS OF US: https://discord.gg/Da7s8d3KJ7 Listen to the music that we've made that goes with our art: https://open.spotify.com/playlist/00R8x00YktB4u541imdSSf?si=b60d209385a74b38 We stream a lot of our testing on twitch: https://www.twitch.tv/duskfallcrew any chance you can spare a coffee or three? https://ko-fi.com/DUSKFALLcrew
Doxophobia/DialoGPT-medium-celeste
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- license: mit tags: - generated_from_trainer model-index: - name: gptneo-txt2ARXMLv1.3.0_6000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gptneo-txt2ARXMLv1.3.0_6000 This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7195 | 1.0 | 86 | 0.7983 | | 0.5979 | 2.0 | 172 | 0.5259 | | 0.2954 | 3.0 | 258 | 0.3660 | | 0.3001 | 3.99 | 344 | 0.2402 | | 0.1111 | 4.99 | 430 | 0.1548 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
DoyyingFace/bert-asian-hate-tweets-asian-unclean-freeze-12
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-atcosim2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-atcosim2 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0524 - Wer: 0.0304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5702 | 0.2 | 50 | 0.2557 | 0.1007 | | 0.1181 | 0.39 | 100 | 0.1144 | 0.0775 | | 0.1084 | 0.59 | 150 | 0.0747 | 0.0482 | | 0.0737 | 0.79 | 200 | 0.0616 | 0.0369 | | 0.064 | 0.98 | 250 | 0.0556 | 0.0440 | | 0.0313 | 1.18 | 300 | 0.0524 | 0.0304 | ### Framework versions - Transformers 4.29.0 - Pytorch 2.0.0+cu117 - Datasets 2.12.0 - Tokenizers 0.11.0
DoyyingFace/bert-asian-hate-tweets-asian-unclean-warmup-25
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9295 - name: F1 type: f1 value: 0.9293576247301535 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2169 - Accuracy: 0.9295 - F1: 0.9294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8632 | 1.0 | 250 | 0.3270 | 0.904 | 0.9008 | | 0.253 | 2.0 | 500 | 0.2169 | 0.9295 | 0.9294 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
DoyyingFace/bert-asian-hate-tweets-asian-unclean-warmup-50
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
Access to model dwmit/transliterate is restricted and you are not in the authorized list. Visit https://huggingface.co/dwmit/transliterate to ask for access.
albert-base-v1
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
38,156
2023-05-12T11:45:20Z
--- tags: - generated_from_trainer model-index: - name: viettel-videberta-finetune-viquad-model2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # viettel-videberta-finetune-viquad-model2 This model is a fine-tuned version of [Fsoft-AIC/videberta-base](https://huggingface.co/Fsoft-AIC/videberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
bert-base-cased-finetuned-mrpc
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11,644
2023-05-12T11:51:57Z
TrustVare OST Duplicate Remover is a software application that can be used to find and remove duplicate items from an offline Outlook data file (.ost). OST files are created by Microsoft Outlook when it is configured to work in offline mode. They store email messages, contacts, calendars, and other data that are not currently synchronized with the Microsoft Exchange server. Removing duplicate items from an OST file can improve the performance of Microsoft Outlook by reducing the amount of data that the application has to process. Removing duplicate items from an OST file can improve the performance of Microsoft Outlook by reducing the amount of data that the application has to process.The software is easy to use and has a number of features that make it a valuable tool for Microsoft Outlook users. Read More:- https://www.trustvare.com/duplicate-remover/ost/
bert-base-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,621,271
2023-05-12T11:52:12Z
--- tags: - generated_from_trainer model-index: - name: distilbert-finetuning-hate-speech-score-all-samples-3splits-dropout005-epochs-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-finetuning-hate-speech-score-all-samples-3splits-dropout005-epochs-10 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3437 - Mse: 0.3437 - Rmse: 0.5862 - Mae: 0.2548 - R2: 0.9382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
bert-base-german-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "de", "transformers", "exbert", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
175,983
2023-05-12T11:52:55Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-summarize-sum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-summarize-sum This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3984 - Rouge1: 0.5736 - Rouge2: 0.3783 - Rougel: 0.4855 - Rougelsum: 0.4844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 90 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 13.8551 | 0.16 | 100 | 5.4672 | 0.2389 | 0.0546 | 0.2119 | 0.2110 | | 1.0762 | 0.33 | 200 | 0.5982 | 0.3774 | 0.2199 | 0.3493 | 0.3470 | | 0.8077 | 0.49 | 300 | 0.4999 | 0.4929 | 0.3195 | 0.4349 | 0.4312 | | 0.7772 | 0.65 | 400 | 0.4652 | 0.4715 | 0.3296 | 0.4431 | 0.4409 | | 0.7771 | 0.82 | 500 | 0.4402 | 0.4881 | 0.3356 | 0.4433 | 0.4412 | | 0.713 | 0.98 | 600 | 0.4500 | 0.4990 | 0.3291 | 0.4550 | 0.4525 | | 0.65 | 1.15 | 700 | 0.4335 | 0.5522 | 0.3633 | 0.4930 | 0.4909 | | 0.7035 | 1.31 | 800 | 0.4278 | 0.5227 | 0.3470 | 0.4781 | 0.4772 | | 0.6818 | 1.47 | 900 | 0.4202 | 0.5325 | 0.3585 | 0.4759 | 0.4744 | | 0.6643 | 1.64 | 1000 | 0.4113 | 0.5326 | 0.3486 | 0.4678 | 0.4641 | | 0.6007 | 1.8 | 1100 | 0.4122 | 0.5152 | 0.3260 | 0.4572 | 0.4547 | | 0.5866 | 1.96 | 1200 | 0.4158 | 0.5538 | 0.3680 | 0.4910 | 0.4903 | | 0.5563 | 2.13 | 1300 | 0.4051 | 0.5433 | 0.3371 | 0.4685 | 0.4672 | | 0.5727 | 2.29 | 1400 | 0.4089 | 0.5447 | 0.3619 | 0.4711 | 0.4695 | | 0.5859 | 2.45 | 1500 | 0.4033 | 0.5464 | 0.3411 | 0.4688 | 0.4662 | | 0.5783 | 2.62 | 1600 | 0.3997 | 0.5667 | 0.3595 | 0.4825 | 0.4787 | | 0.5673 | 2.78 | 1700 | 0.3992 | 0.5759 | 0.3882 | 0.4911 | 0.4891 | | 0.57 | 2.95 | 1800 | 0.3984 | 0.5736 | 0.3783 | 0.4855 | 0.4844 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
bert-base-german-dbmdz-cased
[ "pytorch", "jax", "bert", "fill-mask", "de", "transformers", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,814
2023-05-12T11:54:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cifar10 model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the cifar10 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
bert-base-uncased
[ "pytorch", "tf", "jax", "rust", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
59,663,489
2023-05-12T12:00:08Z
