modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
Darkrider/covidbert_medmarco
[ "pytorch", "jax", "bert", "text-classification", "arxiv:2010.05987", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
35
2022-07-20T08:53:43Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: L_Roberta3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # L_Roberta3 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2095 - Accuracy: 0.9555 - F1: 0.9555 - Precision: 0.9555 - Recall: 0.9555 - C Report: precision recall f1-score support 0 0.97 0.95 0.96 876 1 0.94 0.97 0.95 696 accuracy 0.96 1572 macro avg 0.95 0.96 0.96 1572 weighted avg 0.96 0.96 0.96 1572 - C Matrix: None ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | C Report | C Matrix | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:| | 0.2674 | 1.0 | 329 | 0.2436 | 0.9389 | 0.9389 | 0.9389 | 0.9389 | precision recall f1-score support 0 0.94 0.95 0.95 876 1 0.94 0.92 0.93 696 accuracy 0.94 1572 macro avg 0.94 0.94 0.94 1572 weighted avg 0.94 0.94 0.94 1572 | None | | 0.1377 | 2.0 | 658 | 0.1506 | 0.9408 | 0.9408 | 0.9408 | 0.9408 | precision recall f1-score support 0 0.97 0.92 0.95 876 1 0.91 0.96 0.94 696 accuracy 0.94 1572 macro avg 0.94 0.94 0.94 1572 weighted avg 0.94 0.94 0.94 1572 | None | | 0.0898 | 3.0 | 987 | 0.1491 | 0.9548 | 0.9548 | 0.9548 | 0.9548 | precision recall f1-score support 0 0.96 0.96 0.96 876 1 0.95 0.95 0.95 696 accuracy 0.95 1572 macro avg 0.95 0.95 0.95 1572 weighted avg 0.95 0.95 0.95 1572 | None | | 0.0543 | 4.0 | 1316 | 0.1831 | 0.9561 | 0.9561 | 0.9561 | 0.9561 | precision recall f1-score support 0 0.97 0.95 0.96 876 1 0.94 0.96 0.95 696 accuracy 0.96 1572 macro avg 0.95 0.96 0.96 1572 weighted avg 0.96 0.96 0.96 1572 | None | | 0.0394 | 5.0 | 1645 | 0.2095 | 0.9555 | 0.9555 | 0.9555 | 0.9555 | precision recall f1-score support 0 0.97 0.95 0.96 876 1 0.94 0.97 0.95 696 accuracy 0.96 1572 macro avg 0.95 0.96 0.96 1572 weighted avg 0.96 0.96 0.96 1572 | None | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
Darren/darren
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-07-20T09:04:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -95.66 +/- 35.41 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Daryaflp/roberta-retrained_ru_covid
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2022-07-20T09:20:45Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-amazon-shoe-reviews-tensorboard results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-amazon-shoe-reviews-tensorboard This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9534 - Accuracy: 0.5779 - F1: [0.63189419 0.46645049 0.50381304 0.55843496 0.73060507] - Precision: [0.62953754 0.47008547 0.48669202 0.58801498 0.71780957] - Recall: [0.63426854 0.46287129 0.52218256 0.53168844 0.74386503] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------:|:--------------------------------------------------------:|:--------------------------------------------------------:| | 0.8776 | 1.0 | 2813 | 0.9534 | 0.5779 | [0.63189419 0.46645049 0.50381304 0.55843496 0.73060507] | [0.62953754 0.47008547 0.48669202 0.58801498 0.71780957] | [0.63426854 0.46287129 0.52218256 0.53168844 0.74386503] | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Davlan/bert-base-multilingual-cased-finetuned-wolof
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- library_name: keras --- ## Model description BERT-based model for classifying fake news written in Romanian. ## Intended uses & limitations It predicts one of six types of fake news (in order: "fabricated", "fictional", "plausible", "propaganda", "real", "satire"). It also predicts if the article talks about health or politics. ## How to use the model Load the model with: ```python from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("pandrei7/fakenews-mtl") ``` Use this tokenizer: `readerbench/RoBERT-base`. The input length should be 512. You can tokenize the input like this: ```python tokenizer( your_text, padding="max_length", truncation=True, max_length=512, return_tensors="tf", ) ``` ## Training data The model was trained and evaluated on the [fakerom](https://www.tagtog.com/fakerom/fakerom/) dataset. ## Evaluation results The accuracy of predicting fake news was roughly 75%.
Davlan/mt5-small-pcm-en
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small_adafactor results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 32.8631 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small_adafactor This model is a fine-tuned version of [oMateos2020/t5-small_adafactor](https://huggingface.co/oMateos2020/t5-small_adafactor) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.1167 - Rouge1: 32.8631 - Rouge2: 11.658 - Rougel: 26.6192 - Rougelsum: 26.6224 - Gen Len: 18.7663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.1315 | 0.02 | 200 | 2.1865 | 31.9486 | 10.9605 | 25.7418 | 25.7408 | 18.8466 | | 2.1297 | 0.05 | 400 | 2.1965 | 31.9598 | 10.9463 | 25.784 | 25.7867 | 18.8525 | | 2.1284 | 0.07 | 600 | 2.1981 | 32.231 | 11.1003 | 26.0155 | 26.0226 | 18.8466 | | 2.1315 | 0.09 | 800 | 2.1873 | 31.9161 | 10.8642 | 25.7166 | 25.7273 | 18.8227 | | 2.1212 | 0.12 | 1000 | 2.1892 | 32.4646 | 11.1852 | 26.2451 | 26.2439 | 18.8259 | | 2.1028 | 0.14 | 1200 | 2.1978 | 32.2886 | 11.1346 | 26.0795 | 26.0827 | 18.7685 | | 2.1221 | 0.16 | 1400 | 2.1936 | 32.2901 | 11.0821 | 25.9983 | 26.0024 | 18.7798 | | 2.1168 | 0.19 | 1600 | 2.1922 | 32.1655 | 11.1451 | 25.986 | 25.9893 | 18.8232 | | 2.1166 | 0.21 | 1800 | 2.1836 | 32.2611 | 11.174 | 26.0594 | 26.0688 | 18.7633 | | 2.1053 | 0.24 | 2000 | 2.1929 | 32.3321 | 11.213 | 26.1859 | 26.1903 | 18.7758 | | 2.1126 | 0.26 | 2200 | 2.1811 | 32.2078 | 11.1792 | 26.0776 | 26.0817 | 18.8197 | | 2.1038 | 0.28 | 2400 | 2.1836 | 32.2799 | 11.2511 | 26.1191 | 26.1251 | 18.7884 | | 2.1181 | 0.31 | 2600 | 2.1805 | 32.1197 | 11.1586 | 26.0441 | 26.0441 | 18.8045 | | 2.1217 | 0.33 | 2800 | 2.1806 | 32.3051 | 11.2638 | 26.1319 | 26.1386 | 18.7886 | | 2.116 | 0.35 | 3000 | 2.1741 | 32.2799 | 11.1887 | 26.1224 | 26.1363 | 18.7769 | | 2.1118 | 0.38 | 3200 | 2.1767 | 32.387 | 11.2053 | 26.077 | 26.0845 | 18.8407 | | 2.1164 | 0.4 | 3400 | 2.1743 | 32.5008 | 11.4021 | 26.3291 | 26.3297 | 18.7731 | | 2.1068 | 0.42 | 3600 | 2.1673 | 32.2347 | 11.1676 | 26.0657 | 26.0662 | 18.817 | | 2.1276 | 0.45 | 3800 | 2.1664 | 32.2434 | 11.2862 | 26.094 | 26.0994 | 18.7713 | | 2.1313 | 0.47 | 4000 | 2.1636 | 32.694 | 11.3724 | 26.4071 | 26.4008 | 18.7709 | | 2.1229 | 0.49 | 4200 | 2.1633 | 32.456 | 11.4057 | 26.2733 | 26.2689 | 18.7586 | | 2.129 | 0.52 | 4400 | 2.1641 | 32.309 | 11.2133 | 26.1062 | 26.1121 | 18.7729 | | 2.1425 | 0.54 | 4600 | 2.1577 | 32.5879 | 11.4001 | 26.3045 | 26.3078 | 18.8104 | | 2.1536 | 0.56 | 4800 | 2.1507 | 32.5152 | 11.4035 | 26.3054 | 26.3116 | 18.7941 | | 2.148 | 0.59 | 5000 | 2.1503 | 32.8088 | 11.5641 | 26.5346 | 26.5311 | 18.7602 | | 2.1541 | 0.61 | 5200 | 2.1491 | 32.8185 | 11.5816 | 26.5261 | 26.527 | 18.7654 | | 2.155 | 0.64 | 5400 | 2.1466 | 32.7229 | 11.5339 | 26.4363 | 26.442 | 18.8404 | | 2.1579 | 0.66 | 5600 | 2.1435 | 32.884 | 11.6042 | 26.5862 | 26.5891 | 18.7713 | | 2.1601 | 0.68 | 5800 | 2.1393 | 32.8027 | 11.5328 | 26.4521 | 26.4567 | 18.7904 | | 2.1765 | 0.71 | 6000 | 2.1393 | 32.8059 | 11.5751 | 26.5499 | 26.5551 | 18.7768 | | 2.2176 | 0.73 | 6200 | 2.1345 | 33.0734 | 11.8056 | 26.7546 | 26.7607 | 18.7756 | | 2.2126 | 0.75 | 6400 | 2.1328 | 32.7478 | 11.5925 | 26.5333 | 26.5359 | 18.7819 | | 2.1916 | 0.78 | 6600 | 2.1298 | 32.658 | 11.491 | 26.379 | 26.3869 | 18.8101 | | 2.2162 | 0.8 | 6800 | 2.1297 | 32.7843 | 11.5629 | 26.4736 | 26.4728 | 18.8187 | | 2.2358 | 0.82 | 7000 | 2.1287 | 32.9181 | 11.6378 | 26.5966 | 26.5987 | 18.8039 | | 2.2371 | 0.85 | 7200 | 2.1265 | 32.8413 | 11.674 | 26.5905 | 26.5831 | 18.7962 | | 2.256 | 0.87 | 7400 | 2.1245 | 32.7412 | 11.5627 | 26.4976 | 26.503 | 18.7728 | | 2.2566 | 0.89 | 7600 | 2.1220 | 32.8165 | 11.6069 | 26.5301 | 26.5295 | 18.7871 | | 2.2954 | 0.92 | 7800 | 2.1197 | 32.7399 | 11.5417 | 26.4914 | 26.4938 | 18.7752 | | 2.2766 | 0.94 | 8000 | 2.1187 | 32.853 | 11.6411 | 26.5909 | 26.5938 | 18.7852 | | 2.3273 | 0.96 | 8200 | 2.1169 | 32.9376 | 11.709 | 26.6665 | 26.6672 | 18.7734 | | 2.3182 | 0.99 | 8400 | 2.1167 | 32.8631 | 11.658 | 26.6192 | 26.6224 | 18.7663 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Davlan/mt5_base_yor_eng_mt
[ "pytorch", "mt5", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -166.80 +/- 21.94 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **DQN** Agent playing **MountainCar-v0** This is a trained model of a **DQN** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Davlan/naija-twitter-sentiment-afriberta-large
[ "pytorch", "tf", "xlm-roberta", "text-classification", "arxiv:2201.08277", "transformers", "has_space" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
61
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-distilbert-base-uncased-finetuned-sst-2-english-5000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-distilbert-base-uncased-finetuned-sst-2-english-5000-samples This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1289 - Accuracy: 0.977 - F1: 0.9878 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Davlan/xlm-roberta-base-finetuned-chichewa
