modelId
stringlengths
4
81
tags
sequence
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
AnonymousSub/declutr-model-emanuals
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - generated_from_trainer model-index: - name: kcbert-large-finetuned-unsmile results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kcbert-large-finetuned-unsmile This model is a fine-tuned version of [beomi/kcbert-large](https://huggingface.co/beomi/kcbert-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1240 - Lrap: 0.8816 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Lrap | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.99 | 58 | 0.2090 | 0.8098 | | No log | 1.99 | 116 | 0.1386 | 0.8707 | | No log | 2.99 | 174 | 0.1263 | 0.8795 | | No log | 3.99 | 232 | 0.1232 | 0.8823 | | No log | 4.99 | 290 | 0.1240 | 0.8816 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.12.1
AnonymousSub/rule_based_bert_hier_diff_equal_wts_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- widget: - text: "PROCEDURE: Chest xray. COMPARISON: last seen on 1/1/2020 and also record dated of March 1st, 2019. FINDINGS: patchy airspace opacities. IMPRESSION: The results of the chest xray of January 1 2020 are the most concerning ones. The patient was transmitted to another service of UH Medical Center under the responsability of Dr. Perez. We used the system MedClinical data transmitter and sent the data on 2/1/2020, under the ID 5874233. We received the confirmation of Dr Perez. He is reachable at 567-493-1234." - text: "Dr. Curt Langlotz chose to schedule a meeting on 06/23." tags: - token-classification - sequence-tagger-model - pytorch - transformers - pubmedbert - uncased - radiology - biomedical datasets: - radreports language: - en license: mit --- Stanford de-identifier was trained on a variety of radiology and biomedical documents with the goal of automatising the de-identification process while reaching satisfactory accuracy for use in production. Manuscript in-proceedings. Associated github repo: https://github.com/MIDRC/Stanford_Penn_Deidentifier ## Citation ```bibtex @article{10.1093/jamia/ocac219, author = {Chambon, Pierre J and Wu, Christopher and Steinkamp, Jackson M and Adleberg, Jason and Cook, Tessa S and Langlotz, Curtis P}, title = "{Automated deidentification of radiology reports combining transformer and โ€œhide in plain sightโ€ rule-based methods}", journal = {Journal of the American Medical Informatics Association}, year = {2022}, month = {11}, abstract = "{To develop an automated deidentification pipeline for radiology reports that detect protected health information (PHI) entities and replaces them with realistic surrogates โ€œhiding in plain sight.โ€In this retrospective study, 999 chest X-ray and CT reports collected between November 2019 and November 2020 were annotated for PHI at the token level and combined with 3001 X-rays and 2193 medical notes previously labeled, forming a large multi-institutional and cross-domain dataset of 6193 documents. Two radiology test sets, from a known and a new institution, as well as i2b2 2006 and 2014 test sets, served as an evaluation set to estimate model performance and to compare it with previously released deidentification tools. Several PHI detection models were developed based on different training datasets, fine-tuning approaches and data augmentation techniques, and a synthetic PHI generation algorithm. These models were compared using metrics such as precision, recall and F1 score, as well as paired samples Wilcoxon tests.Our best PHI detection model achieves 97.9 F1 score on radiology reports from a known institution, 99.6 from a new institution, 99.5 on i2b2 2006, and 98.9 on i2b2 2014. On reports from a known institution, it achieves 99.1 recall of detecting the core of each PHI span.Our model outperforms all deidentifiers it was compared to on all test sets as well as human labelers on i2b2 2014 data. It enables accurate and automatic deidentification of radiology reports.A transformer-based deidentification pipeline can achieve state-of-the-art performance for deidentifying radiology reports and other medical documents.}", issn = {1527-974X}, doi = {10.1093/jamia/ocac219}, url = {https://doi.org/10.1093/jamia/ocac219}, note = {ocac219}, eprint = {https://academic.oup.com/jamia/advance-article-pdf/doi/10.1093/jamia/ocac219/47220191/ocac219.pdf}, } ```
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- widget: - text: "PROCEDURE: Chest xray. COMPARISON: last seen on 1/1/2020 and also record dated of March 1st, 2019. FINDINGS: patchy airspace opacities. IMPRESSION: The results of the chest xray of January 1 2020 are the most concerning ones. The patient was transmitted to another service of UH Medical Center under the responsability of Dr. Perez. We used the system MedClinical data transmitter and sent the data on 2/1/2020, under the ID 5874233. We received the confirmation of Dr Perez. He is reachable at 567-493-1234." - text: "Dr. Curt Langlotz chose to schedule a meeting on 06/23." tags: - token-classification - sequence-tagger-model - pytorch - transformers - pubmedbert - uncased - radiology - biomedical datasets: - radreports language: - en license: mit --- Stanford de-identifier was trained on a variety of radiology and biomedical documents with the goal of automatising the de-identification process while reaching satisfactory accuracy for use in production. Manuscript in-proceedings. Associated github repo: https://github.com/MIDRC/Stanford_Penn_Deidentifier ## Citation ```bibtex @article{10.1093/jamia/ocac219, author = {Chambon, Pierre J and Wu, Christopher and Steinkamp, Jackson M and Adleberg, Jason and Cook, Tessa S and Langlotz, Curtis P}, title = "{Automated deidentification of radiology reports combining transformer and โ€œhide in plain sightโ€ rule-based methods}", journal = {Journal of the American Medical Informatics Association}, year = {2022}, month = {11}, abstract = "{To develop an automated deidentification pipeline for radiology reports that detect protected health information (PHI) entities and replaces them with realistic surrogates โ€œhiding in plain sight.โ€In this retrospective study, 999 chest X-ray and CT reports collected between November 2019 and November 2020 were annotated for PHI at the token level and combined with 3001 X-rays and 2193 medical notes previously labeled, forming a large multi-institutional and cross-domain dataset of 6193 documents. Two radiology test sets, from a known and a new institution, as well as i2b2 2006 and 2014 test sets, served as an evaluation set to estimate model performance and to compare it with previously released deidentification tools. Several PHI detection models were developed based on different training datasets, fine-tuning approaches and data augmentation techniques, and a synthetic PHI generation algorithm. These models were compared using metrics such as precision, recall and F1 score, as well as paired samples Wilcoxon tests.Our best PHI detection model achieves 97.9 F1 score on radiology reports from a known institution, 99.6 from a new institution, 99.5 on i2b2 2006, and 98.9 on i2b2 2014. On reports from a known institution, it achieves 99.1 recall of detecting the core of each PHI span.Our model outperforms all deidentifiers it was compared to on all test sets as well as human labelers on i2b2 2014 data. It enables accurate and automatic deidentification of radiology reports.A transformer-based deidentification pipeline can achieve state-of-the-art performance for deidentifying radiology reports and other medical documents.}", issn = {1527-974X}, doi = {10.1093/jamia/ocac219}, url = {https://doi.org/10.1093/jamia/ocac219}, note = {ocac219}, eprint = {https://academic.oup.com/jamia/advance-article-pdf/doi/10.1093/jamia/ocac219/47220191/ocac219.pdf}, } ```
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
AnonymousSub/rule_based_hier_quadruplet_0.1_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: mit tags: - generated_from_keras_callback model-index: - name: ksabeh/roberta-base-attribute-correction-mlm-titles-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ksabeh/roberta-base-attribute-correction-mlm-titles-2 This model is a fine-tuned version of [ksabeh/roberta-base-attribute-correction-mlm](https://huggingface.co/ksabeh/roberta-base-attribute-correction-mlm) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0822 - Validation Loss: 0.0914 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 23870, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.2007 | 0.1023 | 0 | | 0.0822 | 0.0914 | 1 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: gpl-2.0 language: ar --- A model which is jointly trained and fine-tuned on Quran, Saheefa and nahj-al-balaqa. All Datasets are available [Here](https://github.com/language-ml/course-nlp-ir-1-text-exploring/tree/main/exploring-datasets/religious_text). Code will be available soon ... Some Examples for filling the mask: - ``` ุฐูŽู„ููƒูŽ [MASK] ู„ูŽุง ุฑูŽูŠู’ุจูŽ ูููŠู‡ู ู‡ูุฏู‹ู‰ ู„ูู„ู’ู…ูุชู‘ูŽู‚ููŠู†ูŽ ``` - ``` ูŠูŽุง ุฃูŽูŠู‘ูู‡ูŽุง ุงู„ู†ู‘ูŽุงุณู ุงุนู’ุจูุฏููˆุง ุฑูŽุจู‘ูŽูƒูู…ู ุงู„ู‘ูŽุฐููŠ ุฎูŽู„ูŽู‚ูŽูƒูู…ู’ ูˆูŽุงู„ู‘ูŽุฐููŠู†ูŽ ู…ูู†ู’ ู‚ูŽุจู’ู„ููƒูู…ู’ ู„ูŽุนูŽู„ู‘ูŽูƒูู…ู’ [MASK] ``` This model is fine-tuned on [Bert Base Arabic](https://huggingface.co/asafaya/bert-base-arabic) for 30 epochs. We have used `Masked Language Modeling` to fine-tune the model. Also, after each 5 epochs, we have completely masked the words again for the model to learn the embeddings very well and not overfit the data.
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: mit --- Classifier of news affecting the stock price in the next 10 minutes
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 270.09 +/- 19.04 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnonymousSub/rule_based_hier_triplet_0.1_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - generated_from_trainer datasets: - uob_singlish model-index: - name: malaya-speech_Mrbrown_finetune1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # malaya-speech_Mrbrown_finetune1 This model is a fine-tuned version of [malay-huggingface/wav2vec2-xls-r-300m-mixed](https://huggingface.co/malay-huggingface/wav2vec2-xls-r-300m-mixed) on the uob_singlish dataset. ## This time use self-made dataset(cut the audio of "https://www.youtube.com/watch?v=a2ZOTD3R7JI" into slices and write the corresponding transcript, totally 4 mins), get really bad fine-tuning result, that may mean the training/fine-tuning dataset must be high quality/at least several hours? Or maybe is because the learning rate is set too high(0.01) ? Still searching for the important factors. It achieves the following results on the evaluation set: - Loss: 3.8458 - Wer: 1.01 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:----:| | 0.3186 | 20.0 | 200 | 4.2225 | 1.13 | | 0.4911 | 40.0 | 400 | 4.0427 | 0.99 | | 0.9014 | 60.0 | 600 | 5.3285 | 1.04 | | 1.0955 | 80.0 | 800 | 3.6922 | 1.02 | | 0.7533 | 100.0 | 1000 | 3.8458 | 1.01 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - hf_diffuse --- # Dummy diffusion model following architecture of https://github.com/lucidrains/denoising-diffusion-pytorch Run the model as follows: ```python from diffusers import UNetModel, GaussianDiffusion import torch # 1. Load model unet = UNetModel.from_pretrained("fusing/ddpm_dummy") # 2. Do one denoising step with model batch_size, num_channels, height, width = 1, 3, 32, 32 dummy_noise = torch.ones((batch_size, num_channels, height, width)) time_step = torch.tensor([10]) image = unet(dummy_noise, time_step) # 3. Load sampler sampler = GaussianDiffusion.from_config("fusing/ddpm_dummy") # 4. Sample image from sampler passing the model image = sampler.sample(model, batch_size=1) print(image) ```
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ksabeh/bert-base-uncased-mlm-electronics-attribute-correction results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ksabeh/bert-base-uncased-mlm-electronics-attribute-correction This model is a fine-tuned version of [ksabeh/bert-base-uncased-mlm-electronics](https://huggingface.co/ksabeh/bert-base-uncased-mlm-electronics) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0524 - Validation Loss: 0.0520 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 36848, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1459 | 0.0678 | 0 | | 0.0524 | 0.0520 | 1 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-paraphrase-finetuned-xsum-v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase-finetuned-xsum-v5 This model is a fine-tuned version of [eugenesiow/bart-paraphrase](https://huggingface.co/eugenesiow/bart-paraphrase) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 263 | 0.4728 | 38.7072 | 38.5333 | 38.6391 | 38.6212 | 7.0513 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
AnonymousSub/rule_based_only_classfn_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 602.00 +/- 193.99 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga i8pxgd2s -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga i8pxgd2s ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
AnonymousSub/rule_based_only_classfn_twostage_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
2022-06-09T09:56:35Z
# Visual Semantic with BERT-CNN This model can be used to assign an object-to-caption semantic relatedness score, which is valuable for (1) caption diverse re-ranking (this work), and (2) (as an application) generating soft labels for filtering out the related/non-related image-to-post when scraping images from the internet (e.g. Instagram). To take advantage of the overlapping between the visual context and the caption, and to extract global information from each visual (i.e., object, scene, etc) we use BERT as an embedding layer followed by a shallow CNN (tri-gram kernel) (Kim, 2014). Please refer to [Github](https://github.com/ahmedssabir/Visual-Semantic-Relatedness-Dataset-for-Image-Captioning) for more information. [![arXiv](https://img.shields.io/badge/arXiv-2301.08784-b31b1b.svg)](https://arxiv.org/abs/2301.08784) [![Website shields.io](https://img.shields.io/website-up-down-green-red/http/shields.io.svg)](https://ahmed.jp/project_page/Dataset_2022/index.html) For datasets that are less than 100K please have look at our [shallow model](https://github.com/ahmedssabir/Semantic-Relatedness-Based-Reranker-for-Text-Spotting) The model is trained with a strict filter of 0.4 similarity distance thresholds between the object and its related caption. For a quick start please have a look at this [demo](https://github.com/ahmedssabir/Textual-Visual-Semantic-Dataset/blob/main/BERT_CNN_Visual_re_ranker_demo.ipynb) For the [dataset](https://huggingface.co/datasets/AhmedSSabir/Textual-Image-Caption-Dataset) ## # Result with SoTA pre-trained image Captioning BLIP Comparison result with BLIP (125M pre-trained images) [Table 7 COCO Caption Karpathy testset](https://arxiv.org/pdf/2201.12086.pdf). For the VilBERT model (3.5M pre-trained images) please refer to the paper. ## Accuarcy | Model | B-1 | B-2 | B-3 | B-4 | M | R | C | S |BERTscore | |----------------------------------|---------|-------|--------|-------|--------|--------|-------|--------|---------| | BLIP Beam Search b=3 | .797 | .649 | **.514** | **.403** | **.311** | **.606** |**1.365** |**.243** | **.9484** | | + BERT-CNN $th=0$ | .798 | .646 | .506 | .392 | .305 | .598 | 1.339 | .238 | .9473 | | + BERT-CNN $th\geq0.2$ | .798 | .647 | .507 | .393 | .306 | .600 | 1.342 | .238 | .9473 | | + BERT-CNN $th\geq0.3$ | .802 | .651 | .511 | .397 | .307 | .601 | 1.349 | .238 | .9479 | | + BERT-CNN $th\geq0.4$ | **.806** | **.654** | .513 | .397 | .303 | .599 | 1.343 | .235 | .9476 | ## Diversity | Model | Uniq | Voc | mBLeu-1โ†“ | Div-1 |Div-2 | SBERT-sts| |----------------------------------|---------|-------|----------|-------|-------|----------| | BLIP Beam Search b=3 | **8.60** | 1406 | .461 | .68 | .80 | .8058 | | + BERT-CNN $th=0$ | 8.49 | **1532** | .457 | .68 | .80 | .8046 | | + BERT-CNN $th\geq0.2$ | 8.48 | 1486 | .458 | .68 | .80 | .8052 | | + BERT-CNN $th\geq0.3$ | 8.41 | 1448 | .458 | .68 | .80 | **.8060** | | + BERT-CNN $th\geq0.4$ | 8.30 | 1448 | **.455** | .68 | .80 | .8053 | |human | 9.14 | 3425 | .375 | .74 | .84 | NA | ``` conda create -n BERT_visual python=3.6 anaconda conda activate BERT_visual pip install tensorflow==1.15.0 pip install --upgrade tensorflow_hub==0.7.0 ``` ``` git clone https://github.com/gaphex/bert_experimental/ ``` ```python import tensorflow as tf import numpy as np import pandas as pd import sys from sklearn.model_selection import train_test_split sys.path.insert(0, "bert_experimental") from bert_experimental.finetuning.text_preprocessing import build_preprocessor from bert_experimental.finetuning.graph_ops import load_graph df = pd.read_csv("test.tsv", sep='\t') texts = [] delimiter = " ||| " for vis, cap in zip(df.visual.tolist(), df.caption.tolist()): texts.append(delimiter.join((str(vis), str(cap)))) texts = np.array(texts) trX, tsX = train_test_split(texts, shuffle=False, test_size=0.01) restored_graph = load_graph("frozen_graph.pb") graph_ops = restored_graph.get_operations() input_op, output_op = graph_ops[0].name, graph_ops[-1].name print(input_op, output_op) x = restored_graph.get_tensor_by_name(input_op + ':0') y = restored_graph.get_tensor_by_name(output_op + ':0') preprocessor = build_preprocessor("vocab.txt", 64) py_func = tf.numpy_function(preprocessor, [x], [tf.int32, tf.int32, tf.int32], name='preprocessor') ##predictions sess = tf.Session(graph=restored_graph) print(trX[:4]) y = tf.print(y, summarize=-1) y_out = sess.run(y, feed_dict={ x: trX[:4].reshape((-1,1)) }) print(y_out) ```` For training and inference ``` python BERT_CNN.py --train train_0.4.tsv --epochs 5 ``` ```python # -*- coding: utf-8 -*- #!/bin/env python import sys import argparse import re import os import sys import json import logging import numpy as np import pandas as pd import tensorflow as tf import tensorflow_hub as hub from BertLayer import BertLayer from BertLayer import build_preprocessor from freeze_keras_model import freeze_keras_model from data_pre import * from tensorflow import keras from tensorflow.keras.callbacks import ReduceLROnPlateau, ModelCheckpoint from sklearn.model_selection import train_test_split if not 'bert_repo' in sys.path: sys.path.insert(0, 'bert_repo') from modeling import BertModel, BertConfig from tokenization import FullTokenizer, convert_to_unicode from extract_features import InputExample, convert_examples_to_features # get TF logger log = logging.getLogger('tensorflow') log.handlers = [] parser=argparse.ArgumentParser() parser.add_argument('--train', default='train.tsv', help='beam serach', type=str,required=False) parser.add_argument('--num_bert_layer', default='12', help='truned layers', type=int,required=False) parser.add_argument('--batch_size', default='128', help='truned layers', type=int,required=False) parser.add_argument('--epochs', default='5', help='', type=int,required=False) parser.add_argument('--seq_len', default='64', help='', type=int,required=False) parser.add_argument('--CNN_kernel_size', default='3', help='', type=int,required=False) parser.add_argument('--CNN_filters', default='32', help='', type=int,required=False) args = parser.parse_args() # Downlaod the pre-trained model #!wget https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip #!unzip uncased_L-12_H-768_A-12.zip # tf.Module def build_module_fn(config_path, vocab_path, do_lower_case=True): def bert_module_fn(is_training): """Spec function for a token embedding module.""" input_ids = tf.placeholder(shape=[None, None], dtype=tf.int32, name="input_ids") input_mask = tf.placeholder(shape=[None, None], dtype=tf.int32, name="input_mask") token_type = tf.placeholder(shape=[None, None], dtype=tf.int32, name="segment_ids") config = BertConfig.from_json_file(config_path) model = BertModel(config=config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=token_type) seq_output = model.all_encoder_layers[-1] pool_output = model.get_pooled_output() config_file = tf.constant(value=config_path, dtype=tf.string, name="config_file") vocab_file = tf.constant(value=vocab_path, dtype=tf.string, name="vocab_file") lower_case = tf.constant(do_lower_case) tf.add_to_collection(tf.GraphKeys.ASSET_FILEPATHS, config_file) tf.add_to_collection(tf.GraphKeys.ASSET_FILEPATHS, vocab_file) input_map = {"input_ids": input_ids, "input_mask": input_mask, "segment_ids": token_type} output_map = {"pooled_output": pool_output, "sequence_output": seq_output} output_info_map = {"vocab_file": vocab_file, "do_lower_case": lower_case} hub.add_signature(name="tokens", inputs=input_map, outputs=output_map) hub.add_signature(name="tokenization_info", inputs={}, outputs=output_info_map) return bert_module_fn #MODEL_DIR = "uncased_L-12_H-768_A-12" config_path = "/{}/bert_config.json".format(MODEL_DIR) vocab_path = "/{}/vocab.txt".format(MODEL_DIR) tags_and_args = [] for is_training in (True, False): tags = set() if is_training: tags.add("train") tags_and_args.append((tags, dict(is_training=is_training))) module_fn = build_module_fn(config_path, vocab_path) spec = hub.create_module_spec(module_fn, tags_and_args=tags_and_args) spec.export("bert-module", checkpoint_path="/{}/bert_model.ckpt".format(MODEL_DIR)) class BertLayer(tf.keras.layers.Layer): def __init__(self, bert_path, seq_len=64, n_tune_layers=3, pooling="cls", do_preprocessing=True, verbose=False, tune_embeddings=False, trainable=True, **kwargs): self.trainable = trainable self.n_tune_layers = n_tune_layers self.tune_embeddings = tune_embeddings self.do_preprocessing = do_preprocessing self.verbose = verbose self.seq_len = seq_len self.pooling = pooling self.bert_path = bert_path self.var_per_encoder = 16 if self.pooling not in ["cls", "mean", None]: raise NameError( f"Undefined pooling type (must be either 'cls', 'mean', or None, but is {self.pooling}" ) super(BertLayer, self).