--- license: wtfpl language: - en pipeline_tag: text-to-image --- # Prompt2MedImage - Diffusion for Medical Images Prompt2MedImage is a latent text to image diffusion model that has been fine-tuned on medical images from ROCO dataset. The weights here are itended to be used with the 🧨Diffusers library. This model was trained using Amazon SageMaker and the Hugging Face Deep Learning container. ## Model Details - **Developed by:** Nihir Chadderwala - **Model type:** Diffusion based text to medical image generation model - **Language:** English - **License:** wtfpl - **Model Description:** This latent text to image diffusion model can be used to generate high quality medical images based on text prompts. It uses a fixed, pretrained text encoder ([CLIP ViT-L/14](https://arxiv.org/abs/2103.00020)) as suggested in the [Imagen paper](https://arxiv.org/abs/2205.11487). ## Examples 1. The patient had residual paralysis of the hand after poliomyelitis. It was necessary to stabilize the thumb with reference to the index finger. This was accomplished by placing a graft from the bone bank between the first and second metacarpals. The roentgenogram shows the complete healing of the graft one year later. ![hand](examples/hand.png) 2. A 3-year-old child with visual difficulties. Axial FLAIR image show a supra-sellar lesion extending to the temporal lobes along the optic tracts (arrows) with moderate mass effect, compatible with optic glioma. FLAIR hyperintensity is also noted in the left mesencephalon from additional tumoral involvement ![3_tumor](examples/3_tumor.png) 3. Showing the subtrochanteric fracture in the porotic bone. ![protic bone](examples/porotic_bone.png) ## License This model is open access and available to all, with a Do What the F*ck You want to public license further specifying rights and usage. - You can't use the model to deliberately produce nor share illegal or harmful outputs or content. - The author claims no rights on the outputs you generate, you are free to use them and are accountable for their use. - You may re-distribute the weights and use the model commercially and/or as a service. ## Run using PyTorch ```bash pip install diffusers transformers ``` Running pipeline with default PNDM scheduler: ```python import torch from diffusers import StableDiffusionPipeline model_id = "Nihirc/Prompt2MedImage" device = "cuda" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to(device) prompt = "Showing the subtrochanteric fracture in the porotic bone." image = pipe(prompt).images[0] image.save("porotic_bone_fracture.png") ``` ## Citation ``` O. Pelka, S. Koitka, J. Rückert, F. Nensa, C.M. Friedrich, "Radiology Objects in COntext (ROCO): A Multimodal Image Dataset". MICCAI Workshop on Large-scale Annotation of Biomedical Data and Expert Label Synthesis (LABELS) 2018, September 16, 2018, Granada, Spain. Lecture Notes on Computer Science (LNCS), vol. 11043, pp. 180-189, Springer Cham, 2018. doi: 10.1007/978-3-030-01364-6_20 ```
bert-large-cased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "rust", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,214
2023-05-12T12:01:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.58 +/- 15.29 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
xlm-mlm-enro-1024
[ "pytorch", "tf", "xlm", "fill-mask", "multilingual", "en", "ro", "arxiv:1901.07291", "arxiv:1910.09700", "transformers", "license:cc-by-nc-4.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "XLMWithLMHeadModel" ], "model_type": "xlm", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
38
2023-05-12T13:16:24Z
--- license: creativeml-openrail-m --- https://civitai.com/models/63154/kongou-azur-lane
xlm-roberta-large-finetuned-conll02-spanish
[ "pytorch", "rust", "xlm-roberta", "fill-mask", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:1911.02116", "arxiv:1910.09700", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
444
2023-05-12T13:18:28Z
--- license: creativeml-openrail-m --- https://civitai.com/models/63637/ichinose-asuna-blue-archive-or-character-lora-1630
202015004/wav2vec2-base-timit-demo-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2023-05-12T14:21:13Z
--- license: creativeml-openrail-m tags: - stablediffusionapi.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # perfect deli appfactory API Inference ![generated from stablediffusionapi.com](https://pub-8b49af329fae499aa563997f5d4068a4.r2.dev/generations/14696936251683901270.png) ## Get API Key Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed. Replace Key in below code, change **model_id** to "perfect-deli-appfact" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs) Model link: [View model](https://stablediffusionapi.com/models/perfect-deli-appfact) Credits: [View credits](https://civitai.com/?query=perfect%20deli%20appfactory) View all models: [View Models](https://stablediffusionapi.com/models) import requests import json url = "https://stablediffusionapi.com/api/v3/dreambooth" payload = json.dumps({ "key": "", "model_id": "perfect-deli-appfact", "prompt": "actual 8K portrait photo of gareth person, portrait, happy colors, bright eyes, clear eyes, warm smile, smooth soft skin, big dreamy eyes, beautiful intricate colored hair, symmetrical, anime wide eyes, soft lighting, detailed face, by makoto shinkai, stanley artgerm lau, wlop, rossdraws, concept art, digital painting, looking into camera", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
AccurateIsaiah/DialoGPT-small-jefftastic
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
2023-05-12T17:07:26Z
--- license: mit tags: - generated_from_trainer model-index: - name: mdeberta_Quran_qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta_Quran_qa This model is a fine-tuned version of [timpal0l/mdeberta-v3-base-squad2](https://huggingface.co/timpal0l/mdeberta-v3-base-squad2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 89 | 2.2395 | | No log | 2.0 | 178 | 2.3282 | | No log | 3.0 | 267 | 2.4226 | | No log | 4.0 | 356 | 2.6551 | | No log | 5.0 | 445 | 2.9332 | | 1.0317 | 6.0 | 534 | 3.2124 | | 1.0317 | 7.0 | 623 | 3.2915 | | 1.0317 | 8.0 | 712 | 3.5401 | | 1.0317 | 9.0 | 801 | 3.6132 | | 1.0317 | 10.0 | 890 | 3.6248 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
AdapterHub/bert-base-uncased-pf-newsqa
[ "bert", "en", "dataset:newsqa", "arxiv:2104.08247", "adapter-transformers", "question-answering" ]
question-answering
{ "architectures": null, "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-05-12T18:30:15Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - jainr3/sd-pixelart-model-lora These are LoRA adaption weights for stabilityai/stable-diffusion-2-1. The weights were fine-tuned on the sunilSabnis/pixelart dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