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2_loading_script model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2_loading_script dataset. It achieves the following results on the evaluation set: - Loss: 4.9348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 15 | 5.4661 | | No log | 2.0 | 30 | 5.0915 | | No log | 3.0 | 45 | 4.9348 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Davlan/xlm-roberta-large-masakhaner
[ "pytorch", "tf", "xlm-roberta", "token-classification", "arxiv:2103.11811", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,449
null
--- tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: longformer-base-4096-finetuned-squad2-length-1024-128window results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # longformer-base-4096-finetuned-squad2-length-1024-128window This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
DeadBeast/marathi-roberta-base
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5477951635989807 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8081 - Matthews Correlation: 0.5478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5222 | 1.0 | 535 | 0.5270 | 0.4182 | | 0.3451 | 2.0 | 1070 | 0.5017 | 0.4810 | | 0.2309 | 3.0 | 1605 | 0.5983 | 0.5314 | | 0.179 | 4.0 | 2140 | 0.7488 | 0.5291 | | 0.1328 | 5.0 | 2675 | 0.8081 | 0.5478 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Declan/Breitbart_model_v7
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: En-Nso_update3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # En-Nso_update3 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-nso](https://huggingface.co/Helsinki-NLP/opus-mt-en-nso) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4218 - Bleu: 24.5765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 3.6568 | 1.0 | 867 | 3.0185 | 18.4004 | | 2.7574 | 2.0 | 1734 | 2.7774 | 20.3167 | | 2.4522 | 3.0 | 2601 | 2.6436 | 22.1868 | | 2.3298 | 4.0 | 3468 | 2.5732 | 22.6221 | | 2.1563 | 5.0 | 4335 | 2.5225 | 22.6937 | | 2.0177 | 6.0 | 5202 | 2.4917 | 23.2204 | | 1.9407 | 7.0 | 6069 | 2.4656 | 23.3616 | | 1.8758 | 8.0 | 6936 | 2.4509 | 23.5496 | | 1.8167 | 9.0 | 7803 | 2.4426 | 23.6263 | | 1.7566 | 10.0 | 8670 | 2.4345 | 24.0730 | | 1.7254 | 11.0 | 9537 | 2.4281 | 24.1627 | | 1.7088 | 12.0 | 10404 | 2.4252 | 24.1109 | | 1.6731 | 13.0 | 11271 | 2.4226 | 24.1018 | | 1.6574 | 14.0 | 12138 | 2.4211 | 23.9186 | | 1.6481 | 15.0 | 13005 | 2.4218 | 24.1323 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Declan/Breitbart_modelv7
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit language: eo thumbnail: https://huggingface.co/blog/assets/01_how-to-train/EsperBERTo-thumbnail-v2.png widget: - text: "Jen la komenco de bela <mask>." - text: "Uno du <mask>" - text: "Jen finiĝas bela <mask>." --- # Hello old Windows line breaks
Declan/CNN_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - metrics: - type: mean_reward value: 117.28 +/- 2.91 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: mujoco_swimmer type: mujoco_swimmer --- A(n) **APPO** model trained on the **mujoco_swimmer** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
Declan/ChicagoTribune_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: notmaineyy/bert-base-multilingual-cased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # notmaineyy/bert-base-multilingual-cased-finetuned-ner This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0248 - Validation Loss: 0.0568 - Train Precision: 0.9424 - Train Recall: 0.9471 - Train F1: 0.9448 - Train Accuracy: 0.9863 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 10530, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.1335 | 0.0705 | 0.9152 | 0.9204 | 0.9178 | 0.9806 | 0 | | 0.0497 | 0.0562 | 0.9335 | 0.9472 | 0.9403 | 0.9851 | 1 | | 0.0248 | 0.0568 | 0.9424 | 0.9471 | 0.9448 | 0.9863 | 2 | ### Framework versions - Transformers 4.21.0 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
Declan/FoxNews_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - monai - medical license: apache-2.0 --- # Model Overview A pre-trained model for volumetric (3D) segmentation of brain tumor subregions from multimodal MRIs based on BraTS 2018 data. The whole pipeline is modified from [clara_pt_brain_mri_segmentation](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/med/models/clara_pt_brain_mri_segmentation). ## Workflow The model is trained to segment 3 nested subregions of primary brain tumors (gliomas): the "enhancing tumor" (ET), the "tumor core" (TC), the "whole tumor" (WT) based on 4 aligned input MRI scans (T1c, T1, T2, FLAIR). - The ET is described by areas that show hyper intensity in T1c when compared to T1, but also when compared to "healthy" white matter in T1c. - The TC describes the bulk of the tumor, which is what is typically resected. The TC entails the ET, as well as the necrotic (fluid-filled) and the non-enhancing (solid) parts of the tumor. - The WT describes the complete extent of the disease, as it entails the TC and the peritumoral edema (ED), which is typically depicted by hyper-intense signal in FLAIR. ## Data The training data is from the [Multimodal Brain Tumor Segmentation Challenge (BraTS) 2018](https://www.med.upenn.edu/sbia/brats2018/data.html). - Target: 3 tumor subregions - Task: Segmentation - Modality: MRI - Size: 285 3D volumes (4 channels each) The provided labelled data was partitioned, based on our own split, into training (200 studies), validation (42 studies) and testing (43 studies) datasets. Please run `scripts/prepare_datalist.py` to produce the data list. The command is like: ``` python scripts/prepare_datalist.py --path your-brats18-dataset-path ``` ## Training configuration This model utilized a similar approach described in 3D MRI brain tumor segmentation using autoencoder regularization, which was a winning method in BraTS2018 [1]. The training was performed with the following: - GPU: At least 16GB of GPU memory. - Actual Model Input: 224 x 224 x 144 - AMP: True - Optimizer: Adam - Learning Rate: 1e-4 - Loss: DiceLoss ## Input Input: 4 channel MRI (4 aligned MRIs T1c, T1, T2, FLAIR at 1x1x1 mm) 1. Normalizing to unit std with zero mean 2. Randomly cropping to (224, 224, 144) 3. Randomly spatial flipping 4. Randomly scaling and shifting intensity of the volume ## Output Output: 3 channels - Label 0: TC tumor subregion - Label 1: WT tumor subregion - Label 2: ET tumor subregion ## Model Performance The achieved Dice scores on the validation data are: - Tumor core (TC): 0.8559 - Whole tumor (WT): 0.9026 - Enhancing tumor (ET): 0.7905 - Average: 0.8518 # Disclaimer This is an example, not to be used for diagnostic purposes. # References [1] Myronenko, Andriy. "3D MRI brain tumor segmentation using autoencoder regularization." International MICCAI Brainlesion Workshop. Springer, Cham, 2018. https://arxiv.org/abs/1810.11654.
Declan/HuffPost_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Declan/HuffPost_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: mit --- ## NKBert A BERT model finetuned from a <a href="https://github.com/SKTBrain/KoBERT">KoBERT</a> base on a dataset of North Korean data.
Declan/NPR_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: BART_reddit_advice_story results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BART_reddit_advice_story This model is a fine-tuned version of [sshleifer/distilbart-xsum-6-6](https://huggingface.co/sshleifer/distilbart-xsum-6-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2552 - Rouge1: 21.9349 - Rouge2: 6.3417 - Rougel: 17.7133 - Rougelsum: 18.7199 - Gen Len: 21.092 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.3743 | 1.0 | 1875 | 3.2787 | 21.1275 | 5.9618 | 17.3772 | 18.317 | 20.447 | | 3.025 | 2.0 | 3750 | 3.2466 | 21.8443 | 6.2351 | 17.6358 | 18.6259 | 21.506 | | 2.7628 | 3.0 | 5625 | 3.2552 | 21.9349 | 6.3417 | 17.7133 | 18.7199 | 21.092 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Declan/NPR_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: lakshaywadhwa1993/mt5-small-finetuned-hindi-mt5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # lakshaywadhwa1993/mt5-small-finetuned-hindi-mt5 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.4909 - Validation Loss: 1.3507 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 41000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.5310 | 1.8341 | 0 | | 2.0735 | 1.6193 | 1 | | 1.7617 | 1.4672 | 2 | | 1.6375 | 1.4271 | 3 | | 1.5712 | 1.3720 | 4 | | 1.5294 | 1.3656 | 5 | | 1.5051 | 1.3531 | 6 | | 1.4909 | 1.3507 | 7 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
Declan/Politico_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: aalogan/bert-ner-nsm2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # aalogan/bert-ner-nsm2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0649 - Validation Loss: 0.1762 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2982, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.4885 | 0.2361 | 0 | | 0.1547 | 0.1920 | 1 | | 0.0966 | 0.1648 | 2 | | 0.0649 | 0.1762 | 3 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Declan/Reuters_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: ViT-chess-V4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViT-chess-V4 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.2867 - Accuracy: 0.1942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 5.4877 | 1.0 | 45000 | 5.4554 | 0.1044 | | 4.9794 | 2.0 | 90000 | 5.0001 | 0.1371 | | 4.5956 | 3.0 | 135000 | 4.6720 | 0.1596 | | 4.3402 | 4.0 | 180000 | 4.4082 | 0.1834 | | 4.097 | 5.0 | 225000 | 4.2867 | 0.1942 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