__init__(**kwargs) def build(self, input_shape): self.bert = hub.Module(self.build_abspath(self.bert_path), trainable=self.trainable, name=f"{self.name}_module") trainable_layers = [] if self.tune_embeddings: trainable_layers.append("embeddings") if self.pooling == "cls": trainable_layers.append("pooler") if self.n_tune_layers > 0: encoder_var_names = [var.name for var in self.bert.variables if 'encoder' in var.name] n_encoder_layers = int(len(encoder_var_names) / self.var_per_encoder) for i in range(self.n_tune_layers): trainable_layers.append(f"encoder/layer_{str(n_encoder_layers - 1 - i)}/") # Add module variables to layer's trainable weights for var in self.bert.variables: if any([l in var.name for l in trainable_layers]): self._trainable_weights.append(var) else: self._non_trainable_weights.append(var) if self.verbose: print("*** TRAINABLE VARS *** ") for var in self._trainable_weights: print(var) self.build_preprocessor() self.initialize_module() super(BertLayer, self).build(input_shape) def build_abspath(self, path): if path.startswith("https://") or path.startswith("gs://"): return path else: return os.path.abspath(path) def build_preprocessor(self): sess = tf.keras.backend.get_session() tokenization_info = self.bert(signature="tokenization_info", as_dict=True) vocab_file, do_lower_case = sess.run([tokenization_info["vocab_file"], tokenization_info["do_lower_case"]]) self.preprocessor = build_preprocessor(vocab_file, self.seq_len, do_lower_case) def initialize_module(self): sess = tf.keras.backend.get_session() vars_initialized = sess.run([tf.is_variable_initialized(var) for var in self.bert.variables]) uninitialized = [] for var, is_initialized in zip(self.bert.variables, vars_initialized): if not is_initialized: uninitialized.append(var) if len(uninitialized): sess.run(tf.variables_initializer(uninitialized)) def call(self, input): if self.do_preprocessing: input = tf.numpy_function(self.preprocessor, [input], [tf.int32, tf.int32, tf.int32], name='preprocessor') for feature in input: feature.set_shape((None, self.seq_len)) input_ids, input_mask, segment_ids = input bert_inputs = dict( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids ) output = self.bert(inputs=bert_inputs, signature="tokens", as_dict=True) if self.pooling == "cls": pooled = output["pooled_output"] else: result = output["sequence_output"] input_mask = tf.cast(input_mask, tf.float32) mul_mask = lambda x, m: x * tf.expand_dims(m, axis=-1) masked_reduce_mean = lambda x, m: tf.reduce_sum(mul_mask(x, m), axis=1) / ( tf.reduce_sum(m, axis=1, keepdims=True) + 1e-10) if self.pooling == "mean": pooled = masked_reduce_mean(result, input_mask) else: pooled = mul_mask(result, input_mask) return pooled def get_config(self): config_dict = { "bert_path": self.bert_path, "seq_len": self.seq_len, "pooling": self.pooling, "n_tune_layers": self.n_tune_layers, "tune_embeddings": self.tune_embeddings, "do_preprocessing": self.do_preprocessing, "verbose": self.verbose } super(BertLayer, self).get_config() return config_dict # read the train data df = pd.read_csv(args.train, sep='\t') labels = df.is_related.values texts = [] delimiter = " ||| " for vis, cap in zip(df.visual.tolist(), df.caption.tolist()): texts.append(delimiter.join((str(vis), str(cap)))) texts = np.array(texts) trX, tsX, trY, tsY = train_test_split(texts, labels, shuffle=True, test_size=0.2) # Buliding the model embedding_size = 768 # input inp = tf.keras.Input(shape=(1,), dtype=tf.string) # BERT encoder # For CLS with linear layer #encoder = BertLayer(bert_path="./bert-module/", seq_len=48, tune_embeddings=False, # pooling='cls', n_tune_layers=3, verbose=False) # CNN Layers encoder = BertLayer(bert_path="./bert-module/", seq_len=args.seq_len, tune_embeddings=False, pooling=None, n_tune_layers=args.num_bert_layer, verbose=False) cnn_out = tf.keras.layers.Conv1D(args.CNN_filters, args.CNN_kernel_size, padding='VALID', activation=tf.nn.relu)(encoder(inp)) pool = tf.keras.layers.MaxPooling1D(pool_size=2)(cnn_out) flat = tf.keras.layers.Flatten()(pool) pred = tf.keras.layers.Dense(1, activation="sigmoid")(flat) model = tf.keras.models.Model(inputs=[inp], outputs=[pred]) model.summary() model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=1e-5, ), loss="binary_crossentropy", metrics=["accuracy"]) # fit the data import logging logging.getLogger("tensorflow").setLevel(logging.WARNING) saver = keras.callbacks.ModelCheckpoint("bert_CNN_tuned.hdf5") model.fit(trX, trY, validation_data=[tsX, tsY], batch_size=args.batch_size, epochs=args.epochs, callbacks=[saver]) #save the model model.predict(trX[:10]) import json json.dump(model.to_json(), open("model.json", "w")) model = tf.keras.models.model_from_json(json.load(open("model.json")), custom_objects={"BertLayer": BertLayer}) model.load_weights("bert_CNN_tuned.hdf5") model.predict(trX[:10]) # For fast inference and less RAM usesage as post-processing we need to "freezing" the model. from tensorflow.python.framework.graph_util import convert_variables_to_constants from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference def freeze_keras_model(model, export_path=None, clear_devices=True): sess = tf.keras.backend.get_session() graph = sess.graph with graph.as_default(): input_tensors = model.inputs output_tensors = model.outputs dtypes = [t.dtype.as_datatype_enum for t in input_tensors] input_ops = [t.name.rsplit(":", maxsplit=1)[0] for t in input_tensors] output_ops = [t.name.rsplit(":", maxsplit=1)[0] for t in output_tensors] tmp_g = graph.as_graph_def() if clear_devices: for node in tmp_g.node: node.device = "" tmp_g = optimize_for_inference( tmp_g, input_ops, output_ops, dtypes, False) tmp_g = convert_variables_to_constants(sess, tmp_g, output_ops) if export_path is not None: with tf.gfile.GFile(export_path, "wb") as f: f.write(tmp_g.SerializeToString()) return tmp_g # freeze and save the model frozen_graph = freeze_keras_model(model, export_path="frozen_graph.pb") # inference #!git clone https://github.com/gaphex/bert_experimental/ import tensorflow as tf import numpy as np import sys sys.path.insert(0, "bert_experimental") from bert_experimental.finetuning.text_preprocessing import build_preprocessor from bert_experimental.finetuning.graph_ops import load_graph restored_graph = load_graph("frozen_graph.pb") graph_ops = restored_graph.get_operations() input_op, output_op = graph_ops[0].name, graph_ops[-1].name print(input_op, output_op) x = restored_graph.get_tensor_by_name(input_op + ':0') y = restored_graph.get_tensor_by_name(output_op + ':0') preprocessor = build_preprocessor("vocab.txt", 64) py_func = tf.numpy_function(preprocessor, [x], [tf.int32, tf.int32, tf.int32], name='preprocessor') py_func = tf.numpy_function(preprocessor, [x], [tf.int32, tf.int32, tf.int32]) # predictions sess = tf.Session(graph=restored_graph) trX[:10] y_out = sess.run(y, feed_dict={ x: trX[:10].reshape((-1,1)) }) print(y_out) ```
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Kiwipirate/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="i8pxgd2s/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
23
null
--- language: en thumbnail: http://www.huggingtweets.com/osanseviero/1654769951427/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1106315906165157889/0Hxb1ESL_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Omar Sanseviero</div> <div style="text-align: center; font-size: 14px;">@osanseviero</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Omar Sanseviero. | Data | Omar Sanseviero | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 1158 | | Short tweets | 224 | | Tweets kept | 1862 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29bkab0t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @osanseviero's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1s35jikq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1s35jikq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/osanseviero') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - uob_singlish model-index: - name: wav2vec2-xls-r-300m_Mrbrown_finetune1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m_Mrbrown_finetune1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the uob_singlish dataset. ## This time use self-made dataset(cut the audio of "https://www.youtube.com/watch?v=a2ZOTD3R7JI" into slices and write the corresponding transcript, totally 4 mins), don't know why the word-error-rate keep 1. But can know that much be the problem of dataset, because last time use the same pre-trained model and standard singlish corpus fine-tune get nice result. (can find it at:RuiqianLi/wav2vec2-large-xls-r-300m-singlish-colab) It achieves the following results on the evaluation set: - Loss: 3.0927 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.7943 | 20.0 | 200 | 3.0597 | 1.0 | | 2.9902 | 40.0 | 400 | 3.1604 | 1.0 | | 2.9696 | 60.0 | 600 | 3.1112 | 1.0 | | 2.8885 | 80.0 | 800 | 3.0234 | 1.0 | | 2.8154 | 100.0 | 1000 | 3.0927 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- library_name: keras tags: - SpeakerRecognition - Fast Fourier Transform (FFT) - Convnet - speech-recordings - SpeechClassification --- ## Model description This model helps to classify speakers from the frequency domain representation of speech recordings, obtained via Fast Fourier Transform (FFT). The model is created by a 1D convolutional network with residual connections for audio classification. This repo contains the model for the notebook [**Speaker Recognition**](https://keras.io/examples/audio/speaker_recognition_using_cnn/). Full credits go to [**Fadi Badine**](https://twitter.com/fadibadine) ## Dataset Used This model uses a [**speaker recognition dataset**](https://www.kaggle.com/kongaevans/speaker-recognition-dataset) of Kaggle ## Intended uses & limitations This should be run with `TensorFlow 2.3` or higher, or `tf-nightly`. Also, The noise samples in the dataset need to be resampled to a sampling rate of 16000 Hz before using for this model so, In order to do this, you will need to have installed `ffmpg`. ## Training and evaluation data During dataset preparation, the speech samples & background noise samples were sorted and categorized into 2 folders - audio & noise, and then noise samples were resampled to 16000Hz & then the background noise was added to the speech samples to augment the data. After that, the FFT of these samples was given to the model for the training & evaluation part. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | name | learning_rate | decay | beta_1 | beta_2 | epsilon | amsgrad | training_precision | |----|-------------|-----|------|------|-------|-------|------------------| |Adam|0.0010000000474974513|0.0|0.8999999761581421|0.9990000128746033|1e-07|False|float32| ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details> <center> Model By : <a href="https://github.com/robotjellyzone">Kavya Bisht</a> </center>
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distiBERT_mLM_V2_shuffleplus3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distiBERT_mLM_V2_shuffleplus3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 208018, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- language: zh tags: - summarization inference: False --- # Randeng-Pegasus-523M-Chinese - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM/blob/main/fengshen/examples/pegasus/pretrain_pegasus.sh) - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/zh/latest/docs/%E7%87%83%E7%81%AF%E7%B3%BB%E5%88%97/Randeng-Pegasus-523M-Chinese.html) ## ็ฎ€ไป‹ Brief Introduction ๅ–„ไบŽๅค„็†ๆ‘˜่ฆไปปๅŠก็š„๏ผŒไธญๆ–‡็‰ˆ็š„PAGASUS-largeใ€‚ Good at solving text summarization tasks, Chinese PAGASUS-large. ## ๆจกๅž‹ๅˆ†็ฑป Model Taxonomy | ้œ€ๆฑ‚ Demand | ไปปๅŠก Task | ็ณปๅˆ— Series | ๆจกๅž‹ Model | ๅ‚ๆ•ฐ Parameter | ้ขๅค– Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | ้€š็”จ General | ่‡ช็„ถ่ฏญ่จ€่ฝฌๆข NLT | ็‡ƒ็ฏ Randeng | PEFASUS | 523M | ไธญๆ–‡ Chinese | ## ๆจกๅž‹ไฟกๆฏ Model Information ๅ‚่€ƒ่ฎบๆ–‡๏ผš[PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf) ไธบไบ†่งฃๅ†ณไธญๆ–‡็š„่‡ชๅŠจๆ‘˜่ฆไปปๅŠก๏ผŒๆˆ‘ไปฌ้ตๅพชPEGASUS็š„่ฎพ่ฎกๆฅ่ฎญ็ปƒไธญๆ–‡็š„็‰ˆๆœฌใ€‚ๆˆ‘ไปฌไฝฟ็”จไบ†ๆ‚Ÿ้“่ฏญๆ–™ๅบ“(180G็‰ˆๆœฌ)ไฝœไธบ้ข„่ฎญ็ปƒๆ•ฐๆฎ้›†ใ€‚ๆญคๅค–๏ผŒ่€ƒ่™‘ๅˆฐไธญๆ–‡sentence pieceไธ็จณๅฎš๏ผŒๆˆ‘ไปฌๅœจRandeng-PEGASUSไธญๅŒๆ—ถไฝฟ็”จไบ†็ป“ๅทดๅˆ†่ฏๅ’ŒBERTๅˆ†่ฏๅ™จใ€‚ๆˆ‘ไปฌไนŸๆไพ›base็š„็‰ˆๆœฌ๏ผš[IDEA-CCNL/Randeng-Pegasus-238M-Chinese](https://huggingface.co/IDEA-CCNL/Randeng-Pegasus-238M-Chinese)ใ€‚ไปฅๅŠ๏ผŒๆˆ‘ไปฌไนŸๆไพ›ไบ†ๅœจไธญๆ–‡ๆ‘˜่ฆๆ•ฐๆฎ้›†ไธŠๅพฎ่ฐƒ็š„็‰ˆๆœฌ๏ผš[Randeng-Pegasus-523M-Summary-Chinese](https://huggingface.co/IDEA-CCNL/Randeng-Pegasus-523M-Summary-Chinese)ใ€‚ To solve Chinese abstractive summarization tasks, we follow the PEGASUS guidelines. We employ a version of WuDao Corpora (180 GB version) as a pre-training dataset. In addition, considering that the Chinese sentence chunk is unstable, we utilize jieba and BERT tokenizer in our Randeng-PEGASUS. We also provide a base size version, available with [IDEA-CCNL/Randeng-Pegasus-238M-Chinese](https://huggingface.co/IDEA-CCNL/Randeng-Pegasus-238M-Chinese). And, we also provide a version after fine-tuning on Chinese text summarization datasets: [Randeng-Pegasus-523M-Summary-Chinese](https://huggingface.co/IDEA-CCNL/Randeng-Pegasus-523M-Summary-Chinese). ## ไฝฟ็”จ Usage ```python from transformers import PegasusForConditionalGeneration # Need to download tokenizers_pegasus.py and other Python script from Fengshenbang-LM github repo in advance, # or you can download tokenizers_pegasus.py and data_utils.py in https://huggingface.co/IDEA-CCNL/Randeng_Pegasus_523M/tree/main # Strongly recommend you git clone the Fengshenbang-LM repo: # 1. git clone https://github.com/IDEA-CCNL/Fengshenbang-LM # 2. cd Fengshenbang-LM/fengshen/examples/pegasus/ # and then you will see the tokenizers_pegasus.py and data_utils.py which are needed by pegasus model from tokenizers_pegasus import PegasusTokenizer model = PegasusForConditionalGeneration.from_pretrained("IDEA-CCNL/Randeng-Pegasus-523M-Chinese") tokenizer = PegasusTokenizer.from_pretrained("IDEA-CCNL/Randeng-Pegasus-523M-Chinese") text = "ๆฎๅพฎไฟกๅ…ฌไผ—ๅทโ€œ็•Œ้ขโ€ๆŠฅ้“๏ผŒ4ๆ—ฅไธŠๅˆ10็‚นๅทฆๅณ๏ผŒไธญๅ›ฝๅ‘ๆ”นๅง”ๅๅž„ๆ–ญ่ฐƒๆŸฅๅฐ็ป„็ชๅ‡ปๆŸฅ่ฎฟๅฅ”้ฉฐไธŠๆตทๅŠžไบ‹ๅค„๏ผŒ่ฐƒๅ–ๆ•ฐๆฎๆๆ–™๏ผŒๅนถๅฏนๅคšๅๅฅ”้ฉฐ้ซ˜็ฎก่ฟ›่กŒไบ†็บฆ่ฐˆใ€‚ๆˆชๆญขๆ˜จๆ—ฅๆ™š9็‚น๏ผŒๅŒ…ๆ‹ฌๅŒ—ไบฌๆข…่ต›ๅพทๆ–ฏ-ๅฅ”้ฉฐ้”€ๅ”ฎๆœๅŠกๆœ‰้™ๅ…ฌๅธไธœๅŒบๆ€ป็ป็†ๅœจๅ†…็š„ๅคšๅ็ฎก็†ไบบๅ‘˜ไป็•™ๅœจไธŠๆตทๅŠžๅ…ฌๅฎคๅ†…" inputs = tokenizer(text, max_length=1024, return_tensors="pt") # Generate Summary summary_ids = model.generate(inputs["input_ids"]) tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] # model Output: ๆˆชๆญขๆ˜จๆ—ฅๆ™š9็‚น๏ผŒๅŒ…ๆ‹ฌๅŒ—ไบฌๆข…่ต›ๅพทๆ–ฏ-ๅฅ”้ฉฐ้”€ๅ”ฎๆœๅŠกๆœ‰้™ๅ…ฌๅธไธœๅŒบๆ€ป็ป็†ๅœจๅ†…็š„ๅคšๅ็ฎก็†ไบบๅ‘˜ไป็•™ๅœจไธŠๆตทๅŠžๅ…ฌๅฎคๅ†… ``` ## ๅผ•็”จ Citation ๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„[่ฎบๆ–‡](https://arxiv.org/abs/2209.02970)๏ผš If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970): ```text @article{fengshenbang, author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ``` ไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„[็ฝ‘็ซ™](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- language: zh tags: - summarization - chinese inference: False --- # Randeng-Pegasus-238M-Chinese - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM/blob/main/fengshen/examples/pegasus/pretrain_pegasus.sh) - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/zh/latest/docs/%E7%87%83%E7%81%AF%E7%B3%BB%E5%88%97/Randeng-Pegasus-238M-Chinese.html) ## ็ฎ€ไป‹ Brief Introduction ๅ–„ไบŽๅค„็†ๆ‘˜่ฆไปปๅŠก็š„๏ผŒไธญๆ–‡็‰ˆ็š„PAGASUS-baseใ€‚ Good at solving text summarization tasks, Chinese PAGASUS-base. ## ๆจกๅž‹ๅˆ†็ฑป Model Taxonomy | ้œ€ๆฑ‚ Demand | ไปปๅŠก Task | ็ณปๅˆ— Series | ๆจกๅž‹ Model | ๅ‚ๆ•ฐ Parameter | ้ขๅค– Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | ้€š็”จ General | ่‡ช็„ถ่ฏญ่จ€่ฝฌๆข NLT | ็‡ƒ็ฏ Randeng | PEFASUS | 238M | ไธญๆ–‡-Chinese | ## ๆจกๅž‹ไฟกๆฏ Model Information ๅ‚่€ƒ่ฎบๆ–‡๏ผš[PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf) ไธบไบ†่งฃๅ†ณไธญๆ–‡็š„่‡ชๅŠจๆ‘˜่ฆไปปๅŠก๏ผŒๆˆ‘ไปฌ้ตๅพชPEGASUS็š„่ฎพ่ฎกๆฅ่ฎญ็ปƒไธญๆ–‡็š„็‰ˆๆœฌใ€‚ๆˆ‘ไปฌไฝฟ็”จไบ†ๆ‚Ÿ้“่ฏญๆ–™ๅบ“(180G็‰ˆๆœฌ)ไฝœไธบ้ข„่ฎญ็ปƒๆ•ฐๆฎ้›†ใ€‚ๆญคๅค–๏ผŒ่€ƒ่™‘ๅˆฐไธญๆ–‡sentence pieceไธ็จณๅฎš๏ผŒๆˆ‘ไปฌๅœจRandeng-PEGASUSไธญๅŒๆ—ถไฝฟ็”จไบ†็ป“ๅทดๅˆ†่ฏๅ’ŒBERTๅˆ†่ฏๅ™จใ€‚ๆˆ‘ไปฌไนŸๆไพ›large็š„็‰ˆๆœฌ๏ผš[IDEA-CCNL/Randeng-Pegasus-523M-Chinese](https://huggingface.co/IDEA-CCNL/Randeng-Pegasus-523M-Chinese)ใ€‚ไปฅๅŠ๏ผŒๆˆ‘ไปฌไนŸๆไพ›ไบ†ๅœจไธญๆ–‡ๆ‘˜่ฆๆ•ฐๆฎ้›†ไธŠๅพฎ่ฐƒ็š„็‰ˆๆœฌ๏ผš[Randeng-Pegasus-238M-Summary-Chinese](https://huggingface.co/IDEA-CCNL/Randeng-Pegasus-238M-Summary-Chinese)ใ€‚ To solve Chinese abstractive summarization tasks, we follow the PEGASUS guidelines. We employ a version of WuDao Corpora (180 GB version) as a pre-training dataset. In addition, considering that the Chinese sentence chunk is unstable, we utilize jiebaand BERT tokenizer in our Randeng-PEGASUS. We also provide a large size version, available with [IDEA-CCNL/Randeng-Pegasus-523M-Chinese](https://huggingface.co/IDEA-CCNL/Randeng-Pegasus-523M-Chinese). And, we also provide a version after fine-tuning on Chinese text summarization datasets: [Randeng-Pegasus-238M-Summary-Chinese](https://huggingface.co/IDEA-CCNL/Randeng-Pegasus-238M-Summary-Chinese). ## ไฝฟ็”จ Usage ```python from transformers import PegasusForConditionalGeneration # Need to download tokenizers_pegasus.py and other Python script from Fengshenbang-LM github repo in advance, # or you can download tokenizers_pegasus.py and data_utils.py in https://huggingface.co/IDEA-CCNL/Randeng_Pegasus_238M/tree/main # Stronly recomend you git clone the Fengshenbang-LM repo: # 1. git clone https://github.com/IDEA-CCNL/Fengshenbang-LM # 2. cd Fengshenbang-LM/fengshen/examples/pegasus/ # and then you will see the tokenizers_pegasus.py and data_utils.py which are needed by pegasus model from tokenizers_pegasus import PegasusTokenizer model = PegasusForConditionalGeneration.from_pretrained("IDEA-CCNL/Randeng-Pegasus-238M-Chinese") tokenizer = PegasusTokenizer.from_pretrained("IDEA-CCNL/Randeng-Pegasus-238M-Chinese") text = "ๆฎๅพฎไฟกๅ…ฌไผ—ๅทโ€œ็•Œ้ขโ€ๆŠฅ้“๏ผŒ4ๆ—ฅไธŠๅˆ10็‚นๅทฆๅณ๏ผŒไธญๅ›ฝๅ‘ๆ”นๅง”ๅๅž„ๆ–ญ่ฐƒๆŸฅๅฐ็ป„็ชๅ‡ปๆŸฅ่ฎฟๅฅ”้ฉฐไธŠๆตทๅŠžไบ‹ๅค„๏ผŒ่ฐƒๅ–ๆ•ฐๆฎๆๆ–™๏ผŒๅนถๅฏนๅคšๅๅฅ”้ฉฐ้ซ˜็ฎก่ฟ›่กŒไบ†็บฆ่ฐˆใ€‚ๆˆชๆญขๆ˜จๆ—ฅๆ™š9็‚น๏ผŒๅŒ…ๆ‹ฌๅŒ—ไบฌๆข…่ต›ๅพทๆ–ฏ-ๅฅ”้ฉฐ้”€ๅ”ฎๆœๅŠกๆœ‰้™ๅ…ฌๅธไธœๅŒบๆ€ป็ป็†ๅœจๅ†…็š„ๅคšๅ็ฎก็†ไบบๅ‘˜ไป็•™ๅœจไธŠๆตทๅŠžๅ…ฌๅฎคๅ†…" inputs = tokenizer(text, max_length=512, return_tensors="pt") # Generate Summary summary_ids = model.generate(inputs["input_ids"]) tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] # model output: ๆˆชๆญขๆ˜จๆ—ฅๆ™š9็‚น๏ผŒๅŒ…ๆ‹ฌๅŒ—ไบฌๆข…่ต›ๅพทๆ–ฏ-ๅฅ”้ฉฐ้”€ๅ”ฎๆœๅŠกๆœ‰้™ๅ…ฌๅธไธœๅŒบๆ€ป็ป็†ๅœจๅ†…็š„ๅคšๅ็ฎก็†ไบบๅ‘˜ไป็•™ๅœจไธŠๆตทๅŠžๅ…ฌๅฎคๅ†… ``` ## ๅผ•็”จ Citation ๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„[่ฎบๆ–‡](https://arxiv.org/abs/2209.02970)๏ผš If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970): ```text @article{fengshenbang, author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ``` ไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„[็ฝ‘็ซ™](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
23
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="RalphX1/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
AnonymousSub/specter-bert-model
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: autotrain language: en widget: - text: "I love AutoTrain ๐Ÿค—" datasets: - qualitydatalab/autotrain-data-car-review-project co2_eq_emissions: 0.061185706621337065 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 966432120 - CO2 Emissions (in grams): 0.061185706621337065 ## Validation Metrics - Loss: 0.6066656112670898 - Accuracy: 0.724822695035461 - Macro F1: 0.7077087000886584 - Micro F1: 0.7248226950354609 - Weighted F1: 0.7077087000886584 - Macro Precision: 0.7143184427227084 - Micro Precision: 0.724822695035461 - Weighted Precision: 0.7143184427227083 - Macro Recall: 0.7248226950354609 - Micro Recall: 0.724822695035461 - Weighted Recall: 0.724822695035461 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/qualitydatalab/autotrain-car-review-project-966432120 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("qualitydatalab/autotrain-car-review-project-966432120", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("qualitydatalab/autotrain-car-review-project-966432120", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Anorak/nirvana
[ "pytorch", "pegasus", "text2text-generation", "unk", "dataset:Anorak/autonlp-data-Niravana-test2", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "PegasusForConditionalGeneration" ], "model_type": "pegasus", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2022-06-09T13:23:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 172.04 +/- 90.74 name: mean_reward verified: false --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnthonyNelson/DialoGPT-small-ricksanchez
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2022-06-09T13:26:40Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="i8pxgd2s/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
ArJakusz/DialoGPT-small-stark
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2022-06-09T15:02:08Z
--- tags: - DNA license: mit --- ## MiniDNA model This is a distilled version of [DNABERT](https://github.com/jerryji1993/DNABERT) by using MiniLM technique. It has a BERT architecture with 6 layers and 768 hidden units, pre-trained on 6-mer DNA sequences. For more details on the pre-training scheme and methods, please check the original [thesis report](http://www.diva-portal.org/smash/record.jsf?dswid=846&pid=diva2%3A1676068&c=1&searchType=SIMPLE&language=en&query=joana+palรฉs&af=%5B%5D&aq=%5B%5B%5D%5D&aq2=%5B%5B%5D%5D&aqe=%5B%5D&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all).. ## How to Use The model can be used to fine-tune on a downstream genomic task, e.g. promoter identification. ```python import torch from transformers import BertForSequenceClassification model = BertForSequenceClassification.from_pretrained('Peltarion/dnabert-minilm') ``` More details on how to fine-tune the model, dataset and additional source codes are available on [github.com/joanaapa/Distillation-DNABERT-Promoter](https://github.com/joanaapa/Distillation-DNABERT-Promoter).
ArJakusz/DialoGPT-small-starky
