Dataset Viewer
Auto-converted to Parquet
datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-07-20 15:51:01
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-07-20 15:38:59
trending_score
float64
0
64
card
large_stringlengths
31
1.01M
konwoo/lte-ctx16-fs1-np16-lr1e-05
konwoo
2025-05-06T22:17:43Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-06T22:17:39Z
0
--- dataset_info: features: - name: text dtype: string - name: p_log_probs dtype: float32 - name: q_log_probs dtype: float32 - name: p_hat_log_probs dtype: float32 - name: num_tokens dtype: float32 splits: - name: train num_bytes: 10789651 num_examples: 128000 download_size: 8568699 dataset_size: 10789651 configs: - config_name: default data_files: - split: train path: data/train-* ---
alisawuffles/WANLI
alisawuffles
2022-11-21T17:31:56Z
179
10
[ "task_categories:text-classification", "task_ids:natural-language-inference", "annotations_creators:crowdsourced", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-4.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2201.05955", "region:us" ]
[ "text-classification" ]
2022-04-21T00:57:25Z
0
--- annotations_creators: - crowdsourced language_creators: - other language: - en license: - cc-by-4.0 multilinguality: - monolingual pretty_name: WANLI size_categories: - 100K<n<1M source_datasets: - original task_categories: - text-classification task_ids: - natural-language-inference --- # Dataset Card for WANLI ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** [WANLI homepage](https://wanli.allenai.org/) - **Repository:** [Github repo](https://github.com/alisawuffles/wanli) - **Paper:** [arXiv](https://arxiv.org/abs/2201.05955) - **Point of Contact:** [Alisa Liu](mailto:[email protected]) ### Dataset Summary WANLI (**W**orker-**A**I Collaboration for **NLI**) is a collection of 108K English sentence pairs for the task of natural language inference (NLI). Each example is created by first identifying a "pocket" of examples in [MultiNLI (Williams et al., 2018)](https://cims.nyu.edu/~sbowman/multinli/) that share a challenging reasoning pattern, then instructing GPT-3 to write a new example with the same pattern. The set of generated examples are automatically filtered to contain those most likely to aid model training, and finally labeled and optionally revised by human annotators. WANLI presents unique empirical strengths compared to existing NLI datasets. Remarkably, training a model on WANLI instead of MultiNLI (which is 4 times larger) improves performance on seven out-of-domain test sets we consider, including by 11% on HANS and 9% on Adversarial NLI. ### Supported Tasks and Leaderboards The dataset can be used to train a model for natural language inference, which determines whether a premise entails (i.e., implies the truth of) a hypothesis, both expressed in natural language. Success on this task is typically measured by achieving a high accuracy. A RoBERTa-large model currently achieves 75.40%. Models trained on NLI are often adapted to other downstream tasks, and NLI data can be mixed with other sources of supervision. ### Languages The dataset consists of English examples generated by GPT-3 and revised by English-speaking crowdworkers located in the United States. ## Dataset Structure ### Data Instances Here is an example of an NLI example in `data/wanli/train.jsonl` or `data/wanli/test.jsonl`. ``` { "id": 225295, "premise": "It is a tribute to the skill of the coach that the team has been able to compete at the highest level.", "hypothesis": "The coach is a good coach.", "gold": "entailment", "genre": "generated", "pairID": "171408" } ``` - `id`: unique identifier for the example - `premise`: a piece of text - `hypothesis`: a piece of text that may be true, false, or whose truth conditions may not be knowable when compared to the premise - `gold`: one of `entailment`, `neutral`, and `contradiction` - `genre`: one of `generated` and `generated_revised`, depending on whether the example was revised by annotators - `pairID`: id of seed MNLI example, corresponding to those in `data/mnli/train.jsonl` We also release the raw annotations for each worker, which can be found in `data/wanli/anonymized_annotations.jsonl`. ``` "WorkerId": "EUJ", "id": 271560, "nearest_neighbors": [ 309783, 202988, 145310, 98030, 148759 ], "premise": "I don't know what I'd do without my cat. He is my only friend.", "hypothesis": "I would be alone.", "label": "neutral", "revised_premise": "I don't know what I'd do without my cat. He is my only friend.", "revised_hypothesis": "I would be alone without my cat.", "gold": "entailment", "revised": true ``` - `WorkerId`: a unique identification for each crowdworker (NOT the real worker ID from AMT) - `id`: id of generated example - `nearest_neighbors`: ordered ids of the group of MNLI nearest neighbors that were used as in-context examples, where the first one is seed ambiguous MNLI example. MNLI ids correspond to those in `mnli/train.jsonl`. - `premise`: GPT-3 generated premise - `hypothesis`: GPT-3 generated hypothesis - `label`: the shared label of the in-context examples, which is the "intended" label for this generation - `revised_premise`: premise after human review - `revised_hypothesis`: hypothesis after human review - `gold`: annotator-assigned gold label for the (potentially revised) example - `revised`: whether the example was revised ### Data Splits The dataset is randomly split into a *train* and *test* set. | | train | test | |-------------------------|------:|-----:| | Examples | 102885| 5000| ## Dataset Creation ### Curation Rationale A recurring challenge of crowdsourcing NLP datasets at scale is that human writers often rely on repetitive patterns when crafting examples, leading to a lack of linguistic diversity. On the other hand, there has been remarkable progress in open-ended text generation based on massive language models. We create WANLI to demonstrate the effectiveness an approach that leverages the best of both worlds: a language model's ability to efficiently generate diverse examples, and a human's ability to revise the examples for quality and assign a gold label. ### Source Data #### Initial Data Collection and Normalization Our pipeline starts with an existing dataset, MultiNLI (Williams et al., 2018). We use dataset cartography from [Swayamdipta et al. (2020)](https://aclanthology.org/2020.emnlp-main.746/) to automatically identify pockets of examples that demonstrate challenging reasoning patterns rela081 tive to a trained model. Using each group as a set of in-context examples, we leverage a pretrained language model to *generate new examples* likely to have the same pattern. We then automatically filter generations to keep those that are most likely to aid model learning. Finally, we validate the generated examples by subjecting them to human review, where crowdworkers assign a gold label and (optionally) revise for quality. #### Who are the source language producers? The GPT-3 Curie model generated examples which were then revised and labeled by crowdworkers on Amazon Mechanical Turk. Workers were paid $0.12 for each example that they annotate. At the end of data collection, we aggregate the earning and time spent from each crowdworker, and find that the median hourly rate was $22.72, with 85% of workers being paid over the $15/hour target. ### Annotations #### Annotation process Given an unlabeled example, annotators are asked to optionally revise it for quality (while preserving the intended meaning as much as possible through minimal revisions), and then assign a label. Alternatively, if an example would require a great deal of revision to fix *or* if it could be perceived as offensive, they were asked to discard it. Details about instructions, guidelines, and instructional examples can be found in Appendix D of the paper. Crowdworkers annotate a total of 118,724 examples, with two distinct workers reviewing each example. For examples that both annotators labeled without revision, annotators achieved a Cohen Kappa score of 0.60, indicating substantial agreement. #### Who are the annotators? Annotators were required to have a HIT approval rate of 98%, a total of 10,000 approved HITs, and be located in the United States. 300 Turkers took our qualification test, of which 69 passed. Turkers who were later found to produce extremely careless annotations were removed from the qualification list (and oftentimes, their annotations were discarded, though they were still paid for their work). The number of workers who contributed to the final dataset is 62. ### Personal and Sensitive Information The dataset does not contain any personal information about the authors or the crowdworkers. ## Considerations for Using the Data ### Social Impact of Dataset This dataset was developed to explore the potential of worker-AI collaboration for dataset curation, train more robust NLI models, and provide more challenging evaluation of existing systems. ### Discussion of Biases Text generated from large pretrained language models is susceptible to perpetuating social harms and containing toxic language. To partially remedy this, we ask annotators to discard any examples that may be perceived as offensive. Nonetheless, it is possible that harmful examples (especially if they contain subtle biases) may have been missed by annotators and included in the final dataset. ## Additional Information ### Dataset Curators WANLI was developed by Alisa Liu, Swabha Swayamdipta, Noah A. Smith, and Yejin Choi from the [University of Washington](https://www.cs.washington.edu/) and [AI2](https://allenai.org/). ### Citation Information ``` @misc{liu-etal-2022-wanli, title = "WANLI: Worker and AI Collaboration for Natural Language Inference Dataset Creation", author = "Liu, Alisa and Swayamdipta, Swabha and Smith, Noah A. and Choi, Yejin", month = jan, year = "2022", url = "https://arxiv.org/pdf/2201.05955", } ```
HungVu2003/opt-350m_beta_0.0_alpha_0.6_num-company_2_dataset_1_for_gen_2
HungVu2003
2025-04-08T09:40:28Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-08T09:40:26Z
0
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 675803 num_examples: 8750 download_size: 440253 dataset_size: 675803 configs: - config_name: default data_files: - split: train path: data/train-* ---
Vimax97/product-captioned-dataset-synthetic_marble
Vimax97
2025-03-28T21:45:53Z
22
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-28T21:45:46Z
0
--- dataset_info: features: - name: image dtype: image - name: mask dtype: image - name: text dtype: string splits: - name: train num_bytes: 15369713.0 num_examples: 18 download_size: 13650317 dataset_size: 15369713.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_b8692b64-f8cf-4ee1-a0bf-021748469668
argilla-internal-testing
2024-11-19T12:47:20Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-19T12:47:19Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/openmathreasoning_0.3k
mlfoundations-dev
2025-04-28T04:41:55Z
20
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-28T04:41:47Z
0
--- dataset_info: features: - name: expected_answer dtype: string - name: problem_type dtype: string - name: problem_source dtype: string - name: generation_model dtype: string - name: pass_rate_72b_tir dtype: string - name: problem dtype: string - name: generated_solution dtype: string - name: inference_mode dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 14116830.4179433 num_examples: 316 download_size: 6168716 dataset_size: 14116830.4179433 configs: - config_name: default data_files: - split: train path: data/train-* ---
Asap7772/aimo-validation-aime_gpt-4o_responses_train
Asap7772
2025-01-28T04:56:17Z
62
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-28T04:56:13Z
0
--- dataset_info: features: - name: id dtype: int64 - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: url dtype: string - name: responses sequence: string splits: - name: train num_bytes: 196108955 num_examples: 90 download_size: 84070225 dataset_size: 196108955 configs: - config_name: default data_files: - split: train path: data/train-* ---
rediska0123/bio-claim-human-anno
rediska0123
2024-12-03T18:10:56Z
28
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-03T17:12:48Z
0
--- configs: - config_name: default data_files: - split: en path: data/en-* - split: ru path: data/ru-* - split: ar path: data/ar-* - split: zh path: data/zh-* dataset_info: features: - name: subject dtype: string - name: claim dtype: string - name: sentence dtype: string - name: GPT class dtype: bool - name: human1 class dtype: bool - name: human2 class dtype: bool - name: human3 class dtype: bool splits: - name: en num_bytes: 19204 num_examples: 100 - name: ru num_bytes: 143550 num_examples: 140 - name: ar num_bytes: 126175 num_examples: 478 - name: zh num_bytes: 8667 num_examples: 100 download_size: 135485 dataset_size: 297596 --- # Dataset Card for "bio-claim-human-anno" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
amatallah/powerbank-solarpanel-module
amatallah
2025-04-22T19:19:19Z
18
0
[ "license:creativeml-openrail-m", "region:us" ]
[]
2025-04-22T19:19:19Z
0
--- license: creativeml-openrail-m ---
August4293/gsm8k_dense_rewards_filtered_batch_1
August4293
2025-05-19T14:30:56Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-19T14:30:53Z
0
--- dataset_info: features: - name: prompt dtype: string - name: ground_truth dtype: int64 splits: - name: train num_bytes: 15740 num_examples: 60 download_size: 11621 dataset_size: 15740 configs: - config_name: default data_files: - split: train path: data/train-* ---
mchl914/panacea_articles_3
mchl914
2025-04-02T21:01:19Z
13
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-02T21:00:25Z
0
--- dataset_info: features: - name: title dtype: string - name: uuid dtype: string - name: pmc_id dtype: string - name: search_term dtype: string - name: text dtype: string splits: - name: train num_bytes: 1676190369 num_examples: 36745 download_size: 624742031 dataset_size: 1676190369 configs: - config_name: default data_files: - split: train path: data/train-* ---
kh4dien/stories-preference-raw
kh4dien
2025-03-11T19:14:24Z
18
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T19:14:17Z
0
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: original dtype: string - name: unintended dtype: string splits: - name: train num_bytes: 46754744 num_examples: 20000 - name: test num_bytes: 1927122 num_examples: 1000 download_size: 25055758 dataset_size: 48681866 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
colabfit/PWMLFF_feature_comparison_NPJ2023
colabfit
2025-04-23T18:12:54Z
13
0
[ "license:cc-by-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "molecular dynamics", "mlip", "interatomic potential" ]
[]
2025-04-01T18:21:09Z
0
--- configs: - config_name: default data_files: "main/*.parquet" license: cc-by-4.0 tags: - molecular dynamics - mlip - interatomic potential pretty_name: PWMLFF feature comparison NPJ2023 --- # Dataset PWMLFF feature comparison NPJ2023 ### Description Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development. <br>Additional details stored in dataset columns prepended with "dataset_". ### Dataset authors Ting Han, Jie Li, Liping Liu, Fengyu Li, Lin-Wang Wang ### Publication https://www.doi.org/10.1088/1367-2630/acf2bb ### Original data link https://github.com/LonxunQuantum/PWMLFF_library/tree/main ### License CC-BY-4.0 ### Number of unique molecular configurations 17255 ### Number of atoms 918240 ### Elements included C, H, Mg, Ni, O, Si ### Properties included energy, atomic forces, cauchy stress ### Cite this dataset Han, T., Li, J., Liu, L., Li, F., and Wang, L. _PWMLFF feature comparison NPJ2023_. ColabFit, 2024. https://doi.org/10.60732/209e0c9c
birsapula/so101_test
birsapula
2025-06-04T17:24:48Z
0
0
[ "license:cc-by-nc-4.0", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-06-04T17:17:31Z
0
--- license: cc-by-nc-4.0 ---
tttx/3k_forcing_022225_1500_buffer
tttx
2025-02-23T02:44:09Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-23T02:23:52Z
0
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: difficulty dtype: int64 - name: problem_uid dtype: string - name: step dtype: int64 splits: - name: train num_bytes: 32455866.624122526 num_examples: 1500 - name: test num_bytes: 16330 num_examples: 1 download_size: 8940716 dataset_size: 32472196.624122526 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
akhooli/ar_mmarco_dfs200k_s
akhooli
2024-11-27T17:39:24Z
18
0
[ "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-27T15:42:20Z
0