DeepChem/ChemBERTa-5M-MLM
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: Nso-En_update3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Nso-En_update3 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-nso-en](https://huggingface.co/Helsinki-NLP/opus-mt-nso-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6854 - Bleu: 21.2223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 3.5054 | 1.0 | 1734 | 3.1912 | 16.5243 | | 3.0368 | 2.0 | 3468 | 2.9680 | 18.0237 | | 2.6866 | 3.0 | 5202 | 2.8594 | 19.5515 | | 2.51 | 4.0 | 6936 | 2.7916 | 20.1468 | | 2.3754 | 5.0 | 8670 | 2.7438 | 20.0535 | | 2.2534 | 6.0 | 10404 | 2.7186 | 20.7329 | | 2.144 | 7.0 | 12138 | 2.7034 | 20.9116 | | 2.0709 | 8.0 | 13872 | 2.6945 | 21.0866 | | 2.0191 | 9.0 | 15606 | 2.6880 | 21.1577 | | 1.9973 | 10.0 | 17340 | 2.6854 | 21.1386 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
DeepChem/ChemBERTa-5M-MTR
[ "pytorch", "roberta", "transformers" ]
null
{ "architectures": [ "RobertaForRegression" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TestZee/t5-small-finetuned-kaggle-data-t5-v3.0 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TestZee/t5-small-finetuned-kaggle-data-t5-v3.0 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.6248 - Validation Loss: 1.6558 - Train Rouge1: 26.3006 - Train Rouge2: 15.0931 - Train Rougel: 22.7561 - Train Rougelsum: 24.3816 - Train Gen Len: 19.0 - Epoch: 29 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.001} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 2.1318 | 1.8436 | 24.0637 | 12.9655 | 20.6308 | 22.1857 | 19.0 | 0 | | 2.0035 | 1.7955 | 24.9502 | 13.7602 | 21.4422 | 23.0424 | 19.0 | 1 | | 1.9561 | 1.7670 | 25.6590 | 14.5211 | 22.0967 | 23.5134 | 19.0 | 2 | | 1.9227 | 1.7496 | 25.8863 | 14.7209 | 22.3661 | 23.8629 | 19.0 | 3 | | 1.8951 | 1.7334 | 26.0026 | 14.7861 | 22.4126 | 23.8936 | 19.0 | 4 | | 1.8716 | 1.7234 | 26.3796 | 14.9421 | 22.7097 | 24.2118 | 19.0 | 5 | | 1.8558 | 1.7138 | 26.2830 | 14.9347 | 22.8008 | 24.1908 | 19.0 | 6 | | 1.8362 | 1.7072 | 26.0811 | 14.6698 | 22.5673 | 23.9941 | 19.0 | 7 | | 1.8222 | 1.7020 | 26.0600 | 14.8445 | 22.6614 | 23.9462 | 19.0 | 8 | | 1.8086 | 1.6929 | 26.3903 | 15.0590 | 22.9725 | 24.3007 | 19.0 | 9 | | 1.7958 | 1.6870 | 26.2563 | 14.8773 | 22.7601 | 24.1487 | 19.0 | 10 | | 1.7802 | 1.6847 | 26.2638 | 15.0330 | 22.8279 | 24.2225 | 19.0 | 11 | | 1.7709 | 1.6823 | 26.0351 | 14.9826 | 22.6653 | 24.0415 | 19.0 | 12 | | 1.7610 | 1.6796 | 26.1864 | 15.0833 | 22.7959 | 24.1713 | 19.0 | 13 | | 1.7486 | 1.6754 | 26.2693 | 15.2384 | 22.8580 | 24.2483 | 19.0 | 14 | | 1.7354 | 1.6744 | 26.1257 | 14.9953 | 22.7029 | 24.0956 | 19.0 | 15 | | 1.7262 | 1.6740 | 26.1954 | 15.0393 | 22.8311 | 24.1282 | 19.0 | 16 | | 1.7206 | 1.6703 | 26.1409 | 14.9949 | 22.7586 | 24.1355 | 19.0 | 17 | | 1.7083 | 1.6663 | 26.1880 | 15.1119 | 22.7500 | 24.1816 | 19.0 | 18 | | 1.7002 | 1.6662 | 25.9666 | 14.9556 | 22.5439 | 23.9713 | 19.0 | 19 | | 1.6926 | 1.6654 | 26.1649 | 15.1911 | 22.8287 | 24.2002 | 19.0 | 20 | | 1.6839 | 1.6589 | 26.2105 | 15.0021 | 22.7778 | 24.2852 | 19.0 | 21 | | 1.6768 | 1.6596 | 26.1263 | 14.8676 | 22.6634 | 24.1171 | 19.0 | 22 | | 1.6670 | 1.6612 | 25.9718 | 14.8101 | 22.5048 | 23.9592 | 19.0 | 23 | | 1.6604 | 1.6590 | 26.2419 | 15.0633 | 22.7685 | 24.3165 | 19.0 | 24 | | 1.6498 | 1.6564 | 26.2757 | 15.0082 | 22.8157 | 24.3126 | 19.0 | 25 | | 1.6455 | 1.6570 | 26.2307 | 14.9338 | 22.6259 | 24.2636 | 19.0 | 26 | | 1.6368 | 1.6573 | 26.4114 | 15.3485 | 22.9117 | 24.4928 | 19.0 | 27 | | 1.6325 | 1.6547 | 26.5272 | 15.4393 | 23.0764 | 24.6935 | 19.0 | 28 | | 1.6248 | 1.6558 | 26.3006 | 15.0931 | 22.7561 | 24.3816 | 19.0 | 29 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
DeepChem/ChemBERTa-77M-MLM
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,416
null
--- license: mit tags: - generated_from_trainer model-index: - name: ES_corlec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ES_corlec This model is a fine-tuned version of [DeepESP/gpt2-spanish](https://huggingface.co/DeepESP/gpt2-spanish) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
DeepChem/ChemBERTa-77M-MTR
[ "pytorch", "roberta", "transformers" ]
null
{ "architectures": [ "RobertaForRegression" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7,169
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: go2k/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
DeepChem/SmilesTokenizer_PubChem_1M
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
227
null
--- language: - ru tags: - PyTorch - Transformers license: apache-2.0 widget: - text: "sbert punc case расставляет точки запятые и знаки вопроса вам нравится" --- # SbertPuncCase SbertPuncCase - модель восстановления пунктуации и регистра для русского языка. Модель способна расставлять точки, запятые и знаки вопроса; определять регистр - слово в нижнем регистре, слово с первой буквой в верхнем регистре, слово в верхнем регистре. Модель разработана для восстановления текста после распознавания речи, поэтому работает со строками в нижнем регистре. В основу модели легла [sbert_large_nlu_ru](https://huggingface.co/sberbank-ai/sbert_large_nlu_ru). В качестве обучающих данных использованы текстовые расшифровки интервью. # Как это работает 1. Текст переводится в нижний регистр и разбивается на слова. 2. Слова разделяются на токены. 3. Модель (по аналогии с задачей NER) предсказывает класс для каждого токена. Классификация на 12 классов: 3+1 знака препинания * 3 варианта регистра. 4. Функция декодировки восстанавливает текст соответственно предсказанным классам. # Как использовать Код модели находится в файле `sbert-punc-case-ru/sbertpunccase.py`. Для быстрой установки можно воспользоваться командой: ``` pip install git+https://huggingface.co/kontur-ai/sbert_punc_case_ru ``` Использование модели: ``` from sbert_punc_case_ru import SbertPuncCase model = SbertPuncCase() model.punctuate("sbert punc case расставляет точки запятые и знаки вопроса вам нравится") ``` # Авторы [Альмира Муртазина](https://github.com/almiradreamer) [Александр Абугалиев](https://github.com/Squire-tomsk)
DeepESP/gpt2-spanish
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "es", "dataset:ebooks", "transformers", "GPT-2", "Spanish", "ebooks", "nlg", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,463
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab-testing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab-testing This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
DeepPavlov/bert-base-bg-cs-pl-ru-cased
[ "pytorch", "jax", "bert", "feature-extraction", "bg", "cs", "pl", "ru", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,614
null
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new_0060 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new_0060 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8691 - Validation Loss: 2.7610 - Epoch: 59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 5.6632 | 4.5153 | 0 | | 4.4292 | 4.0923 | 1 | | 4.1169 | 3.8723 | 2 | | 3.9326 | 3.7260 | 3 | | 3.8026 | 3.6281 | 4 | | 3.7045 | 3.5355 | 5 | | 3.6254 | 3.4645 | 6 | | 3.5604 | 3.4093 | 7 | | 3.5048 | 3.3587 | 8 | | 3.4569 | 3.3136 | 9 | | 3.4155 | 3.2778 | 10 | | 3.3791 | 3.2443 | 11 | | 3.3470 | 3.2157 | 12 | | 3.3183 | 3.1854 | 13 | | 3.2922 | 3.1642 | 14 | | 3.2685 | 3.1400 | 15 | | 3.2467 | 3.1193 | 16 | | 3.2267 | 3.1009 | 17 | | 3.2078 | 3.0838 | 18 | | 3.1904 | 3.0689 | 19 | | 3.1739 | 3.0520 | 20 | | 3.1584 | 3.0379 | 21 | | 3.1438 | 3.0255 | 22 | | 3.1300 | 3.0116 | 23 | | 3.1168 | 2.9965 | 24 | | 3.1044 | 2.9866 | 25 | | 3.0925 | 2.9752 | 26 | | 3.0812 | 2.9631 | 27 | | 3.0704 | 2.9539 | 28 | | 3.0601 | 2.9458 | 29 | | 3.0502 | 2.9340 | 30 | | 3.0408 | 2.9251 | 31 | | 3.0317 | 2.9179 | 32 | | 3.0230 | 2.9082 | 33 | | 3.0147 | 2.9002 | 34 | | 3.0065 | 2.8948 | 35 | | 2.9987 | 2.8855 | 36 | | 2.9911 | 2.8779 | 37 | | 2.9838 | 2.8706 | 38 | | 2.9767 | 2.8643 | 39 | | 2.9698 | 2.8570 | 40 | | 2.9632 | 2.8501 | 41 | | 2.9567 | 2.8441 | 42 | | 2.9505 | 2.8385 | 43 | | 2.9445 | 2.8327 | 44 | | 2.9385 | 2.8260 | 45 | | 2.9329 | 2.8213 | 46 | | 2.9272 | 2.8160 | 47 | | 2.9217 | 2.8107 | 48 | | 2.9162 | 2.8052 | 49 | | 2.9110 | 2.8020 | 50 | | 2.9060 | 2.7938 | 51 | | 2.9010 | 2.7896 | 52 | | 2.8962 | 2.7857 | 53 | | 2.8913 | 2.7827 | 54 | | 2.8866 | 2.7768 | 55 | | 2.8821 | 2.7724 | 56 | | 2.8776 | 2.7679 | 57 | | 2.8733 | 2.7642 | 58 | | 2.8691 | 2.7610 | 59 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
DeepPavlov/bert-base-multilingual-cased-sentence
[ "pytorch", "jax", "bert", "feature-extraction", "multilingual", "arxiv:1704.05426", "arxiv:1809.05053", "arxiv:1908.10084", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
140
null
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/flowers-102-categories metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-ema-flowers-64 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/flowers-102-categories` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(0.95, 0.999), weight_decay=1e-06 and epsilon=1e-08 - lr_scheduler: cosine - lr_warmup_steps: 500 - ema_inv_gamma: 1.0 - ema_inv_gamma: 0.75 - ema_inv_gamma: 0.9999 - mixed_precision: no ### Training results 📈 [TensorBoard logs](https://huggingface.co/anton-l/ddpm-ema-flowers-64/tensorboard?#scalars)
DeepPavlov/marianmt-tatoeba-ruen