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: keras tags: - computer-vision - generative - variational-autoencoder - vq-vae --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training Metrics Model history needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Archie/myProject
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-06-09T16:11:52Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/994592419705274369/RLplF55e_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MrBeast</div> <div style="text-align: center; font-size: 14px;">@mrbeast</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from MrBeast. | Data | MrBeast | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 86 | | Short tweets | 729 | | Tweets kept | 2433 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/5cv62k60/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mrbeast's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/bfqzlltq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/bfqzlltq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mrbeast') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Arnold/wav2vec2-hausa-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-06-09T17:06:01Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1612 - F1: 0.8618 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2874 | 1.0 | 715 | 0.1764 | 0.8343 | | 0.1475 | 2.0 | 1430 | 0.1561 | 0.8508 | | 0.0936 | 3.0 | 2145 | 0.1612 | 0.8618 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
AshtonBenson/DialoGPT-small-quentin-coldwater
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-06-09T18:33:18Z
--- language: en thumbnail: http://www.huggingtweets.com/midudev/1654800505422/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1526668354609680384/r85fytOs_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">๐Ÿ”ด EN DIRECTO twitch.tv/midudev</div> <div style="text-align: center; font-size: 14px;">@midudev</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ๐Ÿ”ด EN DIRECTO twitch.tv/midudev. | Data | ๐Ÿ”ด EN DIRECTO twitch.tv/midudev | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 824 | | Short tweets | 163 | | Tweets kept | 2259 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/11iwoc6b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @midudev's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/s48ktc1m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/s48ktc1m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/midudev') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Augustvember/WokkaBot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-06-09T20:06:56Z
--- tags: - generated_from_keras_callback model-index: - name: CAP_coded_US_Congressional_bills results: [] widget: - text: "A bill to prohibt discrimination in employment because of race, color, religion, national origin, or ancestry" example_title: "example 1" - text: "A bill to require the promulgation of regulations to improve aviation safety in adverse weather conditions, and for other purposes." example_title: "example 2" --- This model predicts the issue category of US Congressional bills. The model is trained on ~250k US Congressional bills from 1950-2015. The issue coding scheme follows the Comparative Agenda Project: https://www.comparativeagendas.net/pages/master-codebook The model is cased (case sensitive) Any questions on the model and training data feel free to message me on twitter - @sachary_ Train Loss: 0.1318; Train Sparse Categorical Accuracy: 0.9268; Validation Loss: 0.2439; Validation Sparse Categorical Accuracy: 0.9161 The following hyperparameters were used during training: optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} training_precision: float32 ### Training hyperparameters ### Framework versions - Transformers 4.19.3 - TensorFlow 2.8.2 - Tokenizers 0.12.1
Augustvember/WokkaBot99
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikiann model-index: - name: ner_marathi_bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner_marathi_bert This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.3606 - Overall Precision: 0.8939 - Overall Recall: 0.9030 - Overall F1: 0.8984 - Overall Accuracy: 0.9347 - Loc F1: 0.8823 - Org F1: 0.8555 - Per F1: 0.9435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Loc F1 | Org F1 | Per F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:------:|:------:|:------:| | 0.2961 | 3.19 | 1000 | 0.3496 | 0.8720 | 0.8841 | 0.8780 | 0.9229 | 0.8599 | 0.8210 | 0.9343 | | 0.0613 | 6.39 | 2000 | 0.3606 | 0.8939 | 0.9030 | 0.8984 | 0.9347 | 0.8823 | 0.8555 | 0.9435 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
AvatarXD/DialoGPT-medium-Blitzo
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 374.00 +/- 214.89 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga pm390 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga pm390 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('max_grad_norm', 6), ('n_timesteps', 100000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Axon/resnet18-v1
[ "dataset:ImageNet", "arxiv:1512.03385", "Axon", "Elixir", "license:apache-2.0" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - diffusion license: mit --- Latent Diffusion **Paper**: [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) **Abstract**: By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism to control the image generation process without retraining. However, since these models typically operate directly in pixel space, optimization of powerful DMs often consumes hundreds of GPU days and inference is expensive due to sequential evaluations. To enable DM training on limited computational resources while retaining their quality and flexibility, we apply them in the latent space of powerful pretrained autoencoders. In contrast to previous work, training diffusion models on such a representation allows for the first time to reach a near-optimal point between complexity reduction and detail preservation, greatly boosting visual fidelity. By introducing cross-attention layers into the model architecture, we turn diffusion models into powerful and flexible generators for general conditioning inputs such as text or bounding boxes and high-resolution synthesis becomes possible in a convolutional manner. Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks, including unconditional image generation, semantic scene synthesis, and super-resolution, while significantly reducing computational requirements compared to pixel-based DMs. Code is available at this https URL. ## Usage ```python from diffusers import DiffusionPipeline ldm = DiffusionPipeline.from_pretrained("fusing/latent-diffusion-text2im-large") generator = torch.manual_seed(42) prompt = "A painting of a squirrel eating a burger" image = ldm([prompt], generator=generator, eta=0.3, guidance_scale=6.0, num_inference_steps=50) image_processed = image.cpu().permute(0, 2, 3, 1) image_processed = image_processed * 255. image_processed = image_processed.numpy().astype(np.uint8) image_pil = PIL.Image.fromarray(image_processed[0]) # save image image_pil.save("test.png") ``` ## Samples 1. "A street sign that reads Huggingface." ![sample_1](https://huggingface.co/datasets/valhalla/images/resolve/main/ldm-1.png) 2."A painting of a squirrel eating a burger" ![sample_2](https://huggingface.co/datasets/valhalla/images/resolve/main/ldm-2.png)
Axon/resnet50-v1
[ "dataset:ImageNet", "arxiv:1512.03385", "Axon", "Elixir", "license:apache-2.0" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NLP-CIC-WFU_Clinical_Cases_NER_Paragraph_Tokenized_mBERT_cased_fine_tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP-CIC-WFU_Clinical_Cases_NER_Paragraph_Tokenized_mBERT_cased_fine_tuned This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0537 - Precision: 0.8585 - Recall: 0.7101 - F1: 0.7773 - Accuracy: 0.9893 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0693 | 1.0 | 514 | 0.0416 | 0.9485 | 0.6492 | 0.7708 | 0.9884 | | 0.0367 | 2.0 | 1028 | 0.0396 | 0.9391 | 0.6710 | 0.7827 | 0.9892 | | 0.0283 | 3.0 | 1542 | 0.0385 | 0.9388 | 0.6889 | 0.7947 | 0.9899 | | 0.0222 | 4.0 | 2056 | 0.0422 | 0.9456 | 0.6790 | 0.7904 | 0.9898 | | 0.0182 | 5.0 | 2570 | 0.0457 | 0.9349 | 0.6925 | 0.7956 | 0.9901 | | 0.013 | 6.0 | 3084 | 0.0484 | 0.8947 | 0.7062 | 0.7894 | 0.9899 | | 0.0084 | 7.0 | 3598 | 0.0537 | 0.8585 | 0.7101 | 0.7773 | 0.9893 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Ayato/DialoGTP-large-Yuri
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - conversational --- # Omar Dialog GPT Model Medium 10 # Trained on discord channels: # half of Dragalia chat
Ayham/albert_gpt2_Full_summarization_cnndm
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.931 - name: F1 type: f1 value: 0.9313235272564213 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1595 - Accuracy: 0.931 - F1: 0.9313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 125 | 0.1873 | 0.924 | 0.9234 | | 0.1992 | 2.0 | 250 | 0.1649 | 0.929 | 0.9293 | | 0.1992 | 3.0 | 375 | 0.1595 | 0.931 | 0.9313 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
Ayham/bert_distilgpt2_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2022-06-10T00:30:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-base-cased-finetuned-filtered-0609 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-filtered-0609 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2410 - Accuracy: 0.9748 - Precision: 0.9751 - Recall: 0.9748 - F1: 0.9749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2028 | 1.0 | 3180 | 0.2405 | 0.9535 | 0.9561 | 0.9535 | 0.9538 | | 0.1632 | 2.0 | 6360 | 0.1686 | 0.9660 | 0.9664 | 0.9660 | 0.9661 | | 0.1203 | 3.0 | 9540 | 0.1625 | 0.9648 | 0.9655 | 0.9648 | 0.9648 | | 0.1233 | 4.0 | 12720 | 0.1510 | 0.9698 | 0.9702 | 0.9698 | 0.9699 | | 0.0823 | 5.0 | 15900 | 0.1600 | 0.9730 | 0.9732 | 0.9730 | 0.9730 | | 0.0453 | 6.0 | 19080 | 0.1953 | 0.9723 | 0.9724 | 0.9723 | 0.9723 | | 0.031 | 7.0 | 22260 | 0.1754 | 0.9755 | 0.9755 | 0.9755 | 0.9755 | | 0.0166 | 8.0 | 25440 | 0.2155 | 0.9739 | 0.9740 | 0.9739 | 0.9739 | | 0.0036 | 9.0 | 28620 | 0.2519 | 0.9730 | 0.9733 | 0.9730 | 0.9730 | | 0.0035 | 10.0 | 31800 | 0.2410 | 0.9748 | 0.9751 | 0.9748 | 0.9749 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.1+cu111 - Datasets 1.16.1 - Tokenizers 0.12.1
Ayham/roberta_bert_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: vit_test_1_95 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9501661062240601 --- # vit_test_1_95 Autogenerated by HuggingPics๐Ÿค—๐Ÿ–ผ๏ธ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images
Ayham/roberta_gpt2_new_max64_summarization_cnndm
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
Task: Given a set of input keywords, generate a corresponding text output for a section in the legal domain. Dataset: We used the Contract Understanding Atticus Dataset (CUAD). It is a corpus of 13,000+ labels in 510 commercial legal contracts. They have been manually labeled under the supervision of experienced lawyers to identify 41 types of legal clauses (e.g. licenses, warranty, governing law, insurance, etcโ€ฆ). Workflow: ![alt text](https://github.com/vikramNU/Practicum/raw/main/Screenshot%202022-06-09%20210134.jpg) You can connect me at [email protected]
Ayham/roberta_gpt2_summarization_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - enoriega/odinsynth_dataset model-index: - name: rule_learning_margin_1mm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rule_learning_margin_1mm This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the enoriega/odinsynth_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3806 - Margin Accuracy: 0.8239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2000 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Margin Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:| | 0.6482 | 0.16 | 20 | 0.6494 | 0.7263 | | 0.5151 | 0.32 | 40 | 0.5088 | 0.7792 | | 0.4822 | 0.48 | 60 | 0.4429 | 0.8045 | | 0.4472 | 0.64 | 80 | 0.4265 | 0.8107 | | 0.4352 | 0.8 | 100 | 0.4155 | 0.8132 | | 0.4335 | 0.96 | 120 | 0.4128 | 0.8116 | | 0.4113 | 1.12 | 140 | 0.4119 | 0.8142 | | 0.4186 | 1.28 | 160 | 0.4075 | 0.8120 | | 0.42 | 1.44 | 180 | 0.4072 | 0.8123 | | 0.4175 | 1.6 | 200 | 0.4080 | 0.8130 | | 0.4097 | 1.76 | 220 | 0.4031 | 0.8128 | | 0.397 | 1.92 | 240 | 0.4004 | 0.8130 | | 0.4115 | 2.08 | 260 | 0.3979 | 0.8136 | | 0.4108 | 2.24 | 280 | 0.3940 | 0.8167 | | 0.4125 | 2.4 | 300 | 0.3879 | 0.8218 | | 0.4117 | 2.56 | 320 | 0.3848 | 0.8217 | | 0.3967 | 2.72 | 340 | 0.3818 | 0.8231 | | 0.3947 | 2.88 | 360 | 0.3813 | 0.8240 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
Ayou/chinese_mobile_bert
[ "pytorch", "mobilebert", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "MobileBertForMaskedLM" ], "model_type": "mobilebert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="thenewcompany/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Azaghast/DistilBART-SCP-ParaSummarization
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "BartForConditionalGeneration" ], "model_type": "bart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 142, "min_length": 56, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: zh pipeline_tag: fill-mask widget: - text: "ๆ นๆฎๆ–ฐ้—ปๆŠฅ้“๏ผŒไธ‰ๅคง[MASK]ๆ•ฐๅˆๅŽ้›†ไฝ“ๆถจ่ถ…1๏ผ…ใ€‚" - text: "็”จๅ„็ง้€”ๅพ„ๆ”ฏๆŒไธญๅฐ[MASK]ไผไธš่ž่ต„ใ€‚" tags: - bert license: apache-2.0 --- ## Chinese DKPLM (Decomposable Knowledge-enhanced Pre-trained Language Model) for the financial domain For Chinese natural language processing in specific domains, we provide **Chinese DKPLM (Decomposable Knowledge-enhanced Pre-trained Language Model)** for the financial domain named **pai-dkplm-financial-base-zh**, from our AAAI 2021 paper named **DKPLM: Decomposable Knowledge-enhanced Pre-trained Language Model for Natural Language Understanding**. This repository is developed based on the EasyNLP framework: [https://github.com/alibaba/EasyNLP](https://github.com/alibaba/EasyNLP ) developed by the Alibaba PAI team. ## Citation If you find the resource is useful, please cite the following papers in your work. - For the EasyNLP framework: ``` @article{easynlp, title = {EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing}, publisher = {arXiv}, author = {Wang, Chengyu and Qiu, Minghui and Zhang, Taolin and Liu, Tingting and Li, Lei and Wang, Jianing and Wang, Ming and Huang, Jun and Lin, Wei}, url = {https://arxiv.org/abs/2205.00258}, year = {2022} } ``` - For DKPLM: ``` @article{dkplm, title = {DKPLM: Decomposable Knowledge-enhanced Pre-trained Language Model for Natural Language Understanding}, author = {Zhang, Taolin and Wang, Chengyu and Hu, Nan and Qiu, Minghui and Tang, Chengguang and He, Xiaofeng and Huang, Jun}, url = {https://arxiv.org/abs/2112.01047}, publisher = {arXiv}, year = {2021} } ```
Azizun/Geotrend-10-epochs
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: MiniLM-L12-H384-uncased-mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.875 - name: F1 type: f1 value: 0.9097345132743363 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLM-L12-H384-uncased-mrpc This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.4319 - Accuracy: 0.875 - F1: 0.9097 - Combined Score: 0.8924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
Azura/data
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Backedman/DialoGPT-small-Anika
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert-2ndfinetune-epru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-2ndfinetune-epru This model is a fine-tuned version of [mmillet/distilrubert-tiny-cased-conversational-v1_best_finetuned_emotion_experiment_augmented_anger_fear](https://huggingface.co/mmillet/distilrubert-tiny-cased-conversational-v1_best_finetuned_emotion_experiment_augmented_anger_fear) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3531 - Accuracy: 0.9054 - F1: 0.9034 - Precision: 0.9074 - Recall: 0.9054 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4716 | 1.0 | 11 | 0.2851 | 0.8986 | 0.8945 | 0.9029 | 0.8986 | | 0.2842 | 2.0 | 22 | 0.3041 | 0.8851 | 0.8796 | 0.8816 | 0.8851 | | 0.167 | 3.0 | 33 | 0.2996 | 0.8986 | 0.8914 | 0.8997 | 0.8986 | | 0.1527 | 4.0 | 44 | 0.2443 | 0.9189 | 0.9163 | 0.9222 | 0.9189 | | 0.0926 | 5.0 | 55 | 0.2777 | 0.9054 | 0.9016 | 0.9059 | 0.9054 | | 0.0897 | 6.0 | 66 | 0.3081 | 0.9122 | 0.9080 | 0.9147 | 0.9122 | | 0.0438 | 7.0 | 77 | 0.3332 | 0.8986 | 0.8952 | 0.8993 | 0.8986 | | 0.0433 | 8.0 | 88 | 0.3480 | 0.8851 | 0.8859 | 0.8896 | 0.8851 | | 0.0398 | 9.0 | 99 | 0.3531 | 0.9054 | 0.9034 | 0.9074 | 0.9054 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Battlehooks/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-06-10T12:19:45Z
--- library_name: stable-baselines3 tags: - Humanoid-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 380.12 +/- 81.26 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Humanoid-v3 type: Humanoid-v3 --- # **A2C** Agent playing **Humanoid-v3** This is a trained model of a **A2C** agent playing **Humanoid-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo a2c --env Humanoid-v3 -orga sb3 -f logs/ python enjoy.py --algo a2c --env Humanoid-v3 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo a2c --env Humanoid-v3 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo a2c --env Humanoid-v3 -f logs/ -orga sb3 ``` ## Hyperparameters ```python OrderedDict([('n_timesteps', 2000000.0), ('normalize', True), ('policy', 'MlpPolicy'), ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) ```
BatuhanYilmaz/bert-finetuned-mrpc
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - conversational --- # House MD DialoGPT Model
BatuhanYilmaz/bert-finetuned-ner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-06-10T12:24:12Z
--- language: en datasets: - ccdv/pubmed-summarization license: apache-2.0 --- ## Introduction [Google's LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/pdf/2112.07916.pdf) introduced as an extension of a successful [T5 model](https://arxiv.org/pdf/1910.10683.pdf). This is an unofficial *longt5-large-16384-pubmed-3k_steps* checkpoint. I.e., this is a large configuration of the LongT5 model with a `transient-global` attention fine-tuned on [pubmed summarization dataset](https://huggingface.co/datasets/ccdv/pubmed-summarization) for 3,000 training steps. It may be worth continuing in the fine-tuning as we did not train the model until the convergence. ## Results and Fine-tuning Details The fine-tuned model achieves the following results on the evaluation set using `beam_search=3` and without any specific calibration of generation parameters are presented below, altogether with the results from the original paper (the original scores are higher, very likely due to a higher number of training steps). | Metric | Score | Score (original paper) | --- | --- | --- | | Rouge-1 | 47.44 | 49.98 | | Rouge-2 | 22.68 | 24.69 | | Rouge-L | 29.83 | x | | Rouge-Lsum | 43.13 | 46.46 | The training parameters follow the ones specified in the paper. We accumulated batch size to 128 examples and used `Adafactor` optimizer with a constant learning rate `0.001`. The full training hyper-parameters and logs can be found via the following [W&B run](https://wandb.ai/stancld/LongT5/runs/1lwncl8a?workspace=user-stancld). The model was trained using the [HuggingFace's trainer](https://github.com/huggingface/transformers/blob/main/src/transformers/trainer_seq2seq.py). The only specific adjustment, I made for the training, was dropping very short input articles (less than 16 words (a bit of mistake, should be less than 16 tokens)) as this sequences do not contribute to gradient creation in the *transient-global* attention, which resulted in training crashes when DDP used. ## Usage ```python LONG_ARTICLE = """"anxiety affects quality of life in those living with parkinson 's disease ( pd ) more so than overall cognitive status , motor deficits , apathy , and depression [ 13 ] . although anxiety and depression are often related and coexist in pd patients , recent research suggests that anxiety rather than depression is the most prominent and prevalent mood disorder in pd [ 5 , 6 ] . yet , our current understanding of anxiety and its impact on cognition in pd , as well as its neural basis and best treatment practices , remains meager and lags far behind that of depression . overall , neuropsychiatric symptoms in pd have been shown to be negatively associated with cognitive performance . for example , higher depression scores have been correlated with lower scores on the mini - mental state exam ( mmse ) [ 8 , 9 ] as well as tests of memory and executive functions ( e.g. , attention ) [ 1014 ] . likewise , apathy and anhedonia in pd patients have been associated with executive dysfunction [ 10 , 1523 ] . however , few studies have specifically investigated the relationship between anxiety and cognition in pd . one study showed a strong negative relationship between anxiety ( both state and trait ) and overall cognitive performance ( measured by the total of the repeatable battery for the assessment of neuropsychological status index ) within a sample of 27 pd patients . furthermore , trait anxiety was negatively associated with each of the cognitive domains assessed by the rbans ( i.e. , immediate memory , visuospatial construction , language , attention , and delayed memory ) . two further studies have examined whether anxiety differentially affects cognition in patients with left - sided dominant pd ( lpd ) versus right - sided dominant pd ( rpd ) ; however , their findings were inconsistent . the first study found that working memory performance was worse in lpd patients with anxiety compared to rpd patients with anxiety , whereas the second study reported that , in lpd , apathy but not anxiety was associated with performance on nonverbally mediated executive functions and visuospatial tasks ( e.g. , tmt - b , wms - iii spatial span ) , while in rpd , anxiety but not apathy significantly correlated with performance on verbally mediated tasks ( e.g. , clock reading test and boston naming test ) . furthermore , anxiety was significantly correlated with neuropsychological measures of attention and executive and visuospatial functions . taken together , it is evident that there are limited and inconsistent findings describing the relationship between anxiety and cognition in pd and more specifically how anxiety might influence particular domains of cognition such as attention and memory and executive functioning . it is also striking that , to date , no study has examined the influence of anxiety on cognition in pd by directly comparing groups of pd patients with and without anxiety while excluding depression . given that research on healthy young adults suggests that anxiety reduces processing capacity and impairs processing efficiency , especially in the central executive and attentional systems of working memory [ 26 , 27 ] , we hypothesized that pd patients with anxiety would show impairments in attentional set - shifting and working memory compared to pd patients without anxiety . furthermore , since previous work , albeit limited , has focused on the influence of symptom laterality on anxiety and cognition , we also explored this relationship . seventeen pd patients with anxiety and thirty - three pd patients without anxiety were included in this study ( see table 1 ) . the cross - sectional data from these participants was taken from a patient database that has been compiled over the past 8 years ( since 2008 ) at the parkinson 's disease research clinic at the brain and mind centre , university of sydney . inclusion criteria involved a diagnosis of idiopathic pd according to the united kingdom parkinson 's disease society brain bank criteria and were confirmed by a neurologist ( sjgl ) . patients also had to have an adequate proficiency in english and have completed a full neuropsychological assessment . ten patients in this study ( 5 pd with anxiety ; 5 pd without anxiety ) were taking psychotropic drugs ( i.e. , benzodiazepine or selective serotonin reuptake inhibitor ) . patients were also excluded if they had other neurological disorders , psychiatric disorders other than affective disorders ( such as anxiety ) , or if they reported a score greater than six on the depression subscale of the hospital anxiety and depression scale ( hads ) . thus , all participants who scored within a depressed ( hads - d > 6 ) range were excluded from this study , in attempt to examine a refined sample of pd patients with and without anxiety in order to determine the independent effect of anxiety on cognition . this research was approved by the human research ethics committee of the university of sydney , and written informed consent was obtained from all participants . self - reported hads was used to assess anxiety in pd and has been previously shown to be a useful measure of clinical anxiety in pd . a cut - off score of > 8 on the anxiety subscale of the hads ( hads - a ) was used to identify pd cases with anxiety ( pda+ ) , while a cut - off score of < 6 on the hads - a was used to identify pd cases without anxiety ( pda ) . this criterion was more stringent than usual ( > 7 cut - off score ) , in effort to create distinct patient groups . the neurological evaluation rated participants according to hoehn and yahr ( h&y ) stages and assessed their motor symptoms using part iii of the revised mds task force unified parkinson 's disease rating scale ( updrs ) . in a similar way this was determined by calculating a total left and right score from rigidity items 3035 , voluntary movement items 3643 , and tremor items 5057 from the mds - updrs part iii ( see table 1 ) . processing speed was assessed using the trail making test , part a ( tmt - a , z - score ) . attentional set - shifting was measured using the trail making test , part b ( tmt - b , z - score ) . working memory was assessed using the digit span forward and backward subtest of the wechsler memory scale - iii ( raw scores ) . language was assessed with semantic and phonemic verbal fluency via the controlled oral word associated test ( cowat animals and letters , z - score ) . the ability to retain learned verbal memory was assessed using the logical memory subtest from the wechsler memory scale - iii ( lm - i z - score , lm - ii z - score , % lm retention z - score ) . the mini - mental state examination ( mmse ) demographic , clinical , and neuropsychological variables were compared between the two groups with the independent t - test or mann whitney u test , depending on whether the variable met parametric assumptions . chi - square tests were used to examine gender and symptom laterality differences between groups . all analyses employed an alpha level of p < 0.05 and were two - tailed . spearman correlations were performed separately in each group to examine associations between anxiety and/or depression ratings and cognitive functions . as expected , the pda+ group reported significant greater levels of anxiety on the hads - a ( u = 0 , p < 0.001 ) and higher total score on the hads ( u = 1 , p < 0.001 ) compared to the pda group ( table 1 ) . groups were matched in age ( t(48 ) = 1.31 , p = 0.20 ) , disease duration ( u = 259 , p = 0.66 ) , updrs - iii score ( u = 250.5 , p = 0.65 ) , h&y ( u = 245 , p = 0.43 ) , ledd ( u = 159.5 , p = 0.80 ) , and depression ( hads - d ) ( u = 190.5 , p = 0.06 ) . additionally , all groups were matched in the distribution of gender ( = 0.098 , p = 0.75 ) and side - affected ( = 0.765 , p = 0.38 ) . there were no group differences for tmt - a performance ( u = 256 , p = 0.62 ) ( table 2 ) ; however , the pda+ group had worse performance on the trail making test part b ( t(46 ) = 2.03 , p = 0.048 ) compared to the pda group ( figure 1 ) . the pda+ group also demonstrated significantly worse performance on the digit span forward subtest ( t(48 ) = 2.22 , p = 0.031 ) and backward subtest ( u = 190.5 , p = 0.016 ) compared to the pda group ( figures 2(a ) and 2(b ) ) . neither semantic verbal fluency ( t(47 ) = 0.70 , p = 0.49 ) nor phonemic verbal fluency ( t(47 ) = 0.39 , p = 0.70 ) differed between groups . logical memory i immediate recall test ( u = 176 , p = 0.059 ) showed a trend that the pda+ group had worse new verbal learning and immediate recall abilities than the pda group . however , logical memory ii test performance ( u = 219 , p = 0.204 ) and logical memory % retention ( u = 242.5 , p = 0.434 ) did not differ between groups . there were also no differences between groups in global cognition ( mmse ) ( u = 222.5 , p = 0.23 ) . participants were split into lpd and rpd , and then further group differences were examined between pda+ and pda. importantly , the groups remained matched in age , disease duration , updrs - iii , dde , h&y stage , and depression but remained significantly different on self - reported anxiety . lpda+ demonstrated worse performance on the digit span forward test ( t(19 ) = 2.29 , p = 0.033 ) compared to lpda , whereas rpda+ demonstrated worse performance on the digit span backward test ( u = 36.5 , p = 0.006 ) , lm - i immediate recall ( u = 37.5 , p = 0.008 ) , and lm - ii ( u = 45.0 , p = 0.021 ) but not lm % retention ( u = 75.5 , p = 0.39 ) compared to rpda. this study is the first to directly compare cognition between pd patients with and without anxiety . the findings confirmed our hypothesis that anxiety negatively influences attentional set - shifting and working memory in pd . more specifically , we found that pd patients with anxiety were more impaired on the trail making test part b which assessed attentional set - shifting , on both digit span tests which assessed working memory and attention , and to a lesser extent on the logical memory test which assessed memory and new verbal learning compared to pd patients without anxiety . taken together , these findings suggest that anxiety in pd may reduce processing capacity and impair processing efficiency , especially in the central executive and attentional systems of working memory in a similar way as seen in young healthy adults [ 26 , 27 ] . although the neurobiology of anxiety in pd remains unknown , many researchers have postulated that anxiety disorders are related to neurochemical changes that occur during the early , premotor stages of pd - related degeneration [ 37 , 38 ] such as nigrostriatal dopamine depletion , as well as cell loss within serotonergic and noradrenergic brainstem nuclei ( i.e. , raphe nuclei and locus coeruleus , resp . , which provide massive inputs to corticolimbic regions ) . over time , chronic dysregulation of adrenocortical and catecholamine functions can lead to hippocampal damage as well as dysfunctional prefrontal neural circuitries [ 39 , 40 ] , which play a key role in memory and attention . recent functional neuroimaging work has suggested that enhanced hippocampal activation during executive functioning and working memory tasks may represent compensatory processes for impaired frontostriatal functions in pd patients compared to controls . therefore , chronic stress from anxiety , for example , may disrupt compensatory processes in pd patients and explain the cognitive impairments specifically in working memory and attention seen in pd patients with anxiety . it has also been suggested that hyperactivation within the putamen may reflect a compensatory striatal mechanism to maintain normal working memory performance in pd patients ; however , losing this compensatory activation has been shown to contribute to poor working memory performance . anxiety in mild pd has been linked to reduced putamen dopamine uptake which becomes more extensive as the disease progresses . this further supports the notion that anxiety may disrupt compensatory striatal mechanisms as well , providing another possible explanation for the cognitive impairments observed in pd patients with anxiety in this study . noradrenergic and serotonergic systems should also be considered when trying to explain the mechanisms by which anxiety may influence cognition in pd . although these neurotransmitter systems are relatively understudied in pd cognition , treating the noradrenergic and serotonergic systems has shown beneficial effects on cognition in pd . selective serotonin reuptake inhibitor , citalopram , was shown to improve response inhibition deficits in pd , while noradrenaline reuptake blocker , atomoxetine , has been recently reported to have promising effects on cognition in pd [ 45 , 46 ] . overall , very few neuroimaging studies have been conducted in pd in order to understand the neural correlates of pd anxiety and its underlying neural pathology . future research should focus on relating anatomical changes and neurochemical changes to neural activation in order to gain a clearer understanding on how these pathologies affect anxiety in pd . to further understand how anxiety and cognitive dysfunction are related , future research should focus on using advanced structural and function imaging techniques to explain both cognitive and neural breakdowns that are associated with anxiety in pd patients . research has indicated that those with amnestic mild cognitive impairment who have more neuropsychiatric symptoms have a greater risk of developing dementia compared to those with fewer neuropsychiatric symptoms . future studies should also examine whether treating neuropsychiatric symptoms might impact the progression of cognitive decline and improve cognitive impairments in pd patients . previous studies have used pd symptom laterality as a window to infer asymmetrical dysfunction of neural circuits . for example , lpd patients have greater inferred right hemisphere pathology , whereas rpd patients have greater inferred left hemisphere pathology . thus , cognitive domains predominantly subserved by the left hemisphere ( e.g. , verbally mediated tasks of executive function and verbal memory ) might be hypothesized to be more affected in rpd than lpd ; however , this remains controversial . it has also been suggested that since anxiety is a common feature of left hemisphere involvement [ 48 , 49 ] , cognitive domains subserved by the left hemisphere may also be more strongly related to anxiety . results from this study showed selective verbal memory deficits in rpd patients with anxiety compared to rpd without anxiety , whereas lpd patients with anxiety had greater attentional / working memory deficits compared to lpd without anxiety . although these results align with previous research , interpretations of these findings should be made with caution due to the small sample size in the lpd comparison specifically . recent work has suggested that the hads questionnaire may underestimate the burden of anxiety related symptomology and therefore be a less sensitive measure of anxiety in pd [ 30 , 50 ] . in addition , our small sample size also limited the statistical power for detecting significant findings . based on these limitations , our findings are likely conservative and underrepresent the true impact anxiety has on cognition in pd . additionally , the current study employed a very brief neuropsychological assessment including one or two tests for each cognitive domain . future studies are encouraged to collect a more complex and comprehensive battery from a larger sample of pd participants in order to better understand the role anxiety plays on cognition in pd . another limitation of this study was the absence of diagnostic interviews to characterize participants ' psychiatric symptoms and specify the type of anxiety disorders included in this study . future studies should perform diagnostic interviews with participants ( e.g. , using dsm - v criteria ) rather than relying on self - reported measures to group participants , in order to better understand whether the type of anxiety disorder ( e.g. , social anxiety , phobias , panic disorders , and generalized anxiety ) influences cognitive performance differently in pd . one advantage the hads questionnaire provided over other anxiety scales was that it assessed both anxiety and depression simultaneously and allowed us to control for coexisting depression . although there was a trend that the pda+ group self - reported higher levels of depression than the pda group , all participants included in the study scored < 6 on the depression subscale of the hads . controlling for depression while assessing anxiety has been identified as a key shortcoming in the majority of recent work . considering many previous studies have investigated the influence of depression on cognition in pd without accounting for the presence of anxiety and the inconsistent findings reported to date , we recommend that future research should try to disentangle the influence of anxiety versus depression on cognitive impairments in pd . considering the growing number of clinical trials for treating depression , there are few if any for the treatment of anxiety in pd . anxiety is a key contributor to decreased quality of life in pd and greatly requires better treatment options . moreover , anxiety has been suggested to play a key role in freezing of gait ( fog ) , which is also related to attentional set - shifting [ 52 , 53 ] . future research should examine the link between anxiety , set - shifting , and fog , in order to determine whether treating anxiety might be a potential therapy for improving fog .""" import torch from transformers import AutoTokenizer, LongT5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps") input_ids = tokenizer(LONG_ARTICLE, return_tensors="pt").input_ids.to("cuda") model = LongT5ForConditionalGeneration.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps", return_dict_in_generate=True).to("cuda") sequences = model.generate(input_ids).sequences summary = tokenizer.batch_decode(sequences) ```
BatuhanYilmaz/bert-finetuned-nerxD
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-06-10T12:36:40Z
--- library_name: keras tags: - image-classification - computer-vision - consistency-regularization - cifar10 --- ## Model description ### Consistency training with supervision [Keras Example Link](https://keras.io/examples/vision/consistency_training/) In this example, we have trained an image classification model enforcing a sense of consistency inside it by doing the following: - Train a standard image classification model. - Train an equal or larger model on a noisy version of the dataset (augmented using RandAugment). - To do this, we will first obtain predictions of the previous model on the clean images of the dataset. - We will then use these predictions and train the second model to match these predictions on the noisy variant of the same images. This is identical to the workflow of Knowledge Distillation but since the student model is equal or larger in size this process is also referred to as Self-Training. This overall training workflow finds its roots in works like FixMatch, Unsupervised Data Augmentation for Consistency Training, and Noisy Student Training. Since this training process encourages a model yield consistent predictions for clean as well as noisy images, it's often referred to as consistency training or training with consistency regularization. Although the example focuses on using consistency training to enhance the robustness of models to common corruptions this example can also serve a template for performing weakly supervised learning. Full Credits to <a href = "https://twitter.com/RisingSayak" target='_blank'> Sayak Paul </a> for this work. This repo contains only the <b> Teacher Model </b> of this training example. <b>Student Model </b>Repo can be find at this <a href = "" target='_blank'> Link </a>. ## Intended uses & limitations More information needed ## Training and evaluation data Trained and evaluated on [CIFAR-10](https://keras.io/api/datasets/cifar10/) dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | name | optimizer | average_period | start_averaging | training_precision | |----|---------|--------------|---------------|------------------| |SWA|{'class_name': 'Adam', 'config': {'name': 'Adam', 'learning_rate': 1.0000001e-07, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}}|10|0|float32| ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
BatuhanYilmaz/distilbert-base-uncased-finetuned-squad-d5716d28
[ "pytorch", "distilbert", "fill-mask", "en", "dataset:squad", "arxiv:1910.01108", "transformers", "question-answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
18
null
--- library_name: keras tags: - image-classification - computer-vision - consistency-regularization - cifar10 --- ## Model description ### Consistency training with supervision [Keras Example Link](https://keras.io/examples/vision/consistency_training/) In this example, we have trained an image classification model enforcing a sense of consistency inside it by doing the following: - Train a standard image classification model. - Train an equal or larger model on a noisy version of the dataset (augmented using RandAugment). - To do this, we will first obtain predictions of the previous model on the clean images of the dataset. - We will then use these predictions and train the second model to match these predictions on the noisy variant of the same images. This is identical to the workflow of Knowledge Distillation but since the student model is equal or larger in size this process is also referred to as Self-Training. This overall training workflow finds its roots in works like FixMatch, Unsupervised Data Augmentation for Consistency Training, and Noisy Student Training. Since this training process encourages a model yield consistent predictions for clean as well as noisy images, it's often referred to as consistency training or training with consistency regularization. Although the example focuses on using consistency training to enhance the robustness of models to common corruptions this example can also serve a template for performing weakly supervised learning. Full Credits to <a href = "https://twitter.com/RisingSayak" target='_blank'> Sayak Paul </a> for this work. This repo contains only the <b>Student Model</b> of this training example. <b>Teacher Model </b>Repo can be find at this <a href = "" target='_blank'> Link </a>. ## Intended uses & limitations More information needed ## Training and evaluation data Trained and evaluated on [CIFAR-10](https://keras.io/api/datasets/cifar10/) dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | name | optimizer | average_period | start_averaging | training_precision | |----|---------|--------------|---------------|------------------| |SWA|{'class_name': 'Adam', 'config': {'name': 'Adam', 'learning_rate': 3.9063e-06, 'decay': 0.5, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}}|10|0|float32| ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
BatuhanYilmaz/dummy-model
[ "tf", "camembert", "fill-mask", "transformers", "generated_from_keras_callback", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "CamembertForMaskedLM" ], "model_type": "camembert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - generated_from_trainer datasets: - ydshieh/coco_dataset_script model-index: - name: clip-roberta-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-roberta-finetuned This model is a fine-tuned version of [./models/clip-roberta](https://huggingface.co/./models/clip-roberta) on the ydshieh/coco_dataset_script 2017 dataset. It achieves the following results on the evaluation set: - Loss: 2.7269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
BatuhanYilmaz/marian-finetuned-kde4-en-to-fr
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-06-10T12:49:12Z
--- language: - "ja" tags: - "japanese" - "masked-lm" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "ๆ—ฅๆœฌใซ็€ใ„ใŸใ‚‰[MASK]ใ‚’่จชใญใชใ•ใ„ใ€‚" --- # deberta-large-japanese-unidic ## Model Description This is a DeBERTa(V2) model pre-trained on ้’็ฉบๆ–‡ๅบซ texts with BertJapaneseTokenizer. You can fine-tune `deberta-large-japanese-unidic` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-unidic-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-unidic-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic") ``` [fugashi](https://pypi.org/project/fugashi) and [unidic-lite](https://pypi.org/project/unidic-lite) are required.