--- license: mit dataset_info: features: - name: query_id dtype: int64 - name: document_ids sequence: string - name: scores sequence: float64 splits: - name: train num_bytes: 123917601 num_examples: 200000 download_size: 67240710 dataset_size: 123917601 configs: - config_name: default data_files: - split: train path: data/train-* ---
fancyzhx/amazon_polarity
fancyzhx
2024-01-09T12:23:33Z
4,531
46
[ "task_categories:text-classification", "task_ids:sentiment-classification", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:apache-2.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:1509.01626", "region:us" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: - apache-2.0 multilinguality: - monolingual size_categories: - 1M<n<10M source_datasets: - original task_categories: - text-classification task_ids: - sentiment-classification pretty_name: Amazon Review Polarity dataset_info: config_name: amazon_polarity features: - name: label dtype: class_label: names: '0': negative '1': positive - name: title dtype: string - name: content dtype: string splits: - name: train num_bytes: 1604364432 num_examples: 3600000 - name: test num_bytes: 178176193 num_examples: 400000 download_size: 1145430497 dataset_size: 1782540625 configs: - config_name: amazon_polarity data_files: - split: train path: amazon_polarity/train-* - split: test path: amazon_polarity/test-* default: true train-eval-index: - config: amazon_polarity task: text-classification task_id: binary_classification splits: train_split: train eval_split: test col_mapping: content: text label: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 macro args: average: macro - type: f1 name: F1 micro args: average: micro - type: f1 name: F1 weighted args: average: weighted - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted --- # Dataset Card for Amazon Review Polarity ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://registry.opendata.aws/ - **Repository:** https://github.com/zhangxiangxiao/Crepe - **Paper:** https://arxiv.org/abs/1509.01626 - **Leaderboard:** [Needs More Information] - **Point of Contact:** [Xiang Zhang](mailto:[email protected]) ### Dataset Summary The Amazon reviews dataset consists of reviews from amazon. The data span a period of 18 years, including ~35 million reviews up to March 2013. Reviews include product and user information, ratings, and a plaintext review. ### Supported Tasks and Leaderboards - `text-classification`, `sentiment-classification`: The dataset is mainly used for text classification: given the content and the title, predict the correct star rating. ### Languages Mainly English. ## Dataset Structure ### Data Instances A typical data point, comprises of a title, a content and the corresponding label. An example from the AmazonPolarity test set looks as follows: ``` { 'title':'Great CD', 'content':"My lovely Pat has one of the GREAT voices of her generation. I have listened to this CD for YEARS and I still LOVE IT. When I'm in a good mood it makes me feel better. A bad mood just evaporates like sugar in the rain. This CD just oozes LIFE. Vocals are jusat STUUNNING and lyrics just kill. One of life's hidden gems. This is a desert isle CD in my book. Why she never made it big is just beyond me. Everytime I play this, no matter black, white, young, old, male, female EVERYBODY says one thing ""Who was that singing ?""", 'label':1 } ``` ### Data Fields - 'title': a string containing the title of the review - escaped using double quotes (") and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n". - 'content': a string containing the body of the document - escaped using double quotes (") and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n". - 'label': either 1 (positive) or 0 (negative) rating. ### Data Splits The Amazon reviews polarity dataset is constructed by taking review score 1 and 2 as negative, and 4 and 5 as positive. Samples of score 3 is ignored. Each class has 1,800,000 training samples and 200,000 testing samples. ## Dataset Creation ### Curation Rationale The Amazon reviews polarity dataset is constructed by Xiang Zhang ([email protected]). It is used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015). ### Source Data #### Initial Data Collection and Normalization [Needs More Information] #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information [Needs More Information] ## Considerations for Using the Data ### Social Impact of Dataset [Needs More Information] ### Discussion of Biases [Needs More Information] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators [Needs More Information] ### Licensing Information Apache License 2.0 ### Citation Information McAuley, Julian, and Jure Leskovec. "Hidden factors and hidden topics: understanding rating dimensions with review text." In Proceedings of the 7th ACM conference on Recommender systems, pp. 165-172. 2013. Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015) ### Contributions Thanks to [@hfawaz](https://github.com/hfawaz) for adding this dataset.
badger-lord/embeddings2025
badger-lord
2025-06-06T00:55:57Z
7
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-06T00:44:02Z
0
--- license: apache-2.0 ---
ferrazzipietro/IK_llama3.1-8b_diann_16_64_0.01
ferrazzipietro
2024-12-13T08:11:32Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-13T08:11:30Z
0
--- dataset_info: features: - name: inference_prompt dtype: string - name: sentence dtype: string - name: model_responses dtype: string - name: ground_truth dtype: string splits: - name: validation num_bytes: 698000 num_examples: 364 - name: test num_bytes: 879056 num_examples: 480 download_size: 678876 dataset_size: 1577056 configs: - config_name: default data_files: - split: validation path: data/validation-* - split: test path: data/test-* ---
UE-CESE/prochaines-etapes-pour-des-societes-plus-cohesives
UE-CESE
2025-06-22T12:15:44Z
0
0
[ "task_categories:translation", "language:fra", "language:eng", "region:us" ]
[ "translation" ]
2025-06-22T12:12:43Z
0
--- language: - fra - eng viewer: false task_categories: - translation --- > [!NOTE] > Dataset origin: https://www.eesc.europa.eu/fr/our-work/publications-other-work/publications/prochaines-etapes-pour-des-societes-plus-cohesives ## Description Ces dernières années, différentes crises dont les contours s’enchevêtrent, allant des effets persistants de la pandémie à l’escalade des enjeux liés au changement climatique, en passant par l’augmentation du coût de la vie et l’aggravation des inégalités, nourrissent une généralisation de la polarisation. L’instabilité sociale, les difficultés économiques et le mécontentement politique, en particulier parmi celles et ceux qui estiment ne pas être entendus et se sentent laissés pour compte, ont encore aggravé les fractures au sein de la société. Pour répondre à ces préoccupations urgentes, la Semaine de la société civile 2025 a rassemblé un large éventail de parties prenantes de toute l’Europe et des pays candidats, ainsi que des experts, des responsables politiques de l’Union, des représentants des conseils économiques et sociaux nationaux et de la jeunesse ou encore des journalistes. Pendant quatre jours, l’événement a donné à plus de 800 participants une occasion unique de s’engager dans des discussions animées, de partager des bonnes pratiques et d’œuvrer ensemble à l’élaboration de solutions visant à renforcer la cohésion sociale et la participation démocratique. S’il est une leçon à tirer de cette semaine, c’est que le pouvoir de la société civile d’impulser le changement n’est pas moins formidable que les défis auxquels nous sommes confrontés. L’Europe doit agir rapidement et avec audace, en défendant sa société civile dynamique, pilier d’une démocratie durable. Au cours des quatorze sessions de la conférence organisées par les membres du Groupe de liaison du CESE et les partenaires de la Journée de l’Initiative Citoyenne Européenne, notamment lors de la cérémonie de remise du prix de la société civile du CESE, les acteurs de la société civile ont élaboré un arsenal complet de mesures réalisables et de demandes clés pour une Europe plus cohésive et plus résiliente.
TIMBER-Lab/Qwen2.5-7B-Instruct-Turbo_still_math_r1_10_selected
TIMBER-Lab
2025-05-03T15:54:58Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T07:39:40Z
0
--- dataset_info: features: - name: ids dtype: int64 - name: queries dtype: string - name: samples sequence: string - name: references dtype: string splits: - name: train num_bytes: 62419060 num_examples: 1750 download_size: 23601013 dataset_size: 62419060 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/opencodereasoning_100k
mlfoundations-dev
2025-04-28T04:27:30Z
30
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-28T04:23:57Z
0
--- dataset_info: features: - name: id dtype: string - name: input dtype: string - name: output dtype: string - name: source dtype: string - name: license dtype: string - name: dataset dtype: string - name: split dtype: string - name: difficulty dtype: string - name: solution dtype: string - name: index dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 6231466281.494176 num_examples: 100000 download_size: 2661859785 dataset_size: 6231466281.494176 configs: - config_name: default data_files: - split: train path: data/train-* ---
umuttbariss/dataset
umuttbariss
2025-04-23T18:42:26Z
20
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-23T17:51:43Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 60439123.199000984 num_examples: 121259 - name: test num_bytes: 6715845.800999013 num_examples: 13474 download_size: 2971964 dataset_size: 67154969.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Tanxunze/WhosAya-Dataset
Tanxunze
2025-02-20T01:55:57Z
21
0
[ "task_categories:image-classification", "license:mit", "size_categories:n<1K", "format:text", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "region:us", "Aya-Maruyama" ]
[ "image-classification" ]
2025-02-20T01:33:49Z
0
--- license: mit task_categories: - image-classification tags: - Aya-Maruyama size_categories: - n<1K --- # Look Description in [WhosAya](https://huggingface.co/Tanxunze/WhosAya) Model
anttip/Tunesets_Edu_v2
anttip
2025-06-15T09:39:21Z
0
1
[ "license:mit", "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-15T07:12:28Z
0
--- license: mit --- # Tunesets_Edu_v2 A filtered high-quality dataset blend for finetuning education-domain LLMs. The task focus is on non-reasoning instruction following, mostly around <16k context. The domain focus in on non-code and non-math tasks, including multi-lingual data. This dataset filters and samples data from following datasets: - [arcee-ai/The-Tome](https://huggingface.co/datasets/arcee-ai/The-Tome) - [microsoft/orca-agentinstruct-1M-v1](https://huggingface.co/datasets/microsoft/orca-agentinstruct-1M-v1) - [HuggingFaceTB/smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) - [CohereLabs/aya_collection_language_split](https://huggingface.co/datasets/CohereLabs/aya_collection_language_split) - [teknium/OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) - [arcee-ai/EvolKit-75K](https://huggingface.co/datasets/arcee-ai/EvolKit-75K) - [MaziyarPanahi/Llama-Nemotron-Post-Training-Dataset-v1-ShareGPT](https://huggingface.co/datasets/MaziyarPanahi/Llama-Nemotron-Post-Training-Dataset-v1-ShareGPT) - [TIGER-Lab/WebInstruct-CFT](https://huggingface.co/datasets/TIGER-Lab/WebInstruct-CFT) - [prometheus-eval/Feedback-Collection](https://huggingface.co/datasets/prometheus-eval/Feedback-Collection) - [prometheus-eval/Preference-Collection](https://huggingface.co/datasets/prometheus-eval/Preference-Collection) - [argilla/magpie-ultra-v1.0](https://huggingface.co/datasets/argilla/magpie-ultra-v1.0) - [LDJnr/Capybara](https://huggingface.co/datasets/LDJnr/Capybara) - [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) A subset of languages from aya_collection_language_split were selected to form a new dataset "aya_collection_merged": french, german, spanish, italian, indonesian, japanese, chinese, standard_arabic, dutch, greek, korean, standard_malay, maori, portuguese, samoan, thai, turkish The data from the datasets is exactly as in the originals. Only filtering and sampling has been applied to get a higher-quality dataset. The datasets were processed in the order: 1. Rule-based noise and length filtering 2. Deduplication of conversations using Minhash and string similarities 3. Filtering and balanced sampling based on LLM classifications The datasets rows were classified using AWQ-quantized versions Arcee AI finetunes: - [arcee-ai/SuperNova-Medius](https://huggingface.co/AMead10/SuperNova-Medius-AWQ) - [arcee-ai/Arcee-Blitz](https://huggingface.co/arcee-ai/Arcee-Blitz-AWQ) The following prompt was used, and the classifications between these two models were merged. ``` You are a senior data analyst. The following is a discussion between a human user and AI assistant. Evaluate the discussion and the performance of the AI, and fill the following json template: { "discussion_language": # Main language of the discussion. "discussion_category": # Task category of the discussion. 1 or 2 keywords. "response_difficulty": # Level of expertise required in the topic. Easy/Medium/Hard "response_quality": # Quality of the assistant's responses. Bad/Average/Good "response_complete": # The AI gives complete responses to the requests. Yes/No "response_errors": # The AI responses contain a clear error. Yes/No "response_concise": # The AI responses are concise with no irrelevant parts. Yes/No "overall_grade": # Overall grade of the discussion as LLM finetuning data. From 1 to 5, where 1 is useless, 5 is perfect. } Don't give any explanations, just fill the above json template. Here's the discussion to evaluate: ``` Row frequencies of the source repositories in the resulting sample: ``` CohereForAI/aya_collection_merged 881241 MaziyarPanahi/Llama-Nemotron-Post-Training-Dataset-v1-ShareGPT 497537 microsoft/orca-agentinstruct-1M-v1 490124 arcee-ai/The-Tome 402592 TIGER-Lab/WebInstruct-CFT 279564 argilla/magpie-ultra-v1.0 265875 HuggingFaceTB/smoltalk 232562 teknium/OpenHermes-2.5 204428 prometheus-eval/Preference-Collection 160068 HuggingFaceH4/ultrachat_200k 122247 arcee-ai/EvolKit-75K 47519 prometheus-eval/Feedback-Collection 33265 LDJnr/Capybara 4216 ``` The top 20 most common categories in the dataset: ``` Document Summary 66346 News Summary 47168 Physics, Mathematics 42340 Geometry, Mathematics 23482 Probability, Statistics 19953 Mathematics, Geometry 19668 Mathematics, Calculus 19301 Data Analysis, Evaluation 18218 Text Classification 18161 Historical Summary 17555 Sports, Football 17137 Biology, Genetics 16669 Mathematics, Education 16571 History, Politics 16258 Math Problem 15891 Data Analysis, Statistics 15171 Creative Writing, Character Development 13734 Mathematics, Data Analysis 13242 Historical Analysis 12695 History, Military 12679 ```
Factral/lacuna_malariav5
Factral
2024-11-03T15:18:54Z
29
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-03T15:15:12Z
0
--- dataset_info: features: - name: image dtype: image - name: objects struct: - name: bbox sequence: sequence: int64 - name: category sequence: int64 - name: id sequence: int64 - name: area sequence: int64 - name: image_id dtype: int64 splits: - name: train num_bytes: 2882879915.208 num_examples: 2472 - name: validation num_bytes: 333119955.0 num_examples: 275 - name: test num_bytes: 333119955.0 num_examples: 275 download_size: 3351293227 dataset_size: 3549119825.208 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
andreuka18/Nemotron-Post-Training-Dataset-10k-Nemotron-Nano-v1
andreuka18
2025-06-24T17:37:24Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-24T17:37:13Z
0
--- dataset_info: features: - name: input list: - name: role dtype: string - name: content dtype: string - name: output dtype: string - name: category dtype: string - name: license dtype: string - name: reasoning dtype: string - name: generator dtype: string - name: used_in_training dtype: string - name: version dtype: string - name: system_prompt dtype: string - name: text dtype: string splits: - name: train num_bytes: 237074579 num_examples: 10000 download_size: 107411220 dataset_size: 237074579 configs: - config_name: default data_files: - split: train path: data/train-* ---
1231czx/w2r125k_r2r60k_r150k_ep3_tmp07
1231czx
2025-01-07T08:27:08Z
42
