modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
BigTooth/DialoGPT-Megumin
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
2022-08-16T08:03:06Z
--- license: mit tags: - generated_from_trainer datasets: - naem1023/aihub-dialogue model-index: - name: bart-v2-dialouge results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-v2-dialouge This model is a fine-tuned version of [hyunwoongko/kobart](https://huggingface.co/hyunwoongko/kobart) on the naem1023/aihub-dialogue dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 150 - eval_batch_size: 40 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 1200 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6.0 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
BigTooth/DialoGPT-small-tohru
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
2022-08-16T08:07:40Z
--- tags: - Issue_fixed - textattack - textclassification - entailment license: mit datasets: - mnli metrics: - accuracy --- Fixed label mapping issue for textattack/bert-base-uncased-MNLI, if using the original model, the predicted label has systematic confusion with the huggingface MNLI dataset. See the Github issue: https://github.com/QData/TextAttack/issues/684. The fixed accuracy_mm is 84.44% and is 7% before the fix applied.
Bilz/DialoGPT-small-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1176.34 +/- 238.60 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub checkpoint = load_from_hub( repo_id="Saraswati/a2c-AntBulletEnv-v0", filename="{MODEL FILENAME}.zip", ) ... ```
BinksSachary/ShaxxBot2
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--alpha_ce 0.0 --alpha_mlm 2.0 --alpha_cos 0.0 --alpha_act 1.0 --alpha_clm 0.0 --mlm \
Blazeolmo/Scrabunzi
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer datasets: - squad_es model-index: - name: tiny-bert-qa-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-bert-qa-es This model is a fine-tuned version of [CenIA/albert-tiny-spanish](https://huggingface.co/CenIA/albert-tiny-spanish) on the squad_es dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Blerrrry/Kkk
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-08-16T10:01:27Z
This is the IndicBART model fine-tuned on the PMI and PIB dataset for XX to En translation. For detailed documentation look here: https://indicnlp.ai4bharat.org/indic-bart/ and https://github.com/AI4Bharat/indic-bart/ Usage: ``` from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM from transformers import AlbertTokenizer, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("ai4bharat/IndicBART-XXEN", do_lower_case=False, use_fast=False, keep_accents=True) # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/IndicBART-XXEN", do_lower_case=False, use_fast=False, keep_accents=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/IndicBART-XXEN") # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/IndicBART-XXEN") # Some initial mapping bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") # To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>'] # First tokenize the input and outputs. The format below is how IndicBART-XXEN was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". inp = tokenizer("मैं एक लड़का हूँ </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids out = tokenizer("<2en> I am a boy </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:]) # For loss model_outputs.loss ## This is not label smoothed. # For logits model_outputs.logits # For generation. Pardon the messiness. Note the decoder_start_token_id. model.eval() # Set dropouts to zero model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>")) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # I am a boy ``` Notes: 1. This is compatible with the latest version of transformers but was developed with version 4.3.2 so consider using 4.3.2 if possible. 2. While I have only shown how to let logits and loss and how to generate outputs, you can do pretty much everything the MBartForConditionalGeneration class can do as in https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartForConditionalGeneration 3. Note that the tokenizer I have used is based on sentencepiece and not BPE. Therefore I use the AlbertTokenizer class and not the MBartTokenizer class.
BlightZz/MakiseKurisu
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- datasets: - squad_v2 language: en license: mit pipeline_tag: question-answering tags: - deberta - deberta-v3 model-index: - name: navteca/deberta-v3-base-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - name: Exact Match type: exact_match value: 83.8248 verified: true - name: F1 type: f1 value: 87.41 verified: true - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - name: Exact Match type: exact_match value: 84.9678 verified: true - name: F1 type: f1 value: 92.2777 verified: true --- # Deberta v3 base model for QA (SQuAD 2.0) This is the [deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. ## Training Data The models have been trained on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. It can be used for question answering task. ## Usage and Performance The trained model can be used like this: ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline # Load model & tokenizer deberta_model = AutoModelForQuestionAnswering.from_pretrained('navteca/deberta-v3-base-squad2') deberta_tokenizer = AutoTokenizer.from_pretrained('navteca/deberta-v3-base-squad2') # Get predictions nlp = pipeline('question-answering', model=deberta_model, tokenizer=deberta_tokenizer) result = nlp({ 'question': 'How many people live in Berlin?', 'context': 'Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.' }) print(result) #{ # "answer": "3,520,031" # "end": 36, # "score": 0.96186668, # "start": 27, #} ``` ## Author [deepset](http://deepset.ai/)
BobBraico/bert-finetuned-ner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer datasets: - banking77 metrics: - accuracy model-index: - name: xlm-roberta-base-banking77-classification results: - task: name: Text Classification type: text-classification dataset: name: banking77 type: banking77 config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9321428571428572 - task: type: text-classification name: Text Classification dataset: name: banking77 type: banking77 config: default split: test metrics: - name: Accuracy type: accuracy value: 0.9321428571428572 verified: true - name: Precision Macro type: precision value: 0.9339627666926148 verified: true - name: Precision Micro type: precision value: 0.9321428571428572 verified: true - name: Precision Weighted type: precision value: 0.9339627666926148 verified: true - name: Recall Macro type: recall value: 0.9321428571428572 verified: true - name: Recall Micro type: recall value: 0.9321428571428572 verified: true - name: Recall Weighted type: recall value: 0.9321428571428572 verified: true - name: F1 Macro type: f1 value: 0.9320514513719953 verified: true - name: F1 Micro type: f1 value: 0.9321428571428572 verified: true - name: F1 Weighted type: f1 value: 0.9320514513719956 verified: true - name: loss type: loss value: 0.30337899923324585 verified: true widget: - text: 'Can I track the card you sent to me? ' example_title: Card Arrival Example - English - text: 'Posso tracciare la carta che mi avete spedito? ' example_title: Card Arrival Example - Italian - text: Can you explain your exchange rate policy to me? example_title: Exchange Rate Example - English - text: Potete spiegarmi la vostra politica dei tassi di cambio? example_title: Exchange Rate Example - Italian - text: I can't pay by my credit card example_title: Card Not Working Example - English - text: Non riesco a pagare con la mia carta di credito example_title: Card Not Working Example - Italian --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-banking77-classification This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the banking77 dataset. It achieves the following results on the evaluation set: - Loss: 0.3034 - Accuracy: 0.9321 - F1 Score: 0.9321 ## Model description Experiment on a cross-language model to assess how accurate the classification is by using for fine tuning an English dataset but later querying the model in Italian. ## Intended uses & limitations The model can be used on text classification. In particular is fine tuned on banking domain for multilingual task. ## Training and evaluation data The dataset used is [banking77](https://huggingface.co/datasets/banking77) The 77 labels are: |label|intent| |:---:|:----:| |0|activate_my_card| |1|age_limit| |2|apple_pay_or_google_pay| |3|atm_support| |4|automatic_top_up| |5|balance_not_updated_after_bank_transfer| |6|balance_not_updated_after_cheque_or_cash_deposit| |7|beneficiary_not_allowed| |8|cancel_transfer| |9|card_about_to_expire| |10|card_acceptance| |11|card_arrival| |12|card_delivery_estimate| |13|card_linking| |14|card_not_working| |15|card_payment_fee_charged| |16|card_payment_not_recognised| |17|card_payment_wrong_exchange_rate| |18|card_swallowed| |19|cash_withdrawal_charge| |20|cash_withdrawal_not_recognised| |21|change_pin| |22|compromised_card| |23|contactless_not_working| |24|country_support| |25|declined_card_payment| |26|declined_cash_withdrawal| |27|declined_transfer| |28|direct_debit_payment_not_recognised| |29|disposable_card_limits| |30|edit_personal_details| |31|exchange_charge| |32|exchange_rate| |33|exchange_via_app| |34|extra_charge_on_statement| |35|failed_transfer| |36|fiat_currency_support| |37|get_disposable_virtual_card| |38|get_physical_card| |39|getting_spare_card| |40|getting_virtual_card| |41|lost_or_stolen_card| |42|lost_or_stolen_phone| |43|order_physical_card| |44|passcode_forgotten| |45|pending_card_payment| |46|pending_cash_withdrawal| |47|pending_top_up| |48|pending_transfer| |49|pin_blocked| |50|receiving_money| |51|Refund_not_showing_up| |52|request_refund| |53|reverted_card_payment?| |54|supported_cards_and_currencies| |55|terminate_account| |56|top_up_by_bank_transfer_charge| |57|top_up_by_card_charge| |58|top_up_by_cash_or_cheque| |59|top_up_failed| |60|top_up_limits| |61|top_up_reverted| |62|topping_up_by_card| |63|transaction_charged_twice| |64|transfer_fee_charged| |65|transfer_into_account| |66|transfer_not_received_by_recipient| |67|transfer_timing| |68|unable_to_verify_identity| |69|verify_my_identity| |70|verify_source_of_funds| |71|verify_top_up| |72|virtual_card_not_working| |73|visa_or_mastercard| |74|why_verify_identity| |75|wrong_amount_of_cash_received| |76|wrong_exchange_rate_for_cash_withdrawal| ## Training procedure ``` from transformers import pipeline pipe = pipeline("text-classification", model="nickprock/xlm-roberta-base-banking77-classification") pipe("Non riesco a pagare con la carta di credito") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 3.8002 | 1.0 | 157 | 2.7771 | 0.5159 | 0.4483 | | 2.4006 | 2.0 | 314 | 1.6937 | 0.7140 | 0.6720 | | 1.4633 | 3.0 | 471 | 1.0385 | 0.8308 | 0.8153 | | 0.9234 | 4.0 | 628 | 0.7008 | 0.8789 | 0.8761 | | 0.6163 | 5.0 | 785 | 0.5029 | 0.9068 | 0.9063 | | 0.4282 | 6.0 | 942 | 0.4084 | 0.9123 | 0.9125 | | 0.3203 | 7.0 | 1099 | 0.3515 | 0.9253 | 0.9253 | | 0.245 | 8.0 | 1256 | 0.3295 | 0.9227 | 0.9225 | | 0.1863 | 9.0 | 1413 | 0.3092 | 0.9269 | 0.9269 | | 0.1518 | 10.0 | 1570 | 0.2901 | 0.9338 | 0.9338 | | 0.1179 | 11.0 | 1727 | 0.2938 | 0.9318 | 0.9319 | | 0.0969 | 12.0 | 1884 | 0.2906 | 0.9328 | 0.9328 | | 0.0805 | 13.0 | 2041 | 0.2963 | 0.9295 | 0.9295 | | 0.063 | 14.0 | 2198 | 0.2998 | 0.9289 | 0.9288 | | 0.0554 | 15.0 | 2355 | 0.2933 | 0.9351 | 0.9349 | | 0.046 | 16.0 | 2512 | 0.2960 | 0.9328 | 0.9326 | | 0.04 | 17.0 | 2669 | 0.3032 | 0.9318 | 0.9318 | | 0.035 | 18.0 | 2826 | 0.3061 | 0.9312 | 0.9312 | | 0.0317 | 19.0 | 2983 | 0.3030 | 0.9331 | 0.9330 | | 0.0315 | 20.0 | 3140 | 0.3034 | 0.9321 | 0.9321 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
BonjinKim/dst_kor_bert
[ "pytorch", "jax", "bert", "pretraining", "transformers" ]
null
{ "architectures": [ "BertForPreTraining" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 193.41 +/- 23.10 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BotterHax/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Tokenizers 0.12.1
Brinah/1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- widget: - text: "You've just won $1000. Contact now at +9211122233 to confirm the lottery!" example_title: "Example 1" - text: "Hello. Are you joining us for the party tonight?" example_title: "Example 2" - text: "On a shelf, there are five books: a gray book, a red book, a purple book, a blue book, and a black book." example_title: "Example 3" - text: "The two men running to become New York City's next mayor will face off in their first debate Wednesday night." example_title: "Example 4" datasets: - SalehAhmad/Spam-Ham ---
Brokette/projetCS
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - metrics: - type: mean_reward value: 231.98 +/- 16.70 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Brykee/DialoGPT-medium-Morty
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 2.0.0 - Tokenizers 0.10.3
BumBelDumBel/ZORK_AI_SCIFI
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1291 - Accuracy: 0.9429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2296 | 1.0 | 318 | 0.8290 | 0.7571 | | 0.6433 | 2.0 | 636 | 0.4200 | 0.8961 | | 0.3495 | 3.0 | 954 | 0.2493 | 0.9206 | | 0.2254 | 4.0 | 1272 | 0.1835 | 0.9335 | | 0.1726 | 5.0 | 1590 | 0.1576 | 0.9371 | | 0.1467 | 6.0 | 1908 | 0.1442 | 0.9423 | | 0.1318 | 7.0 | 2226 | 0.1360 | 0.9426 | | 0.1229 | 8.0 | 2544 | 0.1323 | 0.9435 | | 0.1185 | 9.0 | 2862 | 0.1299 | 0.9426 | | 0.1151 | 10.0 | 3180 | 0.1291 | 0.9429 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Tokenizers 0.12.1
CAMeL-Lab/bert-base-arabic-camelbert-ca
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
580
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 183.96 +/- 75.63 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CAMeL-Lab/bert-base-arabic-camelbert-da
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
449
null
--- language: pl tags: - distilherbert --- ## distilHerBERT distilHerBERT-base is a BERT-based Language Model trained on Polish subset of [cc100](https://huggingface.co/datasets/cc100) dataset using Masked Language Modelling (MLM) and [distillation procedure](https://arxiv.org/abs/1910.01108) from model [HerBERT](https://huggingface.co/allegro/herbert-base-cased) with dynamic masking of whole words. We provide one of the models (S4) described in the report from final project on the subject of (Deep) Natural Language Processing, which was carried out at MIMUW in 2021/2022: [Distillation_of_HerBERT](https://github.com/BartekKrzepkowski/DistilHerBERT-base_vol2/blob/master/report/Final_Report___Distillation_of_HerBERT.pdf). The model was trained using fp16 and the data parallelism method (ZeRO Stage 2), using the deep learning optimization library - DeepSpeed. Model training and experiments were conducted with transformers in version 4.20.1. ## Tokenizer The training dataset was tokenized into subwords using a character level byte-pair encoding (``CharBPETokenizer``) with a vocabulary size of 50k tokens. The tokenizer itself was trained with a [tokenizers](https://github.com/huggingface/tokenizers) library. We kindly encourage you to use the ``Fast`` version of the tokenizer, namely ``HerbertTokenizerFast``. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("BartekK/distilHerBERT-base-cased") model = AutoModelForMaskedLM.from_pretrained("BartekK/distilHerBERT-base-cased") output = model( **tokenizer.batch_encode_plus( [ ( "A potem szedł środkiem drogi w kurzawie, bo zamiatał nogami, ślepy dziad prowadzony przez tłustego kundla na sznurku.", "A potem leciał od lasu chłopak z butelką, ale ten ujrzawszy księdza przy drodze okrążył go z dala i biegł na przełaj pól do karczmy." ) ], padding='longest', add_special_tokens=True, return_tensors='pt' ) ) ``` ## Acknowledgements We want to thank <br> Spyridon Mouselinos - for suggesting literature to help with the project <br> and <br> Piotr Rybak - for sharing information on training the HerBERT models ## Authors The model was trained by: Bartłomiej Krzepkowski, <br> Dominika Bankiewicz, <br> Rafał Michaluk, <br> Jacek Ciszewski. If you have questions please contact me: <a href="mailto:[email protected]">[email protected]</a> The code can be found here: [distilHerBERT-base repo](https://github.com/BartekKrzepkowski/DistilHerBERT-base_vol2/tree/master).
CAMeL-Lab/bert-base-arabic-camelbert-mix-poetry
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:1905.05700", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- license: cc-by-4.0 language: mr datasets: - L3Cube-MahaCorpus --- ## MahaBERT MahaBERT is a Marathi BERT model. It is a multilingual BERT (google/muril-base-cased) model fine-tuned on L3Cube-MahaCorpus and other publicly available Marathi monolingual datasets. [dataset link] (https://github.com/l3cube-pune/MarathiNLP) More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2202.01159) ``` @inproceedings{joshi-2022-l3cube, title = "{L}3{C}ube-{M}aha{C}orpus and {M}aha{BERT}: {M}arathi Monolingual Corpus, {M}arathi {BERT} Language Models, and Resources", author = "Joshi, Raviraj", booktitle = "Proceedings of the WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.wildre-1.17", pages = "97--101", } ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-did-madar-twitter5
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
75
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.929042904290429 - name: Recall type: recall value: 0.9474924267923258 - name: F1 type: f1 value: 0.9381769705049159 - name: Accuracy type: accuracy value: 0.985783246011656 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0641 - Precision: 0.9290 - Recall: 0.9475 - F1: 0.9382 - Accuracy: 0.9858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0867 | 1.0 | 1756 | 0.0716 | 0.9102 | 0.9297 | 0.9198 | 0.9820 | | 0.0345 | 2.0 | 3512 | 0.0680 | 0.9290 | 0.9465 | 0.9376 | 0.9854 | | 0.0191 | 3.0 | 5268 | 0.0641 | 0.9290 | 0.9475 | 0.9382 | 0.9858 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
CAMeL-Lab/bert-base-arabic-camelbert-msa-did-nadi
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
71
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - f1 model-index: - name: results results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: F1 type: f1 value: 0.9254722461324877 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.1933 - Accuracy is: 0.9255 - F1: 0.9255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy is | F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:------:| | 0.2232 | 1.0 | 1563 | 0.1933 | 0.9255 | 0.9255 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-korean-demo-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-korean-demo-test This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9829 - Wer: 0.5580 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 8.1603 | 0.4 | 400 | 5.0560 | 1.0 | | 3.0513 | 0.79 | 800 | 2.1226 | 0.9984 | | 1.7673 | 1.19 | 1200 | 1.2358 | 0.9273 | | 1.4577 | 1.59 | 1600 | 1.0198 | 0.8512 | | 1.3308 | 1.98 | 2000 | 0.9258 | 0.8325 | | 1.1798 | 2.38 | 2400 | 0.8587 | 0.7933 | | 1.1268 | 2.77 | 2800 | 0.8166 | 0.7677 | | 1.0664 | 3.17 | 3200 | 0.7911 | 0.7428 | | 0.9923 | 3.57 | 3600 | 0.7964 | 0.7481 | | 1.0059 | 3.96 | 4000 | 0.7617 | 0.7163 | | 0.9141 | 4.36 | 4400 | 0.7854 | 0.7280 | | 0.8939 | 4.76 | 4800 | 0.7364 | 0.7160 | | 0.8689 | 5.15 | 5200 | 0.7895 | 0.6996 | | 0.8236 | 5.55 | 5600 | 0.7756 | 0.7100 | | 0.8409 | 5.95 | 6000 | 0.7433 | 0.6915 | | 0.7643 | 6.34 | 6400 | 0.7566 | 0.6993 | | 0.7601 | 6.74 | 6800 | 0.7873 | 0.6836 | | 0.7367 | 7.14 | 7200 | 0.7353 | 0.6640 | | 0.7099 | 7.53 | 7600 | 0.7421 | 0.6766 | | 0.7084 | 7.93 | 8000 | 0.7396 | 0.6740 | | 0.6837 | 8.32 | 8400 | 0.7717 | 0.6647 | | 0.6513 | 8.72 | 8800 | 0.7763 | 0.6798 | | 0.6458 | 9.12 | 9200 | 0.7659 | 0.6494 | | 0.6132 | 9.51 | 9600 | 0.7693 | 0.6511 | | 0.6287 | 9.91 | 10000 | 0.7555 | 0.6469 | | 0.6008 | 10.31 | 10400 | 0.7606 | 0.6408 | | 0.5796 | 10.7 | 10800 | 0.7622 | 0.6397 | | 0.5753 | 11.1 | 11200 | 0.7816 | 0.6510 | | 0.5531 | 11.5 | 11600 | 0.8351 | 0.6658 | | 0.5215 | 11.89 | 12000 | 0.7843 | 0.6416 | | 0.5205 | 12.29 | 12400 | 0.7674 | 0.6256 | | 0.5219 | 12.69 | 12800 | 0.7594 | 0.6287 | | 0.5186 | 13.08 | 13200 | 0.7863 | 0.6243 | | 0.473 | 13.48 | 13600 | 0.8209 | 0.6469 | | 0.4938 | 13.87 | 14000 | 0.8002 | 0.6241 | | 0.474 | 14.27 | 14400 | 0.8008 | 0.6122 | | 0.442 | 14.67 | 14800 | 0.8047 | 0.6089 | | 0.4521 | 15.06 | 15200 | 0.8341 | 0.6123 | | 0.4289 | 15.46 | 15600 | 0.8217 | 0.6122 | | 0.4278 | 15.86 | 16000 | 0.8400 | 0.6152 | | 0.4051 | 16.25 | 16400 | 0.8634 | 0.6182 | | 0.4063 | 16.65 | 16800 | 0.8486 | 0.6097 | | 0.4101 | 17.05 | 17200 | 0.8825 | 0.6002 | | 0.3896 | 17.44 | 17600 | 0.9575 | 0.6205 | | 0.3833 | 17.84 | 18000 | 0.8946 | 0.6216 | | 0.3678 | 18.24 | 18400 | 0.8905 | 0.5952 | | 0.3715 | 18.63 | 18800 | 0.8918 | 0.5994 | | 0.3748 | 19.03 | 19200 | 0.8856 | 0.5953 | | 0.3485 | 19.42 | 19600 | 0.9326 | 0.5906 | | 0.3522 | 19.82 | 20000 | 0.9237 | 0.5932 | | 0.3551 | 20.22 | 20400 | 0.9274 | 0.5932 | | 0.3339 | 20.61 | 20800 | 0.9075 | 0.5883 | | 0.3354 | 21.01 | 21200 | 0.9306 | 0.5861 | | 0.318 | 21.41 | 21600 | 0.8994 | 0.5854 | | 0.3235 | 21.8 | 22000 | 0.9114 | 0.5831 | | 0.3201 | 22.2 | 22400 | 0.9415 | 0.5867 | | 0.308 | 22.6 | 22800 | 0.9695 | 0.5807 | | 0.3049 | 22.99 | 23200 | 0.9166 | 0.5765 | | 0.2858 | 23.39 | 23600 | 0.9643 | 0.5746 | | 0.2938 | 23.79 | 24000 | 0.9461 | 0.5724 | | 0.2856 | 24.18 | 24400 | 0.9658 | 0.5710 | | 0.2827 | 24.58 | 24800 | 0.9534 | 0.5693 | | 0.2745 | 24.97 | 25200 | 0.9436 | 0.5675 | | 0.2705 | 25.37 | 25600 | 0.9849 | 0.5701 | | 0.2656 | 25.77 | 26000 | 0.9854 | 0.5662 | | 0.2645 | 26.16 | 26400 | 0.9795 | 0.5662 | | 0.262 | 26.56 | 26800 | 0.9496 | 0.5626 | | 0.2553 | 26.96 | 27200 | 0.9787 | 0.5659 | | 0.2602 | 27.35 | 27600 | 0.9814 | 0.5640 | | 0.2519 | 27.75 | 28000 | 0.9816 | 0.5631 | | 0.2386 | 28.15 | 28400 | 1.0012 | 0.5580 | | 0.2398 | 28.54 | 28800 | 0.9892 | 0.5567 | | 0.2368 | 28.94 | 29200 | 0.9909 | 0.5590 | | 0.2366 | 29.34 | 29600 | 0.9827 | 0.5567 | | 0.2347 | 29.73 | 30000 | 0.9829 | 0.5580 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
CAUKiel/JavaBERT-uncased
[ "pytorch", "safetensors", "bert", "fill-mask", "java", "code", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--alpha_ce 0.0 --alpha_mlm 0.0 --alpha_cos 0.0 --alpha_act 1.0 --alpha_clm 0.0 --mlm \
CBreit00/DialoGPT_small_Rick
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - feature-extraction - endpoints-template license: bsd-3-clause library_name: generic --- # Fork of [salesforce/BLIP](https://github.com/salesforce/BLIP) for a `feature-extraction` task on 🤗Inference endpoint. This repository implements a `custom` task for `feature-extraction` for 🤗 Inference Endpoints. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/florentgbelidji/blip-embeddings/blob/main/pipeline.py). To use deploy this model a an Inference Endpoint you have to select `Custom` as task to use the `pipeline.py` file. -> _double check if it is selected_ ### expected Request payload ```json { "image": "/9j/4AAQSkZJRgABAQEBLAEsAAD/2wBDAAMCAgICAgMC....", // base64 image as bytes } ``` below is an example on how to run a request using Python and `requests`. ## Run Request 1. prepare an image. ```bash !wget https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg ``` 2.run request ```python import json from typing import List import requests as r import base64 ENDPOINT_URL = "" HF_TOKEN = "" def predict(path_to_image: str = None): with open(path_to_image, "rb") as i: b64 = base64.b64encode(i.read()) payload = {"inputs": {"image": b64.decode("utf-8")}} response = r.post( ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json=payload ) return response.json() prediction = predict( path_to_image="palace.jpg" ) ``` expected output ```python {'feature_vector': [0.016450975090265274, -0.5551009774208069, 0.39800673723220825, -0.6809228658676147, 2.053842782974243, -0.4712907075881958,...] } ```
CL/safe-math-bot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7003 | 0.54 | 500 | 1.4859 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 2.0.0 - Tokenizers 0.10.3
CLAck/indo-pure
[ "pytorch", "marian", "text2text-generation", "en", "id", "dataset:ALT", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - audio - spectrograms datasets: - teticio/audio-diffusion-256 --- De-noising Diffusion Probabilistic Model trained on [teticio/audio-diffusion-256](https://huggingface.co/datasets/teticio/audio-diffusion-256) to generate mel spectrograms of 256x256 corresponding to 5 seconds of audio. The code to convert from audio to spectrogram and vice versa can be found in https://github.com/teticio/audio-diffusion along with scripts to train and run inference.
CLAck/vi-en
[ "pytorch", "marian", "text2text-generation", "en", "vi", "dataset:ALT", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-finetuned-text2log-finetuned-nl-to-fol-finetuned-nl-to-fol-finetuned-nl-to-fol-version2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-text2log-finetuned-nl-to-fol-finetuned-nl-to-fol-finetuned-nl-to-fol-version2 This model is a fine-tuned version of [anki08/t5-small-finetuned-text2log-finetuned-nl-to-fol-finetuned-nl-to-fol](https://huggingface.co/anki08/t5-small-finetuned-text2log-finetuned-nl-to-fol-finetuned-nl-to-fol) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0069 - Bleu: 28.1311 - Gen Len: 18.7412 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 22 | 0.0692 | 27.4908 | 18.7353 | | No log | 2.0 | 44 | 0.0631 | 27.554 | 18.7294 | | No log | 3.0 | 66 | 0.0533 | 27.6007 | 18.7294 | | No log | 4.0 | 88 | 0.0484 | 27.6446 | 18.7294 | | No log | 5.0 | 110 | 0.0439 | 27.6401 | 18.7294 | | No log | 6.0 | 132 | 0.0404 | 27.5117 | 18.7294 | | No log | 7.0 | 154 | 0.0389 | 27.6358 | 18.7294 | | No log | 8.0 | 176 | 0.0362 | 27.6358 | 18.7294 | | No log | 9.0 | 198 | 0.0339 | 27.5731 | 18.7294 | | No log | 10.0 | 220 | 0.0319 | 27.2326 | 18.6882 | | No log | 11.0 | 242 | 0.0298 | 27.2326 | 18.6882 | | No log | 12.0 | 264 | 0.0293 | 27.5498 | 18.7294 | | No log | 13.0 | 286 | 0.0276 | 27.6566 | 18.7294 | | No log | 14.0 | 308 | 0.0268 | 27.6566 | 18.7294 | | No log | 15.0 | 330 | 0.0251 | 27.6107 | 18.7294 | | No log | 16.0 | 352 | 0.0239 | 27.7096 | 18.7294 | | No log | 17.0 | 374 | 0.0228 | 27.6716 | 18.7294 | | No log | 18.0 | 396 | 0.0231 | 27.8083 | 18.7294 | | No log | 19.0 | 418 | 0.0218 | 27.4838 | 18.6882 | | No log | 20.0 | 440 | 0.0212 | 27.4712 | 18.6882 | | No log | 21.0 | 462 | 0.0197 | 27.8787 | 18.7353 | | No log | 22.0 | 484 | 0.0207 | 27.6899 | 18.6941 | | 0.1026 | 23.0 | 506 | 0.0186 | 27.6376 | 18.6941 | | 0.1026 | 24.0 | 528 | 0.0202 | 27.6672 | 18.6941 | | 0.1026 | 25.0 | 550 | 0.0174 | 28.0172 | 18.7412 | | 0.1026 | 26.0 | 572 | 0.0170 | 27.8714 | 18.7412 | | 0.1026 | 27.0 | 594 | 0.0164 | 27.7423 | 18.7412 | | 0.1026 | 28.0 | 616 | 0.0164 | 27.8278 | 18.7412 | | 0.1026 | 29.0 | 638 | 0.0163 | 27.8278 | 18.7412 | | 0.1026 | 30.0 | 660 | 0.0158 | 27.907 | 18.7412 | | 0.1026 | 31.0 | 682 | 0.0165 | 27.7752 | 18.7412 | | 0.1026 | 32.0 | 704 | 0.0147 | 27.8284 | 18.7412 | | 0.1026 | 33.0 | 726 | 0.0150 | 27.8862 | 18.7412 | | 0.1026 | 34.0 | 748 | 0.0148 | 27.8402 | 18.7412 | | 0.1026 | 35.0 | 770 | 0.0141 | 27.8353 | 18.7412 | | 0.1026 | 36.0 | 792 | 0.0142 | 27.858 | 18.7412 | | 0.1026 | 37.0 | 814 | 0.0143 | 27.858 | 18.7412 | | 0.1026 | 38.0 | 836 | 0.0158 | 27.8353 | 18.7412 | | 0.1026 | 39.0 | 858 | 0.0125 | 27.8913 | 18.7412 | | 0.1026 | 40.0 | 880 | 0.0121 | 27.9167 | 18.7412 | | 0.1026 | 41.0 | 902 | 0.0122 | 27.9569 | 18.7412 | | 0.1026 | 42.0 | 924 | 0.0126 | 27.9569 | 18.7412 | | 0.1026 | 43.0 | 946 | 0.0120 | 28.001 | 18.7412 | | 0.1026 | 44.0 | 968 | 0.0125 | 28.0079 | 18.7412 | | 0.1026 | 45.0 | 990 | 0.0115 | 28.0079 | 18.7412 | | 0.072 | 46.0 | 1012 | 0.0113 | 27.9851 | 18.7412 | | 0.072 | 47.0 | 1034 | 0.0113 | 28.0184 | 18.7412 | | 0.072 | 48.0 | 1056 | 0.0110 | 28.0184 | 18.7412 | | 0.072 | 49.0 | 1078 | 0.0108 | 28.0184 | 18.7412 | | 0.072 | 50.0 | 1100 | 0.0107 | 28.0184 | 18.7412 | | 0.072 | 51.0 | 1122 | 0.0101 | 28.0184 | 18.7412 | | 0.072 | 52.0 | 1144 | 0.0102 | 28.0184 | 18.7412 | | 0.072 | 53.0 | 1166 | 0.0099 | 28.0184 | 18.7412 | | 0.072 | 54.0 | 1188 | 0.0100 | 28.0184 | 18.7412 | | 0.072 | 55.0 | 1210 | 0.0102 | 28.0184 | 18.7412 | | 0.072 | 56.0 | 1232 | 0.0095 | 28.0184 | 18.7412 | | 0.072 | 57.0 | 1254 | 0.0098 | 28.0184 | 18.7412 | | 0.072 | 58.0 | 1276 | 0.0092 | 28.0184 | 18.7412 | | 0.072 | 59.0 | 1298 | 0.0090 | 28.0184 | 18.7412 | | 0.072 | 60.0 | 1320 | 0.0095 | 28.0184 | 18.7412 | | 0.072 | 61.0 | 1342 | 0.0092 | 27.9674 | 18.7412 | | 0.072 | 62.0 | 1364 | 0.0091 | 27.9419 | 18.7412 | | 0.072 | 63.0 | 1386 | 0.0100 | 27.9419 | 18.7412 | | 0.072 | 64.0 | 1408 | 0.0084 | 28.0752 | 18.7412 | | 0.072 | 65.0 | 1430 | 0.0086 | 28.0192 | 18.7412 | | 0.072 | 66.0 | 1452 | 0.0084 | 28.0192 | 18.7412 | | 0.072 | 67.0 | 1474 | 0.0085 | 28.0192 | 18.7412 | | 0.072 | 68.0 | 1496 | 0.0087 | 28.0192 | 18.7412 | | 0.0575 | 69.0 | 1518 | 0.0084 | 28.0192 | 18.7412 | | 0.0575 | 70.0 | 1540 | 0.0080 | 28.0192 | 18.7412 | | 0.0575 | 71.0 | 1562 | 0.0082 | 28.0192 | 18.7412 | | 0.0575 | 72.0 | 1584 | 0.0080 | 28.0192 | 18.7412 | | 0.0575 | 73.0 | 1606 | 0.0075 | 28.0192 | 18.7412 | | 0.0575 | 74.0 | 1628 | 0.0079 | 28.0192 | 18.7412 | | 0.0575 | 75.0 | 1650 | 0.0078 | 28.0752 | 18.7412 | | 0.0575 | 76.0 | 1672 | 0.0076 | 28.1311 | 18.7412 | | 0.0575 | 77.0 | 1694 | 0.0073 | 28.1311 | 18.7412 | | 0.0575 | 78.0 | 1716 | 0.0074 | 28.1311 | 18.7412 | | 0.0575 | 79.0 | 1738 | 0.0072 | 28.1311 | 18.7412 | | 0.0575 | 80.0 | 1760 | 0.0078 | 28.1311 | 18.7412 | | 0.0575 | 81.0 | 1782 | 0.0077 | 28.1311 | 18.7412 | | 0.0575 | 82.0 | 1804 | 0.0071 | 28.1311 | 18.7412 | | 0.0575 | 83.0 | 1826 | 0.0072 | 28.1311 | 18.7412 | | 0.0575 | 84.0 | 1848 | 0.0075 | 28.1311 | 18.7412 | | 0.0575 | 85.0 | 1870 | 0.0071 | 28.1311 | 18.7412 | | 0.0575 | 86.0 | 1892 | 0.0070 | 28.1311 | 18.7412 | | 0.0575 | 87.0 | 1914 | 0.0069 | 28.1311 | 18.7412 | | 0.0575 | 88.0 | 1936 | 0.0069 | 28.1311 | 18.7412 | | 0.0575 | 89.0 | 1958 | 0.0069 | 28.1311 | 18.7412 | | 0.0575 | 90.0 | 1980 | 0.0069 | 28.1311 | 18.7412 | | 0.0509 | 91.0 | 2002 | 0.0069 | 28.1311 | 18.7412 | | 0.0509 | 92.0 | 2024 | 0.0070 | 28.1311 | 18.7412 | | 0.0509 | 93.0 | 2046 | 0.0069 | 28.1311 | 18.7412 | | 0.0509 | 94.0 | 2068 | 0.0070 | 28.1311 | 18.7412 | | 0.0509 | 95.0 | 2090 | 0.0069 | 28.1311 | 18.7412 | | 0.0509 | 96.0 | 2112 | 0.0069 | 28.1311 | 18.7412 | | 0.0509 | 97.0 | 2134 | 0.0069 | 28.1311 | 18.7412 | | 0.0509 | 98.0 | 2156 | 0.0069 | 28.1311 | 18.7412 | | 0.0509 | 99.0 | 2178 | 0.0069 | 28.1311 | 18.7412 | | 0.0509 | 100.0 | 2200 | 0.0069 | 28.1311 | 18.7412 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
CLEE/CLEE
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.923246780342909 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2160 - Accuracy: 0.923 - F1: 0.9232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8173 | 1.0 | 250 | 0.3152 | 0.8995 | 0.8957 | | 0.2408 | 2.0 | 500 | 0.2160 | 0.923 | 0.9232 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
CLTL/gm-ner-xlmrbase
[ "pytorch", "tf", "xlm-roberta", "token-classification", "nl", "transformers", "dighum", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3264 - eval_accuracy: 0.8867 - eval_f1: 0.8896 - eval_runtime: 253.6051 - eval_samples_per_second: 1.183 - eval_steps_per_second: 0.075 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
CLTL/icf-domains
[ "pytorch", "roberta", "nl", "transformers", "license:mit", "text-classification" ]
text-classification
{ "architectures": [ "RobertaForMultiLabelSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
35
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 285.40 +/- 14.55 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CLTL/icf-levels-adm
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert-base-future results: [] widget: - text: "We will have a good time." example_title: "Positive" - text: "We had a good time." example_title: "Negative" --- # distilbert-base-future ## Table of Contents - [Model description](#model_description) - [Intended uses & limitations](#intended_uses_&_limitations) - [Training and evaluation data](#training_and_evaluation_data) - [Training procedure](#training_procedure) This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [future-statements dataset](https://huggingface.co/datasets/fidsinn/future-statements). It achieves the following results on the evaluation set: - Train Loss: 0.1142 - Train Sparse Categorical Accuracy: 0.9613 - Validation Loss: 0.1272 - Validation Sparse Categorical Accuracy: 0.9625 - Epoch: 1 ## Model description - The model was created by graduate students [D. Baradari](https://huggingface.co/Dunya), [F. Bartels](https://huggingface.co/fidsinn), A. Dewald, [J. Peters](https://huggingface.co/jpeters92) as part of a data science module of the University of Leipzig. - Model was created on 11/08/22. - This is version 1.0 - The model is a text classification model which is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) - Questions and comments can be send via the [community tab](https://huggingface.co/fidsinn/distilbert-base-future/discussions) ## Intended uses & limitations - The primary intended use is the classification of input into a future or non-future sentence/statement. - The model is primarily intended to be used by researchers to filter or label a large number of sentences according to the grammatical tense of the input. ## Training and evaluation data - [Distilbert-base-future model](https://huggingface.co/fidsinn/distilbert-base-future) was trained and evaluated on the [future-statements dataset](https://huggingface.co/datasets/fidsinn/future-statements). - [future-statements](https://huggingface.co/datasets/fidsinn/future-statements) is a dataset collected manually and automatically by graduate students [D. Baradari](https://huggingface.co/Dunya), [F. Bartels](https://huggingface.co/fidsinn), A. Dewald, [J. Peters](https://huggingface.co/jpeters92) of the University of Leipzig. - We collected 2500 statements, 50% of which relate to future events and 50% of which relate to non-future events. - The sole purpose of the dataset was the fine-tuning process of this model. - Additional information on the dataset can be found on Huggingface: [future-statements dataset](https://huggingface.co/datasets/fidsinn/future-statements). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 0.3816 | 0.8594 | 0.1547 | 0.9475 | 0 | | 0.1142 | 0.9613 | 0.1272 | 0.9625 | 1 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.4.0 - Tokenizers 0.12.1
CLTL/icf-levels-att
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cuad model-index: - name: bert-small-finetuned-cuad-full-longer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-finetuned-cuad-full-longer This model is a fine-tuned version of [muhtasham/bert-small-finetuned-cuad-full](https://huggingface.co/muhtasham/bert-small-finetuned-cuad-full) on the cuad dataset. It achieves the following results on the evaluation set: - Loss: 0.0295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0306 | 1.0 | 23785 | 0.0263 | | 0.025 | 2.0 | 47570 | 0.0275 | | 0.022 | 3.0 | 71355 | 0.0295 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
CLTL/icf-levels-ber
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers language: - ko license: mit --- # smartmind/ko-sbert-augSTS-maxlength512 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> This model is [snunlp/KR-SBERT-V40K-klueNLI-augSTS](https://huggingface.co/snunlp/KR-SBERT-V40K-klueNLI-augSTS) with max input length 512. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('smartmind/ko-sbert-augSTS-maxlength512') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('smartmind/ko-sbert-augSTS-maxlength512') model = AutoModel.from_pretrained('smartmind/ko-sbert-augSTS-maxlength512') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=snunlp/KR-SBERT-V40K-klueNLI-augSTS) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Application for document classification Tutorial in Google Colab: https://colab.research.google.com/drive/1S6WSjOx9h6Wh_rX1Z2UXwx9i_uHLlOiM |Model|Accuracy| |-|-| |KR-SBERT-Medium-NLI-STS|0.8400| |KR-SBERT-V40K-NLI-STS|0.8400| |KR-SBERT-V40K-NLI-augSTS|0.8511| |KR-SBERT-V40K-klueNLI-augSTS|**0.8628**| ## Citation ```bibtex @misc{kr-sbert, author = {Park, Suzi and Hyopil Shin}, title = {KR-SBERT: A Pre-trained Korean-specific Sentence-BERT model}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/snunlp/KR-SBERT}} } ```
CLTL/icf-levels-enr
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: QRDQN results: - metrics: - type: mean_reward value: 3510.00 +/- 4506.87 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **QRDQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **QRDQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -orga rebolforces -f logs/ python enjoy.py --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga rebolforces ``` ## Hyperparameters ```python OrderedDict([('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_fraction', 0.025), ('frame_stack', 4), ('n_timesteps', 20000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('replay_buffer_kwargs', 'dict(handle_timeout_termination=False)'), ('normalize', False)]) ```
CLTL/icf-levels-etn
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- tags: - generated_from_keras_callback model-index: - name: Mostafa3zazi/arabicQA-finetuned-squad_arcd results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Mostafa3zazi/arabicQA-finetuned-squad_arcd This model is a fine-tuned version of [aubmindlab/araelectra-base-discriminator](https://huggingface.co/aubmindlab/araelectra-base-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.9073 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 3e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3034, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 50, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.9073 | 0 | ### Framework versions - Transformers 4.21.1 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
CM-CA/DialoGPT-small-cartman
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-tw-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tw-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
CNT-UPenn/Bio_ClinicalBERT_for_seizureFreedom_classification
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- tags: - generated_from_keras_callback model-index: - name: arabicQA-finetuned-squad_arcd_manual_push results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # arabicQA-finetuned-squad_arcd_manual_push This model is a fine-tuned version of [aubmindlab/araelectra-base-discriminator](https://huggingface.co/aubmindlab/araelectra-base-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.3885 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 3e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3034, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 50, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 2.3885 | 0 | ### Framework versions - Transformers 4.21.1 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
CNT-UPenn/RoBERTa_for_seizureFrequency_QA
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-b0.05 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.4851 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b0.05 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.8144 - Bleu: 7.4851 - Gen Len: 44.7914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
CSResearcher/TestModel
[ "license:mit" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-test2 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.735 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-test2 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.8127 - Bleu: 7.735 - Gen Len: 44.5453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
CSZay/bart
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-b0.1 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.497 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b0.1 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.8190 - Bleu: 7.497 - Gen Len: 44.5613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
CTBC/ATS
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-b0.5 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.5091 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b0.5 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.8108 - Bleu: 7.5091 - Gen Len: 43.958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
CZWin32768/xlm-align
[ "pytorch", "xlm-roberta", "fill-mask", "arxiv:2106.06381", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-b1 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.5172 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b1 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.7924 - Bleu: 7.5172 - Gen Len: 44.1886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Caddy/UD
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-b0.01 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.5421 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b0.01 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.8163 - Bleu: 7.5421 - Gen Len: 44.4902 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Callidior/bert2bert-base-arxiv-titlegen
[ "pytorch", "safetensors", "encoder-decoder", "text2text-generation", "en", "dataset:arxiv_dataset", "transformers", "summarization", "license:apache-2.0", "autotrain_compatible", "has_space" ]
summarization
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
145
null
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-ks-padpt400 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ks-padpt400 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 1.2218 - Accuracy: 0.6343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 256 - eval_batch_size: 256 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2948 | 1.0 | 50 | 1.6527 | 0.6108 | | 0.8861 | 2.0 | 100 | 1.2653 | 0.6130 | | 0.7809 | 3.0 | 150 | 1.2615 | 0.5924 | | 0.7364 | 4.0 | 200 | 1.2218 | 0.6343 | | 0.6944 | 5.0 | 250 | 1.2137 | 0.6324 | | 0.6817 | 6.0 | 300 | 1.2822 | 0.5930 | | 0.6601 | 7.0 | 350 | 1.3292 | 0.5599 | | 0.6464 | 8.0 | 400 | 1.2744 | 0.5869 | | 0.653 | 9.0 | 450 | 1.3916 | 0.5272 | | 0.633 | 10.0 | 500 | 1.3344 | 0.5606 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.11.0+cu115 - Datasets 2.4.0 - Tokenizers 0.12.1
Cameron/BERT-SBIC-offensive
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-cased-finetuned-fce results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-finetuned-fce This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9048 | 1.0 | 122 | 1.6691 | | 1.6505 | 2.0 | 244 | 1.5172 | | 1.5615 | 3.0 | 366 | 1.5019 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Cameron/BERT-SBIC-targetcategory
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- license: mit tags: - generated_from_trainer datasets: - squad_v2 - quoref - adversarial_qa - duorc model-index: - name: rob-base-superqa2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - name: Exact Match type: exact_match value: 79.2365 verified: true - name: F1 type: f1 value: 82.3326 verified: true - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: test metrics: - name: Exact Match type: exact_match value: 12.4 verified: true - name: F1 type: f1 value: 12.4 verified: true - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - name: Exact Match type: exact_match value: 42.3667 verified: true - name: F1 type: f1 value: 53.3255 verified: true - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - name: Exact Match type: exact_match value: 86.1925 verified: true - name: F1 type: f1 value: 92.4306 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rob-base-superqa2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0a0+gita4c10ee - Datasets 2.4.0 - Tokenizers 0.12.1
Cameron/BERT-eec-emotion
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
null
--- tags: - generated_from_trainer model-index: - name: koBERT-finetuned-wholemasking20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # koBERT-finetuned-wholemasking20 This model is a fine-tuned version of [monologg/kobert](https://huggingface.co/monologg/kobert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 0.15 | 500 | 0.4369 | | No log | 0.29 | 1000 | 0.4280 | | No log | 0.44 | 1500 | 0.4214 | | No log | 0.58 | 2000 | 0.4159 | | No log | 0.73 | 2500 | 0.4144 | | No log | 0.87 | 3000 | 0.4106 | | 0.474 | 1.02 | 3500 | 0.4142 | | 0.474 | 1.16 | 4000 | 0.4106 | | 0.474 | 1.31 | 4500 | 0.4106 | | 0.474 | 1.45 | 5000 | 0.4101 | | 0.474 | 1.6 | 5500 | 0.4087 | | 0.474 | 1.75 | 6000 | 0.4070 | | 0.474 | 1.89 | 6500 | 0.4065 | | 0.4122 | 2.04 | 7000 | 0.4088 | | 0.4122 | 2.18 | 7500 | 0.4073 | | 0.4122 | 2.33 | 8000 | 0.4058 | | 0.4122 | 2.47 | 8500 | 0.4025 | | 0.4122 | 2.62 | 9000 | 0.4032 | | 0.4122 | 2.76 | 9500 | 0.4062 | | 0.4122 | 2.91 | 10000 | 0.4059 | | 0.4081 | 3.05 | 10500 | 0.4040 | | 0.4081 | 3.2 | 11000 | 0.3993 | | 0.4081 | 3.35 | 11500 | 0.3982 | | 0.4081 | 3.49 | 12000 | 0.4041 | | 0.4081 | 3.64 | 12500 | 0.4026 | | 0.4081 | 3.78 | 13000 | 0.4009 | | 0.4081 | 3.93 | 13500 | 0.4011 | | 0.4041 | 4.07 | 14000 | 0.4001 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Cameron/BERT-mdgender-convai-binary
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-ks-padpt800 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ks-padpt800 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 1.5281 - Accuracy: 0.6142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 256 - eval_batch_size: 256 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.328 | 1.0 | 50 | 1.5281 | 0.6142 | | 0.9328 | 2.0 | 100 | 1.3054 | 0.5853 | | 0.8277 | 3.0 | 150 | 1.3858 | 0.4966 | | 0.7689 | 4.0 | 200 | 1.4112 | 0.4975 | | 0.7154 | 5.0 | 250 | 1.4042 | 0.5035 | | 0.706 | 6.0 | 300 | 1.3635 | 0.5171 | | 0.6878 | 7.0 | 350 | 1.4373 | 0.4873 | | 0.6868 | 8.0 | 400 | 1.2890 | 0.5505 | | 0.6705 | 9.0 | 450 | 1.3019 | 0.5405 | | 0.6579 | 10.0 | 500 | 1.3337 | 0.5272 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.11.0+cu115 - Datasets 2.4.0 - Tokenizers 0.12.1
Cameron/BERT-mdgender-convai-ternary
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
38
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9243589240600196 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2268 - Accuracy: 0.9245 - F1: 0.9244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8587 | 1.0 | 250 | 0.3353 | 0.899 | 0.8945 | | 0.2657 | 2.0 | 500 | 0.2268 | 0.9245 | 0.9244 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Camzure/MaamiBot-test
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2022-08-17T05:48:30Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-b2 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.4786 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b2 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.7924 - Bleu: 7.4786 - Gen Len: 44.5778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Camzure/MaamiBot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-08-17T05:52:41Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-b10 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.1529 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b10 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.8165 - Bleu: 7.1529 - Gen Len: 45.5448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Canadiancaleb/DialoGPT-small-jesse
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-b20 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 6.6798 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b20 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.8652 - Bleu: 6.6798 - Gen Len: 46.8789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Canadiancaleb/DialoGPT-small-walter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-b50 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 5.0009 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b50 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 3.0682 - Bleu: 5.0009 - Gen Len: 50.7284 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Canadiancaleb/jessebot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-08-17T05:57:15Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-b100 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 1.772 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b100 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 3.5393 - Bleu: 1.772 - Gen Len: 61.0825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Canyonevo/DialoGPT-medium-KingHenry
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-08-17T05:57:18Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-b5 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.3798 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b5 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.7945 - Bleu: 7.3798 - Gen Len: 44.7109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Capreolus/birch-bert-large-msmarco_mb
[ "pytorch", "tf", "jax", "bert", "next-sentence-prediction", "transformers" ]
null
{ "architectures": [ "BertForNextSentencePrediction" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
2022-08-17T06:31:07Z
--- license: cc-by-nc-sa-3.0 --- # KhanomTan TTS v1.0 KhanomTan TTS (ขนมตาล) is an open-source Thai text-to-speech model that supports multilingual speakers such as Thai, English, and others. KhanomTan TTS is a YourTTS model trained on multilingual languages that supports Thai. We use Thai speech corpora, TSync 1* and TSync 2* [mbarnig/lb-de-fr-en-pt-12800-TTS-CORPUS](https://huggingface.co/datasets/mbarnig/lb-de-fr-en-pt-12800-TTS-CORPUS) to train the YourTTS model by using code from [the 🐸 Coqui-TTS](https://github.com/coqui-ai/TTS). ### Config We use Thai characters to the graphemes config to training the model and use the Speaker Encoder model from [🐸 Coqui-TTS](https://github.com/coqui-ai/TTS/releases/tag/speaker_encoder_model). ### Dataset We use Tsync 1 and Tsync 2 corpora, which are not complete datasets, and then add these to [mbarnig/lb-de-fr-en-pt-12800-TTS-CORPUS](https://huggingface.co/datasets/mbarnig/lb-de-fr-en-pt-12800-TTS-CORPUS) dataset. ### Trained the model We use the 🐸 Coqui-TTS multilingual VITS-model recipe (version 0.7.1 or the commit id is d46fbc240ccf21797d42ac26cb27eb0b9f8d31c4) for training the model, and we use the speaker encoder model from [🐸 Coqui-TTS](https://github.com/coqui-ai/TTS/releases/tag/speaker_encoder_model) then we release the best model to public access. - Model cards: [https://github.com/wannaphong/KhanomTan-TTS-v1.0](https://github.com/wannaphong/KhanomTan-TTS-v1.0) - Dataset (Tsync 1 and Tsync 2 only): [https://huggingface.co/datasets/wannaphong/tsync1-2-yourtts](https://huggingface.co/datasets/wannaphong/tsync1-2-yourtts) - GitHub: [https://github.com/wannaphong/KhanomTan-TTS-v1.0](https://github.com/wannaphong/KhanomTan-TTS-v1.0) *Note: Those are not complete corpus. We can access the public corpus only.