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- language: en thumbnail: http://www.huggingtweets.com/lpachter/1658405511004/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1257000705761525760/R7Pphmei_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lior Pachter</div> <div style="text-align: center; font-size: 14px;">@lpachter</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lior Pachter. | Data | Lior Pachter | | --- | --- | | Tweets downloaded | 3232 | | Retweets | 1213 | | Short tweets | 245 | | Tweets kept | 1774 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3rt1wriv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lpachter's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/23sx643q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/23sx643q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lpachter') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
DeltaHub/adapter_t5-3b_mrpc
[ "pytorch", "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: afl-3.0 --- ### Time: 2020/07/10 ### ICAN-AI
DeltaHub/adapter_t5-3b_qnli
[ "pytorch", "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - abhishek/autotrain-data-summtest1 co2_eq_emissions: 28.375764585180136 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 11405516 - CO2 Emissions (in grams): 28.375764585180136 ## Validation Metrics - Loss: 1.5257819890975952 - Rouge1: 41.9534 - Rouge2: 18.5044 - RougeL: 34.7507 - RougeLsum: 38.6091 - Gen Len: 15.1037 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/abhishek/autotrain-summtest1-11405516 ```
DeskDown/MarianMixFT_en-id
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 2447.40 +/- 23.14 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **PPO** Agent playing **AntBulletEnv-v0** This is a trained model of a **PPO** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` MODEL model = PPO(policy = "MlpPolicy", env = env, batch_size = 256, clip_range = 0.4, ent_coef = 0.0, gae_lambda = 0.92, gamma = 0.99, learning_rate = 3.0e-05, max_grad_norm = 0.5, n_epochs = 30, n_steps = 512, policy_kwargs = dict(log_std_init=-2, ortho_init=False, activation_fn=nn.ReLU, net_arch=[dict(pi=[256, 256], vf=[256, 256])] ), use_sde = True, sde_sample_freq = 4, vf_coef = 0.5, tensorboard_log = "./tensorboard", verbose=1) model.learn(1_000_000)
DeskDown/MarianMixFT_en-ja
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: BART_reddit_gaming results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BART_reddit_gaming This model is a fine-tuned version of [sshleifer/distilbart-xsum-6-6](https://huggingface.co/sshleifer/distilbart-xsum-6-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7373 - Rouge1: 18.1202 - Rouge2: 4.6045 - Rougel: 15.1273 - Rougelsum: 15.7601 - Gen Len: 18.208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.864 | 1.0 | 1875 | 3.7752 | 17.3754 | 4.51 | 14.6763 | 15.22 | 16.944 | | 3.4755 | 2.0 | 3750 | 3.7265 | 17.8066 | 4.4188 | 14.9432 | 15.5396 | 18.104 | | 3.2629 | 3.0 | 5625 | 3.7373 | 18.1202 | 4.6045 | 15.1273 | 15.7601 | 18.208 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
DeskDown/MarianMixFT_en-ms
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-CartPole-v1 results: - metrics: - type: mean_reward value: 173.30 +/- 30.20 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Dimedrolza/DialoGPT-small-cyberpunk
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
oghdogspsdfughuisdfhgsudfigdfg https://www.xing.com/events/new
Doogie/Waynehills-KE-T5-doogie
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - conversational --- # Scout DialoGPT Model
Doohae/roberta
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 194.47 +/- 82.70 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
albert-base-v2
[ "pytorch", "tf", "jax", "rust", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4,785,283
2022-07-22T00:14:47Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -108.20 +/- 27.36 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **DQN** Agent playing **MountainCar-v0** This is a trained model of a **DQN** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
albert-large-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
687
2022-07-22T00:21:50Z
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing3_ft_pretrain2_wav2vec2-large-xlsr-53 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing3_ft_pretrain2_wav2vec2-large-xlsr-53 This model is a fine-tuned version of [gary109/ai-light-dance_singing3_ft_pretrain2_wav2vec2-large-xlsr-53](https://huggingface.co/gary109/ai-light-dance_singing3_ft_pretrain2_wav2vec2-large-xlsr-53) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING3 dataset. It achieves the following results on the evaluation set: - Loss: 2.4279 - Wer: 1.0087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.209 | 1.0 | 72 | 2.5599 | 0.9889 | | 1.3395 | 2.0 | 144 | 2.7188 | 0.9877 | | 1.2695 | 3.0 | 216 | 2.9989 | 0.9709 | | 1.2818 | 4.0 | 288 | 3.2352 | 0.9757 | | 1.2389 | 5.0 | 360 | 3.6867 | 0.9783 | | 1.2368 | 6.0 | 432 | 3.3189 | 0.9811 | | 1.2307 | 7.0 | 504 | 3.0786 | 0.9657 | | 1.2607 | 8.0 | 576 | 2.9720 | 0.9677 | | 1.2584 | 9.0 | 648 | 2.5613 | 0.9702 | | 1.2266 | 10.0 | 720 | 2.6937 | 0.9610 | | 1.262 | 11.0 | 792 | 3.9060 | 0.9745 | | 1.2361 | 12.0 | 864 | 3.6138 | 0.9718 | | 1.2348 | 13.0 | 936 | 3.4838 | 0.9745 | | 1.2715 | 14.0 | 1008 | 3.3128 | 0.9751 | | 1.2505 | 15.0 | 1080 | 3.2015 | 0.9710 | | 1.211 | 16.0 | 1152 | 3.4709 | 0.9709 | | 1.2067 | 17.0 | 1224 | 3.0566 | 0.9673 | | 1.2536 | 18.0 | 1296 | 2.5479 | 0.9789 | | 1.2297 | 19.0 | 1368 | 2.8307 | 0.9710 | | 1.1949 | 20.0 | 1440 | 3.4112 | 0.9777 | | 1.2181 | 21.0 | 1512 | 2.6784 | 0.9682 | | 1.195 | 22.0 | 1584 | 3.0395 | 0.9639 | | 1.2047 | 23.0 | 1656 | 3.1935 | 0.9726 | | 1.2306 | 24.0 | 1728 | 3.2649 | 0.9723 | | 1.199 | 25.0 | 1800 | 3.1378 | 0.9645 | | 1.1945 | 26.0 | 1872 | 2.8143 | 0.9596 | | 1.19 | 27.0 | 1944 | 3.5174 | 0.9787 | | 1.1976 | 28.0 | 2016 | 2.9666 | 0.9594 | | 1.2229 | 29.0 | 2088 | 2.8672 | 0.9589 | | 1.1548 | 30.0 | 2160 | 2.6568 | 0.9627 | | 1.169 | 31.0 | 2232 | 2.8799 | 0.9654 | | 1.1857 | 32.0 | 2304 | 2.8691 | 0.9625 | | 1.1862 | 33.0 | 2376 | 2.8251 | 0.9555 | | 1.1721 | 34.0 | 2448 | 3.5968 | 0.9726 | | 1.1293 | 35.0 | 2520 | 3.4130 | 0.9651 | | 1.1513 | 36.0 | 2592 | 2.8804 | 0.9630 | | 1.1537 | 37.0 | 2664 | 2.5824 | 0.9575 | | 1.1818 | 38.0 | 2736 | 2.8443 | 0.9613 | | 1.1835 | 39.0 | 2808 | 2.6431 | 0.9619 | | 1.1457 | 40.0 | 2880 | 2.9254 | 0.9639 | | 1.1591 | 41.0 | 2952 | 2.8194 | 0.9561 | | 1.1284 | 42.0 | 3024 | 2.6432 | 0.9806 | | 1.1602 | 43.0 | 3096 | 2.4279 | 1.0087 | | 1.1556 | 44.0 | 3168 | 2.5040 | 1.0030 | | 1.1256 | 45.0 | 3240 | 3.1641 | 0.9608 | | 1.1256 | 46.0 | 3312 | 2.9522 | 0.9677 | | 1.1211 | 47.0 | 3384 | 2.6318 | 0.9580 | | 1.1142 | 48.0 | 3456 | 2.7298 | 0.9533 | | 1.1237 | 49.0 | 3528 | 2.5442 | 0.9673 | | 1.0976 | 50.0 | 3600 | 2.7767 | 0.9610 | | 1.1154 | 51.0 | 3672 | 2.6849 | 0.9646 | | 1.1012 | 52.0 | 3744 | 2.5384 | 0.9621 | | 1.1077 | 53.0 | 3816 | 2.4505 | 1.0067 | | 1.0936 | 54.0 | 3888 | 2.5847 | 0.9687 | | 1.0772 | 55.0 | 3960 | 2.4575 | 0.9761 | | 1.092 | 56.0 | 4032 | 2.4889 | 0.9802 | | 1.0868 | 57.0 | 4104 | 2.5885 | 0.9664 | | 1.0979 | 58.0 | 4176 | 2.6370 | 0.9607 | | 1.094 | 59.0 | 4248 | 2.6195 | 0.9605 | | 1.0745 | 60.0 | 4320 | 2.5346 | 0.9834 | | 1.1057 | 61.0 | 4392 | 2.6879 | 0.9603 | | 1.0722 | 62.0 | 4464 | 2.5426 | 0.9735 | | 1.0731 | 63.0 | 4536 | 2.8259 | 0.9535 | | 1.0862 | 64.0 | 4608 | 2.7632 | 0.9559 | | 1.0396 | 65.0 | 4680 | 2.5401 | 0.9807 | | 1.0581 | 66.0 | 4752 | 2.6977 | 0.9687 | | 1.0647 | 67.0 | 4824 | 2.6968 | 0.9694 | | 1.0549 | 68.0 | 4896 | 2.6439 | 0.9807 | | 1.0607 | 69.0 | 4968 | 2.6822 | 0.9771 | | 1.05 | 70.0 | 5040 | 2.7011 | 0.9607 | | 1.042 | 71.0 | 5112 | 2.5766 | 0.9713 | | 1.042 | 72.0 | 5184 | 2.5720 | 0.9747 | | 1.0594 | 73.0 | 5256 | 2.7176 | 0.9704 | | 1.0425 | 74.0 | 5328 | 2.7458 | 0.9614 | | 1.0199 | 75.0 | 5400 | 2.5906 | 0.9987 | | 1.0198 | 76.0 | 5472 | 2.5534 | 1.0087 | | 1.0193 | 77.0 | 5544 | 2.5421 | 0.9933 | | 1.0379 | 78.0 | 5616 | 2.5139 | 0.9994 | | 1.025 | 79.0 | 5688 | 2.4850 | 1.0313 | | 1.0054 | 80.0 | 5760 | 2.5803 | 0.9814 | | 1.0218 | 81.0 | 5832 | 2.5696 | 0.9867 | | 1.0177 | 82.0 | 5904 | 2.6011 | 1.0065 | | 1.0094 | 83.0 | 5976 | 2.6166 | 0.9855 | | 1.0202 | 84.0 | 6048 | 2.5557 | 1.0204 | | 1.0148 | 85.0 | 6120 | 2.6118 | 1.0033 | | 1.0117 | 86.0 | 6192 | 2.5671 | 1.0120 | | 1.0195 | 87.0 | 6264 | 2.5443 | 1.0041 | | 1.0114 | 88.0 | 6336 | 2.5627 | 1.0049 | | 1.0074 | 89.0 | 6408 | 2.5670 | 1.0255 | | 0.9883 | 90.0 | 6480 | 2.5338 | 1.0306 | | 1.0112 | 91.0 | 6552 | 2.5615 | 1.0142 | | 0.9986 | 92.0 | 6624 | 2.5566 | 1.0415 | | 0.9939 | 93.0 | 6696 | 2.5728 | 1.0287 | | 0.9954 | 94.0 | 6768 | 2.5617 | 1.0138 | | 0.9643 | 95.0 | 6840 | 2.5890 | 1.0145 | | 0.9892 | 96.0 | 6912 | 2.5918 | 1.0119 | | 0.983 | 97.0 | 6984 | 2.5862 | 1.0175 | | 0.988 | 98.0 | 7056 | 2.5873 | 1.0147 | | 0.9908 | 99.0 | 7128 | 2.5973 | 1.0073 | | 0.9696 | 100.0 | 7200 | 2.5938 | 1.0156 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
albert-large-v2
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26,792
2022-07-22T00:41:06Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole1 results: - metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
albert-xxlarge-v2
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
42,640
2022-07-22T01:46:42Z