AdapterHub/bert-base-uncased-pf-stsb
[ "bert", "en", "arxiv:2104.08247", "adapter-transformers", "text-classification", "adapterhub:sts/sts-b" ]
text-classification
{ "architectures": null, "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 46.786638307530986 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 1.1716 - Bleu: 46.7866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
AdapterHub/bert-base-uncased-pf-winogrande
[ "bert", "en", "dataset:winogrande", "arxiv:2104.08247", "adapter-transformers", "adapterhub:comsense/winogrande" ]
null
{ "architectures": null, "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
# How to use ```python from transformers import pipeline summarizer = pipeline("summarization", model="sana-ngu/t5-large-finetuned-summarize-scientific-articles") article = "The novel Coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus—2 (SARS-CoV-2), in Africa is characterised by a more substantial proportion of asymptomatic (or mildly symptomatic) individuals thought to be playing a role in the spread of the infection. The exact proportion and degree of infectiousness of asymptomatic individuals remains unclear. Studies however indicate that their management is crucial for control of SARS-CoV-2 transmission. We developed a simplified deterministic susceptible-exposed-infectious-removed (SEIR) mathematical model to assess the effect of active isolation of SARS-CoV-2 infected but asymptomatic individuals through blanket testing for control of the outbreak in Lusaka Province of Zambia. Here we modelled two scenarios; (1) assuming asymptomatic individuals comprised 70% of all COVID-19 cases and (2) asymptomatic individuals comprised only 50% of the cases. For contrast, the model was assessed first under the assumption that asymptomatic individuals are equally as infectious as symptomatic individuals and then secondly, and more likely, assuming asymptomatic individuals are only half as infectious as symptomatic individuals. For the model assuming 70% asymptomatic cases, a minimum sustained daily blanket testing rate of ≥ 7911 tests/100000 population was sufficient to control the outbreak if asymptomatic individuals are only half as infectious while if equal infectiousness was assumed then a testing rate of ≥ 10028 tests/ 100000 population would be required. For 50% asymptomatic, minimum blanket testing rates of ≥ 4540 tests/ 100000 population was sufficient to control the outbreak at both assumed levels of infectiousness for asymptomatic individuals relative to symptomatic individuals. Discussion and conclusion Our model predicts that active isolation of COVID-19 cases, including asymptomatic individuals, through blanket testing can be used as a possible measure for the control of the SARS-Cov-2 transmission in Lusaka, Zambia, but it would come at a high cost." summarizer(conversation) ```
Ahmed59/Demo-Team-5-SIAD
[ "tf", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
AhmedBou/TuniBert
[ "pytorch", "bert", "text-classification", "ar", "transformers", "sentiment analysis", "classification", "arabic dialect", "tunisian dialect", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
44
null
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
AhmedSSoliman/MarianCG-CoNaLa
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible", "has_space" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
null
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - sroie metrics: - precision - recall - f1 - accuracy model-index: - name: Bol1.0 results: - task: name: Token Classification type: token-classification dataset: name: sroie type: sroie config: discharge split: test args: discharge metrics: - name: Precision type: precision value: 0.5769230769230769 - name: Recall type: recall value: 0.5 - name: F1 type: f1 value: 0.5357142857142857 - name: Accuracy type: accuracy value: 0.9026548672566371 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bol1.0 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the sroie dataset. It achieves the following results on the evaluation set: - Loss: 0.5251 - Precision: 0.5769 - Recall: 0.5 - F1: 0.5357 - Accuracy: 0.9027 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.61 | 100 | 2.0701 | 0.0476 | 0.0333 | 0.0392 | 0.3717 | | No log | 3.23 | 200 | 1.5988 | 0.1852 | 0.1667 | 0.1754 | 0.6726 | | No log | 4.84 | 300 | 1.2027 | 0.3846 | 0.3333 | 0.3571 | 0.6726 | | No log | 6.45 | 400 | 0.9370 | 0.45 | 0.3 | 0.3600 | 0.8142 | | 0.7987 | 8.06 | 500 | 0.7833 | 0.3333 | 0.2667 | 0.2963 | 0.8230 | | 0.7987 | 9.68 | 600 | 0.6820 | 0.4348 | 0.3333 | 0.3774 | 0.8319 | | 0.7987 | 11.29 | 700 | 0.6220 | 0.4074 | 0.3667 | 0.3860 | 0.8319 | | 0.7987 | 12.9 | 800 | 0.5621 | 0.4815 | 0.4333 | 0.4561 | 0.8496 | | 0.7987 | 14.52 | 900 | 0.5351 | 0.5 | 0.4667 | 0.4828 | 0.8938 | | 0.2748 | 16.13 | 1000 | 0.5251 | 0.5769 | 0.5 | 0.5357 | 0.9027 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.2.2 - Tokenizers 0.13.3
AiPorter/DialoGPT-small-Back_to_the_future
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
AigizK/wav2vec2-large-xls-r-300m-bashkir-cv7_no_lm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- # Model Card for LXRAB ## Model Description - **Developed by:** BADMONK - **Model type:** Dreambooth Model + Extracted LoRA - **Language(s) (NLP):** EN - **License:** Creativeml-Openrail-M - **Parent Model:** ChilloutMix # How to Get Started with the Model Use the code below to get started with the model. ### LXRAB ###
AigizK/wav2vec2-large-xls-r-300m-bashkir-cv7_opt
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ba", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index", "has_space" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
64
2023-05-12T22:22:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.08 +/- 20.49 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AimB/mT5-en-kr-aihub-netflix
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7813 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 5000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 0.0001 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 258, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
AimB/mT5-en-kr-natural
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
78
null
--- language: - pt --- Esta é a primeira versão Chat de uma inteligência artificial finetunada que fala em português do brasil, ela foi treinada em cima do llama 7b de decapoda, e foi treinada no LLaMA-LoRA Tuner de zetavg utilizando o dataset da cabrita lora e o alpaca cleaned e também utilizou datasets do baize Divirta-se!