Capreolus/electra-base-msmarco
[ "pytorch", "tf", "electra", "text-classification", "arxiv:2008.09093", "transformers" ]
text-classification
{ "architectures": [ "ElectraForSequenceClassification" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
110
null
--- annotations_creators: [] language: - ro language_creators: - machine-generated license: - apache-2.0 multilinguality: - monolingual pretty_name: BlackKakapo/t5-small-paraphrase-ro size_categories: - 10K<n<100K source_datasets: - original tags: [] task_categories: - text2text-generation task_ids: [] --- # Romanian paraphrase ![v2.0](https://img.shields.io/badge/V.2-17.08.2022-brightgreen) Fine-tune t5-small-paraphrase-ro model for paraphrase. Since there is no Romanian dataset for paraphrasing, I had to create my own [dataset](https://huggingface.co/datasets/BlackKakapo/paraphrase-ro-v2). The dataset contains ~30k examples. ### How to use ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("BlackKakapo/t5-small-paraphrase-ro-v2") model = AutoModelForSeq2SeqLM.from_pretrained("BlackKakapo/t5-small-paraphrase-ro-v2") ``` ### Or ```python from transformers import T5ForConditionalGeneration, T5TokenizerFast model = T5ForConditionalGeneration.from_pretrained("BlackKakapo/t5-small-paraphrase-ro-v2") tokenizer = T5TokenizerFast.from_pretrained("BlackKakapo/t5-small-paraphrase-ro-v2") ``` ### Generate ```python text = "Am impresia că fac multe greșeli." encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"] beam_outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, do_sample=True, max_length=256, top_k=20, top_p=0.9, early_stopping=False, num_return_sequences=5 ) final_outputs = [] for beam_output in beam_outputs: text_para = tokenizer.decode(beam_output, skip_special_tokens=True,clean_up_tokenization_spaces=True) if text.lower() != text_para.lower() or text not in final_outputs: final_outputs.append(text_para) print(final_outputs) ``` ### Output ```out ['Am impresia că fac multe erori.'] ```
Captain-1337/CrudeBERT
[ "pytorch", "bert", "text-classification", "arxiv:1908.10063", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
2022-08-17T06:37:49Z
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-ks-padpt1600 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ks-padpt1600 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 1.6019 - Accuracy: 0.6111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 256 - eval_batch_size: 256 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3499 | 1.0 | 50 | 1.6019 | 0.6111 | | 0.9698 | 2.0 | 100 | 1.4349 | 0.5613 | | 0.866 | 3.0 | 150 | 1.4232 | 0.5547 | | 0.8162 | 4.0 | 200 | 1.5573 | 0.4675 | | 0.7632 | 5.0 | 250 | 1.4991 | 0.4950 | | 0.7461 | 6.0 | 300 | 1.4251 | 0.5321 | | 0.7374 | 7.0 | 350 | 1.6291 | 0.4247 | | 0.7237 | 8.0 | 400 | 1.5307 | 0.4797 | | 0.7273 | 9.0 | 450 | 1.5635 | 0.4520 | | 0.7007 | 10.0 | 500 | 1.5841 | 0.4497 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.11.0+cu115 - Datasets 2.4.0 - Tokenizers 0.12.1
CarlosPR/mt5-spanish-memmories-analysis
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2022-08-17T07:12:14Z
--- language: en tags: - t5 datasets: - squad license: mit --- # Question Generation Model ## Github https://github.com/Seoneun/T5-Question-Generation ## Fine-tuning Dataset SQuAD 1.1 | Train Data | Dev Data | Test Data | | ------ | ------ | ------ | | 75,722 | 10,570 | 11,877 | ## Demo https://huggingface.co/Sehong/t5-large-QuestionGeneration ## How to use ```python import torch from transformers import PreTrainedTokenizerFast from transformers import T5ForConditionalGeneration tokenizer = PreTrainedTokenizerFast.from_pretrained('Sehong/t5-large-QuestionGeneration') model = T5ForConditionalGeneration.from_pretrained('Sehong/t5-large-QuestionGeneration') # tokenized ''' text = "answer:Saint Bern ##ade ##tte So ##ubi ##rous content:Architectural ##ly , the school has a Catholic character . At ##op the Main Building ' s gold dome is a golden statue of the Virgin Mary . Immediately in front of the Main Building and facing it , is a copper statue of Christ with arms up ##rai ##sed with the legend "" V ##eni ##te Ad Me O ##m ##nes "" . Next to the Main Building is the Basilica of the Sacred Heart . Immediately behind the b ##asi ##lica is the G ##rot ##to , a Marian place of prayer and reflection . It is a replica of the g ##rot ##to at Lou ##rdes , France where the Virgin Mary reputed ##ly appeared to Saint Bern ##ade ##tte So ##ubi ##rous in 1858 . At the end of the main drive ( and in a direct line that connects through 3 statues and the Gold Dome ) , is a simple , modern stone statue of Mary ." ''' text = "answer:Saint Bernadette Soubirous content:Architecturally , the school has a Catholic character . Atop the Main Building ' s gold dome is a golden statue of the Virgin Mary . Immediately in front of the Main Building and facing it , is a copper statue of Christ with arms upraised with the legend "" Venite Ad Me Omnes "" . Next to the Main Building is the Basilica of the Sacred Heart . Immediately behind the basilica is the Grotto , a Marian place of prayer and reflection . It is a replica of the grotto at Lourdes , France where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858 . At the end of the main drive ( and in a direct line that connects through 3 statues and the Gold Dome ) , is a simple , modern stone statue of Mary ." raw_input_ids = tokenizer.encode(text) input_ids = [tokenizer.bos_token_id] + raw_input_ids + [tokenizer.eos_token_id] question_ids = model.generate(torch.tensor([input_ids])) decode = tokenizer.decode(question_ids.squeeze().tolist(), skip_special_tokens=True) decode = decode.replace(' # # ', '').replace(' ', ' ').replace(' ##', '') print(decode) ``` ## Evalutation | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE-L | | ------ | ------ | ------ | ------ | ------ | ------- | | 51.333 | 36.742 | 28.218 | 22.289 | 26.126 | 51.069 |
CarlosTron/Yo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: de widget: - text: "[Title_nullsechsroy feat. YFG Pave_" tags: - Text Generation datasets: - genius lyrics license: mit --- # GPT-Rapgenerator The Rapgenerator is trained for [nullsechsroy](https://genius.com/artists/Nullsechsroy) on [german-poetry-gpt2](https://huggingface.co/Anjoe/german-poetry-gpt2) for 20 epochs. We used the [genius](https://docs.genius.com/#/songs-h2) songlyrics from the following artists: ['Ace Tee', 'Aligatoah', 'AnnenMayKantereit', 'Apache 207', 'Azad', 'Badmómzjay', 'Bausa', 'Blumentopf', 'Blumio', 'Capital Bra', 'Casper', 'Celo & Abdi', 'Cro', 'Dardan', 'Dendemann', 'Die P', 'Dondon', 'Dynamite Deluxe', 'Edgar Wasser', 'Eko Fresh', 'Farid Bang', 'Favorite', 'Genetikk', 'Haftbefehl', 'Haiyti', 'Huss und Hodn', 'Jamule', 'Jamule', 'Juju', 'Kasimir1441', 'Katja Krasavice', 'Kay One', 'Kitty Kat', 'Kool Savas', 'LX & Maxwell', 'Leila Akinyi', 'Loredana', 'Loredana & Mozzik', 'Luciano', 'Marsimoto', 'Marteria', 'Morlockk Dilemma', 'Moses Pelham', 'Nimo', 'NullSechsRoy', 'Prinz Pi', 'SSIO', 'SXTN', 'Sabrina Setlur', 'Samy Deluxe', 'Sanito', 'Sebastian Fitzek', 'Shirin David', 'Summer Cem', 'T-Low', 'Ufo361', 'YBRE', 'YFG Pave'] # Example song structure ``` [Title_nullsechsroy_Goodies] [Part 1_nullsechsroy_Goodies] Soulja Boy – „Pretty Boy Swag“ Heute bei ihr, aber morgen schon weg, ja .. [Hook_nullsechsroy_Goodies] Ich hab' Jungs in der Trap, ich hab' Jungs an der Uni (Ahh) ... [Part 2_nullsechsroy_Goodies] Ja, Soulja Boy – „Pretty Boy Swag“ ... [Hook_nullsechsroy_Goodies] Ich hab' Jungs in der Trap, ich hab' Jungs an der Uni (Ahh) ... [Post-Hook_nullsechsroy_Goodies] Ja, ich weiß, sie findet niemals ein'n wie mich (Ahh) ... ``` # Source code to create a song ``` from transformers import pipeline, AutoTokenizer,AutoModelForCausalLM # load the model from huggingface rap_model = AutoModelForCausalLM.from_pretrained("Bachstelze/poetryRapGPT") tokenizer = AutoTokenizer.from_pretrained("Anjoe/german-poetry-gpt2") rap_pipe = pipeline('text-generation', model=rap_model, tokenizer=german_gpt_model, pad_token_id=tokenizer.eos_token_id, max_length=250) # set the artist song_artist = "nullsechsroy" # "nullsechsroy Deluxe" # add a title idea or leave it blank title = "" # "Kristall" "Fit" # definition of the song structure type_with_linenumbers = [("Intro",4), ("Hook",4), ("Part 1",6), ("Part 2",6), ("Outro",4)] def set_title(song_parts): """ we create a title if it isn't set already and add the title to the songs parts dictionary """ if len(title) > 0: song_parts["Title"] = "\n[Title_" + song_artist + "_" + title + "]\n" song_parts["artist_with_title"] = song_artist + "_" + title else: title_input = "\n[Title_" + song_artist + "_" title_lines = rap_pipe(title_input)[0]['generated_text'] index_title_end = title_lines.index("]\n") artist_with_title = title_lines[8:index_title_end] song_parts["Title"] = title_lines[:index_title_end+1] song_parts["artist_with_title"] = artist_with_title def create_song_by_parts(): """ we iterate over the song structure and return the dictionary with the song parts """ song_parts = {} set_title(song_parts) for (part_type, line_number) in type_with_linenumbers: new_song_part = create_song_part(part_type, song_parts["artist_with_title"], line_number) song_parts[part_type] = new_song_part return song_parts def get_line(pipe_input, line_number): """ We generate a new song line. This function could be scaled to more lines. """ new_lines = rap_pipe(pipe_input)[0]['generated_text'].split("\n") if len(new_lines) > line_number + 3: new_line = new_lines[line_number+3] + "\n" return new_line else: #retry return get_line(pipe_input, line_number) def create_song_part(part_type, artist_with_title, lines_number): """ we generate one song part """ start_type = "\n["+part_type+"_"+artist_with_title+"]\n" song_part = start_type # + preset start line lines = [""] for line_number in range(lines_number): pipe_input = start_type + lines[-1] new_line = get_line(pipe_input, line_number) lines.append(new_line) song_part += new_line return song_part def print_song(song_parts): """ Let's print the generated song """ print(song_parts["Title"]) print(song_parts["Intro"]) print(song_parts["Part 1"]) print(song_parts["Hook"]) print(song_parts["Part 2"]) print(song_parts["Hook"]) print(song_parts["Outro"]) # start the generation of one song song_parts = create_song_by_parts() print_song(song_parts) ```
CasualHomie/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
2022-08-17T07:29:21Z
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-ks-padpt3200 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ks-padpt3200 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 1.2818 - Accuracy: 0.6200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 256 - eval_batch_size: 256 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3802 | 1.0 | 50 | 1.5035 | 0.6121 | | 1.0153 | 2.0 | 100 | 1.2818 | 0.6200 | | 0.9105 | 3.0 | 150 | 1.3827 | 0.5380 | | 0.8535 | 4.0 | 200 | 1.3513 | 0.5587 | | 0.7982 | 5.0 | 250 | 1.4749 | 0.5068 | | 0.7754 | 6.0 | 300 | 1.5109 | 0.5025 | | 0.749 | 7.0 | 350 | 1.6198 | 0.4476 | | 0.7497 | 8.0 | 400 | 1.5480 | 0.4850 | | 0.7386 | 9.0 | 450 | 1.6052 | 0.4665 | | 0.7185 | 10.0 | 500 | 1.6085 | 0.4734 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.11.0+cu115 - Datasets 2.4.0 - Tokenizers 0.12.1
Cathy/reranking_model
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - embedding-data/sentence-compression --- # edumunozsala/distilroberta-sentence-transformer-test This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('edumunozsala/distilroberta-sentence-transformer-test') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('edumunozsala/distilroberta-sentence-transformer-test') model = AutoModel.from_pretrained('edumunozsala/distilroberta-sentence-transformer-test') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=edumunozsala/distilroberta-sentence-transformer-test) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1125 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 337, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Cedille/fr-boris
[ "pytorch", "gptj", "text-generation", "fr", "dataset:c4", "arxiv:2202.03371", "transformers", "causal-lm", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPTJForCausalLM" ], "model_type": "gptj", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
401
2022-08-17T07:43:29Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-b0.03 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.4044 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b0.03 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.8327 - Bleu: 7.4044 - Gen Len: 44.8759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dccuchile/albert-base-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
34
null
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-b0.04 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.5994 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b0.04 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.8124 - Bleu: 7.5994 - Gen Len: 44.6753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dccuchile/albert-base-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-b0.75 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.4601 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b0.75 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.8013 - Bleu: 7.4601 - Gen Len: 44.2356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dccuchile/albert-base-spanish-finetuned-pawsx
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
2022-08-17T07:48:27Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-b1.25 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.5563 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b1.25 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.7945 - Bleu: 7.5563 - Gen Len: 44.1141 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dccuchile/albert-base-spanish-finetuned-pos
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2022-08-17T07:48:45Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-b1.5 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.5422 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-b1.5 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.7938 - Bleu: 7.5422 - Gen Len: 44.3267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dccuchile/albert-large-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2022-08-17T08:27:19Z
jeremy sits and reads an imaginary book even though jeremy is actually the imaginary friend of a horse ghost
dccuchile/albert-large-spanish-finetuned-pawsx
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-ks-ept4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ks-ept4 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 1.5663 - Accuracy: 0.6209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 256 - eval_batch_size: 256 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5133 | 1.0 | 50 | 1.5663 | 0.6209 | | 1.4819 | 2.0 | 100 | 1.5675 | 0.6169 | | 1.4082 | 3.0 | 150 | 1.5372 | 0.5802 | | 1.3536 | 4.0 | 200 | 1.6716 | 0.5338 | | 1.296 | 5.0 | 250 | 1.7601 | 0.5399 | | 1.3053 | 6.0 | 300 | 1.6778 | 0.5630 | | 1.2734 | 7.0 | 350 | 1.6554 | 0.5734 | | 1.2837 | 8.0 | 400 | 1.7338 | 0.5741 | | 1.2682 | 9.0 | 450 | 1.7313 | 0.5774 | | 1.2776 | 10.0 | 500 | 1.7083 | 0.5791 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.11.0+cu115 - Datasets 2.4.0 - Tokenizers 0.12.1
dccuchile/albert-tiny-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - translation - generated_from_trainer model-index: - name: nils-nl-to-rx-pt-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nils-nl-to-rx-pt-v3 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8061 | 1.0 | 500 | 0.5023 | | 0.6521 | 2.0 | 1000 | 0.3094 | | 0.5033 | 3.0 | 1500 | 0.2751 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
dccuchile/albert-xxlarge-spanish-finetuned-pos
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
Access to model Thantiwa/Thaitune_eiei is restricted and you are not in the authorized list. Visit https://huggingface.co/Thantiwa/Thaitune_eiei to ask for access.
dccuchile/bert-base-spanish-wwm-cased-finetuned-qa-mlqa
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: en thumbnail: http://www.huggingtweets.com/apesahoy-discoelysiumbot-jzux/1660737778768/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1196519479364268034/5QpniWSP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1384356575410675713/xQvAaofk_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1304589362051645441/Yo_o5yi5_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Humongous Ape MP & disco elysium quotes & trash jones</div> <div style="text-align: center; font-size: 14px;">@apesahoy-discoelysiumbot-jzux</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Humongous Ape MP & disco elysium quotes & trash jones. | Data | Humongous Ape MP | disco elysium quotes | trash jones | | --- | --- | --- | --- | | Tweets downloaded | 3246 | 3250 | 3233 | | Retweets | 198 | 0 | 615 | | Short tweets | 610 | 20 | 280 | | Tweets kept | 2438 | 3230 | 2338 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/28ibo0tz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @apesahoy-discoelysiumbot-jzux's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kccyxxh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kccyxxh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/apesahoy-discoelysiumbot-jzux') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
dccuchile/distilbert-base-spanish-uncased-finetuned-mldoc
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
2022-08-17T12:22:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-small-finetuned-wnut17-ner-longer10 results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: train args: wnut_17 metrics: - name: Precision type: precision value: 0.5546995377503852 - name: Recall type: recall value: 0.430622009569378 - name: F1 type: f1 value: 0.48484848484848486 - name: Accuracy type: accuracy value: 0.9250487441220323 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-finetuned-wnut17-ner-longer10 This model is a fine-tuned version of [muhtasham/bert-small-finetuned-wnut17-ner-longer6](https://huggingface.co/muhtasham/bert-small-finetuned-wnut17-ner-longer6) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.4693 - Precision: 0.5547 - Recall: 0.4306 - F1: 0.4848 - Accuracy: 0.9250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 425 | 0.4815 | 0.5759 | 0.3947 | 0.4684 | 0.9255 | | 0.0402 | 2.0 | 850 | 0.4467 | 0.5397 | 0.4390 | 0.4842 | 0.9247 | | 0.0324 | 3.0 | 1275 | 0.4646 | 0.5332 | 0.4318 | 0.4772 | 0.9244 | | 0.0315 | 4.0 | 1700 | 0.4693 | 0.5547 | 0.4306 | 0.4848 | 0.9250 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Chae/botman
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2022-08-17T13:17:39Z
--- language: - en --- # Maverick <br> Developed during my internship at [**Vela Partners**](https://vela.partners/) as a Machine Learning Engineer. <br> The paper presenting Maverick can be found on my [GitHub](https://github.com/lukasec/Maverick). <br> Maverick consists of two sub-models published here on Hugging Face : [MAV-Moneyball](https://huggingface.co/lukasec/Maverick-Moneyball) & [MAV-Midas](https://huggingface.co/lukasec/Maverick-Midas) **Abstract** <br> Maverick (MAV) is an AI-enabled algorithm to guide Venture Capital investment by leveraging BERT - the state-of-the-art deep learning model for NLP. Its ultimate goal is to predict the success of early-stage start-ups. In Venture Capital (VC) there are two types of successful start-ups: those that replace existing incumbents (type 1), and those that create new markets (type 2). In order to predict the success of a start-up with respect to both types, Maverick consists of two models: * [**MAV-Moneyball:**](https://huggingface.co/lukasec/Maverick-Moneyball) predicts success of early stage start-ups of type 1. * [**MAV-Midas:**](https://huggingface.co/lukasec/Maverick-Midas) predicts whether a start-up fits current investment trends made by the most successful brand and long-tail investors, thereby taking into account new emerging markets that do not necessarily already have established successful start-ups leading them - ie. start-ups of type 2.<br><br> Maverick is developed through a transfer learning approach, by fine-tuning a pre-trained BERT model for type 1 and type 2 classification. Notably, both MAV-Moneyball and MAV-Midas achieve a true positive ratio greater than 70%, which in the context of VC investment is one of the most important evaluation criteria - it is the percentage of successful companies predicted to be successful by Maverick.
Cheatham/xlm-roberta-large-finetuned-r01
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
23
2022-08-17T15:10:23Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3619 - Precision: 0.7737 - Recall: 0.7568 - F1: 0.7651 - Accuracy: 0.8876 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3965 | 1.0 | 6529 | 0.3917 | 0.7565 | 0.7324 | 0.7442 | 0.8791 | | 0.361 | 2.0 | 13058 | 0.3706 | 0.7765 | 0.7453 | 0.7606 | 0.8859 | | 0.3397 | 3.0 | 19587 | 0.3619 | 0.7737 | 0.7568 | 0.7651 | 0.8876 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Ci/Pai
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-08-17T20:01:32Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: train_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_model This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0825 - Wer: 0.9077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6984 | 11.11 | 500 | 3.1332 | 1.0 | | 2.4775 | 22.22 | 1000 | 1.0825 | 0.9077 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
Cinnamon/electra-small-japanese-generator
[ "pytorch", "electra", "fill-mask", "ja", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "ElectraForMaskedLM" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
19
null
--- license: apache-2.0 language: code datasets: - codeparrot/codecomplex --- This is a fine-tuned version of [UniXcoder](https://huggingface.co/microsoft/unixcoder-base-nine), a unified cross-modal pre-trained model for programming languages, on [CodeComplex](https://huggingface.co/datasets/codeparrot/codecomplex), a dataset for complexity prediction of Java code. You can also find the code for the fine-tuning in this [repository](https://github.com/huggingface/transformers/tree/main/examples/research_projects/codeparrot/examples)
CoShin/XLM-roberta-large_ko_en_nil_sts
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-08-18T00:55:49Z
--- tags: - conversational --- # Spike Spiegel DialoGPT Model
Craig/mGqFiPhu
[ "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0" ]
feature-extraction
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-08-20T17:11:20Z
--- tags: - generated_from_trainer model-index: - name: chinese-pert-large-finetuned-med-zh results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-pert-large-finetuned-med-zh This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9428 | 1.0 | 14081 | 10.3783 | | 0.8847 | 2.0 | 28162 | 6.8072 | | 0.8689 | 3.0 | 42243 | 1.3781 | | 0.8592 | 4.0 | 56324 | 5.5274 | | 0.8734 | 5.0 | 70405 | 1.4370 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.8.0+cu111 - Datasets 2.4.0 - Tokenizers 0.10.3
DTAI-KULeuven/mbert-corona-tweets-belgium-topics
[ "pytorch", "jax", "bert", "text-classification", "multilingual", "nl", "fr", "en", "arxiv:2104.09947", "transformers", "Dutch", "French", "English", "Tweets", "Topic classification" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
167
null
This is random-wav2vec2-base, an unpretrained version of wav2vec 2.0. The weight of this model is randomly initialized, and can be used for establishing randomized baselines or training a model from scratch. The code used to do so is adapted from: https://huggingface.co/saibo/random-roberta-base.
DaWang/demo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image inference: false extra_gated_prompt: |- This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license carefully here: https://huggingface.co/spaces/CompVis/stable-diffusion-license extra_gated_heading: Please read the LICENSE to access this model --- # Stable Diffusion v1-3 Model Card Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. For more information about how Stable Diffusion functions, please have a look at [🤗's Stable Diffusion with D🧨iffusers blog](https://huggingface.co/blog/stable_diffusion). The **Stable-Diffusion-v1-3** checkpoint was initialized with the weights of the [Stable-Diffusion-v1-2](https:/steps/huggingface.co/CompVis/stable-diffusion-v1-2) checkpoint and subsequently fine-tuned on 195,000 steps at resolution `512x512` on "laion-improved-aesthetics" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). For more information, please refer to [Training](#training). This weights here are intended to be used with the D🧨iffusers library. If you are looking for the weights to be loaded into the CompVis Stable Diffusion codebase, [come here](https://huggingface.co/CompVis/stable-diffusion-v-1-3-original) ## Model Details - **Developed by:** Robin Rombach, Patrick Esser - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based. - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([CLIP ViT-L/14](https://arxiv.org/abs/2103.00020)) as suggested in the [Imagen paper](https://arxiv.org/abs/2205.11487). - **Resources for more information:** [GitHub Repository](https://github.com/CompVis/stable-diffusion), [Paper](https://arxiv.org/abs/2112.10752). - **Cite as:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ## Examples We recommend using [🤗's Diffusers library](https://github.com/huggingface/diffusers) to run Stable Diffusion. ```bash pip install --upgrade diffusers transformers scipy ``` Running the pipeline with the default PNDM scheduler: ```python import torch from torch import autocast from diffusers import StableDiffusionPipeline model_id = "CompVis/stable-diffusion-v1-3" device = "cuda" pipe = StableDiffusionPipeline.from_pretrained(model_id) pipe = pipe.to(device) prompt = "a photo of an astronaut riding a horse on mars" with autocast("cuda"): image = pipe(prompt, guidance_scale=7.5)["sample"][0] image.save("astronaut_rides_horse.png") ``` **Note**: If you are limited by GPU memory and have less than 10GB of GPU RAM available, please make sure to load the StableDiffusionPipeline in float16 precision instead of the default float32 precision as done above. You can do so by telling diffusers to expect the weights to be in float16 precision: ```py import torch pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to(device) prompt = "a photo of an astronaut riding a horse on mars" with autocast("cuda"): image = pipe(prompt, guidance_scale=7.5)["sample"][0] image.save("astronaut_rides_horse.png") ``` To swap out the noise scheduler, pass it to `from_pretrained`: ```python from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler model_id = "CompVis/stable-diffusion-v1-3" # Use the K-LMS scheduler here instead scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, use_auth_token=True) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" with autocast("cuda"): image = pipe(prompt, guidance_scale=7.5)["sample"][0] image.save("astronaut_rides_horse.png") ``` # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), but applies in the same way to Stable Diffusion v1_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material and is not fit for product use without additional safety mechanisms and considerations. - No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data. The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion v1 was trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are primarily limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. ## Training ### Training Data The model developers used the following dataset for training the model: - LAION-2B (en) and subsets thereof (see next section) ### Training Procedure Stable Diffusion v1-4 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training, - Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4 - Text prompts are encoded through a ViT-L/14 text-encoder. - The non-pooled output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention. - The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. We currently provide four checkpoints, which were trained as follows. - [`stable-diffusion-v1-1`](https://huggingface.co/CompVis/stable-diffusion-v1-1): 237,000 steps at resolution `256x256` on [laion2B-en](https://huggingface.co/datasets/laion/laion2B-en). 194,000 steps at resolution `512x512` on [laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution) (170M examples from LAION-5B with resolution `>= 1024x1024`). - [`stable-diffusion-v1-2`](https://huggingface.co/CompVis/stable-diffusion-v1-2): Resumed from `stable-diffusion-v1-1`. 515,000 steps at resolution `512x512` on "laion-improved-aesthetics" (a subset of laion2B-en, filtered to images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`, and an estimated watermark probability `< 0.5`. The watermark estimate is from the LAION-5B metadata, the aesthetics score is estimated using an [improved aesthetics estimator](https://github.com/christophschuhmann/improved-aesthetic-predictor)). - [`stable-diffusion-v1-3`](https://huggingface.co/CompVis/stable-diffusion-v1-3): Resumed from `stable-diffusion-v1-2`. 195,000 steps at resolution `512x512` on "laion-improved-aesthetics" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). - [**`stable-diffusion-v1-4`**](https://huggingface.co/CompVis/stable-diffusion-v1-4) Resumed from `stable-diffusion-v1-2`.225,000 steps at resolution `512x512` on "laion-aesthetics v2 5+" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). ### Training details - **Hardware:** 32 x 8 x A100 GPUs - **Optimizer:** AdamW - **Gradient Accumulations**: 2 - **Batch:** 32 x 8 x 2 x 4 = 2048 - **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant ## Evaluation Results Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and 50 PLMS sampling steps show the relative improvements of the checkpoints: ![pareto](https://huggingface.co/CompVis/stable-diffusion/resolve/main/v1-variants-scores.jpg) Evaluated using 50 PLMS steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores. ## Environmental Impact **Stable Diffusion v1** **Estimated Emissions** Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. - **Hardware Type:** A100 PCIe 40GB - **Hours used:** 150000 - **Cloud Provider:** AWS - **Compute Region:** US-east - **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 11250 kg CO2 eq. ## Citation ```bibtex @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ``` *This model card was written by: Robin Rombach and Patrick Esser and is based on the [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
Daiki/scibert_scivocab_uncased-finetuned-cola
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: finetuned-marktextepoch-n800 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-marktextepoch-n800 This model is a fine-tuned version of [leokai/finetuned-marktextepoch-n600](https://huggingface.co/leokai/finetuned-marktextepoch-n600) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8433 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.287 | 1.0 | 1606 | 2.8473 | | 0.2913 | 2.0 | 3212 | 2.8147 | | 0.2865 | 3.0 | 4818 | 2.8809 | | 0.2947 | 4.0 | 6424 | 2.8510 | | 0.2988 | 5.0 | 8030 | 2.8883 | | 0.3109 | 6.0 | 9636 | 2.9016 | | 0.309 | 7.0 | 11242 | 2.8869 | | 0.301 | 8.0 | 12848 | 2.9201 | | 0.303 | 9.0 | 14454 | 2.8902 | | 0.3156 | 10.0 | 16060 | 2.8888 | | 0.3132 | 11.0 | 17666 | 2.8777 | | 0.3089 | 12.0 | 19272 | 2.9429 | | 0.3146 | 13.0 | 20878 | 2.9131 | | 0.3297 | 14.0 | 22484 | 2.8983 | | 0.3214 | 15.0 | 24090 | 2.9321 | | 0.3095 | 16.0 | 25696 | 2.9436 | | 0.3171 | 17.0 | 27302 | 2.9163 | | 0.308 | 18.0 | 28908 | 2.9545 | | 0.3174 | 19.0 | 30514 | 2.9161 | | 0.3163 | 20.0 | 32120 | 2.9081 | | 0.3191 | 21.0 | 33726 | 2.9465 | | 0.3254 | 22.0 | 35332 | 2.9404 | | 0.3168 | 23.0 | 36938 | 2.9054 | | 0.33 | 24.0 | 38544 | 2.9274 | | 0.3115 | 25.0 | 40150 | 2.9277 | | 0.3125 | 26.0 | 41756 | 2.9627 | | 0.3246 | 27.0 | 43362 | 2.9583 | | 0.3133 | 28.0 | 44968 | 2.9433 | | 0.3221 | 29.0 | 46574 | 2.9747 | | 0.3185 | 30.0 | 48180 | 2.9793 | | 0.3123 | 31.0 | 49786 | 2.9170 | | 0.3169 | 32.0 | 51392 | 2.9711 | | 0.3175 | 33.0 | 52998 | 2.9457 | | 0.3253 | 34.0 | 54604 | 2.9518 | | 0.3163 | 35.0 | 56210 | 2.9218 | | 0.3113 | 36.0 | 57816 | 2.9524 | | 0.3208 | 37.0 | 59422 | 2.9570 | | 0.3197 | 38.0 | 61028 | 2.9439 | | 0.3213 | 39.0 | 62634 | 2.9416 | | 0.3259 | 40.0 | 64240 | 2.9884 | | 0.3216 | 41.0 | 65846 | 2.9641 | | 0.3154 | 42.0 | 67452 | 2.9797 | | 0.3258 | 43.0 | 69058 | 2.9813 | | 0.3236 | 44.0 | 70664 | 2.9700 | | 0.3134 | 45.0 | 72270 | 2.9881 | | 0.3219 | 46.0 | 73876 | 2.9982 | | 0.3243 | 47.0 | 75482 | 2.9702 | | 0.3246 | 48.0 | 77088 | 2.9706 | | 0.3245 | 49.0 | 78694 | 2.9965 | | 0.3124 | 50.0 | 80300 | 2.9893 | | 0.3172 | 51.0 | 81906 | 2.9859 | | 0.3118 | 52.0 | 83512 | 2.9707 | | 0.3187 | 53.0 | 85118 | 2.9771 | | 0.3256 | 54.0 | 86724 | 2.9827 | | 0.3222 | 55.0 | 88330 | 2.9776 | | 0.3212 | 56.0 | 89936 | 2.9607 | | 0.3215 | 57.0 | 91542 | 2.9664 | | 0.3266 | 58.0 | 93148 | 2.9638 | | 0.3209 | 59.0 | 94754 | 2.9842 | | 0.333 | 60.0 | 96360 | 3.0053 | | 0.3202 | 61.0 | 97966 | 2.9833 | | 0.3155 | 62.0 | 99572 | 2.9952 | | 0.32 | 63.0 | 101178 | 2.9737 | | 0.3291 | 64.0 | 102784 | 2.9804 | | 0.3259 | 65.0 | 104390 | 2.9767 | | 0.32 | 66.0 | 105996 | 2.9610 | | 0.3208 | 67.0 | 107602 | 3.0111 | | 0.3277 | 68.0 | 109208 | 2.9588 | | 0.337 | 69.0 | 110814 | 2.9920 | | 0.3296 | 70.0 | 112420 | 2.9466 | | 0.3197 | 71.0 | 114026 | 2.9619 | | 0.323 | 72.0 | 115632 | 2.9733 | | 0.3247 | 73.0 | 117238 | 2.9787 | | 0.3246 | 74.0 | 118844 | 2.9383 | | 0.3203 | 75.0 | 120450 | 3.0123 | | 0.3272 | 76.0 | 122056 | 3.0284 | | 0.3407 | 77.0 | 123662 | 3.0047 | | 0.3312 | 78.0 | 125268 | 2.9465 | | 0.3262 | 79.0 | 126874 | 2.9805 | | 0.3221 | 80.0 | 128480 | 2.9713 | | 0.3246 | 81.0 | 130086 | 2.9869 | | 0.3208 | 82.0 | 131692 | 2.9970 | | 0.3196 | 83.0 | 133298 | 2.9864 | | 0.3311 | 84.0 | 134904 | 3.0080 | | 0.3235 | 85.0 | 136510 | 2.9739 | | 0.3251 | 86.0 | 138116 | 2.9749 | | 0.3248 | 87.0 | 139722 | 2.9588 | | 0.3342 | 88.0 | 141328 | 2.9509 | | 0.3456 | 89.0 | 142934 | 2.9713 | | 0.3337 | 90.0 | 144540 | 2.9968 | | 0.323 | 91.0 | 146146 | 2.9790 | | 0.3202 | 92.0 | 147752 | 2.9919 | | 0.3308 | 93.0 | 149358 | 3.0100 | | 0.3232 | 94.0 | 150964 | 2.9873 | | 0.3356 | 95.0 | 152570 | 2.9786 | | 0.3282 | 96.0 | 154176 | 2.9965 | | 0.3404 | 97.0 | 155782 | 3.0198 | | 0.3212 | 98.0 | 157388 | 2.9713 | | 0.3307 | 99.0 | 158994 | 2.9979 | | 0.337 | 100.0 | 160600 | 2.9805 | | 0.3354 | 101.0 | 162206 | 2.9759 | | 0.3252 | 102.0 | 163812 | 2.9810 | | 0.3324 | 103.0 | 165418 | 2.9433 | | 0.3278 | 104.0 | 167024 | 3.0079 | | 0.3419 | 105.0 | 168630 | 2.9576 | | 0.343 | 106.0 | 170236 | 2.9610 | | 0.3294 | 107.0 | 171842 | 2.9147 | | 0.3271 | 108.0 | 173448 | 2.9740 | | 0.3315 | 109.0 | 175054 | 2.9736 | | 0.3413 | 110.0 | 176660 | 2.9819 | | 0.3344 | 111.0 | 178266 | 2.9783 | | 0.3399 | 112.0 | 179872 | 2.9836 | | 0.3314 | 113.0 | 181478 | 2.9605 | | 0.3344 | 114.0 | 183084 | 2.9629 | | 0.3346 | 115.0 | 184690 | 2.9535 | | 0.3324 | 116.0 | 186296 | 2.9139 | | 0.3493 | 117.0 | 187902 | 2.9383 | | 0.341 | 118.0 | 189508 | 2.9547 | | 0.3414 | 119.0 | 191114 | 2.9592 | | 0.335 | 120.0 | 192720 | 2.9822 | | 0.3423 | 121.0 | 194326 | 2.9498 | | 0.3415 | 122.0 | 195932 | 2.9371 | | 0.3557 | 123.0 | 197538 | 2.9625 | | 0.3544 | 124.0 | 199144 | 2.9637 | | 0.3528 | 125.0 | 200750 | 2.9881 | | 0.3567 | 126.0 | 202356 | 2.9576 | | 0.3336 | 127.0 | 203962 | 2.9427 | | 0.3282 | 128.0 | 205568 | 2.9659 | | 0.3605 | 129.0 | 207174 | 2.9555 | | 0.3436 | 130.0 | 208780 | 2.9590 | | 0.3489 | 131.0 | 210386 | 2.9250 | | 0.3604 | 132.0 | 211992 | 2.9411 | | 0.347 | 133.0 | 213598 | 2.9093 | | 0.3623 | 134.0 | 215204 | 2.9324 | | 0.3449 | 135.0 | 216810 | 2.9564 | | 0.3459 | 136.0 | 218416 | 2.9254 | | 0.3519 | 137.0 | 220022 | 2.9512 | | 0.3499 | 138.0 | 221628 | 2.9411 | | 0.3588 | 139.0 | 223234 | 2.8994 | | 0.3657 | 140.0 | 224840 | 2.9372 | | 0.3564 | 141.0 | 226446 | 2.9237 | | 0.3445 | 142.0 | 228052 | 2.9380 | | 0.359 | 143.0 | 229658 | 2.9547 | | 0.3495 | 144.0 | 231264 | 2.9238 | | 0.3545 | 145.0 | 232870 | 2.9436 | | 0.3523 | 146.0 | 234476 | 2.9390 | | 0.3785 | 147.0 | 236082 | 2.8861 | | 0.356 | 148.0 | 237688 | 2.9239 | | 0.3624 | 149.0 | 239294 | 2.8960 | | 0.3619 | 150.0 | 240900 | 2.9224 | | 0.3607 | 151.0 | 242506 | 2.9155 | | 0.3585 | 152.0 | 244112 | 2.9144 | | 0.3735 | 153.0 | 245718 | 2.8805 | | 0.3534 | 154.0 | 247324 | 2.9095 | | 0.3667 | 155.0 | 248930 | 2.8888 | | 0.3705 | 156.0 | 250536 | 2.9049 | | 0.3711 | 157.0 | 252142 | 2.8801 | | 0.3633 | 158.0 | 253748 | 2.8874 | | 0.36 | 159.0 | 255354 | 2.8984 | | 0.3752 | 160.0 | 256960 | 2.9004 | | 0.3717 | 161.0 | 258566 | 2.8577 | | 0.3742 | 162.0 | 260172 | 2.8772 | | 0.3815 | 163.0 | 261778 | 2.9183 | | 0.3695 | 164.0 | 263384 | 2.9144 | | 0.3809 | 165.0 | 264990 | 2.8968 | | 0.3813 | 166.0 | 266596 | 2.8690 | | 0.3803 | 167.0 | 268202 | 2.8748 | | 0.3813 | 168.0 | 269808 | 2.8676 | | 0.3782 | 169.0 | 271414 | 2.8473 | | 0.3848 | 170.0 | 273020 | 2.8816 | | 0.371 | 171.0 | 274626 | 2.8929 | | 0.3843 | 172.0 | 276232 | 2.8858 | | 0.381 | 173.0 | 277838 | 2.8590 | | 0.3889 | 174.0 | 279444 | 2.8484 | | 0.3814 | 175.0 | 281050 | 2.8634 | | 0.3865 | 176.0 | 282656 | 2.8713 | | 0.3968 | 177.0 | 284262 | 2.8490 | | 0.4007 | 178.0 | 285868 | 2.8497 | | 0.3805 | 179.0 | 287474 | 2.8435 | | 0.3903 | 180.0 | 289080 | 2.8582 | | 0.392 | 181.0 | 290686 | 2.8473 | | 0.3926 | 182.0 | 292292 | 2.8584 | | 0.3921 | 183.0 | 293898 | 2.8850 | | 0.3958 | 184.0 | 295504 | 2.8532 | | 0.3858 | 185.0 | 297110 | 2.8568 | | 0.4002 | 186.0 | 298716 | 2.7939 | | 0.3999 | 187.0 | 300322 | 2.8548 | | 0.3932 | 188.0 | 301928 | 2.8598 | | 0.4005 | 189.0 | 303534 | 2.8390 | | 0.4048 | 190.0 | 305140 | 2.8336 | | 0.3983 | 191.0 | 306746 | 2.8286 | | 0.394 | 192.0 | 308352 | 2.8437 | | 0.3989 | 193.0 | 309958 | 2.8594 | | 0.3966 | 194.0 | 311564 | 2.8541 | | 0.397 | 195.0 | 313170 | 2.8697 | | 0.4007 | 196.0 | 314776 | 2.8549 | | 0.3978 | 197.0 | 316382 | 2.8815 | | 0.4005 | 198.0 | 317988 | 2.8565 | | 0.4025 | 199.0 | 319594 | 2.8451 | | 0.4078 | 200.0 | 321200 | 2.8433 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Davlan/xlm-roberta-base-finetuned-yoruba
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-korean-demo-test2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-korean-demo-test2 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0566 - Wer: 0.5224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 31.2541 | 0.3 | 400 | 5.4002 | 1.0 | | 4.9419 | 0.59 | 800 | 5.3336 | 1.0 | | 4.8926 | 0.89 | 1200 | 5.0531 | 1.0 | | 4.7218 | 1.19 | 1600 | 4.5172 | 1.0 | | 4.0218 | 1.49 | 2000 | 3.1418 | 0.9518 | | 3.0654 | 1.78 | 2400 | 2.4376 | 0.9041 | | 2.6226 | 2.08 | 2800 | 2.0151 | 0.8643 | | 2.2944 | 2.38 | 3200 | 1.8025 | 0.8290 | | 2.1872 | 2.67 | 3600 | 1.6469 | 0.7962 | | 2.0747 | 2.97 | 4000 | 1.5165 | 0.7714 | | 1.8479 | 3.27 | 4400 | 1.4281 | 0.7694 | | 1.8288 | 3.57 | 4800 | 1.3791 | 0.7326 | | 1.801 | 3.86 | 5200 | 1.3328 | 0.7177 | | 1.6723 | 4.16 | 5600 | 1.2954 | 0.7192 | | 1.5925 | 4.46 | 6000 | 1.3137 | 0.6953 | | 1.5709 | 4.75 | 6400 | 1.2086 | 0.6973 | | 1.5294 | 5.05 | 6800 | 1.1811 | 0.6730 | | 1.3844 | 5.35 | 7200 | 1.2053 | 0.6769 | | 1.3906 | 5.65 | 7600 | 1.1287 | 0.6556 | | 1.4088 | 5.94 | 8000 | 1.1251 | 0.6466 | | 1.2989 | 6.24 | 8400 | 1.1577 | 0.6546 | | 1.2523 | 6.54 | 8800 | 1.0643 | 0.6377 | | 1.2651 | 6.84 | 9200 | 1.0865 | 0.6417 | | 1.2209 | 7.13 | 9600 | 1.0981 | 0.6272 | | 1.1435 | 7.43 | 10000 | 1.1195 | 0.6317 | | 1.1616 | 7.73 | 10400 | 1.0672 | 0.6327 | | 1.1272 | 8.02 | 10800 | 1.0413 | 0.6248 | | 1.043 | 8.32 | 11200 | 1.0555 | 0.6233 | | 1.0523 | 8.62 | 11600 | 1.0372 | 0.6178 | | 1.0208 | 8.92 | 12000 | 1.0170 | 0.6128 | | 0.9895 | 9.21 | 12400 | 1.0354 | 0.5934 | | 0.95 | 9.51 | 12800 | 1.1019 | 0.6039 | | 0.9705 | 9.81 | 13200 | 1.0229 | 0.5855 | | 0.9202 | 10.1 | 13600 | 1.0364 | 0.5919 | | 0.8644 | 10.4 | 14000 | 1.0721 | 0.5984 | | 0.8641 | 10.7 | 14400 | 1.0383 | 0.5905 | | 0.8924 | 11.0 | 14800 | 0.9947 | 0.5760 | | 0.7914 | 11.29 | 15200 | 1.0270 | 0.5885 | | 0.7882 | 11.59 | 15600 | 1.0271 | 0.5741 | | 0.8116 | 11.89 | 16000 | 0.9937 | 0.5741 | | 0.7584 | 12.18 | 16400 | 0.9924 | 0.5626 | | 0.7051 | 12.48 | 16800 | 1.0023 | 0.5572 | | 0.7232 | 12.78 | 17200 | 1.0479 | 0.5512 | | 0.7149 | 13.08 | 17600 | 1.0475 | 0.5765 | | 0.6579 | 13.37 | 18000 | 1.0218 | 0.5552 | | 0.6615 | 13.67 | 18400 | 1.0339 | 0.5631 | | 0.6629 | 13.97 | 18800 | 1.0239 | 0.5621 | | 0.6221 | 14.26 | 19200 | 1.0331 | 0.5537 | | 0.6159 | 14.56 | 19600 | 1.0640 | 0.5532 | | 0.6032 | 14.86 | 20000 | 1.0192 | 0.5567 | | 0.5748 | 15.16 | 20400 | 1.0093 | 0.5507 | | 0.5614 | 15.45 | 20800 | 1.0458 | 0.5472 | | 0.5626 | 15.75 | 21200 | 1.0318 | 0.5398 | | 0.5429 | 16.05 | 21600 | 1.0112 | 0.5278 | | 0.5407 | 16.34 | 22000 | 1.0120 | 0.5278 | | 0.511 | 16.64 | 22400 | 1.0335 | 0.5249 | | 0.5316 | 16.94 | 22800 | 1.0146 | 0.5348 | | 0.4949 | 17.24 | 23200 | 1.0287 | 0.5388 | | 0.496 | 17.53 | 23600 | 1.0229 | 0.5348 | | 0.4986 | 17.83 | 24000 | 1.0094 | 0.5313 | | 0.4787 | 18.13 | 24400 | 1.0620 | 0.5234 | | 0.4508 | 18.42 | 24800 | 1.0401 | 0.5323 | | 0.4754 | 18.72 | 25200 | 1.0543 | 0.5303 | | 0.4584 | 19.02 | 25600 | 1.0433 | 0.5194 | | 0.4431 | 19.32 | 26000 | 1.0597 | 0.5249 | | 0.4448 | 19.61 | 26400 | 1.0548 | 0.5229 | | 0.4475 | 19.91 | 26800 | 1.0566 | 0.5224 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Declan/ChicagoTribune_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - conversational --- #Rick & Morty DialoGPT Model