BatuhanYilmaz/mlm-finetuned-imdb
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "ๅ›ฝๅขƒใฎ้•ทใ„ใƒˆใƒณใƒใƒซใ‚’ๆŠœใ‘ใ‚‹ใจ้›ชๅ›ฝใงใ‚ใฃใŸใ€‚" --- # deberta-large-japanese-unidic-luw-upos ## Model Description This is a DeBERTa(V2) model pre-trained on ้’็ฉบๆ–‡ๅบซ texts for POS-tagging and dependency-parsing, derived from [deberta-large-japanese-unidic](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-unidic). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic-luw-upos") s="ๅ›ฝๅขƒใฎ้•ทใ„ใƒˆใƒณใƒใƒซใ‚’ๆŠœใ‘ใ‚‹ใจ้›ชๅ›ฝใงใ‚ใฃใŸใ€‚" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/deberta-large-japanese-unidic-luw-upos") print(nlp("ๅ›ฝๅขƒใฎ้•ทใ„ใƒˆใƒณใƒใƒซใ‚’ๆŠœใ‘ใ‚‹ใจ้›ชๅ›ฝใงใ‚ใฃใŸใ€‚")) ``` [fugashi](https://pypi.org/project/fugashi), [unidic-lite](https://pypi.org/project/unidic-lite) and [pytokenizations](https://pypi.org/project/pytokenizations) are required. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
Baybars/wav2vec2-xls-r-1b-turkish
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - recall model-index: - name: camembert-base-finetuned-LineCause results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-LineCause This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Accuracy: 1.0 - F1: 1.0 - Recall: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 50 - eval_batch_size: 50 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:------:| | 0.0428 | 1.0 | 4409 | 0.0002 | 1.0 | 1.0 | 1.0 | | 0.0009 | 2.0 | 8818 | 0.0001 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Bharathdamu/wav2vec2-large-xls-r-300m-hindi3-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6653 with parameters: ``` {'batch_size': 75, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `bpr_loss.BPRLossFunction` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Bharathdamu/wav2vec2-model-hindi-stt
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 817.50 +/- 327.32 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga meln1k -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga meln1k ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
BigSalmon/BestMask2
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- language: en thumbnail: http://www.huggingtweets.com/smallmutuals/1654888348503/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433527116948180999/wejtDhFm_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cool Owl Guy</div> <div style="text-align: center; font-size: 14px;">@smallmutuals</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cool Owl Guy. | Data | Cool Owl Guy | | --- | --- | | Tweets downloaded | 367 | | Retweets | 45 | | Short tweets | 25 | | Tweets kept | 297 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/238iiiu5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @smallmutuals's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hl8vi9y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hl8vi9y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/smallmutuals') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BigSalmon/FormalBerta
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- language: en thumbnail: http://www.huggingtweets.com/jana_aych_ess/1654888920998/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1169751139409117185/BU60y7P5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jana 'All Cops Are Bastards' H-S (they/them)</div> <div style="text-align: center; font-size: 14px;">@jana_aych_ess</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jana 'All Cops Are Bastards' H-S (they/them). | Data | Jana 'All Cops Are Bastards' H-S (they/them) | | --- | --- | | Tweets downloaded | 3234 | | Retweets | 343 | | Short tweets | 148 | | Tweets kept | 2743 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3q5i1d01/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jana_aych_ess's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3uy7dmw6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3uy7dmw6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jana_aych_ess') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BigSalmon/FormalBerta3
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distilBERT_mLM_V5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distilBERT_mLM_V5 This model is a fine-tuned version of [FritzOS/TEdetection_distiBERT_mLM_V2](https://huggingface.co/FritzOS/TEdetection_distiBERT_mLM_V2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 208018, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.19.3 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
BigSalmon/GPT2HardandEasy
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1446572046679302144/jF9HS_Yd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ninja Sex Party</div> <div style="text-align: center; font-size: 14px;">@ninjasexparty</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ninja Sex Party. | Data | Ninja Sex Party | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 631 | | Short tweets | 439 | | Tweets kept | 2180 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ik0ji2l/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ninjasexparty's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jyhmzsa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jyhmzsa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ninjasexparty') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BigSalmon/GPTNeo350MInformalToFormalLincoln4
[ "pytorch", "gpt_neo", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPTNeoForCausalLM" ], "model_type": "gpt_neo", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented This model is a fine-tuned version of [DeepPavlov/distilrubert-tiny-cased-conversational-v1](https://huggingface.co/DeepPavlov/distilrubert-tiny-cased-conversational-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5908 - Accuracy: 0.8653 - F1: 0.8656 - Precision: 0.8665 - Recall: 0.8653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.9172 | 1.0 | 69 | 0.5124 | 0.8246 | 0.8220 | 0.8271 | 0.8246 | | 0.4709 | 2.0 | 138 | 0.4279 | 0.8528 | 0.8505 | 0.8588 | 0.8528 | | 0.3194 | 3.0 | 207 | 0.3770 | 0.8737 | 0.8727 | 0.8740 | 0.8737 | | 0.2459 | 4.0 | 276 | 0.3951 | 0.8685 | 0.8682 | 0.8692 | 0.8685 | | 0.1824 | 5.0 | 345 | 0.4005 | 0.8831 | 0.8834 | 0.8841 | 0.8831 | | 0.1515 | 6.0 | 414 | 0.4356 | 0.8800 | 0.8797 | 0.8801 | 0.8800 | | 0.1274 | 7.0 | 483 | 0.4642 | 0.8727 | 0.8726 | 0.8731 | 0.8727 | | 0.0833 | 8.0 | 552 | 0.5226 | 0.8633 | 0.8627 | 0.8631 | 0.8633 | | 0.073 | 9.0 | 621 | 0.5327 | 0.8695 | 0.8686 | 0.8692 | 0.8695 | | 0.0575 | 10.0 | 690 | 0.5908 | 0.8653 | 0.8656 | 0.8665 | 0.8653 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
BigSalmon/GPTNeo350MInformalToFormalLincoln6
[ "pytorch", "gpt_neo", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPTNeoForCausalLM" ], "model_type": "gpt_neo", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TEdetection_distiBERT_NER_V5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TEdetection_distiBERT_NER_V5 This model is a fine-tuned version of [FritzOS/TEdetection_distilBERT_mLM_V5](https://huggingface.co/FritzOS/TEdetection_distilBERT_mLM_V5) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0029 - Validation Loss: 0.0032 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 208018, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0029 | 0.0032 | 0 | ### Framework versions - Transformers 4.19.4 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
BigSalmon/GoodMaskResults
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert-tiny-2ndfinetune-epru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-tiny-2ndfinetune-epru This model is a fine-tuned version of [mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented](https://huggingface.co/mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2085 - Accuracy: 0.9333 - F1: 0.9319 - Precision: 0.9336 - Recall: 0.9333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4825 | 1.0 | 13 | 0.2988 | 0.8848 | 0.8827 | 0.9056 | 0.8848 | | 0.2652 | 2.0 | 26 | 0.2435 | 0.9212 | 0.9216 | 0.9282 | 0.9212 | | 0.168 | 3.0 | 39 | 0.2120 | 0.9515 | 0.9501 | 0.9524 | 0.9515 | | 0.1593 | 4.0 | 52 | 0.1962 | 0.9333 | 0.9330 | 0.9366 | 0.9333 | | 0.1294 | 5.0 | 65 | 0.1855 | 0.9333 | 0.9334 | 0.9355 | 0.9333 | | 0.1065 | 6.0 | 78 | 0.1780 | 0.9394 | 0.9393 | 0.9399 | 0.9394 | | 0.0908 | 7.0 | 91 | 0.1967 | 0.9394 | 0.9388 | 0.9388 | 0.9394 | | 0.0432 | 8.0 | 104 | 0.2085 | 0.9333 | 0.9319 | 0.9336 | 0.9333 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
BigSalmon/InformalToFormalLincoln22
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: en --- # LFTW R1 Target The R1 Target model from [Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection](https://arxiv.org/abs/2012.15761) ## Citation Information ```bibtex @inproceedings{vidgen2021lftw, title={Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection}, author={Bertie Vidgen and Tristan Thrush and Zeerak Waseem and Douwe Kiela}, booktitle={ACL}, year={2021} } ``` Thanks to Kushal Tirumala and Adina Williams for helping the authors put the model on the hub!
BigSalmon/MrLincoln2
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- language: en thumbnail: http://www.huggingtweets.com/jedwill1999/1654902604867/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1510152678919135250/lfEmlEGJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">a local</div> <div style="text-align: center; font-size: 14px;">@jedwill1999</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from a local. | Data | a local | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 1080 | | Short tweets | 525 | | Tweets kept | 1641 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qsnsp6t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jedwill1999's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mjjc73pu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mjjc73pu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jedwill1999') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BigSalmon/NEO125InformalToFormalLincoln
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPTNeoForCausalLM" ], "model_type": "gpt_neo", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: en thumbnail: http://www.huggingtweets.com/froliki2108/1654905851117/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1447692349493100549/1PV2c-PJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Froliki๐Ÿ’‰๐Ÿ’‰๐Ÿ’‰</div> <div style="text-align: center; font-size: 14px;">@froliki2108</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Froliki๐Ÿ’‰๐Ÿ’‰๐Ÿ’‰. | Data | Froliki๐Ÿ’‰๐Ÿ’‰๐Ÿ’‰ | | --- | --- | | Tweets downloaded | 2223 | | Retweets | 1133 | | Short tweets | 229 | | Tweets kept | 861 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tug3miv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @froliki2108's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3otsf5pj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3otsf5pj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/froliki2108') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BigSalmon/ParaphraseParentheses
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- language: en thumbnail: http://www.huggingtweets.com/tonebot_/1654906535396/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1447253318380793858/VVNhWBGI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">tone bot</div> <div style="text-align: center; font-size: 14px;">@tonebot_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from tone bot. | Data | tone bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 537 | | Tweets kept | 2713 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ot29sc5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tonebot_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3g614pb8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3g614pb8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tonebot_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BigSalmon/PhraseBerta
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: SCRATCH_ja-en_helsinki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SCRATCH_ja-en_helsinki This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5583 - Otaku Benchmark VN BLEU: 19.12 - Otaku Benchmark LN BLEU: 11.55 - Otaku Benchmark MANGA BLEU: 12.98 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 96 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 3.0252 | 0.02 | 2000 | 2.4140 | | 2.8406 | 0.03 | 4000 | 2.2819 | | 2.7505 | 0.05 | 6000 | 2.3018 | | 2.6948 | 0.06 | 8000 | 2.1931 | | 2.6408 | 0.08 | 10000 | 2.1724 | | 2.6004 | 0.09 | 12000 | 2.1583 | | 2.5685 | 0.11 | 14000 | 2.1203 | | 2.5432 | 0.12 | 16000 | 2.1593 | | 2.5153 | 0.14 | 18000 | 2.1009 | | 2.4906 | 0.15 | 20000 | 2.0899 | | 2.4709 | 0.17 | 22000 | 2.0512 | | 2.4471 | 0.18 | 24000 | 2.0208 | | 2.4295 | 0.2 | 26000 | 2.0773 | | 2.4154 | 0.21 | 28000 | 2.0441 | | 2.4008 | 0.23 | 30000 | 2.0235 | | 2.3834 | 0.24 | 32000 | 2.0190 | | 2.3709 | 0.26 | 34000 | 1.9831 | | 2.3537 | 0.27 | 36000 | 1.9870 | | 2.3486 | 0.29 | 38000 | 1.9692 | | 2.3346 | 0.3 | 40000 | 1.9517 | | 2.3195 | 0.32 | 42000 | 1.9800 | | 2.3104 | 0.33 | 44000 | 1.9676 | | 2.298 | 0.35 | 46000 | 1.9563 | | 2.2905 | 0.36 | 48000 | 1.9217 | | 2.2792 | 0.38 | 50000 | 1.9195 | | 2.2714 | 0.39 | 52000 | 1.9109 | | 2.2593 | 0.41 | 54000 | 1.9044 | | 2.2582 | 0.42 | 56000 | 1.8876 | | 2.2482 | 0.44 | 58000 | 1.8860 | | 2.2394 | 0.45 | 60000 | 1.8887 | | 2.2273 | 0.47 | 62000 | 1.8862 | | 2.2255 | 0.48 | 64000 | 1.8705 | | 2.2166 | 0.5 | 66000 | 1.8696 | | 2.2075 | 0.51 | 68000 | 1.8657 | | 2.1992 | 0.53 | 70000 | 1.8585 | | 2.1969 | 0.54 | 72000 | 1.8526 | | 2.1894 | 0.56 | 74000 | 1.8493 | | 2.1817 | 0.57 | 76000 | 1.8480 | | 2.1771 | 0.59 | 78000 | 1.8333 | | 2.1683 | 0.6 | 80000 | 1.8342 | | 2.1667 | 0.62 | 82000 | 1.8537 | | 2.1546 | 0.63 | 84000 | 1.8261 | | 2.1467 | 0.65 | 86000 | 1.8092 | | 2.1421 | 0.66 | 88000 | 1.8137 | | 2.1395 | 0.68 | 90000 | 1.8286 | | 2.1313 | 0.69 | 92000 | 1.8042 | | 2.1241 | 0.71 | 94000 | 1.7934 | | 2.1214 | 0.72 | 96000 | 1.7940 | | 2.12 | 0.74 | 98000 | 1.8064 | | 2.1096 | 0.75 | 100000 | 1.7983 | | 2.1035 | 0.77 | 102000 | 1.8089 | | 2.0937 | 0.78 | 104000 | 1.7941 | | 2.0893 | 0.8 | 106000 | 1.7791 | | 2.0869 | 0.81 | 108000 | 1.7807 | | 2.0845 | 0.83 | 110000 | 1.7852 | | 2.0782 | 0.84 | 112000 | 1.7675 | | 2.0755 | 0.86 | 114000 | 1.7756 | | 2.0657 | 0.87 | 116000 | 1.7604 | | 2.0614 | 0.89 | 118000 | 1.7447 | | 2.0591 | 0.9 | 120000 | 1.7489 | | 2.0586 | 0.92 | 122000 | 1.7550 | | 2.0498 | 0.93 | 124000 | 1.7543 | | 2.0455 | 0.95 | 126000 | 1.7510 | | 2.04 | 0.96 | 128000 | 1.7439 | | 2.0385 | 0.98 | 130000 | 1.7407 | | 2.0267 | 0.99 | 132000 | 1.7467 | | 2.0088 | 1.01 | 134000 | 1.7455 | | 1.9826 | 1.02 | 136000 | 1.7210 | | 1.9785 | 1.04 | 138000 | 1.7524 | | 1.9777 | 1.05 | 140000 | 1.7272 | | 1.9763 | 1.07 | 142000 | 1.7283 | | 1.9736 | 1.08 | 144000 | 1.7210 | | 1.9704 | 1.1 | 146000 | 1.7001 | | 1.9625 | 1.11 | 148000 | 1.7112 | | 1.9665 | 1.13 | 150000 | 1.7236 | | 1.9592 | 1.14 | 152000 | 1.7169 | | 1.9606 | 1.16 | 154000 | 1.6962 | | 1.9571 | 1.17 | 156000 | 1.7064 | | 1.9532 | 1.19 | 158000 | 1.6898 | | 1.9465 | 1.2 | 160000 | 1.7004 | | 1.9438 | 1.22 | 162000 | 1.7092 | | 1.9435 | 1.23 | 164000 | 1.6927 | | 1.9361 | 1.25 | 166000 | 1.6838 | | 1.9369 | 1.26 | 168000 | 1.6784 | | 1.9287 | 1.28 | 170000 | 1.6709 | | 1.928 | 1.29 | 172000 | 1.6735 | | 1.9227 | 1.31 | 174000 | 1.6689 | | 1.9213 | 1.32 | 176000 | 1.6685 | | 1.9152 | 1.34 | 178000 | 1.6635 | | 1.9092 | 1.35 | 180000 | 1.6561 | | 1.9059 | 1.37 | 182000 | 1.6673 | | 1.9094 | 1.38 | 184000 | 1.6717 | | 1.9006 | 1.4 | 186000 | 1.6593 | | 1.8956 | 1.41 | 188000 | 1.6483 | | 1.8972 | 1.43 | 190000 | 1.6635 | | 1.8907 | 1.44 | 192000 | 1.6604 | | 1.8885 | 1.46 | 194000 | 1.6465 | | 1.8844 | 1.47 | 196000 | 1.6444 | | 1.8799 | 1.49 | 198000 | 1.6307 | | 1.8813 | 1.5 | 200000 | 1.6240 | | 1.8693 | 1.52 | 202000 | 1.6102 | | 1.8768 | 1.53 | 204000 | 1.6197 | | 1.8678 | 1.55 | 206000 | 1.6275 | | 1.8588 | 1.56 | 208000 | 1.6183 | | 1.8585 | 1.58 | 210000 | 1.6197 | | 1.8564 | 1.59 | 212000 | 1.6004 | | 1.8493 | 1.61 | 214000 | 1.6078 | | 1.85 | 1.62 | 216000 | 1.6001 | | 1.8428 | 1.64 | 218000 | 1.6106 | | 1.8428 | 1.65 | 220000 | 1.5866 | | 1.8423 | 1.67 | 222000 | 1.5993 | | 1.8352 | 1.68 | 224000 | 1.6052 | | 1.8385 | 1.7 | 226000 | 1.5959 | | 1.8307 | 1.71 | 228000 | 1.6024 | | 1.8248 | 1.73 | 230000 | 1.5969 | | 1.82 | 1.74 | 232000 | 1.5878 | | 1.8254 | 1.76 | 234000 | 1.5934 | | 1.8188 | 1.77 | 236000 | 1.5827 | | 1.813 | 1.79 | 238000 | 1.5797 | | 1.8128 | 1.8 | 240000 | 1.5758 | | 1.8044 | 1.82 | 242000 | 1.5752 | | 1.808 | 1.83 | 244000 | 1.5818 | | 1.8025 | 1.85 | 246000 | 1.5772 | | 1.7992 | 1.86 | 248000 | 1.5738 | | 1.8021 | 1.88 | 250000 | 1.5752 | | 1.7988 | 1.89 | 252000 | 1.5717 | | 1.7967 | 1.91 | 254000 | 1.5690 | | 1.7909 | 1.92 | 256000 | 1.5607 | | 1.7942 | 1.94 | 258000 | 1.5618 | | 1.7897 | 1.95 | 260000 | 1.5585 | | 1.7871 | 1.97 | 262000 | 1.5576 | | 1.7843 | 1.98 | 264000 | 1.5577 | | 1.7888 | 2.0 | 266000 | 1.5583 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
BlightZz/DialoGPT-medium-Kurisu
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
19
null
--- tags: - conversational --- # Harry Potter DialoGPT Model
Botslity/Bot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert-tiny-2nd-finetune-epru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-tiny-2nd-finetune-epru This model is a fine-tuned version of [mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented](https://huggingface.co/mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3546 - Accuracy: 0.9325 - F1: 0.9328 - Precision: 0.9359 - Recall: 0.9325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0686 | 1.0 | 12 | 0.2931 | 0.9141 | 0.9142 | 0.9163 | 0.9141 | | 0.0269 | 2.0 | 24 | 0.2690 | 0.9448 | 0.9444 | 0.9449 | 0.9448 | | 0.0282 | 3.0 | 36 | 0.3140 | 0.9141 | 0.9140 | 0.9168 | 0.9141 | | 0.0185 | 4.0 | 48 | 0.2977 | 0.9571 | 0.9570 | 0.9576 | 0.9571 | | 0.0103 | 5.0 | 60 | 0.3368 | 0.9264 | 0.9265 | 0.9296 | 0.9264 | | 0.0088 | 6.0 | 72 | 0.3067 | 0.9387 | 0.9385 | 0.9389 | 0.9387 | | 0.0152 | 7.0 | 84 | 0.3660 | 0.9264 | 0.9263 | 0.9282 | 0.9264 | | 0.0315 | 8.0 | 96 | 0.3793 | 0.9325 | 0.9328 | 0.9359 | 0.9325 | | 0.0258 | 9.0 | 108 | 0.3546 | 0.9325 | 0.9328 | 0.9359 | 0.9325 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Branex/gpt-neo-2.7B
