modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-08 06:28:24
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
492 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-08 06:28:24
card
stringlengths
11
1.01M
pinzhenchen/sft-lora-fr-pythia-1b
pinzhenchen
2024-03-05T23:51:46Z
0
0
null
[ "generation", "question answering", "instruction tuning", "fr", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:51:43Z
--- language: - fr tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [EleutherAI/pythia-1b-deduped](https://huggingface.co/EleutherAI/pythia-1b-deduped) * Instruction tuning language: French * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-es-pythia-1b
pinzhenchen
2024-03-05T23:51:37Z
0
0
null
[ "generation", "question answering", "instruction tuning", "es", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:51:34Z
--- language: - es tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [EleutherAI/pythia-1b-deduped](https://huggingface.co/EleutherAI/pythia-1b-deduped) * Instruction tuning language: Spanish * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-en-pythia-1b
pinzhenchen
2024-03-05T23:51:32Z
0
0
null
[ "generation", "question answering", "instruction tuning", "en", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:51:30Z
--- language: - en tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [EleutherAI/pythia-1b-deduped](https://huggingface.co/EleutherAI/pythia-1b-deduped) * Instruction tuning language: English * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-ru-pythia-410m
pinzhenchen
2024-03-05T23:51:12Z
0
0
null
[ "generation", "question answering", "instruction tuning", "ru", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:51:09Z
--- language: - ru tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [EleutherAI/pythia-410m-deduped](https://huggingface.co/EleutherAI/pythia-410m-deduped) * Instruction tuning language: Russian * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-fr-pythia-410m
pinzhenchen
2024-03-05T23:51:08Z
0
0
null
[ "generation", "question answering", "instruction tuning", "fr", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:51:05Z
--- language: - fr tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [EleutherAI/pythia-410m-deduped](https://huggingface.co/EleutherAI/pythia-410m-deduped) * Instruction tuning language: French * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-fi-pythia-410m
pinzhenchen
2024-03-05T23:51:04Z
0
0
null
[ "generation", "question answering", "instruction tuning", "fi", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:51:01Z
--- language: - fi tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [EleutherAI/pythia-410m-deduped](https://huggingface.co/EleutherAI/pythia-410m-deduped) * Instruction tuning language: Finnish * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-cs-pythia-410m
pinzhenchen
2024-03-05T23:50:48Z
0
0
null
[ "generation", "question answering", "instruction tuning", "cs", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:50:45Z
--- language: - cs tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [EleutherAI/pythia-410m-deduped](https://huggingface.co/EleutherAI/pythia-410m-deduped) * Instruction tuning language: Czech * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-ru-pythia-160m
pinzhenchen
2024-03-05T23:50:35Z
0
0
null
[ "generation", "question answering", "instruction tuning", "ru", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:50:31Z
--- language: - ru tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [EleutherAI/pythia-160m-deduped](https://huggingface.co/EleutherAI/pythia-160m-deduped) * Instruction tuning language: Russian * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-fi-pythia-160m
pinzhenchen
2024-03-05T23:50:26Z
0
0
null
[ "generation", "question answering", "instruction tuning", "fi", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:50:23Z
--- language: - fi tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [EleutherAI/pythia-160m-deduped](https://huggingface.co/EleutherAI/pythia-160m-deduped) * Instruction tuning language: Finnish * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-bg-pythia-160m
pinzhenchen
2024-03-05T23:50:06Z
0
0
null
[ "generation", "question answering", "instruction tuning", "bg", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:50:03Z
--- language: - bg tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [EleutherAI/pythia-160m-deduped](https://huggingface.co/EleutherAI/pythia-160m-deduped) * Instruction tuning language: Bulgarian * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-zh-pythia-70m
pinzhenchen
2024-03-05T23:50:02Z
0
0
null
[ "generation", "question answering", "instruction tuning", "zh", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:49:59Z
--- language: - zh tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [EleutherAI/pythia-70m-deduped](https://huggingface.co/EleutherAI/pythia-70m-deduped) * Instruction tuning language: Chinese * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-cs-pythia-70m
pinzhenchen
2024-03-05T23:49:35Z
0
0
null
[ "generation", "question answering", "instruction tuning", "cs", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:49:33Z
--- language: - cs tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [EleutherAI/pythia-70m-deduped](https://huggingface.co/EleutherAI/pythia-70m-deduped) * Instruction tuning language: Czech * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-zh-ollama-13b
pinzhenchen
2024-03-05T23:49:27Z
0
0
null
[ "generation", "question answering", "instruction tuning", "zh", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:49:24Z
--- language: - zh tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [openlm-research/open_llama_13b](https://huggingface.co/openlm-research/open_llama_13b) * Instruction tuning language: Chinese * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-en-ollama-13b
pinzhenchen
2024-03-05T23:49:22Z
0
0
null
[ "generation", "question answering", "instruction tuning", "en", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:49:19Z
--- language: - en tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [openlm-research/open_llama_13b](https://huggingface.co/openlm-research/open_llama_13b) * Instruction tuning language: English * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-es-ollama-7b
pinzhenchen
2024-03-05T23:49:04Z
0
0
null
[ "generation", "question answering", "instruction tuning", "es", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:49:01Z
--- language: - es tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b) * Instruction tuning language: Spanish * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-en-ollama-7b
pinzhenchen
2024-03-05T23:48:59Z
0
0
null
[ "generation", "question answering", "instruction tuning", "en", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:48:56Z
--- language: - en tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b) * Instruction tuning language: English * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-bg-ollama-7b
pinzhenchen
2024-03-05T23:48:55Z
0
0
null
[ "generation", "question answering", "instruction tuning", "bg", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:48:52Z
--- language: - bg tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b) * Instruction tuning language: Bulgarian * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-zh-ollama-3b
pinzhenchen
2024-03-05T23:48:51Z
0
0
null
[ "generation", "question answering", "instruction tuning", "zh", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:48:48Z
--- language: - zh tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) * Instruction tuning language: Chinese * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-es-ollama-3b
pinzhenchen
2024-03-05T23:48:33Z
0
0
null
[ "generation", "question answering", "instruction tuning", "es", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:48:30Z
--- language: - es tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) * Instruction tuning language: Spanish * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
abhilad98/mpnet
abhilad98
2024-03-05T23:48:30Z
5
0
sentence-transformers
[ "sentence-transformers", "safetensors", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-03-05T23:48:07Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # abhilad98/mpnet This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('abhilad98/mpnet') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('abhilad98/mpnet') model = AutoModel.from_pretrained('abhilad98/mpnet') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=abhilad98/mpnet) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 186 with parameters: ``` {'batch_size': 8} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 186, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
pinzhenchen/sft-lora-de-ollama-3b
pinzhenchen
2024-03-05T23:48:24Z
0
0
null
[ "generation", "question answering", "instruction tuning", "de", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:48:21Z
--- language: - de tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) * Instruction tuning language: German * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-bg-ollama-3b
pinzhenchen
2024-03-05T23:48:16Z
0
0
null
[ "generation", "question answering", "instruction tuning", "bg", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:48:12Z
--- language: - bg tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) * Instruction tuning language: Bulgarian * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-fr-bloom-7b1
pinzhenchen
2024-03-05T23:48:02Z
0
0
null
[ "generation", "question answering", "instruction tuning", "fr", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:47:58Z
--- language: - fr tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) * Instruction tuning language: French * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-es-bloom-7b1
pinzhenchen
2024-03-05T23:47:57Z
0
0
null
[ "generation", "question answering", "instruction tuning", "es", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:47:54Z
--- language: - es tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) * Instruction tuning language: Spanish * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-bg-bloom-7b1
pinzhenchen
2024-03-05T23:47:49Z
0
0
null
[ "generation", "question answering", "instruction tuning", "bg", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:47:46Z
--- language: - bg tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) * Instruction tuning language: Bulgarian * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-zh-bloom-3b
pinzhenchen
2024-03-05T23:47:44Z
0
0
null
[ "generation", "question answering", "instruction tuning", "zh", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:47:42Z
--- language: - zh tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-3b](https://huggingface.co/bigscience/bloom-3b) * Instruction tuning language: Chinese * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-ru-bloom-3b
pinzhenchen
2024-03-05T23:47:40Z
0
0
null
[ "generation", "question answering", "instruction tuning", "ru", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:47:37Z