Declan/ChicagoTribune_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: en thumbnail: http://www.huggingtweets.com/jeffreykofman/1660909090300/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1173374836/JKinLA_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jeff</div> <div style="text-align: center; font-size: 14px;">@jeffreykofman</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jeff. | Data | Jeff | | --- | --- | | Tweets downloaded | 931 | | Retweets | 55 | | Short tweets | 27 | | Tweets kept | 849 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26juxf9u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jeffreykofman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ev5sj6q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ev5sj6q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jeffreykofman') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Declan/NPR_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - sasha/autotrain-data-BERTBase-TweetEval co2_eq_emissions: emissions: 0.04868905658915141 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1281249000 - CO2 Emissions (in grams): 0.0487 ## Validation Metrics - Loss: 0.602 - Accuracy: 0.743 - Macro F1: 0.723 - Micro F1: 0.743 - Weighted F1: 0.740 - Macro Precision: 0.740 - Micro Precision: 0.743 - Weighted Precision: 0.742 - Macro Recall: 0.712 - Micro Recall: 0.743 - Weighted Recall: 0.743 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/sasha/autotrain-BERTBase-TweetEval-1281249000 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("sasha/autotrain-BERTBase-TweetEval-1281249000", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("sasha/autotrain-BERTBase-TweetEval-1281249000", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Declan/NPR_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - sasha/autotrain-data-RobertaBaseTweetEval co2_eq_emissions: emissions: 28.053963781460215 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1281048989 - CO2 Emissions (in grams): 28.0540 ## Validation Metrics - Loss: 0.587 - Accuracy: 0.751 - Macro F1: 0.719 - Micro F1: 0.751 - Weighted F1: 0.746 - Macro Precision: 0.761 - Micro Precision: 0.751 - Weighted Precision: 0.753 - Macro Recall: 0.699 - Micro Recall: 0.751 - Weighted Recall: 0.751 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/sasha/autotrain-RobertaBaseTweetEval-1281048989 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("sasha/autotrain-RobertaBaseTweetEval-1281048989", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("sasha/autotrain-RobertaBaseTweetEval-1281048989", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
DeepBasak/Slack
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
# RNA_Project # Projeto Final - Modelos Preditivos Conexionistas ### Aluno - Caio Emanoel Serpa Lopes ### Tutor - Vitor Casadei --- |**Tipo de Projeto**|**Modelo Selecionado**|**Linguagem**| |--|--|--| |Classificação de Imagens|MobileNetV2|Tensorflow| [Clique aqui para rodar o modelo via browser (roboflow)](https://classify.roboflow.com/?model=classifier_animals&version=2&api_key=IDPIYW7fvVaFbVq3eTlB) # Performance O modelo treinado possui performance de **100%**. ## Output do bloco de treinamento <details> <summary>Click to expand!</summary> ```Epoch 1/1000 2/2 [==============================] - ETA: 0s - loss: 1.0496 - accuracy: 0.3750 Epoch 1: saving model to training_1/cp.ckpt 2/2 [==============================] - 9s 4s/step - loss: 1.0496 - accuracy: 0.3750 - val_loss: 0.8153 - val_accuracy: 0.4237 Epoch 2/1000 2/2 [==============================] - ETA: 0s - loss: 1.0002 - accuracy: 0.3281 Epoch 2: saving model to training_1/cp.ckpt 2/2 [==============================] - 4s 2s/step - loss: 1.0002 - accuracy: 0.3281 - val_loss: 0.7967 - val_accuracy: 0.4407 Epoch 3/1000 2/2 [==============================] - ETA: 0s - loss: 1.0473 - accuracy: 0.3594 Epoch 3: saving model to training_1/cp.ckpt 2/2 [==============================] - 3s 2s/step - loss: 1.0473 - accuracy: 0.3594 - val_loss: 0.7953 - val_accuracy: 0.4237 Epoch 4/1000 2/2 [==============================] - ETA: 0s - loss: 0.9252 - accuracy: 0.3250 Epoch 4: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.9252 - accuracy: 0.3250 - val_loss: 0.8039 - val_accuracy: 0.3729 Epoch 5/1000 2/2 [==============================] - ETA: 0s - loss: 0.9771 - accuracy: 0.3000 Epoch 5: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 781ms/step - loss: 0.9771 - accuracy: 0.3000 - val_loss: 0.8116 - val_accuracy: 0.3729 Epoch 6/1000 2/2 [==============================] - ETA: 0s - loss: 0.9402 - accuracy: 0.3125 Epoch 6: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 789ms/step - loss: 0.9402 - accuracy: 0.3125 - val_loss: 0.8183 - val_accuracy: 0.3898 Epoch 7/1000 2/2 [==============================] - ETA: 0s - loss: 0.8416 - accuracy: 0.4750 Epoch 7: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.8416 - accuracy: 0.4750 - val_loss: 0.8229 - val_accuracy: 0.3898 Epoch 8/1000 2/2 [==============================] - ETA: 0s - loss: 0.8543 - accuracy: 0.3516 Epoch 8: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 913ms/step - loss: 0.8543 - accuracy: 0.3516 - val_loss: 0.8213 - val_accuracy: 0.4068 Epoch 9/1000 2/2 [==============================] - ETA: 0s - loss: 0.7657 - accuracy: 0.4844 Epoch 9: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 908ms/step - loss: 0.7657 - accuracy: 0.4844 - val_loss: 0.8124 - val_accuracy: 0.4068 Epoch 10/1000 2/2 [==============================] - ETA: 0s - loss: 0.8208 - accuracy: 0.3125 Epoch 10: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.8208 - accuracy: 0.3125 - val_loss: 0.8035 - val_accuracy: 0.4237 Epoch 11/1000 2/2 [==============================] - ETA: 0s - loss: 0.8510 - accuracy: 0.3875 Epoch 11: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 789ms/step - loss: 0.8510 - accuracy: 0.3875 - val_loss: 0.7868 - val_accuracy: 0.4237 Epoch 12/1000 2/2 [==============================] - ETA: 0s - loss: 0.7841 - accuracy: 0.4609 Epoch 12: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 896ms/step - loss: 0.7841 - accuracy: 0.4609 - val_loss: 0.7674 - val_accuracy: 0.4407 Epoch 13/1000 2/2 [==============================] - ETA: 0s - loss: 0.7320 - accuracy: 0.5125 Epoch 13: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.7320 - accuracy: 0.5125 - val_loss: 0.7513 - val_accuracy: 0.4576 Epoch 14/1000 2/2 [==============================] - ETA: 0s - loss: 0.7788 - accuracy: 0.3828 Epoch 14: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 908ms/step - loss: 0.7788 - accuracy: 0.3828 - val_loss: 0.7345 - val_accuracy: 0.4915 Epoch 15/1000 2/2 [==============================] - ETA: 0s - loss: 0.8054 - accuracy: 0.3250 Epoch 15: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 803ms/step - loss: 0.8054 - accuracy: 0.3250 - val_loss: 0.7162 - val_accuracy: 0.4915 Epoch 16/1000 2/2 [==============================] - ETA: 0s - loss: 0.7073 - accuracy: 0.5125 Epoch 16: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.7073 - accuracy: 0.5125 - val_loss: 0.6949 - val_accuracy: 0.5085 Epoch 17/1000 2/2 [==============================] - ETA: 0s - loss: 0.7984 - accuracy: 0.4250 Epoch 17: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.7984 - accuracy: 0.4250 - val_loss: 0.6756 - val_accuracy: 0.5424 Epoch 18/1000 2/2 [==============================] - ETA: 0s - loss: 0.7332 - accuracy: 0.4750 Epoch 18: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 777ms/step - loss: 0.7332 - accuracy: 0.4750 - val_loss: 0.6573 - val_accuracy: 0.5763 Epoch 19/1000 2/2 [==============================] - ETA: 0s - loss: 0.6789 - accuracy: 0.5000 Epoch 19: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 928ms/step - loss: 0.6789 - accuracy: 0.5000 - val_loss: 0.6398 - val_accuracy: 0.5763 Epoch 20/1000 2/2 [==============================] - ETA: 0s - loss: 0.7541 - accuracy: 0.4844 Epoch 20: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.7541 - accuracy: 0.4844 - val_loss: 0.6241 - val_accuracy: 0.5763 Epoch 21/1000 2/2 [==============================] - ETA: 0s - loss: 0.7528 - accuracy: 0.4688 Epoch 21: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.7528 - accuracy: 0.4688 - val_loss: 0.6103 - val_accuracy: 0.5763 Epoch 22/1000 2/2 [==============================] - ETA: 0s - loss: 0.6765 - accuracy: 0.5000 Epoch 22: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.6765 - accuracy: 0.5000 - val_loss: 0.5980 - val_accuracy: 0.5932 Epoch 23/1000 2/2 [==============================] - ETA: 0s - loss: 0.6817 - accuracy: 0.5625 Epoch 23: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.6817 - accuracy: 0.5625 - val_loss: 0.5890 - val_accuracy: 0.6102 Epoch 24/1000 2/2 [==============================] - ETA: 0s - loss: 0.7056 - accuracy: 0.4125 Epoch 24: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 785ms/step - loss: 0.7056 - accuracy: 0.4125 - val_loss: 0.5802 - val_accuracy: 0.6102 Epoch 25/1000 2/2 [==============================] - ETA: 0s - loss: 0.7238 - accuracy: 0.4453 Epoch 25: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.7238 - accuracy: 0.4453 - val_loss: 0.5716 - val_accuracy: 0.6102 Epoch 26/1000 2/2 [==============================] - ETA: 0s - loss: 0.6118 - accuracy: 0.4875 Epoch 26: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.6118 - accuracy: 0.4875 - val_loss: 0.5640 - val_accuracy: 0.6102 Epoch 27/1000 2/2 [==============================] - ETA: 0s - loss: 0.6136 - accuracy: 0.5250 Epoch 27: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.6136 - accuracy: 0.5250 - val_loss: 0.5557 - val_accuracy: 0.6102 Epoch 28/1000 2/2 [==============================] - ETA: 0s - loss: 0.6424 - accuracy: 0.5156 Epoch 28: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 925ms/step - loss: 0.6424 - accuracy: 0.5156 - val_loss: 0.5483 - val_accuracy: 0.6271 Epoch 29/1000 2/2 [==============================] - ETA: 0s - loss: 0.6367 - accuracy: 0.5703 Epoch 29: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 925ms/step - loss: 0.6367 - accuracy: 0.5703 - val_loss: 0.5409 - val_accuracy: 0.6102 Epoch 30/1000 2/2 [==============================] - ETA: 0s - loss: 0.5621 - accuracy: 0.6375 Epoch 30: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.5621 - accuracy: 0.6375 - val_loss: 0.5350 - val_accuracy: 0.6102 Epoch 31/1000 2/2 [==============================] - ETA: 0s - loss: 0.5903 - accuracy: 0.6625 Epoch 31: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 773ms/step - loss: 0.5903 - accuracy: 0.6625 - val_loss: 0.5297 - val_accuracy: 0.6102 Epoch 32/1000 2/2 [==============================] - ETA: 0s - loss: 0.5768 - accuracy: 0.5938 Epoch 32: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.5768 - accuracy: 0.5938 - val_loss: 0.5246 - val_accuracy: 0.5932 Epoch 33/1000 2/2 [==============================] - ETA: 0s - loss: 0.5517 - accuracy: 0.6625 Epoch 33: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 771ms/step - loss: 0.5517 - accuracy: 0.6625 - val_loss: 0.5197 - val_accuracy: 0.6102 Epoch 34/1000 2/2 [==============================] - ETA: 0s - loss: 0.5987 - accuracy: 0.5625 Epoch 34: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.5987 - accuracy: 0.5625 - val_loss: 0.5156 - val_accuracy: 0.6271 Epoch 35/1000 2/2 [==============================] - ETA: 0s - loss: 0.5768 - accuracy: 0.5859 Epoch 35: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 866ms/step - loss: 0.5768 - accuracy: 0.5859 - val_loss: 0.5116 - val_accuracy: 0.6271 Epoch 36/1000 2/2 [==============================] - ETA: 0s - loss: 0.5395 - accuracy: 0.7000 Epoch 36: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.5395 - accuracy: 0.7000 - val_loss: 0.5072 - val_accuracy: 0.6271 Epoch 37/1000 2/2 [==============================] - ETA: 0s - loss: 0.5549 - accuracy: 0.5625 Epoch 37: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.5549 - accuracy: 0.5625 - val_loss: 0.5027 - val_accuracy: 0.6271 Epoch 38/1000 2/2 [==============================] - ETA: 0s - loss: 0.5485 - accuracy: 0.5750 Epoch 38: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 783ms/step - loss: 0.5485 - accuracy: 0.5750 - val_loss: 0.4985 - val_accuracy: 0.6271 Epoch 39/1000 2/2 [==============================] - ETA: 0s - loss: 0.5600 - accuracy: 0.5875 Epoch 39: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.5600 - accuracy: 0.5875 - val_loss: 0.4944 - val_accuracy: 0.6441 Epoch 40/1000 2/2 [==============================] - ETA: 0s - loss: 0.5797 - accuracy: 0.6250 Epoch 40: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 766ms/step - loss: 0.5797 - accuracy: 0.6250 - val_loss: 0.4913 - val_accuracy: 0.6441 Epoch 41/1000 2/2 [==============================] - ETA: 0s - loss: 0.5891 - accuracy: 0.6125 Epoch 41: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 850ms/step - loss: 0.5891 - accuracy: 0.6125 - val_loss: 0.4880 - val_accuracy: 0.6610 Epoch 42/1000 2/2 [==============================] - ETA: 0s - loss: 0.5301 - accuracy: 0.6375 Epoch 42: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 810ms/step - loss: 0.5301 - accuracy: 0.6375 - val_loss: 0.4847 - val_accuracy: 0.6610 Epoch 43/1000 2/2 [==============================] - ETA: 0s - loss: 0.5775 - accuracy: 0.6328 Epoch 43: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 942ms/step - loss: 0.5775 - accuracy: 0.6328 - val_loss: 0.4796 - val_accuracy: 0.6610 Epoch 44/1000 2/2 [==============================] - ETA: 0s - loss: 0.4997 - accuracy: 0.6641 Epoch 44: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.4997 - accuracy: 0.6641 - val_loss: 0.4753 - val_accuracy: 0.6610 Epoch 45/1000 2/2 [==============================] - ETA: 0s - loss: 0.5236 - accuracy: 0.7109 Epoch 45: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.5236 - accuracy: 0.7109 - val_loss: 0.4713 - val_accuracy: 0.6780 Epoch 46/1000 2/2 [==============================] - ETA: 0s - loss: 0.5150 - accuracy: 0.6641 Epoch 46: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.5150 - accuracy: 0.6641 - val_loss: 0.4674 - val_accuracy: 0.6780 Epoch 47/1000 2/2 [==============================] - ETA: 0s - loss: 0.5213 - accuracy: 0.6625 Epoch 47: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.5213 - accuracy: 0.6625 - val_loss: 0.4637 - val_accuracy: 0.6780 Epoch 48/1000 2/2 [==============================] - ETA: 0s - loss: 0.5835 - accuracy: 0.6016 Epoch 48: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 913ms/step - loss: 0.5835 - accuracy: 0.6016 - val_loss: 0.4594 - val_accuracy: 0.6780 Epoch 49/1000 2/2 [==============================] - ETA: 0s - loss: 0.5356 - accuracy: 0.6641 Epoch 49: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.5356 - accuracy: 0.6641 - val_loss: 0.4551 - val_accuracy: 0.6780 Epoch 50/1000 2/2 [==============================] - ETA: 0s - loss: 0.5144 - accuracy: 0.6797 Epoch 50: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.5144 - accuracy: 0.6797 - val_loss: 0.4520 - val_accuracy: 0.6949 Epoch 51/1000 2/2 [==============================] - ETA: 0s - loss: 0.5832 - accuracy: 0.6875 Epoch 51: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.5832 - accuracy: 0.6875 - val_loss: 0.4498 - val_accuracy: 0.6949 Epoch 52/1000 2/2 [==============================] - ETA: 0s - loss: 0.5395 - accuracy: 0.6500 Epoch 52: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 795ms/step - loss: 0.5395 - accuracy: 0.6500 - val_loss: 0.4471 - val_accuracy: 0.6949 Epoch 53/1000 2/2 [==============================] - ETA: 0s - loss: 0.4901 - accuracy: 0.7188 Epoch 53: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 995ms/step - loss: 0.4901 - accuracy: 0.7188 - val_loss: 0.4434 - val_accuracy: 0.6949 Epoch 54/1000 2/2 [==============================] - ETA: 0s - loss: 0.4348 - accuracy: 0.7250 Epoch 54: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 796ms/step - loss: 0.4348 - accuracy: 0.7250 - val_loss: 0.4400 - val_accuracy: 0.6949 Epoch 55/1000 2/2 [==============================] - ETA: 0s - loss: 0.5062 - accuracy: 0.6641 Epoch 55: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.5062 - accuracy: 0.6641 - val_loss: 0.4370 - val_accuracy: 0.7119 Epoch 56/1000 2/2 [==============================] - ETA: 0s - loss: 0.5069 - accuracy: 0.5875 Epoch 56: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.5069 - accuracy: 0.5875 - val_loss: 0.4306 - val_accuracy: 0.7119 Epoch 57/1000 2/2 [==============================] - ETA: 0s - loss: 0.4512 - accuracy: 0.7125 Epoch 57: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.4512 - accuracy: 0.7125 - val_loss: 0.4254 - val_accuracy: 0.7119 Epoch 58/1000 2/2 [==============================] - ETA: 0s - loss: 0.5265 - accuracy: 0.6625 Epoch 58: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.5265 - accuracy: 0.6625 - val_loss: 0.4208 - val_accuracy: 0.7119 Epoch 59/1000 2/2 [==============================] - ETA: 0s - loss: 0.4557 - accuracy: 0.7375 Epoch 59: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 792ms/step - loss: 0.4557 - accuracy: 0.7375 - val_loss: 0.4171 - val_accuracy: 0.7119 Epoch 60/1000 2/2 [==============================] - ETA: 0s - loss: 0.5258 - accuracy: 0.6125 Epoch 60: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 793ms/step - loss: 0.5258 - accuracy: 0.6125 - val_loss: 0.4139 - val_accuracy: 0.7119 Epoch 61/1000 2/2 [==============================] - ETA: 0s - loss: 0.4988 - accuracy: 0.6641 Epoch 61: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.4988 - accuracy: 0.6641 - val_loss: 0.4117 - val_accuracy: 0.7119 Epoch 62/1000 2/2 [==============================] - ETA: 0s - loss: 0.5074 - accuracy: 0.6625 Epoch 62: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.5074 - accuracy: 0.6625 - val_loss: 0.4109 - val_accuracy: 0.7119 Epoch 63/1000 2/2 [==============================] - ETA: 0s - loss: 0.5155 - accuracy: 0.6797 Epoch 63: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.5155 - accuracy: 0.6797 - val_loss: 0.4105 - val_accuracy: 0.7119 Epoch 64/1000 2/2 [==============================] - ETA: 0s - loss: 0.4738 - accuracy: 0.7031 Epoch 64: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.4738 - accuracy: 0.7031 - val_loss: 0.4101 - val_accuracy: 0.7119 Epoch 65/1000 2/2 [==============================] - ETA: 0s - loss: 0.4526 - accuracy: 0.7266 Epoch 65: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.4526 - accuracy: 0.7266 - val_loss: 0.4099 - val_accuracy: 0.7288 Epoch 66/1000 2/2 [==============================] - ETA: 0s - loss: 0.4432 - accuracy: 0.6875 Epoch 66: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 917ms/step - loss: 0.4432 - accuracy: 0.6875 - val_loss: 0.4096 - val_accuracy: 0.7288 Epoch 67/1000 2/2 [==============================] - ETA: 0s - loss: 0.4556 - accuracy: 0.7031 Epoch 67: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 891ms/step - loss: 0.4556 - accuracy: 0.7031 - val_loss: 0.4089 - val_accuracy: 0.7288 Epoch 68/1000 2/2 [==============================] - ETA: 0s - loss: 0.4906 - accuracy: 0.7000 Epoch 68: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.4906 - accuracy: 0.7000 - val_loss: 0.4077 - val_accuracy: 0.7288 Epoch 69/1000 2/2 [==============================] - ETA: 0s - loss: 0.4392 - accuracy: 0.6953 Epoch 69: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 933ms/step - loss: 0.4392 - accuracy: 0.6953 - val_loss: 0.4067 - val_accuracy: 0.7288 Epoch 70/1000 2/2 [==============================] - ETA: 0s - loss: 0.4505 - accuracy: 0.7188 Epoch 70: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 911ms/step - loss: 0.4505 - accuracy: 0.7188 - val_loss: 0.4056 - val_accuracy: 0.7288 Epoch 71/1000 2/2 [==============================] - ETA: 0s - loss: 0.4227 - accuracy: 0.8250 Epoch 71: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.4227 - accuracy: 0.8250 - val_loss: 0.4038 - val_accuracy: 0.7288 Epoch 72/1000 2/2 [==============================] - ETA: 0s - loss: 0.4216 - accuracy: 0.7188 Epoch 72: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 942ms/step - loss: 0.4216 - accuracy: 0.7188 - val_loss: 0.4028 - val_accuracy: 0.7288 Epoch 73/1000 2/2 [==============================] - ETA: 0s - loss: 0.4563 - accuracy: 0.7031 Epoch 73: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.4563 - accuracy: 0.7031 - val_loss: 0.4029 - val_accuracy: 0.7288 Epoch 74/1000 2/2 [==============================] - ETA: 0s - loss: 0.4717 - accuracy: 0.6719 Epoch 74: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.4717 - accuracy: 0.6719 - val_loss: 0.4026 - val_accuracy: 0.7288 Epoch 75/1000 2/2 [==============================] - ETA: 0s - loss: 0.3515 - accuracy: 0.8250 Epoch 75: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3515 - accuracy: 0.8250 - val_loss: 0.4009 - val_accuracy: 0.7119 Epoch 76/1000 2/2 [==============================] - ETA: 0s - loss: 0.4396 - accuracy: 0.7125 Epoch 76: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 795ms/step - loss: 0.4396 - accuracy: 0.7125 - val_loss: 0.4004 - val_accuracy: 0.7288 Epoch 77/1000 2/2 [==============================] - ETA: 0s - loss: 0.4737 - accuracy: 0.6250 Epoch 77: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.4737 - accuracy: 0.6250 - val_loss: 0.4002 - val_accuracy: 0.7458 Epoch 78/1000 2/2 [==============================] - ETA: 0s - loss: 0.3818 - accuracy: 0.8125 Epoch 78: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3818 - accuracy: 0.8125 - val_loss: 0.3997 - val_accuracy: 0.7458 Epoch 79/1000 2/2 [==============================] - ETA: 0s - loss: 0.3942 - accuracy: 0.7812 Epoch 79: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3942 - accuracy: 0.7812 - val_loss: 0.3999 - val_accuracy: 0.7458 Epoch 80/1000 2/2 [==============================] - ETA: 0s - loss: 0.4376 - accuracy: 0.7625 Epoch 80: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.4376 - accuracy: 0.7625 - val_loss: 0.3999 - val_accuracy: 0.7288 Epoch 81/1000 2/2 [==============================] - ETA: 0s - loss: 0.4146 - accuracy: 0.7875 Epoch 81: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.4146 - accuracy: 0.7875 - val_loss: 0.3985 - val_accuracy: 0.7458 Epoch 82/1000 2/2 [==============================] - ETA: 0s - loss: 0.4513 - accuracy: 0.7109 Epoch 82: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 952ms/step - loss: 0.4513 - accuracy: 0.7109 - val_loss: 0.3975 - val_accuracy: 0.7458 Epoch 83/1000 2/2 [==============================] - ETA: 0s - loss: 0.4000 - accuracy: 0.7875 Epoch 83: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.4000 - accuracy: 0.7875 - val_loss: 0.3966 - val_accuracy: 0.7458 Epoch 84/1000 2/2 [==============================] - ETA: 0s - loss: 0.3920 - accuracy: 0.7812 Epoch 84: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3920 - accuracy: 0.7812 - val_loss: 0.3957 - val_accuracy: 0.7458 Epoch 85/1000 2/2 [==============================] - ETA: 0s - loss: 0.4480 - accuracy: 0.6750 Epoch 85: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.4480 - accuracy: 0.6750 - val_loss: 0.3950 - val_accuracy: 0.7458 Epoch 86/1000 2/2 [==============================] - ETA: 0s - loss: 0.4010 - accuracy: 0.7656 Epoch 86: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 881ms/step - loss: 0.4010 - accuracy: 0.7656 - val_loss: 0.3956 - val_accuracy: 0.7288 Epoch 87/1000 2/2 [==============================] - ETA: 0s - loss: 0.4635 - accuracy: 0.7125 Epoch 87: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.4635 - accuracy: 0.7125 - val_loss: 0.3978 - val_accuracy: 0.7288 Epoch 88/1000 2/2 [==============================] - ETA: 0s - loss: 0.4501 - accuracy: 0.7188 Epoch 88: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 915ms/step - loss: 0.4501 - accuracy: 0.7188 - val_loss: 0.4002 - val_accuracy: 0.7627 Epoch 89/1000 2/2 [==============================] - ETA: 0s - loss: 0.3909 - accuracy: 0.7875 Epoch 89: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3909 - accuracy: 0.7875 - val_loss: 0.4037 - val_accuracy: 0.7627 Epoch 90/1000 2/2 [==============================] - ETA: 0s - loss: 0.3992 - accuracy: 0.7250 Epoch 90: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3992 - accuracy: 0.7250 - val_loss: 0.4045 - val_accuracy: 0.7627 Epoch 91/1000 2/2 [==============================] - ETA: 0s - loss: 0.4022 - accuracy: 0.8203 Epoch 91: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.4022 - accuracy: 0.8203 - val_loss: 0.4050 - val_accuracy: 0.7458 Epoch 92/1000 2/2 [==============================] - ETA: 0s - loss: 0.4112 - accuracy: 0.7031 Epoch 92: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 972ms/step - loss: 0.4112 - accuracy: 0.7031 - val_loss: 0.4050 - val_accuracy: 0.7458 Epoch 93/1000 2/2 [==============================] - ETA: 0s - loss: 0.3795 - accuracy: 0.7500 Epoch 93: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3795 - accuracy: 0.7500 - val_loss: 0.4046 - val_accuracy: 0.7458 Epoch 94/1000 2/2 [==============================] - ETA: 0s - loss: 0.4178 - accuracy: 0.7250 Epoch 94: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 786ms/step - loss: 0.4178 - accuracy: 0.7250 - val_loss: 0.4047 - val_accuracy: 0.7458 Epoch 95/1000 2/2 [==============================] - ETA: 0s - loss: 0.3446 - accuracy: 0.8281 Epoch 95: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3446 - accuracy: 0.8281 - val_loss: 0.4047 - val_accuracy: 0.7458 Epoch 96/1000 2/2 [==============================] - ETA: 0s - loss: 0.4607 - accuracy: 0.7250 Epoch 96: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.4607 - accuracy: 0.7250 - val_loss: 0.4035 - val_accuracy: 0.7458 Epoch 97/1000 2/2 [==============================] - ETA: 0s - loss: 0.3616 - accuracy: 0.7875 Epoch 97: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 809ms/step - loss: 0.3616 - accuracy: 0.7875 - val_loss: 0.4021 - val_accuracy: 0.7458 Epoch 98/1000 2/2 [==============================] - ETA: 0s - loss: 0.3380 - accuracy: 0.7375 Epoch 98: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 795ms/step - loss: 0.3380 - accuracy: 0.7375 - val_loss: 0.4014 - val_accuracy: 0.7458 Epoch 99/1000 2/2 [==============================] - ETA: 0s - loss: 0.3621 - accuracy: 0.8047 Epoch 99: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 925ms/step - loss: 0.3621 - accuracy: 0.8047 - val_loss: 0.3993 - val_accuracy: 0.7288 Epoch 100/1000 2/2 [==============================] - ETA: 0s - loss: 0.3969 - accuracy: 0.7578 Epoch 100: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 922ms/step - loss: 0.3969 - accuracy: 0.7578 - val_loss: 0.3952 - val_accuracy: 0.7288 Epoch 101/1000 2/2 [==============================] - ETA: 0s - loss: 0.3638 - accuracy: 0.7500 Epoch 101: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 807ms/step - loss: 0.3638 - accuracy: 0.7500 - val_loss: 0.3910 - val_accuracy: 0.7288 Epoch 102/1000 2/2 [==============================] - ETA: 0s - loss: 0.3590 - accuracy: 0.7891 Epoch 102: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 912ms/step - loss: 0.3590 - accuracy: 0.7891 - val_loss: 0.3877 - val_accuracy: 0.7288 Epoch 103/1000 2/2 [==============================] - ETA: 0s - loss: 0.3947 - accuracy: 0.7656 Epoch 103: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 959ms/step - loss: 0.3947 - accuracy: 0.7656 - val_loss: 0.3841 - val_accuracy: 0.7288 Epoch 104/1000 2/2 [==============================] - ETA: 0s - loss: 0.4289 - accuracy: 0.7250 Epoch 104: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 805ms/step - loss: 0.4289 - accuracy: 0.7250 - val_loss: 0.3815 - val_accuracy: 0.7288 Epoch 105/1000 2/2 [==============================] - ETA: 0s - loss: 0.3684 - accuracy: 0.8359 Epoch 105: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3684 - accuracy: 0.8359 - val_loss: 0.3784 - val_accuracy: 0.7288 Epoch 106/1000 2/2 [==============================] - ETA: 0s - loss: 0.3745 - accuracy: 0.8000 Epoch 106: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 866ms/step - loss: 0.3745 - accuracy: 0.8000 - val_loss: 0.3758 - val_accuracy: 0.7288 Epoch 107/1000 2/2 [==============================] - ETA: 0s - loss: 0.3485 - accuracy: 0.8125 Epoch 107: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 917ms/step - loss: 0.3485 - accuracy: 0.8125 - val_loss: 0.3743 - val_accuracy: 0.7458 Epoch 108/1000 2/2 [==============================] - ETA: 0s - loss: 0.3889 - accuracy: 0.8000 Epoch 108: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 997ms/step - loss: 0.3889 - accuracy: 0.8000 - val_loss: 0.3726 - val_accuracy: 0.7458 Epoch 109/1000 2/2 [==============================] - ETA: 0s - loss: 0.3484 - accuracy: 0.8672 Epoch 109: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 937ms/step - loss: 0.3484 - accuracy: 0.8672 - val_loss: 0.3712 - val_accuracy: 0.7458 Epoch 110/1000 2/2 [==============================] - ETA: 0s - loss: 0.3734 - accuracy: 0.8047 Epoch 110: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3734 - accuracy: 0.8047 - val_loss: 0.3696 - val_accuracy: 0.7458 Epoch 111/1000 2/2 [==============================] - ETA: 0s - loss: 0.4089 - accuracy: 0.7875 Epoch 111: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 789ms/step - loss: 0.4089 - accuracy: 0.7875 - val_loss: 0.3676 - val_accuracy: 0.7458 Epoch 112/1000 2/2 [==============================] - ETA: 0s - loss: 0.3788 - accuracy: 0.7750 Epoch 112: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 783ms/step - loss: 0.3788 - accuracy: 0.7750 - val_loss: 0.3646 - val_accuracy: 0.7288 Epoch 113/1000 2/2 [==============================] - ETA: 0s - loss: 0.3728 - accuracy: 0.7812 Epoch 113: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3728 - accuracy: 0.7812 - val_loss: 0.3621 - val_accuracy: 0.7288 Epoch 114/1000 2/2 [==============================] - ETA: 0s - loss: 0.3751 - accuracy: 0.8000 Epoch 114: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3751 - accuracy: 0.8000 - val_loss: 0.3599 - val_accuracy: 0.7288 Epoch 115/1000 2/2 [==============================] - ETA: 0s - loss: 0.3739 - accuracy: 0.7734 Epoch 115: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 946ms/step - loss: 0.3739 - accuracy: 0.7734 - val_loss: 0.3578 - val_accuracy: 0.7288 Epoch 116/1000 2/2 [==============================] - ETA: 0s - loss: 0.3883 - accuracy: 0.8000 Epoch 116: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3883 - accuracy: 0.8000 - val_loss: 0.3563 - val_accuracy: 0.7288 Epoch 117/1000 2/2 [==============================] - ETA: 0s - loss: 0.3443 - accuracy: 0.8203 Epoch 117: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3443 - accuracy: 0.8203 - val_loss: 0.3552 - val_accuracy: 0.7458 Epoch 118/1000 2/2 [==============================] - ETA: 0s - loss: 0.3449 - accuracy: 0.8375 Epoch 118: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3449 - accuracy: 0.8375 - val_loss: 0.3555 - val_accuracy: 0.7458 Epoch 119/1000 2/2 [==============================] - ETA: 0s - loss: 0.3562 - accuracy: 0.8000 Epoch 119: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3562 - accuracy: 0.8000 - val_loss: 0.3556 - val_accuracy: 0.7458 Epoch 120/1000 2/2 [==============================] - ETA: 0s - loss: 0.2561 - accuracy: 0.8828 Epoch 120: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 914ms/step - loss: 0.2561 - accuracy: 0.8828 - val_loss: 0.3562 - val_accuracy: 0.7458 Epoch 121/1000 2/2 [==============================] - ETA: 0s - loss: 0.3495 - accuracy: 0.8125 Epoch 121: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 916ms/step - loss: 0.3495 - accuracy: 0.8125 - val_loss: 0.3566 - val_accuracy: 0.7627 Epoch 122/1000 2/2 [==============================] - ETA: 0s - loss: 0.3165 - accuracy: 0.8672 Epoch 122: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3165 - accuracy: 0.8672 - val_loss: 0.3566 - val_accuracy: 0.7627 Epoch 123/1000 2/2 [==============================] - ETA: 0s - loss: 0.3741 - accuracy: 0.7734 Epoch 123: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3741 - accuracy: 0.7734 - val_loss: 0.3571 - val_accuracy: 0.7627 Epoch 124/1000 2/2 [==============================] - ETA: 0s - loss: 0.3923 - accuracy: 0.7500 Epoch 124: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 955ms/step - loss: 0.3923 - accuracy: 0.7500 - val_loss: 0.3574 - val_accuracy: 0.7627 Epoch 125/1000 2/2 [==============================] - ETA: 0s - loss: 0.3380 - accuracy: 0.7812 Epoch 125: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 912ms/step - loss: 0.3380 - accuracy: 0.7812 - val_loss: 0.3575 - val_accuracy: 0.7627 Epoch 126/1000 2/2 [==============================] - ETA: 0s - loss: 0.3617 - accuracy: 0.7875 Epoch 126: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3617 - accuracy: 0.7875 - val_loss: 0.3581 - val_accuracy: 0.7627 Epoch 127/1000 2/2 [==============================] - ETA: 0s - loss: 0.4007 - accuracy: 0.7000 Epoch 127: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.4007 - accuracy: 0.7000 - val_loss: 0.3577 - val_accuracy: 0.7627 Epoch 128/1000 2/2 [==============================] - ETA: 0s - loss: 0.3632 - accuracy: 0.8000 Epoch 128: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3632 - accuracy: 0.8000 - val_loss: 0.3570 - val_accuracy: 0.7627 Epoch 129/1000 2/2 [==============================] - ETA: 0s - loss: 0.3418 - accuracy: 0.8359 Epoch 129: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3418 - accuracy: 0.8359 - val_loss: 0.3558 - val_accuracy: 0.7627 Epoch 130/1000 2/2 [==============================] - ETA: 0s - loss: 0.3338 - accuracy: 0.8250 Epoch 130: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 815ms/step - loss: 0.3338 - accuracy: 0.8250 - val_loss: 0.3545 - val_accuracy: 0.7627 Epoch 131/1000 2/2 [==============================] - ETA: 0s - loss: 0.3705 - accuracy: 0.7750 Epoch 131: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3705 - accuracy: 0.7750 - val_loss: 0.3534 - val_accuracy: 0.7627 Epoch 132/1000 2/2 [==============================] - ETA: 0s - loss: 0.2992 - accuracy: 0.8625 Epoch 132: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2992 - accuracy: 0.8625 - val_loss: 0.3531 - val_accuracy: 0.7627 Epoch 133/1000 2/2 [==============================] - ETA: 0s - loss: 0.3112 - accuracy: 0.8438 Epoch 133: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 940ms/step - loss: 0.3112 - accuracy: 0.8438 - val_loss: 0.3533 - val_accuracy: 0.7627 Epoch 134/1000 2/2 [==============================] - ETA: 0s - loss: 0.3687 - accuracy: 0.8203 Epoch 134: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 926ms/step - loss: 0.3687 - accuracy: 0.8203 - val_loss: 0.3521 - val_accuracy: 0.7627 Epoch 135/1000 2/2 [==============================] - ETA: 0s - loss: 0.4165 - accuracy: 0.7250 Epoch 135: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.4165 - accuracy: 0.7250 - val_loss: 0.3497 - val_accuracy: 0.7627 Epoch 136/1000 2/2 [==============================] - ETA: 0s - loss: 0.2755 - accuracy: 0.8750 Epoch 136: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 801ms/step - loss: 0.2755 - accuracy: 0.8750 - val_loss: 0.3483 - val_accuracy: 0.7627 Epoch 137/1000 2/2 [==============================] - ETA: 0s - loss: 0.3457 - accuracy: 0.8000 Epoch 137: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 783ms/step - loss: 0.3457 - accuracy: 0.8000 - val_loss: 0.3478 - val_accuracy: 0.7627 Epoch 138/1000 2/2 [==============================] - ETA: 0s - loss: 0.3676 - accuracy: 0.7812 Epoch 138: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3676 - accuracy: 0.7812 - val_loss: 0.3470 - val_accuracy: 0.7627 Epoch 139/1000 2/2 [==============================] - ETA: 0s - loss: 0.3189 - accuracy: 0.7875 Epoch 139: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 781ms/step - loss: 0.3189 - accuracy: 0.7875 - val_loss: 0.3467 - val_accuracy: 0.7627 Epoch 140/1000 2/2 [==============================] - ETA: 0s - loss: 0.3633 - accuracy: 0.7875 Epoch 140: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3633 - accuracy: 0.7875 - val_loss: 0.3483 - val_accuracy: 0.7627 Epoch 141/1000 2/2 [==============================] - ETA: 0s - loss: 0.3355 - accuracy: 0.7875 Epoch 141: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 852ms/step - loss: 0.3355 - accuracy: 0.7875 - val_loss: 0.3495 - val_accuracy: 0.7627 Epoch 142/1000 2/2 [==============================] - ETA: 0s - loss: 0.3416 - accuracy: 0.8250 Epoch 142: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 796ms/step - loss: 0.3416 - accuracy: 0.8250 - val_loss: 0.3497 - val_accuracy: 0.7627 Epoch 143/1000 2/2 [==============================] - ETA: 0s - loss: 0.3214 - accuracy: 0.8438 Epoch 143: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3214 - accuracy: 0.8438 - val_loss: 0.3494 - val_accuracy: 0.7627 Epoch 144/1000 2/2 [==============================] - ETA: 0s - loss: 0.3541 - accuracy: 0.7875 Epoch 144: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3541 - accuracy: 0.7875 - val_loss: 0.3490 - val_accuracy: 0.7627 Epoch 145/1000 2/2 [==============================] - ETA: 0s - loss: 0.3347 - accuracy: 0.8500 Epoch 145: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 806ms/step - loss: 0.3347 - accuracy: 0.8500 - val_loss: 0.3488 - val_accuracy: 0.7627 Epoch 146/1000 2/2 [==============================] - ETA: 0s - loss: 0.3238 - accuracy: 0.8594 Epoch 146: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 969ms/step - loss: 0.3238 - accuracy: 0.8594 - val_loss: 0.3493 - val_accuracy: 0.7627 Epoch 147/1000 2/2 [==============================] - ETA: 0s - loss: 0.3252 - accuracy: 0.8250 Epoch 147: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 799ms/step - loss: 0.3252 - accuracy: 0.8250 - val_loss: 0.3499 - val_accuracy: 0.7627 Epoch 148/1000 2/2 [==============================] - ETA: 0s - loss: 0.3136 - accuracy: 0.8250 Epoch 148: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 766ms/step - loss: 0.3136 - accuracy: 0.8250 - val_loss: 0.3515 - val_accuracy: 0.7627 Epoch 149/1000 2/2 [==============================] - ETA: 0s - loss: 0.3215 - accuracy: 0.8250 Epoch 149: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3215 - accuracy: 0.8250 - val_loss: 0.3529 - val_accuracy: 0.7627 Epoch 150/1000 2/2 [==============================] - ETA: 0s - loss: 0.3838 - accuracy: 0.7625 Epoch 150: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3838 - accuracy: 0.7625 - val_loss: 0.3546 - val_accuracy: 0.7627 Epoch 151/1000 2/2 [==============================] - ETA: 0s - loss: 0.3322 - accuracy: 0.8125 Epoch 151: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 809ms/step - loss: 0.3322 - accuracy: 0.8125 - val_loss: 0.3537 - val_accuracy: 0.7627 Epoch 152/1000 2/2 [==============================] - ETA: 0s - loss: 0.3422 - accuracy: 0.8281 Epoch 152: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 913ms/step - loss: 0.3422 - accuracy: 0.8281 - val_loss: 0.3523 - val_accuracy: 0.7627 Epoch 153/1000 2/2 [==============================] - ETA: 0s - loss: 0.3141 - accuracy: 0.8500 Epoch 153: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 876ms/step - loss: 0.3141 - accuracy: 0.8500 - val_loss: 0.3495 - val_accuracy: 0.7627 Epoch 154/1000 2/2 [==============================] - ETA: 0s - loss: 0.3786 - accuracy: 0.7625 Epoch 154: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3786 - accuracy: 0.7625 - val_loss: 0.3458 - val_accuracy: 0.7627 Epoch 155/1000 2/2 [==============================] - ETA: 0s - loss: 0.3309 - accuracy: 0.8125 Epoch 155: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3309 - accuracy: 0.8125 - val_loss: 0.3425 - val_accuracy: 0.7627 Epoch 156/1000 2/2 [==============================] - ETA: 0s - loss: 0.3570 - accuracy: 0.7969 Epoch 156: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 928ms/step - loss: 0.3570 - accuracy: 0.7969 - val_loss: 0.3386 - val_accuracy: 0.7797 Epoch 157/1000 2/2 [==============================] - ETA: 0s - loss: 0.3137 - accuracy: 0.8250 Epoch 157: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 779ms/step - loss: 0.3137 - accuracy: 0.8250 - val_loss: 0.3349 - val_accuracy: 0.7797 Epoch 158/1000 2/2 [==============================] - ETA: 0s - loss: 0.3485 - accuracy: 0.8281 Epoch 158: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3485 - accuracy: 0.8281 - val_loss: 0.3321 - val_accuracy: 0.7797 Epoch 159/1000 2/2 [==============================] - ETA: 0s - loss: 0.3114 - accuracy: 0.8594 Epoch 159: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 997ms/step - loss: 0.3114 - accuracy: 0.8594 - val_loss: 0.3295 - val_accuracy: 0.7797 Epoch 160/1000 2/2 [==============================] - ETA: 0s - loss: 0.3695 - accuracy: 0.7750 Epoch 160: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3695 - accuracy: 0.7750 - val_loss: 0.3255 - val_accuracy: 0.7797 Epoch 161/1000 2/2 [==============================] - ETA: 0s - loss: 0.3590 - accuracy: 0.8125 Epoch 161: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 794ms/step - loss: 0.3590 - accuracy: 0.8125 - val_loss: 0.3215 - val_accuracy: 0.7797 Epoch 162/1000 2/2 [==============================] - ETA: 0s - loss: 0.3375 - accuracy: 0.8250 Epoch 162: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3375 - accuracy: 0.8250 - val_loss: 0.3184 - val_accuracy: 0.7797 Epoch 163/1000 2/2 [==============================] - ETA: 0s - loss: 0.2919 - accuracy: 0.8672 Epoch 