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: es tags: - sagemaker - vit - ImageClassification - generated_from_trainer license: apache-2.0 datasets: - cifar10 metrics: - accuracy model-index: - name: vit_base-224-in21k-ft-cifar10 results: - task: name: Image Classification type: image-classification dataset: name: "Cifar10" type: cifar10 metrics: - name: Accuracy type: accuracy value: 0.97 --- # Model vit_base-224-in21k-ft-cifar10 ## **A finetuned model for Image classification in Spanish** This model was trained using Amazon SageMaker and the Hugging Face Deep Learning container, The base model is **Vision Transformer (base-sized model)** which is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels.[Link to base model](https://huggingface.co/google/vit-base-patch16-224-in21k) ## Base model citation ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## Dataset [Link to dataset description](http://www.cs.toronto.edu/~kriz/cifar.html) The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class. Sizes of datasets: - Train dataset: 50,000 - Test dataset: 10,000 ## Intended uses & limitations This model is intented for Image Classification. ## Hyperparameters { "epochs": "5", "train_batch_size": "32", "eval_batch_size": "8", "fp16": "true", "learning_rate": "1e-05", } ## Test results - Accuracy = 0.97 ## Model in action ### Usage for Image Classification ```python from transformers import ViTFeatureExtractor, ViTModel from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') model = ViTModel.from_pretrained('edumunozsala/vit_base-224-in21k-ft-cifar10') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` Created by [Eduardo Muรฑoz/@edumunozsala](https://github.com/edumunozsala)
CALM/backup
[ "lean_albert", "transformers" ]
null
{ "architectures": [ "LeanAlbertForPretraining", "LeanAlbertForTokenClassification", "LeanAlbertForSequenceClassification" ], "model_type": "lean_albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
ๅœจbert-base-chineseๅŸบ็ก€ไธŠ่ฟ›่กŒๆ–ฐ้—ป่ฏญๆ–™ๅบ“็š„ๅขž้‡้ข„่ฎญ็ปƒ็š„ๆจกๅž‹๏ผŒtoken้‡‡็”จ็š„ๆ˜ฏbert-base-chinese Model ๆจกๅž‹ๅฏผๅ‡บๆ—ถๅฐ†็”Ÿๆˆ config.json ๅ’Œ pytorch_model.bin ๅ‚ๆ•ฐๆ–‡ไปถ Tokenizer ่ฟ™ๆ˜ฏไธ€ไธชๅฐ†็บฏๆ–‡ๆœฌ่ฝฌๆขไธบ็ผ–็ ็š„่ฟ‡็จ‹ใ€‚ๆณจๆ„๏ผŒTokenizer ๅนถไธๆถ‰ๅŠๅฐ†่ฏ่ฝฌๅŒ–ไธบ่ฏๅ‘้‡็š„่ฟ‡็จ‹๏ผŒไป…ไป…ๆ˜ฏๅฐ†็บฏๆ–‡ๆœฌๅˆ†่ฏ๏ผŒๆทปๅŠ [MASK]ๆ ‡่ฎฐใ€[SEP]ใ€[CLS]ๆ ‡่ฎฐ๏ผŒๅนถ่ฝฌๆขไธบๅญ—ๅ…ธ็ดขๅผ•ใ€‚Tokenizer ็ฑปๅฏผๅ‡บๆ—ถๅฐ†ๅˆ†ไธบไธ‰ไธชๆ–‡ไปถ vocab.txt ่ฏๅ…ธๆ–‡ไปถ๏ผŒๆฏไธ€่กŒไธบไธ€ไธช่ฏๆˆ–่ฏ็š„ไธ€้ƒจๅˆ† special_tokens_map.json ็‰นๆฎŠๆ ‡่ฎฐ็š„ๅฎšไน‰ๆ–นๅผ tokenizer_config.json ้…็ฝฎๆ–‡ไปถ๏ผŒไธป่ฆๅญ˜ๅ‚จ็‰นๆฎŠ็š„้…็ฝฎ ๆจกๅž‹็š„ๆ‰€ๆœ‰ๅˆ†่ฏๅ™จ้ƒฝๆ˜ฏๅœจ PreTrainedTokenizer ไธญๅฎž็Žฐ็š„๏ผŒๅˆ†่ฏ็š„็ป“ๆžœไธป่ฆๆœ‰ไปฅไธ‹ๅ†…ๅฎน๏ผš "input ids": ้กพๅๆ€ไน‰๏ผŒๆ˜ฏๅ•่ฏๅœจ่ฏๅ…ธไธญ็š„็ผ–็  "token type ids":ๅŒบๅˆ†ไธคไธชๅฅๅญ็š„็ผ–็  "attention mask":ๆŒ‡ๅฎšๅฏนๅ“ชไบ›่ฏ่ฟ›่กŒself-Attentionๆ“ไฝœ "overflowing tokens":ๅฝ“ๆŒ‡ๅฎšๆœ€ๅคง้•ฟๅบฆๆ—ถ๏ผŒๆบขๅ‡บ็š„ๅ•่ฏ "num truncated tokens":ๆบขๅ‡บ็š„tokenๆ•ฐ้‡ "return special tokens mask":ๅฆ‚ๆžœๆทปๅŠ ็‰นๆฎŠๆ ‡่ฎฐ๏ผŒๅˆ™่ฟ™ๆ˜ฏ[0๏ผŒ1]็š„ๅˆ—่กจ๏ผŒๅ…ถไธญ0ๆŒ‡ๅฎš็‰นๆฎŠๆทปๅŠ ็š„ๆ ‡่ฎฐ๏ผŒ่€Œ1ๆŒ‡ๅฎšๅบๅˆ—ๆ ‡่ฎฐ
CAMeL-Lab/bert-base-arabic-camelbert-ca-poetry
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:1905.05700", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
42
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - metrics: - type: mean_reward value: 240.31 +/- 12.46 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CAMeL-Lab/bert-base-arabic-camelbert-ca-sentiment
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
73
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5324115893962171 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7035 - Matthews Correlation: 0.5324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.785228097724678e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 28 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5227 | 1.0 | 535 | 0.5005 | 0.4121 | | 0.318 | 2.0 | 1070 | 0.5265 | 0.4977 | | 0.1887 | 3.0 | 1605 | 0.7035 | 0.5324 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
574
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-ksponspeech results: [] --- # wav2vec2-ksponspeech This model is a fine-tuned version of [Wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - **WER(Word Error Rate)** for Third party test data : 0.373 **For improving WER:** - Numeric / Character Unification - Decoding the word with the correct notation (from word based on pronounciation) - Uniform use of special characters (. / ?) - Converting non-existent words to existing words ## Model description Korean Wav2vec with Ksponspeech dataset. This model was trained by two dataset : - Train1 : https://huggingface.co/datasets/Taeham/wav2vec2-ksponspeech-train (1 ~ 20000th data in Ksponspeech) - Train2 : https://huggingface.co/datasets/Taeham/wav2vec2-ksponspeech-train2 (20100 ~ 40100th data in Ksponspeech) - Validation : https://huggingface.co/datasets/Taeham/wav2vec2-ksponspeech-test (20000 ~ 20100th data in Ksponspeech) - Third party test : https://huggingface.co/datasets/Taeham/wav2vec2-ksponspeech-test (60000 ~ 20100th data in Ksponspeech) ### Hardward Specification - GPU : GEFORCE RTX 3080ti 12GB - CPU : Intel i9-12900k - RAM : 32GB ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
Canadiancaleb/DialoGPT-small-walter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 0.78 +/- 0.41 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="tjscollins/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Canadiancaleb/jessebot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
This model is a BERT-based Location Mention Recognition model that is adopted from the [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). The model is trained using Hurricane Dorian 2019 event (training, development, and test data are used for training) from [IDRISI-R dataset](https://github.com/rsuwaileh/IDRISI) under the Type-based LMR mode and using the random version of the data. You can download this data in BILOU format from [here](https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/EN/gold-random-bilou/hurricane_dorian_2019). * Different variants of the model are available through HuggingFace: - [rsuwaileh/IDRISI-LMR-HD-TB-partition](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB-partition/) - [rsuwaileh/IDRISI-LMR-HD-TL](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL) - [rsuwaileh/IDRISI-LMR-HD-TL-partition](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL-partition/) * Larger models are available at [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). * Models trained on the entire IDRISI-R dataset: - [rsuwaileh/IDRISI-LMR-EN-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typeless/) - [rsuwaileh/IDRISI-LMR-EN-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typebased/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typebased/) To cite this model: ``` @article{suwaileh2022tlLMR4disaster, title={When a Disaster Happens, We Are Ready: Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad and Sajjad, Hassan}, journal={International Journal of Disaster Risk Reduction}, year={2022} } @inproceedings{suwaileh2020tlLMR4disaster, title={Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Imran, Muhammad and Elsayed, Tamer and Sajjad, Hassan}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6252--6263}, year={2020} } ``` To cite the IDRISI-R dataset: ``` @article{rsuwaileh2022Idrisi-r, title={IDRISI-R: Large-scale English and Arabic Location Mention Recognition Datasets for Disaster Response over Twitter}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad}, journal={...}, volume={...}, pages={...}, year={2022}, publisher={...} } ```
Canyonevo/DialoGPT-medium-KingHenry
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
Capreolus/bert-base-msmarco
[ "pytorch", "tf", "jax", "bert", "text-classification", "arxiv:2008.09093", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
238
2022-06-11T20:30:24Z
This model is a BERT-based Location Mention Recognition model that is adopted from the [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). The model is trained using Hurricane Dorian 2019 event (training, development, and test data are used for training) from [IDRISI-R dataset](https://github.com/rsuwaileh/IDRISI) under the Type-less LMR mode and using the random version of the data. You can download this data in BILOU format from [here](https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/EN/gold-random-bilou/hurricane_dorian_2019). * Different variants of the model are available through HuggingFace: - [rsuwaileh/IDRISI-LMR-HD-TB](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB) - [rsuwaileh/IDRISI-LMR-HD-TB-partition](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB-partition/) - [rsuwaileh/IDRISI-LMR-HD-TL-partition](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL-partition) * Larger models are available at [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). * Models trained on the entire IDRISI-R dataset: - [rsuwaileh/IDRISI-LMR-EN-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typeless/) - [rsuwaileh/IDRISI-LMR-EN-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typebased/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typebased/) To cite this model: ``` @article{suwaileh2022tlLMR4disaster, title={When a Disaster Happens, We Are Ready: Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad and Sajjad, Hassan}, journal={International Journal of Disaster Risk Reduction}, year={2022} } @inproceedings{suwaileh2020tlLMR4disaster, title={Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Imran, Muhammad and Elsayed, Tamer and Sajjad, Hassan}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6252--6263}, year={2020} } ``` To cite the IDRISI-R dataset: ``` @article{rsuwaileh2022Idrisi-r, title={IDRISI-R: Large-scale English and Arabic Location Mention Recognition Datasets for Disaster Response over Twitter}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad}, journal={...}, volume={...}, pages={...}, year={2022}, publisher={...} } ```
Capreolus/birch-bert-large-msmarco_mb
[ "pytorch", "tf", "jax", "bert", "next-sentence-prediction", "transformers" ]
null
{ "architectures": [ "BertForNextSentencePrediction" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
This model is a BERT-based Location Mention Recognition model that is adopted from the [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). The model is trained using Hurricane Dorian 2019 event (only the training data is used for training) from [IDRISI-R dataset](https://github.com/rsuwaileh/IDRISI) under the Type-based LMR mode and using the random version of the data. You can download this data in BILOU format from [here](https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/EN/gold-random-bilou/hurricane_dorian_2019). * Different variants of the model are available through HuggingFace: - [rsuwaileh/IDRISI-LMR-HD-TB](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB) - [rsuwaileh/IDRISI-LMR-HD-TL](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL) - [rsuwaileh/IDRISI-LMR-HD-TL-partition](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL-partition/) * Larger models are available at [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). * Models trained on the entire IDRISI-R dataset: - [rsuwaileh/IDRISI-LMR-EN-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typeless/) - [rsuwaileh/IDRISI-LMR-EN-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typebased/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typebased/) To cite this model: ``` @article{suwaileh2022tlLMR4disaster, title={When a Disaster Happens, We Are Ready: Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad and Sajjad, Hassan}, journal={International Journal of Disaster Risk Reduction}, year={2022} } @inproceedings{suwaileh2020tlLMR4disaster, title={Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Imran, Muhammad and Elsayed, Tamer and Sajjad, Hassan}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6252--6263}, year={2020} } ``` To cite the IDRISI-R dataset: ``` @article{rsuwaileh2022Idrisi-r, title={IDRISI-R: Large-scale English and Arabic Location Mention Recognition Datasets for Disaster Response over Twitter}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad}, journal={...}, volume={...}, pages={...}, year={2022}, publisher={...} } ```
Capreolus/electra-base-msmarco
[ "pytorch", "tf", "electra", "text-classification", "arxiv:2008.09093", "transformers" ]
text-classification
{ "architectures": [ "ElectraForSequenceClassification" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
110
null
--- tags: - FrozenLake-v1-4x4-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-slippery results: - metrics: - type: mean_reward value: 0.75 +/- 0.43 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-4x4 type: FrozenLake-v1-4x4-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="tjscollins/q-FrozenLake-v1-4x4-slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
CarlosPR/mt5-spanish-memmories-analysis
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: music-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # music-generation This model a trained from scratch version of [distilgpt2](https://huggingface.co/distilgpt2) on a dataset where the text represents musical notes. The [dataset](https://www.kaggle.com/datasets/soumikrakshit/classical-music-midi) consists of one stream of notes from MIDI files (the stream with most notes), where all of the melodies were transposed either to C major or A minor. Also, the BPM of the song is ignored, the duration of each note is based on its quarter length. Each element in the melody is represented by a series of letters and numbers with the following structure. * For a note: ns[pitch of the note as a string]s[duration] * Examples: nsC4s0p25, nsF7s1p0, * For a rest: rs[duration]: * Examples: rs0p5, rs1q6 * For a chord: cs[number of notes in chord]s[pitches of chords separated by "s"]s[duration] * Examples: cs2sE7sF7s1q3, cs2sG3sGw3s0p25 The following special symbols are replaced in the strings by the following: * . = p * / = q * # = * - = t ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Cdial/hausa-asr
[ "wav2vec2", "automatic-speech-recognition", "ha", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2022-06-11T21:33:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus100 metrics: - bleu model-index: - name: opus-mt-en-ar-evaluated-en-to-ar-4000instances-opus-leaningRate2e-05-batchSize8-11-action-1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus100 type: opus100 args: ar-en metrics: - name: Bleu type: bleu value: 26.8232 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ar-evaluated-en-to-ar-4000instances-opus-leaningRate2e-05-batchSize8-11-action-1 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the opus100 dataset. It achieves the following results on the evaluation set: - Loss: 0.1717 - Bleu: 26.8232 - Meteor: 0.172 - Gen Len: 12.1288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 0.7364 | 0.25 | 100 | 0.1731 | 27.2753 | 0.1729 | 12.0887 | | 0.2175 | 0.5 | 200 | 0.1731 | 27.2055 | 0.1722 | 11.5675 | | 0.2193 | 0.75 | 300 | 0.1722 | 27.3277 | 0.1798 | 12.1325 | | 0.2321 | 1.0 | 400 | 0.1750 | 27.5152 | 0.1762 | 11.925 | | 0.1915 | 1.25 | 500 | 0.1690 | 27.5043 | 0.1751 | 11.9038 | | 0.1794 | 1.5 | 600 | 0.1719 | 26.8607 | 0.1713 | 11.8138 | | 0.1741 | 1.75 | 700 | 0.1725 | 26.974 | 0.1724 | 11.8462 | | 0.1732 | 2.0 | 800 | 0.1717 | 26.8232 | 0.172 | 12.1288 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
dccuchile/albert-base-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
34
null
--- library_name: stable-baselines3 tags: - Sokoban-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -19.90 +/- 0.30 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Sokoban-v0 type: Sokoban-v0 --- # **PPO** Agent playing **Sokoban-v0** This is a trained model of a **PPO** agent playing **Sokoban-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dccuchile/albert-base-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - un_multi metrics: - bleu model-index: - name: opus-mt-en-ar-evaluated-en-to-ar-4000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: un_multi type: un_multi args: ar-en metrics: - name: Bleu type: bleu value: 51.7715 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ar-evaluated-en-to-ar-4000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the un_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.1850 - Bleu: 51.7715 - Meteor: 0.5164 - Gen Len: 25.5612 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 0.6999 | 0.25 | 100 | 0.1959 | 50.1492 | 0.508 | 25.2788 | | 0.1994 | 0.5 | 200 | 0.1931 | 51.003 | 0.513 | 25.4038 | | 0.1863 | 0.75 | 300 | 0.1864 | 51.3268 | 0.5145 | 25.1675 | | 0.1826 | 1.0 | 400 | 0.1841 | 51.2507 | 0.513 | 25.2388 | | 0.1494 | 1.25 | 500 | 0.1840 | 51.4291 | 0.5159 | 25.4225 | | 0.1483 | 1.5 | 600 | 0.1839 | 51.2645 | 0.5126 | 25.395 | | 0.1547 | 1.75 | 700 | 0.1837 | 51.7589 | 0.5157 | 25.48 | | 0.1487 | 2.0 | 800 | 0.1845 | 51.896 | 0.5177 | 25.3988 | | 0.1235 | 2.25 | 900 | 0.1852 | 52.0583 | 0.5177 | 25.5212 | | 0.1164 | 2.5 | 1000 | 0.1850 | 51.7715 | 0.5164 | 25.5612 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
dccuchile/albert-large-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2022-06-11T22:22:14Z
--- tags: - conversational --- #A Peter DialoGPT Model
dccuchile/albert-tiny-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
null
--- license: mit datasets: - MRBrainS18 language: - en metrics: - tags: - MedicalNet - medical images - medical - 3D - Med3D thumbnail: "https://github.com/Tencent/MedicalNet/blob/master/images/logo.png?raw=true" --- # MedicalNet This repository contains a Pytorch implementation of [Med3D: Transfer Learning for 3D Medical Image Analysis](https://arxiv.org/abs/1904.00625). Many studies have shown that the performance on deep learning is significantly affected by volume of training data. The MedicalNet project aggregated the dataset with diverse modalities, target organs, and pathologies to to build relatively large datasets. Based on this dataset, a series of 3D-ResNet pre-trained models and corresponding transfer-learning training code are provided. ### License MedicalNet is released under the MIT License (refer to the LICENSE file for detailso). ### Citing MedicalNet If you use this code or pre-trained models, please cite the following: ``` @article{chen2019med3d, title={Med3D: Transfer Learning for 3D Medical Image Analysis}, author={Chen, Sihong and Ma, Kai and Zheng, Yefeng}, journal={arXiv preprint arXiv:1904.00625}, year={2019} } ``` ### Update(2019/07/30) We uploaded 4 pre-trained models based on more datasets (23 datasets). ``` Model name : parameters settings resnet_10_23dataset.pth: --model resnet --model_depth 10 --resnet_shortcut B resnet_18_23dataset.pth: --model resnet --model_depth 18 --resnet_shortcut A resnet_34_23dataset.pth: --model resnet --model_depth 34 --resnet_shortcut A resnet_50_23dataset.pth: --model resnet --model_depth 50 --resnet_shortcut B ``` Hugging Face repository contribution by: [Rafael Zimmer](https://www.github.com/rzimmerdev)
dccuchile/albert-tiny-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
Access to model Abhijnan/AxomiyaBERTa is restricted and you are not in the authorized list. Visit https://huggingface.co/Abhijnan/AxomiyaBERTa to ask for access.