Ajay191191/autonlp-Test-530014983
[ "pytorch", "bert", "text-classification", "en", "dataset:Ajay191191/autonlp-data-Test", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
34
null
--- license: other datasets: - c-s-ale/alpaca-gpt4-data pipeline_tag: text2text-generation --- ## GPT4-Alpaca-LoRA_MLP-65B GPTQ These files are the result of merging the [LoRA weights of chtan's gpt4-alpaca-lora_mlp-65B](https://huggingface.co/chtan/gpt4-alpaca-lora_mlp-65b) with the original Llama 65B model. ## Repositories available * [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/gpt4-alpaca-lora_mlp-65B-GPTQ) * [4bit and 5bit GGML models for CPU inference in llama.cpp](https://huggingface.co/TheBloke/gpt4-alpaca-lora_mlp-65B-GGML) * [float16 unquantised model for GPU inference and further conversions](https://huggingface.co/TheBloke/gpt4-alpaca-lora_mlp-65B-HF) # Original model card This repo provides the training checkpoint of LLaMA on the alpaca_data_gpt4 dataset via LoRA [MLP] on 8xA100(80G). He et al. 2022 gave an insight that FFN can better utilize modification at larger capacities. The codes is provided by [tloen/alpaca-lora: Instruct-tune LLaMA on consumer hardware (github.com)](https://github.com/tloen/alpaca-lora). We modify the running scripts to ```bash torchrun --nproc_per_node=8 finetune.py \ --base_model '/cache1/chtan/large_models/llama-hf/llama-65b' \ --data_path './alpaca_data_gpt4.json' \ --output_dir './gpt4-alpaca-lora_mlp-65b' \ --batch_size 128 \ --micro_batch_size 2 \ --num_epochs 10 \ --learning_rate 1e-4 \ --cutoff_len 512 \ --val_set_size 2000 \ --lora_r 16 \ --lora_alpha 16 \ --lora_dropout 0.05 \ --lora_target_modules '[gate_proj,down_proj,up_proj]' \ --train_on_inputs \ --group_by_length ``` ### Examples **Instruction**: Tell me about alpacas. **gpt4-alpaca-lora_mlp-65b**: Alpacas are small, domesticated mammals that are closely related to llamas. They are native to the Andes Mountains of South America, primarily in Peru, Bolivia, and Chile. These animals have been domesticated for thousands of years and were used by the Incas for their fleece, meat, and as pack animals. Alpacas are known for their soft and warm fleece, which comes in over 22 natural colors. Their fleece is highly valued and is used in the textile industry to make clothing and other products. Alpacas are also known for their friendly and gentle nature, making them popular pets and great additions to farms. These animals are social and live in herds, typically with one dominant male. They communicate through a series of hums, clucks, and other vocalizations. Alpacas are also known for their distinctive "humming" sound, which they make when they are content or curious. In terms of physical appearance, alpacas have a small, stocky build, with an average height of around 36 inches at the withers. They have large, expressive eyes, and their ears are perked forward. Alpacas are herbivores and primarily eat grasses and other vegetation. They are also known for their efficient digestive system, which allows them to thrive on a diet of low-quality forage. Overall, alpacas are unique and fascinating animals that have been an important part of Andean culture for centuries. They continue to be valued for their fleece, meat, and as pets, and their popularity continues to grow around the world. **Alpaca-LoRA**: Alpacas are members of the camelid family and are native to the Andes Mountains of South America. They are known for their soft, luxurious fleece, which is used to make clothing, blankets, and other items. Alpacas are herbivores and graze on grasses and other plants. They are social animals and live in herds of up to 20 individuals. **Stanford Alpaca**: Alpacas are small, fluffy animals related to camels and llamas. They are native to Peru and Bolivia, and were first domesticated around 5,000 years ago. They are kept mainly for their fine, soft fleece, which is used to make knitwear and other garments. Alpacas are herd animals and live in small family groups, led by an older male. They are highly social animals and can form strong bonds with their owners. **text-davinci-003**: Alpacas are a domesticated species of South American camelid, similar to llamas. They are native to the Andes Mountains in South America and are kept as livestock for their soft, luxurious wool. Alpacas are social animals and live in herds of up to 20 individuals. They are typically kept in small herds of two to five animals, and are relatively easy to care for. Alpacas are herbivores and feed on grass, hay, and other vegetation. They are also known for their gentle and friendly nature, making them popular as pets. --- **Instruction**: Write a Python program that prints the first 10 Fibonacci numbers. **gpt4-alpaca-lora_mlp-65b**: Here is a Python program that prints the first 10 Fibonacci numbers: ```python # initialize variables a = 0 b = 1 # loop to print the first 10 Fibonacci numbers for i in range(10): print(a, end=" ") a, b = b, a + b ``` In this program, we initialize two variables `a` and `b` with the first two Fibonacci numbers, which are 0 and 1. Then, we use a for loop to iterate 10 times. In each iteration, we print the current value of `a` and update the values of `a` and `b` using the formula `a = b` and `b = a + b`. This formula is the definition of the Fibonacci sequence. **Alpaca-LoRA**: ```python def fibonacci(n): if n == 0: return 0 elif n == 1: return 1 else: return fibonacci(n-1) + fibonacci(n-2) print(fibonacci(10)) ``` **Stanford Alpaca**: ```python numbers = [0, 1] for i in range(2, 11): numbers.append(numbers[i-2] + numbers[i-1]) print(numbers) # Output: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34] ``` **text-davinci-003**: ```python # Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence, and characterized by the fact that every number after the first two is the sum of the two preceding ones. # Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... # Program: # Initialize the first two numbers of the Fibonacci sequence a = 0 b = 1 # Print the first 10 numbers of the Fibonacci sequence print(a) print(b) for i in range(2,10): c = a + b a = b b = c print(c) ``` --- > [1] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, Graham Neubig: Towards a Unified View of Parameter-Efficient Transfer Learning. ICLR 2022