163: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2919 - accuracy: 0.8672 - val_loss: 0.3172 - val_accuracy: 0.7797 Epoch 164/1000 2/2 [==============================] - ETA: 0s - loss: 0.2972 - accuracy: 0.8594 Epoch 164: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 937ms/step - loss: 0.2972 - accuracy: 0.8594 - val_loss: 0.3171 - val_accuracy: 0.7797 Epoch 165/1000 2/2 [==============================] - ETA: 0s - loss: 0.3267 - accuracy: 0.8359 Epoch 165: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3267 - accuracy: 0.8359 - val_loss: 0.3175 - val_accuracy: 0.7797 Epoch 166/1000 2/2 [==============================] - ETA: 0s - loss: 0.2999 - accuracy: 0.8438 Epoch 166: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2999 - accuracy: 0.8438 - val_loss: 0.3182 - val_accuracy: 0.7797 Epoch 167/1000 2/2 [==============================] - ETA: 0s - loss: 0.3014 - accuracy: 0.8750 Epoch 167: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 787ms/step - loss: 0.3014 - accuracy: 0.8750 - val_loss: 0.3198 - val_accuracy: 0.7797 Epoch 168/1000 2/2 [==============================] - ETA: 0s - loss: 0.2670 - accuracy: 0.8250 Epoch 168: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 810ms/step - loss: 0.2670 - accuracy: 0.8250 - val_loss: 0.3217 - val_accuracy: 0.7797 Epoch 169/1000 2/2 [==============================] - ETA: 0s - loss: 0.3162 - accuracy: 0.8750 Epoch 169: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 793ms/step - loss: 0.3162 - accuracy: 0.8750 - val_loss: 0.3219 - val_accuracy: 0.7797 Epoch 170/1000 2/2 [==============================] - ETA: 0s - loss: 0.3178 - accuracy: 0.8047 Epoch 170: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 943ms/step - loss: 0.3178 - accuracy: 0.8047 - val_loss: 0.3221 - val_accuracy: 0.7797 Epoch 171/1000 2/2 [==============================] - ETA: 0s - loss: 0.2931 - accuracy: 0.8672 Epoch 171: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 923ms/step - loss: 0.2931 - accuracy: 0.8672 - val_loss: 0.3225 - val_accuracy: 0.7797 Epoch 172/1000 2/2 [==============================] - ETA: 0s - loss: 0.3197 - accuracy: 0.8047 Epoch 172: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3197 - accuracy: 0.8047 - val_loss: 0.3238 - val_accuracy: 0.7797 Epoch 173/1000 2/2 [==============================] - ETA: 0s - loss: 0.2872 - accuracy: 0.8281 Epoch 173: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2872 - accuracy: 0.8281 - val_loss: 0.3255 - val_accuracy: 0.7797 Epoch 174/1000 2/2 [==============================] - ETA: 0s - loss: 0.3595 - accuracy: 0.7734 Epoch 174: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3595 - accuracy: 0.7734 - val_loss: 0.3273 - val_accuracy: 0.7797 Epoch 175/1000 2/2 [==============================] - ETA: 0s - loss: 0.3140 - accuracy: 0.8375 Epoch 175: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 811ms/step - loss: 0.3140 - accuracy: 0.8375 - val_loss: 0.3280 - val_accuracy: 0.7797 Epoch 176/1000 2/2 [==============================] - ETA: 0s - loss: 0.3210 - accuracy: 0.8125 Epoch 176: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3210 - accuracy: 0.8125 - val_loss: 0.3281 - val_accuracy: 0.7797 Epoch 177/1000 2/2 [==============================] - ETA: 0s - loss: 0.2593 - accuracy: 0.8125 Epoch 177: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2593 - accuracy: 0.8125 - val_loss: 0.3297 - val_accuracy: 0.7797 Epoch 178/1000 2/2 [==============================] - ETA: 0s - loss: 0.3493 - accuracy: 0.7891 Epoch 178: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3493 - accuracy: 0.7891 - val_loss: 0.3316 - val_accuracy: 0.7797 Epoch 179/1000 2/2 [==============================] - ETA: 0s - loss: 0.3391 - accuracy: 0.8375 Epoch 179: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3391 - accuracy: 0.8375 - val_loss: 0.3345 - val_accuracy: 0.7797 Epoch 180/1000 2/2 [==============================] - ETA: 0s - loss: 0.2908 - accuracy: 0.8438 Epoch 180: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2908 - accuracy: 0.8438 - val_loss: 0.3373 - val_accuracy: 0.7797 Epoch 181/1000 2/2 [==============================] - ETA: 0s - loss: 0.2884 - accuracy: 0.8438 Epoch 181: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 912ms/step - loss: 0.2884 - accuracy: 0.8438 - val_loss: 0.3386 - val_accuracy: 0.7797 Epoch 182/1000 2/2 [==============================] - ETA: 0s - loss: 0.2741 - accuracy: 0.8750 Epoch 182: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2741 - accuracy: 0.8750 - val_loss: 0.3397 - val_accuracy: 0.7966 Epoch 183/1000 2/2 [==============================] - ETA: 0s - loss: 0.3079 - accuracy: 0.8375 Epoch 183: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3079 - accuracy: 0.8375 - val_loss: 0.3402 - val_accuracy: 0.7966 Epoch 184/1000 2/2 [==============================] - ETA: 0s - loss: 0.2915 - accuracy: 0.8500 Epoch 184: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 821ms/step - loss: 0.2915 - accuracy: 0.8500 - val_loss: 0.3408 - val_accuracy: 0.8136 Epoch 185/1000 2/2 [==============================] - ETA: 0s - loss: 0.2488 - accuracy: 0.9062 Epoch 185: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2488 - accuracy: 0.9062 - val_loss: 0.3411 - val_accuracy: 0.8136 Epoch 186/1000 2/2 [==============================] - ETA: 0s - loss: 0.2850 - accuracy: 0.8281 Epoch 186: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2850 - accuracy: 0.8281 - val_loss: 0.3412 - val_accuracy: 0.8136 Epoch 187/1000 2/2 [==============================] - ETA: 0s - loss: 0.3010 - accuracy: 0.8375 Epoch 187: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 816ms/step - loss: 0.3010 - accuracy: 0.8375 - val_loss: 0.3412 - val_accuracy: 0.7966 Epoch 188/1000 2/2 [==============================] - ETA: 0s - loss: 0.2825 - accuracy: 0.8594 Epoch 188: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 979ms/step - loss: 0.2825 - accuracy: 0.8594 - val_loss: 0.3410 - val_accuracy: 0.7966 Epoch 189/1000 2/2 [==============================] - ETA: 0s - loss: 0.3138 - accuracy: 0.8125 Epoch 189: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 956ms/step - loss: 0.3138 - accuracy: 0.8125 - val_loss: 0.3392 - val_accuracy: 0.7966 Epoch 190/1000 2/2 [==============================] - ETA: 0s - loss: 0.3285 - accuracy: 0.8000 Epoch 190: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 793ms/step - loss: 0.3285 - accuracy: 0.8000 - val_loss: 0.3374 - val_accuracy: 0.8136 Epoch 191/1000 2/2 [==============================] - ETA: 0s - loss: 0.3562 - accuracy: 0.7375 Epoch 191: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 794ms/step - loss: 0.3562 - accuracy: 0.7375 - val_loss: 0.3362 - val_accuracy: 0.8305 Epoch 192/1000 2/2 [==============================] - ETA: 0s - loss: 0.2750 - accuracy: 0.8625 Epoch 192: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 805ms/step - loss: 0.2750 - accuracy: 0.8625 - val_loss: 0.3371 - val_accuracy: 0.8305 Epoch 193/1000 2/2 [==============================] - ETA: 0s - loss: 0.2853 - accuracy: 0.8750 Epoch 193: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 778ms/step - loss: 0.2853 - accuracy: 0.8750 - val_loss: 0.3378 - val_accuracy: 0.8305 Epoch 194/1000 2/2 [==============================] - ETA: 0s - loss: 0.2862 - accuracy: 0.8625 Epoch 194: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2862 - accuracy: 0.8625 - val_loss: 0.3387 - val_accuracy: 0.8136 Epoch 195/1000 2/2 [==============================] - ETA: 0s - loss: 0.3483 - accuracy: 0.7625 Epoch 195: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.3483 - accuracy: 0.7625 - val_loss: 0.3393 - val_accuracy: 0.8136 Epoch 196/1000 2/2 [==============================] - ETA: 0s - loss: 0.2863 - accuracy: 0.8594 Epoch 196: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2863 - accuracy: 0.8594 - val_loss: 0.3378 - val_accuracy: 0.8136 Epoch 197/1000 2/2 [==============================] - ETA: 0s - loss: 0.2744 - accuracy: 0.8500 Epoch 197: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 824ms/step - loss: 0.2744 - accuracy: 0.8500 - val_loss: 0.3355 - val_accuracy: 0.8136 Epoch 198/1000 2/2 [==============================] - ETA: 0s - loss: 0.2827 - accuracy: 0.8438 Epoch 198: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 952ms/step - loss: 0.2827 - accuracy: 0.8438 - val_loss: 0.3326 - val_accuracy: 0.8136 Epoch 199/1000 2/2 [==============================] - ETA: 0s - loss: 0.2542 - accuracy: 0.8875 Epoch 199: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 815ms/step - loss: 0.2542 - accuracy: 0.8875 - val_loss: 0.3295 - val_accuracy: 0.8136 Epoch 200/1000 2/2 [==============================] - ETA: 0s - loss: 0.2779 - accuracy: 0.8672 Epoch 200: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2779 - accuracy: 0.8672 - val_loss: 0.3259 - val_accuracy: 0.8305 Epoch 201/1000 2/2 [==============================] - ETA: 0s - loss: 0.3151 - accuracy: 0.8516 Epoch 201: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.3151 - accuracy: 0.8516 - val_loss: 0.3212 - val_accuracy: 0.8305 Epoch 202/1000 2/2 [==============================] - ETA: 0s - loss: 0.2635 - accuracy: 0.8438 Epoch 202: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2635 - accuracy: 0.8438 - val_loss: 0.3172 - val_accuracy: 0.8305 Epoch 203/1000 2/2 [==============================] - ETA: 0s - loss: 0.2691 - accuracy: 0.8906 Epoch 203: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2691 - accuracy: 0.8906 - val_loss: 0.3138 - val_accuracy: 0.8305 Epoch 204/1000 2/2 [==============================] - ETA: 0s - loss: 0.2818 - accuracy: 0.8500 Epoch 204: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2818 - accuracy: 0.8500 - val_loss: 0.3109 - val_accuracy: 0.8305 Epoch 205/1000 2/2 [==============================] - ETA: 0s - loss: 0.2874 - accuracy: 0.8125 Epoch 205: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2874 - accuracy: 0.8125 - val_loss: 0.3089 - val_accuracy: 0.8136 Epoch 206/1000 2/2 [==============================] - ETA: 0s - loss: 0.2961 - accuracy: 0.8500 Epoch 206: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 821ms/step - loss: 0.2961 - accuracy: 0.8500 - val_loss: 0.3080 - val_accuracy: 0.8136 Epoch 207/1000 2/2 [==============================] - ETA: 0s - loss: 0.2628 - accuracy: 0.8516 Epoch 207: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2628 - accuracy: 0.8516 - val_loss: 0.3077 - val_accuracy: 0.8136 Epoch 208/1000 2/2 [==============================] - ETA: 0s - loss: 0.2807 - accuracy: 0.8750 Epoch 208: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 792ms/step - loss: 0.2807 - accuracy: 0.8750 - val_loss: 0.3076 - val_accuracy: 0.8136 Epoch 209/1000 2/2 [==============================] - ETA: 0s - loss: 0.2190 - accuracy: 0.8828 Epoch 209: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 902ms/step - loss: 0.2190 - accuracy: 0.8828 - val_loss: 0.3073 - val_accuracy: 0.8136 Epoch 210/1000 2/2 [==============================] - ETA: 0s - loss: 0.2307 - accuracy: 0.8875 Epoch 210: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2307 - accuracy: 0.8875 - val_loss: 0.3073 - val_accuracy: 0.8136 Epoch 211/1000 2/2 [==============================] - ETA: 0s - loss: 0.2403 - accuracy: 0.8672 Epoch 211: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2403 - accuracy: 0.8672 - val_loss: 0.3079 - val_accuracy: 0.8136 Epoch 212/1000 2/2 [==============================] - ETA: 0s - loss: 0.2151 - accuracy: 0.9375 Epoch 212: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2151 - accuracy: 0.9375 - val_loss: 0.3075 - val_accuracy: 0.8136 Epoch 213/1000 2/2 [==============================] - ETA: 0s - loss: 0.2767 - accuracy: 0.8875 Epoch 213: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 795ms/step - loss: 0.2767 - accuracy: 0.8875 - val_loss: 0.3060 - val_accuracy: 0.8136 Epoch 214/1000 2/2 [==============================] - ETA: 0s - loss: 0.2731 - accuracy: 0.8672 Epoch 214: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2731 - accuracy: 0.8672 - val_loss: 0.3040 - val_accuracy: 0.8136 Epoch 215/1000 2/2 [==============================] - ETA: 0s - loss: 0.2449 - accuracy: 0.8828 Epoch 215: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2449 - accuracy: 0.8828 - val_loss: 0.3022 - val_accuracy: 0.8136 Epoch 216/1000 2/2 [==============================] - ETA: 0s - loss: 0.2654 - accuracy: 0.8203 Epoch 216: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2654 - accuracy: 0.8203 - val_loss: 0.2999 - val_accuracy: 0.8136 Epoch 217/1000 2/2 [==============================] - ETA: 0s - loss: 0.2781 - accuracy: 0.8672 Epoch 217: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2781 - accuracy: 0.8672 - val_loss: 0.2985 - val_accuracy: 0.8136 Epoch 218/1000 2/2 [==============================] - ETA: 0s - loss: 0.3467 - accuracy: 0.7875 Epoch 218: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 808ms/step - loss: 0.3467 - accuracy: 0.7875 - val_loss: 0.2967 - val_accuracy: 0.8136 Epoch 219/1000 2/2 [==============================] - ETA: 0s - loss: 0.2858 - accuracy: 0.8750 Epoch 219: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2858 - accuracy: 0.8750 - val_loss: 0.2970 - val_accuracy: 0.8136 Epoch 220/1000 2/2 [==============================] - ETA: 0s - loss: 0.2070 - accuracy: 0.9125 Epoch 220: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2070 - accuracy: 0.9125 - val_loss: 0.2983 - val_accuracy: 0.8136 Epoch 221/1000 2/2 [==============================] - ETA: 0s - loss: 0.2974 - accuracy: 0.8359 Epoch 221: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2974 - accuracy: 0.8359 - val_loss: 0.2998 - val_accuracy: 0.8136 Epoch 222/1000 2/2 [==============================] - ETA: 0s - loss: 0.2884 - accuracy: 0.8625 Epoch 222: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 806ms/step - loss: 0.2884 - accuracy: 0.8625 - val_loss: 0.3019 - val_accuracy: 0.8136 Epoch 223/1000 2/2 [==============================] - ETA: 0s - loss: 0.2783 - accuracy: 0.8438 Epoch 223: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2783 - accuracy: 0.8438 - val_loss: 0.3043 - val_accuracy: 0.8136 Epoch 224/1000 2/2 [==============================] - ETA: 0s - loss: 0.2062 - accuracy: 0.8875 Epoch 224: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2062 - accuracy: 0.8875 - val_loss: 0.3075 - val_accuracy: 0.8136 Epoch 225/1000 2/2 [==============================] - ETA: 0s - loss: 0.2499 - accuracy: 0.8500 Epoch 225: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2499 - accuracy: 0.8500 - val_loss: 0.3094 - val_accuracy: 0.8136 Epoch 226/1000 2/2 [==============================] - ETA: 0s - loss: 0.2541 - accuracy: 0.8672 Epoch 226: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 957ms/step - loss: 0.2541 - accuracy: 0.8672 - val_loss: 0.3105 - val_accuracy: 0.8136 Epoch 227/1000 2/2 [==============================] - ETA: 0s - loss: 0.2353 - accuracy: 0.8672 Epoch 227: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 903ms/step - loss: 0.2353 - accuracy: 0.8672 - val_loss: 0.3106 - val_accuracy: 0.8305 Epoch 228/1000 2/2 [==============================] - ETA: 0s - loss: 0.2782 - accuracy: 0.8375 Epoch 228: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 792ms/step - loss: 0.2782 - accuracy: 0.8375 - val_loss: 0.3112 - val_accuracy: 0.8305 Epoch 229/1000 2/2 [==============================] - ETA: 0s - loss: 0.2693 - accuracy: 0.8875 Epoch 229: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 795ms/step - loss: 0.2693 - accuracy: 0.8875 - val_loss: 0.3124 - val_accuracy: 0.8305 Epoch 230/1000 2/2 [==============================] - ETA: 0s - loss: 0.2889 - accuracy: 0.8281 Epoch 230: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 943ms/step - loss: 0.2889 - accuracy: 0.8281 - val_loss: 0.3135 - val_accuracy: 0.8305 Epoch 231/1000 2/2 [==============================] - ETA: 0s - loss: 0.2589 - accuracy: 0.8984 Epoch 231: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 907ms/step - loss: 0.2589 - accuracy: 0.8984 - val_loss: 0.3135 - val_accuracy: 0.8305 Epoch 232/1000 2/2 [==============================] - ETA: 0s - loss: 0.2456 - accuracy: 0.8984 Epoch 232: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2456 - accuracy: 0.8984 - val_loss: 0.3123 - val_accuracy: 0.8305 Epoch 233/1000 2/2 [==============================] - ETA: 0s - loss: 0.2860 - accuracy: 0.8281 Epoch 233: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2860 - accuracy: 0.8281 - val_loss: 0.3108 - val_accuracy: 0.8305 Epoch 234/1000 2/2 [==============================] - ETA: 0s - loss: 0.2758 - accuracy: 0.8438 Epoch 234: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 910ms/step - loss: 0.2758 - accuracy: 0.8438 - val_loss: 0.3082 - val_accuracy: 0.8305 Epoch 235/1000 2/2 [==============================] - ETA: 0s - loss: 0.2963 - accuracy: 0.8438 Epoch 235: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2963 - accuracy: 0.8438 - val_loss: 0.3071 - val_accuracy: 0.8136 Epoch 236/1000 2/2 [==============================] - ETA: 0s - loss: 0.2494 - accuracy: 0.8906 Epoch 236: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 946ms/step - loss: 0.2494 - accuracy: 0.8906 - val_loss: 0.3057 - val_accuracy: 0.8136 Epoch 237/1000 2/2 [==============================] - ETA: 0s - loss: 0.2573 - accuracy: 0.9062 Epoch 237: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 917ms/step - loss: 0.2573 - accuracy: 0.9062 - val_loss: 0.3048 - val_accuracy: 0.8136 Epoch 238/1000 2/2 [==============================] - ETA: 0s - loss: 0.2491 - accuracy: 0.8828 Epoch 238: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 921ms/step - loss: 0.2491 - accuracy: 0.8828 - val_loss: 0.3050 - val_accuracy: 0.8136 Epoch 239/1000 2/2 [==============================] - ETA: 0s - loss: 0.2366 - accuracy: 0.9000 Epoch 239: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2366 - accuracy: 0.9000 - val_loss: 0.3059 - val_accuracy: 0.8305 Epoch 240/1000 2/2 [==============================] - ETA: 0s - loss: 0.2333 - accuracy: 0.9062 Epoch 240: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 945ms/step - loss: 0.2333 - accuracy: 0.9062 - val_loss: 0.3063 - val_accuracy: 0.8475 Epoch 241/1000 2/2 [==============================] - ETA: 0s - loss: 0.2809 - accuracy: 0.8672 Epoch 241: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2809 - accuracy: 0.8672 - val_loss: 0.3059 - val_accuracy: 0.8305 Epoch 242/1000 2/2 [==============================] - ETA: 0s - loss: 0.2800 - accuracy: 0.8750 Epoch 242: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2800 - accuracy: 0.8750 - val_loss: 0.3063 - val_accuracy: 0.8475 Epoch 243/1000 2/2 [==============================] - ETA: 0s - loss: 0.2448 - accuracy: 0.9000 Epoch 243: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2448 - accuracy: 0.9000 - val_loss: 0.3057 - val_accuracy: 0.8305 Epoch 244/1000 2/2 [==============================] - ETA: 0s - loss: 0.2235 - accuracy: 0.9000 Epoch 244: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 794ms/step - loss: 0.2235 - accuracy: 0.9000 - val_loss: 0.3050 - val_accuracy: 0.8136 Epoch 245/1000 2/2 [==============================] - ETA: 0s - loss: 0.2548 - accuracy: 0.8625 Epoch 245: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2548 - accuracy: 0.8625 - val_loss: 0.3034 - val_accuracy: 0.8136 Epoch 246/1000 2/2 [==============================] - ETA: 0s - loss: 0.2482 - accuracy: 0.8672 Epoch 246: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 946ms/step - loss: 0.2482 - accuracy: 0.8672 - val_loss: 0.3021 - val_accuracy: 0.8136 Epoch 247/1000 2/2 [==============================] - ETA: 0s - loss: 0.2149 - accuracy: 0.9062 Epoch 247: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2149 - accuracy: 0.9062 - val_loss: 0.3014 - val_accuracy: 0.8136 Epoch 248/1000 2/2 [==============================] - ETA: 0s - loss: 0.2617 - accuracy: 0.8594 Epoch 248: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2617 - accuracy: 0.8594 - val_loss: 0.3010 - val_accuracy: 0.8136 Epoch 249/1000 2/2 [==============================] - ETA: 0s - loss: 0.2135 - accuracy: 0.9219 Epoch 249: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2135 - accuracy: 0.9219 - val_loss: 0.3009 - val_accuracy: 0.8136 Epoch 250/1000 2/2 [==============================] - ETA: 0s - loss: 0.2178 - accuracy: 0.9297 Epoch 250: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2178 - accuracy: 0.9297 - val_loss: 0.3010 - val_accuracy: 0.8136 Epoch 251/1000 2/2 [==============================] - ETA: 0s - loss: 0.2670 - accuracy: 0.8750 Epoch 251: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2670 - accuracy: 0.8750 - val_loss: 0.3018 - val_accuracy: 0.8136 Epoch 252/1000 2/2 [==============================] - ETA: 0s - loss: 0.2248 - accuracy: 0.8750 Epoch 252: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 818ms/step - loss: 0.2248 - accuracy: 0.8750 - val_loss: 0.3011 - val_accuracy: 0.8136 Epoch 253/1000 2/2 [==============================] - ETA: 0s - loss: 0.2740 - accuracy: 0.8828 Epoch 253: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2740 - accuracy: 0.8828 - val_loss: 0.2994 - val_accuracy: 0.8136 Epoch 254/1000 2/2 [==============================] - ETA: 0s - loss: 0.2816 - accuracy: 0.8250 Epoch 254: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 803ms/step - loss: 0.2816 - accuracy: 0.8250 - val_loss: 0.2979 - val_accuracy: 0.8136 Epoch 255/1000 2/2 [==============================] - ETA: 0s - loss: 0.2820 - accuracy: 0.8359 Epoch 255: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 947ms/step - loss: 0.2820 - accuracy: 0.8359 - val_loss: 0.2963 - val_accuracy: 0.8136 Epoch 256/1000 2/2 [==============================] - ETA: 0s - loss: 0.2573 - accuracy: 0.8594 Epoch 256: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2573 - accuracy: 0.8594 - val_loss: 0.2953 - val_accuracy: 0.8136 Epoch 257/1000 2/2 [==============================] - ETA: 0s - loss: 0.2565 - accuracy: 0.8594 Epoch 257: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2565 - accuracy: 0.8594 - val_loss: 0.2960 - val_accuracy: 0.8136 Epoch 258/1000 2/2 [==============================] - ETA: 0s - loss: 0.2307 - accuracy: 0.8984 Epoch 258: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2307 - accuracy: 0.8984 - val_loss: 0.2969 - val_accuracy: 0.8136 Epoch 259/1000 2/2 [==============================] - ETA: 0s - loss: 0.2131 - accuracy: 0.8906 Epoch 259: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2131 - accuracy: 0.8906 - val_loss: 0.2983 - val_accuracy: 0.8136 Epoch 260/1000 2/2 [==============================] - ETA: 0s - loss: 0.2280 - accuracy: 0.8906 Epoch 260: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 902ms/step - loss: 0.2280 - accuracy: 0.8906 - val_loss: 0.2995 - val_accuracy: 0.8136 Epoch 261/1000 2/2 [==============================] - ETA: 0s - loss: 0.2603 - accuracy: 0.8828 Epoch 261: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2603 - accuracy: 0.8828 - val_loss: 0.3003 - val_accuracy: 0.8136 Epoch 262/1000 2/2 [==============================] - ETA: 0s - loss: 0.2892 - accuracy: 0.8375 Epoch 262: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2892 - accuracy: 0.8375 - val_loss: 0.3015 - val_accuracy: 0.8136 Epoch 263/1000 2/2 [==============================] - ETA: 0s - loss: 0.2298 - accuracy: 0.8875 Epoch 263: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2298 - accuracy: 0.8875 - val_loss: 0.3009 - val_accuracy: 0.8136 Epoch 264/1000 2/2 [==============================] - ETA: 0s - loss: 0.2543 - accuracy: 0.9062 Epoch 264: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 958ms/step - loss: 0.2543 - accuracy: 0.9062 - val_loss: 0.3001 - val_accuracy: 0.8136 Epoch 265/1000 2/2 [==============================] - ETA: 0s - loss: 0.2106 - accuracy: 0.9375 Epoch 265: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 814ms/step - loss: 0.2106 - accuracy: 0.9375 - val_loss: 0.2987 - val_accuracy: 0.8136 Epoch 266/1000 2/2 [==============================] - ETA: 0s - loss: 0.2526 - accuracy: 0.8828 Epoch 266: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2526 - accuracy: 0.8828 - val_loss: 0.2968 - val_accuracy: 0.8136 Epoch 267/1000 2/2 [==============================] - ETA: 0s - loss: 0.2803 - accuracy: 0.8500 Epoch 267: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 853ms/step - loss: 0.2803 - accuracy: 0.8500 - val_loss: 0.2950 - val_accuracy: 0.8136 Epoch 268/1000 2/2 [==============================] - ETA: 0s - loss: 0.2660 - accuracy: 0.8750 Epoch 268: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 806ms/step - loss: 0.2660 - accuracy: 0.8750 - val_loss: 0.2931 - val_accuracy: 0.8136 Epoch 269/1000 2/2 [==============================] - ETA: 0s - loss: 0.2276 - accuracy: 0.8828 Epoch 269: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2276 - accuracy: 0.8828 - val_loss: 0.2913 - val_accuracy: 0.8136 Epoch 270/1000 2/2 [==============================] - ETA: 0s - loss: 0.2157 - accuracy: 0.9125 Epoch 270: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 860ms/step - loss: 0.2157 - accuracy: 0.9125 - val_loss: 0.2903 - val_accuracy: 0.8136 Epoch 271/1000 2/2 [==============================] - ETA: 0s - loss: 0.1974 - accuracy: 0.9375 Epoch 271: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 898ms/step - loss: 0.1974 - accuracy: 0.9375 - val_loss: 0.2898 - val_accuracy: 0.8136 Epoch 272/1000 2/2 [==============================] - ETA: 0s - loss: 0.2401 - accuracy: 0.8750 Epoch 272: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 943ms/step - loss: 0.2401 - accuracy: 0.8750 - val_loss: 0.2889 - val_accuracy: 0.8136 Epoch 273/1000 2/2 [==============================] - ETA: 0s - loss: 0.2718 - accuracy: 0.8375 Epoch 273: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2718 - accuracy: 0.8375 - val_loss: 0.2886 - val_accuracy: 0.8136 Epoch 274/1000 2/2 [==============================] - ETA: 0s - loss: 0.2322 - accuracy: 0.8984 Epoch 274: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 930ms/step - loss: 0.2322 - accuracy: 0.8984 - val_loss: 0.2888 - val_accuracy: 0.8136 Epoch 275/1000 2/2 [==============================] - ETA: 0s - loss: 0.2986 - accuracy: 0.8438 Epoch 275: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 957ms/step - loss: 0.2986 - accuracy: 0.8438 - val_loss: 0.2887 - val_accuracy: 0.8136 Epoch 276/1000 2/2 [==============================] - ETA: 0s - loss: 0.2662 - accuracy: 0.8438 Epoch 276: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2662 - accuracy: 0.8438 - val_loss: 0.2889 - val_accuracy: 0.8136 Epoch 277/1000 2/2 [==============================] - ETA: 0s - loss: 0.2386 - accuracy: 0.8984 Epoch 277: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2386 - accuracy: 0.8984 - val_loss: 0.2899 - val_accuracy: 0.8136 Epoch 278/1000 2/2 [==============================] - ETA: 0s - loss: 0.2327 - accuracy: 0.9250 Epoch 278: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2327 - accuracy: 0.9250 - val_loss: 0.2929 - val_accuracy: 0.8136 Epoch 279/1000 2/2 [==============================] - ETA: 0s - loss: 0.2378 - accuracy: 0.8984 Epoch 279: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2378 - accuracy: 0.8984 - val_loss: 0.2975 - val_accuracy: 0.8136 Epoch 280/1000 2/2 [==============================] - ETA: 0s - loss: 0.2511 - accuracy: 0.8594 Epoch 280: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2511 - accuracy: 0.8594 - val_loss: 0.3020 - val_accuracy: 0.8136 Epoch 281/1000 2/2 [==============================] - ETA: 0s - loss: 0.2288 - accuracy: 0.8984 Epoch 281: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 916ms/step - loss: 0.2288 - accuracy: 0.8984 - val_loss: 0.3068 - val_accuracy: 0.8136 Epoch 282/1000 2/2 [==============================] - ETA: 0s - loss: 0.2698 - accuracy: 0.8359 Epoch 282: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2698 - accuracy: 0.8359 - val_loss: 0.3105 - val_accuracy: 0.8136 Epoch 283/1000 2/2 [==============================] - ETA: 0s - loss: 0.2154 - accuracy: 0.9141 Epoch 283: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2154 - accuracy: 0.9141 - val_loss: 0.3148 - val_accuracy: 0.7966 Epoch 284/1000 2/2 [==============================] - ETA: 0s - loss: 0.2556 - accuracy: 0.8500 Epoch 284: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 842ms/step - loss: 0.2556 - accuracy: 0.8500 - val_loss: 0.3190 - val_accuracy: 0.7627 Epoch 285/1000 2/2 [==============================] - ETA: 0s - loss: 0.2494 - accuracy: 0.8625 Epoch 285: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 2s/step - loss: 0.2494 - accuracy: 0.8625 - val_loss: 0.3235 - val_accuracy: 0.7458 Epoch 286/1000 2/2 [==============================] - ETA: 0s - loss: 0.2026 - accuracy: 0.8875 Epoch 286: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2026 - accuracy: 0.8875 - val_loss: 0.3262 - val_accuracy: 0.7627 Epoch 287/1000 2/2 [==============================] - ETA: 0s - loss: 0.2219 - accuracy: 0.8750 Epoch 287: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2219 - accuracy: 0.8750 - val_loss: 0.3293 - val_accuracy: 0.7627 Epoch 288/1000 2/2 [==============================] - ETA: 0s - loss: 0.2030 - accuracy: 0.9141 Epoch 288: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 909ms/step - loss: 0.2030 - accuracy: 0.9141 - val_loss: 0.3301 - val_accuracy: 0.7627 Epoch 289/1000 2/2 [==============================] - ETA: 0s - loss: 0.2287 - accuracy: 0.8906 Epoch 289: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 914ms/step - loss: 0.2287 - accuracy: 0.8906 - val_loss: 0.3300 - val_accuracy: 0.7627 Epoch 290/1000 2/2 [==============================] - ETA: 0s - loss: 0.2328 - accuracy: 0.8750 Epoch 290: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 950ms/step - loss: 0.2328 - accuracy: 0.8750 - val_loss: 0.3270 - val_accuracy: 0.7797 Epoch 291/1000 2/2 [==============================] - ETA: 0s - loss: 0.2071 - accuracy: 0.9141 Epoch 291: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2071 - accuracy: 0.9141 - val_loss: 0.3240 - val_accuracy: 0.7797 Epoch 292/1000 2/2 [==============================] - ETA: 0s - loss: 0.2068 - accuracy: 0.9000 Epoch 292: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2068 - accuracy: 0.9000 - val_loss: 0.3218 - val_accuracy: 0.7797 Epoch 293/1000 2/2 [==============================] - ETA: 0s - loss: 0.1890 - accuracy: 0.9250 Epoch 293: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 804ms/step - loss: 0.1890 - accuracy: 0.9250 - val_loss: 0.3199 - val_accuracy: 0.7797 Epoch 294/1000 2/2 [==============================] - ETA: 0s - loss: 0.2426 - accuracy: 0.8875 Epoch 294: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 790ms/step - loss: 0.2426 - accuracy: 0.8875 - val_loss: 0.3161 - val_accuracy: 0.8136 Epoch 295/1000 2/2 [==============================] - ETA: 0s - loss: 0.2291 - accuracy: 0.9125 Epoch 295: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2291 - accuracy: 0.9125 - val_loss: 0.3102 - val_accuracy: 0.8475 Epoch 296/1000 2/2 [==============================] - ETA: 0s - loss: 0.2617 - accuracy: 0.8500 Epoch 296: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 824ms/step - loss: 0.2617 - accuracy: 0.8500 - val_loss: 0.3041 - val_accuracy: 0.8305 Epoch 297/1000 2/2 [==============================] - ETA: 0s - loss: 0.1950 - accuracy: 0.9500 Epoch 297: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 818ms/step - loss: 0.1950 - accuracy: 0.9500 - val_loss: 0.2988 - val_accuracy: 0.8305 Epoch 298/1000 2/2 [==============================] - ETA: 0s - loss: 0.2231 - accuracy: 0.9141 Epoch 298: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2231 - accuracy: 0.9141 - val_loss: 0.2959 - val_accuracy: 0.8305 Epoch 299/1000 2/2 [==============================] - ETA: 0s - loss: 0.1917 - accuracy: 0.9000 Epoch 299: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1917 - accuracy: 0.9000 - val_loss: 0.2945 - val_accuracy: 0.8305 Epoch 300/1000 2/2 [==============================] - ETA: 0s - loss: 0.2121 - accuracy: 0.9000 Epoch 300: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 794ms/step - loss: 0.2121 - accuracy: 0.9000 - val_loss: 0.2938 - val_accuracy: 0.8305 Epoch 301/1000 2/2 [==============================] - ETA: 0s - loss: 0.2052 - accuracy: 0.8828 Epoch 301: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2052 - accuracy: 0.8828 - val_loss: 0.2929 - val_accuracy: 0.8305 Epoch 302/1000 2/2 [==============================] - ETA: 0s - loss: 0.1914 - accuracy: 0.9375 Epoch 302: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 795ms/step - loss: 0.1914 - accuracy: 0.9375 - val_loss: 0.2915 - val_accuracy: 0.8305 Epoch 303/1000 2/2 [==============================] - ETA: 0s - loss: 0.2616 - accuracy: 0.8250 Epoch 303: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 800ms/step - loss: 0.2616 - accuracy: 0.8250 - val_loss: 0.2906 - val_accuracy: 0.8305 Epoch 304/1000 2/2 [==============================] - ETA: 0s - loss: 0.2484 - accuracy: 0.8750 Epoch 304: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2484 - accuracy: 0.8750 - val_loss: 0.2926 - val_accuracy: 0.8305 Epoch 305/1000 2/2 [==============================] - ETA: 0s - loss: 0.2136 - accuracy: 0.9062 Epoch 305: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2136 - accuracy: 0.9062 - val_loss: 0.2943 - val_accuracy: 0.8305 Epoch 306/1000 2/2 [==============================] - ETA: 0s - loss: 0.2577 - accuracy: 0.8750 Epoch 306: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 792ms/step - loss: 0.2577 - accuracy: 0.8750 - val_loss: 0.2947 - val_accuracy: 0.8305 Epoch 307/1000 2/2 [==============================] - ETA: 0s - loss: 0.2036 - accuracy: 0.9297 Epoch 307: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2036 - accuracy: 0.9297 - val_loss: 0.2952 - val_accuracy: 0.8305 Epoch 308/1000 2/2 [==============================] - ETA: 0s - loss: 0.2358 - accuracy: 0.8594 Epoch 308: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 906ms/step - loss: 0.2358 - accuracy: 0.8594 - val_loss: 0.2963 - val_accuracy: 0.8305 Epoch 309/1000 2/2 [==============================] - ETA: 0s - loss: 0.2349 - accuracy: 0.9062 Epoch 309: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2349 - accuracy: 0.9062 - val_loss: 0.2975 - val_accuracy: 0.8305 Epoch 310/1000 2/2 [==============================] - ETA: 0s - loss: 0.2118 - accuracy: 0.8625 Epoch 310: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 808ms/step - loss: 0.2118 - accuracy: 0.8625 - val_loss: 0.2989 - val_accuracy: 0.8305 Epoch 311/1000 2/2 [==============================] - ETA: 0s - loss: 0.1725 - accuracy: 0.9000 Epoch 311: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1725 - accuracy: 0.9000 - val_loss: 0.2993 - val_accuracy: 0.8305 Epoch 312/1000 2/2 [==============================] - ETA: 0s - loss: 0.2201 - accuracy: 0.9125 Epoch 312: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2201 - accuracy: 0.9125 - val_loss: 0.3002 - val_accuracy: 0.8305 Epoch 313/1000 2/2 [==============================] - ETA: 0s - loss: 0.2136 - accuracy: 0.8750 Epoch 313: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2136 - accuracy: 0.8750 - val_loss: 0.3005 - val_accuracy: 0.8305 Epoch 314/1000 2/2 [==============================] - ETA: 0s - loss: 0.2057 - accuracy: 0.8906 Epoch 314: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 934ms/step - loss: 0.2057 - accuracy: 0.8906 - val_loss: 0.3016 - val_accuracy: 0.8305 Epoch 315/1000 2/2 [==============================] - ETA: 0s - loss: 0.2134 - accuracy: 0.8984 Epoch 315: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 968ms/step - loss: 0.2134 - accuracy: 0.8984 - val_loss: 0.3029 - val_accuracy: 0.8305 Epoch 316/1000 2/2 [==============================] - ETA: 0s - loss: 0.2028 - accuracy: 0.9375 Epoch 316: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2028 - accuracy: 0.9375 - val_loss: 0.3031 - val_accuracy: 0.8305 Epoch 317/1000 2/2 [==============================] - ETA: 0s - loss: 0.2105 - accuracy: 0.8750 Epoch 317: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2105 - accuracy: 0.8750 - val_loss: 0.3014 - val_accuracy: 0.8305 Epoch 318/1000 2/2 [==============================] - ETA: 0s - loss: 0.2106 - accuracy: 0.8984 Epoch 318: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 918ms/step - loss: 0.2106 - accuracy: 0.8984 - val_loss: 0.3000 - val_accuracy: 0.8305 Epoch 319/1000 2/2 [==============================] - ETA: 0s - loss: 0.1630 - accuracy: 0.9750 Epoch 319: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 796ms/step - loss: 0.1630 - accuracy: 0.9750 - val_loss: 0.3004 - val_accuracy: 0.8305 Epoch 320/1000 2/2 [==============================] - ETA: 0s - loss: 0.1539 - accuracy: 0.9500 Epoch 320: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 810ms/step - loss: 0.1539 - accuracy: 0.9500 - val_loss: 0.3006 - val_accuracy: 0.8305 Epoch 321/1000 2/2 [==============================] - ETA: 0s - loss: 0.2218 - accuracy: 0.8594 Epoch 321: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2218 - accuracy: 0.8594 - val_loss: 0.3013 - val_accuracy: 0.8305 Epoch 322/1000 2/2 [==============================] - ETA: 0s - loss: 0.2165 - accuracy: 0.9062 Epoch 322: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2165 - accuracy: 0.9062 - val_loss: 0.3022 - val_accuracy: 0.8305 Epoch 323/1000 2/2 [==============================] - ETA: 0s - loss: 0.1919 - accuracy: 0.9000 Epoch 323: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1919 - accuracy: 0.9000 - val_loss: 0.3030 - val_accuracy: 0.8305 Epoch 324/1000 2/2 [==============================] - ETA: 0s - loss: 0.1958 - accuracy: 0.9000 Epoch 324: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 850ms/step - loss: 0.1958 - accuracy: 0.9000 - val_loss: 0.3028 - val_accuracy: 0.8305 Epoch 325/1000 2/2 [==============================] - ETA: 0s - loss: 0.1868 - accuracy: 0.9000 Epoch 325: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 814ms/step - loss: 0.1868 - accuracy: 0.9000 - val_loss: 0.3007 - val_accuracy: 0.8305 Epoch 326/1000 2/2 [==============================] - ETA: 0s - loss: 0.2316 - accuracy: 0.9062 Epoch 326: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 941ms/step - loss: 0.2316 - accuracy: 0.9062 - val_loss: 0.2972 - val_accuracy: 0.8305 Epoch 327/1000 2/2 [==============================] - ETA: 0s - loss: 0.2059 - accuracy: 0.8875 Epoch 327: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2059 - accuracy: 0.8875 - val_loss: 0.2908 - val_accuracy: 0.8305 Epoch 328/1000 2/2 [==============================] - ETA: 0s - loss: 0.1977 - accuracy: 0.8906 Epoch 328: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 969ms/step - loss: 0.1977 - accuracy: 0.8906 - val_loss: 0.2869 - val_accuracy: 0.8305 Epoch 329/1000 2/2 [==============================] - ETA: 0s - loss: 0.2260 - accuracy: 0.8984 Epoch 329: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 992ms/step - loss: 0.2260 - accuracy: 0.8984 - val_loss: 0.2843 - val_accuracy: 0.8305 Epoch 330/1000 2/2 [==============================] - ETA: 0s - loss: 0.2437 - accuracy: 0.8625 Epoch 330: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2437 - accuracy: 0.8625 - val_loss: 0.2842 - val_accuracy: 0.8305 Epoch 331/1000 2/2 [==============================] - ETA: 0s - loss: 0.2069 - accuracy: 0.8984 Epoch 331: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 935ms/step - loss: 0.2069 - accuracy: 0.8984 - val_loss: 0.2851 - val_accuracy: 0.8305 Epoch 332/1000 2/2 [==============================] - ETA: 0s - loss: 0.1874 - accuracy: 0.9000 Epoch 332: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 869ms/step - loss: 0.1874 - accuracy: 0.9000 - val_loss: 0.2855 - val_accuracy: 0.8305 Epoch 333/1000 2/2 [==============================] - ETA: 0s - loss: 0.1848 - accuracy: 0.9125 Epoch 333: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 787ms/step - loss: 0.1848 - accuracy: 0.9125 - val_loss: 0.2884 - val_accuracy: 0.8305 Epoch 334/1000 2/2 [==============================] - ETA: 0s - loss: 0.2140 - accuracy: 0.8984 Epoch 334: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2140 - accuracy: 0.8984 - val_loss: 0.2922 - val_accuracy: 0.8305 Epoch 335/1000 2/2 [==============================] - ETA: 0s - loss: 0.2155 - accuracy: 0.8594 Epoch 335: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 998ms/step - loss: 0.2155 - accuracy: 0.8594 - val_loss: 0.2948 - val_accuracy: 0.8305 Epoch 336/1000 2/2 [==============================] - ETA: 0s - loss: 0.2458 - accuracy: 0.8625 Epoch 336: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 826ms/step - loss: 0.2458 - accuracy: 0.8625 - val_loss: 0.2973 - val_accuracy: 0.8305 Epoch 337/1000 2/2 [==============================] - ETA: 0s - loss: 0.1843 - accuracy: 0.9125 Epoch 337: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 812ms/step - loss: 0.1843 - accuracy: 0.9125 - val_loss: 0.3001 - val_accuracy: 0.8136 Epoch 338/1000 2/2 [==============================] - ETA: 0s - loss: 0.2171 - accuracy: 0.9000 Epoch 338: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 847ms/step - loss: 0.2171 - accuracy: 0.9000 - val_loss: 0.3006 - val_accuracy: 0.8136 Epoch 339/1000 2/2 [==============================] - ETA: 0s - loss: 0.2334 - accuracy: 0.8500 Epoch 339: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2334 - accuracy: 0.8500 - val_loss: 0.3007 - val_accuracy: 0.8136 Epoch 340/1000 2/2 [==============================] - ETA: 0s - loss: 0.1649 - accuracy: 0.9531 Epoch 340: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 921ms/step - loss: 0.1649 - accuracy: 0.9531 - val_loss: 0.3008 - val_accuracy: 0.8136 Epoch 341/1000 2/2 [==============================] - ETA: 0s - loss: 0.1953 - accuracy: 0.8984 Epoch 341: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1953 - accuracy: 0.8984 - val_loss: 0.3000 - val_accuracy: 0.8136 Epoch 342/1000 2/2 [==============================] - ETA: 0s - loss: 0.1953 - accuracy: 0.8875 Epoch 342: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 820ms/step - loss: 0.1953 - accuracy: 0.8875 - val_loss: 0.2995 - val_accuracy: 0.8136 Epoch 343/1000 2/2 [==============================] - ETA: 0s - loss: 0.2022 - accuracy: 0.8906 Epoch 343: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 931ms/step - loss: 0.2022 - accuracy: 0.8906 - val_loss: 0.2981 - val_accuracy: 0.8136 Epoch 344/1000 2/2 [==============================] - ETA: 0s - loss: 0.2112 - accuracy: 0.8875 Epoch 344: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2112 - accuracy: 0.8875 - val_loss: 0.2967 - val_accuracy: 0.8136 Epoch 345/1000 2/2 [==============================] - ETA: 0s - loss: 0.2026 - accuracy: 0.9125 Epoch 345: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2026 - accuracy: 0.9125 - val_loss: 0.2950 - val_accuracy: 0.8136 Epoch 346/1000 2/2 [==============================] - ETA: 0s - loss: 0.2523 - accuracy: 0.8500 Epoch 346: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2523 - accuracy: 0.8500 - val_loss: 0.2945 - val_accuracy: 0.8136 Epoch 347/1000 2/2 [==============================] - ETA: 0s - loss: 0.1992 - accuracy: 0.8906 Epoch 347: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1992 - accuracy: 0.8906 - val_loss: 0.2937 - val_accuracy: 0.8136 Epoch 348/1000 2/2 [==============================] - ETA: 0s - loss: 0.2214 - accuracy: 0.8906 Epoch 348: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2214 - accuracy: 0.8906 - val_loss: 0.2934 - val_accuracy: 0.8136 Epoch 349/1000 2/2 [==============================] - ETA: 0s - loss: 0.1557 - accuracy: 0.9375 Epoch 349: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1557 - accuracy: 0.9375 - val_loss: 0.2937 - val_accuracy: 0.8136 Epoch 350/1000 2/2 [==============================] - ETA: 0s - loss: 0.2254 - accuracy: 0.8828 Epoch 350: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2254 - accuracy: 0.8828 - val_loss: 0.2925 - val_accuracy: 0.8136 Epoch 351/1000 2/2 [==============================] - ETA: 0s - loss: 0.2194 - accuracy: 0.8906 Epoch 351: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 891ms/step - loss: 0.2194 - accuracy: 0.8906 - val_loss: 0.2909 - val_accuracy: 0.8136 Epoch 352/1000 2/2 [==============================] - ETA: 0s - loss: 0.2548 - accuracy: 0.8750 Epoch 352: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 963ms/step - loss: 0.2548 - accuracy: 0.8750 - val_loss: 0.2898 - val_accuracy: 0.8136 Epoch 353/1000 2/2 [==============================] - ETA: 0s - loss: 0.2142 - accuracy: 0.9062 Epoch 353: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2142 - accuracy: 0.9062 - val_loss: 0.2904 - val_accuracy: 0.8136 Epoch 354/1000 2/2 [==============================] - ETA: 0s - loss: 0.2285 - accuracy: 0.8984 Epoch 354: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2285 - accuracy: 0.8984 - val_loss: 0.2903 - val_accuracy: 0.8136 Epoch 355/1000 2/2 [==============================] - ETA: 0s - loss: 0.1971 - accuracy: 0.9250 Epoch 355: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 813ms/step - loss: 0.1971 - accuracy: 0.9250 - val_loss: 0.2898 - val_accuracy: 0.8136 Epoch 356/1000 2/2 [==============================] - ETA: 0s - loss: 0.1707 - accuracy: 0.9125 Epoch 356: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 804ms/step - loss: 0.1707 - accuracy: 0.9125 - val_loss: 0.2897 - val_accuracy: 0.7966 Epoch 357/1000 2/2 [==============================] - ETA: 0s - loss: 0.1891 - accuracy: 0.9297 Epoch 357: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1891 - accuracy: 0.9297 - val_loss: 0.2902 - val_accuracy: 0.7966 Epoch 358/1000 2/2 [==============================] - ETA: 0s - loss: 0.2287 - accuracy: 0.8906 Epoch 358: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 916ms/step - loss: 0.2287 - accuracy: 0.8906 - val_loss: 0.2905 - val_accuracy: 0.7966 Epoch 359/1000 2/2 [==============================] - ETA: 0s - loss: 0.1855 - accuracy: 0.9000 Epoch 359: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 808ms/step - loss: 0.1855 - accuracy: 0.9000 - val_loss: 0.2893 - val_accuracy: 0.7966 Epoch 360/1000 2/2 [==============================] - ETA: 0s - loss: 0.1888 - accuracy: 0.9000 Epoch 360: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1888 - accuracy: 0.9000 - val_loss: 0.2888 - val_accuracy: 0.7966 Epoch 361/1000 2/2 [==============================] - ETA: 0s - loss: 0.1960 - accuracy: 0.8906 Epoch 361: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 937ms/step - loss: 0.1960 - accuracy: 0.8906 - val_loss: 0.2888 - val_accuracy: 0.8136 Epoch 362/1000 2/2 [==============================] - ETA: 0s - loss: 0.1805 - accuracy: 0.9219 Epoch 362: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1805 - accuracy: 0.9219 - val_loss: 0.2886 - val_accuracy: 0.8136 Epoch 363/1000 2/2 [==============================] - ETA: 0s - loss: 0.2204 - accuracy: 0.8438 Epoch 363: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2204 - accuracy: 0.8438 - val_loss: 0.2874 - val_accuracy: 0.8136 Epoch 364/1000 2/2 [==============================] - ETA: 0s - loss: 0.2377 - accuracy: 0.8750 Epoch 364: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2377 - accuracy: 0.8750 - val_loss: 0.2852 - val_accuracy: 0.8305 Epoch 365/1000 2/2 [==============================] - ETA: 0s - loss: 0.2509 - accuracy: 0.8359 Epoch 365: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2509 - accuracy: 0.8359 - val_loss: 0.2844 - val_accuracy: 0.8305 Epoch 366/1000 2/2 [==============================] - ETA: 0s - loss: 0.2157 - accuracy: 0.9062 Epoch 366: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 937ms/step - loss: 0.2157 - accuracy: 0.9062 - val_loss: 0.2826 - val_accuracy: 0.8305 Epoch 367/1000 2/2 [==============================] - ETA: 0s - loss: 0.2052 - accuracy: 0.9062 Epoch 367: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2052 - accuracy: 0.9062 - val_loss: 0.2812 - val_accuracy: 0.8305 Epoch 368/1000 2/2 [==============================] - ETA: 0s - loss: 0.1466 - accuracy: 0.9766 Epoch 368: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 914ms/step - loss: 0.1466 - accuracy: 0.9766 - val_loss: 0.2792 - val_accuracy: 0.8475 Epoch 369/1000 2/2 [==============================] - ETA: 0s - loss: 0.2298 - accuracy: 0.8672 Epoch 369: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2298 - accuracy: 0.8672 - val_loss: 0.2770 - val_accuracy: 0.8305 Epoch 370/1000 2/2 [==============================] - ETA: 0s - loss: 0.2274 - accuracy: 0.8984 Epoch 370: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2274 - accuracy: 0.8984 - val_loss: 0.2750 - val_accuracy: 0.8305 Epoch 371/1000 2/2 [==============================] - ETA: 0s - loss: 0.2067 - accuracy: 0.8875 Epoch 371: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 811ms/step - loss: 0.2067 - accuracy: 0.8875 - val_loss: 0.2723 - val_accuracy: 0.8305 Epoch 372/1000 2/2 [==============================] - ETA: 0s - loss: 0.1376 - accuracy: 0.9250 Epoch 372: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 806ms/step - loss: 0.1376 - accuracy: 0.9250 - val_loss: 0.2710 - val_accuracy: 0.8305 Epoch 373/1000 2/2 [==============================] - ETA: 0s - loss: 0.1334 - accuracy: 0.9766 Epoch 373: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1334 - accuracy: 0.9766 - val_loss: 0.2704 - val_accuracy: 0.8305 Epoch 374/1000 2/2 [==============================] - ETA: 0s - loss: 0.1969 - accuracy: 0.9062 Epoch 374: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1969 - accuracy: 0.9062 - val_loss: 0.2690 - val_accuracy: 0.8305 Epoch 375/1000 2/2 [==============================] - ETA: 0s - loss: 0.1532 - accuracy: 0.9250 Epoch 375: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1532 - accuracy: 0.9250 - val_loss: 0.2681 - val_accuracy: 0.8305 Epoch 376/1000 2/2 [==============================] - ETA: 0s - loss: 0.1761 - accuracy: 0.9375 Epoch 376: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1761 - accuracy: 0.9375 - val_loss: 0.2677 - val_accuracy: 0.8305 Epoch 377/1000 2/2 [==============================] - ETA: 0s - loss: 0.1927 - accuracy: 0.9219 Epoch 377: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 916ms/step - loss: 0.1927 - accuracy: 0.9219 - val_loss: 0.2674 - val_accuracy: 0.8305 Epoch 378/1000 2/2 [==============================] - ETA: 0s - loss: 0.1983 - accuracy: 0.9297 Epoch 378: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1983 - accuracy: 0.9297 - val_loss: 0.2671 - val_accuracy: 0.8305 Epoch 379/1000 2/2 [==============================] - ETA: 0s - loss: 0.1826 - accuracy: 0.9375 Epoch 379: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 806ms/step - loss: 0.1826 - accuracy: 0.9375 - val_loss: 0.2670 - val_accuracy: 0.8305 Epoch 380/1000 2/2 [==============================] - ETA: 0s - loss: 0.1814 - accuracy: 0.8875 Epoch 380: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 803ms/step - loss: 0.1814 - accuracy: 0.8875 - val_loss: 0.2679 - val_accuracy: 0.8305 Epoch 381/1000 2/2 [==============================] - ETA: 0s - loss: 0.1725 - accuracy: 0.9125 Epoch 381: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 797ms/step - loss: 0.1725 - accuracy: 0.9125 - val_loss: 0.2694 - val_accuracy: 0.8305 Epoch 382/1000 2/2 [==============================] - ETA: 0s - loss: 0.1709 - accuracy: 0.9219 Epoch 382: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 948ms/step - loss: 0.1709 - accuracy: 0.9219 - val_loss: 0.2718 - val_accuracy: 0.8305 Epoch 383/1000 2/2 [==============================] - ETA: 0s - loss: 0.1744 - accuracy: 0.9125 Epoch 383: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 988ms/step - loss: 0.1744 - accuracy: 0.9125 - val_loss: 0.2752 - val_accuracy: 0.8305 Epoch 384/1000 2/2 [==============================] - ETA: 0s - loss: 0.1834 - accuracy: 0.9250 Epoch 384: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 815ms/step - loss: 0.1834 - accuracy: 0.9250 - val_loss: 0.2793 - val_accuracy: 0.8136 Epoch 385/1000 2/2 [==============================] - ETA: 0s - loss: 0.1865 - accuracy: 0.9297 Epoch 385: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1865 - accuracy: 0.9297 - val_loss: 0.2834 - val_accuracy: 0.8136 Epoch 386/1000 2/2 [==============================] - ETA: 0s - loss: 0.2197 - accuracy: 0.8750 Epoch 386: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2197 - accuracy: 0.8750 - val_loss: 0.2869 - val_accuracy: 0.8305 Epoch 387/1000 2/2 [==============================] - ETA: 0s - loss: 0.1715 - accuracy: 0.9141 Epoch 387: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 938ms/step - loss: 0.1715 - accuracy: 0.9141 - val_loss: 0.2888 - val_accuracy: 0.8305 Epoch 388/1000 2/2 [==============================] - ETA: 0s - loss: 0.1848 - accuracy: 0.8750 Epoch 388: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 815ms/step - loss: 0.1848 - accuracy: 0.8750 - val_loss: 0.2891 - val_accuracy: 0.8305 Epoch 389/1000 2/2 [==============================] - ETA: 0s - loss: 0.2054 - accuracy: 0.9219 Epoch 389: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2054 - accuracy: 0.9219 - val_loss: 0.2882 - val_accuracy: 0.8305 Epoch 390/1000 2/2 [==============================] - ETA: 0s - loss: 0.1498 - accuracy: 0.9500 Epoch 390: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1498 - accuracy: 0.9500 - val_loss: 0.2871 - val_accuracy: 0.8305 Epoch 391/1000 2/2 [==============================] - ETA: 0s - loss: 0.1969 - accuracy: 0.9125 Epoch 391: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 796ms/step - loss: 0.1969 - accuracy: 0.9125 - val_loss: 0.2851 - val_accuracy: 0.8305 Epoch 392/1000 2/2 [==============================] - ETA: 0s - loss: 0.1831 - accuracy: 0.9125 Epoch 392: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1831 - accuracy: 0.9125 - val_loss: 0.2831 - val_accuracy: 0.8305 Epoch 393/1000 2/2 [==============================] - ETA: 0s - loss: 0.2146 - accuracy: 0.8625 Epoch 393: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 811ms/step - loss: 0.2146 - accuracy: 0.8625 - val_loss: 0.2820 - val_accuracy: 0.8305 Epoch 394/1000 2/2 [==============================] - ETA: 0s - loss: 0.1512 - accuracy: 0.9375 Epoch 394: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 797ms/step - loss: 0.1512 - accuracy: 0.9375 - val_loss: 0.2816 - val_accuracy: 0.8305 Epoch 395/1000 2/2 [==============================] - ETA: 0s - loss: 0.1887 - accuracy: 0.8984 Epoch 395: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1887 - accuracy: 0.8984 - val_loss: 0.2810 - val_accuracy: 0.8305 Epoch 396/1000 2/2 [==============================] - ETA: 0s - loss: 0.1964 - accuracy: 0.9250 Epoch 396: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 805ms/step - loss: 0.1964 - accuracy: 0.9250 - val_loss: 0.2817 - val_accuracy: 0.8305 Epoch 397/1000 2/2 [==============================] - ETA: 0s - loss: 0.1661 - accuracy: 0.9219 Epoch 397: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 969ms/step - loss: 0.1661 - accuracy: 0.9219 - val_loss: 0.2819 - val_accuracy: 0.8136 Epoch 398/1000 2/2 [==============================] - ETA: 0s - loss: 0.1866 - accuracy: 0.9219 Epoch 398: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1866 - accuracy: 0.9219 - val_loss: 0.2835 - val_accuracy: 0.8136 Epoch 399/1000 2/2 [==============================] - ETA: 0s - loss: 0.1613 - accuracy: 0.9453 Epoch 399: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1613 - accuracy: 0.9453 - val_loss: 0.2854 - val_accuracy: 0.8136 Epoch 400/1000 2/2 [==============================] - ETA: 0s - loss: 0.1936 - accuracy: 0.9000 Epoch 400: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1936 - accuracy: 0.9000 - val_loss: 0.2866 - val_accuracy: 0.8136 Epoch 401/1000 2/2 [==============================] - ETA: 0s - loss: 0.1871 - accuracy: 0.9219 Epoch 401: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1871 - accuracy: 0.9219 - val_loss: 0.2878 - val_accuracy: 0.7966 Epoch 402/1000 2/2 [==============================] - ETA: 0s - loss: 0.1557 - accuracy: 0.9375 Epoch 402: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1557 - accuracy: 0.9375 - val_loss: 0.2889 - val_accuracy: 0.7966 Epoch 403/1000 2/2 [==============================] - ETA: 0s - loss: 0.1863 - accuracy: 0.9125 Epoch 403: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 822ms/step - loss: 0.1863 - accuracy: 0.9125 - val_loss: 0.2906 - val_accuracy: 0.8136 Epoch 404/1000 2/2 [==============================] - ETA: 0s - loss: 0.1650 - accuracy: 0.9297 Epoch 404: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 948ms/step - loss: 0.1650 - accuracy: 0.9297 - val_loss: 0.2921 - val_accuracy: 0.8136 Epoch 405/1000 2/2 [==============================] - ETA: 0s - loss: 0.1796 - accuracy: 0.9141 Epoch 405: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 956ms/step - loss: 0.1796 - accuracy: 0.9141 - val_loss: 0.2936 - val_accuracy: 0.8136 Epoch 406/1000 2/2 [==============================] - ETA: 0s - loss: 0.1615 - accuracy: 0.9531 Epoch 406: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1615 - accuracy: 0.9531 - val_loss: 0.2949 - val_accuracy: 0.8136 Epoch 407/1000 2/2 [==============================] - ETA: 0s - loss: 0.1877 - accuracy: 0.9141 Epoch 407: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1877 - accuracy: 0.9141 - val_loss: 0.2954 - val_accuracy: 0.8136 Epoch 408/1000 2/2 [==============================] - ETA: 0s - loss: 0.2060 - accuracy: 0.8875 Epoch 408: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2060 - accuracy: 0.8875 - val_loss: 0.2953 - val_accuracy: 0.8136 Epoch 409/1000 2/2 [==============================] - ETA: 0s - loss: 0.1334 - accuracy: 0.9688 Epoch 409: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 943ms/step - loss: 0.1334 - accuracy: 0.9688 - val_loss: 0.2956 - val_accuracy: 0.8136 Epoch 410/1000 2/2 [==============================] - ETA: 0s - loss: 0.1217 - accuracy: 0.9500 Epoch 410: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 818ms/step - loss: 0.1217 - accuracy: 0.9500 - val_loss: 0.2970 - val_accuracy: 0.8136 Epoch 411/1000 2/2 [==============================] - ETA: 0s - loss: 0.1435 - accuracy: 0.9609 Epoch 411: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 956ms/step - loss: 0.1435 - accuracy: 0.9609 - val_loss: 0.2978 - val_accuracy: 0.8136 Epoch 412/1000 2/2 [==============================] - ETA: 0s - loss: 0.2369 - accuracy: 0.8875 Epoch 412: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2369 - accuracy: 0.8875 - val_loss: 0.2975 - val_accuracy: 0.8136 Epoch 413/1000 2/2 [==============================] - ETA: 0s - loss: 0.1769 - accuracy: 0.9062 Epoch 413: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 925ms/step - loss: 0.1769 - accuracy: 0.9062 - val_loss: 0.2976 - val_accuracy: 0.8136 Epoch 414/1000 2/2 [==============================] - ETA: 0s - loss: 0.1529 - accuracy: 0.9297 Epoch 414: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1529 - accuracy: 0.9297 - val_loss: 0.2980 - val_accuracy: 0.8136 Epoch 415/1000 2/2 [==============================] - ETA: 0s - loss: 0.1929 - accuracy: 0.9141 Epoch 415: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1929 - accuracy: 0.9141 - val_loss: 0.2981 - val_accuracy: 0.8136 Epoch 416/1000 2/2 [==============================] - ETA: 0s - loss: 0.1664 - accuracy: 0.9375 Epoch 416: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1664 - accuracy: 0.9375 - val_loss: 0.2983 - val_accuracy: 0.8136 Epoch 417/1000 2/2 [==============================] - ETA: 0s - loss: 0.1497 - accuracy: 0.9500 Epoch 417: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 802ms/step - loss: 0.1497 - accuracy: 0.9500 - val_loss: 0.2982 - val_accuracy: 0.8136 Epoch 418/1000 2/2 [==============================] - ETA: 0s - loss: 0.1411 - accuracy: 0.9500 Epoch 418: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1411 - accuracy: 0.9500 - val_loss: 0.2985 - val_accuracy: 0.8136 Epoch 419/1000 2/2 [==============================] - ETA: 0s - loss: 0.2223 - accuracy: 0.8750 Epoch 419: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2223 - accuracy: 0.8750 - val_loss: 0.2979 - val_accuracy: 0.8136 Epoch 420/1000 2/2 [==============================] - ETA: 0s - loss: 0.2264 - accuracy: 0.8750 Epoch 420: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 940ms/step - loss: 0.2264 - accuracy: 0.8750 - val_loss: 0.2962 - val_accuracy: 0.8136 Epoch 421/1000 2/2 [==============================] - ETA: 0s - loss: 0.1621 - accuracy: 0.9219 Epoch 421: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 898ms/step - loss: 0.1621 - accuracy: 0.9219 - val_loss: 0.2952 - val_accuracy: 0.8136 Epoch 422/1000 2/2 [==============================] - ETA: 0s - loss: 0.1696 - accuracy: 0.9500 Epoch 422: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1696 - accuracy: 0.9500 - val_loss: 0.2945 - val_accuracy: 0.8305 Epoch 423/1000 2/2 [==============================] - ETA: 0s - loss: 0.2096 - accuracy: 0.8984 Epoch 423: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2096 - accuracy: 0.8984 - val_loss: 0.2934 - val_accuracy: 0.8305 Epoch 424/1000 2/2 [==============================] - ETA: 0s - loss: 0.2152 - accuracy: 0.9000 Epoch 424: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2152 - accuracy: 0.9000 - val_loss: 0.2935 - val_accuracy: 0.8305 Epoch 425/1000 2/2 [==============================] - ETA: 0s - loss: 0.1662 - accuracy: 0.9297 Epoch 425: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 902ms/step - loss: 0.1662 - accuracy: 0.9297 - val_loss: 0.2931 - val_accuracy: 0.8305 Epoch 426/1000 2/2 [==============================] - ETA: 0s - loss: 0.1505 - accuracy: 0.9297 Epoch 426: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 904ms/step - loss: 0.1505 - accuracy: 0.9297 - val_loss: 0.2917 - val_accuracy: 0.8305 Epoch 427/1000 2/2 [==============================] - ETA: 0s - loss: 0.1576 - accuracy: 0.9375 Epoch 427: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1576 - accuracy: 0.9375 - val_loss: 0.2896 - val_accuracy: 0.8305 Epoch 428/1000 2/2 [==============================] - ETA: 0s - loss: 0.2311 - accuracy: 0.8625 Epoch 428: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 800ms/step - loss: 0.2311 - accuracy: 0.8625 - val_loss: 0.2872 - val_accuracy: 0.8305 Epoch 429/1000 2/2 [==============================] - ETA: 0s - loss: 0.1310 - accuracy: 0.9125 Epoch 429: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 815ms/step - loss: 0.1310 - accuracy: 0.9125 - val_loss: 0.2852 - val_accuracy: 0.8305 Epoch 430/1000 2/2 [==============================] - ETA: 0s - loss: 0.1362 - accuracy: 0.9625 Epoch 430: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 809ms/step - loss: 0.1362 - accuracy: 0.9625 - val_loss: 0.2846 - val_accuracy: 0.8305 Epoch 431/1000 2/2 [==============================] - ETA: 0s - loss: 0.1907 - accuracy: 0.8672 Epoch 431: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 970ms/step - loss: 0.1907 - accuracy: 0.8672 - val_loss: 0.2838 - val_accuracy: 0.8305 Epoch 432/1000 2/2 [==============================] - ETA: 0s - loss: 0.1620 - accuracy: 0.9375 Epoch 432: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1620 - accuracy: 0.9375 - val_loss: 0.2835 - val_accuracy: 0.8305 Epoch 433/1000 2/2 [==============================] - ETA: 0s - loss: 0.1835 - accuracy: 0.9000 Epoch 433: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 804ms/step - loss: 0.1835 - accuracy: 0.9000 - val_loss: 0.2827 - val_accuracy: 0.8305 Epoch 434/1000 2/2 [==============================] - ETA: 0s - loss: 0.1855 - accuracy: 0.8875 Epoch 434: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 819ms/step - loss: 0.1855 - accuracy: 0.8875 - val_loss: 0.2822 - val_accuracy: 0.8305 Epoch 435/1000 2/2 [==============================] - ETA: 0s - loss: 0.1618 - accuracy: 0.9453 Epoch 435: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1618 - accuracy: 0.9453 - val_loss: 0.2819 - val_accuracy: 0.8305 Epoch 436/1000 2/2 [==============================] - ETA: 0s - loss: 0.1945 - accuracy: 0.9000 Epoch 436: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 824ms/step - loss: 0.1945 - accuracy: 0.9000 - val_loss: 0.2820 - val_accuracy: 0.8305 Epoch 437/1000 2/2 [==============================] - ETA: 0s - loss: 0.1356 - accuracy: 0.9766 Epoch 437: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1356 - accuracy: 0.9766 - val_loss: 0.2816 - val_accuracy: 0.8305 Epoch 438/1000 2/2 [==============================] - ETA: 0s - loss: 0.1677 - accuracy: 0.9125 Epoch 438: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1677 - accuracy: 0.9125 - val_loss: 0.2828 - val_accuracy: 0.8305 Epoch 439/1000 2/2 [==============================] - ETA: 0s - loss: 0.1504 - accuracy: 0.9219 Epoch 439: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 953ms/step - loss: 0.1504 - accuracy: 0.9219 - val_loss: 0.2843 - val_accuracy: 0.8305 Epoch 440/1000 2/2 [==============================] - ETA: 0s - loss: 0.2032 - accuracy: 0.8875 Epoch 440: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 842ms/step - loss: 0.2032 - accuracy: 0.8875 - val_loss: 0.2862 - val_accuracy: 0.8305 Epoch 441/1000 2/2 [==============================] - ETA: 0s - loss: 0.1492 - accuracy: 0.9625 Epoch 441: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 815ms/step - loss: 0.1492 - accuracy: 0.9625 - val_loss: 0.2884 - val_accuracy: 0.8305 Epoch 442/1000 2/2 [==============================] - ETA: 0s - loss: 0.1689 - accuracy: 0.9125 Epoch 442: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 819ms/step - loss: 0.1689 - accuracy: 0.9125 - val_loss: 0.2880 - val_accuracy: 0.8305 Epoch 443/1000 2/2 [==============================] - ETA: 0s - loss: 0.1659 - accuracy: 0.9250 Epoch 443: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1659 - accuracy: 0.9250 - val_loss: 0.2883 - val_accuracy: 0.8305 Epoch 444/1000 2/2 [==============================] - ETA: 0s - loss: 0.2104 - accuracy: 0.8828 Epoch 444: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 949ms/step - loss: 0.2104 - accuracy: 0.8828 - val_loss: 0.2863 - val_accuracy: 0.8305 Epoch 445/1000 2/2 [==============================] - ETA: 0s - loss: 0.1544 - accuracy: 0.9219 Epoch 445: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 942ms/step - loss: 0.1544 - accuracy: 0.9219 - val_loss: 0.2832 - val_accuracy: 0.8305 Epoch 446/1000 2/2 [==============================] - ETA: 0s - loss: 0.1321 - accuracy: 0.9766 Epoch 446: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 938ms/step - loss: 0.1321 - accuracy: 0.9766 - val_loss: 0.2813 - val_accuracy: 0.8305 Epoch 447/1000 2/2 [==============================] - ETA: 0s - loss: 0.1680 - accuracy: 0.9125 Epoch 447: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1680 - accuracy: 0.9125 - val_loss: 0.2811 - val_accuracy: 0.8136 Epoch 448/1000 2/2 [==============================] - ETA: 0s - loss: 0.1816 - accuracy: 0.9141 Epoch 448: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1816 - accuracy: 0.9141 - val_loss: 0.2806 - val_accuracy: 0.8136 Epoch 449/1000 2/2 [==============================] - ETA: 0s - loss: 0.1797 - accuracy: 0.9000 Epoch 449: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1797 - accuracy: 0.9000 - val_loss: 0.2814 - val_accuracy: 0.8136 Epoch 450/1000 2/2 [==============================] - ETA: 0s - loss: 0.1986 - accuracy: 0.8750 Epoch 450: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1986 - accuracy: 0.8750 - val_loss: 0.2840 - val_accuracy: 0.8136 Epoch 451/1000 2/2 [==============================] - ETA: 0s - loss: 0.1813 - accuracy: 0.8984 Epoch 451: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1813 - accuracy: 0.8984 - val_loss: 0.2866 - val_accuracy: 0.8136 Epoch 452/1000 2/2 [==============================] - ETA: 0s - loss: 0.2064 - accuracy: 0.8375 Epoch 452: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 833ms/step - loss: 0.2064 - accuracy: 0.8375 - val_loss: 0.2891 - val_accuracy: 0.8136 Epoch 453/1000 2/2 [==============================] - ETA: 0s - loss: 0.1394 - accuracy: 0.9625 Epoch 453: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 831ms/step - loss: 0.1394 - accuracy: 0.9625 - val_loss: 0.2909 - val_accuracy: 0.8136 Epoch 454/1000 2/2 [==============================] - ETA: 0s - loss: 0.1555 - accuracy: 0.9375 Epoch 454: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1555 - accuracy: 0.9375 - val_loss: 0.2903 - val_accuracy: 0.8136 Epoch 455/1000 2/2 [==============================] - ETA: 0s - loss: 0.1647 - accuracy: 0.9375 Epoch 455: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 874ms/step - loss: 0.1647 - accuracy: 0.9375 - val_loss: 0.2888 - val_accuracy: 0.8136 Epoch 456/1000 2/2 [==============================] - ETA: 0s - loss: 0.2253 - accuracy: 0.8625 Epoch 456: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2253 - accuracy: 0.8625 - val_loss: 0.2889 - val_accuracy: 0.8136 Epoch 457/1000 2/2 [==============================] - ETA: 0s - loss: 0.1515 - accuracy: 0.9625 Epoch 457: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1515 - accuracy: 0.9625 - val_loss: 0.2885 - val_accuracy: 0.8136 Epoch 458/1000 2/2 [==============================] - ETA: 0s - loss: 0.1796 - accuracy: 0.9141 Epoch 458: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1796 - accuracy: 0.9141 - val_loss: 0.2875 - val_accuracy: 0.8136 Epoch 459/1000 2/2 [==============================] - ETA: 0s - loss: 0.1726 - accuracy: 0.9000 Epoch 459: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1726 - accuracy: 0.9000 - val_loss: 0.2845 - val_accuracy: 0.8136 Epoch 460/1000 2/2 [==============================] - ETA: 0s - loss: 0.1235 - accuracy: 0.9500 Epoch 460: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1235 - accuracy: 0.9500 - val_loss: 0.2820 - val_accuracy: 0.8136 Epoch 461/1000 2/2 [==============================] - ETA: 0s - loss: 0.1356 - accuracy: 0.9375 Epoch 461: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1356 - accuracy: 0.9375 - val_loss: 0.2795 - val_accuracy: 0.8136 Epoch 462/1000 2/2 [==============================] - ETA: 0s - loss: 0.1549 - accuracy: 0.9625 Epoch 462: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1549 - accuracy: 0.9625 - val_loss: 0.2786 - val_accuracy: 0.8136 Epoch 463/1000 2/2 [==============================] - ETA: 0s - loss: 0.1813 - accuracy: 0.9141 Epoch 463: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 936ms/step - loss: 0.1813 - accuracy: 0.9141 - val_loss: 0.2789 - val_accuracy: 0.8305 Epoch 464/1000 2/2 [==============================] - ETA: 0s - loss: 0.1662 - accuracy: 0.9375 Epoch 464: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1662 - accuracy: 0.9375 - val_loss: 0.2788 - val_accuracy: 0.8305 Epoch 465/1000 2/2 [==============================] - ETA: 0s - loss: 0.1256 - accuracy: 0.9750 Epoch 465: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 833ms/step - loss: 0.1256 - accuracy: 0.9750 - val_loss: 0.2806 - val_accuracy: 0.8305 Epoch 466/1000 2/2 [==============================] - ETA: 0s - loss: 0.1848 - accuracy: 0.9141 Epoch 466: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1848 - accuracy: 0.9141 - val_loss: 0.2832 - val_accuracy: 0.8136 Epoch 467/1000 2/2 [==============================] - ETA: 0s - loss: 0.1815 - accuracy: 0.9219 Epoch 467: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 932ms/step - loss: 0.1815 - accuracy: 0.9219 - val_loss: 0.2864 - val_accuracy: 0.8136 Epoch 468/1000 2/2 [==============================] - ETA: 0s - loss: 0.1715 - accuracy: 0.8906 Epoch 468: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1715 - accuracy: 0.8906 - val_loss: 0.2882 - val_accuracy: 0.8136 Epoch 469/1000 2/2 [==============================] - ETA: 0s - loss: 0.1390 - accuracy: 0.9375 Epoch 469: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 969ms/step - loss: 0.1390 - accuracy: 0.9375 - val_loss: 0.2885 - val_accuracy: 0.8136 Epoch 470/1000 2/2 [==============================] - ETA: 0s - loss: 0.1557 - accuracy: 0.9000 Epoch 470: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 808ms/step - loss: 0.1557 - accuracy: 0.9000 - val_loss: 0.2893 - val_accuracy: 0.8136 Epoch 471/1000 2/2 [==============================] - ETA: 0s - loss: 0.1416 - accuracy: 0.9375 Epoch 471: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1416 - accuracy: 0.9375 - val_loss: 0.2901 - val_accuracy: 0.8136 Epoch 472/1000 2/2 [==============================] - ETA: 0s - loss: 0.1847 - accuracy: 0.9000 Epoch 472: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 875ms/step - loss: 0.1847 - accuracy: 0.9000 - val_loss: 0.2897 - val_accuracy: 0.8136 Epoch 473/1000 2/2 [==============================] - ETA: 0s - loss: 0.1655 - accuracy: 0.9297 Epoch 473: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 953ms/step - loss: 0.1655 - accuracy: 0.9297 - val_loss: 0.2874 - val_accuracy: 0.8136 Epoch 474/1000 2/2 [==============================] - ETA: 0s - loss: 0.1800 - accuracy: 0.9141 Epoch 474: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 923ms/step - loss: 0.1800 - accuracy: 0.9141 - val_loss: 0.2858 - val_accuracy: 0.8136 Epoch 475/1000 2/2 [==============================] - ETA: 0s - loss: 0.1262 - accuracy: 0.9453 Epoch 475: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 993ms/step - loss: 0.1262 - accuracy: 0.9453 - val_loss: 0.2833 - val_accuracy: 0.8305 Epoch 476/1000 2/2 [==============================] - ETA: 0s - loss: 0.2006 - accuracy: 0.8906 Epoch 476: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 930ms/step - loss: 0.2006 - accuracy: 0.8906 - val_loss: 0.2805 - val_accuracy: 0.8305 Epoch 477/1000 2/2 [==============================] - ETA: 0s - loss: 0.1352 - accuracy: 0.9609 Epoch 477: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 925ms/step - loss: 0.1352 - accuracy: 0.9609 - val_loss: 0.2774 - val_accuracy: 0.8305 Epoch 478/1000 2/2 [==============================] - ETA: 0s - loss: 0.1754 - accuracy: 0.8906 Epoch 478: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1754 - accuracy: 0.8906 - val_loss: 0.2742 - val_accuracy: 0.8305 Epoch 479/1000 2/2 [==============================] - ETA: 0s - loss: 0.1439 - accuracy: 0.9531 Epoch 479: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 920ms/step - loss: 0.1439 - accuracy: 0.9531 - val_loss: 0.2717 - val_accuracy: 0.8305 Epoch 480/1000 2/2 [==============================] - ETA: 0s - loss: 0.1415 - accuracy: 0.9531 Epoch 480: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1415 - accuracy: 0.9531 - val_loss: 0.2691 - val_accuracy: 0.8305 Epoch 481/1000 2/2 [==============================] - ETA: 0s - loss: 0.1797 - accuracy: 0.9062 Epoch 481: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1797 - accuracy: 0.9062 - val_loss: 0.2675 - val_accuracy: 0.8305 Epoch 482/1000 2/2 [==============================] - ETA: 0s - loss: 0.1773 - accuracy: 0.9000 Epoch 482: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1773 - accuracy: 0.9000 - val_loss: 0.2663 - val_accuracy: 0.8305 Epoch 483/1000 2/2 [==============================] - ETA: 0s - loss: 0.1369 - accuracy: 0.9375 Epoch 483: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1369 - accuracy: 0.9375 - val_loss: 0.2664 - val_accuracy: 0.8305 Epoch 484/1000 2/2 [==============================] - ETA: 0s - loss: 0.1577 - accuracy: 0.9141 Epoch 484: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1577 - accuracy: 0.9141 - val_loss: 0.2667 - val_accuracy: 0.8305 Epoch 485/1000 2/2 [==============================] - ETA: 0s - loss: 0.1333 - accuracy: 0.9531 Epoch 485: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 956ms/step - loss: 0.1333 - accuracy: 0.9531 - val_loss: 0.2676 - val_accuracy: 0.8305 Epoch 486/1000 2/2 [==============================] - ETA: 0s - loss: 0.1250 - accuracy: 0.9625 Epoch 486: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 825ms/step - loss: 0.1250 - accuracy: 0.9625 - val_loss: 0.2692 - val_accuracy: 0.8305 Epoch 487/1000 2/2 [==============================] - ETA: 0s - loss: 0.1775 - accuracy: 0.8875 Epoch 487: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1775 - accuracy: 0.8875 - val_loss: 0.2708 - val_accuracy: 0.8305 Epoch 488/1000 2/2 [==============================] - ETA: 0s - loss: 0.1744 - accuracy: 0.9297 Epoch 488: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1744 - accuracy: 0.9297 - val_loss: 0.2726 - val_accuracy: 0.8305 Epoch 489/1000 2/2 [==============================] - ETA: 0s - loss: 0.1200 - accuracy: 0.9500 Epoch 489: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1200 - accuracy: 0.9500 - val_loss: 0.2729 - val_accuracy: 0.8305 Epoch 490/1000 2/2 [==============================] - ETA: 0s - loss: 0.1249 - accuracy: 0.9375 Epoch 490: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1249 - accuracy: 0.9375 - val_loss: 0.2736 - val_accuracy: 0.8305 Epoch 491/1000 2/2 [==============================] - ETA: 0s - loss: 0.1771 - accuracy: 0.9250 Epoch 491: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1771 - accuracy: 0.9250 - val_loss: 0.2729 - val_accuracy: 0.8305 Epoch 492/1000 2/2 [==============================] - ETA: 0s - loss: 0.1549 - accuracy: 0.9125 Epoch 492: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 818ms/step - loss: 0.1549 - accuracy: 0.9125 - val_loss: 0.2700 - val_accuracy: 0.8305 Epoch 493/1000 2/2 [==============================] - ETA: 0s - loss: 0.1681 - accuracy: 0.9141 Epoch 493: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1681 - accuracy: 0.9141 - val_loss: 0.2669 - val_accuracy: 0.8305 Epoch 494/1000 2/2 [==============================] - ETA: 0s - loss: 0.2009 - accuracy: 0.8750 Epoch 494: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 828ms/step - loss: 0.2009 - accuracy: 0.8750 - val_loss: 0.2638 - val_accuracy: 0.8475 Epoch 495/1000 2/2 [==============================] - ETA: 0s - loss: 0.1664 - accuracy: 0.9375 Epoch 495: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1664 - accuracy: 0.9375 - val_loss: 0.2620 - val_accuracy: 0.8475 Epoch 496/1000 2/2 [==============================] - ETA: 0s - loss: 0.2320 - accuracy: 0.8984 Epoch 496: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.2320 - accuracy: 0.8984 - val_loss: 0.2619 - val_accuracy: 0.8475 Epoch 497/1000 2/2 [==============================] - ETA: 0s - loss: 0.1626 - accuracy: 0.8906 Epoch 497: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1626 - accuracy: 0.8906 - val_loss: 0.2602 - val_accuracy: 0.8644 Epoch 498/1000 2/2 [==============================] - ETA: 0s - loss: 0.1545 - accuracy: 0.9531 Epoch 498: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 979ms/step - loss: 0.1545 - accuracy: 0.9531 - val_loss: 0.2595 - val_accuracy: 0.8644 Epoch 499/1000 2/2 [==============================] - ETA: 0s - loss: 0.1404 - accuracy: 0.9875 Epoch 499: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1404 - accuracy: 0.9875 - val_loss: 0.2609 - val_accuracy: 0.8644 Epoch 500/1000 2/2 [==============================] - ETA: 0s - loss: 0.1046 - accuracy: 0.9875 Epoch 500: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 843ms/step - loss: 0.1046 - accuracy: 0.9875 - val_loss: 0.2629 - val_accuracy: 0.8644 Epoch 501/1000 2/2 [==============================] - ETA: 0s - loss: 0.1495 - accuracy: 0.9531 Epoch 501: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 952ms/step - loss: 0.1495 - accuracy: 0.9531 - val_loss: 0.2650 - val_accuracy: 0.8644 Epoch 502/1000 2/2 [==============================] - ETA: 0s - loss: 0.1643 - accuracy: 0.9141 Epoch 502: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1643 - accuracy: 0.9141 - val_loss: 0.2670 - val_accuracy: 0.8644 Epoch 503/1000 2/2 [==============================] - ETA: 0s - loss: 0.1779 - accuracy: 0.9062 Epoch 503: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1779 - accuracy: 0.9062 - val_loss: 0.2686 - val_accuracy: 0.8644 Epoch 504/1000 2/2 [==============================] - ETA: 0s - loss: 0.1600 - accuracy: 0.9625 Epoch 504: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1600 - accuracy: 0.9625 - val_loss: 0.2689 - val_accuracy: 0.8644 Epoch 505/1000 2/2 [==============================] - ETA: 0s - loss: 0.1275 - accuracy: 0.9625 Epoch 505: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1275 - accuracy: 0.9625 - val_loss: 0.2680 - val_accuracy: 0.8644 Epoch 506/1000 2/2 [==============================] - ETA: 0s - loss: 0.1473 - accuracy: 0.9375 Epoch 506: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1473 - accuracy: 0.9375 - val_loss: 0.2678 - val_accuracy: 0.8644 Epoch 507/1000 2/2 [==============================] - ETA: 0s - loss: 0.1198 - accuracy: 0.9609 Epoch 507: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 968ms/step - loss: 0.1198 - accuracy: 0.9609 - val_loss: 0.2672 - val_accuracy: 0.8644 Epoch 508/1000 2/2 [==============================] - ETA: 0s - loss: 0.1290 - accuracy: 0.9625 Epoch 508: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 804ms/step - loss: 0.1290 - accuracy: 0.9625 - val_loss: 0.2670 - val_accuracy: 0.8644 Epoch 509/1000 2/2 [==============================] - ETA: 0s - loss: 0.1622 - accuracy: 0.9219 Epoch 509: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1622 - accuracy: 0.9219 - val_loss: 0.2672 - val_accuracy: 0.8644 Epoch 510/1000 2/2 [==============================] - ETA: 0s - loss: 0.1284 - accuracy: 0.9250 Epoch 510: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 835ms/step - loss: 0.1284 - accuracy: 0.9250 - val_loss: 0.2674 - val_accuracy: 0.8644 Epoch 511/1000 2/2 [==============================] - ETA: 0s - loss: 0.1641 - accuracy: 0.9375 Epoch 511: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1641 - accuracy: 0.9375 - val_loss: 0.2685 - val_accuracy: 0.8644 Epoch 512/1000 2/2 [==============================] - ETA: 0s - loss: 0.1069 - accuracy: 0.9609 Epoch 512: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1069 - accuracy: 0.9609 - val_loss: 0.2706 - val_accuracy: 0.8475 Epoch 513/1000 2/2 [==============================] - ETA: 0s - loss: 0.1871 - accuracy: 0.9250 Epoch 513: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 834ms/step - loss: 0.1871 - accuracy: 0.9250 - val_loss: 0.2733 - val_accuracy: 0.8305 Epoch 514/1000 2/2 [==============================] - ETA: 0s - loss: 0.1451 - accuracy: 0.9297 Epoch 514: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1451 - accuracy: 0.9297 - val_loss: 0.2743 - val_accuracy: 0.8305 Epoch 515/1000 2/2 [==============================] - ETA: 0s - loss: 0.1631 - accuracy: 0.9375 Epoch 515: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1631 - accuracy: 0.9375 - val_loss: 0.2753 - val_accuracy: 0.8305 Epoch 516/1000 2/2 [==============================] - ETA: 0s - loss: 0.1393 - accuracy: 0.9297 Epoch 516: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1393 - accuracy: 0.9297 - val_loss: 0.2769 - val_accuracy: 0.8305 Epoch 517/1000 2/2 [==============================] - ETA: 0s - loss: 0.1717 - accuracy: 0.9250 Epoch 517: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1717 - accuracy: 0.9250 - val_loss: 0.2786 - val_accuracy: 0.8305 Epoch 518/1000 2/2 [==============================] - ETA: 0s - loss: 0.2001 - accuracy: 