dccuchile/albert-tiny-spanish-finetuned-qa-mlqa
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -140.18 +/- 41.67 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dccuchile/albert-xlarge-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- language: en thumbnail: http://www.huggingtweets.com/laserboat999/1654991516445/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500274766195793921/bA4siut7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">donald boat</div> <div style="text-align: center; font-size: 14px;">@laserboat999</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from donald boat. | Data | donald boat | | --- | --- | | Tweets downloaded | 3233 | | Retweets | 75 | | Short tweets | 516 | | Tweets kept | 2642 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/38v40fpf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @laserboat999's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/pk1xum9h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/pk1xum9h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/laserboat999') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
dccuchile/albert-xlarge-spanish-finetuned-pawsx
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
--- language: en thumbnail: http://www.huggingtweets.com/cancer_blood69/1654992058711/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1273429972229804032/_kkJmwqw_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">cancer_blood69 (reanimated decaying corpse)</div> <div style="text-align: center; font-size: 14px;">@cancer_blood69</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from cancer_blood69 (reanimated decaying corpse). | Data | cancer_blood69 (reanimated decaying corpse) | | --- | --- | | Tweets downloaded | 3237 | | Retweets | 215 | | Short tweets | 381 | | Tweets kept | 2641 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cav70ew/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cancer_blood69's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/sp5449e2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/sp5449e2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cancer_blood69') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
dccuchile/albert-xlarge-spanish-finetuned-qa-mlqa
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit datasets: - MRBrainS18 language: - en metrics: - tags: - MedicalNet - medical images - medical - 3D - Med3D thumbnail: "https://github.com/Tencent/MedicalNet/blob/master/images/logo.png?raw=true" --- # MedicalNet This repository contains a Pytorch implementation of [Med3D: Transfer Learning for 3D Medical Image Analysis](https://arxiv.org/abs/1904.00625). Many studies have shown that the performance on deep learning is significantly affected by volume of training data. The MedicalNet project aggregated the dataset with diverse modalities, target organs, and pathologies to to build relatively large datasets. Based on this dataset, a series of 3D-ResNet pre-trained models and corresponding transfer-learning training code are provided. ### License MedicalNet is released under the MIT License (refer to the LICENSE file for detailso). ### Citing MedicalNet If you use this code or pre-trained models, please cite the following: ``` @article{chen2019med3d, title={Med3D: Transfer Learning for 3D Medical Image Analysis}, author={Chen, Sihong and Ma, Kai and Zheng, Yefeng}, journal={arXiv preprint arXiv:1904.00625}, year={2019} } ``` ### Update(2019/07/30) We uploaded 4 pre-trained models based on more datasets (23 datasets). ``` Model name : parameters settings resnet_10_23dataset.pth: --model resnet --model_depth 10 --resnet_shortcut B resnet_18_23dataset.pth: --model resnet --model_depth 18 --resnet_shortcut A resnet_34_23dataset.pth: --model resnet --model_depth 34 --resnet_shortcut A resnet_50_23dataset.pth: --model resnet --model_depth 50 --resnet_shortcut B ``` Hugging Face repository contribution by: [Rafael Zimmer](https://www.github.com/rzimmerdev)
dccuchile/albert-xxlarge-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
2022-06-12T00:34:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - un_multi metrics: - bleu model-index: - name: opus-mt-en-ar-evaluated-en-to-ar-2000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: un_multi type: un_multi args: ar-en metrics: - name: Bleu type: bleu value: 53.0137 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ar-evaluated-en-to-ar-2000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the un_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.1873 - Bleu: 53.0137 - Meteor: 0.5005 - Gen Len: 25.845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 0.6585 | 0.5 | 100 | 0.2085 | 52.5874 | 0.4969 | 25.485 | | 0.1802 | 1.0 | 200 | 0.1788 | 52.9434 | 0.4982 | 25.1725 | | 0.1501 | 1.5 | 300 | 0.1683 | 53.6994 | 0.5033 | 25.625 | | 0.1454 | 2.0 | 400 | 0.1706 | 53.3946 | 0.5005 | 25.6675 | | 0.1193 | 2.5 | 500 | 0.1774 | 53.2011 | 0.4982 | 25.58 | | 0.1194 | 3.0 | 600 | 0.1741 | 53.8651 | 0.5026 | 25.5775 | | 0.1002 | 3.5 | 700 | 0.1878 | 53.1332 | 0.5005 | 25.8975 | | 0.0979 | 4.0 | 800 | 0.1881 | 52.5989 | 0.4974 | 25.485 | | 0.0807 | 4.5 | 900 | 0.1873 | 53.0137 | 0.5005 | 25.845 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
dccuchile/albert-xxlarge-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
2022-06-12T00:34:54Z
--- license: mit datasets: - MRBrainS18 language: - en metrics: - tags: - MedicalNet - medical images - medical - 3D - Med3D thumbnail: "https://github.com/Tencent/MedicalNet/blob/master/images/logo.png?raw=true" --- # MedicalNet This repository contains a Pytorch implementation of [Med3D: Transfer Learning for 3D Medical Image Analysis](https://arxiv.org/abs/1904.00625). Many studies have shown that the performance on deep learning is significantly affected by volume of training data. The MedicalNet project aggregated the dataset with diverse modalities, target organs, and pathologies to to build relatively large datasets. Based on this dataset, a series of 3D-ResNet pre-trained models and corresponding transfer-learning training code are provided. ### License MedicalNet is released under the MIT License (refer to the LICENSE file for detailso). ### Citing MedicalNet If you use this code or pre-trained models, please cite the following: ``` @article{chen2019med3d, title={Med3D: Transfer Learning for 3D Medical Image Analysis}, author={Chen, Sihong and Ma, Kai and Zheng, Yefeng}, journal={arXiv preprint arXiv:1904.00625}, year={2019} } ``` ### Update(2019/07/30) We uploaded 4 pre-trained models based on more datasets (23 datasets). ``` Model name : parameters settings resnet_10_23dataset.pth: --model resnet --model_depth 10 --resnet_shortcut B resnet_18_23dataset.pth: --model resnet --model_depth 18 --resnet_shortcut A resnet_34_23dataset.pth: --model resnet --model_depth 34 --resnet_shortcut A resnet_50_23dataset.pth: --model resnet --model_depth 50 --resnet_shortcut B ``` Hugging Face repository contribution by: [Rafael Zimmer](https://www.github.com/rzimmerdev)
dccuchile/albert-xxlarge-spanish-finetuned-pawsx
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- license: mit datasets: - MRBrainS18 language: - en metrics: - tags: - MedicalNet - medical images - medical - 3D - Med3D thumbnail: "https://github.com/Tencent/MedicalNet/blob/master/images/logo.png?raw=true" --- # MedicalNet This repository contains a Pytorch implementation of [Med3D: Transfer Learning for 3D Medical Image Analysis](https://arxiv.org/abs/1904.00625). Many studies have shown that the performance on deep learning is significantly affected by volume of training data. The MedicalNet project aggregated the dataset with diverse modalities, target organs, and pathologies to to build relatively large datasets. Based on this dataset, a series of 3D-ResNet pre-trained models and corresponding transfer-learning training code are provided. ### License MedicalNet is released under the MIT License (refer to the LICENSE file for detailso). ### Citing MedicalNet If you use this code or pre-trained models, please cite the following: ``` @article{chen2019med3d, title={Med3D: Transfer Learning for 3D Medical Image Analysis}, author={Chen, Sihong and Ma, Kai and Zheng, Yefeng}, journal={arXiv preprint arXiv:1904.00625}, year={2019} } ``` ### Update(2019/07/30) We uploaded 4 pre-trained models based on more datasets (23 datasets). ``` Model name : parameters settings resnet_10_23dataset.pth: --model resnet --model_depth 10 --resnet_shortcut B resnet_18_23dataset.pth: --model resnet --model_depth 18 --resnet_shortcut A resnet_34_23dataset.pth: --model resnet --model_depth 34 --resnet_shortcut A resnet_50_23dataset.pth: --model resnet --model_depth 50 --resnet_shortcut B ``` Hugging Face repository contribution by: [Rafael Zimmer](https://www.github.com/rzimmerdev)
dccuchile/albert-xxlarge-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
68
null
--- license: mit datasets: - MRBrainS18 language: - en metrics: - tags: - MedicalNet - medical images - medical - 3D - Med3D thumbnail: "https://github.com/Tencent/MedicalNet/blob/master/images/logo.png?raw=true" --- # MedicalNet This repository contains a Pytorch implementation of [Med3D: Transfer Learning for 3D Medical Image Analysis](https://arxiv.org/abs/1904.00625). Many studies have shown that the performance on deep learning is significantly affected by volume of training data. The MedicalNet project aggregated the dataset with diverse modalities, target organs, and pathologies to to build relatively large datasets. Based on this dataset, a series of 3D-ResNet pre-trained models and corresponding transfer-learning training code are provided. ### License MedicalNet is released under the MIT License (refer to the LICENSE file for detailso). ### Citing MedicalNet If you use this code or pre-trained models, please cite the following: ``` @article{chen2019med3d, title={Med3D: Transfer Learning for 3D Medical Image Analysis}, author={Chen, Sihong and Ma, Kai and Zheng, Yefeng}, journal={arXiv preprint arXiv:1904.00625}, year={2019} } ``` ### Update(2019/07/30) We uploaded 4 pre-trained models based on more datasets (23 datasets). ``` Model name : parameters settings resnet_10_23dataset.pth: --model resnet --model_depth 10 --resnet_shortcut B resnet_18_23dataset.pth: --model resnet --model_depth 18 --resnet_shortcut A resnet_34_23dataset.pth: --model resnet --model_depth 34 --resnet_shortcut A resnet_50_23dataset.pth: --model resnet --model_depth 50 --resnet_shortcut B ``` Hugging Face repository contribution by: [Rafael Zimmer](https://www.github.com/rzimmerdev)
dccuchile/albert-base-spanish
[ "pytorch", "tf", "albert", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA" ]
null
{ "architectures": [ "AlbertForPreTraining" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
586
2022-06-12T00:52:56Z
--- license: mit datasets: - MRBrainS18 language: - en metrics: - tags: - MedicalNet - medical images - medical - 3D - Med3D thumbnail: "https://github.com/Tencent/MedicalNet/blob/master/images/logo.png?raw=true" --- # MedicalNet This repository contains a Pytorch implementation of [Med3D: Transfer Learning for 3D Medical Image Analysis](https://arxiv.org/abs/1904.00625). Many studies have shown that the performance on deep learning is significantly affected by volume of training data. The MedicalNet project aggregated the dataset with diverse modalities, target organs, and pathologies to to build relatively large datasets. Based on this dataset, a series of 3D-ResNet pre-trained models and corresponding transfer-learning training code are provided. ### License MedicalNet is released under the MIT License (refer to the LICENSE file for detailso). ### Citing MedicalNet If you use this code or pre-trained models, please cite the following: ``` @article{chen2019med3d, title={Med3D: Transfer Learning for 3D Medical Image Analysis}, author={Chen, Sihong and Ma, Kai and Zheng, Yefeng}, journal={arXiv preprint arXiv:1904.00625}, year={2019} } ``` ### Update(2019/07/30) We uploaded 4 pre-trained models based on more datasets (23 datasets). ``` Model name : parameters settings resnet_10_23dataset.pth: --model resnet --model_depth 10 --resnet_shortcut B resnet_18_23dataset.pth: --model resnet --model_depth 18 --resnet_shortcut A resnet_34_23dataset.pth: --model resnet --model_depth 34 --resnet_shortcut A resnet_50_23dataset.pth: --model resnet --model_depth 50 --resnet_shortcut B ``` Hugging Face repository contribution by: [Rafael Zimmer](https://www.github.com/rzimmerdev)
dccuchile/albert-tiny-spanish
[ "pytorch", "tf", "albert", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA" ]
null
{ "architectures": [ "AlbertForPreTraining" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
393