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-07T08:09:27Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: prompt dtype: string - name: level dtype: string - name: type dtype: string - name: solution dtype: string - name: my_solu sequence: string - name: pred sequence: string - name: rewards sequence: bool splits: - name: train num_bytes: 19270940 num_examples: 5000 download_size: 6069442 dataset_size: 19270940 configs: - config_name: default data_files: - split: train path: data/train-* ---
orhunt/synthetic_slds_2048x2048
orhunt
2025-06-23T13:58:22Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-23T13:57:21Z
0
--- dataset_info: features: - name: image dtype: image - name: graph dtype: string splits: - name: train num_bytes: 36129310.0 num_examples: 744 - name: validation num_bytes: 6331981.0 num_examples: 131 download_size: 29899558 dataset_size: 42461291.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
shaznin/task2_severity_prediction
shaznin
2025-01-25T05:44:46Z
12
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-25T05:10:19Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 31295366 num_examples: 8040 - name: test num_bytes: 8084663 num_examples: 2010 download_size: 16139448 dataset_size: 39380029 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
ZhaoYeP/IncivilityCaps
ZhaoYeP
2025-03-04T15:17:13Z
13
1
[ "task_categories:text-generation", "task_categories:image-to-text", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-generation", "image-to-text" ]
2024-11-07T00:27:34Z
0
--- license: apache-2.0 language: - en size_categories: - 10B<n<100B task_categories: - text-generation - image-to-text dataset_info: - config_name: IncivilityCaps-8k features: - name: id dtype: string - name: file_name dtype: string - name: image dtype: image - name: text dtype: string - name: pt_type dtype: string - name: insp_std dtype: string - name: date dtype: timestamp[s] format: '%Y-%m-%d' - config_name: IncivilityCaps-40k features: - name: id dtype: string - name: file_name dtype: string - name: image dtype: image - name: text dtype: string - name: pt_type dtype: string - name: insp_std dtype: string - name: date dtype: timestamp[s] format: '%Y-%m-%d' configs: - config_name: IncivilityCaps-8k data_files: - split: train path: IncivilityCaps-8k/train/train_* - split: test path: IncivilityCaps-8k/test/test_* - split: val path: IncivilityCaps-8k/val/val* - config_name: IncivilityCaps-40k data_files: - split: train path: IncivilityCaps-40k/train/train_* - split: test path: IncivilityCaps-40k/test/test_* - split: val path: IncivilityCaps-40k/val/val_* ---
tdayanov/lerobot_rrwra_data
tdayanov
2025-06-15T00:37:32Z
0
0
[ "task_categories:robotics", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-06-14T20:04:43Z
0
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # lerobot_rrwra_data **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
kelingwang/causation_strength_rating
kelingwang
2025-01-15T14:33:43Z
19
0
[ "task_categories:text-classification", "language:en", "license:mit", "size_categories:n<1K", "region:us", "causal inference", "epidemiology", "medical" ]
[ "text-classification" ]
2024-10-07T14:43:59Z
0
--- license: mit task_categories: - text-classification language: - en tags: - causal inference - epidemiology - medical pretty_name: c size_categories: - n<1K ---
deddyext/dibi-disaster-data
deddyext
2025-04-20T14:11:18Z
9
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-20T14:11:11Z
0
--- dataset_info: features: - name: level0 dtype: string - name: level1 dtype: string - name: nwil dtype: string - name: nprop dtype: string - name: nkab dtype: string - name: kejadian struct: - name: nama dtype: string - name: url dtype: string - name: tglan dtype: string - name: kib struct: - name: bulan dtype: string - name: hari dtype: string - name: indeks dtype: string - name: jenis_bencana dtype: string - name: kab_kota dtype: string - name: kode_provinsi dtype: string - name: tahun dtype: int64 - name: tanggal dtype: int64 - name: idj dtype: string - name: meninggal dtype: string - name: hilang dtype: string - name: terluka dtype: string - name: menderita dtype: string - name: mengungsi dtype: string - name: rumah_rusak_berat dtype: string - name: rumah_rusak_sedang dtype: string - name: rumah_rusak_ringan dtype: string - name: rumah_terendam dtype: string - name: pendidikan dtype: string - name: kesehatan dtype: string - name: peribadatan dtype: string - name: fasum dtype: string - name: sql dtype: string - name: act dtype: string splits: - name: train num_bytes: 17573922 num_examples: 53900 download_size: 2229065 dataset_size: 17573922 configs: - config_name: default data_files: - split: train path: data/train-* ---
tiagoviott/fl
tiagoviott
2025-02-14T21:09:05Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-13T17:10:15Z
0
--- dataset_info: features: - name: text dtype: string - name: token_count dtype: int64 splits: - name: train num_bytes: 396797 num_examples: 45 download_size: 195790 dataset_size: 396797 configs: - config_name: default data_files: - split: train path: data/train-* ---
galgol/quickb-qa
galgol
2025-02-01T16:27:48Z
27
0
[ "task_categories:text-generation", "task_categories:text-retrieval", "task_ids:document-retrieval", "language:en", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "quickb", "text-chunking", "question-generation", "unknown" ]
[ "text-generation", "text-retrieval" ]
2025-02-01T09:23:31Z
0
--- language: - en pretty_name: "quickb-qa" tags: - quickb - text-chunking - question-generation - unknown task_categories: - text-generation - text-retrieval task_ids: - document-retrieval library_name: quickb --- # quickb-qa Generated using [QuicKB](https://github.com/AdamLucek/quickb), a tool developed by [Adam Lucek](https://huggingface.co/AdamLucek). QuicKB optimizes document retrieval by creating fine-tuned knowledge bases through an end-to-end pipeline that handles document chunking, training data generation, and embedding model optimization. ### Question Generation - **Model**: huggingface/starcoder - **Deduplication threshold**: 0.85 - **Results**: - Total questions generated: 0 - Questions after deduplication: 0 ### Dataset Structure - `anchor`: The generated question - `positive`: The text chunk containing the answer - `question_id`: Unique identifier for the question - `chunk_id`: Reference to the source chunk
kkchaulagain/LieWaves-EEG
kkchaulagain
2025-03-30T12:09:23Z
15
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-30T12:09:14Z
0
--- dataset_info: features: - name: '0' dtype: float64 - name: label dtype: float64 splits: - name: train num_bytes: 8294400 num_examples: 518400 download_size: 6988274 dataset_size: 8294400 configs: - config_name: default data_files: - split: train path: data/train-* ---
JK-TK/550_exams
JK-TK
2025-06-20T10:02:54Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-20T09:40:54Z
0
--- license: apache-2.0 ---
akahana/rontgen-text-only
akahana
2025-01-27T01:21:47Z
27
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2405.10004", "region:us" ]
[]
2025-01-27T01:18:11Z
0
--- dataset_info: features: - name: image_id dtype: string - name: caption dtype: string - name: cui sequence: string splits: - name: train num_bytes: 11668074 num_examples: 59962 - name: validation num_bytes: 2024347 num_examples: 9904 - name: test num_bytes: 2028034 num_examples: 9927 download_size: 7123511 dataset_size: 15720455 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- ## Citation If you use the ROCOv2 dataset in your research, please cite the following paper: Pelka, O., Menze, B. H., & Rexhausen, S. E. (2023). Radiology Objects in COntext version 2 (ROCOv2): A multimodal dataset for medical image analysis. arXiv preprint arXiv:2405.10004. ```latex @misc {ronan_l.m._2024, author = { {Ronan L.M.} }, title = { ROCOv2-radiology (Revision 5d66908) }, year = 2024, url = { https://huggingface.co/datasets/eltorio/ROCOv2-radiology }, doi = { 10.57967/hf/3489 }, publisher = { Hugging Face } } ``` ## License The ROCOv2 dataset is licensed under the CC BY-NC-SA 4.0 license. ## Acknowledgments We acknowledge the National Library of Medicine (NLM) for providing access to the PMC Open Access Subset. We also acknowledge the creators of the Medical Concept Annotation Toolkit (MedCAT) for providing a valuable tool for concept extraction and annotation.
geoskyr/diagram_image_to_text
geoskyr
2025-06-20T12:07:35Z
5
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-08T16:26:51Z
0
--- dataset_info: features: - name: image dtype: image - name: original_text list: - name: user dtype: string - name: assistant dtype: string - name: source dtype: string - name: translated_text list: - name: user dtype: string - name: assistant dtype: string - name: source dtype: string splits: - name: train num_bytes: 2880874.0 num_examples: 50 download_size: 2831955 dataset_size: 2880874.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
Asap7772/metamath-hint-sft-topk-4
Asap7772
2025-03-20T17:48:25Z
17
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-20T17:48:19Z
0
--- dataset_info: features: - name: problem dtype: string - name: hint dtype: string - name: response dtype: string splits: - name: test num_bytes: 3439595 num_examples: 760 - name: train num_bytes: 48307860 num_examples: 25420 download_size: 18027217 dataset_size: 51747455 configs: - config_name: default data_files: - split: test path: data/test-* - split: train path: data/train-* ---
GeroldMeisinger/laion2b-en-a65_cogvlm2-4bit_captions
GeroldMeisinger
2024-08-12T14:05:15Z
451
6
[ "task_categories:image-classification", "task_categories:text-to-image", "task_categories:image-to-text", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2403.03206", "region:us", "CogVLM2", "CogVLM2-4bit", "laion2b-en-a65", "laion-pop", "stable-diffusion-3-medium" ]
[ "image-classification", "text-to-image", "image-to-text" ]
2024-06-13T11:52:05Z
1
--- license: cc-by-nc-sa-4.0 language: - en size_categories: - 10K<n<100K task_categories: - image-classification - text-to-image - image-to-text tags: - CogVLM2 - CogVLM2-4bit - laion2b-en-a65 - laion-pop - stable-diffusion-3-medium pretty_name: laion2B-en aesthetics>=6.5 CogVLM2-4bit captions --- ![image/webp](readme_overview.webp) # Abstract This dataset contains image captions for the `laion2B-en aesthetics>=6.5` image dataset using `CogVLM2-4bit` with the "laion-pop"-prompt to generate captions which were "likely" used in Stable Diffusion 3 training. From these image captions new synthetic images were generated using `stable-diffusion-3-medium` (`batch-size=8`). The synthetic images are best viewed locally by cloning this repo with: ``` git lfs install git clone https://huggingface.co/datasets/GeroldMeisinger/laion2b-en-a65_cogvlm2-4bit_captions ``` (please note that the original images are NOT INCLUDED, see below) # Status * laion2B-en aesthetics>=6.5 original images (not included): 635561 (64 parts a ~10000) * images after filtering and de-duplication (not included, see `imagelist.txt`): 111486 * image captions from originals: 56484 (=parts 00000-00025 only) * generated images from captions: 8x 2752 = 22016 (=part 00000 only) *My heart is willing but the hardware is weak!* # Tasks * evaluate CogVLM2 * evaluate prompts used for Stable Diffusion 3 training * evaluate Stable Diffusion 3 image generation and intra-prompt coherence * evaluate Stable Diffusion 3 prompt comprehension and coherence * evaluate Stable Diffusion 3 parametrization * compare generated captions with original images * compare generated captions with original alt-texts * compare generated captions of originals versus synthetics * train models on the original images with synthetic captions *...or just look at the pretty pictures!* # File structure ``` 00000...00063/ # CogVLM2-4bit captions of the laion2b-en-a65 images 000000001.txt 000000002.txt ... images_stable-diffusion-3-medium_q80/ # generated images (quality=80%) cfg_30, cfg_45, cfg_60 # cfg value used bosh3, dpmpp_2m, euler # sampler used steps_15, steps_20, steps_28 # step size used 000000001_0.webp # batch number 0 ... 000000001_7.webp captions2images.py # send prompts to ComfyUI to generate images from captions images2grid.py # display generated images as 2x2 or 3x3 grid images2reencode.py # compress generated images to lossy workflow_api.json # workflow for ComfyUI ``` # Reproduction 1. Download the [laion2B-en with aesthetics>=6.5 image dataset](https://laion.ai/blog/laion-aesthetics). Unfortunately the original dataset containing the image links is not available on the official site right now! [LAION is currently in "maintenance mode"](https://laion.ai/notes/laion-maintenance) and (as of June 2024) the process is still on-going. > LAION has a zero tolerance policy for illegal content and in an abundance of caution, we are temporarily taking down the LAION datasets to ensure they are safe before republishing them." Thus you have to look for alternative sources if you want to get the `improved_aesthetics_6.5plus.parquet` file (~120MB, `sha256 b10b1b7a60c70a34f6ae5fba662df4c6e893e0e5cb97d070cc7b56cebbd683b2`). Like [DagsHub-Datasets/LAION-Aesthetics-V2-6.5plus](https://dagshub.com/DagsHub-Datasets/LAION-Aesthetics-V2-6.5plus) or [bhargavsdesai/laion_improved_aesthetics_6.5plus_with_images](https://huggingface.co/datasets/bhargavsdesai/laion_improved_aesthetics_6.5plus_with_images). You can view it with [ParquetViewer](https://github.com/mukunku/ParquetViewer/releases). This image dataset is incomplete and missing some files because of...: * Aspect ratio filtering. Any image with aspect ratio > 2 was removed. * De-duplication. Duplicate images were removed with [Fastdup - image de-duplication library for Python](https://github.com/visual-layer/fastdup) (on default settings) including "semantic" duplicates. * Captioning takes about 15s per image and after a few days I just stopped. You can find a full list of images used after filtering and de-duplication in `imagelist.txt`. 2. Install [Taggui - Image captioning UI tool and VLM model downloader](https://github.com/jhc13/taggui) and download [CogVLM2 - AI model for automatic image captioning](https://github.com/THUDM/CogVLM2) within the app. Note that this dataset was created using CogVLM2-4bit (version 2, not version 1!). 3. At [laion-pop](https://laion.ai/blog/laion-pop) we read that they used the following prompt with COGVLM (version 1!). Because Stability.ai and LAION work closely together we can assume that something similar was used for Stable Diffusion 3: > Can you please describe this image in up to two paragraphs? Please specify any objects within the image, backgrounds, scenery, interactions, and gestures or poses. If they are multiple of any object, please specify how many. Is there text in the image, and if so, what does it say? If there is any lighting in the image, can you identify where it is and what it looks like? What style is the image? If there are people or characters in the image, what emotions are they conveying? Please keep your descriptions factual and terse but complete. DO NOT add any unnecessary speculation about the things that are not part of the image such as "the image is inspiring to viewers" or "seeing this makes you feel joy". DO NOT add things such as "creates a unique and entertaining visual", as these descriptions are interpretations and not a part of the image itself. The description should be purely factual, with no subjective speculation. Make sure to include the style of the image, for example cartoon, photograph, 3d render etc. Start with the words ‘This image showcases’: > > ‘This image showcases’ was trimmed from the beginning of each caption upon generation. In the [Stable Diffusion 3 paper](https://arxiv.org/pdf/2403.03206) we read: > As synthetic captions may cause a text-to-image model to forget about certain concepts not present in the VLM’s knowledge corpus, we use a ratio of 50 % original and 50 % synthetic captions. I didn't care about object counting and texts and thus simplified the prompt slightly to this: > Can you please describe this image in up to two paragraphs? Please specify any objects within the image, backgrounds, scenery, interactions, and gestures or poses. If there is any lighting in the image, can you identify where it is and what it looks like? What style is the image? If there are people or characters in the image, what emotions are they conveying? Please keep your descriptions factual and terse but complete. DO NOT add any unnecessary speculation about the things that are not part of the image such as "the image is inspiring to viewers" or "seeing this makes you feel joy". DO NOT add things such as "creates a unique and entertaining visual", as these descriptions are interpretations and not a part of the image itself. The description should be purely factual, with no subjective speculation. Make sure to include the style of the image, for example cartoon, photograph, 3d render etc. In taggui I used `token length=512` and `Start caption with: This image showcases` which I later removed with: ``` for i in {18..25}; do printf -v num "%05d" $i find "${num}/" -type f -name "*.txt" -exec sed -i 's/^This image showcases //' {} + done ``` 4. Optional: Start [ComfyUI Stable Diffusion server](https://github.com/comfyanonymous/ComfyUI) and run the accompanied `captions2images.py` to generate the synthetic images from the captions. This runs a permutation of `8 x cfg=[3.0, 4.5, 6.0] x samplers=["euler", "dpmpp_2m", "bosh3"] x steps=[15, 20, 28]` which leaves 2752 / 81 ~ 34 image batches to compare. I then ran `images2reencode.py` before upload to compress the images from 28GB to 8GB. 5. Optional: Run `images2grid.py` if you want to view the synthetic images with side-by-side comparison of the originals.