0.9250 Epoch 518: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 809ms/step - loss: 0.2001 - accuracy: 0.9250 - val_loss: 0.2801 - val_accuracy: 0.8136 Epoch 519/1000 2/2 [==============================] - ETA: 0s - loss: 0.1469 - accuracy: 0.9062 Epoch 519: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 994ms/step - loss: 0.1469 - accuracy: 0.9062 - val_loss: 0.2800 - val_accuracy: 0.8136 Epoch 520/1000 2/2 [==============================] - ETA: 0s - loss: 0.1444 - accuracy: 0.9531 Epoch 520: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 929ms/step - loss: 0.1444 - accuracy: 0.9531 - val_loss: 0.2781 - val_accuracy: 0.8136 Epoch 521/1000 2/2 [==============================] - ETA: 0s - loss: 0.1783 - accuracy: 0.9219 Epoch 521: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1783 - accuracy: 0.9219 - val_loss: 0.2761 - val_accuracy: 0.8136 Epoch 522/1000 2/2 [==============================] - ETA: 0s - loss: 0.1481 - accuracy: 0.9625 Epoch 522: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 815ms/step - loss: 0.1481 - accuracy: 0.9625 - val_loss: 0.2747 - val_accuracy: 0.8136 Epoch 523/1000 2/2 [==============================] - ETA: 0s - loss: 0.1230 - accuracy: 0.9500 Epoch 523: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1230 - accuracy: 0.9500 - val_loss: 0.2744 - val_accuracy: 0.8136 Epoch 524/1000 2/2 [==============================] - ETA: 0s - loss: 0.1329 - accuracy: 0.9625 Epoch 524: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1329 - accuracy: 0.9625 - val_loss: 0.2744 - val_accuracy: 0.8136 Epoch 525/1000 2/2 [==============================] - ETA: 0s - loss: 0.1305 - accuracy: 0.9531 Epoch 525: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1305 - accuracy: 0.9531 - val_loss: 0.2744 - val_accuracy: 0.8136 Epoch 526/1000 2/2 [==============================] - ETA: 0s - loss: 0.0974 - accuracy: 0.9750 Epoch 526: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0974 - accuracy: 0.9750 - val_loss: 0.2743 - val_accuracy: 0.8136 Epoch 527/1000 2/2 [==============================] - ETA: 0s - loss: 0.2049 - accuracy: 0.9125 Epoch 527: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.2049 - accuracy: 0.9125 - val_loss: 0.2730 - val_accuracy: 0.8136 Epoch 528/1000 2/2 [==============================] - ETA: 0s - loss: 0.1441 - accuracy: 0.9297 Epoch 528: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 964ms/step - loss: 0.1441 - accuracy: 0.9297 - val_loss: 0.2722 - val_accuracy: 0.8136 Epoch 529/1000 2/2 [==============================] - ETA: 0s - loss: 0.1328 - accuracy: 0.9453 Epoch 529: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 973ms/step - loss: 0.1328 - accuracy: 0.9453 - val_loss: 0.2716 - val_accuracy: 0.8136 Epoch 530/1000 2/2 [==============================] - ETA: 0s - loss: 0.1522 - accuracy: 0.9375 Epoch 530: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1522 - accuracy: 0.9375 - val_loss: 0.2708 - val_accuracy: 0.8136 Epoch 531/1000 2/2 [==============================] - ETA: 0s - loss: 0.1479 - accuracy: 0.9531 Epoch 531: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1479 - accuracy: 0.9531 - val_loss: 0.2707 - val_accuracy: 0.8136 Epoch 532/1000 2/2 [==============================] - ETA: 0s - loss: 0.1405 - accuracy: 0.9375 Epoch 532: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 824ms/step - loss: 0.1405 - accuracy: 0.9375 - val_loss: 0.2708 - val_accuracy: 0.8136 Epoch 533/1000 2/2 [==============================] - ETA: 0s - loss: 0.1355 - accuracy: 0.9219 Epoch 533: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 929ms/step - loss: 0.1355 - accuracy: 0.9219 - val_loss: 0.2722 - val_accuracy: 0.8136 Epoch 534/1000 2/2 [==============================] - ETA: 0s - loss: 0.1524 - accuracy: 0.9375 Epoch 534: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 975ms/step - loss: 0.1524 - accuracy: 0.9375 - val_loss: 0.2752 - val_accuracy: 0.8136 Epoch 535/1000 2/2 [==============================] - ETA: 0s - loss: 0.1148 - accuracy: 0.9625 Epoch 535: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 825ms/step - loss: 0.1148 - accuracy: 0.9625 - val_loss: 0.2764 - val_accuracy: 0.8136 Epoch 536/1000 2/2 [==============================] - ETA: 0s - loss: 0.1230 - accuracy: 0.9500 Epoch 536: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 812ms/step - loss: 0.1230 - accuracy: 0.9500 - val_loss: 0.2759 - val_accuracy: 0.8136 Epoch 537/1000 2/2 [==============================] - ETA: 0s - loss: 0.1516 - accuracy: 0.9500 Epoch 537: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1516 - accuracy: 0.9500 - val_loss: 0.2749 - val_accuracy: 0.8136 Epoch 538/1000 2/2 [==============================] - ETA: 0s - loss: 0.1491 - accuracy: 0.9125 Epoch 538: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 835ms/step - loss: 0.1491 - accuracy: 0.9125 - val_loss: 0.2737 - val_accuracy: 0.8136 Epoch 539/1000 2/2 [==============================] - ETA: 0s - loss: 0.1335 - accuracy: 0.9766 Epoch 539: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 934ms/step - loss: 0.1335 - accuracy: 0.9766 - val_loss: 0.2722 - val_accuracy: 0.8305 Epoch 540/1000 2/2 [==============================] - ETA: 0s - loss: 0.1515 - accuracy: 0.9375 Epoch 540: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 836ms/step - loss: 0.1515 - accuracy: 0.9375 - val_loss: 0.2716 - val_accuracy: 0.8305 Epoch 541/1000 2/2 [==============================] - ETA: 0s - loss: 0.1613 - accuracy: 0.9125 Epoch 541: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 835ms/step - loss: 0.1613 - accuracy: 0.9125 - val_loss: 0.2709 - val_accuracy: 0.8305 Epoch 542/1000 2/2 [==============================] - ETA: 0s - loss: 0.1141 - accuracy: 0.9375 Epoch 542: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1141 - accuracy: 0.9375 - val_loss: 0.2692 - val_accuracy: 0.8305 Epoch 543/1000 2/2 [==============================] - ETA: 0s - loss: 0.1393 - accuracy: 0.9453 Epoch 543: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1393 - accuracy: 0.9453 - val_loss: 0.2681 - val_accuracy: 0.8305 Epoch 544/1000 2/2 [==============================] - ETA: 0s - loss: 0.1320 - accuracy: 0.9625 Epoch 544: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1320 - accuracy: 0.9625 - val_loss: 0.2639 - val_accuracy: 0.8305 Epoch 545/1000 2/2 [==============================] - ETA: 0s - loss: 0.1872 - accuracy: 0.9500 Epoch 545: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1872 - accuracy: 0.9500 - val_loss: 0.2605 - val_accuracy: 0.8475 Epoch 546/1000 2/2 [==============================] - ETA: 0s - loss: 0.1484 - accuracy: 0.9375 Epoch 546: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 867ms/step - loss: 0.1484 - accuracy: 0.9375 - val_loss: 0.2576 - val_accuracy: 0.8475 Epoch 547/1000 2/2 [==============================] - ETA: 0s - loss: 0.1332 - accuracy: 0.9250 Epoch 547: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1332 - accuracy: 0.9250 - val_loss: 0.2548 - val_accuracy: 0.8475 Epoch 548/1000 2/2 [==============================] - ETA: 0s - loss: 0.1152 - accuracy: 0.9375 Epoch 548: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 863ms/step - loss: 0.1152 - accuracy: 0.9375 - val_loss: 0.2531 - val_accuracy: 0.8475 Epoch 549/1000 2/2 [==============================] - ETA: 0s - loss: 0.1229 - accuracy: 0.9375 Epoch 549: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 816ms/step - loss: 0.1229 - accuracy: 0.9375 - val_loss: 0.2502 - val_accuracy: 0.8475 Epoch 550/1000 2/2 [==============================] - ETA: 0s - loss: 0.1275 - accuracy: 0.9375 Epoch 550: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 970ms/step - loss: 0.1275 - accuracy: 0.9375 - val_loss: 0.2477 - val_accuracy: 0.8475 Epoch 551/1000 2/2 [==============================] - ETA: 0s - loss: 0.1139 - accuracy: 0.9609 Epoch 551: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1139 - accuracy: 0.9609 - val_loss: 0.2460 - val_accuracy: 0.8475 Epoch 552/1000 2/2 [==============================] - ETA: 0s - loss: 0.1195 - accuracy: 0.9625 Epoch 552: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 843ms/step - loss: 0.1195 - accuracy: 0.9625 - val_loss: 0.2457 - val_accuracy: 0.8475 Epoch 553/1000 2/2 [==============================] - ETA: 0s - loss: 0.1418 - accuracy: 0.9609 Epoch 553: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1418 - accuracy: 0.9609 - val_loss: 0.2463 - val_accuracy: 0.8644 Epoch 554/1000 2/2 [==============================] - ETA: 0s - loss: 0.1361 - accuracy: 0.9531 Epoch 554: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 928ms/step - loss: 0.1361 - accuracy: 0.9531 - val_loss: 0.2481 - val_accuracy: 0.8644 Epoch 555/1000 2/2 [==============================] - ETA: 0s - loss: 0.1261 - accuracy: 0.9609 Epoch 555: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1261 - accuracy: 0.9609 - val_loss: 0.2497 - val_accuracy: 0.8644 Epoch 556/1000 2/2 [==============================] - ETA: 0s - loss: 0.1351 - accuracy: 0.9375 Epoch 556: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1351 - accuracy: 0.9375 - val_loss: 0.2502 - val_accuracy: 0.8644 Epoch 557/1000 2/2 [==============================] - ETA: 0s - loss: 0.1348 - accuracy: 0.9609 Epoch 557: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 979ms/step - loss: 0.1348 - accuracy: 0.9609 - val_loss: 0.2511 - val_accuracy: 0.8644 Epoch 558/1000 2/2 [==============================] - ETA: 0s - loss: 0.1423 - accuracy: 0.9453 Epoch 558: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 966ms/step - loss: 0.1423 - accuracy: 0.9453 - val_loss: 0.2523 - val_accuracy: 0.8475 Epoch 559/1000 2/2 [==============================] - ETA: 0s - loss: 0.1183 - accuracy: 0.9500 Epoch 559: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1183 - accuracy: 0.9500 - val_loss: 0.2542 - val_accuracy: 0.8475 Epoch 560/1000 2/2 [==============================] - ETA: 0s - loss: 0.1366 - accuracy: 0.9375 Epoch 560: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1366 - accuracy: 0.9375 - val_loss: 0.2565 - val_accuracy: 0.8475 Epoch 561/1000 2/2 [==============================] - ETA: 0s - loss: 0.1263 - accuracy: 0.9453 Epoch 561: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1263 - accuracy: 0.9453 - val_loss: 0.2591 - val_accuracy: 0.8475 Epoch 562/1000 2/2 [==============================] - ETA: 0s - loss: 0.1715 - accuracy: 0.9141 Epoch 562: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1715 - accuracy: 0.9141 - val_loss: 0.2615 - val_accuracy: 0.8475 Epoch 563/1000 2/2 [==============================] - ETA: 0s - loss: 0.1418 - accuracy: 0.9250 Epoch 563: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1418 - accuracy: 0.9250 - val_loss: 0.2651 - val_accuracy: 0.8475 Epoch 564/1000 2/2 [==============================] - ETA: 0s - loss: 0.1290 - accuracy: 0.9625 Epoch 564: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 811ms/step - loss: 0.1290 - accuracy: 0.9625 - val_loss: 0.2691 - val_accuracy: 0.8305 Epoch 565/1000 2/2 [==============================] - ETA: 0s - loss: 0.1817 - accuracy: 0.9375 Epoch 565: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1817 - accuracy: 0.9375 - val_loss: 0.2708 - val_accuracy: 0.8305 Epoch 566/1000 2/2 [==============================] - ETA: 0s - loss: 0.1019 - accuracy: 0.9500 Epoch 566: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1019 - accuracy: 0.9500 - val_loss: 0.2701 - val_accuracy: 0.8305 Epoch 567/1000 2/2 [==============================] - ETA: 0s - loss: 0.1623 - accuracy: 0.9125 Epoch 567: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1623 - accuracy: 0.9125 - val_loss: 0.2697 - val_accuracy: 0.8305 Epoch 568/1000 2/2 [==============================] - ETA: 0s - loss: 0.1237 - accuracy: 0.9250 Epoch 568: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 837ms/step - loss: 0.1237 - accuracy: 0.9250 - val_loss: 0.2684 - val_accuracy: 0.8475 Epoch 569/1000 2/2 [==============================] - ETA: 0s - loss: 0.1747 - accuracy: 0.8984 Epoch 569: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 987ms/step - loss: 0.1747 - accuracy: 0.8984 - val_loss: 0.2667 - val_accuracy: 0.8475 Epoch 570/1000 2/2 [==============================] - ETA: 0s - loss: 0.1495 - accuracy: 0.9375 Epoch 570: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1495 - accuracy: 0.9375 - val_loss: 0.2644 - val_accuracy: 0.8475 Epoch 571/1000 2/2 [==============================] - ETA: 0s - loss: 0.1420 - accuracy: 0.9453 Epoch 571: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1420 - accuracy: 0.9453 - val_loss: 0.2626 - val_accuracy: 0.8475 Epoch 572/1000 2/2 [==============================] - ETA: 0s - loss: 0.1442 - accuracy: 0.9250 Epoch 572: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 863ms/step - loss: 0.1442 - accuracy: 0.9250 - val_loss: 0.2603 - val_accuracy: 0.8475 Epoch 573/1000 2/2 [==============================] - ETA: 0s - loss: 0.1683 - accuracy: 0.9141 Epoch 573: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 970ms/step - loss: 0.1683 - accuracy: 0.9141 - val_loss: 0.2589 - val_accuracy: 0.8475 Epoch 574/1000 2/2 [==============================] - ETA: 0s - loss: 0.1001 - accuracy: 0.9875 Epoch 574: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1001 - accuracy: 0.9875 - val_loss: 0.2574 - val_accuracy: 0.8475 Epoch 575/1000 2/2 [==============================] - ETA: 0s - loss: 0.1083 - accuracy: 0.9766 Epoch 575: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 930ms/step - loss: 0.1083 - accuracy: 0.9766 - val_loss: 0.2565 - val_accuracy: 0.8475 Epoch 576/1000 2/2 [==============================] - ETA: 0s - loss: 0.1630 - accuracy: 0.9125 Epoch 576: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 993ms/step - loss: 0.1630 - accuracy: 0.9125 - val_loss: 0.2553 - val_accuracy: 0.8305 Epoch 577/1000 2/2 [==============================] - ETA: 0s - loss: 0.1247 - accuracy: 0.9688 Epoch 577: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 954ms/step - loss: 0.1247 - accuracy: 0.9688 - val_loss: 0.2550 - val_accuracy: 0.8305 Epoch 578/1000 2/2 [==============================] - ETA: 0s - loss: 0.1639 - accuracy: 0.9297 Epoch 578: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1639 - accuracy: 0.9297 - val_loss: 0.2545 - val_accuracy: 0.8305 Epoch 579/1000 2/2 [==============================] - ETA: 0s - loss: 0.1569 - accuracy: 0.9500 Epoch 579: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1569 - accuracy: 0.9500 - val_loss: 0.2547 - val_accuracy: 0.8305 Epoch 580/1000 2/2 [==============================] - ETA: 0s - loss: 0.1216 - accuracy: 0.9531 Epoch 580: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 973ms/step - loss: 0.1216 - accuracy: 0.9531 - val_loss: 0.2551 - val_accuracy: 0.8305 Epoch 581/1000 2/2 [==============================] - ETA: 0s - loss: 0.1174 - accuracy: 0.9625 Epoch 581: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 823ms/step - loss: 0.1174 - accuracy: 0.9625 - val_loss: 0.2562 - val_accuracy: 0.8305 Epoch 582/1000 2/2 [==============================] - ETA: 0s - loss: 0.1507 - accuracy: 0.9125 Epoch 582: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 824ms/step - loss: 0.1507 - accuracy: 0.9125 - val_loss: 0.2584 - val_accuracy: 0.8305 Epoch 583/1000 2/2 [==============================] - ETA: 0s - loss: 0.1742 - accuracy: 0.9125 Epoch 583: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1742 - accuracy: 0.9125 - val_loss: 0.2610 - val_accuracy: 0.8305 Epoch 584/1000 2/2 [==============================] - ETA: 0s - loss: 0.1347 - accuracy: 0.9500 Epoch 584: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 832ms/step - loss: 0.1347 - accuracy: 0.9500 - val_loss: 0.2647 - val_accuracy: 0.8136 Epoch 585/1000 2/2 [==============================] - ETA: 0s - loss: 0.1067 - accuracy: 0.9625 Epoch 585: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 813ms/step - loss: 0.1067 - accuracy: 0.9625 - val_loss: 0.2673 - val_accuracy: 0.8136 Epoch 586/1000 2/2 [==============================] - ETA: 0s - loss: 0.1478 - accuracy: 0.9375 Epoch 586: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1478 - accuracy: 0.9375 - val_loss: 0.2684 - val_accuracy: 0.8136 Epoch 587/1000 2/2 [==============================] - ETA: 0s - loss: 0.1327 - accuracy: 0.9375 Epoch 587: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1327 - accuracy: 0.9375 - val_loss: 0.2703 - val_accuracy: 0.8136 Epoch 588/1000 2/2 [==============================] - ETA: 0s - loss: 0.1022 - accuracy: 0.9844 Epoch 588: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 926ms/step - loss: 0.1022 - accuracy: 0.9844 - val_loss: 0.2727 - val_accuracy: 0.8136 Epoch 589/1000 2/2 [==============================] - ETA: 0s - loss: 0.2192 - accuracy: 0.9250 Epoch 589: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 815ms/step - loss: 0.2192 - accuracy: 0.9250 - val_loss: 0.2742 - val_accuracy: 0.8136 Epoch 590/1000 2/2 [==============================] - ETA: 0s - loss: 0.1731 - accuracy: 0.9000 Epoch 590: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1731 - accuracy: 0.9000 - val_loss: 0.2751 - val_accuracy: 0.8136 Epoch 591/1000 2/2 [==============================] - ETA: 0s - loss: 0.1368 - accuracy: 0.9453 Epoch 591: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1368 - accuracy: 0.9453 - val_loss: 0.2766 - val_accuracy: 0.8136 Epoch 592/1000 2/2 [==============================] - ETA: 0s - loss: 0.1619 - accuracy: 0.9531 Epoch 592: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1619 - accuracy: 0.9531 - val_loss: 0.2789 - val_accuracy: 0.8136 Epoch 593/1000 2/2 [==============================] - ETA: 0s - loss: 0.1565 - accuracy: 0.9453 Epoch 593: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1565 - accuracy: 0.9453 - val_loss: 0.2819 - val_accuracy: 0.8136 Epoch 594/1000 2/2 [==============================] - ETA: 0s - loss: 0.1473 - accuracy: 0.9375 Epoch 594: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1473 - accuracy: 0.9375 - val_loss: 0.2856 - val_accuracy: 0.8136 Epoch 595/1000 2/2 [==============================] - ETA: 0s - loss: 0.1418 - accuracy: 0.9500 Epoch 595: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 844ms/step - loss: 0.1418 - accuracy: 0.9500 - val_loss: 0.2865 - val_accuracy: 0.8136 Epoch 596/1000 2/2 [==============================] - ETA: 0s - loss: 0.1448 - accuracy: 0.9375 Epoch 596: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 965ms/step - loss: 0.1448 - accuracy: 0.9375 - val_loss: 0.2876 - val_accuracy: 0.8136 Epoch 597/1000 2/2 [==============================] - ETA: 0s - loss: 0.1282 - accuracy: 0.9531 Epoch 597: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1282 - accuracy: 0.9531 - val_loss: 0.2887 - val_accuracy: 0.8136 Epoch 598/1000 2/2 [==============================] - ETA: 0s - loss: 0.1232 - accuracy: 0.9625 Epoch 598: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1232 - accuracy: 0.9625 - val_loss: 0.2871 - val_accuracy: 0.8136 Epoch 599/1000 2/2 [==============================] - ETA: 0s - loss: 0.1416 - accuracy: 0.9297 Epoch 599: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 940ms/step - loss: 0.1416 - accuracy: 0.9297 - val_loss: 0.2858 - val_accuracy: 0.8136 Epoch 600/1000 2/2 [==============================] - ETA: 0s - loss: 0.1402 - accuracy: 0.9219 Epoch 600: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1402 - accuracy: 0.9219 - val_loss: 0.2840 - val_accuracy: 0.8136 Epoch 601/1000 2/2 [==============================] - ETA: 0s - loss: 0.1639 - accuracy: 0.9125 Epoch 601: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 848ms/step - loss: 0.1639 - accuracy: 0.9125 - val_loss: 0.2813 - val_accuracy: 0.8305 Epoch 602/1000 2/2 [==============================] - ETA: 0s - loss: 0.1876 - accuracy: 0.9250 Epoch 602: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 820ms/step - loss: 0.1876 - accuracy: 0.9250 - val_loss: 0.2773 - val_accuracy: 0.8305 Epoch 603/1000 2/2 [==============================] - ETA: 0s - loss: 0.1317 - accuracy: 0.9500 Epoch 603: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 826ms/step - loss: 0.1317 - accuracy: 0.9500 - val_loss: 0.2740 - val_accuracy: 0.8136 Epoch 604/1000 2/2 [==============================] - ETA: 0s - loss: 0.1224 - accuracy: 0.9500 Epoch 604: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1224 - accuracy: 0.9500 - val_loss: 0.2705 - val_accuracy: 0.8136 Epoch 605/1000 2/2 [==============================] - ETA: 0s - loss: 0.1412 - accuracy: 0.9375 Epoch 605: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1412 - accuracy: 0.9375 - val_loss: 0.2674 - val_accuracy: 0.8136 Epoch 606/1000 2/2 [==============================] - ETA: 0s - loss: 0.1069 - accuracy: 0.9750 Epoch 606: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1069 - accuracy: 0.9750 - val_loss: 0.2641 - val_accuracy: 0.8305 Epoch 607/1000 2/2 [==============================] - ETA: 0s - loss: 0.0904 - accuracy: 0.9750 Epoch 607: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 811ms/step - loss: 0.0904 - accuracy: 0.9750 - val_loss: 0.2630 - val_accuracy: 0.8305 Epoch 608/1000 2/2 [==============================] - ETA: 0s - loss: 0.1305 - accuracy: 0.9375 Epoch 608: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1305 - accuracy: 0.9375 - val_loss: 0.2647 - val_accuracy: 0.8305 Epoch 609/1000 2/2 [==============================] - ETA: 0s - loss: 0.1477 - accuracy: 0.9375 Epoch 609: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 831ms/step - loss: 0.1477 - accuracy: 0.9375 - val_loss: 0.2663 - val_accuracy: 0.8305 Epoch 610/1000 2/2 [==============================] - ETA: 0s - loss: 0.0939 - accuracy: 1.0000 Epoch 610: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0939 - accuracy: 1.0000 - val_loss: 0.2680 - val_accuracy: 0.8475 Epoch 611/1000 2/2 [==============================] - ETA: 0s - loss: 0.0889 - accuracy: 0.9875 Epoch 611: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 845ms/step - loss: 0.0889 - accuracy: 0.9875 - val_loss: 0.2703 - val_accuracy: 0.8305 Epoch 612/1000 2/2 [==============================] - ETA: 0s - loss: 0.1134 - accuracy: 0.9609 Epoch 612: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1134 - accuracy: 0.9609 - val_loss: 0.2725 - val_accuracy: 0.8305 Epoch 613/1000 2/2 [==============================] - ETA: 0s - loss: 0.1093 - accuracy: 0.9688 Epoch 613: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 932ms/step - loss: 0.1093 - accuracy: 0.9688 - val_loss: 0.2741 - val_accuracy: 0.8305 Epoch 614/1000 2/2 [==============================] - ETA: 0s - loss: 0.1112 - accuracy: 0.9688 Epoch 614: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1112 - accuracy: 0.9688 - val_loss: 0.2750 - val_accuracy: 0.8305 Epoch 615/1000 2/2 [==============================] - ETA: 0s - loss: 0.1013 - accuracy: 1.0000 Epoch 615: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1013 - accuracy: 1.0000 - val_loss: 0.2758 - val_accuracy: 0.8305 Epoch 616/1000 2/2 [==============================] - ETA: 0s - loss: 0.1483 - accuracy: 0.9141 Epoch 616: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1483 - accuracy: 0.9141 - val_loss: 0.2760 - val_accuracy: 0.8305 Epoch 617/1000 2/2 [==============================] - ETA: 0s - loss: 0.1175 - accuracy: 0.9625 Epoch 617: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1175 - accuracy: 0.9625 - val_loss: 0.2762 - val_accuracy: 0.8305 Epoch 618/1000 2/2 [==============================] - ETA: 0s - loss: 0.1037 - accuracy: 0.9688 Epoch 618: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 955ms/step - loss: 0.1037 - accuracy: 0.9688 - val_loss: 0.2767 - val_accuracy: 0.8305 Epoch 619/1000 2/2 [==============================] - ETA: 0s - loss: 0.1226 - accuracy: 0.9500 Epoch 619: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 820ms/step - loss: 0.1226 - accuracy: 0.9500 - val_loss: 0.2775 - val_accuracy: 0.8305 Epoch 620/1000 2/2 [==============================] - ETA: 0s - loss: 0.1093 - accuracy: 0.9625 Epoch 620: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 820ms/step - loss: 0.1093 - accuracy: 0.9625 - val_loss: 0.2780 - val_accuracy: 0.8305 Epoch 621/1000 2/2 [==============================] - ETA: 0s - loss: 0.1217 - accuracy: 0.9453 Epoch 621: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 923ms/step - loss: 0.1217 - accuracy: 0.9453 - val_loss: 0.2780 - val_accuracy: 0.8475 Epoch 622/1000 2/2 [==============================] - ETA: 0s - loss: 0.1332 - accuracy: 0.9688 Epoch 622: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 958ms/step - loss: 0.1332 - accuracy: 0.9688 - val_loss: 0.2768 - val_accuracy: 0.8475 Epoch 623/1000 2/2 [==============================] - ETA: 0s - loss: 0.1901 - accuracy: 0.8750 Epoch 623: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 874ms/step - loss: 0.1901 - accuracy: 0.8750 - val_loss: 0.2755 - val_accuracy: 0.8475 Epoch 624/1000 2/2 [==============================] - ETA: 0s - loss: 0.1137 - accuracy: 0.9531 Epoch 624: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 931ms/step - loss: 0.1137 - accuracy: 0.9531 - val_loss: 0.2747 - val_accuracy: 0.8475 Epoch 625/1000 2/2 [==============================] - ETA: 0s - loss: 0.1145 - accuracy: 0.9453 Epoch 625: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 982ms/step - loss: 0.1145 - accuracy: 0.9453 - val_loss: 0.2742 - val_accuracy: 0.8475 Epoch 626/1000 2/2 [==============================] - ETA: 0s - loss: 0.1495 - accuracy: 0.9453 Epoch 626: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 985ms/step - loss: 0.1495 - accuracy: 0.9453 - val_loss: 0.2736 - val_accuracy: 0.8475 Epoch 627/1000 2/2 [==============================] - ETA: 0s - loss: 0.0794 - accuracy: 0.9875 Epoch 627: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 817ms/step - loss: 0.0794 - accuracy: 0.9875 - val_loss: 0.2719 - val_accuracy: 0.8475 Epoch 628/1000 2/2 [==============================] - ETA: 0s - loss: 0.1697 - accuracy: 0.9141 Epoch 628: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 968ms/step - loss: 0.1697 - accuracy: 0.9141 - val_loss: 0.2718 - val_accuracy: 0.8475 Epoch 629/1000 2/2 [==============================] - ETA: 0s - loss: 0.1177 - accuracy: 0.9297 Epoch 629: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1177 - accuracy: 0.9297 - val_loss: 0.2714 - val_accuracy: 0.8475 Epoch 630/1000 2/2 [==============================] - ETA: 0s - loss: 0.1289 - accuracy: 0.9453 Epoch 630: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 930ms/step - loss: 0.1289 - accuracy: 0.9453 - val_loss: 0.2695 - val_accuracy: 0.8475 Epoch 631/1000 2/2 [==============================] - ETA: 0s - loss: 0.1265 - accuracy: 0.9625 Epoch 631: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1265 - accuracy: 0.9625 - val_loss: 0.2698 - val_accuracy: 0.8475 Epoch 632/1000 2/2 [==============================] - ETA: 0s - loss: 0.1210 - accuracy: 0.9375 Epoch 632: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1210 - accuracy: 0.9375 - val_loss: 0.2694 - val_accuracy: 0.8475 Epoch 633/1000 2/2 [==============================] - ETA: 0s - loss: 0.1212 - accuracy: 0.9531 Epoch 633: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 910ms/step - loss: 0.1212 - accuracy: 0.9531 - val_loss: 0.2685 - val_accuracy: 0.8475 Epoch 634/1000 2/2 [==============================] - ETA: 0s - loss: 0.0945 - accuracy: 0.9625 Epoch 634: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 828ms/step - loss: 0.0945 - accuracy: 0.9625 - val_loss: 0.2682 - val_accuracy: 0.8475 Epoch 635/1000 2/2 [==============================] - ETA: 0s - loss: 0.1332 - accuracy: 0.9453 Epoch 635: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1332 - accuracy: 0.9453 - val_loss: 0.2689 - val_accuracy: 0.8305 Epoch 636/1000 2/2 [==============================] - ETA: 0s - loss: 0.1162 - accuracy: 0.9297 Epoch 636: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1162 - accuracy: 0.9297 - val_loss: 0.2700 - val_accuracy: 0.8305 Epoch 637/1000 2/2 [==============================] - ETA: 0s - loss: 0.1188 - accuracy: 0.9453 Epoch 637: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 944ms/step - loss: 0.1188 - accuracy: 0.9453 - val_loss: 0.2703 - val_accuracy: 0.8305 Epoch 638/1000 2/2 [==============================] - ETA: 0s - loss: 0.1679 - accuracy: 0.9125 Epoch 638: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 835ms/step - loss: 0.1679 - accuracy: 0.9125 - val_loss: 0.2692 - val_accuracy: 0.8305 Epoch 639/1000 2/2 [==============================] - ETA: 0s - loss: 0.0977 - accuracy: 0.9625 Epoch 639: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 837ms/step - loss: 0.0977 - accuracy: 0.9625 - val_loss: 0.2677 - val_accuracy: 0.8305 Epoch 640/1000 2/2 [==============================] - ETA: 0s - loss: 0.0780 - accuracy: 0.9844 Epoch 640: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 934ms/step - loss: 0.0780 - accuracy: 0.9844 - val_loss: 0.2665 - val_accuracy: 0.8305 Epoch 641/1000 2/2 [==============================] - ETA: 0s - loss: 0.0954 - accuracy: 0.9625 Epoch 641: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 809ms/step - loss: 0.0954 - accuracy: 0.9625 - val_loss: 0.2658 - val_accuracy: 0.8305 Epoch 642/1000 2/2 [==============================] - ETA: 0s - loss: 0.1260 - accuracy: 0.9531 Epoch 642: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1260 - accuracy: 0.9531 - val_loss: 0.2659 - val_accuracy: 0.8305 Epoch 643/1000 2/2 [==============================] - ETA: 0s - loss: 0.1252 - accuracy: 0.9453 Epoch 643: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1252 - accuracy: 0.9453 - val_loss: 0.2662 - val_accuracy: 0.8305 Epoch 644/1000 2/2 [==============================] - ETA: 0s - loss: 0.1139 - accuracy: 0.9625 Epoch 644: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 820ms/step - loss: 0.1139 - accuracy: 0.9625 - val_loss: 0.2659 - val_accuracy: 0.8475 Epoch 645/1000 2/2 [==============================] - ETA: 0s - loss: 0.1121 - accuracy: 0.9531 Epoch 645: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1121 - accuracy: 0.9531 - val_loss: 0.2654 - val_accuracy: 0.8475 Epoch 646/1000 2/2 [==============================] - ETA: 0s - loss: 0.1068 - accuracy: 0.9688 Epoch 646: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1068 - accuracy: 0.9688 - val_loss: 0.2652 - val_accuracy: 0.8475 Epoch 647/1000 2/2 [==============================] - ETA: 0s - loss: 0.1136 - accuracy: 0.9625 Epoch 647: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1136 - accuracy: 0.9625 - val_loss: 0.2650 - val_accuracy: 0.8475 Epoch 648/1000 2/2 [==============================] - ETA: 0s - loss: 0.1084 - accuracy: 0.9688 Epoch 648: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1084 - accuracy: 0.9688 - val_loss: 0.2641 - val_accuracy: 0.8475 Epoch 649/1000 2/2 [==============================] - ETA: 0s - loss: 0.1123 - accuracy: 0.9531 Epoch 649: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 999ms/step - loss: 0.1123 - accuracy: 0.9531 - val_loss: 0.2637 - val_accuracy: 0.8475 Epoch 650/1000 2/2 [==============================] - ETA: 0s - loss: 0.1562 - accuracy: 0.9375 Epoch 650: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1562 - accuracy: 0.9375 - val_loss: 0.2633 - val_accuracy: 0.8475 Epoch 651/1000 2/2 [==============================] - ETA: 0s - loss: 0.1610 - accuracy: 0.9375 Epoch 651: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 804ms/step - loss: 0.1610 - accuracy: 0.9375 - val_loss: 0.2635 - val_accuracy: 0.8475 Epoch 652/1000 2/2 [==============================] - ETA: 0s - loss: 0.1656 - accuracy: 0.9141 Epoch 652: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1656 - accuracy: 0.9141 - val_loss: 0.2640 - val_accuracy: 0.8475 Epoch 653/1000 2/2 [==============================] - ETA: 0s - loss: 0.1222 - accuracy: 0.9500 Epoch 653: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 822ms/step - loss: 0.1222 - accuracy: 0.9500 - val_loss: 0.2651 - val_accuracy: 0.8475 Epoch 654/1000 2/2 [==============================] - ETA: 0s - loss: 0.1006 - accuracy: 0.9766 Epoch 654: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1006 - accuracy: 0.9766 - val_loss: 0.2669 - val_accuracy: 0.8475 Epoch 655/1000 2/2 [==============================] - ETA: 0s - loss: 0.1395 - accuracy: 0.9250 Epoch 655: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 826ms/step - loss: 0.1395 - accuracy: 0.9250 - val_loss: 0.2695 - val_accuracy: 0.8475 Epoch 656/1000 2/2 [==============================] - ETA: 0s - loss: 0.1042 - accuracy: 0.9766 Epoch 656: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1042 - accuracy: 0.9766 - val_loss: 0.2724 - val_accuracy: 0.8475 Epoch 657/1000 2/2 [==============================] - ETA: 0s - loss: 0.1471 - accuracy: 0.9125 Epoch 657: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1471 - accuracy: 0.9125 - val_loss: 0.2752 - val_accuracy: 0.8475 Epoch 658/1000 2/2 [==============================] - ETA: 0s - loss: 0.1069 - accuracy: 0.9531 Epoch 658: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 935ms/step - loss: 0.1069 - accuracy: 0.9531 - val_loss: 0.2782 - val_accuracy: 0.8475 Epoch 659/1000 2/2 [==============================] - ETA: 0s - loss: 0.0970 - accuracy: 0.9766 Epoch 659: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0970 - accuracy: 0.9766 - val_loss: 0.2803 - val_accuracy: 0.8475 Epoch 660/1000 2/2 [==============================] - ETA: 0s - loss: 0.1135 - accuracy: 0.9609 Epoch 660: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1135 - accuracy: 0.9609 - val_loss: 0.2815 - val_accuracy: 0.8305 Epoch 661/1000 2/2 [==============================] - ETA: 0s - loss: 0.0622 - accuracy: 0.9875 Epoch 661: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 801ms/step - loss: 0.0622 - accuracy: 0.9875 - val_loss: 0.2827 - val_accuracy: 0.8305 Epoch 662/1000 2/2 [==============================] - ETA: 0s - loss: 0.1074 - accuracy: 0.9625 Epoch 662: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 812ms/step - loss: 0.1074 - accuracy: 0.9625 - val_loss: 0.2826 - val_accuracy: 0.8305 Epoch 663/1000 2/2 [==============================] - ETA: 0s - loss: 0.1000 - accuracy: 0.9844 Epoch 663: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1000 - accuracy: 0.9844 - val_loss: 0.2818 - val_accuracy: 0.8475 Epoch 664/1000 2/2 [==============================] - ETA: 0s - loss: 0.0919 - accuracy: 0.9500 Epoch 664: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 840ms/step - loss: 0.0919 - accuracy: 0.9500 - val_loss: 0.2819 - val_accuracy: 0.8475 Epoch 665/1000 2/2 [==============================] - ETA: 0s - loss: 0.1268 - accuracy: 0.9375 Epoch 665: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1268 - accuracy: 0.9375 - val_loss: 0.2829 - val_accuracy: 0.8475 Epoch 666/1000 2/2 [==============================] - ETA: 0s - loss: 0.1491 - accuracy: 0.9250 Epoch 666: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1491 - accuracy: 0.9250 - val_loss: 0.2811 - val_accuracy: 0.8475 Epoch 667/1000 2/2 [==============================] - ETA: 0s - loss: 0.1190 - accuracy: 0.9500 Epoch 667: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 820ms/step - loss: 0.1190 - accuracy: 0.9500 - val_loss: 0.2784 - val_accuracy: 0.8475 Epoch 668/1000 2/2 [==============================] - ETA: 0s - loss: 0.0955 - accuracy: 0.9688 Epoch 668: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0955 - accuracy: 0.9688 - val_loss: 0.2763 - val_accuracy: 0.8475 Epoch 669/1000 2/2 [==============================] - ETA: 0s - loss: 0.1251 - accuracy: 0.9531 Epoch 669: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1251 - accuracy: 0.9531 - val_loss: 0.2759 - val_accuracy: 0.8475 Epoch 670/1000 2/2 [==============================] - ETA: 0s - loss: 0.1130 - accuracy: 0.9500 Epoch 670: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 821ms/step - loss: 0.1130 - accuracy: 0.9500 - val_loss: 0.2762 - val_accuracy: 0.8475 Epoch 671/1000 2/2 [==============================] - ETA: 0s - loss: 0.1206 - accuracy: 0.9375 Epoch 671: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1206 - accuracy: 0.9375 - val_loss: 0.2766 - val_accuracy: 0.8305 Epoch 672/1000 2/2 [==============================] - ETA: 0s - loss: 0.1287 - accuracy: 0.9453 Epoch 672: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1287 - accuracy: 0.9453 - val_loss: 0.2768 - val_accuracy: 0.8305 Epoch 673/1000 2/2 [==============================] - ETA: 0s - loss: 0.1517 - accuracy: 0.9250 Epoch 673: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 818ms/step - loss: 0.1517 - accuracy: 0.9250 - val_loss: 0.2769 - val_accuracy: 0.8305 Epoch 674/1000 2/2 [==============================] - ETA: 0s - loss: 0.1057 - accuracy: 0.9609 Epoch 674: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1057 - accuracy: 0.9609 - val_loss: 0.2767 - val_accuracy: 0.8305 Epoch 675/1000 2/2 [==============================] - ETA: 0s - loss: 0.1428 - accuracy: 0.9375 Epoch 675: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 834ms/step - loss: 0.1428 - accuracy: 0.9375 - val_loss: 0.2772 - val_accuracy: 0.8305 Epoch 676/1000 2/2 [==============================] - ETA: 0s - loss: 0.1095 - accuracy: 0.9625 Epoch 676: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1095 - accuracy: 0.9625 - val_loss: 0.2795 - val_accuracy: 0.8305 Epoch 677/1000 2/2 [==============================] - ETA: 0s - loss: 0.1420 - accuracy: 0.9375 Epoch 677: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1420 - accuracy: 0.9375 - val_loss: 0.2809 - val_accuracy: 0.8305 Epoch 678/1000 2/2 [==============================] - ETA: 0s - loss: 0.1261 - accuracy: 0.9141 Epoch 678: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1261 - accuracy: 0.9141 - val_loss: 0.2811 - val_accuracy: 0.8305 Epoch 679/1000 2/2 [==============================] - ETA: 0s - loss: 0.1210 - accuracy: 0.9625 Epoch 679: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 808ms/step - loss: 0.1210 - accuracy: 0.9625 - val_loss: 0.2805 - val_accuracy: 0.8305 Epoch 680/1000 2/2 [==============================] - ETA: 0s - loss: 0.1199 - accuracy: 0.9250 Epoch 680: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 826ms/step - loss: 0.1199 - accuracy: 0.9250 - val_loss: 0.2789 - val_accuracy: 0.8305 Epoch 681/1000 2/2 [==============================] - ETA: 0s - loss: 0.1262 - accuracy: 0.9688 Epoch 681: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 938ms/step - loss: 0.1262 - accuracy: 0.9688 - val_loss: 0.2781 - val_accuracy: 0.8305 Epoch 682/1000 2/2 [==============================] - ETA: 0s - loss: 0.1391 - accuracy: 0.9219 Epoch 682: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1391 - accuracy: 0.9219 - val_loss: 0.2770 - val_accuracy: 0.8305 Epoch 683/1000 2/2 [==============================] - ETA: 0s - loss: 0.0833 - accuracy: 0.9875 Epoch 683: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0833 - accuracy: 0.9875 - val_loss: 0.2774 - val_accuracy: 0.8305 Epoch 684/1000 2/2 [==============================] - ETA: 0s - loss: 0.1212 - accuracy: 0.9375 Epoch 684: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 999ms/step - loss: 0.1212 - accuracy: 0.9375 - val_loss: 0.2778 - val_accuracy: 0.8305 Epoch 685/1000 2/2 [==============================] - ETA: 0s - loss: 0.1233 - accuracy: 0.9531 Epoch 685: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1233 - accuracy: 0.9531 - val_loss: 0.2769 - val_accuracy: 0.8305 Epoch 686/1000 2/2 [==============================] - ETA: 0s - loss: 0.1080 - accuracy: 0.9609 Epoch 686: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1080 - accuracy: 0.9609 - val_loss: 0.2748 - val_accuracy: 0.8305 Epoch 687/1000 2/2 [==============================] - ETA: 0s - loss: 0.1526 - accuracy: 0.9125 Epoch 687: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1526 - accuracy: 0.9125 - val_loss: 0.2761 - val_accuracy: 0.8305 Epoch 688/1000 2/2 [==============================] - ETA: 0s - loss: 0.1283 - accuracy: 0.9375 Epoch 688: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1283 - accuracy: 0.9375 - val_loss: 0.2777 - val_accuracy: 0.8305 Epoch 689/1000 2/2 [==============================] - ETA: 0s - loss: 0.1500 - accuracy: 0.9375 Epoch 689: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 831ms/step - loss: 0.1500 - accuracy: 0.9375 - val_loss: 0.2809 - val_accuracy: 0.8305 Epoch 690/1000 2/2 [==============================] - ETA: 0s - loss: 0.1213 - accuracy: 0.9375 Epoch 690: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1213 - accuracy: 0.9375 - val_loss: 0.2837 - val_accuracy: 0.8305 Epoch 691/1000 2/2 [==============================] - ETA: 0s - loss: 0.1150 - accuracy: 0.9531 Epoch 691: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1150 - accuracy: 0.9531 - val_loss: 0.2858 - val_accuracy: 0.8305 Epoch 692/1000 2/2 [==============================] - ETA: 0s - loss: 0.0847 - accuracy: 0.9766 Epoch 692: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0847 - accuracy: 0.9766 - val_loss: 0.2873 - val_accuracy: 0.8305 Epoch 693/1000 2/2 [==============================] - ETA: 0s - loss: 0.1106 - accuracy: 0.9625 Epoch 693: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1106 - accuracy: 0.9625 - val_loss: 0.2868 - val_accuracy: 0.8305 Epoch 694/1000 2/2 [==============================] - ETA: 0s - loss: 0.1030 - accuracy: 0.9750 Epoch 694: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 833ms/step - loss: 0.1030 - accuracy: 0.9750 - val_loss: 0.2863 - val_accuracy: 0.8305 Epoch 695/1000 2/2 [==============================] - ETA: 0s - loss: 0.1061 - accuracy: 0.9531 