2022-06-13T23:23:24Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: MIX2_ja-en_helsinki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MIX2_ja-en_helsinki This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4929 - Otaku Benchmark VN BLEU: 20.21 - Otaku Benchmark LN BLEU: 13.29 - Otaku Benchmark MANGA BLEU: 19.07 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 96 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.8467 | 0.01 | 2000 | 2.3237 | | 2.6439 | 0.02 | 4000 | 2.2542 | | 2.547 | 0.03 | 6000 | 2.1956 | | 2.4852 | 0.04 | 8000 | 2.1088 | | 2.4408 | 0.05 | 10000 | 2.0909 | | 2.404 | 0.06 | 12000 | 2.1029 | | 2.3634 | 0.07 | 14000 | 2.0636 | | 2.3491 | 0.08 | 16000 | 2.0312 | | 2.3203 | 0.09 | 18000 | 2.0187 | | 2.3002 | 0.1 | 20000 | 1.9999 | | 2.2791 | 0.11 | 22000 | 1.9823 | | 2.2607 | 0.11 | 24000 | 1.9588 | | 2.2475 | 0.12 | 26000 | 1.9728 | | 2.2308 | 0.13 | 28000 | 1.9330 | | 2.2237 | 0.14 | 30000 | 1.9657 | | 2.208 | 0.15 | 32000 | 1.9560 | | 2.2019 | 0.16 | 34000 | 1.9704 | | 2.1864 | 0.17 | 36000 | 1.9513 | | 2.1764 | 0.18 | 38000 | 1.9534 | | 2.163 | 0.19 | 40000 | 1.9140 | | 2.1534 | 0.2 | 42000 | 1.9241 | | 2.146 | 0.21 | 44000 | 1.9162 | | 2.1403 | 0.22 | 46000 | 1.9030 | | 2.1309 | 0.23 | 48000 | 1.8741 | | 2.1174 | 0.24 | 50000 | 1.8834 | | 2.1157 | 0.25 | 52000 | 1.8666 | | 2.1116 | 0.26 | 54000 | 1.8870 | | 2.1062 | 0.27 | 56000 | 1.8837 | | 2.0994 | 0.28 | 58000 | 1.8638 | | 2.0924 | 0.29 | 60000 | 1.8766 | | 2.0874 | 0.3 | 62000 | 1.8712 | | 2.0805 | 0.31 | 64000 | 1.8792 | | 2.0746 | 0.32 | 66000 | 1.8586 | | 2.0684 | 0.32 | 68000 | 1.8819 | | 2.0678 | 0.33 | 70000 | 1.8529 | | 2.061 | 0.34 | 72000 | 1.8219 | | 2.0532 | 0.35 | 74000 | 1.8383 | | 2.0536 | 0.36 | 76000 | 1.8273 | | 2.0432 | 0.37 | 78000 | 1.8304 | | 2.0386 | 0.38 | 80000 | 1.8208 | | 2.0361 | 0.39 | 82000 | 1.8103 | | 2.0353 | 0.4 | 84000 | 1.8193 | | 2.0266 | 0.41 | 86000 | 1.8369 | | 2.0277 | 0.42 | 88000 | 1.8266 | | 2.0221 | 0.43 | 90000 | 1.8372 | | 2.0181 | 0.44 | 92000 | 1.8436 | | 2.0182 | 0.45 | 94000 | 1.8505 | | 2.0088 | 0.46 | 96000 | 1.8127 | | 2.005 | 0.47 | 98000 | 1.8325 | | 2.0003 | 0.48 | 100000 | 1.8407 | | 2.0031 | 0.49 | 102000 | 1.8140 | | 1.9954 | 0.5 | 104000 | 1.8177 | | 1.9894 | 0.51 | 106000 | 1.8072 | | 1.9901 | 0.52 | 108000 | 1.7971 | | 1.9864 | 0.53 | 110000 | 1.8007 | | 1.9848 | 0.53 | 112000 | 1.7961 | | 1.9774 | 0.54 | 114000 | 1.7933 | | 1.9802 | 0.55 | 116000 | 1.8031 | | 1.9698 | 0.56 | 118000 | 1.8137 | | 1.973 | 0.57 | 120000 | 1.7930 | | 1.9696 | 0.58 | 122000 | 1.7838 | | 1.9641 | 0.59 | 124000 | 1.7730 | | 1.9609 | 0.6 | 126000 | 1.7800 | | 1.9605 | 0.61 | 128000 | 1.7680 | | 1.9516 | 0.62 | 130000 | 1.7895 | | 1.9529 | 0.63 | 132000 | 1.7825 | | 1.9503 | 0.64 | 134000 | 1.7792 | | 1.9528 | 0.65 | 136000 | 1.8031 | | 1.9439 | 0.66 | 138000 | 1.7652 | | 1.9453 | 0.67 | 140000 | 1.7713 | | 1.9404 | 0.68 | 142000 | 1.7585 | | 1.9399 | 0.69 | 144000 | 1.7454 | | 1.9325 | 0.7 | 146000 | 1.7605 | | 1.9327 | 0.71 | 148000 | 1.7608 | | 1.9301 | 0.72 | 150000 | 1.7743 | | 1.928 | 0.73 | 152000 | 1.7532 | | 1.9286 | 0.74 | 154000 | 1.7682 | | 1.9194 | 0.74 | 156000 | 1.7582 | | 1.9247 | 0.75 | 158000 | 1.7601 | | 1.9183 | 0.76 | 160000 | 1.7600 | | 1.9138 | 0.77 | 162000 | 1.7555 | | 1.9148 | 0.78 | 164000 | 1.7447 | | 1.913 | 0.79 | 166000 | 1.7512 | | 1.9084 | 0.8 | 168000 | 1.7408 | | 1.9109 | 0.81 | 170000 | 1.7463 | | 1.905 | 0.82 | 172000 | 1.7543 | | 1.9067 | 0.83 | 174000 | 1.7662 | | 1.9005 | 0.84 | 176000 | 1.7428 | | 1.8997 | 0.85 | 178000 | 1.7500 | | 1.8963 | 0.86 | 180000 | 1.7297 | | 1.8938 | 0.87 | 182000 | 1.7356 | | 1.8923 | 0.88 | 184000 | 1.7602 | | 1.8896 | 0.89 | 186000 | 1.7426 | | 1.8866 | 0.9 | 188000 | 1.7323 | | 1.887 | 0.91 | 190000 | 1.7587 | | 1.8855 | 0.92 | 192000 | 1.7591 | | 1.8842 | 0.93 | 194000 | 1.7570 | | 1.8808 | 0.94 | 196000 | 1.7311 | | 1.8836 | 0.95 | 198000 | 1.7449 | | 1.8761 | 0.96 | 200000 | 1.7534 | | 1.8721 | 0.96 | 202000 | 1.7623 | | 1.8765 | 0.97 | 204000 | 1.7462 | | 1.8747 | 0.98 | 206000 | 1.7452 | | 1.8667 | 0.99 | 208000 | 1.7303 | | 1.8618 | 1.0 | 210000 | 1.7468 | | 1.8475 | 1.01 | 212000 | 1.7443 | | 1.8435 | 1.02 | 214000 | 1.7622 | | 1.8452 | 1.03 | 216000 | 1.7153 | | 1.84 | 1.04 | 218000 | 1.6976 | | 1.8432 | 1.05 | 220000 | 1.7013 | | 1.842 | 1.06 | 222000 | 1.7073 | | 1.8428 | 1.07 | 224000 | 1.6991 | | 1.841 | 1.08 | 226000 | 1.7477 | | 1.8321 | 1.09 | 228000 | 1.7438 | | 1.838 | 1.1 | 230000 | 1.7352 | | 1.8339 | 1.11 | 232000 | 1.7242 | | 1.836 | 1.12 | 234000 | 1.7221 | | 1.8329 | 1.13 | 236000 | 1.7402 | | 1.8337 | 1.14 | 238000 | 1.7083 | | 1.8267 | 1.15 | 240000 | 1.7200 | | 1.8335 | 1.16 | 242000 | 1.7092 | | 1.8306 | 1.17 | 244000 | 1.7340 | | 1.8279 | 1.17 | 246000 | 1.6983 | | 1.8261 | 1.18 | 248000 | 1.6928 | | 1.8295 | 1.19 | 250000 | 1.7135 | | 1.8227 | 1.2 | 252000 | 1.7156 | | 1.822 | 1.21 | 254000 | 1.7018 | | 1.8216 | 1.22 | 256000 | 1.7157 | | 1.8205 | 1.23 | 258000 | 1.7047 | | 1.8163 | 1.24 | 260000 | 1.6988 | | 1.8187 | 1.25 | 262000 | 1.7077 | | 1.8188 | 1.26 | 264000 | 1.6859 | | 1.8138 | 1.27 | 266000 | 1.6831 | | 1.8173 | 1.28 | 268000 | 1.6887 | | 1.813 | 1.29 | 270000 | 1.6967 | | 1.8114 | 1.3 | 272000 | 1.7085 | | 1.8057 | 1.31 | 274000 | 1.6885 | | 1.8094 | 1.32 | 276000 | 1.7198 | | 1.8079 | 1.33 | 278000 | 1.7036 | | 1.8056 | 1.34 | 280000 | 1.7106 | | 1.8044 | 1.35 | 282000 | 1.6704 | | 1.8047 | 1.36 | 284000 | 1.6811 | | 1.7978 | 1.37 | 286000 | 1.6848 | | 1.7997 | 1.38 | 288000 | 1.6698 | | 1.7997 | 1.38 | 290000 | 1.6820 | | 1.7945 | 1.39 | 292000 | 1.6963 | | 1.7958 | 1.4 | 294000 | 1.6922 | | 1.7923 | 1.41 | 296000 | 1.6577 | | 1.7975 | 1.42 | 298000 | 1.6621 | | 1.7914 | 1.43 | 300000 | 1.6804 | | 1.7944 | 1.44 | 302000 | 1.6953 | | 1.7927 | 1.45 | 304000 | 1.6846 | | 1.789 | 1.46 | 306000 | 1.6889 | | 1.7851 | 1.47 | 308000 | 1.6652 | | 1.7902 | 1.48 | 310000 | 1.6823 | | 1.7873 | 1.49 | 312000 | 1.6603 | | 1.7868 | 1.5 | 314000 | 1.6766 | | 1.7856 | 1.51 | 316000 | 1.6717 | | 1.7807 | 1.52 | 318000 | 1.6466 | | 1.7767 | 1.53 | 320000 | 1.6639 | | 1.7782 | 1.54 | 322000 | 1.6678 | | 1.7762 | 1.55 | 324000 | 1.6853 | | 1.7746 | 1.56 | 326000 | 1.6785 | | 1.7746 | 1.57 | 328000 | 1.6777 | | 1.7716 | 1.58 | 330000 | 1.6784 | | 1.7699 | 1.59 | 332000 | 1.6648 | | 1.7739 | 1.59 | 334000 | 1.6725 | | 1.7703 | 1.6 | 336000 | 1.6915 | | 1.7707 | 1.61 | 338000 | 1.6858 | | 1.7619 | 1.62 | 340000 | 1.6624 | | 1.7652 | 1.63 | 342000 | 1.6797 | | 1.7626 | 1.64 | 344000 | 1.6728 | | 1.7647 | 1.65 | 346000 | 1.6580 | | 1.7616 | 1.66 | 348000 | 1.6679 | | 1.7616 | 1.67 | 350000 | 1.6470 | | 1.7611 | 1.68 | 352000 | 1.6489 | | 1.759 | 1.69 | 354000 | 1.6603 | | 1.7604 | 1.7 | 356000 | 1.6532 | | 1.7599 | 1.71 | 358000 | 1.6477 | | 1.7529 | 1.72 | 360000 | 1.6322 | | 1.7596 | 1.73 | 362000 | 1.6447 | | 1.7508 | 1.74 | 364000 | 1.6509 | | 1.7533 | 1.75 | 366000 | 1.6465 | | 1.755 | 1.76 | 368000 | 1.6485 | | 1.7473 | 1.77 | 370000 | 1.6493 | | 1.7435 | 1.78 | 372000 | 1.6542 | | 1.7483 | 1.79 | 374000 | 1.6573 | | 1.7475 | 1.8 | 376000 | 1.6626 | | 1.7439 | 1.8 | 378000 | 1.6366 | | 1.7417 | 1.81 | 380000 | 1.6312 | | 1.7387 | 1.82 | 382000 | 1.6424 | | 1.7415 | 1.83 | 384000 | 1.6468 | | 1.7409 | 1.84 | 386000 | 1.6528 | | 1.7362 | 1.85 | 388000 | 1.6394 | | 1.7372 | 1.86 | 390000 | 1.6581 | | 1.7347 | 1.87 | 392000 | 1.6546 | | 1.7368 | 1.88 | 394000 | 1.6468 | | 1.7302 | 1.89 | 396000 | 1.6450 | | 1.7317 | 1.9 | 398000 | 1.6368 | | 1.7306 | 1.91 | 400000 | 1.6399 | | 1.7304 | 1.92 | 402000 | 1.6180 | | 1.726 | 1.93 | 404000 | 1.6212 | | 1.7271 | 1.94 | 406000 | 1.6302 | | 1.7312 | 1.95 | 408000 | 1.6264 | | 1.7249 | 1.96 | 410000 | 1.6584 | | 1.7226 | 1.97 | 412000 | 1.6514 | | 1.7214 | 1.98 | 414000 | 1.6516 | | 1.7228 | 1.99 | 416000 | 1.6346 | | 1.7205 | 2.0 | 418000 | 1.6370 | | 1.7041 | 2.01 | 420000 | 1.6021 | | 1.691 | 2.02 | 422000 | 1.6385 | | 1.6896 | 2.02 | 424000 | 1.6280 | | 1.6882 | 2.03 | 426000 | 1.6295 | | 1.6889 | 2.04 | 428000 | 1.6445 | | 1.6904 | 2.05 | 430000 | 1.6558 | | 1.6933 | 2.06 | 432000 | 1.6164 | | 1.6916 | 2.07 | 434000 | 1.6011 | | 1.6873 | 2.08 | 436000 | 1.6199 | | 1.6903 | 2.09 | 438000 | 1.6300 | | 1.6859 | 2.1 | 440000 | 1.6104 | | 1.6901 | 2.11 | 442000 | 1.6248 | | 1.6884 | 2.12 | 444000 | 1.6251 | | 1.6859 | 2.13 | 446000 | 1.6145 | | 1.6906 | 2.14 | 448000 | 1.6181 | | 1.6859 | 2.15 | 450000 | 1.6264 | | 1.6814 | 2.16 | 452000 | 1.6069 | | 1.6853 | 2.17 | 454000 | 1.6089 | | 1.6881 | 2.18 | 456000 | 1.6102 | | 1.6869 | 2.19 | 458000 | 1.6327 | | 1.6827 | 2.2 | 460000 | 1.6069 | | 1.6813 | 2.21 | 462000 | 1.6278 | | 1.6806 | 2.22 | 464000 | 1.6176 | | 1.6763 | 2.23 | 466000 | 1.6180 | | 1.68 | 2.23 | 468000 | 1.6226 | | 1.6816 | 2.24 | 470000 | 1.6071 | | 1.6845 | 2.25 | 472000 | 1.6178 | | 1.6764 | 2.26 | 474000 | 1.6073 | | 1.682 | 2.27 | 476000 | 1.5966 | | 1.6727 | 2.28 | 478000 | 1.5979 | | 1.6718 | 2.29 | 480000 | 1.6109 | | 1.6764 | 2.3 | 482000 | 1.6034 | | 1.671 | 2.31 | 484000 | 1.6001 | | 1.6691 | 2.32 | 486000 | 1.6148 | | 1.6706 | 2.33 | 488000 | 1.6003 | | 1.6705 | 2.34 | 490000 | 1.6021 | | 1.6699 | 2.35 | 492000 | 1.5940 | | 1.6708 | 2.36 | 494000 | 1.6077 | | 1.6715 | 2.37 | 496000 | 1.6188 | | 1.6672 | 2.38 | 498000 | 1.5903 | | 1.6638 | 2.39 | 500000 | 1.6042 | | 1.6634 | 2.4 | 502000 | 1.5967 | | 1.6669 | 2.41 | 504000 | 1.5904 | | 1.6643 | 2.42 | 506000 | 1.6071 | | 1.6606 | 2.43 | 508000 | 1.6065 | | 1.6573 | 2.44 | 510000 | 1.6010 | | 1.6603 | 2.44 | 512000 | 1.5801 | | 1.6568 | 2.45 | 514000 | 1.5961 | | 1.6564 | 2.46 | 516000 | 1.6020 | | 1.6596 | 2.47 | 518000 | 1.5952 | | 1.6567 | 2.48 | 520000 | 1.5760 | | 1.6536 | 2.49 | 522000 | 1.5697 | | 1.6564 | 2.5 | 524000 | 1.5664 | | 1.652 | 2.51 | 526000 | 1.5616 | | 1.653 | 2.52 | 528000 | 1.5738 | | 1.6525 | 2.53 | 530000 | 1.5754 | | 1.65 | 2.54 | 532000 | 1.5749 | | 1.6519 | 2.55 | 534000 | 1.5788 | | 1.6515 | 2.56 | 536000 | 1.5953 | | 1.6492 | 2.57 | 538000 | 1.5836 | | 1.6473 | 2.58 | 540000 | 1.5896 | | 1.6452 | 2.59 | 542000 | 1.5858 | | 1.6464 | 2.6 | 544000 | 1.5760 | | 1.6445 | 2.61 | 546000 | 1.5683 | | 1.6457 | 2.62 | 548000 | 1.5823 | | 1.6417 | 2.63 | 550000 | 1.5780 | | 1.6407 | 2.64 | 552000 | 1.5715 | | 1.6368 | 2.65 | 554000 | 1.5618 | | 1.6357 | 2.65 | 556000 | 1.5725 | | 1.6446 | 2.66 | 558000 | 1.5744 | | 1.634 | 2.67 | 560000 | 1.5360 | | 1.6351 | 2.68 | 562000 | 1.5599 | | 1.6362 | 2.69 | 564000 | 1.5607 | | 1.637 | 2.7 | 566000 | 1.5561 | | 1.6324 | 2.71 | 568000 | 1.5591 | | 1.6325 | 2.72 | 570000 | 1.5527 | | 1.6323 | 2.73 | 572000 | 1.5537 | | 1.629 | 2.74 | 574000 | 1.5673 | | 1.627 | 2.75 | 576000 | 1.5509 | | 1.6279 | 2.76 | 578000 | 1.5507 | | 1.6291 | 2.77 | 580000 | 1.5304 | | 1.625 | 2.78 | 582000 | 1.5540 | | 1.6246 | 2.79 | 584000 | 1.5530 | | 1.6228 | 2.8 | 586000 | 1.5570 | | 1.6241 | 2.81 | 588000 | 1.5586 | | 1.6224 | 2.82 | 590000 | 1.5480 | | 1.6264 | 2.83 | 592000 | 1.5624 | | 1.6214 | 2.84 | 594000 | 1.5565 | | 1.6187 | 2.85 | 596000 | 1.5397 | | 1.6191 | 2.86 | 598000 | 1.5520 | | 1.6192 | 2.87 | 600000 | 1.5494 | | 1.6182 | 2.87 | 602000 | 1.5608 | | 1.6164 | 2.88 | 604000 | 1.5428 | | 1.6107 | 2.89 | 606000 | 1.5525 | | 1.614 | 2.9 | 608000 | 1.5277 | | 1.6158 | 2.91 | 610000 | 1.5502 | | 1.6082 | 2.92 | 612000 | 1.5452 | | 1.6089 | 2.93 | 614000 | 1.5400 | | 1.6112 | 2.94 | 616000 | 1.5322 | | 1.6069 | 2.95 | 618000 | 1.5394 | | 1.6111 | 2.96 | 620000 | 1.5537 | | 1.6038 | 2.97 | 622000 | 1.5486 | | 1.6073 | 2.98 | 624000 | 1.5551 | | 1.6046 | 2.99 | 626000 | 1.5386 | | 1.6051 | 3.0 | 628000 | 1.5369 | | 1.5672 | 3.01 | 630000 | 1.5361 | | 1.5694 | 3.02 | 632000 | 1.5390 | | 1.5692 | 3.03 | 634000 | 1.5386 | | 1.5651 | 3.04 | 636000 | 1.5456 | | 1.5724 | 3.05 | 638000 | 1.5419 | | 1.5708 | 3.06 | 640000 | 1.5363 | | 1.5665 | 3.07 | 642000 | 1.5446 | | 1.5706 | 3.08 | 644000 | 1.5331 | | 1.5679 | 3.08 | 646000 | 1.5449 | | 1.5678 | 3.09 | 648000 | 1.5436 | | 1.5676 | 3.1 | 650000 | 1.5309 | | 1.5657 | 3.11 | 652000 | 1.5334 | | 1.5697 | 3.12 | 654000 | 1.5303 | | 1.5617 | 3.13 | 656000 | 1.5380 | | 1.5675 | 3.14 | 658000 | 1.5404 | | 1.5612 | 3.15 | 660000 | 1.5258 | | 1.5639 | 3.16 | 662000 | 1.5329 | | 1.567 | 3.17 | 664000 | 1.5418 | | 1.5619 | 3.18 | 666000 | 1.5314 | | 1.5637 | 3.19 | 668000 | 1.5201 | | 1.5608 | 3.2 | 670000 | 1.5181 | | 1.5641 | 3.21 | 672000 | 1.5290 | | 1.5626 | 3.22 | 674000 | 1.5180 | | 1.5605 | 3.23 | 676000 | 1.5156 | | 1.5566 | 3.24 | 678000 | 1.5266 | | 1.5587 | 3.25 | 680000 | 1.5286 | | 1.5602 | 3.26 | 682000 | 1.5265 | | 1.5535 | 3.27 | 684000 | 1.5354 | | 1.5589 | 3.28 | 686000 | 1.5265 | | 1.5569 | 3.29 | 688000 | 1.5346 | | 1.559 | 3.29 | 690000 | 1.5306 | | 1.5507 | 3.3 | 692000 | 1.5359 | | 1.5547 | 3.31 | 694000 | 1.5264 | | 1.5498 | 3.32 | 696000 | 1.5264 | | 1.5559 | 3.33 | 698000 | 1.5273 | | 1.553 | 3.34 | 700000 | 1.5137 | | 1.5503 | 3.35 | 702000 | 1.5143 | | 1.5498 | 3.36 | 704000 | 1.5263 | | 1.5516 | 3.37 | 706000 | 1.5096 | | 1.5461 | 3.38 | 708000 | 1.5112 | | 1.5489 | 3.39 | 710000 | 1.5094 | | 1.5451 | 3.4 | 712000 | 1.5079 | | 1.544 | 3.41 | 714000 | 1.5058 | | 1.5446 | 3.42 | 716000 | 1.5005 | | 1.5417 | 3.43 | 718000 | 1.4972 | | 1.5469 | 3.44 | 720000 | 1.5043 | | 1.5407 | 3.45 | 722000 | 1.5041 | | 1.5484 | 3.46 | 724000 | 1.5104 | | 1.5409 | 3.47 | 726000 | 1.5087 | | 1.5431 | 3.48 | 728000 | 1.5114 | | 1.5393 | 3.49 | 730000 | 1.5102 | | 1.5364 | 3.5 | 732000 | 1.5143 | | 1.5403 | 3.5 | 734000 | 1.5202 | | 1.5386 | 3.51 | 736000 | 1.5143 | | 1.5381 | 3.52 | 738000 | 1.5198 | | 1.5341 | 3.53 | 740000 | 1.5136 | | 1.5344 | 3.54 | 742000 | 1.5172 | | 1.5347 | 3.55 | 744000 | 1.5149 | | 1.5292 | 3.56 | 746000 | 1.5141 | | 1.5344 | 3.57 | 748000 | 1.5066 | | 1.5307 | 3.58 | 750000 | 1.5087 | | 1.5324 | 3.59 | 752000 | 1.5113 | | 1.5273 | 3.6 | 754000 | 1.5101 | | 1.5273 | 3.61 | 756000 | 1.4975 | | 1.5282 | 3.62 | 758000 | 1.5053 | | 1.5252 | 3.63 | 760000 | 1.4998 | | 1.525 | 3.64 | 762000 | 1.5020 | | 1.5297 | 3.65 | 764000 | 1.5075 | | 1.5215 | 3.66 | 766000 | 1.4980 | | 1.5237 | 3.67 | 768000 | 1.5066 | | 1.5248 | 3.68 | 770000 | 1.5093 | | 1.5231 | 3.69 | 772000 | 1.5090 | | 1.5224 | 3.7 | 774000 | 1.5093 | | 1.526 | 3.71 | 776000 | 1.5015 | | 1.5215 | 3.71 | 778000 | 1.5045 | | 1.5231 | 3.72 | 780000 | 1.4971 | | 1.5205 | 3.73 | 782000 | 1.4987 | | 1.5171 | 3.74 | 784000 | 1.5001 | | 1.5134 | 3.75 | 786000 | 1.4951 | | 1.5155 | 3.76 | 788000 | 1.4975 | | 1.5154 | 3.77 | 790000 | 1.4928 | | 1.5167 | 3.78 | 792000 | 1.4983 | | 1.5146 | 3.79 | 794000 | 1.4938 | | 1.5138 | 3.8 | 796000 | 1.4985 | | 1.5137 | 3.81 | 798000 | 1.5021 | | 1.5111 | 3.82 | 800000 | 1.5020 | | 1.5134 | 3.83 | 802000 | 1.4998 | | 1.5086 | 3.84 | 804000 | 1.5001 | | 1.5081 | 3.85 | 806000 | 1.5031 | | 1.5097 | 3.86 | 808000 | 1.5008 | | 1.5128 | 3.87 | 810000 | 1.4990 | | 1.5093 | 3.88 | 812000 | 1.4994 | | 1.5109 | 3.89 | 814000 | 1.5021 | | 1.5049 | 3.9 | 816000 | 1.5012 | | 1.5042 | 3.91 | 818000 | 1.5013 | | 1.5053 | 3.92 | 820000 | 1.4946 | | 1.5066 | 3.93 | 822000 | 1.4984 | | 1.5074 | 3.93 | 824000 | 1.4963 | | 1.5046 | 3.94 | 826000 | 1.4972 | | 1.5043 | 3.95 | 828000 | 1.4970 | | 1.5064 | 3.96 | 830000 | 1.4940 | | 1.4999 | 3.97 | 832000 | 1.4940 | | 1.5022 | 3.98 | 834000 | 1.4934 | | 1.5054 | 3.99 | 836000 | 1.4929 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1