Ajaykannan6/autonlp-manthan-16122692
[ "pytorch", "bart", "text2text-generation", "unk", "dataset:Ajaykannan6/autonlp-data-manthan", "transformers", "autonlp", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "BartForConditionalGeneration" ], "model_type": "bart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 142, "min_length": 56, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: other datasets: - c-s-ale/alpaca-gpt4-data pipeline_tag: text2text-generation --- ## GPT4-Alpaca-LoRA_MLP-65B GPTQ These files are the result of merging the [LoRA weights of chtan's gpt4-alpaca-lora_mlp-65B](https://huggingface.co/chtan/gpt4-alpaca-lora_mlp-65b) with the original Llama 65B model. It was then quantised to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). ## Repositories available * [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/gpt4-alpaca-lora_mlp-65B-GPTQ) * [4bit and 5bit GGML models for CPU inference in llama.cpp](https://huggingface.co/TheBloke/gpt4-alpaca-lora_mlp-65B-GGML) * [float16 unquantised model for GPU inference and further conversions](https://huggingface.co/TheBloke/gpt4-alpaca-lora_mlp-65B-HF) ## VRAM I tested this model with 2 x 24GB 4090 GPUs, and it was able to return 1500 tokens before one card went OOM. So you may need to preload a few layers on to CPU RAM, or else run on a system with more than 48GB VRAM. Or, if you can limit responses to <1500 tokens (eg for single prompts rather than chats), you should be fine with 48GB VRAM. ## How to easily download and use this model in text-generation-webui Open the text-generation-webui UI as normal. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/gpt4-alpaca-lora_mlp-65B-GPTQ`. 3. Click **Download**. 4. Wait until it says it's finished downloading. 5. Click the **Refresh** icon next to **Model** in the top left. 6. In the **Model drop-down**: choose the model you just downloaded, `gpt4-alpaca-lora_mlp-65B-GPTQ`. 7. If you see an error in the bottom right, ignore it - it's temporary. 8. Fill out the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = None`, `model_type = Llama` 9. Click **Save settings for this model** in the top right. 10. Click **Reload the Model** in the top right. 11. Once it says it's loaded, click the **Text Generation tab** and enter a prompt! ## Provided files **`gpt4-alpaca-lora_mlp-65B-GPTQ-4bit.safetensors`** You will need at least 48GB VRAM to use this model, either on one GPU or multiple. This will work with all versions of GPTQ-for-LLaMa. It has maximum compatibility. It was created with `--act-order` to increase quantisation quality, but without group_size so as to reduce VRAM requirements. * `gpt4-alpaca-lora_mlp-65B-GPTQ-4bit.safetensors` * Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches * Works with text-generation-webui one-click-installers * Parameters: Groupsize = None. act-order. * Command used to create the GPTQ: ``` python llama.py gpt4-alpaca-lora_mlp-65B/HF/ c4 --wbits 4 --true-sequential --act-order --save_safetensors gpt4-alpaca-lora_mlp-65B/gptq/gpt4-alpaca-lora_mlp-65B-GPTQ-4bit.safetensors ``` # Original model card This repo provides the training checkpoint of LLaMA on the alpaca_data_gpt4 dataset via LoRA [MLP] on 8xA100(80G). He et al. 2022 gave an insight that FFN can better utilize modification at larger capacities. The codes is provided by [tloen/alpaca-lora: Instruct-tune LLaMA on consumer hardware (github.com)](https://github.com/tloen/alpaca-lora). We modify the running scripts to ```bash torchrun --nproc_per_node=8 finetune.py \ --base_model '/cache1/chtan/large_models/llama-hf/llama-65b' \ --data_path './alpaca_data_gpt4.json' \ --output_dir './gpt4-alpaca-lora_mlp-65b' \ --batch_size 128 \ --micro_batch_size 2 \ --num_epochs 10 \ --learning_rate 1e-4 \ --cutoff_len 512 \ --val_set_size 2000 \ --lora_r 16 \ --lora_alpha 16 \ --lora_dropout 0.05 \ --lora_target_modules '[gate_proj,down_proj,up_proj]' \ --train_on_inputs \ --group_by_length ``` ### Examples **Instruction**: Tell me about alpacas. **gpt4-alpaca-lora_mlp-65b**: Alpacas are small, domesticated mammals that are closely related to llamas. They are native to the Andes Mountains of South America, primarily in Peru, Bolivia, and Chile. These animals have been domesticated for thousands of years and were used by the Incas for their fleece, meat, and as pack animals. Alpacas are known for their soft and warm fleece, which comes in over 22 natural colors. Their fleece is highly valued and is used in the textile industry to make clothing and other products. Alpacas are also known for their friendly and gentle nature, making them popular pets and great additions to farms. These animals are social and live in herds, typically with one dominant male. They communicate through a series of hums, clucks, and other vocalizations. Alpacas are also known for their distinctive "humming" sound, which they make when they are content or curious. In terms of physical appearance, alpacas have a small, stocky build, with an average height of around 36 inches at the withers. They have large, expressive eyes, and their ears are perked forward. Alpacas are herbivores and primarily eat grasses and other vegetation. They are also known for their efficient digestive system, which allows them to thrive on a diet of low-quality forage. Overall, alpacas are unique and fascinating animals that have been an important part of Andean culture for centuries. They continue to be valued for their fleece, meat, and as pets, and their popularity continues to grow around the world. **Alpaca-LoRA**: Alpacas are members of the camelid family and are native to the Andes Mountains of South America. They are known for their soft, luxurious fleece, which is used to make clothing, blankets, and other items. Alpacas are herbivores and graze on grasses and other plants. They are social animals and live in herds of up to 20 individuals. **Stanford Alpaca**: Alpacas are small, fluffy animals related to camels and llamas. They are native to Peru and Bolivia, and were first domesticated around 5,000 years ago. They are kept mainly for their fine, soft fleece, which is used to make knitwear and other garments. Alpacas are herd animals and live in small family groups, led by an older male. They are highly social animals and can form strong bonds with their owners. **text-davinci-003**: Alpacas are a domesticated species of South American camelid, similar to llamas. They are native to the Andes Mountains in South America and are kept as livestock for their soft, luxurious wool. Alpacas are social animals and live in herds of up to 20 individuals. They are typically kept in small herds of two to five animals, and are relatively easy to care for. Alpacas are herbivores and feed on grass, hay, and other vegetation. They are also known for their gentle and friendly nature, making them popular as pets. --- **Instruction**: Write a Python program that prints the first 10 Fibonacci numbers. **gpt4-alpaca-lora_mlp-65b**: Here is a Python program that prints the first 10 Fibonacci numbers: ```python # initialize variables a = 0 b = 1 # loop to print the first 10 Fibonacci numbers for i in range(10): print(a, end=" ") a, b = b, a + b ``` In this program, we initialize two variables `a` and `b` with the first two Fibonacci numbers, which are 0 and 1. Then, we use a for loop to iterate 10 times. In each iteration, we print the current value of `a` and update the values of `a` and `b` using the formula `a = b` and `b = a + b`. This formula is the definition of the Fibonacci sequence. **Alpaca-LoRA**: ```python def fibonacci(n): if n == 0: return 0 elif n == 1: return 1 else: return fibonacci(n-1) + fibonacci(n-2) print(fibonacci(10)) ``` **Stanford Alpaca**: ```python numbers = [0, 1] for i in range(2, 11): numbers.append(numbers[i-2] + numbers[i-1]) print(numbers) # Output: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34] ``` **text-davinci-003**: ```python # Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence, and characterized by the fact that every number after the first two is the sum of the two preceding ones. # Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... # Program: # Initialize the first two numbers of the Fibonacci sequence a = 0 b = 1 # Print the first 10 numbers of the Fibonacci sequence print(a) print(b) for i in range(2,10): c = a + b a = b b = c print(c) ``` --- > [1] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, Graham Neubig: Towards a Unified View of Parameter-Efficient Transfer Learning. ICLR 2022
Akash7897/bert-base-cased-wikitext2
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
A custom lora. 💩 <<lora:multiview-000009:0.8>>, mvst, simple background, multiple views, schoolgirl etc
Akash7897/distilbert-base-uncased-finetuned-sst2
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
2023-05-12T22:59:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: flan-t5-large-finetuned-cnndm_3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: validation args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 23.976 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-finetuned-cnndm_3 This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 23.976 - Rouge2: 11.0396 - Rougel: 19.4617 - Rougelsum: 22.4459 - Gen Len: 18.6346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-------:|:---------:|:-------:| | 0.0 | 1.0 | 8972 | nan | 23.976 | 11.0396 | 19.4617 | 22.4459 | 18.6346 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Akira-Yana/distilbert-base-uncased-finetuned-cola
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
AnaRhisT/bert_sequence_cs_validation
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m language: - en tags: - vae --- diffusers format of kl-f8-anime2.ckpt from https://huggingface.co/hakurei/waifu-diffusion-v1-4
Andrey78/my_model_nlp
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: saransh_biogpt_custom results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # saransh_biogpt_custom This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2376 - Precision: 0.3702 - Recall: 0.2097 - F1: 0.2677 - Accuracy: 0.9300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 418 | 0.2439 | 0.3401 | 0.1315 | 0.1896 | 0.9284 | | 0.2906 | 2.0 | 836 | 0.2326 | 0.3448 | 0.1956 | 0.2496 | 0.9293 | | 0.2348 | 3.0 | 1254 | 0.2376 | 0.3702 | 0.2097 | 0.2677 | 0.9300 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Ankit-11/distilbert-base-uncased-finetuned-toxic
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-05-13T05:47:44Z
--- language: - de library_name: transformers tags: - xlm-Roberta - Discourse Analysis - German text classification --- # Roberta for German Discourse Classification This is a xlm Roberta model finetuned on a German Discourse dataset of 60 discourses having a total over 10k sentences. # Understanding the labels **Externalization:** Emphasize situational factors that we dont have control over as the cause of behavior. For example "I had a really tough day at work and then when I got home, my cat got sick. It's just been one thing after another and it's really getting to me.". **Elicitation:** Emphasize the role of the listener by asking questions or providing prompts. For example "Can you tell me more about what it feels like when you're anxious?". **Conflict:** Attribute each other's behavior to dispositional factors (such as being short-sighted or inflexible). For example "You're not thinking about the big picture here!". **Acceptance:** Accept the