Epoch 695: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 955ms/step - loss: 0.1061 - accuracy: 0.9531 - val_loss: 0.2856 - val_accuracy: 0.8305 Epoch 696/1000 2/2 [==============================] - ETA: 0s - loss: 0.1274 - accuracy: 0.9297 Epoch 696: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1274 - accuracy: 0.9297 - val_loss: 0.2846 - val_accuracy: 0.8305 Epoch 697/1000 2/2 [==============================] - ETA: 0s - loss: 0.1182 - accuracy: 0.9531 Epoch 697: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1182 - accuracy: 0.9531 - val_loss: 0.2838 - val_accuracy: 0.8305 Epoch 698/1000 2/2 [==============================] - ETA: 0s - loss: 0.1083 - accuracy: 0.9453 Epoch 698: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1083 - accuracy: 0.9453 - val_loss: 0.2828 - val_accuracy: 0.8305 Epoch 699/1000 2/2 [==============================] - ETA: 0s - loss: 0.1175 - accuracy: 0.9531 Epoch 699: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1175 - accuracy: 0.9531 - val_loss: 0.2830 - val_accuracy: 0.8305 Epoch 700/1000 2/2 [==============================] - ETA: 0s - loss: 0.1411 - accuracy: 0.9297 Epoch 700: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 957ms/step - loss: 0.1411 - accuracy: 0.9297 - val_loss: 0.2833 - val_accuracy: 0.8305 Epoch 701/1000 2/2 [==============================] - ETA: 0s - loss: 0.1243 - accuracy: 0.9453 Epoch 701: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1243 - accuracy: 0.9453 - val_loss: 0.2845 - val_accuracy: 0.8305 Epoch 702/1000 2/2 [==============================] - ETA: 0s - loss: 0.1150 - accuracy: 0.9500 Epoch 702: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 861ms/step - loss: 0.1150 - accuracy: 0.9500 - val_loss: 0.2868 - val_accuracy: 0.8305 Epoch 703/1000 2/2 [==============================] - ETA: 0s - loss: 0.1140 - accuracy: 0.9250 Epoch 703: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1140 - accuracy: 0.9250 - val_loss: 0.2885 - val_accuracy: 0.8305 Epoch 704/1000 2/2 [==============================] - ETA: 0s - loss: 0.1070 - accuracy: 0.9531 Epoch 704: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 934ms/step - loss: 0.1070 - accuracy: 0.9531 - val_loss: 0.2881 - val_accuracy: 0.8305 Epoch 705/1000 2/2 [==============================] - ETA: 0s - loss: 0.1123 - accuracy: 0.9625 Epoch 705: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1123 - accuracy: 0.9625 - val_loss: 0.2871 - val_accuracy: 0.8305 Epoch 706/1000 2/2 [==============================] - ETA: 0s - loss: 0.1124 - accuracy: 0.9453 Epoch 706: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1124 - accuracy: 0.9453 - val_loss: 0.2852 - val_accuracy: 0.8305 Epoch 707/1000 2/2 [==============================] - ETA: 0s - loss: 0.0818 - accuracy: 0.9531 Epoch 707: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0818 - accuracy: 0.9531 - val_loss: 0.2834 - val_accuracy: 0.8305 Epoch 708/1000 2/2 [==============================] - ETA: 0s - loss: 0.0923 - accuracy: 1.0000 Epoch 708: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 846ms/step - loss: 0.0923 - accuracy: 1.0000 - val_loss: 0.2816 - val_accuracy: 0.8305 Epoch 709/1000 2/2 [==============================] - ETA: 0s - loss: 0.1267 - accuracy: 0.9297 Epoch 709: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1267 - accuracy: 0.9297 - val_loss: 0.2808 - val_accuracy: 0.8305 Epoch 710/1000 2/2 [==============================] - ETA: 0s - loss: 0.1103 - accuracy: 0.9500 Epoch 710: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1103 - accuracy: 0.9500 - val_loss: 0.2803 - val_accuracy: 0.8305 Epoch 711/1000 2/2 [==============================] - ETA: 0s - loss: 0.1186 - accuracy: 0.9453 Epoch 711: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 957ms/step - loss: 0.1186 - accuracy: 0.9453 - val_loss: 0.2794 - val_accuracy: 0.8305 Epoch 712/1000 2/2 [==============================] - ETA: 0s - loss: 0.1164 - accuracy: 0.9500 Epoch 712: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 888ms/step - loss: 0.1164 - accuracy: 0.9500 - val_loss: 0.2793 - val_accuracy: 0.8305 Epoch 713/1000 2/2 [==============================] - ETA: 0s - loss: 0.1329 - accuracy: 0.9453 Epoch 713: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 920ms/step - loss: 0.1329 - accuracy: 0.9453 - val_loss: 0.2797 - val_accuracy: 0.8305 Epoch 714/1000 2/2 [==============================] - ETA: 0s - loss: 0.1029 - accuracy: 0.9453 Epoch 714: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1029 - accuracy: 0.9453 - val_loss: 0.2799 - val_accuracy: 0.8305 Epoch 715/1000 2/2 [==============================] - ETA: 0s - loss: 0.0814 - accuracy: 0.9750 Epoch 715: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0814 - accuracy: 0.9750 - val_loss: 0.2799 - val_accuracy: 0.8305 Epoch 716/1000 2/2 [==============================] - ETA: 0s - loss: 0.1071 - accuracy: 0.9609 Epoch 716: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 936ms/step - loss: 0.1071 - accuracy: 0.9609 - val_loss: 0.2795 - val_accuracy: 0.8475 Epoch 717/1000 2/2 [==============================] - ETA: 0s - loss: 0.0719 - accuracy: 1.0000 Epoch 717: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0719 - accuracy: 1.0000 - val_loss: 0.2809 - val_accuracy: 0.8305 Epoch 718/1000 2/2 [==============================] - ETA: 0s - loss: 0.1597 - accuracy: 0.9375 Epoch 718: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 821ms/step - loss: 0.1597 - accuracy: 0.9375 - val_loss: 0.2791 - val_accuracy: 0.8475 Epoch 719/1000 2/2 [==============================] - ETA: 0s - loss: 0.1307 - accuracy: 0.9750 Epoch 719: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 834ms/step - loss: 0.1307 - accuracy: 0.9750 - val_loss: 0.2759 - val_accuracy: 0.8475 Epoch 720/1000 2/2 [==============================] - ETA: 0s - loss: 0.0994 - accuracy: 0.9922 Epoch 720: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0994 - accuracy: 0.9922 - val_loss: 0.2731 - val_accuracy: 0.8475 Epoch 721/1000 2/2 [==============================] - ETA: 0s - loss: 0.1031 - accuracy: 0.9750 Epoch 721: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 859ms/step - loss: 0.1031 - accuracy: 0.9750 - val_loss: 0.2718 - val_accuracy: 0.8475 Epoch 722/1000 2/2 [==============================] - ETA: 0s - loss: 0.1109 - accuracy: 0.9375 Epoch 722: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 832ms/step - loss: 0.1109 - accuracy: 0.9375 - val_loss: 0.2699 - val_accuracy: 0.8475 Epoch 723/1000 2/2 [==============================] - ETA: 0s - loss: 0.0936 - accuracy: 0.9500 Epoch 723: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0936 - accuracy: 0.9500 - val_loss: 0.2673 - val_accuracy: 0.8475 Epoch 724/1000 2/2 [==============================] - ETA: 0s - loss: 0.1319 - accuracy: 0.9500 Epoch 724: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1319 - accuracy: 0.9500 - val_loss: 0.2645 - val_accuracy: 0.8475 Epoch 725/1000 2/2 [==============================] - ETA: 0s - loss: 0.1114 - accuracy: 0.9375 Epoch 725: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1114 - accuracy: 0.9375 - val_loss: 0.2619 - val_accuracy: 0.8475 Epoch 726/1000 2/2 [==============================] - ETA: 0s - loss: 0.0872 - accuracy: 0.9875 Epoch 726: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 805ms/step - loss: 0.0872 - accuracy: 0.9875 - val_loss: 0.2602 - val_accuracy: 0.8475 Epoch 727/1000 2/2 [==============================] - ETA: 0s - loss: 0.1199 - accuracy: 0.9609 Epoch 727: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1199 - accuracy: 0.9609 - val_loss: 0.2602 - val_accuracy: 0.8475 Epoch 728/1000 2/2 [==============================] - ETA: 0s - loss: 0.1012 - accuracy: 0.9609 Epoch 728: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 926ms/step - loss: 0.1012 - accuracy: 0.9609 - val_loss: 0.2608 - val_accuracy: 0.8475 Epoch 729/1000 2/2 [==============================] - ETA: 0s - loss: 0.0955 - accuracy: 0.9750 Epoch 729: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0955 - accuracy: 0.9750 - val_loss: 0.2607 - val_accuracy: 0.8475 Epoch 730/1000 2/2 [==============================] - ETA: 0s - loss: 0.1248 - accuracy: 0.9297 Epoch 730: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 970ms/step - loss: 0.1248 - accuracy: 0.9297 - val_loss: 0.2611 - val_accuracy: 0.8475 Epoch 731/1000 2/2 [==============================] - ETA: 0s - loss: 0.1311 - accuracy: 0.9219 Epoch 731: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1311 - accuracy: 0.9219 - val_loss: 0.2610 - val_accuracy: 0.8475 Epoch 732/1000 2/2 [==============================] - ETA: 0s - loss: 0.1236 - accuracy: 0.9375 Epoch 732: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 812ms/step - loss: 0.1236 - accuracy: 0.9375 - val_loss: 0.2621 - val_accuracy: 0.8305 Epoch 733/1000 2/2 [==============================] - ETA: 0s - loss: 0.1027 - accuracy: 0.9609 Epoch 733: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 959ms/step - loss: 0.1027 - accuracy: 0.9609 - val_loss: 0.2639 - val_accuracy: 0.8305 Epoch 734/1000 2/2 [==============================] - ETA: 0s - loss: 0.1354 - accuracy: 0.9453 Epoch 734: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1354 - accuracy: 0.9453 - val_loss: 0.2655 - val_accuracy: 0.8305 Epoch 735/1000 2/2 [==============================] - ETA: 0s - loss: 0.1007 - accuracy: 0.9531 Epoch 735: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 940ms/step - loss: 0.1007 - accuracy: 0.9531 - val_loss: 0.2681 - val_accuracy: 0.8305 Epoch 736/1000 2/2 [==============================] - ETA: 0s - loss: 0.1023 - accuracy: 0.9609 Epoch 736: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1023 - accuracy: 0.9609 - val_loss: 0.2705 - val_accuracy: 0.8305 Epoch 737/1000 2/2 [==============================] - ETA: 0s - loss: 0.0855 - accuracy: 0.9688 Epoch 737: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 901ms/step - loss: 0.0855 - accuracy: 0.9688 - val_loss: 0.2720 - val_accuracy: 0.8305 Epoch 738/1000 2/2 [==============================] - ETA: 0s - loss: 0.1273 - accuracy: 0.9000 Epoch 738: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 838ms/step - loss: 0.1273 - accuracy: 0.9000 - val_loss: 0.2730 - val_accuracy: 0.8305 Epoch 739/1000 2/2 [==============================] - ETA: 0s - loss: 0.1079 - accuracy: 0.9250 Epoch 739: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1079 - accuracy: 0.9250 - val_loss: 0.2744 - val_accuracy: 0.8305 Epoch 740/1000 2/2 [==============================] - ETA: 0s - loss: 0.0813 - accuracy: 0.9922 Epoch 740: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0813 - accuracy: 0.9922 - val_loss: 0.2757 - val_accuracy: 0.8305 Epoch 741/1000 2/2 [==============================] - ETA: 0s - loss: 0.1141 - accuracy: 0.9500 Epoch 741: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 839ms/step - loss: 0.1141 - accuracy: 0.9500 - val_loss: 0.2759 - val_accuracy: 0.8305 Epoch 742/1000 2/2 [==============================] - ETA: 0s - loss: 0.0984 - accuracy: 0.9844 Epoch 742: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 951ms/step - loss: 0.0984 - accuracy: 0.9844 - val_loss: 0.2755 - val_accuracy: 0.8305 Epoch 743/1000 2/2 [==============================] - ETA: 0s - loss: 0.0862 - accuracy: 0.9609 Epoch 743: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0862 - accuracy: 0.9609 - val_loss: 0.2756 - val_accuracy: 0.8305 Epoch 744/1000 2/2 [==============================] - ETA: 0s - loss: 0.1266 - accuracy: 0.9453 Epoch 744: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 954ms/step - loss: 0.1266 - accuracy: 0.9453 - val_loss: 0.2753 - val_accuracy: 0.8305 Epoch 745/1000 2/2 [==============================] - ETA: 0s - loss: 0.0972 - accuracy: 0.9625 Epoch 745: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 838ms/step - loss: 0.0972 - accuracy: 0.9625 - val_loss: 0.2741 - val_accuracy: 0.8305 Epoch 746/1000 2/2 [==============================] - ETA: 0s - loss: 0.1272 - accuracy: 0.9375 Epoch 746: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1272 - accuracy: 0.9375 - val_loss: 0.2730 - val_accuracy: 0.8305 Epoch 747/1000 2/2 [==============================] - ETA: 0s - loss: 0.1130 - accuracy: 0.9250 Epoch 747: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 850ms/step - loss: 0.1130 - accuracy: 0.9250 - val_loss: 0.2731 - val_accuracy: 0.8305 Epoch 748/1000 2/2 [==============================] - ETA: 0s - loss: 0.1005 - accuracy: 0.9609 Epoch 748: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1005 - accuracy: 0.9609 - val_loss: 0.2731 - val_accuracy: 0.8305 Epoch 749/1000 2/2 [==============================] - ETA: 0s - loss: 0.1331 - accuracy: 0.9219 Epoch 749: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1331 - accuracy: 0.9219 - val_loss: 0.2735 - val_accuracy: 0.8305 Epoch 750/1000 2/2 [==============================] - ETA: 0s - loss: 0.0987 - accuracy: 0.9531 Epoch 750: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 948ms/step - loss: 0.0987 - accuracy: 0.9531 - val_loss: 0.2732 - val_accuracy: 0.8305 Epoch 751/1000 2/2 [==============================] - ETA: 0s - loss: 0.1306 - accuracy: 0.9625 Epoch 751: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1306 - accuracy: 0.9625 - val_loss: 0.2735 - val_accuracy: 0.8305 Epoch 752/1000 2/2 [==============================] - ETA: 0s - loss: 0.1052 - accuracy: 0.9609 Epoch 752: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1052 - accuracy: 0.9609 - val_loss: 0.2742 - val_accuracy: 0.8305 Epoch 753/1000 2/2 [==============================] - ETA: 0s - loss: 0.1138 - accuracy: 0.9531 Epoch 753: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1138 - accuracy: 0.9531 - val_loss: 0.2751 - val_accuracy: 0.8305 Epoch 754/1000 2/2 [==============================] - ETA: 0s - loss: 0.0997 - accuracy: 0.9688 Epoch 754: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0997 - accuracy: 0.9688 - val_loss: 0.2757 - val_accuracy: 0.8305 Epoch 755/1000 2/2 [==============================] - ETA: 0s - loss: 0.0910 - accuracy: 0.9766 Epoch 755: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 964ms/step - loss: 0.0910 - accuracy: 0.9766 - val_loss: 0.2760 - val_accuracy: 0.8305 Epoch 756/1000 2/2 [==============================] - ETA: 0s - loss: 0.0916 - accuracy: 0.9531 Epoch 756: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0916 - accuracy: 0.9531 - val_loss: 0.2756 - val_accuracy: 0.8305 Epoch 757/1000 2/2 [==============================] - ETA: 0s - loss: 0.0892 - accuracy: 0.9688 Epoch 757: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0892 - accuracy: 0.9688 - val_loss: 0.2744 - val_accuracy: 0.8305 Epoch 758/1000 2/2 [==============================] - ETA: 0s - loss: 0.1605 - accuracy: 0.9125 Epoch 758: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1605 - accuracy: 0.9125 - val_loss: 0.2720 - val_accuracy: 0.8475 Epoch 759/1000 2/2 [==============================] - ETA: 0s - loss: 0.1353 - accuracy: 0.9375 Epoch 759: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1353 - accuracy: 0.9375 - val_loss: 0.2697 - val_accuracy: 0.8475 Epoch 760/1000 2/2 [==============================] - ETA: 0s - loss: 0.0941 - accuracy: 0.9875 Epoch 760: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0941 - accuracy: 0.9875 - val_loss: 0.2682 - val_accuracy: 0.8475 Epoch 761/1000 2/2 [==============================] - ETA: 0s - loss: 0.0846 - accuracy: 0.9922 Epoch 761: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0846 - accuracy: 0.9922 - val_loss: 0.2674 - val_accuracy: 0.8475 Epoch 762/1000 2/2 [==============================] - ETA: 0s - loss: 0.0976 - accuracy: 0.9609 Epoch 762: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0976 - accuracy: 0.9609 - val_loss: 0.2673 - val_accuracy: 0.8475 Epoch 763/1000 2/2 [==============================] - ETA: 0s - loss: 0.0895 - accuracy: 0.9500 Epoch 763: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0895 - accuracy: 0.9500 - val_loss: 0.2657 - val_accuracy: 0.8475 Epoch 764/1000 2/2 [==============================] - ETA: 0s - loss: 0.0793 - accuracy: 0.9766 Epoch 764: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 985ms/step - loss: 0.0793 - accuracy: 0.9766 - val_loss: 0.2641 - val_accuracy: 0.8475 Epoch 765/1000 2/2 [==============================] - ETA: 0s - loss: 0.0875 - accuracy: 0.9688 Epoch 765: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 964ms/step - loss: 0.0875 - accuracy: 0.9688 - val_loss: 0.2638 - val_accuracy: 0.8475 Epoch 766/1000 2/2 [==============================] - ETA: 0s - loss: 0.1283 - accuracy: 0.9500 Epoch 766: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1283 - accuracy: 0.9500 - val_loss: 0.2612 - val_accuracy: 0.8475 Epoch 767/1000 2/2 [==============================] - ETA: 0s - loss: 0.1182 - accuracy: 0.9375 Epoch 767: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1182 - accuracy: 0.9375 - val_loss: 0.2574 - val_accuracy: 0.8475 Epoch 768/1000 2/2 [==============================] - ETA: 0s - loss: 0.0919 - accuracy: 0.9453 Epoch 768: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0919 - accuracy: 0.9453 - val_loss: 0.2547 - val_accuracy: 0.8475 Epoch 769/1000 2/2 [==============================] - ETA: 0s - loss: 0.1081 - accuracy: 0.9750 Epoch 769: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 847ms/step - loss: 0.1081 - accuracy: 0.9750 - val_loss: 0.2529 - val_accuracy: 0.8475 Epoch 770/1000 2/2 [==============================] - ETA: 0s - loss: 0.0646 - accuracy: 1.0000 Epoch 770: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 947ms/step - loss: 0.0646 - accuracy: 1.0000 - val_loss: 0.2518 - val_accuracy: 0.8475 Epoch 771/1000 2/2 [==============================] - ETA: 0s - loss: 0.1405 - accuracy: 0.9500 Epoch 771: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 851ms/step - loss: 0.1405 - accuracy: 0.9500 - val_loss: 0.2505 - val_accuracy: 0.8475 Epoch 772/1000 2/2 [==============================] - ETA: 0s - loss: 0.1141 - accuracy: 0.9531 Epoch 772: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 953ms/step - loss: 0.1141 - accuracy: 0.9531 - val_loss: 0.2495 - val_accuracy: 0.8475 Epoch 773/1000 2/2 [==============================] - ETA: 0s - loss: 0.0894 - accuracy: 0.9844 Epoch 773: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 964ms/step - loss: 0.0894 - accuracy: 0.9844 - val_loss: 0.2490 - val_accuracy: 0.8475 Epoch 774/1000 2/2 [==============================] - ETA: 0s - loss: 0.1010 - accuracy: 0.9875 Epoch 774: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1010 - accuracy: 0.9875 - val_loss: 0.2502 - val_accuracy: 0.8475 Epoch 775/1000 2/2 [==============================] - ETA: 0s - loss: 0.1218 - accuracy: 0.9500 Epoch 775: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1218 - accuracy: 0.9500 - val_loss: 0.2521 - val_accuracy: 0.8475 Epoch 776/1000 2/2 [==============================] - ETA: 0s - loss: 0.0885 - accuracy: 0.9750 Epoch 776: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 825ms/step - loss: 0.0885 - accuracy: 0.9750 - val_loss: 0.2556 - val_accuracy: 0.8475 Epoch 777/1000 2/2 [==============================] - ETA: 0s - loss: 0.1032 - accuracy: 0.9750 Epoch 777: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1032 - accuracy: 0.9750 - val_loss: 0.2587 - val_accuracy: 0.8475 Epoch 778/1000 2/2 [==============================] - ETA: 0s - loss: 0.1003 - accuracy: 0.9453 Epoch 778: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 946ms/step - loss: 0.1003 - accuracy: 0.9453 - val_loss: 0.2619 - val_accuracy: 0.8475 Epoch 779/1000 2/2 [==============================] - ETA: 0s - loss: 0.0924 - accuracy: 0.9500 Epoch 779: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 830ms/step - loss: 0.0924 - accuracy: 0.9500 - val_loss: 0.2652 - val_accuracy: 0.8475 Epoch 780/1000 2/2 [==============================] - ETA: 0s - loss: 0.1120 - accuracy: 0.9688 Epoch 780: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1120 - accuracy: 0.9688 - val_loss: 0.2678 - val_accuracy: 0.8475 Epoch 781/1000 2/2 [==============================] - ETA: 0s - loss: 0.1270 - accuracy: 0.9531 Epoch 781: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 962ms/step - loss: 0.1270 - accuracy: 0.9531 - val_loss: 0.2701 - val_accuracy: 0.8475 Epoch 782/1000 2/2 [==============================] - ETA: 0s - loss: 0.0972 - accuracy: 0.9531 Epoch 782: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 953ms/step - loss: 0.0972 - accuracy: 0.9531 - val_loss: 0.2720 - val_accuracy: 0.8475 Epoch 783/1000 2/2 [==============================] - ETA: 0s - loss: 0.1113 - accuracy: 0.9688 Epoch 783: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1113 - accuracy: 0.9688 - val_loss: 0.2752 - val_accuracy: 0.8305 Epoch 784/1000 2/2 [==============================] - ETA: 0s - loss: 0.0787 - accuracy: 0.9500 Epoch 784: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 819ms/step - loss: 0.0787 - accuracy: 0.9500 - val_loss: 0.2774 - val_accuracy: 0.8305 Epoch 785/1000 2/2 [==============================] - ETA: 0s - loss: 0.1063 - accuracy: 0.9875 Epoch 785: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 816ms/step - loss: 0.1063 - accuracy: 0.9875 - val_loss: 0.2791 - val_accuracy: 0.8305 Epoch 786/1000 2/2 [==============================] - ETA: 0s - loss: 0.0988 - accuracy: 0.9688 Epoch 786: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0988 - accuracy: 0.9688 - val_loss: 0.2820 - val_accuracy: 0.8305 Epoch 787/1000 2/2 [==============================] - ETA: 0s - loss: 0.1266 - accuracy: 0.9250 Epoch 787: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1266 - accuracy: 0.9250 - val_loss: 0.2833 - val_accuracy: 0.8136 Epoch 788/1000 2/2 [==============================] - ETA: 0s - loss: 0.1121 - accuracy: 0.9688 Epoch 788: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1121 - accuracy: 0.9688 - val_loss: 0.2839 - val_accuracy: 0.8136 Epoch 789/1000 2/2 [==============================] - ETA: 0s - loss: 0.1159 - accuracy: 0.9375 Epoch 789: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1159 - accuracy: 0.9375 - val_loss: 0.2841 - val_accuracy: 0.8136 Epoch 790/1000 2/2 [==============================] - ETA: 0s - loss: 0.1131 - accuracy: 0.9625 Epoch 790: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 853ms/step - loss: 0.1131 - accuracy: 0.9625 - val_loss: 0.2837 - val_accuracy: 0.8475 Epoch 791/1000 2/2 [==============================] - ETA: 0s - loss: 0.0619 - accuracy: 1.0000 Epoch 791: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0619 - accuracy: 1.0000 - val_loss: 0.2837 - val_accuracy: 0.8475 Epoch 792/1000 2/2 [==============================] - ETA: 0s - loss: 0.0737 - accuracy: 1.0000 Epoch 792: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0737 - accuracy: 1.0000 - val_loss: 0.2861 - val_accuracy: 0.8475 Epoch 793/1000 2/2 [==============================] - ETA: 0s - loss: 0.1128 - accuracy: 0.9750 Epoch 793: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1128 - accuracy: 0.9750 - val_loss: 0.2885 - val_accuracy: 0.8305 Epoch 794/1000 2/2 [==============================] - ETA: 0s - loss: 0.0624 - accuracy: 1.0000 Epoch 794: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0624 - accuracy: 1.0000 - val_loss: 0.2914 - val_accuracy: 0.8305 Epoch 795/1000 2/2 [==============================] - ETA: 0s - loss: 0.0935 - accuracy: 0.9609 Epoch 795: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0935 - accuracy: 0.9609 - val_loss: 0.2928 - val_accuracy: 0.8305 Epoch 796/1000 2/2 [==============================] - ETA: 0s - loss: 0.0912 - accuracy: 0.9625 Epoch 796: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 881ms/step - loss: 0.0912 - accuracy: 0.9625 - val_loss: 0.2941 - val_accuracy: 0.8305 Epoch 797/1000 2/2 [==============================] - ETA: 0s - loss: 0.0922 - accuracy: 0.9766 Epoch 797: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0922 - accuracy: 0.9766 - val_loss: 0.2936 - val_accuracy: 0.8475 Epoch 798/1000 2/2 [==============================] - ETA: 0s - loss: 0.1466 - accuracy: 0.9375 Epoch 798: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1466 - accuracy: 0.9375 - val_loss: 0.2921 - val_accuracy: 0.8475 Epoch 799/1000 2/2 [==============================] - ETA: 0s - loss: 0.0982 - accuracy: 0.9453 Epoch 799: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0982 - accuracy: 0.9453 - val_loss: 0.2880 - val_accuracy: 0.8475 Epoch 800/1000 2/2 [==============================] - ETA: 0s - loss: 0.0642 - accuracy: 1.0000 Epoch 800: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 980ms/step - loss: 0.0642 - accuracy: 1.0000 - val_loss: 0.2839 - val_accuracy: 0.8644 Epoch 801/1000 2/2 [==============================] - ETA: 0s - loss: 0.1012 - accuracy: 0.9875 Epoch 801: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1012 - accuracy: 0.9875 - val_loss: 0.2809 - val_accuracy: 0.8644 Epoch 802/1000 2/2 [==============================] - ETA: 0s - loss: 0.0896 - accuracy: 0.9750 Epoch 802: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 842ms/step - loss: 0.0896 - accuracy: 0.9750 - val_loss: 0.2776 - val_accuracy: 0.8644 Epoch 803/1000 2/2 [==============================] - ETA: 0s - loss: 0.1111 - accuracy: 0.9750 Epoch 803: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 905ms/step - loss: 0.1111 - accuracy: 0.9750 - val_loss: 0.2753 - val_accuracy: 0.8644 Epoch 804/1000 2/2 [==============================] - ETA: 0s - loss: 0.1032 - accuracy: 0.9688 Epoch 804: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 959ms/step - loss: 0.1032 - accuracy: 0.9688 - val_loss: 0.2732 - val_accuracy: 0.8644 Epoch 805/1000 2/2 [==============================] - ETA: 0s - loss: 0.1012 - accuracy: 0.9609 Epoch 805: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1012 - accuracy: 0.9609 - val_loss: 0.2717 - val_accuracy: 0.8644 Epoch 806/1000 2/2 [==============================] - ETA: 0s - loss: 0.1017 - accuracy: 0.9688 Epoch 806: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 960ms/step - loss: 0.1017 - accuracy: 0.9688 - val_loss: 0.2710 - val_accuracy: 0.8644 Epoch 807/1000 2/2 [==============================] - ETA: 0s - loss: 0.0986 - accuracy: 0.9688 Epoch 807: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 946ms/step - loss: 0.0986 - accuracy: 0.9688 - val_loss: 0.2702 - val_accuracy: 0.8644 Epoch 808/1000 2/2 [==============================] - ETA: 0s - loss: 0.1174 - accuracy: 0.9688 Epoch 808: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1174 - accuracy: 0.9688 - val_loss: 0.2693 - val_accuracy: 0.8644 Epoch 809/1000 2/2 [==============================] - ETA: 0s - loss: 0.0800 - accuracy: 0.9750 Epoch 809: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0800 - accuracy: 0.9750 - val_loss: 0.2683 - val_accuracy: 0.8475 Epoch 810/1000 2/2 [==============================] - ETA: 0s - loss: 0.1655 - accuracy: 0.8875 Epoch 810: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 849ms/step - loss: 0.1655 - accuracy: 0.8875 - val_loss: 0.2673 - val_accuracy: 0.8475 Epoch 811/1000 2/2 [==============================] - ETA: 0s - loss: 0.0940 - accuracy: 0.9750 Epoch 811: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0940 - accuracy: 0.9750 - val_loss: 0.2662 - val_accuracy: 0.8475 Epoch 812/1000 2/2 [==============================] - ETA: 0s - loss: 0.0860 - accuracy: 0.9750 Epoch 812: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0860 - accuracy: 0.9750 - val_loss: 0.2628 - val_accuracy: 0.8475 Epoch 813/1000 2/2 [==============================] - ETA: 0s - loss: 0.0997 - accuracy: 0.9297 Epoch 813: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 976ms/step - loss: 0.0997 - accuracy: 0.9297 - val_loss: 0.2612 - val_accuracy: 0.8475 Epoch 814/1000 2/2 [==============================] - ETA: 0s - loss: 0.1229 - accuracy: 0.9625 Epoch 814: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 847ms/step - loss: 0.1229 - accuracy: 0.9625 - val_loss: 0.2585 - val_accuracy: 0.8475 Epoch 815/1000 2/2 [==============================] - ETA: 0s - loss: 0.1036 - accuracy: 0.9500 Epoch 815: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 834ms/step - loss: 0.1036 - accuracy: 0.9500 - val_loss: 0.2557 - val_accuracy: 0.8475 Epoch 816/1000 2/2 [==============================] - ETA: 0s - loss: 0.0913 - accuracy: 0.9609 Epoch 816: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 980ms/step - loss: 0.0913 - accuracy: 0.9609 - val_loss: 0.2546 - val_accuracy: 0.8475 Epoch 817/1000 2/2 [==============================] - ETA: 0s - loss: 0.1231 - accuracy: 0.9375 Epoch 817: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1231 - accuracy: 0.9375 - val_loss: 0.2543 - val_accuracy: 0.8475 Epoch 818/1000 2/2 [==============================] - ETA: 0s - loss: 0.0968 - accuracy: 0.9750 Epoch 818: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0968 - accuracy: 0.9750 - val_loss: 0.2539 - val_accuracy: 0.8475 Epoch 819/1000 2/2 [==============================] - ETA: 0s - loss: 0.0983 - accuracy: 0.9688 Epoch 819: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0983 - accuracy: 0.9688 - val_loss: 0.2527 - val_accuracy: 0.8475 Epoch 820/1000 2/2 [==============================] - ETA: 0s - loss: 0.0990 - accuracy: 0.9766 Epoch 820: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 965ms/step - loss: 0.0990 - accuracy: 0.9766 - val_loss: 0.2513 - val_accuracy: 0.8475 Epoch 821/1000 2/2 [==============================] - ETA: 0s - loss: 0.0738 - accuracy: 0.9750 Epoch 821: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0738 - accuracy: 0.9750 - val_loss: 0.2507 - val_accuracy: 0.8475 Epoch 822/1000 2/2 [==============================] - ETA: 0s - loss: 0.1152 - accuracy: 0.9609 Epoch 822: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1152 - accuracy: 0.9609 - val_loss: 0.2488 - val_accuracy: 0.8475 Epoch 823/1000 2/2 [==============================] - ETA: 0s - loss: 0.0756 - accuracy: 0.9625 Epoch 823: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0756 - accuracy: 0.9625 - val_loss: 0.2470 - val_accuracy: 0.8475 Epoch 824/1000 2/2 [==============================] - ETA: 0s - loss: 0.0963 - accuracy: 0.9844 Epoch 824: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0963 - accuracy: 0.9844 - val_loss: 0.2454 - val_accuracy: 0.8475 Epoch 825/1000 2/2 [==============================] - ETA: 0s - loss: 0.1150 - accuracy: 0.9688 Epoch 825: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1150 - accuracy: 0.9688 - val_loss: 0.2448 - val_accuracy: 0.8475 Epoch 826/1000 2/2 [==============================] - ETA: 0s - loss: 0.1223 - accuracy: 0.9500 Epoch 826: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1223 - accuracy: 0.9500 - val_loss: 0.2419 - val_accuracy: 0.8644 Epoch 827/1000 2/2 [==============================] - ETA: 0s - loss: 0.0789 - accuracy: 0.9688 Epoch 827: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0789 - accuracy: 0.9688 - val_loss: 0.2401 - val_accuracy: 0.8644 Epoch 828/1000 2/2 [==============================] - ETA: 0s - loss: 0.0897 - accuracy: 0.9750 Epoch 828: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0897 - accuracy: 0.9750 - val_loss: 0.2401 - val_accuracy: 0.8644 Epoch 829/1000 2/2 [==============================] - ETA: 0s - loss: 0.1105 - accuracy: 0.9531 Epoch 829: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 938ms/step - loss: 0.1105 - accuracy: 0.9531 - val_loss: 0.2408 - val_accuracy: 0.8644 Epoch 830/1000 2/2 [==============================] - ETA: 0s - loss: 0.0924 - accuracy: 0.9609 Epoch 830: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0924 - accuracy: 0.9609 - val_loss: 0.2409 - val_accuracy: 0.8644 Epoch 831/1000 2/2 [==============================] - ETA: 0s - loss: 0.0712 - accuracy: 0.9688 Epoch 831: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0712 - accuracy: 0.9688 - val_loss: 0.2412 - val_accuracy: 0.8644 Epoch 832/1000 2/2 [==============================] - ETA: 0s - loss: 0.0620 - accuracy: 0.9750 Epoch 832: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 811ms/step - loss: 0.0620 - accuracy: 0.9750 - val_loss: 0.2411 - val_accuracy: 0.8644 Epoch 833/1000 2/2 [==============================] - ETA: 0s - loss: 0.1238 - accuracy: 0.9297 Epoch 833: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 949ms/step - loss: 0.1238 - accuracy: 0.9297 - val_loss: 0.2420 - val_accuracy: 0.8644 Epoch 834/1000 2/2 [==============================] - ETA: 0s - loss: 0.0821 - accuracy: 0.9844 Epoch 834: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0821 - accuracy: 0.9844 - val_loss: 0.2424 - val_accuracy: 0.8644 Epoch 835/1000 2/2 [==============================] - ETA: 0s - loss: 0.1200 - accuracy: 0.9375 Epoch 835: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 958ms/step - loss: 0.1200 - accuracy: 0.9375 - val_loss: 0.2430 - val_accuracy: 0.8644 Epoch 836/1000 2/2 [==============================] - ETA: 0s - loss: 0.1401 - accuracy: 0.9375 Epoch 836: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 933ms/step - loss: 0.1401 - accuracy: 0.9375 - val_loss: 0.2434 - val_accuracy: 0.8644 Epoch 837/1000 2/2 [==============================] - ETA: 0s - loss: 0.0621 - accuracy: 0.9922 Epoch 837: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0621 - accuracy: 0.9922 - val_loss: 0.2446 - val_accuracy: 0.8644 Epoch 838/1000 2/2 [==============================] - ETA: 0s - loss: 0.1004 - accuracy: 0.9500 Epoch 838: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 817ms/step - loss: 0.1004 - accuracy: 0.9500 - val_loss: 0.2464 - val_accuracy: 0.8644 Epoch 839/1000 2/2 [==============================] - ETA: 0s - loss: 0.0905 - accuracy: 0.9766 Epoch 839: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0905 - accuracy: 0.9766 - val_loss: 0.2481 - val_accuracy: 0.8644 Epoch 840/1000 2/2 [==============================] - ETA: 0s - loss: 0.1004 - accuracy: 0.9500 Epoch 840: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 887ms/step - loss: 0.1004 - accuracy: 0.9500 - val_loss: 0.2505 - val_accuracy: 0.8644 Epoch 841/1000 2/2 [==============================] - ETA: 0s - loss: 0.1146 - accuracy: 0.9750 Epoch 841: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1146 - accuracy: 0.9750 - val_loss: 0.2507 - val_accuracy: 0.8644 Epoch 842/1000 2/2 [==============================] - ETA: 0s - loss: 0.0898 - accuracy: 0.9844 Epoch 842: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0898 - accuracy: 0.9844 - val_loss: 0.2503 - val_accuracy: 0.8644 Epoch 843/1000 2/2 [==============================] - ETA: 0s - loss: 0.1224 - accuracy: 0.9375 Epoch 843: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1224 - accuracy: 0.9375 - val_loss: 0.2509 - val_accuracy: 0.8644 Epoch 844/1000 2/2 [==============================] - ETA: 0s - loss: 0.0545 - accuracy: 0.9875 Epoch 844: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 848ms/step - loss: 0.0545 - accuracy: 0.9875 - val_loss: 0.2514 - val_accuracy: 0.8644 Epoch 845/1000 2/2 [==============================] - ETA: 0s - loss: 0.1240 - accuracy: 0.9250 Epoch 845: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1240 - accuracy: 0.9250 - val_loss: 0.2505 - val_accuracy: 0.8644 Epoch 846/1000 2/2 [==============================] - ETA: 0s - loss: 0.1128 - accuracy: 0.9750 Epoch 846: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1128 - accuracy: 0.9750 - val_loss: 0.2508 - val_accuracy: 0.8644 Epoch 847/1000 2/2 [==============================] - ETA: 0s - loss: 0.0841 - accuracy: 0.9500 Epoch 847: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0841 - accuracy: 0.9500 - val_loss: 0.2514 - val_accuracy: 0.8644 Epoch 848/1000 2/2 [==============================] - ETA: 0s - loss: 0.0703 - accuracy: 0.9844 Epoch 848: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 928ms/step - loss: 0.0703 - accuracy: 0.9844 - val_loss: 0.2520 - val_accuracy: 0.8644 Epoch 849/1000 2/2 [==============================] - ETA: 0s - loss: 0.0979 - accuracy: 0.9531 Epoch 849: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0979 - accuracy: 0.9531 - val_loss: 0.2536 - val_accuracy: 0.8644 Epoch 850/1000 2/2 [==============================] - ETA: 0s - loss: 0.0953 - accuracy: 0.9750 Epoch 850: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 842ms/step - loss: 0.0953 - accuracy: 0.9750 - val_loss: 0.2552 - val_accuracy: 0.8644 Epoch 851/1000 2/2 [==============================] - ETA: 0s - loss: 0.0794 - accuracy: 0.9750 Epoch 851: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 833ms/step - loss: 0.0794 - accuracy: 0.9750 - val_loss: 0.2572 - val_accuracy: 0.8644 Epoch 852/1000 2/2 [==============================] - ETA: 0s - loss: 0.0963 - accuracy: 0.9688 Epoch 852: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0963 - accuracy: 0.9688 - val_loss: 0.2586 - val_accuracy: 0.8644 Epoch 853/1000 2/2 [==============================] - ETA: 0s - loss: 0.0843 - accuracy: 0.9625 Epoch 853: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0843 - accuracy: 0.9625 - val_loss: 0.2596 - val_accuracy: 0.8644 Epoch 854/1000 2/2 [==============================] - ETA: 0s - loss: 0.1328 - accuracy: 0.9453 Epoch 854: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1328 - accuracy: 0.9453 - val_loss: 0.2612 - val_accuracy: 0.8644 Epoch 855/1000 2/2 [==============================] - ETA: 0s - loss: 0.1115 - accuracy: 0.9453 Epoch 855: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1115 - accuracy: 0.9453 - val_loss: 0.2625 - val_accuracy: 0.8644 Epoch 856/1000 2/2 [==============================] - ETA: 0s - loss: 0.0815 - accuracy: 0.9750 Epoch 856: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 881ms/step - loss: 0.0815 - accuracy: 0.9750 - val_loss: 0.2628 - val_accuracy: 0.8644 Epoch 857/1000 2/2 [==============================] - ETA: 0s - loss: 0.0965 - accuracy: 0.9609 Epoch 857: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0965 - accuracy: 0.9609 - val_loss: 0.2621 - val_accuracy: 0.8644 Epoch 858/1000 2/2 [==============================] - ETA: 0s - loss: 0.0653 - accuracy: 0.9844 Epoch 858: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0653 - accuracy: 0.9844 - val_loss: 0.2615 - val_accuracy: 0.8644 Epoch 859/1000 2/2 [==============================] - ETA: 0s - loss: 0.0777 - accuracy: 0.9844 Epoch 859: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 947ms/step - loss: 0.0777 - accuracy: 0.9844 - val_loss: 0.2625 - val_accuracy: 0.8644 Epoch 860/1000 2/2 [==============================] - ETA: 0s - loss: 0.0645 - accuracy: 0.9750 Epoch 860: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0645 - accuracy: 0.9750 - val_loss: 0.2642 - val_accuracy: 0.8644 Epoch 861/1000 2/2 [==============================] - ETA: 0s - loss: 0.0972 - accuracy: 0.9531 Epoch 861: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0972 - accuracy: 0.9531 - val_loss: 0.2652 - val_accuracy: 0.8644 Epoch 862/1000 2/2 [==============================] - ETA: 0s - loss: 0.0886 - accuracy: 0.9750 Epoch 862: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 864ms/step - loss: 0.0886 - accuracy: 0.9750 - val_loss: 0.2662 - val_accuracy: 0.8644 Epoch 863/1000 2/2 [==============================] - ETA: 0s - loss: 0.0888 - accuracy: 0.9625 Epoch 863: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0888 - accuracy: 0.9625 - val_loss: 0.2676 - val_accuracy: 0.8644 Epoch 864/1000 2/2 [==============================] - ETA: 0s - loss: 0.0918 - accuracy: 0.9297 Epoch 864: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 955ms/step - loss: 0.0918 - accuracy: 0.9297 - val_loss: 0.2694 - val_accuracy: 0.8644 Epoch 865/1000 2/2 [==============================] - ETA: 0s - loss: 0.0777 - accuracy: 0.9750 Epoch 865: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 840ms/step - loss: 0.0777 - accuracy: 0.9750 - val_loss: 0.2710 - val_accuracy: 0.8644 Epoch 866/1000 2/2 [==============================] - ETA: 0s - loss: 0.0713 - accuracy: 0.9844 Epoch 866: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0713 - accuracy: 0.9844 - val_loss: 0.2715 - val_accuracy: 0.8644 Epoch 867/1000 2/2 [==============================] - ETA: 0s - loss: 0.0677 - accuracy: 0.9750 Epoch 867: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 840ms/step - loss: 0.0677 - accuracy: 0.9750 - val_loss: 0.2721 - val_accuracy: 0.8644 Epoch 868/1000 2/2 [==============================] - ETA: 0s - loss: 0.0762 - accuracy: 0.9625 Epoch 868: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0762 - accuracy: 0.9625 - val_loss: 0.2707 - val_accuracy: 0.8644 Epoch 869/1000 2/2 [==============================] - ETA: 0s - loss: 0.0939 - accuracy: 0.9875 Epoch 869: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 871ms/step - loss: 0.0939 - accuracy: 0.9875 - val_loss: 0.2699 - val_accuracy: 0.8644 Epoch 870/1000 2/2 [==============================] - ETA: 0s - loss: 0.0782 - accuracy: 0.9875 Epoch 870: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 839ms/step - loss: 0.0782 - accuracy: 0.9875 - val_loss: 0.2694 - val_accuracy: 0.8644 Epoch 871/1000 2/2 [==============================] - ETA: 0s - loss: 0.0965 - accuracy: 0.9531 Epoch 871: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 962ms/step - loss: 0.0965 - accuracy: 0.9531 - val_loss: 0.2689 - val_accuracy: 0.8644 Epoch 872/1000 2/2 [==============================] - ETA: 0s - loss: 0.0861 - accuracy: 0.9625 Epoch 872: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0861 - accuracy: 0.9625 - val_loss: 0.2691 - val_accuracy: 0.8644 Epoch 873/1000 2/2 [==============================] - ETA: 0s - loss: 0.0783 - accuracy: 0.9609 