--- language: - ru tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-3b](https://huggingface.co/bigscience/bloom-3b) * Instruction tuning language: Russian * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-fr-bloom-3b
pinzhenchen
2024-03-05T23:47:36Z
0
0
null
[ "generation", "question answering", "instruction tuning", "fr", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:47:33Z
--- language: - fr tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-3b](https://huggingface.co/bigscience/bloom-3b) * Instruction tuning language: French * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-es-bloom-3b
pinzhenchen
2024-03-05T23:47:32Z
0
0
null
[ "generation", "question answering", "instruction tuning", "es", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:47:29Z
--- language: - es tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-3b](https://huggingface.co/bigscience/bloom-3b) * Instruction tuning language: Spanish * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-en-bloom-3b
pinzhenchen
2024-03-05T23:47:27Z
0
0
null
[ "generation", "question answering", "instruction tuning", "en", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:47:25Z
--- language: - en tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-3b](https://huggingface.co/bigscience/bloom-3b) * Instruction tuning language: English * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-de-bloom-3b
pinzhenchen
2024-03-05T23:47:24Z
0
0
null
[ "generation", "question answering", "instruction tuning", "de", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:47:20Z
--- language: - de tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-3b](https://huggingface.co/bigscience/bloom-3b) * Instruction tuning language: German * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-cs-bloom-3b
pinzhenchen
2024-03-05T23:47:19Z
0
0
null
[ "generation", "question answering", "instruction tuning", "cs", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:47:16Z
--- language: - cs tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-3b](https://huggingface.co/bigscience/bloom-3b) * Instruction tuning language: Czech * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-bg-bloom-3b
pinzhenchen
2024-03-05T23:47:15Z
0
0
null
[ "generation", "question answering", "instruction tuning", "bg", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:47:12Z
--- language: - bg tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-3b](https://huggingface.co/bigscience/bloom-3b) * Instruction tuning language: Bulgarian * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-ru-bloom-1b7
pinzhenchen
2024-03-05T23:47:05Z
0
0
null
[ "generation", "question answering", "instruction tuning", "ru", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:47:02Z
--- language: - ru tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-1b7](https://huggingface.co/bigscience/bloom-1b7) * Instruction tuning language: Russian * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-fi-bloom-1b7
pinzhenchen
2024-03-05T23:46:57Z
0
0
null
[ "generation", "question answering", "instruction tuning", "fi", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:46:54Z
--- language: - fi tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-1b7](https://huggingface.co/bigscience/bloom-1b7) * Instruction tuning language: Finnish * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-en-bloom-1b7
pinzhenchen
2024-03-05T23:46:49Z
0
0
null
[ "generation", "question answering", "instruction tuning", "en", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:46:46Z
--- language: - en tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-1b7](https://huggingface.co/bigscience/bloom-1b7) * Instruction tuning language: English * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-de-bloom-1b7
pinzhenchen
2024-03-05T23:46:45Z
0
0
null
[ "generation", "question answering", "instruction tuning", "de", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:46:42Z
--- language: - de tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-1b7](https://huggingface.co/bigscience/bloom-1b7) * Instruction tuning language: German * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-cs-bloom-1b7
pinzhenchen
2024-03-05T23:46:41Z
0
0
null
[ "generation", "question answering", "instruction tuning", "cs", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:46:38Z
--- language: - cs tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-1b7](https://huggingface.co/bigscience/bloom-1b7) * Instruction tuning language: Czech * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-bg-bloom-1b7
pinzhenchen
2024-03-05T23:46:37Z
0
0
null
[ "generation", "question answering", "instruction tuning", "bg", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:46:35Z
--- language: - bg tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-1b7](https://huggingface.co/bigscience/bloom-1b7) * Instruction tuning language: Bulgarian * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-zh-bloom-1b1
pinzhenchen
2024-03-05T23:46:34Z
0
0
null
[ "generation", "question answering", "instruction tuning", "zh", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:46:31Z
--- language: - zh tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) * Instruction tuning language: Chinese * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-ru-bloom-1b1
pinzhenchen
2024-03-05T23:46:30Z
0
0
null
[ "generation", "question answering", "instruction tuning", "ru", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:46:27Z
--- language: - ru tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) * Instruction tuning language: Russian * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-fi-bloom-1b1
pinzhenchen
2024-03-05T23:46:22Z
0
0
null
[ "generation", "question answering", "instruction tuning", "fi", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:46:19Z
--- language: - fi tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) * Instruction tuning language: Finnish * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-es-bloom-1b1
pinzhenchen
2024-03-05T23:46:18Z
0
0
null
[ "generation", "question answering", "instruction tuning", "es", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:46:15Z
--- language: - es tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) * Instruction tuning language: Spanish * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-en-bloom-1b1
pinzhenchen
2024-03-05T23:46:14Z
0
0
null
[ "generation", "question answering", "instruction tuning", "en", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:46:11Z
--- language: - en tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) * Instruction tuning language: English * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-de-bloom-1b1
pinzhenchen
2024-03-05T23:46:10Z
0
0
null
[ "generation", "question answering", "instruction tuning", "de", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:46:08Z
--- language: - de tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) * Instruction tuning language: German * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-en-bloom-560m
pinzhenchen
2024-03-05T23:45:39Z
0
0
null
[ "generation", "question answering", "instruction tuning", "en", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:45:36Z
--- language: - en tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) * Instruction tuning language: English * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-de-bloom-560m
pinzhenchen
2024-03-05T23:45:34Z
0
0
null
[ "generation", "question answering", "instruction tuning", "de", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:45:32Z
--- language: - de tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) * Instruction tuning language: German * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-cs-bloom-560m
pinzhenchen
2024-03-05T23:45:31Z
0
0
null
[ "generation", "question answering", "instruction tuning", "cs", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:45:28Z
--- language: - cs tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) * Instruction tuning language: Czech * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-bg-bloom-560m
pinzhenchen
2024-03-05T23:45:26Z
0
0
null
[ "generation", "question answering", "instruction tuning", "bg", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:45:23Z
--- language: - bg tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) * Instruction tuning language: Bulgarian * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-ru-baichuan-2-7b
pinzhenchen
2024-03-05T23:45:17Z
0
0
null
[ "generation", "question answering", "instruction tuning", "ru", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:45:14Z
--- language: - ru tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [baichuan-inc/Baichuan2-7B-Base](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base) * Instruction tuning language: Russian * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
pinzhenchen/sft-lora-en-baichuan-2-7b
pinzhenchen
2024-03-05T23:45:03Z
0
0
null
[ "generation", "question answering", "instruction tuning", "en", "arxiv:2309.08958", "license:cc-by-nc-4.0", "region:us" ]
null
2024-03-05T23:44:59Z
--- language: - en tags: - generation - question answering - instruction tuning license: cc-by-nc-4.0 --- ### Model Description This HF repository contains base LLMs instruction tuned (SFT) with LoRA and then used to study whether monolingual or multilingual instruction tuning is more favourable. * [GitHub](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main) * [Paper](https://arxiv.org/abs/2309.08958) #### Instruction tuning details * Base model: [baichuan-inc/Baichuan2-7B-Base](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base) * Instruction tuning language: English * Training method: LoRA. * LoRA details: rank=8, alpha=16, target modules={key, query, value}. * Best checkpoint: best cross-entropy on a validation set, trained for 5 epochs. * Dataset: machine-translated from [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned). You can download our data [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/training-data). #### Usage The model checkpoint should be loaded with the base model together using `transformers` and `peft` libraries. Please refer to our Github repository [HERE](https://github.com/hplt-project/monolingual-multilingual-instruction-tuning/tree/main/loraft) for inference and training instructions. #### Citation ``` @inproceedings{chen-etal-2024-monolingual, title="Monolingual or multilingual instruction tuning: Which makes a better {Alpaca}", author="Pinzhen Chen and Shaoxiong Ji and Nikolay Bogoychev and Andrey Kutuzov and Barry Haddow and Kenneth Heafield", year="2024", booktitle = "Findings of the Association for Computational Linguistics: EACL 2024", } ```
anilerkul/crossing-sentiment-team-based-splitting-model
anilerkul
2024-03-05T23:44:46Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-05T23:44:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JONGYUN/DPO_Test_2
JONGYUN
2024-03-05T23:44:19Z
61
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-21T04:03:49Z
--- license: apache-2.0 --- language: - ko pipeline_tag: text-generation --- # Llama-2-7b-hf dpo test model ### Model Details - Developed by: JongYun CHOI - Backbone Model: yanolja/KoSOLAR-10.7B-v0.2 - Library: [transformers](https://github.com/huggingface/transformers) - ### Used Datasets - private dataset ### Prompt Template ``` ### 질문: {Instruction} ### 답변: {Answer} ```