perspectives or experiences of others. For example "It sounds like you had a really hard day". **Integration:** Combining multiple perspectives to create a more comprehensive understanding of the behavior of others. For example "What if we combined elements of both proposals to create something that incorporates the best of both worlds?". ## How to use the model ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer def get_label(sentence): vectors = tokenizer(sentence, return_tensors='pt').to(device) outputs = bert_model(**vectors).logits probs = torch.nn.functional.softmax(outputs, dim = 1)[0] bert_dict = {} keys = ['Externalization', 'Elicitation', 'Conflict', 'Acceptence', 'Integration', 'None'] for i in range(len(keys)): bert_dict[keys[i]] = round(probs[i].item(), 3) return bert_dict MODEL_NAME = 'RashidNLP/Roberta-German-Discourse' MODEL_DIR = 'model' CHECKPOINT_DIR = 'checkpoints' device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') OUTPUTS = 6 bert_model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels = OUTPUTS).to(device) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) get_label("Gehst du zum Oktoberfest?") ```
Ann2020/model-finetuned-ner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-05-13T05:57:13Z
--- license: creativeml-openrail-m language: - ja pipeline_tag: text-to-image tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image library_name: diffusers --- --- <h4>📄 ライセンス / License</h4> <div class="px-2"> <table class="table-fixed border mt-0 text-xs"> <tbody> <tr> <td class="px-4 text-base" colspan="2"> <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license"> 修正 CreativeML OpenRAIL-M ライセンス / Modified CreativeML OpenRAIL-M license </a> </td> </tr> <tr> <td class="align-middle px-2 w-8"> <span class="text-green-500"> <svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="1.5" stroke="currentColor" class="w-6 h-6"> <path stroke-linecap="round" stroke-linejoin="round" d="M4.5 12.75l6 6 9-13.5" /> </svg> </span> </td> <td> このモデルのクレジットを入れずに使用する<br> Use the model without crediting the creator </td> </tr> <tr> <td class="align-middle px-2 w-8"> <span class="text-green-500"> <svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="1.5" stroke="currentColor" class="w-6 h-6"> <path stroke-linecap="round" stroke-linejoin="round" d="M4.5 12.75l6 6 9-13.5" /> </svg> </span> </td> <td> このモデルで生成した画像を商用利用する<br> Sell images they generate </td> </tr> <tr class="bg-danger-100"> <td class="align-middle px-2 w-8"> <span class="text-red-500"> <svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="1.5" stroke="currentColor" class="w-6 h-6"> <path stroke-linecap="round" stroke-linejoin="round" d="M6 18L18 6M6 6l12 12" /> </svg> </span> </td> <td> このモデルを商用の画像生成サービスで利用する</br> Run on services that generate images for money </td> </tr> <tr> <td class="align-middle px-2 w-8"> <span class="text-green-500"> <svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="1.5" stroke="currentColor" class="w-6 h-6"> <path stroke-linecap="round" stroke-linejoin="round" d="M4.5 12.75l6 6 9-13.5" /> </svg> </span> </td> <td> このモデルを使用したマージモデルを共有する<br> Share merges using this model </td> </tr> <tr class="bg-danger-100"> <td class="align-middle px-2 w-8"> <span class="text-red-500"> <svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="1.5" stroke="currentColor" class="w-6 h-6"> <path stroke-linecap="round" stroke-linejoin="round" d="M6 18L18 6M6 6l12 12" /> </svg> </span> </td> <td> このモデル、またはこのモデルをマージしたモデルを販売する</br> Sell this model or merges using this model </td> </tr> <tr class="bg-danger-100"> <td class="align-middle px-2 w-8"> <span class="text-red-500"> <svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="1.5" stroke="currentColor" class="w-6 h-6"> <path stroke-linecap="round" stroke-linejoin="round" d="M6 18L18 6M6 6l12 12" /> </svg> </span> </td> <td> このモデルをマージしたモデルに異なる権限を設定する</br> Have different permissions when sharing merges </td> </tr> </tbody> </table> </div>
Ann2020/rubert-base-cased-sentence-finetuned-ner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Bilguunee/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AnonymousSub/AR_rule_based_roberta_bert_triplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: other pipeline_tag: text2text-generation ---Metanail Serum Pro™ | Official Store MetaNail Serum Pro makes your nails feel look better than ever before. The added ingredients in this serum are purely sourced from nature’s extract, which won’t cause any side effects. MetaNail Serum Pro never worries you about ugly nails and feet; it works completely naturally. Read More:- https://metanail-us.org/special-offer-mnu #MetaNailSerumPro , #MetaNailSerum , #MetaNail , #NailHealth MetaNail Serum Pro , MetaNail Serum , MetaNail , Nail Health
AnonymousSub/AR_rule_based_roberta_hier_quadruplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- language: - vi tags: - sentiment - classification license: mit widget: - text: "Mô hình được clone lại bởi DazkDev" --- [**GitHub Homepage**](https://github.com/hunterdie333/Dazk-Nhan-Dien-Tot-Xau) Labels: - NEG: Tiêu cực - POS: Tích cực - NEU: Trung lập Dataset: [Từ từ sẽ được update](https://www.kaggle.com/datasets/linhlpv/vietnamese-sentiment-analyst) ## Usage ```python import torch from transformers import RobertaForSequenceClassification, AutoTokenizer model = RobertaForSequenceClassification.from_pretrained("hunterdie333/Dazk-Nhan-Dien-Tot-Xau") tokenizer = AutoTokenizer.from_pretrained("hunterdie333/Dazk-Nhan-Dien-Tot-Xau", use_fast=False) # Just like PhoBERT: INPUT TEXT MUST BE ALREADY WORD-SEGMENTED! sentence = 'Mô hình được clone lại bởi DazkDev' input_ids = torch.tensor([tokenizer.encode(sentence)]) with torch.no_grad(): out = model(input_ids) print(out.logits.softmax(dim=-1).tolist()) # Output: # [[0.293, 0.040, 0.667]] # ^ ^ ^ # NEG POS NEU ```
AnonymousSub/AR_rule_based_roberta_twostage_quadruplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