--- license: mit tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: m2m100_418M-finetuned-kde4-en-to-pt_BR results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-pt_BR metrics: - name: Bleu type: bleu value: 58.31959113813223 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M-finetuned-kde4-en-to-pt_BR This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.5150 - Bleu: 58.3196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bert-base-chinese
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "zh", "arxiv:1810.04805", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3,377,486
2022-07-22T02:28:44Z
--- tags: - monai license: apache-2.0 --- # Test bundle
bert-base-german-dbmdz-cased
[ "pytorch", "jax", "bert", "fill-mask", "de", "transformers", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,814
2022-07-22T03:25:34Z
--- language: en thumbnail: http://www.huggingtweets.com/hotwingsuk/1658460403599/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1280474754214957056/GKqk3gAm_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">HotWings</div> <div style="text-align: center; font-size: 14px;">@hotwingsuk</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from HotWings. | Data | HotWings | | --- | --- | | Tweets downloaded | 2057 | | Retweets | 69 | | Short tweets | 258 | | Tweets kept | 1730 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3opu8h6o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hotwingsuk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/bzf76pmf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/bzf76pmf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hotwingsuk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
bert-large-cased-whole-word-masking
[ "pytorch", "tf", "jax", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,316
2022-07-22T04:29:53Z
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new2_0040 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new2_0040 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5812 - Validation Loss: 2.4689 - Epoch: 39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.6241 | 2.5129 | 0 | | 2.6228 | 2.5112 | 1 | | 2.6216 | 2.5105 | 2 | | 2.6204 | 2.5101 | 3 | | 2.6191 | 2.5088 | 4 | | 2.6180 | 2.5064 | 5 | | 2.6166 | 2.5045 | 6 | | 2.6155 | 2.5038 | 7 | | 2.6143 | 2.5024 | 8 | | 2.6132 | 2.5009 | 9 | | 2.6120 | 2.5014 | 10 | | 2.6108 | 2.4984 | 11 | | 2.6097 | 2.4983 | 12 | | 2.6085 | 2.4976 | 13 | | 2.6073 | 2.4948 | 14 | | 2.6064 | 2.4945 | 15 | | 2.6052 | 2.4939 | 16 | | 2.6039 | 2.4925 | 17 | | 2.6030 | 2.4912 | 18 | | 2.6019 | 2.4890 | 19 | | 2.6007 | 2.4889 | 20 | | 2.5998 | 2.4872 | 21 | | 2.5987 | 2.4865 | 22 | | 2.5977 | 2.4859 | 23 | | 2.5965 | 2.4844 | 24 | | 2.5956 | 2.4834 | 25 | | 2.5944 | 2.4821 | 26 | | 2.5934 | 2.4805 | 27 | | 2.5925 | 2.4790 | 28 | | 2.5914 | 2.4798 | 29 | | 2.5904 | 2.4777 | 30 | | 2.5893 | 2.4781 | 31 | | 2.5883 | 2.4755 | 32 | | 2.5872 | 2.4763 | 33 | | 2.5862 | 2.4743 | 34 | | 2.5851 | 2.4736 | 35 | | 2.5841 | 2.4732 | 36 | | 2.5831 | 2.4726 | 37 | | 2.5822 | 2.4691 | 38 | | 2.5812 | 2.4689 | 39 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
bert-large-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
388,769
2022-07-22T04:35:55Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: train args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8503293209175562 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1354 - F1: 0.8503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 132 | 0.1757 | 0.8055 | | No log | 2.0 | 264 | 0.1372 | 0.8424 | | No log | 3.0 | 396 | 0.1354 | 0.8503 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bert-large-uncased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
480,510
2022-07-22T04:36:21Z
--- tags: - generated_from_keras_callback model-index: - name: distilbert_new2_0020 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_new2_0020 This model is a fine-tuned version of [/content/drive/MyDrive/Colab Notebooks/oscar/trybackup_distilbert/new_backup_0105105](https://huggingface.co//content/drive/MyDrive/Colab Notebooks/oscar/trybackup_distilbert/new_backup_0105105) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9920 - Validation Loss: 0.9688 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.0180 | 0.9873 | 0 | | 1.0163 | 0.9878 | 1 | | 1.0145 | 0.9856 | 2 | | 1.0139 | 0.9830 | 3 | | 1.0122 | 0.9831 | 4 | | 1.0118 | 0.9830 | 5 | | 1.0094 | 0.9800 | 6 | | 1.0075 | 0.9809 | 7 | | 1.0066 | 0.9784 | 8 | | 1.0062 | 0.9768 | 9 | | 1.0032 | 0.9751 | 10 | | 1.0023 | 0.9764 | 11 | | 1.0008 | 0.9735 | 12 | | 0.9994 | 0.9730 | 13 | | 0.9986 | 0.9761 | 14 | | 0.9975 | 0.9714 | 15 | | 0.9953 | 0.9708 | 16 | | 0.9941 | 0.9683 | 17 | | 0.9933 | 0.9681 | 18 | | 0.9920 | 0.9688 | 19 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
bert-large-uncased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,058,496
2022-07-22T05:15:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.921 - name: F1 type: f1 value: 0.9213674244320441 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2197 - Accuracy: 0.921 - F1: 0.9214 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8255 | 1.0 | 250 | 0.3172 | 0.9055 | 0.9039 | | 0.2506 | 2.0 | 500 | 0.2197 | 0.921 | 0.9214 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2 - Datasets 2.3.2 - Tokenizers 0.12.1
distilbert-base-cased-distilled-squad
[ "pytorch", "tf", "rust", "safetensors", "openvino", "distilbert", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "license:apache-2.0", "model-index", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
257,745
2022-07-22T05:25:23Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1632 - F1: 0.8505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 179 | 0.1842 | 0.8256 | | No log | 2.0 | 358 | 0.1720 | 0.8395 | | No log | 3.0 | 537 | 0.1632 | 0.8505 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
distilbert-base-german-cased
[ "pytorch", "safetensors", "distilbert", "fill-mask", "de", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
43,667
2022-07-22T05:29:59Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: Bio_ClinicalBERT-zero-shot-finetuned-50cad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT-zero-shot-finetuned-50cad This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1475 - Accuracy: 0.5 - F1: 0.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
distilbert-base-multilingual-cased
[ "pytorch", "tf", "onnx", "safetensors", "distilbert", "fill-mask", "multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "mn", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "th", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:wikipedia", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,339,633
2022-07-22T05:38:49Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.fr split: train args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8151120026746907 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2880 - F1: 0.8151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 48 | 0.3642 | 0.7463 | | No log | 2.0 | 96 | 0.3007 | 0.7975 | | No log | 3.0 | 144 | 0.2880 | 0.8151 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
distilbert-base-uncased-distilled-squad
[ "pytorch", "tf", "tflite", "coreml", "safetensors", "distilbert", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
100,097
2022-07-22T05:43:41Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: Bio_ClinicalBERT-zero-shot-finetuned-50noncad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT-zero-shot-finetuned-50noncad This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8046 - Accuracy: 0.5 - F1: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
distilroberta-base
[ "pytorch", "tf", "jax", "rust", "safetensors", "roberta", "fill-mask", "en", "dataset:openwebtext", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3,342,240
2022-07-22T05:50:43Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1748 - F1: 0.8467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 209 | 0.1990 | 0.8088 | | No log | 2.0 | 418 | 0.1748 | 0.8426 | | No log | 3.0 | 627 | 0.1748 | 0.8467 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
0xDEADBEA7/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2022-07-22T11:00:05Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper1_mesum5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper1_mesum5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem5 dataset. It achieves the following results on the evaluation set: - Loss: 0.6401 - Accuracy: 0.8278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.9352 | 0.23 | 100 | 3.8550 | 0.1959 | | 3.1536 | 0.47 | 200 | 3.1755 | 0.2888 | | 2.6937 | 0.7 | 300 | 2.6332 | 0.4272 | | 2.3748 | 0.93 | 400 | 2.2833 | 0.4970 | | 1.5575 | 1.16 | 500 | 1.8712 | 0.5888 | | 1.4063 | 1.4 | 600 | 1.6048 | 0.6314 | | 1.1841 | 1.63 | 700 | 1.4109 | 0.6621 | | 1.0857 | 1.86 | 800 | 1.1832 | 0.7112 | | 0.582 | 2.09 | 900 | 1.0371 | 0.7479 | | 0.5971 | 2.33 | 1000 | 0.9839 | 0.7462 | | 0.4617 | 2.56 | 1100 | 0.9233 | 0.7657 | | 0.4621 | 2.79 | 1200 | 0.8417 | 0.7828 | | 0.2128 | 3.02 | 1300 | 0.7644 | 0.7970 | | 0.1883 | 3.26 | 1400 | 0.7001 | 0.8183 | | 0.1501 | 3.49 | 1500 | 0.6826 | 0.8201 | | 0.1626 | 3.72 | 1600 | 0.6568 | 0.8254 | | 0.1053 | 3.95 | 1700 | 0.6401 | 0.8278 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ASCCCCCCCC/PMJ