MrezaPRZ/codellama-osquery
MrezaPRZ
2024-03-05T23:38:00Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-05T23:34:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
anilerkul/crossing-check-match-based-model
anilerkul
2024-03-05T23:33:30Z
8
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-05T00:13:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
neuralmagic/OpenHermes-2.5-Mistral-7B-pruned50
neuralmagic
2024-03-05T23:33:12Z
50
1
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "nm-vllm", "sparse", "conversational", "arxiv:2301.00774", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:finetune:teknium/OpenHermes-2.5-Mistral-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-30T08:32:58Z
--- base_model: teknium/OpenHermes-2.5-Mistral-7B inference: true model_type: mistral quantized_by: mgoin tags: - nm-vllm - sparse --- ## OpenHermes-2.5-Mistral-7B-pruned50 This repo contains model files for [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) optimized for [nm-vllm](https://github.com/neuralmagic/nm-vllm), a high-throughput serving engine for compressed LLMs. This model was pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml). ## Inference Install [nm-vllm](https://github.com/neuralmagic/nm-vllm) for fast inference and low memory-usage: ```bash pip install nm-vllm[sparse] ``` Run in a Python pipeline for local inference: ```python from vllm import LLM, SamplingParams model = LLM("nm-testing/OpenHermes-2.5-Mistral-7B-pruned50", sparsity="sparse_w16a16") prompt = "How to make banana bread?" formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant" sampling_params = SamplingParams(max_tokens=100) outputs = model.generate(formatted_prompt, sampling_params=sampling_params) print(outputs[0].outputs[0].text) """ Here is a simple recipe for making banana bread: Ingredients: - 3 ripe bananas - 2 eggs - 1/2 cup of sugar - 1/2 cup of butter - 2 cups of flour - 1 teaspoon baking powder - 2 teaspoons of baking soda Instructions: 1. Preheat your oven at 350 degree Fahrenant. """ ``` ## Prompt template ``` <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Sparsification For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below. Install [SparseML](https://github.com/neuralmagic/sparseml): ```bash git clone https://github.com/neuralmagic/sparseml pip install -e "sparseml[transformers]" ``` Replace the recipe as you like and run this one-shot compression script to apply SparseGPT: ```python import sparseml.transformers original_model_name = "teknium/OpenHermes-2.5-Mistral-7B" calibration_dataset = "open_platypus" output_directory = "output/" recipe = """ test_stage: obcq_modifiers: SparseGPTModifier: sparsity: 0.5 sequential_update: true mask_structure: 0:0 targets: ['re:model.layers.\d*$'] """ # Apply SparseGPT to the model sparseml.transformers.oneshot( model=original_model_name, dataset=calibration_dataset, recipe=recipe, output_dir=output_directory, ) ``` ## Slack For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)
crossroderick/ppo-Pyramids
crossroderick
2024-03-05T23:32:58Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2024-03-05T23:32:53Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: crossroderick/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
NeuralNovel/Valor-7B-v0.1
NeuralNovel
2024-03-05T23:30:03Z
0
10
peft
[ "peft", "safetensors", "mistral", "generated_from_trainer", "dataset:NeuralNovel/Neural-Story-v1", "base_model:alnrg2arg/blockchainlabs_7B_merged_test2_4", "base_model:adapter:alnrg2arg/blockchainlabs_7B_merged_test2_4", "license:apache-2.0", "region:us" ]
null
2024-01-20T21:37:43Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer datasets: - NeuralNovel/Neural-Story-v1 base_model: alnrg2arg/blockchainlabs_7B_merged_test2_4 model-index: - name: qlora-out results: [] --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/CATNxzDDJL6xHR4tc4IMf.jpeg) # NeuralNovel/Valor-7B-v0.1 Valor speaks louder than words. This is a qlora finetune of blockchainlabs_7B_merged_test2_4 using the **Neural-Story-v0.1** dataset, with the intention of increasing creativity and writing ability. <a href='https://ko-fi.com/S6S2UH2TC' target='_blank'><img height='38' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi1.png?v=3' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a> <a href='https://discord.gg/KFS229xD' target='_blank'><img width='140' height='500' style='border:0px;height:36px;' src='https://i.ibb.co/tqwznYM/Discord-button.png' border='0' alt='Join Our Discord!' /></a> ![image/png](https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/uW7SQrWBXv-CURsEKJerW.png) # Training Details ```yaml base_model: alnrg2arg/blockchainlabs_7B_merged_test2_4 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: NeuralNovel/Neural-Story-v1 type: completion dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./qlora-out adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<s>" eos_token: "</s>" unk_token: "<unk>" ``` </details><br> # qlora-out This model is a fine-tuned version of [alnrg2arg/blockchainlabs_7B_merged_test2_4](https://huggingface.co/alnrg2arg/blockchainlabs_7B_merged_test2_4) on the Neural-Story-v1. It achieves the following results on the evaluation set: - Loss: 2.1411 axolotl version: `0.3.0` The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3251 | 0.06 | 1 | 2.8409 | | 2.5318 | 0.25 | 4 | 2.7634 | | 1.7316 | 0.51 | 8 | 2.3662 | | 1.5196 | 0.76 | 12 | 2.1411 | ### Framework versions - PEFT 0.7.0 - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_NeuralNovel__Valor-7B-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |74.21| |AI2 Reasoning Challenge (25-Shot)|72.27| |HellaSwag (10-Shot) |86.59| |MMLU (5-Shot) |64.09| |TruthfulQA (0-shot) |69.84| |Winogrande (5-shot) |83.35| |GSM8k (5-shot) |69.14|
cik009/gemma-2b-it-q4f16_0-MLC
cik009
2024-03-05T23:29:00Z
0
0
null
[ "license:other", "region:us" ]
null
2024-03-05T23:17:24Z
--- license: other license_name: gemma license_link: https://ai.google.dev/gemma/terms ---
dranger003/OpenCodeInterpreter-DS-33B-iMat.GGUF
dranger003
2024-03-05T23:28:04Z
13
2
gguf
[ "gguf", "text-generation", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-03-05T19:43:49Z
--- license: other license_name: deepseek-license license_link: >- https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct/blob/main/LICENSE pipeline_tag: text-generation library_name: gguf --- <u>**NOTE**</u>: You will need a recent build of llama.cpp to run these quants (i.e. at least commit `494c870`). GGUF importance matrix (imatrix) quants for https://huggingface.co/m-a-p/OpenCodeInterpreter-DS-33B * The importance matrix was trained for ~50K tokens (105 batches of 512 tokens) using a [general purpose imatrix calibration dataset](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384). * The [imatrix is being used on the K-quants](https://github.com/ggerganov/llama.cpp/pull/4930) as well. > OpenCodeInterpreter is a family of open-source code generation systems designed to bridge the gap between large language models and advanced proprietary systems like the GPT-4 Code Interpreter. It significantly advances code generation capabilities by integrating execution and iterative refinement functionalities. This model is based on [deepseek-coder-33b-base](https://huggingface.co/deepseek-ai/deepseek-coder-33b-base). | Layers | Context | Template | | --- | --- | --- | | <pre>62</pre> | <pre>16384</pre> | <pre>\<|begin▁of▁sentence|\>[INST] \<\<SYS\>\><br>{instructions}<br>\<\</SYS\>\><br><br>{prompt} [/INST]</pre> |
NeuralNovel/Senzu-7B-v0.1
NeuralNovel
2024-03-05T23:27:58Z
28
6
transformers
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "generated_from_trainer", "dataset:practical-dreamer/RPGPT_PublicDomain-alpaca", "dataset:shuyuej/metamath_gsm8k", "dataset:NeuralNovel/Neural-DPO", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-26T08:15:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - practical-dreamer/RPGPT_PublicDomain-alpaca - shuyuej/metamath_gsm8k - NeuralNovel/Neural-DPO base_model: mistralai/Mistral-7B-v0.1 model-index: - name: out results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/FXt-g2q8JE-l77_gp23T3.jpeg) # NeuralNovel/Senzu-7B-v0.1 Embracing a quiet *storm* .. ## Model Details This model is a full parameter fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) Trained on the Neural-DPO, metamath_gsm8k and RPGPT_PublicDomain-alpaca dataset. This model excels at character roleplay, also with the ability of responding accurately to a wide variety of complex questions. <a href='https://ko-fi.com/S6S2UH2TC' target='_blank'><img height='38' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi1.png?v=3' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a> <a href='https://discord.gg/KFS229xD' target='_blank'><img width='140' height='500' style='border:0px;height:36px;' src='https://i.ibb.co/tqwznYM/Discord-button.png' border='0' alt='Join Our Discord!' /></a> ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: practical-dreamer/RPGPT_PublicDomain-alpaca type: alpaca format: "[INST] {instruction} [/INST]" no_input_format: "[INST] {instruction} [/INST]" datasets: - path: shuyuej/metamath_gsm8k type: jeopardy format: "[INST] {instruction} [/INST]" no_input_format: "[INST] {instruction} [/INST]" datasets: - path: NeuralNovel/Neural-DPO type: system_prompt: "" field_system: system field_instruction: chosen field_output: chosen format: "[INST] {instruction} [/INST]" no_input_format: "[INST] {instruction} [/INST]" dataset_prepared_path: val_set_size: 0.05 output_dir: ./out sequence_len: 8192 sample_packing: false pad_to_sequence_len: true eval_sample_packing: false wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 0 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<s>" eos_token: "</s>" unk_token: "<unk>" ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2061 | 0.01 | 1 | 0.3139 | | 0.0 | 0.25 | 32 | 0.0000 | | 0.0 | 0.5 | 64 | 0.0010 | | 0.0 | 0.76 | 96 | 0.0000 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.0 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_NeuralNovel__Senzu-7B-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |56.40| |AI2 Reasoning Challenge (25-Shot)|58.19| |HellaSwag (10-Shot) |81.98| |MMLU (5-Shot) |63.20| |TruthfulQA (0-shot) |40.20| |Winogrande (5-shot) |76.64| |GSM8k (5-shot) |18.20|
NeuralNovel/Senzu-7B-v0.1-DPO
NeuralNovel
2024-03-05T23:26:46Z
11
7
transformers