Khauneesh/test
Khauneesh
2025-01-28T14:48:49Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-28T14:48:48Z
0
--- dataset_info: features: - name: Seeds dtype: string - name: Prompt dtype: string - name: Completion dtype: string splits: - name: train num_bytes: 3098 num_examples: 3 download_size: 7442 dataset_size: 3098 configs: - config_name: default data_files: - split: train path: data/train-* ---
imperial-cpg/copyright-traps-extra-non-members
imperial-cpg
2024-10-07T18:15:05Z
130
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-07T18:15:01Z
0
--- dataset_info: features: - name: perplexity_bucket dtype: int64 - name: text dtype: string - name: label dtype: int64 splits: - name: seq_len_25 num_bytes: 813824 num_examples: 7425 - name: seq_len_50 num_bytes: 1518773 num_examples: 7500 - name: seq_len_100 num_bytes: 2931380 num_examples: 7500 download_size: 3748263 dataset_size: 5263977 configs: - config_name: default data_files: - split: seq_len_25 path: data/seq_len_25-* - split: seq_len_50 path: data/seq_len_50-* - split: seq_len_100 path: data/seq_len_100-* ---
Pullo-Africa-Protagonist/NEWDATA
Pullo-Africa-Protagonist
2025-04-18T14:47:27Z
26
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-15T05:30:15Z
0
--- dataset_info: - config_name: group_001 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_001 num_bytes: 3664886 num_examples: 1000 download_size: 1808903 dataset_size: 3664886 - config_name: group_002 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_002 num_bytes: 3669107 num_examples: 1000 download_size: 1826467 dataset_size: 3669107 - config_name: group_003 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_003 num_bytes: 3666966 num_examples: 1000 download_size: 1822885 dataset_size: 3666966 - config_name: group_004 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_004 num_bytes: 3641054 num_examples: 1000 download_size: 1790960 dataset_size: 3641054 - config_name: group_005 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_005 num_bytes: 3706546 num_examples: 1000 download_size: 1834176 dataset_size: 3706546 - config_name: group_006 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_006 num_bytes: 3641134 num_examples: 1000 download_size: 1806495 dataset_size: 3641134 - config_name: group_007 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_007 num_bytes: 3624720 num_examples: 1000 download_size: 1787928 dataset_size: 3624720 - config_name: group_008 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_008 num_bytes: 3648575 num_examples: 1000 download_size: 1802821 dataset_size: 3648575 - config_name: group_009 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_009 num_bytes: 3776329 num_examples: 1000 download_size: 1864126 dataset_size: 3776329 - config_name: group_010 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_010 num_bytes: 3743553 num_examples: 1000 download_size: 1852755 dataset_size: 3743553 - config_name: group_011 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_011 num_bytes: 3691265 num_examples: 1000 download_size: 1831889 dataset_size: 3691265 - config_name: group_012 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_012 num_bytes: 3730302 num_examples: 1000 download_size: 1835627 dataset_size: 3730302 - config_name: group_013 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_013 num_bytes: 3670380 num_examples: 1000 download_size: 1817499 dataset_size: 3670380 - config_name: group_014 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_014 num_bytes: 3712956 num_examples: 1000 download_size: 1843771 dataset_size: 3712956 - config_name: group_015 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_015 num_bytes: 3685489 num_examples: 1000 download_size: 1828834 dataset_size: 3685489 - config_name: group_016 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_016 num_bytes: 3600553 num_examples: 1000 download_size: 1782497 dataset_size: 3600553 - config_name: group_017 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_017 num_bytes: 3674265 num_examples: 1000 download_size: 1822922 dataset_size: 3674265 - config_name: group_018 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_018 num_bytes: 3669071 num_examples: 1000 download_size: 1816887 dataset_size: 3669071 - config_name: group_019 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_019 num_bytes: 3705063 num_examples: 1000 download_size: 1836618 dataset_size: 3705063 - config_name: group_020 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_020 num_bytes: 3624252 num_examples: 1000 download_size: 1794243 dataset_size: 3624252 - config_name: group_021 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_021 num_bytes: 3670349 num_examples: 1000 download_size: 1801647 dataset_size: 3670349 - config_name: group_022 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_022 num_bytes: 3669836 num_examples: 1000 download_size: 1826410 dataset_size: 3669836 - config_name: group_023 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_023 num_bytes: 3682315 num_examples: 1000 download_size: 1826539 dataset_size: 3682315 - config_name: group_024 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_024 num_bytes: 3569394 num_examples: 1000 download_size: 1763739 dataset_size: 3569394 - config_name: group_025 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_025 num_bytes: 3669858 num_examples: 1000 download_size: 1809325 dataset_size: 3669858 - config_name: group_026 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_026 num_bytes: 3670217 num_examples: 1000 download_size: 1832165 dataset_size: 3670217 - config_name: group_027 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_027 num_bytes: 3753424 num_examples: 1000 download_size: 1843680 dataset_size: 3753424 - config_name: group_028 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_028 num_bytes: 3719150 num_examples: 1000 download_size: 1841035 dataset_size: 3719150 - config_name: group_029 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_029 num_bytes: 3659327 num_examples: 1000 download_size: 1804868 dataset_size: 3659327 - config_name: group_030 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_030 num_bytes: 3669635 num_examples: 1000 download_size: 1819675 dataset_size: 3669635 - config_name: group_031 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_031 num_bytes: 3644414 num_examples: 1000 download_size: 1807146 dataset_size: 3644414 - config_name: group_032 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_032 num_bytes: 3691035 num_examples: 1000 download_size: 1824335 dataset_size: 3691035 - config_name: group_033 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_033 num_bytes: 3698003 num_examples: 1000 download_size: 1836742 dataset_size: 3698003 - config_name: group_034 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_034 num_bytes: 3758972 num_examples: 1000 download_size: 1852252 dataset_size: 3758972 - config_name: group_035 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_035 num_bytes: 3752328 num_examples: 1000 download_size: 1860840 dataset_size: 3752328 - config_name: group_036 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_036 num_bytes: 3640162 num_examples: 1000 download_size: 1808805 dataset_size: 3640162 - config_name: group_037 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_037 num_bytes: 3697595 num_examples: 1000 download_size: 1831176 dataset_size: 3697595 - config_name: group_038 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_038 num_bytes: 3696030 num_examples: 1000 download_size: 1827972 dataset_size: 3696030 - config_name: group_039 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_039 num_bytes: 3650814 num_examples: 1000 download_size: 1804046 dataset_size: 3650814 - config_name: group_040 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_040 num_bytes: 3622130 num_examples: 1000 download_size: 1779191 dataset_size: 3622130 - config_name: group_041 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_041 num_bytes: 3703674 num_examples: 1000 download_size: 1824803 dataset_size: 3703674 - config_name: group_042 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_042 num_bytes: 3717098 num_examples: 1000 download_size: 1830840 dataset_size: 3717098 - config_name: group_043 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_043 num_bytes: 3617590 num_examples: 1000 download_size: 1797695 dataset_size: 3617590 - config_name: group_044 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_044 num_bytes: 3623383 num_examples: 1000 download_size: 1788077 dataset_size: 3623383 - config_name: group_045 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_045 num_bytes: 3662910 num_examples: 1000 download_size: 1797931 dataset_size: 3662910 - config_name: group_046 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_046 num_bytes: 3699012 num_examples: 1000 download_size: 1823680 dataset_size: 3699012 - config_name: group_047 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_047 num_bytes: 3635450 num_examples: 1000 download_size: 1808927 dataset_size: 3635450 - config_name: group_048 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_048 num_bytes: 3688456 num_examples: 1000 download_size: 1819557 dataset_size: 3688456 - config_name: group_049 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_049 num_bytes: 3682204 num_examples: 1000 download_size: 1831621 dataset_size: 3682204 - config_name: group_050 features: - name: kri_question dtype: string - name: kri_reference_answer dtype: string - name: kri_responses list: - name: response dtype: string - name: response_model dtype: string - name: kri_category dtype: string splits: - name: group_050 num_bytes: 3628223 num_examples: 1000 download_size: 1797115 dataset_size: 3628223 configs: - config_name: group_001 data_files: - split: group_001 path: group_001/group_001-* - config_name: group_002 data_files: - split: group_002 path: group_002/group_002-* - config_name: group_003 data_files: - split: group_003 path: group_003/group_003-* - config_name: group_004 data_files: - split: group_004 path: group_004/group_004-* - config_name: group_005 data_files: - split: group_005 path: group_005/group_005-* - config_name: group_006 data_files: - split: group_006 path: group_006/group_006-* - config_name: group_007 data_files: - split: group_007 path: group_007/group_007-* - config_name: group_008 data_files: - split: group_008 path: group_008/group_008-* - config_name: group_009 data_files: - split: group_009 path: group_009/group_009-* - config_name: group_010 data_files: - split: group_010 path: group_010/group_010-* - config_name: group_011 data_files: - split: group_011 path: group_011/group_011-* - config_name: group_012 data_files: - split: group_012 path: group_012/group_012-* - config_name: group_013 data_files: - split: group_013 path: group_013/group_013-* - config_name: group_014 data_files: - split: group_014 path: group_014/group_014-* - config_name: group_015 data_files: - split: group_015 path: group_015/group_015-* - config_name: group_016 data_files: - split: group_016 path: group_016/group_016-* - config_name: group_017 data_files: - split: group_017 path: group_017/group_017-* - config_name: group_018 data_files: - split: group_018 path: group_018/group_018-* - config_name: group_019 data_files: - split: group_019 path: group_019/group_019-* - config_name: group_020 data_files: - split: group_020 path: group_020/group_020-* - config_name: group_021 data_files: - split: group_021 path: group_021/group_021-* - config_name: group_022 data_files: - split: group_022 path: group_022/group_022-* - config_name: group_023 data_files: - split: group_023 path: group_023/group_023-* - config_name: group_024 data_files: - split: group_024 path: group_024/group_024-* - config_name: group_025 data_files: - split: group_025 path: group_025/group_025-* - config_name: group_026 data_files: - split: group_026 path: group_026/group_026-* - config_name: group_027 data_files: - split: group_027 path: group_027/group_027-* - config_name: group_028 data_files: - split: group_028 path: group_028/group_028-* - config_name: group_029 data_files: - split: group_029 path: group_029/group_029-* - config_name: group_030 data_files: - split: group_030 path: group_030/group_030-* - config_name: group_031 data_files: - split: group_031 path: group_031/group_031-* - config_name: group_032 data_files: - split: group_032 path: group_032/group_032-* - config_name: group_033 data_files: - split: group_033 path: group_033/group_033-* - config_name: group_034 data_files: - split: group_034 path: group_034/group_034-* - config_name: group_035 data_files: - split: group_035 path: group_035/group_035-* - config_name: group_036 data_files: - split: group_036 path: group_036/group_036-* - config_name: group_037 data_files: - split: group_037 path: group_037/group_037-* - config_name: group_038 data_files: - split: group_038 path: group_038/group_038-* - config_name: group_039 data_files: - split: group_039 path: group_039/group_039-* - config_name: group_040 data_files: - split: group_040 path: group_040/group_040-* - config_name: group_041 data_files: - split: group_041 path: group_041/group_041-* - config_name: group_042 data_files: - split: group_042 path: group_042/group_042-* - config_name: group_043 data_files: - split: group_043 path: group_043/group_043-* - config_name: group_044 data_files: - split: group_044 path: group_044/group_044-* - config_name: group_045 data_files: - split: group_045 path: group_045/group_045-* - config_name: group_046 data_files: - split: group_046 path: group_046/group_046-* - config_name: group_047 data_files: - split: group_047 path: group_047/group_047-* - config_name: group_048 data_files: - split: group_048 path: group_048/group_048-* - config_name: group_049 data_files: - split: group_049 path: group_049/group_049-* - config_name: group_050 data_files: - split: group_050 path: group_050/group_050-* ---
R2E-Gym/R2EGym-Verifier-Trajectories
R2E-Gym
2025-02-25T10:56:06Z
76
2
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-25T09:40:31Z
0
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: docker_images dtype: string - name: rewards dtype: float64 splits: - name: train num_bytes: 331516111 num_examples: 5750 download_size: 107490761 dataset_size: 331516111 configs: - config_name: default data_files: - split: train path: data/train-* ---
tmpmodelsave/llama3_sft_math_dpo_type12_8ktype4_2ktype3_new_250tmp10
tmpmodelsave
2025-01-13T04:11:24Z
64
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-13T04:11:23Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: prompt dtype: string - name: level dtype: string - name: type dtype: string - name: solution dtype: string - name: my_solu sequence: string - name: pred sequence: string - name: rewards sequence: bool splits: - name: train num_bytes: 22483677 num_examples: 5000 download_size: 7230504 dataset_size: 22483677 configs: - config_name: default data_files: - split: train path: data/train-* ---
UniversalCEFR/elg_cefr_en
UniversalCEFR
2025-05-26T14:43:59Z
0
0
[ "language:en", "license:cc-by-nc-4.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-26T14:33:58Z
0
--- license: cc-by-nc-4.0 language: - en --- This dataset has been indexed in the UniversalCEFR. The transformed version (in JSON format) retains the same license as the original dataset. Ownership and copyright remain with the original creators and/or dataset paper authors. If you use this transformed dataset, you must cite the following: Dataset License: cc-by-nc-4.0 Dataset Repository: https://www.edia.nl/resources/elg/downloads Original Dataset Paper: Breuker, M. (2023). CEFR Labelling and Assessment Services. In: Rehm, G. (eds) European Language Grid. Cognitive Technologies. Springer, Cham. https://doi.org/10.1007/978-3-031-17258-8_16