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/666311094256971779/rhb7qkCD_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1402771730582622212/gwApDT26_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lucien Greaves & Sean Hannity</div> <div style="text-align: center; font-size: 14px;">@luciengreaves-seanhannity</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lucien Greaves & Sean Hannity. | Data | Lucien Greaves | Sean Hannity | | --- | --- | --- | | Tweets downloaded | 3197 | 3250 | | Retweets | 536 | 13 | | Short tweets | 379 | 60 | | Tweets kept | 2282 | 3177 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2iwc0kes/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @luciengreaves-seanhannity's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2db4oami) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2db4oami/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/luciengreaves-seanhannity') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AT/distilgpt2-finetuned-wikitext2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-07-23T01:01:07Z
--- tags: - generated_from_trainer datasets: - enoriega/odinsynth_dataset model-index: - name: rule_learning_margin_3mm_many_negatives_spanpred_attention results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rule_learning_margin_3mm_many_negatives_spanpred_attention This model is a fine-tuned version of [enoriega/rule_softmatching](https://huggingface.co/enoriega/rule_softmatching) on the enoriega/odinsynth_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.2196 - Margin Accuracy: 0.8969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2000 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Margin Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:| | 0.3149 | 0.16 | 60 | 0.3098 | 0.8608 | | 0.2754 | 0.32 | 120 | 0.2725 | 0.8733 | | 0.2619 | 0.48 | 180 | 0.2512 | 0.8872 | | 0.2378 | 0.64 | 240 | 0.2391 | 0.8925 | | 0.2451 | 0.8 | 300 | 0.2305 | 0.8943 | | 0.2357 | 0.96 | 360 | 0.2292 | 0.8949 | | 0.2335 | 1.12 | 420 | 0.2269 | 0.8952 | | 0.2403 | 1.28 | 480 | 0.2213 | 0.8957 | | 0.2302 | 1.44 | 540 | 0.2227 | 0.8963 | | 0.2353 | 1.6 | 600 | 0.2222 | 0.8961 | | 0.2271 | 1.76 | 660 | 0.2207 | 0.8964 | | 0.228 | 1.92 | 720 | 0.2218 | 0.8967 | | 0.2231 | 2.08 | 780 | 0.2201 | 0.8967 | | 0.2128 | 2.24 | 840 | 0.2219 | 0.8967 | | 0.2186 | 2.4 | 900 | 0.2202 | 0.8967 | | 0.2245 | 2.56 | 960 | 0.2205 | 0.8969 | | 0.2158 | 2.72 | 1020 | 0.2196 | 0.8969 | | 0.2106 | 2.88 | 1080 | 0.2192 | 0.8968 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
AbdelrahmanZayed/my-awesome-model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_modified_for_t5_qg model-index: - name: t5-end2end-questions-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the squad_modified_for_t5_qg dataset. It achieves the following results on the evaluation set: - Loss: 1.5679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5866 | 0.34 | 100 | 1.9116 | | 1.9674 | 0.68 | 200 | 1.7280 | | 1.8487 | 1.02 | 300 | 1.6650 | | 1.7429 | 1.36 | 400 | 1.6400 | | 1.7148 | 1.69 | 500 | 1.6214 | | 1.695 | 2.03 | 600 | 1.6076 | | 1.6321 | 2.37 | 700 | 1.5979 | | 1.6276 | 2.71 | 800 | 1.5910 | | 1.6171 | 3.05 | 900 | 1.5875 | | 1.5712 | 3.39 | 1000 | 1.5898 | | 1.5702 | 3.73 | 1100 | 1.5749 | | 1.5594 | 4.07 | 1200 | 1.5798 | | 1.5352 | 4.41 | 1300 | 1.5733 | | 1.5228 | 4.75 | 1400 | 1.5733 | | 1.524 | 5.08 | 1500 | 1.5727 | | 1.4954 | 5.42 | 1600 | 1.5699 | | 1.4866 | 5.76 | 1700 | 1.5696 | | 1.5089 | 6.1 | 1800 | 1.5696 | | 1.4771 | 6.44 | 1900 | 1.5736 | | 1.4772 | 6.78 | 2000 | 1.5679 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
AdapterHub/bert-base-uncased-pf-record
[ "bert", "en", "arxiv:2104.08247", "adapter-transformers", "text-classification", "adapterhub:rc/record" ]
text-classification
{ "architectures": null, "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 547.00 +/- 194.62 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Kuro96 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Kuro96 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
AdapterHub/roberta-base-pf-drop
[ "roberta", "en", "dataset:drop", "arxiv:2104.08247", "adapter-transformers", "question-answering" ]
question-answering
{ "architectures": null, "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 args: wnut_17 metrics: - name: Precision type: precision value: 0.5899772209567198 - name: Recall type: recall value: 0.4117647058823529 - name: F1 type: f1 value: 0.4850187265917604 - name: Accuracy type: accuracy value: 0.9304392705585502 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.3202 - Precision: 0.5900 - Recall: 0.4118 - F1: 0.4850 - Accuracy: 0.9304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.3469 | 0.5480 | 0.2814 | 0.3718 | 0.9193 | | No log | 2.0 | 426 | 0.3135 | 0.5909 | 0.3903 | 0.4701 | 0.9281 | | 0.1903 | 3.0 | 639 | 0.3202 | 0.5900 | 0.4118 | 0.4850 | 0.9304 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
AdapterHub/roberta-base-pf-ud_pos
[ "roberta", "en", "dataset:universal_dependencies", "arxiv:2104.08247", "adapter-transformers", "token-classification", "adapterhub:pos/ud_ewt" ]
token-classification
{ "architectures": null, "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: mit tags: - text-classification - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: deberta-v3-large-finetuned-synthetic-generated-only results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-finetuned-synthetic-generated-only This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0094 - F1: 0.9839 - Precision: 0.9849 - Recall: 0.9828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:------:|:---------:|:------:| | 0.009 | 1.0 | 10387 | 0.0104 | 0.9722 | 0.9919 | 0.9533 | | 0.0013 | 2.0 | 20774 | 0.0067 | 0.9825 | 0.9844 | 0.9805 | | 0.0006 | 3.0 | 31161 | 0.0077 | 0.9843 | 0.9902 | 0.9786 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Adinda/Adinda
[ "license:artistic-2.0" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="th1s1s1t/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Ahren09/distilbert-base-uncased-finetuned-cola
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new3_0040 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new3_0040 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5130 - Validation Loss: 2.3972 - Epoch: 39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5407 | 2.4254 | 0 | | 2.5399 | 2.4247 | 1 | | 2.5391 | 2.4238 | 2 | | 2.5383 | 2.4232 | 3 | | 2.5375 | 2.4210 | 4 | | 2.5368 | 2.4210 | 5 | | 2.5361 | 2.4197 | 6 | | 2.5353 | 2.4193 | 7 | | 2.5345 | 2.4191 | 8 | | 2.5339 | 2.4177 | 9 | | 2.5332 | 2.4188 | 10 | | 2.5324 | 2.4160 | 11 | | 2.5317 | 2.4164 | 12 | | 2.5309 | 2.4145 | 13 | | 2.5302 | 2.4153 | 14 | | 2.5295 | 2.4139 | 15 | | 2.5288 | 2.4134 | 16 | | 2.5282 | 2.4123 | 17 | | 2.5274 | 2.4116 | 18 | | 2.5267 | 2.4110 | 19 | | 2.5259 | 2.4106 | 20 | | 2.5251 | 2.4097 | 21 | | 2.5244 | 2.4074 | 22 | | 2.5238 | 2.4078 | 23 | | 2.5232 | 2.4072 | 24 | | 2.5223 | 2.4062 | 25 | | 2.5217 | 2.4054 | 26 | | 2.5211 | 2.4057 | 27 | | 2.5204 | 2.4044 | 28 | | 2.5197 | 2.4026 | 29 | | 2.5189 | 2.4017 | 30 | | 2.5182 | 2.4026 | 31 | | 2.5176 | 2.4012 | 32 | | 2.5168 | 2.4013 | 33 | | 2.5161 | 2.3990 | 34 | | 2.5154 | 2.3999 | 35 | | 2.5149 | 2.3978 | 36 | | 2.5142 | 2.3981 | 37 | | 2.5135 | 2.3981 | 38 | | 2.5130 | 2.3972 | 39 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Aibox/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 769.00 +/- 232.34 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jakka -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jakka ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Aidan8756/stephenKingModel
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-finetuned-t5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-finetuned-t5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
AigizK/wav2vec2-large-xls-r-300m-bashkir-cv7_opt
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ba", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index", "has_space" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
64
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: jakka/unitypyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AimB/konlpy_berttokenizer_helsinki
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: xlnet-base-rte-finetuned results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.703971119133574 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-rte-finetuned This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 2.6688 - Accuracy: 0.7040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 311 | 0.9695 | 0.6859 | | 0.315 | 2.0 | 622 | 2.2516 | 0.6498 | | 0.315 | 3.0 | 933 | 2.0439 | 0.7076 | | 0.1096 | 4.0 | 1244 | 2.5190 | 0.7040 | | 0.0368 | 5.0 | 1555 | 2.6688 | 0.7040 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
AimB/mT5-en-kr-aihub-netflix
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 937.65 +/- 268.02 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AimB/mT5-en-kr-opus