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "generated_from_trainer", "dataset:practical-dreamer/RPGPT_PublicDomain-alpaca", "dataset:shuyuej/metamath_gsm8k", "dataset:NeuralNovel/Neural-DPO", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-26T20:54:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - practical-dreamer/RPGPT_PublicDomain-alpaca - shuyuej/metamath_gsm8k - NeuralNovel/Neural-DPO base_model: mistralai/Mistral-7B-v0.1 model-index: - name: out results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/FXt-g2q8JE-l77_gp23T3.jpeg) # NeuralNovel/Senzu-7B-v0.1-DPO Embracing a quiet *storm* .. ## Model Details This model is Senzu-7B-v0.1 a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) DPO Trained on the Neural-DPO dataset. This model excels at character based roleplay. <a href='https://ko-fi.com/S6S2UH2TC' target='_blank'><img height='38' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi1.png?v=3' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a> <a href='https://discord.gg/KFS229xD' target='_blank'><img width='140' height='500' style='border:0px;height:36px;' src='https://i.ibb.co/tqwznYM/Discord-button.png' border='0' alt='Join Our Discord!' /></a> ## Training Parameters ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: practical-dreamer/RPGPT_PublicDomain-alpaca type: alpaca format: "[INST] {instruction} [/INST]" no_input_format: "[INST] {instruction} [/INST]" datasets: - path: shuyuej/metamath_gsm8k type: jeopardy format: "[INST] {instruction} [/INST]" no_input_format: "[INST] {instruction} [/INST]" datasets: - path: NeuralNovel/Neural-DPO type: system_prompt: "" field_system: system field_instruction: chosen field_output: chosen format: "[INST] {instruction} [/INST]" no_input_format: "[INST] {instruction} [/INST]" dataset_prepared_path: val_set_size: 0.05 output_dir: ./out sequence_len: 8192 sample_packing: false pad_to_sequence_len: true eval_sample_packing: false wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 0 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<s>" eos_token: "</s>" unk_token: "<unk>" ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2061 | 0.01 | 1 | 0.3139 | | 0.0 | 0.25 | 32 | 0.0000 | | 0.0 | 0.5 | 64 | 0.0010 | | 0.0 | 0.76 | 96 | 0.0000 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.0 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_NeuralNovel__Senzu-7B-v0.1-DPO) | Metric |Value| |---------------------------------|----:| |Avg. |61.90| |AI2 Reasoning Challenge (25-Shot)|66.72| |HellaSwag (10-Shot) |84.34| |MMLU (5-Shot) |62.12| |TruthfulQA (0-shot) |45.29| |Winogrande (5-shot) |79.95| |GSM8k (5-shot) |32.98|
jamiehudson/725_model_v4
jamiehudson
2024-03-05T23:24:43Z
5
0
setfit
[ "setfit", "safetensors", "bert", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:BAAI/bge-small-en-v1.5", "base_model:finetune:BAAI/bge-small-en-v1.5", "model-index", "region:us" ]
text-classification
2024-03-05T23:24:32Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy - f1 - precision - recall widget: - text: man, product/whatever is my new best friend. i like product but the integration of product into office and product is a lot of fun. i just spent the day feeding it my training presentation i'm preparing in my day job and it was very helpful. almost better than humans. - text: that's great news! product is the perfect platform to share these advanced product prompts and help more users get the most out of it! - text: after only one week's trial of the new product with brand enabled, i have replaced my default browser product that i was using for more than 7 years with new product. i no longer need to spend a lot of time finding answers from a bunch of search results and web pages. it's amazing - text: very impressive. brand is finally fighting back. i am just a little worried about the scalability of such a high context window size, since even in their demos it took quite a while to process everything. regardless, i am very interested in seeing what types of capabilities a >1m token size window can unleash. - text: product the way it shows the sources is so fucking cool, this new ai is amazing pipeline_tag: text-classification inference: true base_model: BAAI/bge-small-en-v1.5 model-index: - name: SetFit with BAAI/bge-small-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.964 name: Accuracy - type: f1 value: - 0.9130434782608695 - 0.888888888888889 - 0.9779951100244498 name: F1 - type: precision value: - 0.9545454545454546 - 1.0 - 0.9615384615384616 name: Precision - type: recall value: - 0.875 - 0.8 - 0.9950248756218906 name: Recall --- # SetFit with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:--------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | neither | <ul><li>'i asked brand to write it and then let it translate back. so in reality i have no clue what i am sending...'</li><li>"i saw someone summarize brand the other day; it doesn't give answers, it gives answer-shaped responses."</li><li>'thank you comrade i mean colleague. i will have brand summarize.'</li></ul> | | peak | <ul><li>'brand!! it helped me finish my resume. i just asked it if it could write my resume based on horribly written descriptions i came up with. and it made it all pretty:)'</li><li>'been building products for a bit now and your product (audio pen) is simple, useful and just works (like the early magic when product came out). congratulations and keep the flag flying high. not surprised that india is producing apps like yours. high time:-)'</li><li>'just got access to personalization in brand!! totally unexpected. very happy'</li></ul> | | pit | <ul><li>'brand recently i came across a very unwell patient in a psychiatric unit who was using product & this was reinforcing his delusional state & detrimentally impacting his mental health. anyone looking into this type of usage of product? what safe guards are being put in place?'</li><li>'brand product is def better at extracting numbers from images, product failed (pro version) twice...'</li><li>"the stuff brand gives is entirely too scripted *and* impractical, which is what i'm trying to avoid:/"</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | F1 | Precision | Recall | |:--------|:---------|:------------------------------------------------------------|:----------------------------------------------|:---------------------------------| | **all** | 0.964 | [0.9130434782608695, 0.888888888888889, 0.9779951100244498] | [0.9545454545454546, 1.0, 0.9615384615384616] | [0.875, 0.8, 0.9950248756218906] | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("jamiehudson/725_model_v4") # Run inference preds = model("product the way it shows the sources is so fucking cool, this new ai is amazing") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 31.6606 | 98 | | Label | Training Sample Count | |:--------|:----------------------| | pit | 277 | | peak | 265 | | neither | 1105 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:-----:|:-------------:|:---------------:| | 0.0000 | 1 | 0.2683 | - | | 0.0012 | 50 | 0.2643 | - | | 0.0023 | 100 | 0.2432 | - | | 0.0035 | 150 | 0.2623 | - | | 0.0047 | 200 | 0.2527 | - | | 0.0058 | 250 | 0.2252 | - | | 0.0070 | 300 | 0.2362 | - | | 0.0082 | 350 | 0.2334 | - | | 0.0093 | 400 | 0.2189 | - | | 0.0105 | 450 | 0.2144 | - | | 0.0117 | 500 | 0.1971 | - | | 0.0129 | 550 | 0.1565 | - | | 0.0140 | 600 | 0.0816 | - | | 0.0152 | 650 | 0.1417 | - | | 0.0164 | 700 | 0.1051 | - | | 0.0175 | 750 | 0.0686 | - | | 0.0187 | 800 | 0.0394 | - | | 0.0199 | 850 | 0.0947 | - | | 0.0210 | 900 | 0.0468 | - | | 0.0222 | 950 | 0.0143 | - | | 0.0234 | 1000 | 0.0281 | - | | 0.0245 | 1050 | 0.0329 | - | | 0.0257 | 1100 | 0.0206 | - | | 0.0269 | 1150 | 0.0113 | - | | 0.0280 | 1200 | 0.0054 | - | | 0.0292 | 1250 | 0.0056 | - | | 0.0304 | 1300 | 0.0209 | - | | 0.0315 | 1350 | 0.0064 | - | | 0.0327 | 1400 | 0.0085 | - | | 0.0339 | 1450 | 0.0025 | - | | 0.0350 | 1500 | 0.0031 | - | | 0.0362 | 1550 | 0.0024 | - | | 0.0374 | 1600 | 0.0014 | - | | 0.0386 | 1650 | 0.0019 | - | | 0.0397 | 1700 | 0.0023 | - | | 0.0409 | 1750 | 0.0014 | - | | 0.0421 | 1800 | 0.002 | - | | 0.0432 | 1850 | 0.001 | - | | 0.0444 | 1900 | 0.001 | - | | 0.0456 | 1950 | 0.0019 | - | | 0.0467 | 2000 | 0.0017 | - | | 0.0479 | 2050 | 0.001 | - | | 0.0491 | 2100 | 0.0008 | - | | 0.0502 | 2150 | 0.0011 | - | | 0.0514 | 2200 | 0.0006 | - | | 0.0526 | 2250 | 0.0012 | - | | 0.0537 | 2300 | 0.0008 | - | | 0.0549 | 2350 | 0.0014 | - | | 0.0561 | 2400 | 0.0009 | - | | 0.0572 | 2450 | 0.0009 | - | | 0.0584 | 2500 | 0.001 | - | | 0.0596 | 2550 | 0.0007 | - | | 0.0607 | 2600 | 0.0007 | - | | 0.0619 | 2650 | 0.0006 | - | | 0.0631 | 2700 | 0.0004 | - | | 0.0643 | 2750 | 0.0007 | - | | 0.0654 | 2800 | 0.0005 | - | | 0.0666 | 2850 | 0.0007 | - | | 0.0678 | 2900 | 0.0007 | - | | 0.0689 | 2950 | 0.0006 | - | | 0.0701 | 3000 | 0.0005 | - | | 0.0713 | 3050 | 0.0007 | - | | 0.0724 | 3100 | 0.0008 | - | | 0.0736 | 3150 | 0.0005 | - | | 0.0748 | 3200 | 0.0005 | - | | 0.0759 | 3250 | 0.0005 | - | | 0.0771 | 3300 | 0.0006 | - | | 0.0783 | 3350 | 0.0006 | - | | 0.0794 | 3400 | 0.0006 | - | | 0.0806 | 3450 | 0.0004 | - | | 0.0818 | 3500 | 0.0005 | - | | 0.0829 | 3550 | 0.0005 | - | | 0.0841 | 3600 | 0.0005 | - | | 0.0853 | 3650 | 0.0005 | - | | 0.0864 | 3700 | 0.0006 | - | | 0.0876 | 3750 | 0.0039 | - | | 0.0888 | 3800 | 0.0004 | - | | 0.0900 | 3850 | 0.0003 | - | | 0.0911 | 3900 | 0.0004 | - | | 0.0923 | 3950 | 0.0007 | - | | 0.0935 | 4000 | 0.0003 | - | | 0.0946 | 4050 | 0.0004 | - | | 0.0958 | 4100 | 0.0003 | - | | 0.0970 | 4150 | 0.0003 | - | | 0.0981 | 4200 | 0.0004 | - | | 0.0993 | 4250 | 0.0003 | - | | 0.1005 | 4300 | 0.0004 | - | | 0.1016 | 4350 | 0.0003 | - | | 0.1028 | 4400 | 0.0004 | - | | 0.1040 | 4450 | 0.0003 | - | | 0.1051 | 4500 | 0.0004 | - | | 0.1063 | 4550 | 0.0003 | - | | 0.1075 | 4600 | 0.0003 | - | | 0.1086 | 4650 | 0.0003 | - | | 0.1098 | 4700 | 0.0003 | - | | 0.1110 | 4750 | 0.0016 | - | | 0.1121 | 4800 | 0.0003 | - | | 0.1133 | 4850 | 0.0002 | - | | 0.1145 | 4900 | 0.0003 | - | | 0.1157 | 4950 | 0.0002 | - | | 0.1168 | 5000 | 0.0003 | - | | 0.1180 | 5050 | 0.0003 | - | | 0.1192 | 5100 | 0.0003 | - | | 0.1203 | 5150 | 0.0002 | - | | 0.1215 | 5200 | 0.0003 | - | | 0.1227 | 5250 | 0.0002 | - | | 0.1238 | 5300 | 0.0178 | - | | 0.1250 | 5350 | 0.0014 | - | | 0.1262 | 5400 | 0.002 | - | | 0.1273 | 5450 | 0.0002 | - | | 0.1285 | 5500 | 0.0008 | - | | 0.1297 | 5550 | 0.0003 | - | | 0.1308 | 5600 | 0.0002 | - | | 0.1320 | 5650 | 0.0002 | - | | 0.1332 | 5700 | 0.0002 | - | | 0.1343 | 5750 | 0.0003 | - | | 0.1355 | 5800 | 0.0002 | - | | 0.1367 | 5850 | 0.0003 | - | | 0.1378 | 5900 | 0.0003 | - | | 0.1390 | 5950 | 0.0002 | - | | 0.1402 | 6000 | 0.0002 | - | | 0.1414 | 6050 | 0.0002 | - | | 0.1425 | 6100 | 0.0002 | - | | 0.1437 | 6150 | 0.0002 | - | | 0.1449 | 6200 | 0.0002 | - | | 0.1460 | 6250 | 0.0019 | - | | 0.1472 | 6300 | 0.0005 | - | | 0.1484 | 6350 | 0.0002 | - | | 0.1495 | 6400 | 0.0005 | - | | 0.1507 | 6450 | 0.0003 | - | | 0.1519 | 6500 | 0.0208 | - | | 0.1530 | 6550 | 0.0003 | - | | 0.1542 | 6600 | 0.0002 | - | | 0.1554 | 6650 | 0.0002 | - | | 0.1565 | 6700 | 0.0002 | - | | 0.1577 | 6750 | 0.0002 | - | | 0.1589 | 6800 | 0.0002 | - | | 0.1600 | 6850 | 0.0002 | - | | 0.1612 | 6900 | 0.0104 | - | | 0.1624 | 6950 | 0.0001 | - | | 0.1635 | 7000 | 0.0002 | - | | 0.1647 | 7050 | 0.0002 | - | | 0.1659 | 7100 | 0.0002 | - | | 0.1671 | 7150 | 0.0001 | - | | 0.1682 | 7200 | 0.0002 | - | | 0.1694 | 7250 | 0.0002 | - | | 0.1706 | 7300 | 0.0003 | - | | 0.1717 | 7350 | 0.0002 | - | | 0.1729 | 7400 | 0.0001 | - | | 0.1741 | 7450 | 0.0001 | - | | 0.1752 | 7500 | 0.0002 | - | | 0.1764 | 7550 | 0.0004 | - | | 0.1776 | 7600 | 0.0002 | - | | 0.1787 | 7650 | 0.0005 | - | | 0.1799 | 7700 | 0.0001 | - | | 0.1811 | 7750 | 0.0002 | - | | 0.1822 | 7800 | 0.0002 | - | | 0.1834 | 7850 | 0.0001 | - | | 0.1846 | 7900 | 0.0002 | - | | 0.1857 | 7950 | 0.0002 | - | | 0.1869 | 8000 | 0.0002 | - | | 0.1881 | 8050 | 0.0001 | - | | 0.1892 | 8100 | 0.0002 | - | | 0.1904 | 8150 | 0.0001 | - | | 0.1916 | 8200 | 0.0001 | - | | 0.1928 | 8250 | 0.0001 | - | | 0.1939 | 8300 | 0.0001 | - | | 0.1951 | 8350 | 0.0001 | - | | 0.1963 | 8400 | 0.0002 | - | | 0.1974 | 8450 | 0.0002 | - | | 0.1986 | 8500 | 0.0002 | - | | 0.1998 | 8550 | 0.0002 | - | | 0.2009 | 8600 | 0.0001 | - | | 0.2021 | 8650 | 0.0001 | - | | 0.2033 | 8700 | 0.0001 | - | | 0.2044 | 8750 | 0.0001 | - | | 0.2056 | 8800 | 0.0001 | - | | 0.2068 | 8850 | 0.0001 | - | | 0.2079 | 8900 | 0.0001 | - | | 0.2091 | 8950 | 0.0001 | - | | 0.2103 | 9000 | 0.0001 | - | | 0.2114 | 9050 | 0.0001 | - | | 0.2126 | 9100 | 0.0001 | - | | 0.2138 | 9150 | 0.0001 | - | | 0.2149 | 9200 | 0.0001 | - | | 0.2161 | 9250 | 0.0002 | - | | 0.2173 | 9300 | 0.0001 | - | | 0.2185 | 9350 | 0.0002 | - | | 0.2196 | 9400 | 0.0001 | - | | 0.2208 | 9450 | 0.0001 | - | | 0.2220 | 9500 | 0.0001 | - | | 0.2231 | 9550 | 0.0001 | - | | 0.2243 | 9600 | 0.0001 | - | | 0.2255 | 9650 | 0.0002 | - | | 0.2266 | 9700 | 0.0002 | - | | 0.2278 | 9750 | 0.0001 | - | | 0.2290 | 9800 | 0.0001 | - | | 0.2301 | 9850 | 0.0002 | - | | 0.2313 | 9900 | 0.0001 | - | | 0.2325 | 9950 | 0.0001 | - | | 0.2336 | 10000 | 0.0001 | - | | 0.2348 | 10050 | 0.0001 | - | | 0.2360 | 10100 | 0.0001 | - | | 0.2371 | 10150 | 0.0001 | - | | 0.2383 | 10200 | 0.0001 | - | | 0.2395 | 10250 | 0.0001 | - | | 0.2406 | 10300 | 0.0001 | - | | 0.2418 | 10350 | 0.0001 | - | | 0.2430 | 10400 | 0.0001 | - | | 0.2442 | 10450 | 0.0001 | - | | 0.2453 | 10500 | 0.0001 | - | | 0.2465 | 10550 | 0.0001 | - | | 0.2477 | 10600 | 0.0001 | - | | 0.2488 | 10650 | 0.0001 | - | | 0.2500 | 10700 | 0.0001 | - | | 0.2512 | 10750 | 0.0001 | - | | 0.2523 | 10800 | 0.0001 | - | | 0.2535 | 10850 | 0.0001 | - | | 0.2547 | 10900 | 0.0001 | - | | 0.2558 | 10950 | 0.0001 | - | | 0.2570 | 11000 | 0.0002 | - | | 0.2582 | 11050 | 0.0001 | - | | 0.2593 | 11100 | 0.0003 | - | | 0.2605 | 11150 | 0.0001 | - | | 0.2617 | 11200 | 0.0001 | - | | 0.2628 | 11250 | 0.0001 | - | | 0.2640 | 11300 | 0.0001 | - | | 0.2652 | 11350 | 0.0001 | - | | 0.2663 | 11400 | 0.0001 | - | | 0.2675 | 11450 | 0.0001 | - | | 0.2687 | 11500 | 0.0001 | - | | 0.2699 | 11550 | 0.0001 | - | | 0.2710 | 11600 | 0.0001 | - | | 0.2722 | 11650 | 0.0001 | - | | 0.2734 | 11700 | 0.0001 | - | | 0.2745 | 11750 | 0.0001 | - | | 0.2757 | 11800 | 0.0001 | - | | 0.2769 | 11850 | 0.0001 | - | | 0.2780 | 11900 | 0.0001 | - | | 0.2792 | 11950 | 0.0001 | - | | 0.2804 | 12000 | 0.0001 | - | | 0.2815 | 12050 | 0.0001 | - | | 0.2827 | 12100 | 0.0137 | - | | 0.2839 | 12150 | 0.0001 | - | | 0.2850 | 12200 | 0.0001 | - | | 0.2862 | 12250 | 0.0001 | - | | 0.2874 | 12300 | 0.0001 | - | | 0.2885 | 12350 | 0.0001 | - | | 0.2897 | 12400 | 0.0001 | - | | 0.2909 | 12450 | 0.0001 | - | | 0.2920 | 12500 | 0.0001 | - | | 0.2932 | 12550 | 0.0001 | - | | 0.2944 | 12600 | 0.0001 | - | | 0.2956 | 12650 | 0.0001 | - | | 0.2967 | 12700 | 0.0 | - | | 0.2979 | 12750 | 0.0001 | - | | 0.2991 | 12800 | 0.0001 | - | | 0.3002 | 12850 | 0.0001 | - | | 0.3014 | 12900 | 0.0001 | - | | 0.3026 | 12950 | 0.0001 | - | | 0.3037 | 13000 | 0.0001 | - | | 0.3049 | 13050 | 0.0001 | - | | 0.3061 | 13100 | 0.0001 | - | | 0.3072 | 13150 | 0.0001 | - | | 0.3084 | 13200 | 0.0001 | - | | 0.3096 | 13250 | 0.0001 | - | | 0.3107 | 13300 | 0.0001 | - | | 0.3119 | 13350 | 0.0001 | - | | 0.3131 | 13400 | 0.0001 | - | | 0.3142 | 13450 | 0.0001 | - | | 0.3154 | 13500 | 0.0001 | - | | 0.3166 | 13550 | 0.0001 | - | | 0.3177 | 13600 | 0.0001 | - | | 0.3189 | 13650 | 0.0001 | - | | 0.3201 | 13700 | 0.0001 | - | | 0.3213 | 13750 | 0.0001 | - | | 0.3224 | 13800 | 0.0001 | - | | 0.3236 | 13850 | 0.0 | - | | 0.3248 | 13900 | 0.0001 | - | | 0.3259 | 13950 | 0.0001 | - | | 0.3271 | 14000 | 0.0001 | - | | 0.3283 | 14050 | 0.0002 | - | | 0.3294 | 14100 | 0.0001 | - | | 0.3306 | 14150 | 0.0001 | - | | 0.3318 | 14200 | 0.0001 | - | | 0.3329 | 14250 | 0.0001 | - | | 0.3341 | 14300 | 0.0001 | - | | 0.3353 | 14350 | 0.0001 | - | | 0.3364 | 14400 | 0.0001 | - | | 0.3376 | 14450 | 0.0001 | - | | 0.3388 | 14500 | 0.0001 | - | | 0.3399 | 14550 | 0.0001 | - | | 0.3411 | 14600 | 0.0001 | - | | 0.3423 | 14650 | 0.0001 | - | | 0.3434 | 14700 | 0.0001 | - | | 0.3446 | 14750 | 0.0001 | - | | 0.3458 | 14800 | 0.0001 | - | | 0.3470 | 14850 | 0.0001 | - | | 0.3481 | 14900 | 0.0001 | - | | 0.3493 | 14950 | 0.0 | - | | 0.3505 | 15000 | 0.0001 | - | | 0.3516 | 15050 | 0.0001 | - | | 0.3528 | 15100 | 0.0 | - | | 0.3540 | 15150 | 0.0001 | - | | 0.3551 | 15200 | 0.0001 | - | | 0.3563 | 15250 | 0.0001 | - | | 0.3575 | 15300 | 0.0001 | - | | 0.3586 | 15350 | 0.0001 | - | | 0.3598 | 15400 | 0.0001 | - | | 0.3610 | 15450 | 0.0001 | - | | 0.3621 | 15500 | 0.0001 | - | | 0.3633 | 15550 | 0.0001 | - | | 0.3645 | 15600 | 0.0002 | - | | 0.3656 | 15650 | 0.0001 | - | | 0.3668 | 15700 | 0.0001 | - | | 0.3680 | 15750 | 0.0001 | - | | 0.3692 | 15800 | 0.0001 | - | | 0.3703 | 15850 | 0.0001 | - | | 0.3715 | 15900 | 0.0001 | - | | 0.3727 | 15950 | 0.0 | - | | 0.3738 | 16000 | 0.0 | - | | 0.3750 | 16050 | 0.0 | - | | 0.3762 | 16100 | 0.0 | - | | 0.3773 | 16150 | 0.0001 | - | | 0.3785 | 16200 | 0.0001 | - | | 0.3797 | 16250 | 0.0001 | - | | 0.3808 | 16300 | 0.0001 | - | | 0.3820 | 16350 | 0.0001 | - | | 0.3832 | 16400 | 0.0001 | - | | 0.3843 | 16450 | 0.0 | - | | 0.3855 | 16500 | 0.0001 | - | | 0.3867 | 16550 | 0.0 | - | | 0.3878 | 16600 | 0.0001 | - | | 0.3890 | 16650 | 0.0001 | - | | 0.3902 | 16700 | 0.0001 | - | | 0.3913 | 16750 | 0.0001 | - | | 0.3925 | 16800 | 0.0002 | - | | 0.3937 | 16850 | 0.0002 | - | | 0.3949 | 16900 | 0.0 | - | | 0.3960 | 16950 | 0.0 | - | | 0.3972 | 17000 | 0.0 | - | | 0.3984 | 17050 | 0.0001 | - | | 0.3995 | 17100 | 0.0001 | - | | 0.4007 | 17150 | 0.0001 | - | | 0.4019 | 17200 | 0.0001 | - | | 0.4030 | 17250 | 0.0 | - | | 0.4042 | 17300 | 0.0 | - | | 0.4054 | 17350 | 0.0279 | - | | 0.4065 | 17400 | 0.0 | - | | 0.4077 | 17450 | 0.0 | - | | 0.4089 | 17500 | 0.0 | - | | 0.4100 | 17550 | 0.0 | - | | 0.4112 | 17600 | 0.0001 | - | | 0.4124 | 17650 | 0.0 | - | | 0.4135 | 17700 | 0.028 | - | | 0.4147 | 17750 | 0.0 | - | | 0.4159 | 17800 | 0.0 | - | | 0.4170 | 17850 | 0.0 | - | | 0.4182 | 17900 | 0.0 | - | | 0.4194 | 17950 | 0.0001 | - | | 0.4206 | 18000 | 0.0 | - | | 0.4217 | 18050 | 0.0 | - | | 0.4229 | 18100 | 0.0001 | - | | 0.4241 | 18150 | 0.0 | - | | 0.4252 | 18200 | 0.0 | - | | 0.4264 | 18250 | 0.0 | - | | 0.4276 | 18300 | 0.0 | - | | 0.4287 | 18350 | 0.0 | - | | 0.4299 | 18400 | 0.0 | - | | 0.4311 | 18450 | 0.0001 | - | | 0.4322 | 18500 | 0.0001 | - | | 0.4334 | 18550 | 0.0001 | - | | 0.4346 | 18600 | 0.0001 | - | | 0.4357 | 18650 | 0.0 | - | | 0.4369 | 18700 | 0.0 | - | | 0.4381 | 18750 | 0.0001 | - | | 0.4392 | 18800 | 0.0001 | - | | 0.4404 | 18850 | 0.0 | - | | 0.4416 | 18900 | 0.0001 | - | | 0.4427 | 18950 | 0.0001 | - | | 0.4439 | 19000 | 0.0 | - | | 0.4451 | 19050 | 0.0 | - | | 0.4463 | 19100 | 0.0001 | - | | 0.4474 | 19150 | 0.0 | - | | 0.4486 | 19200 | 0.0001 | - | | 0.4498 | 19250 | 0.0 | - | | 0.4509 | 19300 | 0.0001 | - | | 0.4521 | 19350 | 0.0001 | - | | 0.4533 | 19400 | 0.0001 | - | | 0.4544 | 19450 | 0.0 | - | | 0.4556 | 19500 | 0.0001 | - | | 0.4568 | 19550 | 0.0001 | - | | 0.4579 | 19600 | 0.0001 | - | | 0.4591 | 19650 | 0.0001 | - | | 0.4603 | 19700 | 0.0001 | - | | 0.4614 | 19750 | 0.0001 | - | | 0.4626 | 19800 | 0.0 | - | | 0.4638 | 19850 | 0.0 | - | | 0.4649 | 19900 | 0.0001 | - | | 0.4661 | 19950 | 0.0 | - | | 0.4673 | 20000 | 0.0 | - | | 0.4684 | 20050 | 0.0 | - | | 0.4696 | 20100 | 0.0 | - | | 0.4708 | 20150 | 0.0 | - | | 0.4720 | 20200 | 0.0 | - | | 0.4731 | 20250 | 0.0 | - | | 0.4743 | 20300 | 0.0001 | - | | 0.4755 | 20350 | 0.0001 | - | | 0.4766 | 20400 | 0.0001 | - | | 0.4778 | 20450 | 0.0 | - | | 0.4790 | 20500 | 0.0 | - | | 0.4801 | 20550 | 0.0001 | - | | 0.4813 | 20600 | 0.0 | - | | 0.4825 | 20650 | 0.0005 | - | | 0.4836 | 20700 | 0.0001 | - | | 0.4848 | 20750 | 0.0001 | - | | 0.4860 | 20800 | 0.0 | - | | 0.4871 | 20850 | 0.0001 | - | | 0.4883 | 20900 | 0.0001 | - | | 0.4895 | 20950 | 0.0 | - | | 0.4906 | 21000 | 0.0 | - | | 0.4918 | 21050 | 0.0 | - | | 0.4930 | 21100 | 0.0 | - | | 0.4941 | 21150 | 0.0001 | - | | 0.4953 | 21200 | 0.0 | - | | 0.4965 | 21250 | 0.0001 | - | | 0.4977 | 21300 | 0.0 | - | | 0.4988 | 21350 | 0.0001 | - | | 0.5000 | 21400 | 0.0001 | - | | 0.5012 | 21450 | 0.0 | - | | 0.5023 | 21500 | 0.0 | - | | 0.5035 | 21550 | 0.0 | - | | 0.5047 | 21600 | 0.0001 | - | | 0.5058 | 21650 | 0.0 | - | | 0.5070 | 21700 | 0.0 | - | | 0.5082 | 21750 | 0.0 | - | | 0.5093 | 21800 | 0.0 | - | | 0.5105 | 21850 | 0.0 | - | | 0.5117 | 21900 | 0.0001 | - | | 0.5128 | 21950 | 0.0 | - | | 0.5140 | 22000 | 0.0 | - | | 0.5152 | 22050 | 0.0 | - | | 0.5163 | 22100 | 0.0 | - | | 0.5175 | 22150 | 0.0 | - | | 0.5187 | 22200 | 0.0001 | - | | 0.5198 | 22250 | 0.0 | - | | 0.5210 | 22300 | 0.0001 | - | | 0.5222 | 22350 | 0.0 | - | | 0.5234 | 22400 | 0.0001 | - | | 0.5245 | 22450 | 0.0001 | - | | 0.5257 | 22500 | 0.0 | - | | 0.5269 | 22550 | 0.0 | - | | 0.5280 | 22600 | 0.0 | - | | 0.5292 | 22650 | 0.0 | - | | 0.5304 | 22700 | 0.0 | - | | 0.5315 | 22750 | 0.0 | - | | 0.5327 | 22800 | 0.0 | - | | 0.5339 | 22850 | 0.0 | - | | 0.5350 | 22900 | 0.0001 | - | | 0.5362 | 22950 | 0.0 | - | | 0.5374 | 23000 | 0.0 | - | | 0.5385 | 23050 | 0.0001 | - | | 0.5397 | 23100 | 0.0 | - | | 0.5409 | 23150 | 0.0 | - | | 0.5420 | 23200 | 0.0001 | - | | 0.5432 | 23250 | 0.0 | - | | 0.5444 | 23300 | 0.0001 | - | | 0.5455 | 23350 | 0.0001 | - | | 0.5467 | 23400 | 0.0 | - | | 0.5479 | 23450 | 0.0 | - | | 0.5491 | 23500 | 0.0001 | - | | 0.5502 | 23550 | 0.0 | - | | 0.5514 | 23600 | 0.0001 | - | | 0.5526 | 23650 | 0.0 | - | | 0.5537 | 23700 | 0.0 | - | | 0.5549 | 23750 | 0.0001 | - | | 0.5561 | 23800 | 0.0 | - | | 0.5572 | 23850 | 0.0 | - | | 0.5584 | 23900 | 0.0 | - | | 0.5596 | 23950 | 0.0 | - | | 0.5607 | 24000 | 0.0 | - | | 0.5619 | 24050 | 0.0 | - | | 0.5631 | 24100 | 0.0001 | - | | 0.5642 | 24150 | 0.0001 | - | | 0.5654 | 24200 | 0.0 | - | | 0.5666 | 24250 | 0.0 | - | | 0.5677 | 24300 | 0.0001 | - | | 0.5689 | 24350 | 0.0 | - | | 0.5701 | 24400 | 0.0001 | - | | 0.5712 | 24450 | 0.0 | - | | 0.5724 | 24500 | 0.0 | - | | 0.5736 | 24550 | 0.0 | - | | 0.5748 | 24600 | 0.0029 | - | | 0.5759 | 24650 | 0.0 | - | | 0.5771 | 24700 | 0.0 | - | | 0.5783 | 24750 | 0.0 | - | | 0.5794 | 24800 | 0.0 | - | | 0.5806 | 24850 | 0.0 | - | | 0.5818 | 24900 | 0.0 | - | | 0.5829 | 24950 | 0.0001 | - | | 0.5841 | 25000 | 0.0 | - | | 0.5853 | 25050 | 0.0 | - | | 0.5864 | 25100 | 0.0001 | - | | 0.5876 | 25150 | 0.0 | - | | 0.5888 | 25200 | 0.0 | - | | 0.5899 | 25250 | 0.0 | - | | 0.5911 | 25300 | 0.0001 | - | | 0.5923 | 25350 | 0.0 | - | | 0.5934 | 25400 | 0.0001 | - | | 0.5946 | 25450 | 0.0 | - | | 0.5958 | 25500 | 0.0 | - | | 0.5969 | 25550 | 0.0 | - | | 0.5981 | 25600 | 0.0 | - | | 0.5993 | 25650 | 0.0 | - | | 0.6005 | 25700 | 0.0 | - | | 0.6016 | 25750 | 0.0 | - | | 0.6028 | 25800 | 0.0 | - | | 0.6040 | 25850 | 0.0 | - | | 0.6051 | 25900 | 0.0 | - | | 0.6063 | 25950 | 0.0 | - | | 0.6075 | 26000 | 0.0 | - | | 0.6086 | 26050 | 0.0 | - | | 0.6098 | 26100 | 0.0 | - | | 0.6110 | 26150 | 0.0 | - | | 0.6121 | 26200 | 0.0 | - | | 0.6133 | 26250 | 0.0 | - | | 0.6145 | 26300 | 0.0 | - | | 0.6156 | 26350 | 0.0001 | - | | 0.6168 | 26400 | 0.0 | - | | 0.6180 | 26450 | 0.0 | - | | 0.6191 | 26500 | 0.0 | - | | 0.6203 | 26550 | 0.0 | - | | 0.6215 | 26600 | 0.0001 | - | | 0.6226 | 26650 | 0.0 | - | | 0.6238 | 26700 | 0.0 | - | | 0.6250 | 26750 | 0.0 | - | | 0.6262 | 26800 | 0.0 | - | | 0.6273 | 26850 | 0.0 | - | | 0.6285 | 26900 | 0.0 | - | | 0.6297 | 26950 | 0.0 | - | | 0.6308 | 27000 | 0.0 | - | | 0.6320 | 27050 | 0.0001 | - | | 0.6332 | 27100 | 0.0 | - | | 0.6343 | 27150 | 0.0 | - | | 0.6355 | 27200 | 0.0 | - | | 0.6367 | 27250 | 0.0001 | - | | 0.6378 | 27300 | 0.0 | - | | 0.6390 | 27350 | 0.0 | - | | 0.6402 | 27400 | 0.0 | - | | 0.6413 | 27450 | 0.0 | - | | 0.6425 | 27500 | 0.0 | - | | 0.6437 | 27550 | 0.0 | - | | 0.6448 | 27600 | 0.0001 | - | | 0.6460 | 27650 | 0.0001 | - | | 0.6472 | 27700 | 0.0 | - | | 0.6483 | 27750 | 0.0 | - | | 0.6495 | 27800 | 0.0 | - | | 0.6507 | 27850 | 0.0 | - | | 0.6519 | 27900 | 0.0 | - | | 0.6530 | 27950 | 0.0 | - | | 0.6542 | 28000 | 0.0 | - | | 0.6554 | 28050 | 0.0 | - | | 0.6565 | 28100 | 0.0 | - | | 0.6577 | 28150 | 0.0 | - | | 0.6589 | 28200 | 0.0 | - | | 0.6600 | 28250 | 0.0 | - | | 0.6612 | 28300 | 0.0 | - | | 0.6624 | 28350 | 0.0 | - | | 0.6635 | 28400 | 0.0 | - | | 0.6647 | 28450 | 0.0 | - | | 0.6659 | 28500 | 0.0 | - | | 0.6670 | 28550 | 0.0 | - | | 0.6682 | 28600 | 0.0001 | - | | 0.6694 | 28650 | 0.0 | - | | 0.6705 | 28700 | 0.0 | - | | 0.6717 | 28750 | 0.0 | - | | 0.6729 | 28800 | 0.0 | - | | 0.6740 | 28850 | 0.0 | - | | 0.6752 | 28900 | 0.0 | - | | 0.6764 | 28950 | 0.0 | - | | 0.6776 | 29000 | 0.0 | - | | 0.6787 | 29050 | 0.0 | - | | 0.6799 | 29100 | 0.0 | - | | 0.6811 | 29150 | 0.0001 | - | | 0.6822 | 29200 | 0.0 | - | | 0.6834 | 29250 | 0.0 | - | | 0.6846 | 29300 | 0.0 | - | | 0.6857 | 29350 | 0.0 | - | | 0.6869 | 29400 | 0.0 | - | | 0.6881 | 29450 | 0.0 | - | | 0.6892 | 29500 | 0.0 | - | | 0.6904 | 29550 | 0.0 | - | | 0.6916 | 29600 | 0.0 | - | | 0.6927 | 29650 | 0.0 | - | | 0.6939 | 29700 | 0.0 | - | | 0.6951 | 29750 | 0.0 | - | | 0.6962 | 29800 | 0.0 | - | | 0.6974 | 29850 | 0.0 | - | | 0.6986 | 29900 | 0.0 | - | | 0.6998 | 29950 | 0.0 | - | | 0.7009 | 30000 | 0.0 | - | | 0.7021 | 30050 | 0.0 | - | | 0.7033 | 30100 | 0.0 | - | | 0.7044 | 30150 | 0.0 | - | | 0.7056 | 30200 | 0.0 | - | | 0.7068 | 30250 | 0.0 | - | | 0.7079 | 30300 | 0.0 | - | | 0.7091 | 30350 | 0.0 | - | | 0.7103 | 30400 | 0.0 | - | | 0.7114 | 30450 | 0.0 | - | | 0.7126 | 30500 | 0.0 | - | | 0.7138 | 30550 | 0.0 | - | | 0.7149 | 30600 | 0.0 | - | | 0.7161 | 30650 | 0.0 | - | | 0.7173 | 30700 | 0.0 | - | | 0.7184 | 30750 | 0.0 | - | | 0.7196 | 30800 | 0.0 | - | | 0.7208 | 30850 | 0.0001 | - | | 0.7219 | 30900 | 0.0 | - | | 0.7231 | 30950 | 0.0 | - | | 0.7243 | 31000 | 0.0 | - | | 0.7255 | 31050 | 0.0 | - | | 0.7266 | 31100 | 0.0 | - | | 0.7278 | 31150 | 0.0 | - | | 0.7290 | 31200 | 0.0 | - | | 0.7301 | 31250 | 0.0 | - | | 0.7313 | 31300 | 0.0 | - | | 0.7325 | 31350 | 0.0 | - | | 0.7336 | 31400 | 0.0 | - | | 0.7348 | 31450 | 0.0 | - | | 0.7360 | 31500 | 0.0 | - | | 0.7371 | 31550 | 0.0 | - | | 0.7383 | 31600 | 0.0001 | - | | 0.7395 | 31650 | 0.0001 | - | | 0.7406 | 31700 | 0.0 | - | | 0.7418 | 31750 | 0.0 | - | | 0.7430 | 31800 | 0.0 | - | | 0.7441 | 31850 | 0.0 | - | | 0.7453 | 31900 | 0.0 | - | | 0.7465 | 31950 | 0.0 | - | | 0.7476 | 32000 | 0.0 | - | | 0.7488 | 32050 | 0.0 | - | | 0.7500 | 32100 | 0.0 | - | | 0.7512 | 32150 | 0.0 | - | | 0.7523 | 32200 | 0.0 | - | | 0.7535 | 32250 | 0.0 | - | | 0.7547 | 32300 | 0.0 | - | | 0.7558 | 32350 | 0.0 | - | | 0.7570 | 32400 | 0.0 | - | | 0.7582 | 32450 | 0.0 | - | | 0.7593 | 32500 | 0.0 | - | | 0.7605 | 32550 | 0.0 | - | | 0.7617 | 32600 | 0.0 | - | | 0.7628 | 32650 | 0.0 | - | | 0.7640 | 32700 | 0.0 | - | | 0.7652 | 32750 | 0.0 | - | | 0.7663 | 32800 | 0.0 | - | | 0.7675 | 32850 | 0.0 | - | | 0.7687 | 32900 | 0.0 | - | | 0.7698 | 32950 | 0.0 | - | | 0.7710 | 33000 | 0.0 | - | | 0.7722 | 33050 | 0.0 | - | | 0.7733 | 33100 | 0.0 | - | | 0.7745 | 33150 | 0.0 | - | | 0.7757 | 33200 | 0.0 | - | | 0.7769 | 33250 | 0.0 | - | | 0.7780 | 33300 | 0.0 | - | | 0.7792 | 33350 | 0.0 | - | | 0.7804 | 33400 | 0.0 | - | | 0.7815 | 33450 | 0.0 | - | | 0.7827 | 33500 | 0.0 | - | | 0.7839 | 33550 | 0.0 | - | | 0.7850 | 33600 | 0.0 | - | | 0.7862 | 33650 | 0.0 | - | | 0.7874 | 33700 | 0.0001 | - | | 0.7885 | 33750 | 0.0 | - | | 0.7897 | 33800 | 0.0 | - | | 0.7909 | 33850 | 0.0 | - | | 0.7920 | 33900 | 0.0 | - | | 0.7932 | 33950 | 0.0 | - | | 0.7944 | 34000 | 0.0 | - | | 0.7955 | 34050 | 0.0 | - | | 0.7967 | 34100 | 0.0 | - | | 0.7979 | 34150 | 0.0 | - | | 0.7990 | 34200 | 0.0 | - | | 0.8002 | 34250 | 0.0 | - | | 0.8014 | 34300 | 0.0 | - | | 0.8026 | 34350 | 0.0 | - | | 0.8037 | 34400 | 0.0 | - | | 0.8049 | 34450 | 0.0 | - | | 0.8061 | 34500 | 0.0 | - | | 0.8072 | 34550 | 0.0 | - | | 0.8084 | 34600 | 0.0 | - | | 0.8096 | 34650 | 0.0 | - | | 0.8107 | 34700 | 0.0 | - | | 0.8119 | 34750 | 0.0 | - | | 0.8131 | 34800 | 0.0 | - | | 0.8142 | 34850 | 0.0 | - | | 0.8154 | 34900 | 0.0 | - | | 0.8166 | 34950 | 0.0 | - | | 0.8177 | 35000 | 0.0 | - | | 0.8189 | 35050 | 0.0 | - | | 0.8201 | 35100 | 0.0 | - | | 0.8212 | 35150 | 0.0 | - | | 0.8224 | 35200 | 0.0 | - | | 0.8236 | 35250 | 0.0 | - | | 0.8247 | 35300 | 0.0 | - | | 0.8259 | 35350 | 0.0 | - | | 0.8271 | 35400 | 0.0 | - | | 0.8283 | 35450 | 0.0 | - | | 0.8294 | 35500 | 0.0 | - | | 0.8306 | 35550 | 0.0 | - | | 0.8318 | 35600 | 0.0 | - | | 0.8329 | 35650 | 0.0 | - | | 0.8341 | 35700 | 0.0 | - | | 0.8353 | 35750 | 0.0 | - | | 0.8364 | 35800 | 0.0 | - | | 0.8376 | 35850 | 0.0 | - | | 0.8388 | 35900 | 0.0 | - | | 0.8399 | 35950 | 0.0 | - | | 0.8411 | 36000 | 0.0 | - | | 0.8423 | 36050 | 0.0 | - | | 0.8434 | 36100 | 0.0 | - | | 0.8446 | 36150 | 0.0 | - | | 0.8458 | 36200 | 0.0 | - | | 0.8469 | 36250 | 0.0 | - | | 0.8481 | 36300 | 0.0 | - | | 0.8493 | 36350 | 0.0 | - | | 0.8504 | 36400 | 0.0 | - | | 0.8516 | 36450 | 0.0 | - | | 0.8528 | 36500 | 0.0 | - | | 0.8540 | 36550 | 0.0 | - | | 0.8551 | 36600 | 0.0 | - | | 0.8563 | 36650 | 0.0 | - | | 0.8575 | 36700 | 0.0 | - | | 0.8586 | 36750 | 0.0 | - | | 0.8598 | 36800 | 0.0 | - | | 0.8610 | 36850 | 0.0 | - | | 0.8621 | 36900 | 0.0 | - | | 0.8633 | 36950 | 0.0 | - | | 0.8645 | 37000 | 0.0 | - | | 0.8656 | 37050 | 0.0 | - | | 0.8668 | 37100 | 0.0 | - | | 0.8680 | 37150 | 0.0 | - | | 0.8691 | 37200 | 0.0 | - | | 0.8703 | 37250 | 0.0 | - | | 0.8715 | 37300 | 0.0 | - | | 0.8726 | 37350 | 0.0 | - | | 0.8738 | 37400 | 0.0 | - | | 0.8750 | 37450 | 0.0 | - | | 0.8761 | 37500 | 0.0 | - | | 0.8773 | 37550 | 0.0 | - | | 0.8785 | 37600 | 0.0 | - | | 0.8797 | 37650 | 0.0 | - | | 0.8808 | 37700 | 0.0 | - | | 0.8820 | 37750 | 0.0 | - | | 0.8832 | 37800 | 0.0 | - | | 0.8843 | 37850 | 0.0 | - | | 0.8855 | 37900 | 0.0 | - | | 0.8867 | 37950 | 0.0 | - | | 0.8878 | 38000 | 0.0 | - | | 0.8890 | 38050 | 0.0 | - | | 0.8902 | 38100 | 0.0 | - | | 0.8913 | 38150 | 0.0 | - | | 0.8925 | 38200 | 0.0 | - | | 0.8937 | 38250 | 0.0 | - | | 0.8948 | 38300 | 0.0 | - | | 0.8960 | 38350 | 0.0 | - | | 0.8972 | 38400 | 0.0 | - | | 0.8983 | 38450 | 0.0 | - | | 0.8995 | 38500 | 0.0 | - | | 0.9007 | 38550 | 0.0 | - | | 0.9018 | 38600 | 0.0 | - | | 0.9030 | 38650 | 0.0 | - | | 0.9042 | 38700 | 0.0 | - | | 0.9054 | 38750 | 0.0 | - | | 0.9065 | 38800 | 0.0 | - | | 0.9077 | 38850 | 0.0 | - | | 0.9089 | 38900 | 0.0 | - | | 0.9100 | 38950 | 0.0 | - | | 0.9112 | 39000 | 0.0 | - | | 0.9124 | 39050 | 0.0 | - | | 0.9135 | 39100 | 0.0 | - | | 0.9147 | 39150 | 0.0 | - | | 0.9159 | 39200 | 0.0 | - | | 0.9170 | 39250 | 0.0 | - | | 0.9182 | 39300 | 0.0 | - | | 0.9194 | 39350 | 0.0 | - | | 0.9205 | 39400 | 0.0 | - | | 0.9217 | 39450 | 0.0 | - | | 0.9229 | 39500 | 0.0 | - | | 0.9240 | 39550 | 0.0 | - | | 0.9252 | 39600 | 0.0 | - | | 0.9264 | 39650 | 0.0 | - | | 0.9275 | 39700 | 0.0 | - | | 0.9287 | 39750 | 0.0 | - | | 0.9299 | 39800 | 0.0 | - | | 0.9311 | 39850 | 0.0 | - | | 0.9322 | 39900 | 0.0 | - | | 0.9334 | 39950 | 0.0 | - | | 0.9346 | 40000 | 0.0 | - | | 0.9357 | 40050 | 0.0 | - | | 0.9369 | 40100 | 0.0 | - | | 0.9381 | 40150 | 0.0 | - | | 0.9392 | 40200 | 0.0 | - | | 0.9404 | 40250 | 0.0 | - | | 0.9416 | 40300 | 0.0001 | - | | 0.9427 | 40350 | 0.0 | - | | 0.9439 | 40400 | 0.0 | - | | 0.9451 | 40450 | 0.0 | - | | 0.9462 | 40500 | 0.0 | - | | 0.9474 | 40550 | 0.0 | - | | 0.9486 | 40600 | 0.0 | - | | 0.9497 | 40650 | 0.0 | - | | 0.9509 | 40700 | 0.0 | - | | 0.9521 | 40750 | 0.0 | - | | 0.9532 | 40800 | 0.0 | - | | 0.9544 | 40850 | 0.0 | - | | 0.9556 | 40900 | 0.0 | - | | 0.9568 | 40950 | 0.0 | - | | 0.9579 | 41000 | 0.0 | - | | 0.9591 | 41050 | 0.0 | - | | 0.9603 | 41100 | 0.0 | - | | 0.9614 | 41150 | 0.0 | - | | 0.9626 | 41200 | 0.0 | - | | 0.9638 | 41250 | 0.0 | - | | 0.9649 | 41300 | 0.0 | - | | 0.9661 | 41350 | 0.0 | - | | 0.9673 | 41400 | 0.0 | - | | 0.9684 | 41450 | 0.0 | - | | 0.9696 | 41500 | 0.0 | - | | 0.9708 | 41550 | 0.0 | - | | 0.9719 | 41600 | 0.0 | - | | 0.9731 | 41650 | 0.0 | - | | 0.9743 | 41700 | 0.0 | - | | 0.9754 | 41750 | 0.0 | - | | 0.9766 | 41800 | 0.0 | - | | 0.9778 | 41850 | 0.0 | - | | 0.9789 | 41900 | 0.0 | - | | 0.9801 | 41950 | 0.0 | - | | 0.9813 | 42000 | 0.0 | - | | 0.9825 | 42050 | 0.0 | - | | 0.9836 | 42100 | 0.0 | - | | 0.9848 | 42150 | 0.0 | - | | 0.9860 | 42200 | 0.0 | - | | 0.9871 | 42250 | 0.0 | - | | 0.9883 | 42300 | 0.0 | - | | 0.9895 | 42350 | 0.0 | - | | 0.9906 | 42400 | 0.0 | - | | 0.9918 | 42450 | 0.0 | - | | 0.9930 | 42500 | 0.0 | - | | 0.9941 | 42550 | 0.0 | - | | 0.9953 | 42600 | 0.0 | - | | 0.9965 | 42650 | 0.0 | - | | 0.9976 | 42700 | 0.0 | - | | 0.9988 | 42750 | 0.0 | - | | 1.0000 | 42800 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.5.1 - Transformers: 4.38.1 - PyTorch: 2.1.0+cu121 - Datasets: 2.18.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
ramo6627/gemma-Code-Instruct-Finetune-test
ramo6627
2024-03-05T23:16:28Z
5
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-05T23:14:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rdp99/distilbert-base-uncased-finetuned-emotion
rdp99
2024-03-05T23:16:17Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-05T21:46:40Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2834 - Accuracy: 0.8853 - F1: 0.8853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4378 | 1.0 | 109 | 0.2883 | 0.8819 | 0.8819 | | 0.2536 | 2.0 | 218 | 0.2834 | 0.8853 | 0.8853 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
GIZ/SECTOR-multilabel-climatebert_f
GIZ
2024-03-05T23:09:55Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "dataset:GIZ/policy_classification", "base_model:climatebert/distilroberta-base-climate-f", "base_model:finetune:climatebert/distilroberta-base-climate-f", "license:apache-2.0", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-05T22:35:53Z