Epoch 873: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 937ms/step - loss: 0.0783 - accuracy: 0.9609 - val_loss: 0.2699 - val_accuracy: 0.8644 Epoch 874/1000 2/2 [==============================] - ETA: 0s - loss: 0.1119 - accuracy: 0.9688 Epoch 874: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1119 - accuracy: 0.9688 - val_loss: 0.2719 - val_accuracy: 0.8644 Epoch 875/1000 2/2 [==============================] - ETA: 0s - loss: 0.0761 - accuracy: 0.9500 Epoch 875: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0761 - accuracy: 0.9500 - val_loss: 0.2753 - val_accuracy: 0.8644 Epoch 876/1000 2/2 [==============================] - ETA: 0s - loss: 0.0681 - accuracy: 0.9875 Epoch 876: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 824ms/step - loss: 0.0681 - accuracy: 0.9875 - val_loss: 0.2789 - val_accuracy: 0.8644 Epoch 877/1000 2/2 [==============================] - ETA: 0s - loss: 0.0823 - accuracy: 0.9844 Epoch 877: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0823 - accuracy: 0.9844 - val_loss: 0.2809 - val_accuracy: 0.8644 Epoch 878/1000 2/2 [==============================] - ETA: 0s - loss: 0.0974 - accuracy: 0.9750 Epoch 878: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 921ms/step - loss: 0.0974 - accuracy: 0.9750 - val_loss: 0.2807 - val_accuracy: 0.8644 Epoch 879/1000 2/2 [==============================] - ETA: 0s - loss: 0.0780 - accuracy: 0.9750 Epoch 879: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0780 - accuracy: 0.9750 - val_loss: 0.2798 - val_accuracy: 0.8644 Epoch 880/1000 2/2 [==============================] - ETA: 0s - loss: 0.0934 - accuracy: 0.9609 Epoch 880: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0934 - accuracy: 0.9609 - val_loss: 0.2805 - val_accuracy: 0.8644 Epoch 881/1000 2/2 [==============================] - ETA: 0s - loss: 0.0931 - accuracy: 0.9609 Epoch 881: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0931 - accuracy: 0.9609 - val_loss: 0.2824 - val_accuracy: 0.8644 Epoch 882/1000 2/2 [==============================] - ETA: 0s - loss: 0.0906 - accuracy: 0.9688 Epoch 882: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 947ms/step - loss: 0.0906 - accuracy: 0.9688 - val_loss: 0.2839 - val_accuracy: 0.8644 Epoch 883/1000 2/2 [==============================] - ETA: 0s - loss: 0.1245 - accuracy: 0.9141 Epoch 883: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1245 - accuracy: 0.9141 - val_loss: 0.2849 - val_accuracy: 0.8644 Epoch 884/1000 2/2 [==============================] - ETA: 0s - loss: 0.0833 - accuracy: 0.9500 Epoch 884: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0833 - accuracy: 0.9500 - val_loss: 0.2872 - val_accuracy: 0.8644 Epoch 885/1000 2/2 [==============================] - ETA: 0s - loss: 0.0882 - accuracy: 0.9766 Epoch 885: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 981ms/step - loss: 0.0882 - accuracy: 0.9766 - val_loss: 0.2888 - val_accuracy: 0.8644 Epoch 886/1000 2/2 [==============================] - ETA: 0s - loss: 0.0874 - accuracy: 0.9844 Epoch 886: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 970ms/step - loss: 0.0874 - accuracy: 0.9844 - val_loss: 0.2896 - val_accuracy: 0.8644 Epoch 887/1000 2/2 [==============================] - ETA: 0s - loss: 0.0693 - accuracy: 0.9750 Epoch 887: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 837ms/step - loss: 0.0693 - accuracy: 0.9750 - val_loss: 0.2900 - val_accuracy: 0.8644 Epoch 888/1000 2/2 [==============================] - ETA: 0s - loss: 0.1022 - accuracy: 0.9375 Epoch 888: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 819ms/step - loss: 0.1022 - accuracy: 0.9375 - val_loss: 0.2897 - val_accuracy: 0.8644 Epoch 889/1000 2/2 [==============================] - ETA: 0s - loss: 0.0957 - accuracy: 0.9750 Epoch 889: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 844ms/step - loss: 0.0957 - accuracy: 0.9750 - val_loss: 0.2891 - val_accuracy: 0.8644 Epoch 890/1000 2/2 [==============================] - ETA: 0s - loss: 0.1106 - accuracy: 0.9531 Epoch 890: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1106 - accuracy: 0.9531 - val_loss: 0.2846 - val_accuracy: 0.8644 Epoch 891/1000 2/2 [==============================] - ETA: 0s - loss: 0.0942 - accuracy: 0.9609 Epoch 891: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0942 - accuracy: 0.9609 - val_loss: 0.2803 - val_accuracy: 0.8644 Epoch 892/1000 2/2 [==============================] - ETA: 0s - loss: 0.1219 - accuracy: 0.9453 Epoch 892: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1219 - accuracy: 0.9453 - val_loss: 0.2752 - val_accuracy: 0.8644 Epoch 893/1000 2/2 [==============================] - ETA: 0s - loss: 0.0828 - accuracy: 0.9750 Epoch 893: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0828 - accuracy: 0.9750 - val_loss: 0.2698 - val_accuracy: 0.8644 Epoch 894/1000 2/2 [==============================] - ETA: 0s - loss: 0.1041 - accuracy: 0.9375 Epoch 894: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1041 - accuracy: 0.9375 - val_loss: 0.2643 - val_accuracy: 0.8644 Epoch 895/1000 2/2 [==============================] - ETA: 0s - loss: 0.0839 - accuracy: 0.9500 Epoch 895: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 834ms/step - loss: 0.0839 - accuracy: 0.9500 - val_loss: 0.2609 - val_accuracy: 0.8644 Epoch 896/1000 2/2 [==============================] - ETA: 0s - loss: 0.1266 - accuracy: 0.9375 Epoch 896: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 972ms/step - loss: 0.1266 - accuracy: 0.9375 - val_loss: 0.2591 - val_accuracy: 0.8644 Epoch 897/1000 2/2 [==============================] - ETA: 0s - loss: 0.0911 - accuracy: 0.9531 Epoch 897: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0911 - accuracy: 0.9531 - val_loss: 0.2583 - val_accuracy: 0.8475 Epoch 898/1000 2/2 [==============================] - ETA: 0s - loss: 0.1015 - accuracy: 0.9500 Epoch 898: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 866ms/step - loss: 0.1015 - accuracy: 0.9500 - val_loss: 0.2576 - val_accuracy: 0.8475 Epoch 899/1000 2/2 [==============================] - ETA: 0s - loss: 0.0907 - accuracy: 0.9766 Epoch 899: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0907 - accuracy: 0.9766 - val_loss: 0.2573 - val_accuracy: 0.8475 Epoch 900/1000 2/2 [==============================] - ETA: 0s - loss: 0.0948 - accuracy: 0.9609 Epoch 900: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0948 - accuracy: 0.9609 - val_loss: 0.2570 - val_accuracy: 0.8475 Epoch 901/1000 2/2 [==============================] - ETA: 0s - loss: 0.1040 - accuracy: 0.9750 Epoch 901: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 819ms/step - loss: 0.1040 - accuracy: 0.9750 - val_loss: 0.2567 - val_accuracy: 0.8475 Epoch 902/1000 2/2 [==============================] - ETA: 0s - loss: 0.1039 - accuracy: 0.9141 Epoch 902: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1039 - accuracy: 0.9141 - val_loss: 0.2574 - val_accuracy: 0.8475 Epoch 903/1000 2/2 [==============================] - ETA: 0s - loss: 0.0861 - accuracy: 0.9625 Epoch 903: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 829ms/step - loss: 0.0861 - accuracy: 0.9625 - val_loss: 0.2590 - val_accuracy: 0.8475 Epoch 904/1000 2/2 [==============================] - ETA: 0s - loss: 0.0647 - accuracy: 0.9875 Epoch 904: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0647 - accuracy: 0.9875 - val_loss: 0.2597 - val_accuracy: 0.8475 Epoch 905/1000 2/2 [==============================] - ETA: 0s - loss: 0.0822 - accuracy: 0.9500 Epoch 905: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0822 - accuracy: 0.9500 - val_loss: 0.2606 - val_accuracy: 0.8475 Epoch 906/1000 2/2 [==============================] - ETA: 0s - loss: 0.0629 - accuracy: 0.9750 Epoch 906: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 851ms/step - loss: 0.0629 - accuracy: 0.9750 - val_loss: 0.2621 - val_accuracy: 0.8475 Epoch 907/1000 2/2 [==============================] - ETA: 0s - loss: 0.0631 - accuracy: 1.0000 Epoch 907: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0631 - accuracy: 1.0000 - val_loss: 0.2651 - val_accuracy: 0.8475 Epoch 908/1000 2/2 [==============================] - ETA: 0s - loss: 0.0794 - accuracy: 0.9875 Epoch 908: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0794 - accuracy: 0.9875 - val_loss: 0.2677 - val_accuracy: 0.8475 Epoch 909/1000 2/2 [==============================] - ETA: 0s - loss: 0.0681 - accuracy: 1.0000 Epoch 909: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0681 - accuracy: 1.0000 - val_loss: 0.2719 - val_accuracy: 0.8475 Epoch 910/1000 2/2 [==============================] - ETA: 0s - loss: 0.0788 - accuracy: 0.9531 Epoch 910: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0788 - accuracy: 0.9531 - val_loss: 0.2756 - val_accuracy: 0.8475 Epoch 911/1000 2/2 [==============================] - ETA: 0s - loss: 0.0893 - accuracy: 0.9531 Epoch 911: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 923ms/step - loss: 0.0893 - accuracy: 0.9531 - val_loss: 0.2787 - val_accuracy: 0.8475 Epoch 912/1000 2/2 [==============================] - ETA: 0s - loss: 0.1026 - accuracy: 0.9688 Epoch 912: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1026 - accuracy: 0.9688 - val_loss: 0.2811 - val_accuracy: 0.8475 Epoch 913/1000 2/2 [==============================] - ETA: 0s - loss: 0.0945 - accuracy: 0.9688 Epoch 913: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 937ms/step - loss: 0.0945 - accuracy: 0.9688 - val_loss: 0.2832 - val_accuracy: 0.8305 Epoch 914/1000 2/2 [==============================] - ETA: 0s - loss: 0.0744 - accuracy: 0.9750 Epoch 914: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0744 - accuracy: 0.9750 - val_loss: 0.2846 - val_accuracy: 0.8305 Epoch 915/1000 2/2 [==============================] - ETA: 0s - loss: 0.0825 - accuracy: 0.9500 Epoch 915: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0825 - accuracy: 0.9500 - val_loss: 0.2836 - val_accuracy: 0.8305 Epoch 916/1000 2/2 [==============================] - ETA: 0s - loss: 0.0687 - accuracy: 0.9875 Epoch 916: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0687 - accuracy: 0.9875 - val_loss: 0.2818 - val_accuracy: 0.8305 Epoch 917/1000 2/2 [==============================] - ETA: 0s - loss: 0.1094 - accuracy: 0.9500 Epoch 917: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 841ms/step - loss: 0.1094 - accuracy: 0.9500 - val_loss: 0.2799 - val_accuracy: 0.8475 Epoch 918/1000 2/2 [==============================] - ETA: 0s - loss: 0.0705 - accuracy: 0.9875 Epoch 918: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 891ms/step - loss: 0.0705 - accuracy: 0.9875 - val_loss: 0.2781 - val_accuracy: 0.8475 Epoch 919/1000 2/2 [==============================] - ETA: 0s - loss: 0.0739 - accuracy: 0.9750 Epoch 919: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 844ms/step - loss: 0.0739 - accuracy: 0.9750 - val_loss: 0.2760 - val_accuracy: 0.8475 Epoch 920/1000 2/2 [==============================] - ETA: 0s - loss: 0.0654 - accuracy: 0.9875 Epoch 920: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 819ms/step - loss: 0.0654 - accuracy: 0.9875 - val_loss: 0.2761 - val_accuracy: 0.8475 Epoch 921/1000 2/2 [==============================] - ETA: 0s - loss: 0.1149 - accuracy: 0.9453 Epoch 921: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1149 - accuracy: 0.9453 - val_loss: 0.2791 - val_accuracy: 0.8305 Epoch 922/1000 2/2 [==============================] - ETA: 0s - loss: 0.0815 - accuracy: 0.9750 Epoch 922: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 840ms/step - loss: 0.0815 - accuracy: 0.9750 - val_loss: 0.2815 - val_accuracy: 0.8305 Epoch 923/1000 2/2 [==============================] - ETA: 0s - loss: 0.1019 - accuracy: 0.9766 Epoch 923: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1019 - accuracy: 0.9766 - val_loss: 0.2835 - val_accuracy: 0.8305 Epoch 924/1000 2/2 [==============================] - ETA: 0s - loss: 0.0601 - accuracy: 1.0000 Epoch 924: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0601 - accuracy: 1.0000 - val_loss: 0.2857 - val_accuracy: 0.8305 Epoch 925/1000 2/2 [==============================] - ETA: 0s - loss: 0.1296 - accuracy: 0.9125 Epoch 925: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 839ms/step - loss: 0.1296 - accuracy: 0.9125 - val_loss: 0.2871 - val_accuracy: 0.8305 Epoch 926/1000 2/2 [==============================] - ETA: 0s - loss: 0.0943 - accuracy: 0.9766 Epoch 926: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0943 - accuracy: 0.9766 - val_loss: 0.2907 - val_accuracy: 0.8305 Epoch 927/1000 2/2 [==============================] - ETA: 0s - loss: 0.0939 - accuracy: 0.9766 Epoch 927: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0939 - accuracy: 0.9766 - val_loss: 0.2958 - val_accuracy: 0.8305 Epoch 928/1000 2/2 [==============================] - ETA: 0s - loss: 0.0990 - accuracy: 0.9625 Epoch 928: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0990 - accuracy: 0.9625 - val_loss: 0.2993 - val_accuracy: 0.8136 Epoch 929/1000 2/2 [==============================] - ETA: 0s - loss: 0.0945 - accuracy: 0.9609 Epoch 929: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0945 - accuracy: 0.9609 - val_loss: 0.3029 - val_accuracy: 0.8136 Epoch 930/1000 2/2 [==============================] - ETA: 0s - loss: 0.0748 - accuracy: 0.9844 Epoch 930: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0748 - accuracy: 0.9844 - val_loss: 0.3062 - val_accuracy: 0.8136 Epoch 931/1000 2/2 [==============================] - ETA: 0s - loss: 0.0828 - accuracy: 0.9766 Epoch 931: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0828 - accuracy: 0.9766 - val_loss: 0.3082 - val_accuracy: 0.8136 Epoch 932/1000 2/2 [==============================] - ETA: 0s - loss: 0.1561 - accuracy: 0.9500 Epoch 932: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 902ms/step - loss: 0.1561 - accuracy: 0.9500 - val_loss: 0.3088 - val_accuracy: 0.8136 Epoch 933/1000 2/2 [==============================] - ETA: 0s - loss: 0.0936 - accuracy: 0.9531 Epoch 933: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 985ms/step - loss: 0.0936 - accuracy: 0.9531 - val_loss: 0.3044 - val_accuracy: 0.8136 Epoch 934/1000 2/2 [==============================] - ETA: 0s - loss: 0.0693 - accuracy: 0.9750 Epoch 934: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0693 - accuracy: 0.9750 - val_loss: 0.3002 - val_accuracy: 0.8136 Epoch 935/1000 2/2 [==============================] - ETA: 0s - loss: 0.0751 - accuracy: 0.9688 Epoch 935: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 958ms/step - loss: 0.0751 - accuracy: 0.9688 - val_loss: 0.2972 - val_accuracy: 0.8305 Epoch 936/1000 2/2 [==============================] - ETA: 0s - loss: 0.0536 - accuracy: 0.9875 Epoch 936: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 843ms/step - loss: 0.0536 - accuracy: 0.9875 - val_loss: 0.2937 - val_accuracy: 0.8305 Epoch 937/1000 2/2 [==============================] - ETA: 0s - loss: 0.0572 - accuracy: 0.9875 Epoch 937: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 857ms/step - loss: 0.0572 - accuracy: 0.9875 - val_loss: 0.2893 - val_accuracy: 0.8305 Epoch 938/1000 2/2 [==============================] - ETA: 0s - loss: 0.0632 - accuracy: 0.9625 Epoch 938: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0632 - accuracy: 0.9625 - val_loss: 0.2845 - val_accuracy: 0.8305 Epoch 939/1000 2/2 [==============================] - ETA: 0s - loss: 0.1012 - accuracy: 0.9531 Epoch 939: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1012 - accuracy: 0.9531 - val_loss: 0.2796 - val_accuracy: 0.8305 Epoch 940/1000 2/2 [==============================] - ETA: 0s - loss: 0.0739 - accuracy: 0.9625 Epoch 940: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 860ms/step - loss: 0.0739 - accuracy: 0.9625 - val_loss: 0.2747 - val_accuracy: 0.8475 Epoch 941/1000 2/2 [==============================] - ETA: 0s - loss: 0.0882 - accuracy: 0.9531 Epoch 941: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0882 - accuracy: 0.9531 - val_loss: 0.2706 - val_accuracy: 0.8475 Epoch 942/1000 2/2 [==============================] - ETA: 0s - loss: 0.0617 - accuracy: 0.9844 Epoch 942: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 983ms/step - loss: 0.0617 - accuracy: 0.9844 - val_loss: 0.2677 - val_accuracy: 0.8475 Epoch 943/1000 2/2 [==============================] - ETA: 0s - loss: 0.0785 - accuracy: 0.9625 Epoch 943: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0785 - accuracy: 0.9625 - val_loss: 0.2661 - val_accuracy: 0.8475 Epoch 944/1000 2/2 [==============================] - ETA: 0s - loss: 0.0550 - accuracy: 0.9875 Epoch 944: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0550 - accuracy: 0.9875 - val_loss: 0.2647 - val_accuracy: 0.8475 Epoch 945/1000 2/2 [==============================] - ETA: 0s - loss: 0.0747 - accuracy: 0.9688 Epoch 945: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0747 - accuracy: 0.9688 - val_loss: 0.2630 - val_accuracy: 0.8475 Epoch 946/1000 2/2 [==============================] - ETA: 0s - loss: 0.0778 - accuracy: 0.9766 Epoch 946: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0778 - accuracy: 0.9766 - val_loss: 0.2610 - val_accuracy: 0.8475 Epoch 947/1000 2/2 [==============================] - ETA: 0s - loss: 0.1018 - accuracy: 0.9688 Epoch 947: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1018 - accuracy: 0.9688 - val_loss: 0.2591 - val_accuracy: 0.8475 Epoch 948/1000 2/2 [==============================] - ETA: 0s - loss: 0.0876 - accuracy: 0.9688 Epoch 948: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0876 - accuracy: 0.9688 - val_loss: 0.2570 - val_accuracy: 0.8475 Epoch 949/1000 2/2 [==============================] - ETA: 0s - loss: 0.1242 - accuracy: 0.9375 Epoch 949: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 816ms/step - loss: 0.1242 - accuracy: 0.9375 - val_loss: 0.2563 - val_accuracy: 0.8644 Epoch 950/1000 2/2 [==============================] - ETA: 0s - loss: 0.1184 - accuracy: 0.9297 Epoch 950: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1184 - accuracy: 0.9297 - val_loss: 0.2557 - val_accuracy: 0.8644 Epoch 951/1000 2/2 [==============================] - ETA: 0s - loss: 0.0717 - accuracy: 0.9750 Epoch 951: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 841ms/step - loss: 0.0717 - accuracy: 0.9750 - val_loss: 0.2561 - val_accuracy: 0.8644 Epoch 952/1000 2/2 [==============================] - ETA: 0s - loss: 0.0772 - accuracy: 0.9875 Epoch 952: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 885ms/step - loss: 0.0772 - accuracy: 0.9875 - val_loss: 0.2571 - val_accuracy: 0.8644 Epoch 953/1000 2/2 [==============================] - ETA: 0s - loss: 0.0977 - accuracy: 0.9500 Epoch 953: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0977 - accuracy: 0.9500 - val_loss: 0.2591 - val_accuracy: 0.8475 Epoch 954/1000 2/2 [==============================] - ETA: 0s - loss: 0.0724 - accuracy: 0.9750 Epoch 954: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0724 - accuracy: 0.9750 - val_loss: 0.2622 - val_accuracy: 0.8475 Epoch 955/1000 2/2 [==============================] - ETA: 0s - loss: 0.0957 - accuracy: 0.9750 Epoch 955: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 838ms/step - loss: 0.0957 - accuracy: 0.9750 - val_loss: 0.2667 - val_accuracy: 0.8475 Epoch 956/1000 2/2 [==============================] - ETA: 0s - loss: 0.0891 - accuracy: 0.9688 Epoch 956: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0891 - accuracy: 0.9688 - val_loss: 0.2706 - val_accuracy: 0.8475 Epoch 957/1000 2/2 [==============================] - ETA: 0s - loss: 0.1035 - accuracy: 0.9609 Epoch 957: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1035 - accuracy: 0.9609 - val_loss: 0.2731 - val_accuracy: 0.8475 Epoch 958/1000 2/2 [==============================] - ETA: 0s - loss: 0.0647 - accuracy: 0.9922 Epoch 958: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0647 - accuracy: 0.9922 - val_loss: 0.2742 - val_accuracy: 0.8305 Epoch 959/1000 2/2 [==============================] - ETA: 0s - loss: 0.0958 - accuracy: 0.9875 Epoch 959: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 849ms/step - loss: 0.0958 - accuracy: 0.9875 - val_loss: 0.2751 - val_accuracy: 0.8305 Epoch 960/1000 2/2 [==============================] - ETA: 0s - loss: 0.0807 - accuracy: 0.9750 Epoch 960: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0807 - accuracy: 0.9750 - val_loss: 0.2768 - val_accuracy: 0.8305 Epoch 961/1000 2/2 [==============================] - ETA: 0s - loss: 0.0948 - accuracy: 0.9625 Epoch 961: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 819ms/step - loss: 0.0948 - accuracy: 0.9625 - val_loss: 0.2801 - val_accuracy: 0.8305 Epoch 962/1000 2/2 [==============================] - ETA: 0s - loss: 0.0776 - accuracy: 0.9766 Epoch 962: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0776 - accuracy: 0.9766 - val_loss: 0.2844 - val_accuracy: 0.8475 Epoch 963/1000 2/2 [==============================] - ETA: 0s - loss: 0.1424 - accuracy: 0.9000 Epoch 963: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1424 - accuracy: 0.9000 - val_loss: 0.2886 - val_accuracy: 0.8305 Epoch 964/1000 2/2 [==============================] - ETA: 0s - loss: 0.0914 - accuracy: 0.9625 Epoch 964: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0914 - accuracy: 0.9625 - val_loss: 0.2915 - val_accuracy: 0.8305 Epoch 965/1000 2/2 [==============================] - ETA: 0s - loss: 0.0729 - accuracy: 0.9875 Epoch 965: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0729 - accuracy: 0.9875 - val_loss: 0.2938 - val_accuracy: 0.8475 Epoch 966/1000 2/2 [==============================] - ETA: 0s - loss: 0.0875 - accuracy: 0.9766 Epoch 966: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0875 - accuracy: 0.9766 - val_loss: 0.2974 - val_accuracy: 0.8305 Epoch 967/1000 2/2 [==============================] - ETA: 0s - loss: 0.0654 - accuracy: 0.9766 Epoch 967: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 963ms/step - loss: 0.0654 - accuracy: 0.9766 - val_loss: 0.3005 - val_accuracy: 0.8305 Epoch 968/1000 2/2 [==============================] - ETA: 0s - loss: 0.0662 - accuracy: 0.9844 Epoch 968: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 931ms/step - loss: 0.0662 - accuracy: 0.9844 - val_loss: 0.3030 - val_accuracy: 0.8305 Epoch 969/1000 2/2 [==============================] - ETA: 0s - loss: 0.0808 - accuracy: 0.9688 Epoch 969: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 948ms/step - loss: 0.0808 - accuracy: 0.9688 - val_loss: 0.3052 - val_accuracy: 0.8305 Epoch 970/1000 2/2 [==============================] - ETA: 0s - loss: 0.1014 - accuracy: 0.9531 Epoch 970: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.1014 - accuracy: 0.9531 - val_loss: 0.3074 - val_accuracy: 0.8305 Epoch 971/1000 2/2 [==============================] - ETA: 0s - loss: 0.0944 - accuracy: 0.9688 Epoch 971: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0944 - accuracy: 0.9688 - val_loss: 0.3092 - val_accuracy: 0.8305 Epoch 972/1000 2/2 [==============================] - ETA: 0s - loss: 0.0662 - accuracy: 0.9844 Epoch 972: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0662 - accuracy: 0.9844 - val_loss: 0.3097 - val_accuracy: 0.8305 Epoch 973/1000 2/2 [==============================] - ETA: 0s - loss: 0.0667 - accuracy: 0.9766 Epoch 973: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 959ms/step - loss: 0.0667 - accuracy: 0.9766 - val_loss: 0.3094 - val_accuracy: 0.8305 Epoch 974/1000 2/2 [==============================] - ETA: 0s - loss: 0.0818 - accuracy: 0.9688 Epoch 974: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0818 - accuracy: 0.9688 - val_loss: 0.3085 - val_accuracy: 0.8305 Epoch 975/1000 2/2 [==============================] - ETA: 0s - loss: 0.0910 - accuracy: 0.9688 Epoch 975: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0910 - accuracy: 0.9688 - val_loss: 0.3087 - val_accuracy: 0.8305 Epoch 976/1000 2/2 [==============================] - ETA: 0s - loss: 0.1308 - accuracy: 0.9375 Epoch 976: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1308 - accuracy: 0.9375 - val_loss: 0.3068 - val_accuracy: 0.8305 Epoch 977/1000 2/2 [==============================] - ETA: 0s - loss: 0.0767 - accuracy: 0.9750 Epoch 977: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0767 - accuracy: 0.9750 - val_loss: 0.3051 - val_accuracy: 0.8305 Epoch 978/1000 2/2 [==============================] - ETA: 0s - loss: 0.1055 - accuracy: 0.9500 Epoch 978: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 848ms/step - loss: 0.1055 - accuracy: 0.9500 - val_loss: 0.3017 - val_accuracy: 0.8305 Epoch 979/1000 2/2 [==============================] - ETA: 0s - loss: 0.0511 - accuracy: 1.0000 Epoch 979: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 904ms/step - loss: 0.0511 - accuracy: 1.0000 - val_loss: 0.2974 - val_accuracy: 0.8305 Epoch 980/1000 2/2 [==============================] - ETA: 0s - loss: 0.0713 - accuracy: 0.9531 Epoch 980: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 939ms/step - loss: 0.0713 - accuracy: 0.9531 - val_loss: 0.2944 - val_accuracy: 0.8305 Epoch 981/1000 2/2 [==============================] - ETA: 0s - loss: 0.0922 - accuracy: 0.9609 Epoch 981: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 972ms/step - loss: 0.0922 - accuracy: 0.9609 - val_loss: 0.2921 - val_accuracy: 0.8475 Epoch 982/1000 2/2 [==============================] - ETA: 0s - loss: 0.0891 - accuracy: 0.9625 Epoch 982: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0891 - accuracy: 0.9625 - val_loss: 0.2933 - val_accuracy: 0.8475 Epoch 983/1000 2/2 [==============================] - ETA: 0s - loss: 0.0949 - accuracy: 0.9453 Epoch 983: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 951ms/step - loss: 0.0949 - accuracy: 0.9453 - val_loss: 0.2925 - val_accuracy: 0.8475 Epoch 984/1000 2/2 [==============================] - ETA: 0s - loss: 0.0539 - accuracy: 0.9922 Epoch 984: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 995ms/step - loss: 0.0539 - accuracy: 0.9922 - val_loss: 0.2918 - val_accuracy: 0.8475 Epoch 985/1000 2/2 [==============================] - ETA: 0s - loss: 0.0669 - accuracy: 0.9766 Epoch 985: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0669 - accuracy: 0.9766 - val_loss: 0.2904 - val_accuracy: 0.8305 Epoch 986/1000 2/2 [==============================] - ETA: 0s - loss: 0.0790 - accuracy: 0.9875 Epoch 986: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 833ms/step - loss: 0.0790 - accuracy: 0.9875 - val_loss: 0.2900 - val_accuracy: 0.8305 Epoch 987/1000 2/2 [==============================] - ETA: 0s - loss: 0.1056 - accuracy: 0.9750 Epoch 987: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1056 - accuracy: 0.9750 - val_loss: 0.2854 - val_accuracy: 0.8475 Epoch 988/1000 2/2 [==============================] - ETA: 0s - loss: 0.0730 - accuracy: 0.9875 Epoch 988: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0730 - accuracy: 0.9875 - val_loss: 0.2825 - val_accuracy: 0.8475 Epoch 989/1000 2/2 [==============================] - ETA: 0s - loss: 0.0671 - accuracy: 0.9922 Epoch 989: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 985ms/step - loss: 0.0671 - accuracy: 0.9922 - val_loss: 0.2798 - val_accuracy: 0.8305 Epoch 990/1000 2/2 [==============================] - ETA: 0s - loss: 0.0840 - accuracy: 0.9766 Epoch 990: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0840 - accuracy: 0.9766 - val_loss: 0.2768 - val_accuracy: 0.8475 Epoch 991/1000 2/2 [==============================] - ETA: 0s - loss: 0.0820 - accuracy: 0.9766 Epoch 991: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 933ms/step - loss: 0.0820 - accuracy: 0.9766 - val_loss: 0.2731 - val_accuracy: 0.8475 Epoch 992/1000 2/2 [==============================] - ETA: 0s - loss: 0.1183 - accuracy: 0.9250 Epoch 992: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 842ms/step - loss: 0.1183 - accuracy: 0.9250 - val_loss: 0.2701 - val_accuracy: 0.8305 Epoch 993/1000 2/2 [==============================] - ETA: 0s - loss: 0.1168 - accuracy: 0.9625 Epoch 993: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.1168 - accuracy: 0.9625 - val_loss: 0.2679 - val_accuracy: 0.8305 Epoch 994/1000 2/2 [==============================] - ETA: 0s - loss: 0.0559 - accuracy: 0.9922 Epoch 994: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0559 - accuracy: 0.9922 - val_loss: 0.2664 - val_accuracy: 0.8305 Epoch 995/1000 2/2 [==============================] - ETA: 0s - loss: 0.0766 - accuracy: 0.9688 Epoch 995: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 950ms/step - loss: 0.0766 - accuracy: 0.9688 - val_loss: 0.2641 - val_accuracy: 0.8305 Epoch 996/1000 2/2 [==============================] - ETA: 0s - loss: 0.0701 - accuracy: 0.9688 Epoch 996: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0701 - accuracy: 0.9688 - val_loss: 0.2621 - val_accuracy: 0.8305 Epoch 997/1000 2/2 [==============================] - ETA: 0s - loss: 0.0732 - accuracy: 0.9750 Epoch 997: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 1s/step - loss: 0.0732 - accuracy: 0.9750 - val_loss: 0.2621 - val_accuracy: 0.8305 Epoch 998/1000 2/2 [==============================] - ETA: 0s - loss: 0.0791 - accuracy: 0.9688 Epoch 998: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 920ms/step - loss: 0.0791 - accuracy: 0.9688 - val_loss: 0.2632 - val_accuracy: 0.8305 Epoch 999/1000 2/2 [==============================] - ETA: 0s - loss: 0.1398 - accuracy: 0.9375 Epoch 999: saving model to training_1/cp.ckpt 2/2 [==============================] - 1s 866ms/step - loss: 0.1398 - accuracy: 0.9375 - val_loss: 0.2647 - val_accuracy: 0.8305 Epoch 1000/1000 2/2 [==============================] - ETA: 0s - loss: 0.0725 - accuracy: 0.9766 Epoch 1000: saving model to training_1/cp.ckpt 2/2 [==============================] - 2s 1s/step - loss: 0.0725 - accuracy: 0.9766 - val_loss: 0.2671 - val_accuracy: 0.8475 ``` </details> ### Evidências do treinamento Nessa seção você deve colocar qualquer evidência do treinamento, como por exemplo gráficos de perda, performance, matriz de confusão etc. Exemplo de adição de imagem: ### Acurácia <img src = "Graficos/acc.png"> ### Loss <img src = "Graficos/loss.png"> # Roboflow Acesse o dataset no link abaixo [Dataset Roboflow](https://universe.roboflow.com/rna-class/classifier_animals) ## HuggingFace [Huggingface link](https://huggingface.co/caioeserpa/MobileNetV2_RNA_Class/tree/main)
DeividasM/wav2vec2-large-xlsr-53-lithuanian
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "lt", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: cc-by-4.0 language: hi --- ## HindAlBERT HindAlBERT is a Hindi AlBERT model model trained on publicly available Hindi monolingual datasets. [project link] (https://github.com/l3cube-pune/MarathiNLP) More details on the dataset, models, and baseline results can be found in our [<a href='https://arxiv.org/abs/2211.11418'> paper </a>] (<a href='http://dx.doi.org/10.13140/RG.2.2.14606.84809'> pdf </a>) ``` @article{joshi2022l3cubehind, title={L3Cube-HindBERT and DevBERT: Pre-Trained BERT Transformer models for Devanagari based Hindi and Marathi Languages}, author={Joshi, Raviraj}, journal={arXiv preprint arXiv:2211.11418}, year={2022} } ```
DeltaHub/adapter_t5-3b_cola
[ "pytorch", "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: cc-by-4.0 language: hi --- ## HindBERT HindBERT is a Hindi BERT model. It is a multilingual BERT (bert-base-multilingual-cased) model fine-tuned on publicly available Hindi monolingual datasets. [project link] (https://github.com/l3cube-pune/MarathiNLP) More details on the dataset, models, and baseline results can be found in our [<a href='https://arxiv.org/abs/2211.11418'> paper </a>] <br> A new version of model is shared <a href='https://huggingface.co/l3cube-pune/hindi-bert-v2'> here </a> Citing: ``` @article{joshi2022l3cubehind, title={L3Cube-HindBERT and DevBERT: Pre-Trained BERT Transformer models for Devanagari based Hindi and Marathi Languages}, author={Joshi, Raviraj}, journal={arXiv preprint arXiv:2211.11418}, year={2022} } ```
DeltaHub/adapter_t5-3b_mrpc
[ "pytorch", "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: cc-by-4.0 language: hi --- ## HindBERT HindBERT is a Hindi BERT model. It is a multilingual BERT (google/muril-base-cased) model fine-tuned on publicly available Hindi monolingual datasets. [project link] (https://github.com/l3cube-pune/MarathiNLP) More details on the dataset, models, and baseline results can be found in our [<a href='https://arxiv.org/abs/2211.11418'> paper </a>] Citing: ``` @article{joshi2022l3cubehind, title={L3Cube-HindBERT and DevBERT: Pre-Trained BERT Transformer models for Devanagari based Hindi and Marathi Languages}, author={Joshi, Raviraj}, journal={arXiv preprint arXiv:2211.11418}, year={2022} } ```
DeltaHub/adapter_t5-3b_qnli
[ "pytorch", "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - hi - mr - multilingual license: cc-by-4.0 --- ## DevRoBERTa DevRoBERTa is a Devanagari RoBERTa model. It is a multilingual RoBERTa (xlm-roberta-base) model fine-tuned on publicly available Hindi and Marathi monolingual datasets. [project link] (https://github.com/l3cube-pune/MarathiNLP) More details on the dataset, models, and baseline results can be found in our [<a href='https://arxiv.org/abs/2211.11418'> paper </a>] . Citing: ``` @article{joshi2022l3cubehind, title={L3Cube-HindBERT and DevBERT: Pre-Trained BERT Transformer models for Devanagari based Hindi and Marathi Languages}, author={Joshi, Raviraj}, journal={arXiv preprint arXiv:2211.11418}, year={2022} } ```
Deniskin/emailer_medium_300
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
2022-08-19T19:19:20Z
--- language: - hi - mr - multilingual license: cc-by-4.0 --- ## DevAlBERT DevAlBERT is a Devanagari AlBERT model model trained on publicly available Hindi and Marathi monolingual datasets. [project link] (https://github.com/l3cube-pune/MarathiNLP) More details on the dataset, models, and baseline results can be found in our [<a href='https://arxiv.org/abs/2211.11418'> paper </a>] . Citing: ``` @article{joshi2022l3cubehind, title={L3Cube-HindBERT and DevBERT: Pre-Trained BERT Transformer models for Devanagari based Hindi and Marathi Languages}, author={Joshi, Raviraj}, journal={arXiv preprint arXiv:2211.11418}, year={2022} } ```
Deniskin/essays_small_2000
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en tags: - pythae - reproducibility license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with pythae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from pythae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="clementchadebec/reproduced_aae") ``` ## Reproducibility This trained model reproduces the results of Table 1 in [1]. | Model | Dataset | Metric | Obtained value | Reference value | |:---:|:---:|:---:|:---:|:---:| | AAE | CELEBA 64 | FID | 43.3 | 42 | [1] Tolstikhin, O Bousquet, S Gelly, and B Schölkopf. Wasserstein auto-encoders. In 6th International Conference on Learning Representations (ICLR 2018), 2018.
Deniskin/essays_small_2000i
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en tags: - pythae - reproducibility license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with pythae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from pythae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="clementchadebec/reproduced_wae") ``` ## Reproducibility This trained model reproduces the results of Table 1 in [1]. | Model | Dataset | Metric | Obtained value | Reference value | |:---:|:---:|:---:|:---:|:---:| | WAE | CELEBA 64 | FID | 56.5 | 55 | [1] Tolstikhin, O Bousquet, S Gelly, and B Schölkopf. Wasserstein auto-encoders. In 6th International Conference on Learning Representations (ICLR 2018), 2018.
Denver/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter results: - metrics: - type: mean_reward value: 7.70 +/- 11.04 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
DeskDown/MarianMixFT_en-fil
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: en tags: - pythae - reproducibility license: apache-2.0 --- This model was trained with pythae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from pythae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="clementchadebec/reproduced_rae_gp") ``` ## Reproducibility This trained model reproduces the results of the official implementation of [1]. | Model | Dataset | Metric | Obtained value | Reference value | |:---:|:---:|:---:|:---:|:---:| | RAE_GP | MNIST | FID | 9.7 | 9.4 | [1] Partha Ghosh, Mehdi SM Sajjadi, Antonio Vergari, Michael Black, and Bernhard Schölkopf. From variational to deterministic autoencoders. In 8th International Conference on Learning Representations, ICLR 2020, 2020.
DeskDown/MarianMixFT_en-hi
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: en tags: - pythae - reproducibility license: apache-2.0 --- This model was trained with pythae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from pythae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="clementchadebec/reproduced_rae_l2") ``` ## Reproducibility This trained model reproduces the results of the official implementation of [1]. | Model | Dataset | Metric | Obtained value | Reference value | |:---:|:---:|:---:|:---:|:---:| | RAE_L2 | MNIST | FID | 9.1 | 9.9 | [1] Partha Ghosh, Mehdi SM Sajjadi, Antonio Vergari, Michael Black, and Bernhard Schölkopf. From variational to deterministic autoencoders. In 8th International Conference on Learning Representations, ICLR 2020, 2020.
DeskDown/MarianMixFT_en-ja
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- language: en tags: - pythae - reproducibility license: apache-2.0 --- This model was trained with pythae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from pythae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="clementchadebec/reproduced_svae") ``` ## Reproducibility This trained model reproduces the results of Table 1 in [1]. | Model | Dataset | Metric | Obtained value | Reference value | |:---:|:---:|:---:|:---:|:---:| | SVAE | Dyn. Binarized MNIST | NLL (500 IS) | 93.13 (0.01) | 93.16 (0.31) | [1] Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M Tomczak. Hyperspherical variational auto-encoders. In 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, pages 856–865. Association For Uncertainty in Artificial Intelligence (AUAI), 2018.
DeskDown/MarianMixFT_en-ms
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- title: README emoji: 🏃 colorFrom: gray colorTo: purple sdk: static pinned: false --- # Model Description TinyBioBERT is a distilled version of the [BioBERT](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2?text=The+goal+of+life+is+%5BMASK%5D.) which is distilled for 100k training steps using a total batch size of 192 on the PubMed dataset. # Distillation Procedure This model uses a unique distillation method called ‘transformer-layer distillation’ which is applied on each layer of the student to align the attention maps and the hidden states of the student with those of the teacher. # Architecture and Initialisation This model uses 4 hidden layers with a hidden dimension size and an embedding size of 768 resulting in a total of 15M parameters. Due to the model's small hidden dimension size, it uses random initialisation. # Citation If you use this model, please consider citing the following paper: ```bibtex @misc{https://doi.org/10.48550/arxiv.2209.03182, doi = {10.48550/ARXIV.2209.03182}, url = {https://arxiv.org/abs/2209.03182}, author = {Rohanian, Omid and Nouriborji, Mohammadmahdi and Kouchaki, Samaneh and Clifton, David A.}, keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences, 68T50}, title = {On the Effectiveness of Compact Biomedical Transformers}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
DeskDown/MarianMixFT_en-vi
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: QRDQN results: - metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **QRDQN** Agent playing **CartPole-v1** This is a trained model of a **QRDQN** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo qrdqn --env CartPole-v1 -orga jackoyoungblood -f logs/ python enjoy.py --algo qrdqn --env CartPole-v1 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo qrdqn --env CartPole-v1 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo qrdqn --env CartPole-v1 -f logs/ -orga jackoyoungblood ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 100000), ('exploration_final_eps', 0.04), ('exploration_fraction', 0.16), ('gamma', 0.99), ('gradient_steps', 128), ('learning_rate', 0.0023), ('learning_starts', 1000), ('n_timesteps', 50000.0), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(net_arch=[256, 256], n_quantiles=10)'), ('target_update_interval', 10), ('train_freq', 256), ('normalize', False)]) ```
DeskDown/MarianMix_en-ja-10
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - aujer/autotrain-data-not_interested_8_19 co2_eq_emissions: emissions: 7.7092029324718965 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1283149075 - CO2 Emissions (in grams): 7.7092 ## Validation Metrics - Loss: 0.551 - Accuracy: 0.849 - Macro F1: 0.632 - Micro F1: 0.849 - Weighted F1: 0.844 - Macro Precision: 0.632 - Micro Precision: 0.849 - Weighted Precision: 0.845 - Macro Recall: 0.654 - Micro Recall: 0.849 - Weighted Recall: 0.849 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/aujer/autotrain-not_interested_8_19-1283149075 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("aujer/autotrain-not_interested_8_19-1283149075", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("aujer/autotrain-not_interested_8_19-1283149075", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```