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new3_0045 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new3_0045 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5095 - Validation Loss: 2.3923 - Epoch: 44 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5407 | 2.4254 | 0 | | 2.5399 | 2.4247 | 1 | | 2.5391 | 2.4238 | 2 | | 2.5383 | 2.4232 | 3 | | 2.5375 | 2.4210 | 4 | | 2.5368 | 2.4210 | 5 | | 2.5361 | 2.4197 | 6 | | 2.5353 | 2.4193 | 7 | | 2.5345 | 2.4191 | 8 | | 2.5339 | 2.4177 | 9 | | 2.5332 | 2.4188 | 10 | | 2.5324 | 2.4160 | 11 | | 2.5317 | 2.4164 | 12 | | 2.5309 | 2.4145 | 13 | | 2.5302 | 2.4153 | 14 | | 2.5295 | 2.4139 | 15 | | 2.5288 | 2.4134 | 16 | | 2.5282 | 2.4123 | 17 | | 2.5274 | 2.4116 | 18 | | 2.5267 | 2.4110 | 19 | | 2.5259 | 2.4106 | 20 | | 2.5251 | 2.4097 | 21 | | 2.5244 | 2.4074 | 22 | | 2.5238 | 2.4078 | 23 | | 2.5232 | 2.4072 | 24 | | 2.5223 | 2.4062 | 25 | | 2.5217 | 2.4054 | 26 | | 2.5211 | 2.4057 | 27 | | 2.5204 | 2.4044 | 28 | | 2.5197 | 2.4026 | 29 | | 2.5189 | 2.4017 | 30 | | 2.5182 | 2.4026 | 31 | | 2.5176 | 2.4012 | 32 | | 2.5168 | 2.4013 | 33 | | 2.5161 | 2.3990 | 34 | | 2.5154 | 2.3999 | 35 | | 2.5149 | 2.3978 | 36 | | 2.5142 | 2.3981 | 37 | | 2.5135 | 2.3981 | 38 | | 2.5130 | 2.3972 | 39 | | 2.5123 | 2.3957 | 40 | | 2.5116 | 2.3940 | 41 | | 2.5108 | 2.3933 | 42 | | 2.5103 | 2.3927 | 43 | | 2.5095 | 2.3923 | 44 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Akash7897/my-newtokenizer
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1062.16 +/- 221.84 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Akash7897/test-clm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-07-24T23:40:16Z
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: pong-reinforce results: - metrics: - type: mean_reward value: -16.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 --- # **Reinforce** Agent playing **Pong-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pong-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Akashpb13/xlsr_hungarian_new
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hu", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new3_0060 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new3_0060 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5002 - Validation Loss: 2.3821 - Epoch: 59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5407 | 2.4254 | 0 | | 2.5399 | 2.4247 | 1 | | 2.5391 | 2.4238 | 2 | | 2.5383 | 2.4232 | 3 | | 2.5375 | 2.4210 | 4 | | 2.5368 | 2.4210 | 5 | | 2.5361 | 2.4197 | 6 | | 2.5353 | 2.4193 | 7 | | 2.5345 | 2.4191 | 8 | | 2.5339 | 2.4177 | 9 | | 2.5332 | 2.4188 | 10 | | 2.5324 | 2.4160 | 11 | | 2.5317 | 2.4164 | 12 | | 2.5309 | 2.4145 | 13 | | 2.5302 | 2.4153 | 14 | | 2.5295 | 2.4139 | 15 | | 2.5288 | 2.4134 | 16 | | 2.5282 | 2.4123 | 17 | | 2.5274 | 2.4116 | 18 | | 2.5267 | 2.4110 | 19 | | 2.5259 | 2.4106 | 20 | | 2.5251 | 2.4097 | 21 | | 2.5244 | 2.4074 | 22 | | 2.5238 | 2.4078 | 23 | | 2.5232 | 2.4072 | 24 | | 2.5223 | 2.4062 | 25 | | 2.5217 | 2.4054 | 26 | | 2.5211 | 2.4057 | 27 | | 2.5204 | 2.4044 | 28 | | 2.5197 | 2.4026 | 29 | | 2.5189 | 2.4017 | 30 | | 2.5182 | 2.4026 | 31 | | 2.5176 | 2.4012 | 32 | | 2.5168 | 2.4013 | 33 | | 2.5161 | 2.3990 | 34 | | 2.5154 | 2.3999 | 35 | | 2.5149 | 2.3978 | 36 | | 2.5142 | 2.3981 | 37 | | 2.5135 | 2.3981 | 38 | | 2.5130 | 2.3972 | 39 | | 2.5123 | 2.3957 | 40 | | 2.5116 | 2.3940 | 41 | | 2.5108 | 2.3933 | 42 | | 2.5103 | 2.3927 | 43 | | 2.5095 | 2.3923 | 44 | | 2.5090 | 2.3918 | 45 | | 2.5083 | 2.3914 | 46 | | 2.5078 | 2.3905 | 47 | | 2.5070 | 2.3888 | 48 | | 2.5062 | 2.3894 | 49 | | 2.5058 | 2.3898 | 50 | | 2.5051 | 2.3868 | 51 | | 2.5045 | 2.3873 | 52 | | 2.5041 | 2.3872 | 53 | | 2.5035 | 2.3859 | 54 | | 2.5027 | 2.3850 | 55 | | 2.5020 | 2.3851 | 56 | | 2.5016 | 2.3833 | 57 | | 2.5009 | 2.3816 | 58 | | 2.5002 | 2.3821 | 59 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Akashpb13/xlsr_kurmanji_kurdish
[ "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "kmr", "ku", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nlp-esg-scoring/bert-base-finetuned-esg-a4s-clean results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nlp-esg-scoring/bert-base-finetuned-esg-a4s-clean This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5224 - Validation Loss: 2.2196 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -824, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5170 | 2.3060 | 0 | | 2.5229 | 2.3220 | 1 | | 2.5077 | 2.3155 | 2 | | 2.5059 | 2.3151 | 3 | | 2.5052 | 2.2596 | 4 | | 2.5250 | 2.4044 | 5 | | 2.5120 | 2.2901 | 6 | | 2.5042 | 2.2847 | 7 | | 2.4972 | 2.3168 | 8 | | 2.5224 | 2.2196 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Aklily/Lilys
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - finer-139 metrics: - precision - recall - f1 - accuracy model-index: - name: bertiny-finetuned-finer-full results: - task: name: Token Classification type: token-classification dataset: name: finer-139 type: finer-139 args: finer-139 metrics: - name: Precision type: precision value: 0.555368475586064 - name: Recall type: recall value: 0.5164398410213176 - name: F1 type: f1 value: 0.5351972041937094 - name: Accuracy type: accuracy value: 0.988733187308122 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertiny-finetuned-finer-full This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the 10% of finer-139 dataset for 40 epochs according to paper. It achieves the following results on the evaluation set: - Loss: 0.0788 - Precision: 0.5554 - Recall: 0.5164 - F1: 0.5352 - Accuracy: 0.9887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0852 | 1.0 | 11255 | 0.0929 | 1.0 | 0.0001 | 0.0002 | 0.9843 | | 0.08 | 2.0 | 22510 | 0.0840 | 0.4626 | 0.0730 | 0.1261 | 0.9851 | | 0.0759 | 3.0 | 33765 | 0.0750 | 0.5113 | 0.2035 | 0.2912 | 0.9865 | | 0.0569 | 4.0 | 45020 | 0.0673 | 0.4973 | 0.3281 | 0.3953 | 0.9872 | | 0.0488 | 5.0 | 56275 | 0.0635 | 0.5289 | 0.3749 | 0.4388 | 0.9878 | | 0.0422 | 6.0 | 67530 | 0.0606 | 0.5258 | 0.4068 | 0.4587 | 0.9880 | | 0.0364 | 7.0 | 78785 | 0.0600 | 0.5588 | 0.4186 | 0.4787 | 0.9883 | | 0.0307 | 8.0 | 90040 | 0.0589 | 0.5223 | 0.4916 | 0.5065 | 0.9883 | | 0.0284 | 9.0 | 101295 | 0.0595 | 0.5588 | 0.4813 | 0.5171 | 0.9887 | | 0.0255 | 10.0 | 112550 | 0.0597 | 0.5606 | 0.4944 | 0.5254 | 0.9888 | | 0.0223 | 11.0 | 123805 | 0.0600 | 0.5533 | 0.4998 | 0.5252 | 0.9888 | | 0.0228 | 12.0 | 135060 | 0.0608 | 0.5290 | 0.5228 | 0.5259 | 0.9885 | | 0.0225 | 13.0 | 146315 | 0.0612 | 0.5480 | 0.5111 | 0.5289 | 0.9887 | | 0.0204 | 14.0 | 157570 | 0.0634 | 0.5646 | 0.5120 | 0.5370 | 0.9890 | | 0.0176 | 15.0 | 168825 | 0.0639 | 0.5611 | 0.5135 | 0.5363 | 0.9889 | | 0.0167 | 16.0 | 180080 | 0.0647 | 0.5631 | 0.5120 | 0.5363 | 0.9888 | | 0.0161 | 17.0 | 191335 | 0.0665 | 0.5607 | 0.5081 | 0.5331 | 0.9889 | | 0.0145 | 18.0 | 202590 | 0.0673 | 0.5437 | 0.5280 | 0.5357 | 0.9887 | | 0.0166 | 19.0 | 213845 | 0.0687 | 0.5722 | 0.5008 | 0.5341 | 0.9889 | | 0.0155 | 20.0 | 225100 | 0.0685 | 0.5325 | 0.5337 | 0.5331 | 0.9885 | | 0.0142 | 21.0 | 236355 | 0.0705 | 0.5626 | 0.5166 | 0.5386 | 0.9890 | | 0.0127 | 22.0 | 247610 | 0.0694 | 0.5426 | 0.5358 | 0.5392 | 0.9887 | | 0.0112 | 23.0 | 258865 | 0.0721 | 0.5591 | 0.5129 | 0.5351 | 0.9888 | | 0.0123 | 24.0 | 270120 | 0.0733 | 0.5715 | 0.5081 | 0.5380 | 0.9889 | | 0.0116 | 25.0 | 281375 | 0.0735 | 0.5621 | 0.5123 | 0.5361 | 0.9888 | | 0.0112 | 26.0 | 292630 | 0.0739 | 0.5634 | 0.5181 | 0.5398 | 0.9889 | | 0.0108 | 27.0 | 303885 | 0.0753 | 0.5548 | 0.5155 | 0.5344 | 0.9887 | | 0.0125 | 28.0 | 315140 | 0.0746 | 0.5507 | 0.5221 | 0.5360 | 0.9886 | | 0.0093 | 29.0 | 326395 | 0.0762 | 0.5602 | 0.5156 | 0.5370 | 0.9888 | | 0.0094 | 30.0 | 337650 | 0.0762 | 0.5625 | 0.5157 | 0.5381 | 0.9889 | | 0.0117 | 31.0 | 348905 | 0.0767 | 0.5519 | 0.5195 | 0.5352 | 0.9887 | | 0.0091 | 32.0 | 360160 | 0.0772 | 0.5501 | 0.5198 | 0.5345 | 0.9887 | | 0.0109 | 33.0 | 371415 | 0.0775 | 0.5635 | 0.5097 | 0.5353 | 0.9888 | | 0.0094 | 34.0 | 382670 | 0.0776 | 0.5467 | 0.5216 | 0.5339 | 0.9887 | | 0.009 | 35.0 | 393925 | 0.0782 | 0.5601 | 0.5139 | 0.5360 | 0.9889 | | 0.0093 | 36.0 | 405180 | 0.0780 | 0.5568 | 0.5156 | 0.5354 | 0.9888 | | 0.0087 | 37.0 | 416435 | 0.0783 | 0.5588 | 0.5143 | 0.5356 | 0.9888 | | 0.009 | 38.0 | 427690 | 0.0785 | 0.5483 | 0.5178 | 0.5326 | 0.9887 | | 0.0094 | 39.0 | 438945 | 0.0787 | 0.5541 | 0.5154 | 0.5340 | 0.9887 | | 0.0088 | 40.0 | 450200 | 0.0788 | 0.5554 | 0.5164 | 0.5352 | 0.9887 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
AkshaySg/GrammarCorrection
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_accent_germany-0_austria-10_s377 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
AkshaySg/LanguageIdentification
[ "multilingual", "dataset:VoxLingua107", "LID", "spoken language recognition", "license:apache-2.0" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2-agu results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2-agu This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 3.7357 | 1.0 | 13655 | 3.6781 | | 3.5721 | 2.0 | 27310 | 3.5302 | | 3.4961 | 3.0 | 40965 | 3.4658 | | 3.4406 | 4.0 | 54620 | 3.4242 | | 3.4043 | 5.0 | 68275 | 3.3943 | | 3.3789 | 6.0 | 81930 | 3.3726 | | 3.3576 | 7.0 | 95585 | 3.3538 | | 3.3389 | 8.0 | 109240 | 3.3389 | | 3.3151 | 9.0 | 122895 | 3.3270 | | 3.314 | 5.0 | 136545 | 3.3226 | | 3.3044 | 6.0 | 163854 | 3.3124 | | 3.2931 | 7.0 | 191163 | 3.3078 | | 3.2874 | 8.0 | 218472 | 3.3094 | | 3.2817 | 9.0 | 245781 | 3.2943 | | 3.269 | 10.0 | 273090 | 3.2785 | | 3.2423 | 11.0 | 300399 | 3.2651 | | 3.2253 | 12.0 | 327708 | 3.2530 | | 3.2096 | 13.0 | 355017 | 3.2435 | | 3.1939 | 14.0 | 382326 | 3.2326 | | 3.1786 | 15.0 | 409635 | 3.2225 | | 3.1625 | 16.0 | 436944 | 3.2198 | | 3.1619 | 17.0 | 464253 | 3.2180 | | 3.1521 | 18.0 | 491562 | 3.2164 | | 3.1555 | 19.0 | 518871 | 3.2152 | | 3.1523 | 20.0 | 546180 | 3.2164 | | 3.1639 | 21.0 | 573489 | 3.2133 | | 3.1483 | 22.0 | 600798 | 3.2113 | | 3.1497 | 23.0 | 628107 | 3.2077 | | 3.1468 | 24.0 | 655416 | 3.2066 | | 3.1461 | 25.0 | 682725 | 3.2052 | | 3.1391 | 26.0 | 710034 | 3.2039 | | 3.1384 | 27.0 | 737343 | 3.2031 | | 3.135 | 28.0 | 764652 | 3.2020 | | 3.1262 | 29.0 | 791961 | 3.2015 | | 3.1357 | 30.0 | 819270 | 3.2019 | | 3.1372 | 31.0 | 846579 | 3.2003 | | 3.1346 | 32.0 | 873888 | 3.1988 | | 3.134 | 33.0 | 901197 | 3.1975 | | 3.1256 | 34.0 | 928506 | 3.1965 | | 3.1261 | 35.0 | 955815 | 3.1950 | | 3.1255 | 36.0 | 983124 | 3.1945 | | 3.1278 | 37.0 | 1010433 | 3.1940 | | 3.1186 | 38.0 | 1037742 | 3.1934 | | 3.1136 | 39.0 | 1065051 | 3.1932 | | 3.12 | 40.0 | 1092360 | 3.1931 | | 3.12 | 41.0 | 1119669 | 3.1930 | | 3.1165 | 42.0 | 1146978 | 3.1914 | | 3.1166 | 43.0 | 1174287 | 3.1900 | | 3.1139 | 44.0 | 1201596 | 3.1892 | | 3.1135 | 45.0 | 1228905 | 3.1885 | | 3.1077 | 46.0 | 1256214 | 3.1881 | | 3.1097 | 47.0 | 1283523 | 3.1873 | | 3.1076 | 48.0 | 1310832 | 3.1872 | | 3.102 | 49.0 | 1338141 | 3.1870 | | 3.1086 | 50.0 | 1365450 | 3.1869 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