strombergnlp/polstance
strombergnlp
2022-10-25T21:42:18Z
23
1
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:da", "license:cc-by-4.0", "size_categories:n<1K", "region:us", "stance-detection" ]
[ "text-classification" ]
2022-04-28T10:08:13Z
0
--- annotations_creators: - expert-generated language_creators: - found language: - da license: - cc-by-4.0 multilinguality: - monolingual size_categories: - n<1K source_datasets: - original task_categories: - text-classification task_ids: - sentiment-analysis paperswithcode_id: polstance pretty_name: Political Stance for Danish tags: - stance-detection --- # Dataset Card for "polstance" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://stromberg.ai/publication/politicalstanceindanish/](https://stromberg.ai/publication/politicalstanceindanish/) - **Repository:** [https://github.com/StrombergNLP/Political-Stance-in-Danish/](https://github.com/StrombergNLP/Political-Stance-in-Danish/) - **Paper:** [https://aclanthology.org/W19-6121/](https://aclanthology.org/W19-6121/) - **Point of Contact:** [Leon Derczynski](https://github.com/leondz) - **Size of downloaded dataset files:** 548 KB - **Size of the generated dataset:** 222 KB - **Total amount of disk used:** 770 KB ### Dataset Summary Political stance in Danish. Examples represent statements by politicians and are annotated for, against, or neutral to a given topic/article. ### Supported Tasks and Leaderboards * ### Languages Danish, bcp47: `da-DK` ## Dataset Structure ### Data Instances #### polstance An example of 'train' looks as follows. ``` { 'id': '0', 'topic': 'integration', 'quote': 'Der kunne jeg godt tænke mig, at der stod mere eksplicit, at de (landene, red.) skal bekæmpe menneskesmuglere og tage imod deres egne borgere', 'label': 2, 'quoteID': '516', 'party': 'Det Konservative Folkeparti', 'politician': 'Naser Khader', } ``` ### Data Fields - `id`: a `string` feature. - `topic`: a `string` expressing a topic. - `quote`: a `string` to be classified for its stance to the topic. - `label`: a class label representing the stance the text expresses towards the target. Full tagset with indices: ``` 0: "against", 1: "neutral", 2: "for", ``` - `quoteID`: a `string` of the internal quote ID. - `party`: a `string` describing the party affiliation of the quote utterer at the time of utterance. - `politician`: a `string` naming the politician who uttered the quote. ### Data Splits | name |train| |---------|----:| |polstance|900 sentences| ## Dataset Creation ### Curation Rationale Collection of quotes from politicians to allow detecting how political quotes orient to issues. ### Source Data #### Initial Data Collection and Normalization The data is taken from proceedings of the Danish parliament, the Folketing - [ft.dk](https://ft.dk). #### Who are the source language producers? Danish polticians ### Annotations #### Annotation process Annotators labelled comments for being against, neutral, or for a specified topic #### Who are the annotators? Danish native speakers, 20s, male, studying Software Design. ### Personal and Sensitive Information The data was public at the time of collection and will remain open public record by law in Denmark. ## Considerations for Using the Data ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations The above limitations apply. ## Additional Information ### Dataset Curators The dataset is curated by the paper's authors. ### Licensing Information The authors distribute this data under Creative Commons attribution license, CC-BY 4.0. ### Citation Information ``` @inproceedings{lehmann2019political, title={Political Stance in Danish}, author={Lehmann, Rasmus and Derczynski, Leon}, booktitle={Proceedings of the 22nd Nordic Conference on Computational Linguistics}, pages={197--207}, year={2019} } ``` ### Contributions Author-added dataset [@leondz](https://github.com/leondz)
Nexdata/204-Hours-English-Philippine-Spontaneous-Dialogue-Smartphone-speech-dataset
Nexdata
2025-05-09T03:04:09Z
2
0
[ "license:cc-by-nc-4.0", "size_categories:n<1K", "format:audiofolder", "modality:audio", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-05-08T08:07:49Z
0
--- license: cc-by-nc-4.0 --- # 204-Hours-English-Philippine-Spontaneous-Dialogue-Smartphone-speech-dataset ## Description English(Philippine) Spontaneous Dialogue Smartphone speech dataset, collected from dialogues based on given topics. Transcribed with text content, timestamp, speaker's ID, gender and other attributes. Our dataset was collected from extensive and diversify speakers(around 400 native speakers), geographicly speaking, enhancing model performance in real and complex tasks. Quality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied. For more details, please refer to the link: https://www.nexdata.ai/datasets/speechrecog/1397?source=huggingface ## Specifications ### Format 16kHz, 16bit, uncompressed wav, mono channel ### Content category Dialogue based on given topics ### Recording condition Low background noise (indoor) ### Recording device Android smartphone, iPhone ### Country Philippine(PHL) ### Language(Region) Code en-PH ### Language English ### Speaker 304 native speakers in total, 42% male and 58% female ### Features of annotation Transcription text, timestamp, speaker ID, gender, noise ### Accuracy rate Sentence accuracy rate(SAR) 95% ## Licensing Information Commercial License
BioMCQA/test_mcq
BioMCQA
2025-05-14T15:28:25Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-14T15:28:23Z
0
--- dataset_info: features: - name: question_key dtype: string - name: relation dtype: string - name: question_template dtype: string - name: subject_cui dtype: string - name: subject_label dtype: string - name: correct_object_cui dtype: string - name: correct_object_label dtype: string - name: opa dtype: string - name: opb dtype: string - name: opc dtype: string - name: opd dtype: string - name: cop dtype: int64 splits: - name: train num_bytes: 224187 num_examples: 610 download_size: 126143 dataset_size: 224187 configs: - config_name: default data_files: - split: train path: data/train-* ---
rikeshsilwalekg/call-conversation-llm-tokenized-Llama-3.2-1B-Instruct-maxseq-2048-dynamic-json-response
rikeshsilwalekg
2025-03-06T07:01:15Z
15
0
[ "size_categories:n<1K", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-06T07:01:09Z
0
--- dataset_info: features: - name: input_ids sequence: int32 - name: attention_mask sequence: int8 splits: - name: train num_bytes: 8557080 num_examples: 835 download_size: 262422 dataset_size: 8557080 configs: - config_name: default data_files: - split: train path: data/train-* ---
yananchen/math_shots_16
yananchen
2024-10-22T20:31:26Z
20
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-22T18:54:34Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 101027045 num_examples: 7500 - name: test num_bytes: 67075060 num_examples: 5000 download_size: 254283145 dataset_size: 168102105 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
HachiML/mgsm_250-QwQ-CoT-0.5B-JA-v1.1-MCTS-ips12-mi15-mss32-et0-sa
HachiML
2024-12-19T00:51:35Z
19
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-19T00:51:32Z
0
--- dataset_info: features: - name: input dtype: string - name: output dtype: string - name: response dtype: string - name: pred dtype: string - name: correct dtype: bool splits: - name: test num_bytes: 293672 num_examples: 250 download_size: 124744 dataset_size: 293672 configs: - config_name: default data_files: - split: test path: data/test-* ---
alea-institute/kl3m-data-dotgov-www.ustaxcourt.gov
alea-institute
2025-04-11T01:46:25Z
44
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.07854", "arxiv:2503.17247", "region:us" ]
[]
2025-02-02T12:15:37Z
0
--- dataset_info: features: - name: identifier dtype: string - name: dataset dtype: string - name: mime_type dtype: string - name: tokens sequence: int64 splits: - name: train num_bytes: 36488148 num_examples: 1321 download_size: 7204925 dataset_size: 36488148 configs: - config_name: default data_files: - split: train path: data/train-* --- # KL3M Data Project > **Note**: This page provides general information about the KL3M Data Project. Additional details specific to this dataset will be added in future updates. For complete information, please visit the [GitHub repository](https://github.com/alea-institute/kl3m-data) or refer to the [KL3M Data Project paper](https://arxiv.org/abs/2504.07854). ## Description This dataset is part of the [ALEA Institute's](https://aleainstitute.ai/) KL3M Data Project, which provides copyright-clean training resources for large language models. ## Dataset Details - **Format**: Parquet files containing document text and metadata - **License**: [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) - **Tokenizer**: The `tokens` field uses the [kl3m-004-128k-cased](https://huggingface.co/alea-institute/kl3m-004-128k-cased) tokenizer, a case-sensitive 128K vocabulary tokenizer optimized for legal, financial, and enterprise documents ## Abstract Practically all large language models have been pre-trained on data that is subject to global uncertainty related to copyright infringement and breach of contract. This creates potential risk for users and developers due to this uncertain legal status. The KL3M Data Project directly confronts this critical issue by introducing the largest comprehensive training data pipeline that minimizes risks related to copyright or breach of contract. The foundation of this project is a corpus of over 132 million documents and trillions of tokens spanning 16 different sources that have been verified to meet the strict copyright and licensing protocol detailed in the project. We are releasing the entire pipeline, including: 1. The source code to acquire and process these documents 2. The original document formats with associated provenance and metadata 3. Extracted content in a standardized format 4. Pre-tokenized representations of the documents 5. Various mid- and post-train resources such as question-answer, summarization, conversion, drafting, classification, prediction, and conversational data All of these resources are freely available to the public on S3, Hugging Face, and GitHub under CC-BY terms. We are committed to continuing this project in furtherance of a more ethical, legal, and sustainable approach to the development and use of AI models. ## Legal Basis This dataset is fully compliant with copyright law and contractual terms. The content is included based on the following legal foundation: - Public domain materials - US government works - Open access content under permissive licenses - Content explicitly licensed for AI training ## Papers For more information about the KL3M Data Project, please refer to: - [The KL3M Data Project: Copyright-Clean Training Resources for Large Language Models](https://arxiv.org/abs/2504.07854) - [KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications](https://arxiv.org/abs/2503.17247) ## Citation If you use this dataset in your research, please cite: ```bibtex @misc{bommarito2025kl3mdata, title={The KL3M Data Project: Copyright-Clean Training Resources for Large Language Models}, author={Bommarito II, Michael J. and Bommarito, Jillian and Katz, Daniel Martin}, year={2025}, eprint={2504.07854}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @misc{bommarito2025kl3m, title={KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications}, author={Bommarito II, Michael J. and Katz, Daniel Martin and Bommarito, Jillian}, year={2025}, eprint={2503.17247}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## About ALEA The ALEA Institute is a non-profit research organization focused on advancing AI for business, law, and governance. Learn more at [https://aleainstitute.ai/](https://aleainstitute.ai/).
sairamtelagamsetti/setadataset
sairamtelagamsetti
2024-12-28T03:47:50Z
17
0
[ "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-28T03:46:24Z
0
--- license: apache-2.0 ---
WPRM/auto_regressive_rm_sh
WPRM
2025-04-16T18:07:11Z
15
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-16T18:06:59Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 415353069 num_examples: 40433 download_size: 63876217 dataset_size: 415353069 configs: - config_name: default data_files: - split: train path: data/train-* ---
jerry128/Musique-Ans-Eval
jerry128
2025-03-03T07:31:52Z
38
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-03T07:30:14Z
0
--- dataset_info: features: - name: id dtype: string - name: paragraphs list: - name: idx dtype: int64 - name: is_supporting dtype: bool - name: paragraph_text dtype: string - name: title dtype: string - name: question dtype: string - name: answer dtype: string - name: answer_aliases sequence: string - name: context dtype: string - name: citations sequence: string splits: - name: train num_bytes: 52650753 num_examples: 2417 download_size: 22612267 dataset_size: 52650753 configs: - config_name: default data_files: - split: train path: data/train-* ---
weqweasdas/llama3_non_delete_rr40k_2e6_bz32_ep3tmp10_temp_exp_genbytmp
weqweasdas
2025-01-06T04:18:36Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-06T04:18:35Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: prompt dtype: string - name: answers sequence: string - name: gt dtype: string - name: rewards sequence: bool - name: proxy_label dtype: bool - name: my_prompt dtype: string - name: proxy_label_1st_round dtype: bool splits: - name: train num_bytes: 16070981 num_examples: 5000 download_size: 5785968 dataset_size: 16070981 configs: - config_name: default data_files: - split: train path: data/train-* ---
tmpmodelsave/acescoreppo_tmp0_10
tmpmodelsave
2025-02-05T10:26:41Z
13
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-05T09:28:09Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: prompt dtype: string - name: answers sequence: string - name: gt dtype: string splits: - name: train num_bytes: 1120810 num_examples: 496 download_size: 430699 dataset_size: 1120810 configs: - config_name: default data_files: - split: train path: data/train-* ---
Shuhaib73/ecommerce-fqa-dataset
Shuhaib73
2025-01-16T03:59:44Z
19
0
[ "language:en", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-14T06:38:28Z
0
--- language: - en dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 38068 num_examples: 158 download_size: 9274 dataset_size: 38068 configs: - config_name: default data_files: - split: train path: data/train-* ---
DIaac/medical_r1_distil_data_sampled_1000
DIaac
2025-05-10T12:10:36Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-10T12:10:14Z
0
--- dataset_info: features: - name: question dtype: string - name: source dtype: string - name: metadata dtype: string - name: reasoning dtype: string - name: response dtype: string - name: text dtype: string splits: - name: train num_bytes: 23256320.59090909 num_examples: 1000 download_size: 10941577 dataset_size: 23256320.59090909 configs: - config_name: default data_files: - split: train path: data/train-* ---
nlee-208/persona_zero-janus-dpo-7b
nlee-208
2024-12-13T04:34:20Z
24
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-13T04:34:17Z
0
--- dataset_info: features: - name: persona dtype: string - name: prompt dtype: string - name: description dtype: string - name: generated dtype: string splits: - name: train num_bytes: 1612198 num_examples: 500 download_size: 889811 dataset_size: 1612198 configs: - config_name: default data_files: - split: train path: data/train-* ---
jainamit/koch_test_twoarms4
jainamit
2025-03-31T18:21:40Z
23
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-03-31T18:21:37Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "koch_bimanual", "total_episodes": 3, "total_frames": 697, "total_tasks": 1, "total_videos": 6, "total_chunks": 1, "chunks_size": 1000, "fps": 10, "splits": { "train": "0:3" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 12 ], "names": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_flex", "left_wrist_roll", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_flex", "right_wrist_roll", "right_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 12 ], "names": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_flex", "left_wrist_roll", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_flex", "right_wrist_roll", "right_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 10.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 10.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