--- license: apache-2.0 base_model: climatebert/distilroberta-base-climate-f tags: - generated_from_trainer model-index: - name: SECTOR-multilabel-climatebert results: [] datasets: - GIZ/policy_classification co2_eq_emissions: emissions: 28.6797414394632 source: codecarbon training_type: fine-tuning on_cloud: true cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz ram_total_size: 12.6747894287109 hours_used: 0.706 hardware_used: 1 x Tesla T4 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SECTOR-multilabel-climatebert This model is a fine-tuned version of [climatebert/distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) on the [Policy-Classification](https://huggingface.co/datasets/GIZ/policy_classification) dataset. *The loss function BCEWithLogitsLoss is modified with pos_weight to focus on recall, therefore instead of loss the evaluation metrics are used to assess the model performance during training* It achieves the following results on the evaluation set: - Loss: 0.6028 - Precision-micro: 0.6395 - Precision-samples: 0.7543 - Precision-weighted: 0.6475 - Recall-micro: 0.7762 - Recall-samples: 0.8583 - Recall-weighted: 0.7762 - F1-micro: 0.7012 - F1-samples: 0.7655 - F1-weighted: 0.7041 ## Model description The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict Sector labels - Agriculture,Buildings, Coastal Zone,Cross-Cutting Area,Disaster Risk Management (DRM),Economy-wide,Education,Energy,Environment,Health,Industries,LULUCF/Forestry,Social Development,Tourism, Transport,Urban,Waste,Water ## Intended uses & limitations More information needed ## Training and evaluation data - Training Dataset: 10123 | Class | Positive Count of Class| |:-------------|:--------| | Agriculture | 2235 | | Buildings | 169 | | Coastal Zone | 698| | Cross-Cutting Area | 1853 | | Disaster Risk Management (DRM) | 814 | | Economy-wide | 873 | | Education | 180| | Energy | 2847 | | Environment | 905 | | Health | 662| | Industries | 419 | | LULUCF/Forestry | 1861| | Social Development | 507 | | Tourism | 192 | | Transport | 1173| | Urban | 558 | | Waste | 714| | Water | 1207 | - Validation Dataset: 936 | Class | Positive Count of Class| |:-------------|:--------| | Agriculture | 200 | | Buildings | 18 | | Coastal Zone | 71| | Cross-Cutting Area | 180 | | Disaster Risk Management (DRM) | 85 | | Economy-wide | 85 | | Education | 23| | Energy | 254 | | Environment | 91 | | Health | 68| | Industries | 41 | | LULUCF/Forestry | 193| | Social Development | 56 | | Tourism | 28 | | Transport | 107| | Urban | 51 | | Waste | 59| | Water | 106 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.07e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 300 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:-----------------:|:------------------:|:------------:|:--------------:|:---------------:|:--------:|:----------:|:-----------:| | 0.6978 | 1.0 | 633 | 0.5968 | 0.3948 | 0.5274 | 0.4982 | 0.7873 | 0.8675 | 0.7873 | 0.5259 | 0.5996 | 0.5793 | | 0.485 | 2.0 | 1266 | 0.5255 | 0.5089 | 0.6365 | 0.5469 | 0.7984 | 0.8749 | 0.7984 | 0.6216 | 0.6907 | 0.6384 | | 0.3657 | 3.0 | 1899 | 0.5248 | 0.4984 | 0.6617 | 0.5397 | 0.8141 | 0.8769 | 0.8141 | 0.6183 | 0.7066 | 0.6393 | | 0.2585 | 4.0 | 2532 | 0.5457 | 0.5807 | 0.7148 | 0.5992 | 0.8007 | 0.8752 | 0.8007 | 0.6732 | 0.7449 | 0.6813 | | 0.1841 | 5.0 | 3165 | 0.5551 | 0.6016 | 0.7426 | 0.6192 | 0.7937 | 0.8677 | 0.7937 | 0.6844 | 0.7590 | 0.6917 | | 0.1359 | 6.0 | 3798 | 0.5913 | 0.6349 | 0.7506 | 0.6449 | 0.7844 | 0.8676 | 0.7844 | 0.7018 | 0.7667 | 0.7057 | | 0.1133 | 7.0 | 4431 | 0.6028 | 0.6395 | 0.7543 | 0.6475 | 0.7762 | 0.8583 | 0.7762 | 0.7012 | 0.7655 | 0.7041 | |label | precision |recall |f1-score| support| |:-------------:|:---------:|:-----:|:------:|:------:| | Agriculture | 0.720 | 0.850|0.780|200| | Buildings | 0.636 |0.777|0.700|18| | Coastal Zone | 0.562|0.760|0.646|71| | Cross-Cutting Area | 0.569 |0.777|0.657|180| | Disaster Risk Management (DRM) | 0.567 |0.694|0.624|85| | Economy-wide | 0.461 |0.635| 0.534|85| | Education | 0.608|0.608|0.608|23| | Energy | 0.816 |0.838|0.827|254| | Environment | 0.561 |0.703|0.624|91| | Health | 0.708|0.750|0.728|68| | Industries | 0.660 |0.902|0.762|41| | LULUCF/Forestry | 0.676|0.844|0.751|193| | Social Development | 0.593 | 0.678|0.633|56| | Tourism | 0.551 |0.571|0.561|28| | Transport | 0.700|0.766|0.732|107| | Urban | 0.414 |0.568|0.479|51| | Waste | 0.658|0.881|0.753|59| | Water | 0.602 |0.773|0.677|106| ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.02867 kg of CO2 - **Hours Used**: 0.706 hours ### Training Hardware - **On Cloud**: yes - **GPU Model**: 1 x Tesla T4 - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz - **RAM Size**: 12.67 GB ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
tomaszki/gemma-28-copy
tomaszki
2024-03-05T23:09:38Z
5
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-05T23:06:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sbaner24/vit-base-patch16-224-Trial007-YEL_STEM2
sbaner24
2024-03-05T23:06:59Z
62
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-20T21:05:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-Trial007-YEL_STEM2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9814814814814815 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-Trial007-YEL_STEM2 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1172 - Accuracy: 0.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 60 - eval_batch_size: 60 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 240 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6676 | 0.89 | 2 | 0.6180 | 0.7222 | | 0.5805 | 1.78 | 4 | 0.5004 | 0.7593 | | 0.5012 | 2.67 | 6 | 0.3783 | 0.9630 | | 0.2794 | 4.0 | 9 | 0.2285 | 0.9630 | | 0.2695 | 4.89 | 11 | 0.2551 | 0.8889 | | 0.2782 | 5.78 | 13 | 0.1079 | 0.9630 | | 0.2131 | 6.67 | 15 | 0.1205 | 0.9630 | | 0.1537 | 8.0 | 18 | 0.1861 | 0.9630 | | 0.1739 | 8.89 | 20 | 0.1172 | 0.9815 | | 0.1059 | 9.78 | 22 | 0.1092 | 0.9815 | | 0.146 | 10.67 | 24 | 0.1072 | 0.9815 | | 0.088 | 12.0 | 27 | 0.1015 | 0.9815 | | 0.1304 | 12.89 | 29 | 0.1151 | 0.9815 | | 0.0924 | 13.78 | 31 | 0.1313 | 0.9815 | | 0.091 | 14.67 | 33 | 0.1178 | 0.9815 | | 0.0508 | 16.0 | 36 | 0.0971 | 0.9815 | | 0.1004 | 16.89 | 38 | 0.1175 | 0.9815 | | 0.1097 | 17.78 | 40 | 0.1423 | 0.9630 | | 0.0758 | 18.67 | 42 | 0.1597 | 0.9630 | | 0.0687 | 20.0 | 45 | 0.1205 | 0.9815 | | 0.0513 | 20.89 | 47 | 0.1107 | 0.9815 | | 0.0755 | 21.78 | 49 | 0.1150 | 0.9815 | | 0.0897 | 22.67 | 51 | 0.1332 | 0.9630 | | 0.0439 | 24.0 | 54 | 0.1263 | 0.9815 | | 0.0607 | 24.89 | 56 | 0.1111 | 0.9815 | | 0.0719 | 25.78 | 58 | 0.1004 | 0.9815 | | 0.0599 | 26.67 | 60 | 0.1064 | 0.9815 | | 0.0613 | 28.0 | 63 | 0.1355 | 0.9815 | | 0.0689 | 28.89 | 65 | 0.1444 | 0.9815 | | 0.0754 | 29.78 | 67 | 0.1398 | 0.9815 | | 0.0835 | 30.67 | 69 | 0.1345 | 0.9815 | | 0.0801 | 32.0 | 72 | 0.1348 | 0.9815 | | 0.0701 | 32.89 | 74 | 0.1365 | 0.9815 | | 0.0647 | 33.78 | 76 | 0.1348 | 0.9815 | | 0.0982 | 34.67 | 78 | 0.1346 | 0.9815 | | 0.0671 | 36.0 | 81 | 0.1378 | 0.9815 | | 0.054 | 36.89 | 83 | 0.1371 | 0.9815 | | 0.0735 | 37.78 | 85 | 0.1355 | 0.9815 | | 0.0736 | 38.67 | 87 | 0.1349 | 0.9815 | | 0.0287 | 40.0 | 90 | 0.1329 | 0.9815 | | 0.0539 | 40.89 | 92 | 0.1322 | 0.9815 | | 0.0483 | 41.78 | 94 | 0.1324 | 0.9815 | | 0.083 | 42.67 | 96 | 0.1319 | 0.9815 | | 0.0558 | 44.0 | 99 | 0.1319 | 0.9815 | | 0.0752 | 44.44 | 100 | 0.1319 | 0.9815 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 1.12.1 - Datasets 2.12.0 - Tokenizers 0.13.1
OwOOwO/eacc_bm2c2
OwOOwO
2024-03-05T23:05:39Z
5
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-05T18:25:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Buseak/md_mt5_0109_v6
Buseak
2024-03-05T23:05:36Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "mt5", "text2text-generation", "generated_from_trainer", "base_model:Buseak/md_mt5_0109_v5", "base_model:finetune:Buseak/md_mt5_0109_v5", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-03-05T19:42:56Z
--- license: apache-2.0 base_model: Buseak/md_mt5_0109_v5 tags: - generated_from_trainer metrics: - bleu model-index: - name: md_mt5_0109_v6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # md_mt5_0109_v6 This model is a fine-tuned version of [Buseak/md_mt5_0109_v5](https://huggingface.co/Buseak/md_mt5_0109_v5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0628 - Bleu: 0.6537 - Gen Len: 18.9513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 0.1911 | 1.0 | 975 | 0.0801 | 0.6356 | 18.9449 | | 0.1854 | 2.0 | 1950 | 0.0782 | 0.6365 | 18.9446 | | 0.1807 | 3.0 | 2925 | 0.0755 | 0.6419 | 18.9485 | | 0.175 | 4.0 | 3900 | 0.0732 | 0.6431 | 18.949 | | 0.1699 | 5.0 | 4875 | 0.0720 | 0.6471 | 18.949 | | 0.1669 | 6.0 | 5850 | 0.0701 | 0.6474 | 18.9497 | | 0.165 | 7.0 | 6825 | 0.0682 | 0.6494 | 18.95 | | 0.1604 | 8.0 | 7800 | 0.0673 | 0.6508 | 18.9505 | | 0.1585 | 9.0 | 8775 | 0.0665 | 0.6516 | 18.9505 | | 0.1512 | 10.0 | 9750 | 0.0652 | 0.6518 | 18.9508 | | 0.1543 | 11.0 | 10725 | 0.0646 | 0.653 | 18.9505 | | 0.155 | 12.0 | 11700 | 0.0639 | 0.6533 | 18.9505 | | 0.1506 | 13.0 | 12675 | 0.0633 | 0.6537 | 18.951 | | 0.1493 | 14.0 | 13650 | 0.0629 | 0.6538 | 18.951 | | 0.1486 | 15.0 | 14625 | 0.0628 | 0.6537 | 18.9513 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
gokuls/wav2vec2-base-finetuned-ic-slurp-wt_init-frz-v1
gokuls
2024-03-05T23:04:44Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2024-03-05T17:00:14Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ic-slurp-wt_init-frz-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ic-slurp-wt_init-frz-v1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.0306 - Accuracy: 0.0502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.9426 | 1.0 | 527 | 4.1870 | 0.0420 | | 3.7966 | 2.0 | 1055 | 4.0306 | 0.0502 | | 3.7149 | 3.0 | 1582 | 3.9582 | 0.0434 | | 3.6478 | 4.0 | 2110 | 3.9343 | 0.0427 | | 3.5037 | 5.0 | 2637 | 3.9302 | 0.0413 | | 3.4649 | 6.0 | 3165 | 3.9289 | 0.0474 | | 3.2427 | 7.0 | 3692 | 3.9650 | 0.0473 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.15.0
sparkyfina/mistral7binstruct_summarize
sparkyfina
2024-03-05T23:03:24Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
null
2024-03-05T22:30:40Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: mistralai/Mistral-7B-Instruct-v0.2 model-index: - name: mistral7binstruct_summarize results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral7binstruct_summarize This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.4700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 0.03 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7815 | 0.22 | 25 | 1.5691 | | 1.5606 | 0.43 | 50 | 1.4700 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
LarryAIDraw/LoRA_Nami
LarryAIDraw
2024-03-05T23:02:52Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-03-05T22:56:38Z
--- license: creativeml-openrail-m --- https://civitai.com/models/236693/lora-nami-one-piece-2-outfits
LarryAIDraw/nami_NOFACE_taaa0_7
LarryAIDraw
2024-03-05T23:02:07Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-03-05T22:54:49Z
--- license: creativeml-openrail-m --- https://civitai.com/models/142492/one-piece-series-nami
LarryAIDraw/haruna-09
LarryAIDraw
2024-03-05T23:01:48Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-03-05T22:54:00Z
--- license: creativeml-openrail-m --- https://civitai.com/models/263471/haruna-kai-ni-kancolle-or-7-outfits
BluetechOfficial/RMSDXL_Creative
BluetechOfficial
2024-03-05T23:00:44Z
8
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2024-03-05T22:50:51Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' output: url: images/goldenpyramidsart.jpeg base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: null --- # RMSDXL_Creative <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/BluetechOfficial/RMSDXL_Creative/tree/main) them in the Files & versions tab.