# temp-model This is dummy model just for testing while following hugging face getting-started documentation.
AnonymousSub/AR_rule_based_twostagequadruplet_hier_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner_test1 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9328825857519789 - name: Recall type: recall value: 0.9520363513968361 - name: F1 type: f1 value: 0.9423621522572048 - name: Accuracy type: accuracy value: 0.9865779713898863 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner_test1 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0605 - Precision: 0.9329 - Recall: 0.9520 - F1: 0.9424 - Accuracy: 0.9866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0879 | 1.0 | 1756 | 0.0644 | 0.9204 | 0.9366 | 0.9284 | 0.9828 | | 0.0346 | 2.0 | 3512 | 0.0646 | 0.9275 | 0.9490 | 0.9381 | 0.9857 | | 0.0182 | 3.0 | 5268 | 0.0605 | 0.9329 | 0.9520 | 0.9424 | 0.9866 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
AnonymousSub/bert_hier_diff_equal_wts_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-teste-full-length results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-teste-full-length This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5750 - Rouge1: 0.4784 - Rouge2: 0.3008 - Rougel: 0.4185 - Rougelsum: 0.4212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 90 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 2.9357 | 0.16 | 100 | 2.5583 | 0.2654 | 0.0431 | 0.1946 | 0.1951 | | 1.9974 | 0.33 | 200 | 1.7104 | 0.1803 | 0.0817 | 0.1712 | 0.1726 | | 1.4803 | 0.49 | 300 | 1.4404 | 0.1770 | 0.0695 | 0.1707 | 0.1727 | | 1.2432 | 0.65 | 400 | 1.0519 | 0.2809 | 0.1314 | 0.2509 | 0.2511 | | 0.8186 | 0.82 | 500 | 0.7386 | 0.3487 | 0.1767 | 0.2894 | 0.2903 | | 0.791 | 0.98 | 600 | 0.7135 | 0.3634 | 0.1912 | 0.3108 | 0.3108 | | 0.6697 | 1.15 | 700 | 0.6835 | 0.3874 | 0.1900 | 0.3123 | 0.3131 | | 0.7146 | 1.31 | 800 | 0.6657 | 0.3816 | 0.2209 | 0.3414 | 0.3428 | | 0.6957 | 1.47 | 900 | 0.6498 | 0.3878 | 0.2045 | 0.3336 | 0.3339 | | 0.6737 | 1.64 | 1000 | 0.6332 | 0.4094 | 0.2219 | 0.3524 | 0.3535 | | 0.6537 | 1.8 | 1100 | 0.6369 | 0.4401 | 0.2621 | 0.3629 | 0.3630 | | 0.6746 | 1.96 | 1200 | 0.6169 | 0.4369 | 0.2326 | 0.3566 | 0.3574 | | 0.5961 | 2.13 | 1300 | 0.6171 | 0.4364 | 0.2464 | 0.3666 | 0.3670 | | 0.5829 | 2.29 | 1400 | 0.6122 | 0.4539 | 0.2683 | 0.3813 | 0.3825 | | 0.6336 | 2.45 | 1500 | 0.5993 | 0.4347 | 0.2548 | 0.3660 | 0.3689 | | 0.5754 | 2.62 | 1600 | 0.5905 | 0.4575 | 0.2789 | 0.3856 | 0.3857 | | 0.5984 | 2.78 | 1700 | 0.5872 | 0.4630 | 0.2768 | 0.3915 | 0.3929 | | 0.5966 | 2.95 | 1800 | 0.5944 | 0.4605 | 0.2753 | 0.3822 | 0.3828 | | 0.5288 | 3.11 | 1900 | 0.5955 | 0.4520 | 0.2651 | 0.3874 | 0.3887 | | 0.5316 | 3.27 | 2000 | 0.5841 | 0.4649 | 0.2820 | 0.4052 | 0.4056 | | 0.5332 | 3.44 | 2100 | 0.5765 | 0.4861 | 0.3046 | 0.4021 | 0.4050 | | 0.5296 | 3.6 | 2200 | 0.5812 | 0.4610 | 0.2815 | 0.3976 | 0.4021 | | 0.5215 | 3.76 | 2300 | 0.5757 | 0.4724 | 0.2947 | 0.4122 | 0.4164 | | 0.5399 | 3.93 | 2400 | 0.5750 | 0.4784 | 0.3008 | 0.4185 | 0.4212 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
AnonymousSub/declutr-model_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
2023-05-13T10:03:47Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image --- ### Based off [NegiInNattoMaki/Nabylon](https://huggingface.co/NegiInNattoMaki/Nabylon) All credits go to the original author and all the author of Nabylon's ancestor models ### Inpainting This model can be used for inpainting, as it's the original Nabylon-v1.0 merged with [runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting) and [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) via the weights of ``` stable-diffusion-inpainting + (Nabylon-v1.0 - stable-diffusion-v1-5) ``` ### Diffusers The merged model was converted to be used with the [🧨Diffusers library](https://github.com/huggingface/diffusers)
AnonymousSub/hier_triplet_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: vit-base-patch16-224-finetuned-flower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 2.0.0+cu118 - Datasets 2.7.1 - Tokenizers 0.13.3