sunnyday910/Chatml-openai-gsm8k-dataset
sunnyday910
2025-02-25T07:00:18Z
18
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-25T07:00:16Z
0
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: messages dtype: string splits: - name: train num_bytes: 8516771 num_examples: 7473 - name: test num_bytes: 1531665 num_examples: 1319 download_size: 5337663 dataset_size: 10048436 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
GEM/turku_hockey_data2text
GEM
2022-10-24T15:30:33Z
149
0
[ "task_categories:table-to-text", "annotations_creators:expert-created", "language_creators:unknown", "multilinguality:unknown", "source_datasets:original", "language:fi", "license:cc-by-nc-sa-4.0", "region:us", "data-to-text" ]
[ "table-to-text" ]
2022-03-02T23:29:22Z
0
--- annotations_creators: - expert-created language_creators: - unknown language: - fi license: - cc-by-nc-sa-4.0 multilinguality: - unknown size_categories: - unknown source_datasets: - original task_categories: - table-to-text task_ids: [] pretty_name: turku_hockey_data2text tags: - data-to-text --- # Dataset Card for GEM/turku_hockey_data2text ## Dataset Description - **Homepage:** https://turkunlp.org/hockey_data2text.html - **Repository:** https://github.com/TurkuNLP/Turku-hockey-data2text - **Paper:** https://aclanthology.org/W19-6125/ - **Leaderboard:** N/A - **Point of Contact:** Jenna Kanerva, Filip Ginter ### Link to Main Data Card You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/turku_hockey_data2text). ### Dataset Summary This is a Finnish data-to-text dataset in which the input is structured information about a hockey game and the output a description of the game. You can load the dataset via: ``` import datasets data = datasets.load_dataset('GEM/turku_hockey_data2text') ``` The data loader can be found [here](https://huggingface.co/datasets/GEM/turku_hockey_data2text). #### website [Website](https://turkunlp.org/hockey_data2text.html) #### paper [ACL anthology](https://aclanthology.org/W19-6125/) #### authors Jenna Kanerva, Samuel Rönnqvist, Riina Kekki, Tapio Salakoski, Filip Ginter (TurkuNLP / University of Turku) ## Dataset Overview ### Where to find the Data and its Documentation #### Webpage <!-- info: What is the webpage for the dataset (if it exists)? --> <!-- scope: telescope --> [Website](https://turkunlp.org/hockey_data2text.html) #### Download <!-- info: What is the link to where the original dataset is hosted? --> <!-- scope: telescope --> [Github](https://github.com/TurkuNLP/Turku-hockey-data2text) #### Paper <!-- info: What is the link to the paper describing the dataset (open access preferred)? --> <!-- scope: telescope --> [ACL anthology](https://aclanthology.org/W19-6125/) #### BibTex <!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. --> <!-- scope: microscope --> ``` @inproceedings{kanerva2019newsgen, Title = {Template-free Data-to-Text Generation of Finnish Sports News}, Author = {Jenna Kanerva and Samuel R{\"o}nnqvist and Riina Kekki and Tapio Salakoski and Filip Ginter}, booktitle = {Proceedings of the 22nd Nordic Conference on Computational Linguistics (NoDaLiDa’19)}, year={2019} } ``` #### Contact Name <!-- quick --> <!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. --> <!-- scope: periscope --> Jenna Kanerva, Filip Ginter #### Contact Email <!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. --> <!-- scope: periscope --> [email protected], [email protected] #### Has a Leaderboard? <!-- info: Does the dataset have an active leaderboard? --> <!-- scope: telescope --> no ### Languages and Intended Use #### Multilingual? <!-- quick --> <!-- info: Is the dataset multilingual? --> <!-- scope: telescope --> no #### Covered Dialects <!-- info: What dialects are covered? Are there multiple dialects per language? --> <!-- scope: periscope --> written standard language #### Covered Languages <!-- quick --> <!-- info: What languages/dialects are covered in the dataset? --> <!-- scope: telescope --> `Finnish` #### Whose Language? <!-- info: Whose language is in the dataset? --> <!-- scope: periscope --> The original news articles are written by professional journalists. The text passages extracted in the annotation may be slightly edited compared to the original language during the corpus annotation. #### License <!-- quick --> <!-- info: What is the license of the dataset? --> <!-- scope: telescope --> cc-by-nc-sa-4.0: Creative Commons Attribution Non Commercial Share Alike 4.0 International #### Intended Use <!-- info: What is the intended use of the dataset? --> <!-- scope: microscope --> This dataset was developed as a benchmark for evaluating template-free, machine learning methods on Finnish news generation in the area of ice hockey reporting. #### Primary Task <!-- info: What primary task does the dataset support? --> <!-- scope: telescope --> Data-to-Text #### Communicative Goal <!-- quick --> <!-- info: Provide a short description of the communicative goal of a model trained for this task on this dataset. --> <!-- scope: periscope --> Describe an event from an ice hockey game based on the given structural data. ### Credit #### Curation Organization Type(s) <!-- info: In what kind of organization did the dataset curation happen? --> <!-- scope: telescope --> `academic` #### Curation Organization(s) <!-- info: Name the organization(s). --> <!-- scope: periscope --> University of Turku #### Dataset Creators <!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). --> <!-- scope: microscope --> Jenna Kanerva, Samuel Rönnqvist, Riina Kekki, Tapio Salakoski, Filip Ginter (TurkuNLP / University of Turku) #### Funding <!-- info: Who funded the data creation? --> <!-- scope: microscope --> The project was supported by the Google Digital News Innovation Fund. #### Who added the Dataset to GEM? <!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. --> <!-- scope: microscope --> Jenna Kanerva, Filip Ginter (TurkuNLP / University of Turku) ### Dataset Structure #### Data Fields <!-- info: List and describe the fields present in the dataset. --> <!-- scope: telescope --> The dataset is constructed of games, where each game is a list of events. If the event was annotated (corresponding sentence was found from the news article), it includes `text` field with value other than empty string (""). For each game (dict), there are keys `gem_id` (string), `id` (string), `news_article` (string), and `events` (list). For each event (dict), there are different, relevant keys available with non empty values depending on the event type (e.g. goal or penalty). The mandatory keys for each event are `event_id` (string), `event_type` (string), `text` (string, empty string if not annotated), and `multi_reference` (bool). The keys not relevant for the specific event type are left empty. The relevant keys in the event dictionary are: For each event type, the following keys are relevant: `event_id`: Identifier of the event, unique to the game but not globally, in chronological order (string) `event_type`: Type of the event, possible values are `game result`, `goal`, `penalty`, or `saves` (string) `text`: Natural language description of the event, or empty string if not available (string) `multi_reference`: Does this event refer to a text passage describing multiple events? (bool) The rest of the fields are specific to the event type. The relevant fields for each event type are: game result: `event_id`: Identifier of the event, unique to the game but not globally, in chronological order (string) `event_type`: Type of the event (string) `home_team`: Name of the home team (string) `guest_team`: Name of the guest team (string) `score`: Final score of the game, in the form of home–guest (string) `periods`: Scores for individual periods, each in the form of home–guest score in that period (list of strings) `features`: Additional features, such as overtime win or shoot out (list of strings) `text`: Natural language description of the event, or empty string if not available (string) `multi_reference`: Does this event refer to a text passage describing multiple events? (bool) goal: `event_id`: Identifier of the event, unique to the game but not globally, in chronological order (string) `event_type`: Type of the event (string) `player`: Name of the player scoring (string) `assist`: Names of the players assisting, at most two players (list of strings) `team`: Team scoring with possible values of `home` or `guest` (string) `team_name`: Name of the team scoring (string) `score`: Score after the goal, in the form of home–guest (string) `time`: Time of the goal, minutes and seconds from the beginning (string) `features`: Additional features, such as power play or short-handed goal (list of strings) `text`: Natural language description of the event, or empty string if not available (string) `multi_reference`: Does this event refer to a text passage describing multiple events? (bool) penalty: `event_id`: Identifier of the event, unique to the game but not globally, in chronological order (string) `event_type`: Type of the event (string) `player`: Name of the player getting the penalty (string) `team`: Team getting the penalty with possible values of `home` or `guest` (string) `team_name`: Name of the team getting the penalty (string) `penalty_minutes`: Penalty minutes (string) `time`: Time of the penalty, minutes and seconds from the beginning (string) `text`: Natural language description of the event, or empty string if not available (string) `multi_reference`: Does this event refer to a text passage describing multiple events? (bool) saves: `event_id`: Identifier of the event, unique to the game but not globally, in chronological order (string) `event_type`: Type of the event (string) `player`: Name of the goalkeeper (string) `team`: Team of the goalkeeper with possible values of `home` or `guest` (string) `team_name`: Name of the team (string) `saves`: Number of saves in the game (string) `text`: Natural language description of the event, or empty string if not available (string) `multi_reference`: Does this event refer to a text passage describing multiple events? (bool) Text passages describing multiple events (multi_reference): Some text passages refer to multiple events in such way that separating them to individual statements is not adequate (e.g. "The home team received two penalties towards the end of the first period."). In these cases, multiple events are aligned to the same text passage so that the first event (in chronological order) include the annotated text passage, while the rest of the events referring to the same text passage include the identifier of the first event in the annotated text field (e.g. `text`: "E4"). #### Example Instance <!-- info: Provide a JSON formatted example of a typical instance in the dataset. --> <!-- scope: periscope --> ``` { 'gem_id': 'gem-turku_hockey_data2text-train-0', 'id': '20061031-TPS-HPK', 'news_article': 'HPK:n hyvä syysvire jatkuu jääkiekon SM-liigassa. Tiistaina HPK kukisti mainiolla liikkeellä ja tehokkaalla ylivoimapelillä TPS:n vieraissa 1–0 (1–0, 0–0, 0–0).\nHPK hyödynsi ylivoimaa mennen jo ensimmäisessä erässä Mikko Mäenpään maalilla 1–0 -johtoon.\nToisessa ja kolmannessa erässä HPK tarjosi edelleen TPS:lle runsaasti tilanteita, mutta maalia eivät turkulaiset millään ilveellä saaneet. Pahin este oli loistavan pelin Hämeenlinnan maalilla pelannut Mika Oksa.\nTPS:n maalissa Jani Hurme ei osumille mitään mahtanut. Joukkueen suuri yksinäinen kenttäpelaaja oli Kai Nurminen, mutta hänelläkään ei ollut onnea maalitilanteissa.', 'events': { 'event_id': ['E1', 'E2', 'E3'], 'event_type': ['game result', 'penalty', 'goal'], 'text': ['HPK kukisti TPS:n vieraissa 1–0 (1–0, 0–0, 0–0).', '', 'HPK hyödynsi ylivoimaa mennen jo ensimmäisessä erässä Mikko Mäenpään maalilla 1–0 -johtoon.'], 'home_team': ['TPS', '', ''], 'guest_team': ['HPK', '', ''], 'score': ['0–1', '', '0–1'], 'periods': [['0–1', '0–0', '0–0'], [], []], 'features': [[], [], ['power play']], 'player': ['', 'Fredrik Svensson', 'Mikko Mäenpää'], 'assist': [[], [], ['Jani Keinänen', 'Toni Mäkiaho']], 'team': ['', 'guest', 'guest'], 'team_name': ['', 'HPK', 'HPK'], 'time': ['', '9.28', '14.57'], 'penalty_minutes': ['', '2', ''], 'saves': ['', '', ''], 'multi_reference': [false, false, false] } } ``` #### Data Splits <!-- info: Describe and name the splits in the dataset if there are more than one. --> <!-- scope: periscope --> The corpus include 3 splits: train, validation, and test. ## Dataset in GEM ### Rationale for Inclusion in GEM #### Why is the Dataset in GEM? <!-- info: What does this dataset contribute toward better generation evaluation and why is it part of GEM? --> <!-- scope: microscope --> The dataset was created to develop machine learned text generation models for Finnish ice hockey news, where the generation would reflect the natural language variation found from the game reports written by professional journalists. While the original game reports often include additional information not derivable from the game statistics, the corpus was fully manually curated to remove all such information from the natural language descriptions. The rationale of such curation was to prevent model 'hallucinating' additional facts. #### Similar Datasets <!-- info: Do other datasets for the high level task exist? --> <!-- scope: telescope --> yes #### Unique Language Coverage <!-- info: Does this dataset cover other languages than other datasets for the same task? --> <!-- scope: periscope --> yes #### Difference from other GEM datasets <!-- info: What else sets this dataset apart from other similar datasets in GEM? --> <!-- scope: microscope --> This is the only data2text corpus for Finnish in GEM. #### Ability that the Dataset measures <!-- info: What aspect of model ability can be measured with this dataset? --> <!-- scope: periscope --> morphological inflection, language variation ### GEM-Specific Curation #### Modificatied for GEM? <!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? --> <!-- scope: telescope --> yes #### GEM Modifications <!-- info: What changes have been made to he original dataset? --> <!-- scope: periscope --> `data points modified` #### Modification Details <!-- info: For each of these changes, described them in more details and provided the intended purpose of the modification --> <!-- scope: microscope --> Structural data was translated into English. #### Additional Splits? <!-- info: Does GEM provide additional splits to the dataset? --> <!-- scope: telescope --> no ### Getting Started with the Task ## Previous Results ### Previous Results #### Metrics <!-- info: What metrics are typically used for this task? --> <!-- scope: periscope --> `BLEU`, `METEOR`, `ROUGE`, `WER` #### Proposed Evaluation <!-- info: List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task. --> <!-- scope: microscope --> Automatic evaluation: BLEU, NIST, METEOR, ROUGE-L, CIDEr Manual evaluation: factual mistakes, grammatical errors, minimum edit distance to an acceptable game report (using WER) #### Previous results available? <!-- info: Are previous results available? --> <!-- scope: telescope --> yes ## Dataset Curation ### Original Curation #### Original Curation Rationale <!-- info: Original curation rationale --> <!-- scope: telescope --> The dataset is designed for text generation (data2text), where the original source of natural language descriptions is news articles written by journalists. While the link between structural data (ice hockey game statistics) and the news articles describing the game was quite weak (news articles including a lot of information not derivable from the statistics, while leaving many events unmentioned), the corpus includes full manual annotation aligning the events extracted from game statistics and the corresponding natural language passages extracted from the news articles. Each event is manually aligned into a sentence-like passage, and in case a suitable passage was not found, the annotation is left empty (with value `None`). The extracted passages were manually modified not to include additional information not derivable from the game statistics, or not considered as world knowledge. The manual curation of passages is designed to prevent model hallucination, i.e. model learning to generate facts not derivable from the input data. #### Communicative Goal <!-- info: What was the communicative goal? --> <!