AlbertHSU/BertTEST
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s445 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
AlbertHSU/ChineseFoodBert
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5489250601752835 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8115 - Matthews Correlation: 0.5489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5223 | 1.0 | 535 | 0.5400 | 0.4165 | | 0.349 | 2.0 | 1070 | 0.5125 | 0.4738 | | 0.2392 | 3.0 | 1605 | 0.5283 | 0.5411 | | 0.1791 | 4.0 | 2140 | 0.7506 | 0.5301 | | 0.127 | 5.0 | 2675 | 0.8115 | 0.5489 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Ale/Alen
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="nshenk/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Aleksandar/distilbert-srb-ner-setimes-lr
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-0_female-10_s601 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Aleksandar/distilbert-srb-ner-setimes
[ "pytorch", "distilbert", "token-classification", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-0_female-10_s801 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Aleksandar/distilbert-srb-ner
[ "pytorch", "distilbert", "token-classification", "sr", "dataset:wikiann", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-0_female-10_s889 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Aleksandar/electra-srb-ner-setimes-lr
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-10_female-0_s325 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Aleksandar/electra-srb-oscar
[ "pytorch", "electra", "fill-mask", "transformers", "generated_from_trainer", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "ElectraForMaskedLM" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-10_female-0_s75 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Aleksandar1932/distilgpt2-rock
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-2_female-8_s108 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Aleksandar1932/gpt2-hip-hop
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-2_female-8_s211 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Aleksandar1932/gpt2-pop
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-2_female-8_s364 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Aleksandar1932/gpt2-soul
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new3_0075 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new3_0075 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.4912 - Validation Loss: 2.3729 - Epoch: 74 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5407 | 2.4254 | 0 | | 2.5399 | 2.4247 | 1 | | 2.5391 | 2.4238 | 2 | | 2.5383 | 2.4232 | 3 | | 2.5375 | 2.4210 | 4 | | 2.5368 | 2.4210 | 5 | | 2.5361 | 2.4197 | 6 | | 2.5353 | 2.4193 | 7 | | 2.5345 | 2.4191 | 8 | | 2.5339 | 2.4177 | 9 | | 2.5332 | 2.4188 | 10 | | 2.5324 | 2.4160 | 11 | | 2.5317 | 2.4164 | 12 | | 2.5309 | 2.4145 | 13 | | 2.5302 | 2.4153 | 14 | | 2.5295 | 2.4139 | 15 | | 2.5288 | 2.4134 | 16 | | 2.5282 | 2.4123 | 17 | | 2.5274 | 2.4116 | 18 | | 2.5267 | 2.4110 | 19 | | 2.5259 | 2.4106 | 20 | | 2.5251 | 2.4097 | 21 | | 2.5244 | 2.4074 | 22 | | 2.5238 | 2.4078 | 23 | | 2.5232 | 2.4072 | 24 | | 2.5223 | 2.4062 | 25 | | 2.5217 | 2.4054 | 26 | | 2.5211 | 2.4057 | 27 | | 2.5204 | 2.4044 | 28 | | 2.5197 | 2.4026 | 29 | | 2.5189 | 2.4017 | 30 | | 2.5182 | 2.4026 | 31 | | 2.5176 | 2.4012 | 32 | | 2.5168 | 2.4013 | 33 | | 2.5161 | 2.3990 | 34 | | 2.5154 | 2.3999 | 35 | | 2.5149 | 2.3978 | 36 | | 2.5142 | 2.3981 | 37 | | 2.5135 | 2.3981 | 38 | | 2.5130 | 2.3972 | 39 | | 2.5123 | 2.3957 | 40 | | 2.5116 | 2.3940 | 41 | | 2.5108 | 2.3933 | 42 | | 2.5103 | 2.3927 | 43 | | 2.5095 | 2.3923 | 44 | | 2.5090 | 2.3918 | 45 | | 2.5083 | 2.3914 | 46 | | 2.5078 | 2.3905 | 47 | | 2.5070 | 2.3888 | 48 | | 2.5062 | 2.3894 | 49 | | 2.5058 | 2.3898 | 50 | | 2.5051 | 2.3868 | 51 | | 2.5045 | 2.3873 | 52 | | 2.5041 | 2.3872 | 53 | | 2.5035 | 2.3859 | 54 | | 2.5027 | 2.3850 | 55 | | 2.5020 | 2.3851 | 56 | | 2.5016 | 2.3833 | 57 | | 2.5009 | 2.3816 | 58 | | 2.5002 | 2.3821 | 59 | | 2.4995 | 2.3813 | 60 | | 2.4990 | 2.3803 | 61 | | 2.4984 | 2.3794 | 62 | | 2.4977 | 2.3798 | 63 | | 2.4971 | 2.3779 | 64 | | 2.4964 | 2.3778 | 65 | | 2.4959 | 2.3778 | 66 | | 2.4954 | 2.3787 | 67 | | 2.4947 | 2.3758 | 68 | | 2.4942 | 2.3751 | 69 | | 2.4935 | 2.3739 | 70 | | 2.4929 | 2.3754 | 71 | | 2.4923 | 2.3750 | 72 | | 2.4918 | 2.3730 | 73 | | 2.4912 | 2.3729 | 74 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
AlekseyKorshuk/bert
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- tags: - generated_from_trainer datasets: - klue metrics: - pearsonr model-index: - name: bert-base-finetuned-sts results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: sts metrics: - name: Pearsonr type: pearsonr value: 0.9000373376026184 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-sts This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.4582 - Pearsonr: 0.9000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearsonr | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 183 | 0.5329 | 0.8827 | | No log | 2.0 | 366 | 0.4549 | 0.8937 | | 0.2316 | 3.0 | 549 | 0.4656 | 0.8959 | | 0.2316 | 4.0 | 732 | 0.4651 | 0.8990 | | 0.2316 | 5.0 | 915 | 0.4582 | 0.9000 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
AlekseyKorshuk/horror-scripts
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
19
null
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-8_female-2_s564 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
AlekseyKulnevich/Pegasus-HeaderGeneration
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "PegasusForConditionalGeneration" ], "model_type": "pegasus", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-8_female-2_s874 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
AlekseyKulnevich/Pegasus-QuestionGeneration
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "PegasusForConditionalGeneration" ], "model_type": "pegasus", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
null
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-5_england-5_s203 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
AlekseyKulnevich/Pegasus-Summarization
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "PegasusForConditionalGeneration" ], "model_type": "pegasus", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-5_england-5_s878 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
AlexDemon/Alex
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-0_england-10_s227 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
AlexMaclean/sentence-compression-roberta
[ "pytorch", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-0_england-10_s809 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
AlexN/xls-r-300m-fr-0
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - conversational --- # Rick DialoGPT Model
AlexN/xls-r-300m-fr
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
null
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-10_england-0_s44 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
AlexN/xls-r-300m-pt
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "robust-speech-event", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: 3_taxi_QL results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Amiri/3_taxi_QL", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
AlexaRyck/KEITH
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-10_england-0_s93 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Alexander-Learn/bert-finetuned-ner-accelerate
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-2_england-8_s251 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Alfia/anekdotes
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: 20split_dataset_version2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20split_dataset_version2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.7621 | 1.0 | 11851 | 2.5216 | | 2.5466 | 2.0 | 23702 | 2.4157 | | 2.4505 | 3.0 | 35553 | 2.3592 | | 2.3798 | 4.0 | 47404 | 2.3028 | | 2.3178 | 5.0 | 59255 | 2.2768 | | 2.272 | 6.0 | 71106 | 2.2366 | | 2.2323 | 7.0 | 82957 | 2.2128 | | 2.1928 | 8.0 | 94808 | 2.1797 | | 2.157 | 9.0 | 106659 | 2.1667 | | 2.1292 | 10.0 | 118510 | 2.1392 | | 2.0978 | 11.0 | 130361 | 2.1280 | | 2.0725 | 12.0 | 142212 | 2.1106 | | 2.052 | 13.0 | 154063 | 2.0944 | | 2.0268 | 14.0 | 165914 | 2.0804 | | 2.0121 | 15.0 | 177765 | 2.0698 | | 1.9997 | 16.0 | 189616 | 2.0626 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1