-- scope: periscope --> Describing the given events (structural data) in natural language, and therefore generating ice hockey game reports. #### Sourced from Different Sources <!-- info: Is the dataset aggregated from different data sources? --> <!-- scope: telescope --> no ### Language Data #### How was Language Data Obtained? <!-- info: How was the language data obtained? --> <!-- scope: telescope --> `Other` #### Language Producers <!-- info: What further information do we have on the language producers? --> <!-- scope: microscope --> The initial data, both game statistics and news articles, were obtained from the Finnish News Agency STT news archives released for academic use (http://urn.fi/urn:nbn:fi:lb-2019041501). The original news articles are written by professional journalists. We (TurkuNLP) gratefully acknowledge the collaboration of Maija Paikkala, Salla Salmela and Pihla Lehmusjoki from the Finnish News Agency STT while creating the corpus. #### Topics Covered <!-- info: Does the language in the dataset focus on specific topics? How would you describe them? --> <!-- scope: periscope --> Ice hockey, news #### Data Validation <!-- info: Was the text validated by a different worker or a data curator? --> <!-- scope: telescope --> not validated #### Was Data Filtered? <!-- info: Were text instances selected or filtered? --> <!-- scope: telescope --> algorithmically #### Filter Criteria <!-- info: What were the selection criteria? --> <!-- scope: microscope --> Include only games, where both game statistics and a news article describing the game were available (based on timestamps and team names). ### Structured Annotations #### Additional Annotations? <!-- quick --> <!-- info: Does the dataset have additional annotations for each instance? --> <!-- scope: telescope --> expert created #### Number of Raters <!-- info: What is the number of raters --> <!-- scope: telescope --> 1 #### Rater Qualifications <!-- info: Describe the qualifications required of an annotator. --> <!-- scope: periscope --> Members of the TurkuNLP research group, native speakers of Finnish. #### Raters per Training Example <!-- info: How many annotators saw each training example? --> <!-- scope: periscope --> 1 #### Raters per Test Example <!-- info: How many annotators saw each test example? --> <!-- scope: periscope --> 1 #### Annotation Service? <!-- info: Was an annotation service used? --> <!-- scope: telescope --> no #### Annotation Values <!-- info: Purpose and values for each annotation --> <!-- scope: microscope --> Manual alignment of events and their natural language descriptions. Removing information not derivable from the input data or world knowledge in order to prevent the model 'hallucination'. #### Any Quality Control? <!-- info: Quality control measures? --> <!-- scope: telescope --> validated by data curators #### Quality Control Details <!-- info: Describe the quality control measures that were taken. --> <!-- scope: microscope --> Manual inspection of examples during the initial annotation training phrase. ### Consent #### Any Consent Policy? <!-- info: Was there a consent policy involved when gathering the data? --> <!-- scope: telescope --> yes #### Consent Policy Details <!-- info: What was the consent policy? --> <!-- scope: microscope --> The corpus license was agreed with the providers of the source material. ### Private Identifying Information (PII) #### Contains PII? <!-- quick --> <!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? --> <!-- scope: telescope --> yes/very likely #### Categories of PII <!-- info: What categories of PII are present or suspected in the data? --> <!-- scope: periscope --> `generic PII` #### Any PII Identification? <!-- info: Did the curators use any automatic/manual method to identify PII in the dataset? --> <!-- scope: periscope --> no identification ### Maintenance #### Any Maintenance Plan? <!-- info: Does the original dataset have a maintenance plan? --> <!-- scope: telescope --> no ## Broader Social Context ### Previous Work on the Social Impact of the Dataset #### Usage of Models based on the Data <!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? --> <!-- scope: telescope --> no ### Impact on Under-Served Communities #### Addresses needs of underserved Communities? <!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). --> <!-- scope: telescope --> no ### Discussion of Biases #### Any Documented Social Biases? <!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. --> <!-- scope: telescope --> no #### Are the Language Producers Representative of the Language? <!-- info: Does the distribution of language producers in the dataset accurately represent the full distribution of speakers of the language world-wide? If not, how does it differ? --> <!-- scope: periscope --> The dataset represents only written standard language. ## Considerations for Using the Data ### PII Risks and Liability #### Potential PII Risk <!-- info: Considering your answers to the PII part of the Data Curation Section, describe any potential privacy to the data subjects and creators risks when using the dataset. --> <!-- scope: microscope --> None ### Licenses #### Copyright Restrictions on the Dataset <!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? --> <!-- scope: periscope --> `non-commercial use only` #### Copyright Restrictions on the Language Data <!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? --> <!-- scope: periscope --> `non-commercial use only` ### Known Technical Limitations
VGraf/context_switch_alpacaeval_7maxLeadingTurns
VGraf
2025-05-09T23:02:28Z
7
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-09T23:02:26Z
0
--- dataset_info: features: - name: dataset dtype: string - name: instruction dtype: string - name: output dtype: string - name: generator dtype: string - name: messages list: - name: role dtype: string - name: content dtype: string splits: - name: train num_bytes: 12202219 num_examples: 805 download_size: 5989049 dataset_size: 12202219 configs: - config_name: default data_files: - split: train path: data/train-* ---
google/wmt24pp
google
2025-03-13T21:53:34Z
2,151
38
[ "task_categories:translation", "language:ar", "language:bg", "language:bn", "language:ca", "language:da", "language:de", "language:el", "language:es", "language:et", "language:fa", "language:fi", "language:fr", "language:gu", "language:he", "language:hi", "language:hr", "language:hu", "language:id", "language:is", "language:it", "language:ja", "language:kn", "language:ko", "language:lt", "language:lv", "language:ml", "language:mr", "language:nl", "language:no", "language:pa", "language:pl", "language:pt", "language:ro", "language:ru", "language:sk", "language:sl", "language:sr", "language:sv", "language:sw", "language:ta", "language:te", "language:th", "language:tr", "language:uk", "language:ur", "language:vi", "language:zh", "language:zu", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.12404", "region:us" ]
[ "translation" ]
2025-02-06T15:19:53Z
2
--- license: apache-2.0 language: - ar - bg - bn - ca - da - de - el - es - et - fa - fi - fr - gu - he - hi - hr - hu - id - is - it - ja - kn - ko - lt - lv - ml - mr - nl - 'no' - pa - pl - pt - ro - ru - sk - sl - sr - sv - sw - ta - te - th - tr - uk - ur - vi - zh - zu task_categories: - translation size_categories: - 10K<n<100K configs: - config_name: en-ar_EG data_files: - split: train path: "en-ar_EG.jsonl" - config_name: en-ar_SA data_files: - split: train path: "en-ar_SA.jsonl" - config_name: en-bg_BG data_files: - split: train path: "en-bg_BG.jsonl" - config_name: en-bn_IN data_files: - split: train path: "en-bn_IN.jsonl" - config_name: en-ca_ES data_files: - split: train path: "en-ca_ES.jsonl" - config_name: en-cs_CZ data_files: - split: train path: "en-cs_CZ.jsonl" - config_name: en-da_DK data_files: - split: train path: "en-da_DK.jsonl" - config_name: en-de_DE data_files: - split: train path: "en-de_DE.jsonl" - config_name: en-el_GR data_files: - split: train path: "en-el_GR.jsonl" - config_name: en-es_MX data_files: - split: train path: "en-es_MX.jsonl" - config_name: en-et_EE data_files: - split: train path: "en-et_EE.jsonl" - config_name: en-fa_IR data_files: - split: train path: "en-fa_IR.jsonl" - config_name: en-fi_FI data_files: - split: train path: "en-fi_FI.jsonl" - config_name: en-fil_PH data_files: - split: train path: "en-fil_PH.jsonl" - config_name: en-fr_CA data_files: - split: train path: "en-fr_CA.jsonl" - config_name: en-fr_FR data_files: - split: train path: "en-fr_FR.jsonl" - config_name: en-gu_IN data_files: - split: train path: "en-gu_IN.jsonl" - config_name: en-he_IL data_files: - split: train path: "en-he_IL.jsonl" - config_name: en-hi_IN data_files: - split: train path: "en-hi_IN.jsonl" - config_name: en-hr_HR data_files: - split: train path: "en-hr_HR.jsonl" - config_name: en-hu_HU data_files: - split: train path: "en-hu_HU.jsonl" - config_name: en-id_ID data_files: - split: train path: "en-id_ID.jsonl" - config_name: en-is_IS data_files: - split: train path: "en-is_IS.jsonl" - config_name: en-it_IT data_files: - split: train path: "en-it_IT.jsonl" - config_name: en-ja_JP data_files: - split: train path: "en-ja_JP.jsonl" - config_name: en-kn_IN data_files: - split: train path: "en-kn_IN.jsonl" - config_name: en-ko_KR data_files: - split: train path: "en-ko_KR.jsonl" - config_name: en-lt_LT data_files: - split: train path: "en-lt_LT.jsonl" - config_name: en-lv_LV data_files: - split: train path: "en-lv_LV.jsonl" - config_name: en-ml_IN data_files: - split: train path: "en-ml_IN.jsonl" - config_name: en-mr_IN data_files: - split: train path: "en-mr_IN.jsonl" - config_name: en-nl_NL data_files: - split: train path: "en-nl_NL.jsonl" - config_name: en-no_NO data_files: - split: train path: "en-no_NO.jsonl" - config_name: en-pa_IN data_files: - split: train path: "en-pa_IN.jsonl" - config_name: en-pl_PL data_files: - split: train path: "en-pl_PL.jsonl" - config_name: en-pt_BR data_files: - split: train path: "en-pt_BR.jsonl" - config_name: en-pt_PT data_files: - split: train path: "en-pt_PT.jsonl" - config_name: en-ro_RO data_files: - split: train path: "en-ro_RO.jsonl" - config_name: en-ru_RU data_files: - split: train path: "en-ru_RU.jsonl" - config_name: en-sk_SK data_files: - split: train path: "en-sk_SK.jsonl" - config_name: en-sl_SI data_files: - split: train path: "en-sl_SI.jsonl" - config_name: en-sr_RS data_files: - split: train path: "en-sr_RS.jsonl" - config_name: en-sv_SE data_files: - split: train path: "en-sv_SE.jsonl" - config_name: en-sw_KE data_files: - split: train path: "en-sw_KE.jsonl" - config_name: en-sw_TZ data_files: - split: train path: "en-sw_TZ.jsonl" - config_name: en-ta_IN data_files: - split: train path: "en-ta_IN.jsonl" - config_name: en-te_IN data_files: - split: train path: "en-te_IN.jsonl" - config_name: en-th_TH data_files: - split: train path: "en-th_TH.jsonl" - config_name: en-tr_TR data_files: - split: train path: "en-tr_TR.jsonl" - config_name: en-uk_UA data_files: - split: train path: "en-uk_UA.jsonl" - config_name: en-ur_PK data_files: - split: train path: "en-ur_PK.jsonl" - config_name: en-vi_VN data_files: - split: train path: "en-vi_VN.jsonl" - config_name: en-zh_CN data_files: - split: train path: "en-zh_CN.jsonl" - config_name: en-zh_TW data_files: - split: train path: "en-zh_TW.jsonl" - config_name: en-zu_ZA data_files: - split: train path: "en-zu_ZA.jsonl" --- # WMT24++ This repository contains the human translation and post-edit data for the 55 en->xx language pairs released in the publication [WMT24++: Expanding the Language Coverage of WMT24 to 55 Languages & Dialects](https://arxiv.org/abs/2502.12404). If you are interested in the MT/LLM system outputs and automatic metric scores, please see [MTME](https://github.com/google-research/mt-metrics-eval/tree/main?tab=readme-ov-file#wmt24-data). If you are interested in the images of the source URLs for each document, please see [here](https://huggingface.co/datasets/google/wmt24pp-images). ## Schema Each language pair is stored in its own jsonl file. Each row is a serialized JSON object with the following fields: - `lp`: The language pair (e.g., `"en-de_DE"`). - `domain`: The domain of the source, either `"canary"`, `"news"`, `"social"`, `"speech"`, or `"literary"`. - `document_id`: The unique ID that identifies the document the source came from. - `segment_id`: The globally unique ID that identifies the segment. - `is_bad_source`: A Boolean that indicates whether this source is low quality (e.g., HTML, URLs, emoijs). In the paper, the segments marked as true were removed from the evaluation, and we recommend doing the same. - `source`: The English source text. - `target`: The post-edit of `original_target`. We recommend using the post-edit as the default reference. - `original_target`: The original reference translation. ## Citation If you use any of the data released in our work, please cite the following paper: ``` @misc{deutsch2025wmt24expandinglanguagecoverage, title={{WMT24++: Expanding the Language Coverage of WMT24 to 55 Languages & Dialects}}, author={Daniel Deutsch and Eleftheria Briakou and Isaac Caswell and Mara Finkelstein and Rebecca Galor and Juraj Juraska and Geza Kovacs and Alison Lui and Ricardo Rei and Jason Riesa and Shruti Rijhwani and Parker Riley and Elizabeth Salesky and Firas Trabelsi and Stephanie Winkler and Biao Zhang and Markus Freitag}, year={2025}, eprint={2502.12404}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2502.12404}, } ``` ## Helpful Python Constants ```python LANGUAGE_PAIRS = ( "en-ar_EG", "en-ar_SA", "en-bg_BG", "en-bn_IN", "en-ca_ES", "en-cs_CZ", "en-da_DK", "en-de_DE", "en-el_GR", "en-es_MX", "en-et_EE", "en-fa_IR", "en-fi_FI", "en-fil_PH", "en-fr_CA", "en-fr_FR", "en-gu_IN", "en-he_IL", "en-hi_IN", "en-hr_HR", "en-hu_HU", "en-id_ID", "en-is_IS", "en-it_IT", "en-ja_JP", "en-kn_IN", "en-ko_KR", "en-lt_LT", "en-lv_LV", "en-ml_IN", "en-mr_IN", "en-nl_NL", "en-no_NO", "en-pa_IN", "en-pl_PL", "en-pt_BR", "en-pt_PT", "en-ro_RO", "en-ru_RU", "en-sk_SK", "en-sl_SI", "en-sr_RS", "en-sv_SE", "en-sw_KE", "en-sw_TZ", "en-ta_IN", "en-te_IN", "en-th_TH", "en-tr_TR", "en-uk_UA", "en-ur_PK", "en-vi_VN", "en-zh_CN", "en-zh_TW", "en-zu_ZA", ) LANGUAGE_BY_CODE = { "ar_EG": "Arabic", "ar_SA": "Arabic", "bg_BG": "Bulgarian", "bn_BD": "Bengali", "bn_IN": "Bengali", "ca_ES": "Catalan", "cs_CZ": "Czech", "da_DK": "Danish", "de_DE": "German", "el_GR": "Greek", "es_MX": "Spanish", "et_EE": "Estonian", "fa_IR": "Farsi", "fi_FI": "Finnish", "fil_PH": "Filipino", "fr_CA": "French", "fr_FR": "French", "gu_IN": "Gujarati", "he_IL": "Hebrew", "hi_IN": "Hindi", "hr_HR": "Croatian", "hu_HU": "Hungarian", "id_ID": "Indonesian", "is_IS": "Icelandic", "it_IT": "Italian", "ja_JP": "Japanese", "kn_IN": "Kannada", "ko_KR": "Korean", "lt_LT": "Lithuanian", "lv_LV": "Latvian", "ml_IN": "Malayalam", "mr_IN": "Marathi", "nl_NL": "Dutch", "no_NO": "Norwegian", "pa_IN": "Punjabi", "pl_PL": "Polish", "pt_BR": "Portuguese", "pt_PT": "Portuguese", "ro_RO": "Romanian", "ru_RU": "Russian", "sk_SK": "Slovak", "sl_SI": "Slovenian", "sr_RS": "Serbian", "sv_SE": "Swedish", "sw_KE": "Swahili", "sw_TZ": "Swahili", "ta_IN": "Tamil", "te_IN": "Telugu", "th_TH": "Thai", "tr_TR": "Turkish", "uk_UA": "Ukrainian", "ur_PK": "Urdu", "vi_VN": "Vietnamese", "zh_CN": "Mandarin", "zh_TW": "Mandarin", "zu_ZA": "Zulu", } REGION_BY_CODE = { "ar_EG": "Egypt", "ar_SA": "Saudi Arabia", "bg_BG": "Bulgaria", "bn_BD": "Bangladesh", "bn_IN": "India", "ca_ES": "Spain", "cs_CZ": "Czechia", "da_DK": "Denmark", "de_DE": "Germany", "el_GR": "Greece", "es_MX": "Mexico", "et_EE": "Estonia", "fa_IR": "Iran", "fi_FI": "Finland", "fil_PH": "Philippines", "fr_CA": "Canada", "fr_FR": "France", "gu_IN": "India", "he_IL": "Israel", "hi_IN": "India", "hr_HR": "Croatia", "hu_HU": "Hungary", "id_ID": "Indonesia", "is_IS": "Iceland", "it_IT": "Italy", "ja_JP": "Japan", "kn_IN": "India", "ko_KR": "South Korea", "lt_LT": "Lithuania", "lv_LV": "Latvia", "ml_IN": "India", "mr_IN": "India", "nl_NL": "Netherlands", "no_NO": "Norway", "pa_IN": "India", "pl_PL": "Poland", "pt_BR": "Brazil", "pt_PT": "Portugal", "ro_RO": "Romania", "ru_RU": "Russia", "sk_SK": "Slovakia", "sl_SI": "Slovenia", "sr_RS": "Serbia", "sv_SE": "Sweden", "sw_KE": "Kenya", "sw_TZ": "Tanzania", "ta_IN": "India", "te_IN": "India", "th_TH": "Thailand", "tr_TR": "Turkey", "uk_UA": "Ukraine", "ur_PK": "Pakistan", "vi_VN": "Vietnam", "zh_CN": "China", "zh_TW": "Taiwan", "zu_ZA": "South Africa", } ```
End of preview. Expand in Data Studio

Dataset Card for Hugging Face Hub Dataset Cards

This datasets consists of dataset cards for models hosted on the Hugging Face Hub. The dataset cards are created by the community and provide information about datasets hosted on the Hugging Face Hub. This dataset is updated on a daily basis and includes publicly available datasets on the Hugging Face Hub.

This dataset is made available to help support users wanting to work with a large number of Dataset Cards from the Hub. We hope that this dataset will help support research in the area of Dataset Cards and their use but the format of this dataset may not be useful for all use cases. If there are other features that you would like to see included in this dataset, please open a new discussion.

Dataset Details

Uses

There are a number of potential uses for this dataset including:

  • text mining to find common themes in dataset cards
  • analysis of the dataset card format/content
  • topic modelling of dataset cards
  • training language models on the dataset cards

Out-of-Scope Use

[More Information Needed]

Dataset Structure

This dataset has a single split.

Dataset Creation

Curation Rationale

The dataset was created to assist people in working with dataset cards. In particular it was created to support research in the area of dataset cards and their use. It is possible to use the Hugging Face Hub API or client library to download dataset cards and this option may be preferable if you have a very specific use case or require a different format.

Source Data

The source data is README.md files for datasets hosted on the Hugging Face Hub. We do not include any other supplementary files that may be included in the dataset directory.

Data Collection and Processing

The data is downloaded using a CRON job on a daily basis.

Who are the source data producers?

The source data producers are the creators of the dataset cards on the Hugging Face Hub. This includes a broad variety of people from the community ranging from large companies to individual researchers. We do not gather any information about who created the dataset card in this repository although this information can be gathered from the Hugging Face Hub API.

Annotations [optional]

There are no additional annotations in this dataset beyond the dataset card content.

Annotation process

N/A

Who are the annotators?

N/A

Personal and Sensitive Information

We make no effort to anonymize the data. Whilst we don't expect the majority of dataset cards to contain personal or sensitive information, it is possible that some dataset cards may contain this information. Dataset cards may also link to websites or email addresses.

Bias, Risks, and Limitations

Dataset cards are created by the community and we do not have any control over the content of the dataset cards. We do not review the content of the dataset cards and we do not make any claims about the accuracy of the information in the dataset cards. Some dataset cards will themselves discuss bias and sometimes this is done by providing examples of bias in either the training data or the responses provided by the dataset. As a result this dataset may contain examples of bias.

Whilst we do not directly download any images linked to in the dataset cards, some dataset cards may include images. Some of these images may not be suitable for all audiences.

Recommendations

Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.

Citation

No formal citation is required for this dataset but if you use this dataset in your work, please include a link to this dataset page.

Dataset Card Authors

@davanstrien

Dataset Card Contact

@davanstrien

Downloads last month
1,400

Space using librarian-bots/dataset_cards_with_metadata 1

Collection including librarian-bots/dataset_cards_with_metadata