farooqkhan2840503/gemma-Instruct-Finetune-simpleinput
farooqkhan2840503
2024-03-05T22:59:37Z
5
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-05T22:00:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Casper0508/Casper_falcon_7b
Casper0508
2024-03-05T22:58:04Z
1
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:ybelkada/falcon-7b-sharded-bf16", "base_model:adapter:ybelkada/falcon-7b-sharded-bf16", "region:us" ]
null
2024-03-05T02:39:00Z
--- base_model: ybelkada/falcon-7b-sharded-bf16 tags: - generated_from_trainer model-index: - name: Casper_falcon_7b results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Casper_falcon_7b This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 - load_in_4bit: True - load_in_8bit: False ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 200 ### Training results ### Framework versions - PEFT 0.4.0 - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.13.1 - Tokenizers 0.15.2
jjovalle99/gemma7bit-lora-sql
jjovalle99
2024-03-05T22:57:20Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:google/gemma-7b", "base_model:adapter:google/gemma-7b", "license:other", "region:us" ]
null
2024-03-05T03:21:18Z
--- license: other library_name: peft tags: - trl - sft - generated_from_trainer base_model: google/gemma-7b datasets: - generator model-index: - name: gemma7bit-lora-sql results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gemma7bit-lora-sql This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.4155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1399 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 16.1657 | 0.06 | 20 | 13.6485 | | 7.8281 | 0.13 | 40 | 0.7808 | | 0.6243 | 0.19 | 60 | 0.5270 | | 0.5179 | 0.25 | 80 | 0.4859 | | 0.4908 | 0.32 | 100 | 0.4754 | | 0.4752 | 0.38 | 120 | 0.4600 | | 0.4877 | 0.45 | 140 | 0.4584 | | 0.4626 | 0.51 | 160 | 0.4560 | | 0.4569 | 0.57 | 180 | 0.4428 | | 0.4504 | 0.64 | 200 | 0.4354 | | 0.4432 | 0.7 | 220 | 0.4348 | | 0.4395 | 0.76 | 240 | 0.4317 | | 0.4338 | 0.83 | 260 | 0.4256 | | 0.4308 | 0.89 | 280 | 0.4260 | | 0.4283 | 0.95 | 300 | 0.4210 | | 0.4146 | 1.02 | 320 | 0.4225 | | 0.3848 | 1.08 | 340 | 0.4186 | | 0.3812 | 1.14 | 360 | 0.4185 | | 0.38 | 1.21 | 380 | 0.4200 | | 0.3795 | 1.27 | 400 | 0.4171 | | 0.3766 | 1.34 | 420 | 0.4174 | | 0.3772 | 1.4 | 440 | 0.4136 | | 0.3777 | 1.46 | 460 | 0.4148 | | 0.379 | 1.53 | 480 | 0.4155 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.0+cu118 - Datasets 2.18.0 - Tokenizers 0.15.2
anilerkul/crossing-outcome-random-splitting-model
anilerkul
2024-03-05T22:50:36Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-05T22:50:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LarryAIDraw/haruna_kantaicollection
LarryAIDraw
2024-03-05T22:48:24Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-01-02T17:50:48Z
--- license: creativeml-openrail-m --- https://civitai.com/models/131252/haruna-kantai-collection
chosenone80/arabert-ner-aner-test-1
chosenone80
2024-03-05T22:44:14Z
45
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-03-05T22:28:20Z
--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_keras_callback model-index: - name: chosenone80/arabert-ner-aner-test-1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # chosenone80/arabert-ner-aner-test-1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0208 - Validation Loss: 0.1766 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2485, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0208 | 0.1766 | 0 | ### Framework versions - Transformers 4.38.1 - TensorFlow 2.15.0 - Datasets 2.18.0 - Tokenizers 0.15.2
gokuls/wav2vec2-base-finetuned-ic-slurp-wt_init
gokuls
2024-03-05T22:40:09Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2024-03-05T14:54:16Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ic-slurp-wt_init results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ic-slurp-wt_init This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.8597 - Accuracy: 0.0627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.7961 | 1.0 | 527 | 3.9199 | 0.0400 | | 3.797 | 2.0 | 1055 | 3.9294 | 0.0520 | | 3.9174 | 3.0 | 1582 | 3.8597 | 0.0627 | | 3.9264 | 4.0 | 2110 | 3.8551 | 0.0627 | | 3.8772 | 5.0 | 2637 | 3.8744 | 0.0627 | | 3.9218 | 6.0 | 3165 | 3.8676 | 0.0627 | | 3.8898 | 7.0 | 3692 | 3.8515 | 0.0627 | | 3.9045 | 8.0 | 4220 | 3.8544 | 0.0627 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
titan0115/MITIS
titan0115
2024-03-05T22:39:06Z
0
0
null
[ "art", "anime", "en", "license:cc-by-nc-nd-4.0", "region:us" ]
null
2024-03-02T21:04:21Z
--- license: cc-by-nc-nd-4.0 language: - en tags: - art - anime --- # Model Card for Model ID Must draw art, anime ### Model Description good day to all, I present you my experiment, this is my first attempt to make my own model without using / denying the idea of merge - **Developed by:** titan0115 - **Funded by:** motivation - **Model type:** CHECKPOINT - **Language(s) (NLP):** English - **License:** cc-by-nc-nd-4.0 - **Finetuned from model:** absent
sweetfelinity/q-Taxi-v3
sweetfelinity
2024-03-05T22:34:12Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-03-05T22:34:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="sweetfelinity/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AlexandreManai/Taxi-v3
AlexandreManai
2024-03-05T22:32:07Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-03-05T22:32:06Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="AlexandreManai/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AlexandreManai/q-FrozenLake-v1-4x4-noSlippery
AlexandreManai
2024-03-05T22:28:34Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-03-05T22:28:31Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="AlexandreManai/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
akaistormherald/ToxicMist-v0.2-7B-DPO-gguf
akaistormherald
2024-03-05T22:28:14Z
7
1
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "dataset:unalignment/toxic-dpo-v0.2", "base_model:unsloth/zephyr-sft-bnb-4bit", "base_model:quantized:unsloth/zephyr-sft-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-05T22:05:08Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - gguf base_model: unsloth/zephyr-sft-bnb-4bit datasets: - unalignment/toxic-dpo-v0.2 --- # Uploaded model - **Developed by:** akaistormherald - **License:** apache-2.0 - **Finetuned from model :** unsloth/zephyr-sft-bnb-4bit Mistral7b + SFT + 4bit DPO training with unalignment/toxic-dpo-v0.2 == ToxicMist? ☣🌫 (GGUF)
jucamohedano/Phi1.5-openhermes-preferences-metamath
jucamohedano
2024-03-05T22:18:17Z
4
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:microsoft/phi-1_5", "base_model:adapter:microsoft/phi-1_5", "license:mit", "region:us" ]
null
2024-03-04T22:25:06Z
--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer base_model: microsoft/phi-1_5 datasets: - generator model-index: - name: Phi1.5-openhermes-preferences-metamath results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Phi1.5-openhermes-preferences-metamath This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
akaistormherald/ToxicMist-v0.2-7B-DPO
akaistormherald
2024-03-05T22:17:52Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "dpo", "conversational", "en", "dataset:unalignment/toxic-dpo-v0.2", "base_model:unsloth/zephyr-sft-bnb-4bit", "base_model:finetune:unsloth/zephyr-sft-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-03-05T20:40:33Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl - dpo base_model: unsloth/zephyr-sft-bnb-4bit datasets: - unalignment/toxic-dpo-v0.2 --- # Uploaded model - **Developed by:** akaistormherald - **License:** apache-2.0 - **Finetuned from model :** unsloth/zephyr-sft-bnb-4bit Mistral7b + SFT + 4bit DPO training with unalignment/toxic-dpo-v0.2 == ToxicMist? ☣🌫
Abraham007China/q-Taxi-v3
Abraham007China
2024-03-05T22:10:30Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-03-05T22:09:04Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Abraham007China/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Yuan274/whale-image-generator
Yuan274
2024-03-05T22:04:00Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-03-05T21:59:41Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### whale-image-generator Dreambooth model trained by Yuan274 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Weni/ZeroShot-3.3.26-Mistral-7b-Multilanguage-3.2.0
Weni
2024-03-05T22:00:39Z
0
0
peft
[ "peft", "safetensors", "mistral", "trl", "sft", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:25:19Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.2 model-index: - name: ZeroShot-3.3.26-Mistral-7b-Multilanguage-3.2.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ZeroShot-3.3.26-Mistral-7b-Multilanguage-3.2.0 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1164 | 0.06 | 100 | 0.1037 | | 0.1355 | 0.12 | 200 | 0.1051 | | 0.1015 | 0.19 | 300 | 0.1142 | | 0.1026 | 0.25 | 400 | 0.0992 | | 0.1002 | 0.31 | 500 | 0.1083 | | 0.0879 | 0.37 | 600 | 0.0894 | | 0.0778 | 0.43 | 700 | 0.0907 | | 0.0836 | 0.5 | 800 | 0.0747 | | 0.0642 | 0.56 | 900 | 0.0645 | | 0.0496 | 0.62 | 1000 | 0.0709 | | 0.06 | 0.68 | 1100 | 0.0603 | | 0.0614 | 0.74 | 1200 | 0.0567 | | 0.0538 | 0.81 | 1300 | 0.0478 | | 0.0524 | 0.87 | 1400 | 0.0449 | | 0.0323 | 0.93 | 1500 | 0.0439 | | 0.0498 | 0.99 | 1600 | 0.0434 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
kaustavbhattacharjee/finetuning-DistillBERT-imdb
kaustavbhattacharjee
2024-03-05T21:59:22Z
12
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-05T21:31:58Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-DistillBERT-3000-samples results: [] datasets: - imdb pipeline_tag: text-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-DistillBERT-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [IMDB](https://huggingface.co/datasets/imdb) dataset. It achieves the following results on the evaluation set: - Loss: 0.3396 - Accuracy: 0.87 - F1: 0.8730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
ogdanneedham/mistral-ls-0.1
ogdanneedham
2024-03-05T21:53:53Z
2
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-05T21:45:56Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tali1/autotrain-suricata-facebookai-roberta-large
tali1
2024-03-05T21:48:21Z
6
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "autotrain", "dataset:autotrain-suricata-facebookai-roberta-large/autotrain-data", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-05T21:47:40Z
--- tags: - autotrain - text-classification widget: - text: "I love AutoTrain" datasets: - autotrain-suricata-facebookai-roberta-large/autotrain-data --- # Model Trained Using AutoTrain - Problem type: Text Classification ## Validation Metrics loss: 2.317350149154663 f1_macro: 0.02437641723356009 f1_micro: 0.20574162679425836 f1_weighted: 0.07021341231867546 precision_macro: 0.014695830485304168 precision_micro: 0.20574162679425836 precision_weighted: 0.042329616995947894 recall_macro: 0.07142857142857142 recall_micro: 0.20574162679425836 recall_weighted: 0.20574162679425836 accuracy: 0.20574162679425836
mithegooie/code-search-net-tokenizer
mithegooie
2024-03-05T21:31:36Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-05T21:31:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Intel/demucs-openvino
Intel
2024-03-05T21:30:51Z
0
2
null
[ "license:mit", "region:us" ]
null
2024-03-05T21:18:28Z
--- license: mit --- # Demucs OpenVINO This repo stores OpenVINO(TM) models in IR format that are used to perform Music Separation. Currently, the models stored here (htdemucs_V4.xml, htdemucs_v4.bin) is a conversion of the Demucs v4 model, with some 'outer' operations (such as stft, istft) stripped out. This is intended to be used with the set of OpenVINO-based AI plugins for Audacity(R), here: https://github.com/intel/openvino-plugins-ai-audacity More specifically, see details of pure-C++ implementation of the htdemucs pipeline here: https://github.com/intel/openvino-plugins-ai-audacity/blob/main/mod-openvino/htdemucs.cpp This pipeline was ported from htdemucs.py, found here: https://github.com/facebookresearch/demucs # Citations: ``` @inproceedings{rouard2022hybrid, title={Hybrid Transformers for Music Source Separation}, author={Rouard, Simon and Massa, Francisco and D{\'e}fossez, Alexandre}, booktitle={ICASSP 23}, year={2023} } @inproceedings{defossez2021hybrid, title={Hybrid Spectrogram and Waveform Source Separation}, author={D{\'e}fossez, Alexandre}, booktitle={Proceedings of the ISMIR 2021 Workshop on Music Source Separation}, year={2021} } ``` ## Intel’s Human Rights Disclaimer: Intel is committed to respecting human rights and avoiding complicity in human rights abuses. See Intel's Global Human Rights Principles. Intel's products and software are intended only to be used in applications that do not cause or contribute to a violation of an internationally recognized human right.
Frase/tiny-bert-model-unsafe
Frase
2024-03-05T21:28:40Z
5
0
transformers
[ "transformers", "pytorch", "bert", "BERT", "MNLI", "NLI", "transformer", "pre-training", "en", "arxiv:1908.08962", "arxiv:2110.01518", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-03-05T21:28:39Z
--- language: - en license: - mit tags: - BERT - MNLI - NLI - transformer - pre-training --- *DISCLAIMER*: This repo demonstrates a picklebomb payload in pytorch that may go undetected by superficial scanning. The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert). This is one of the smaller pre-trained BERT variants, together with [bert-mini](https://huggingface.co/prajjwal1/bert-mini) [bert-small](https://huggingface.co/prajjwal1/bert-small) and [bert-medium](https://huggingface.co/prajjwal1/bert-medium). They were introduced in the study `Well-Read Students Learn Better: On the Importance of Pre-training Compact Models` ([arxiv](https://arxiv.org/abs/1908.08962)), and ported to HF for the study `Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics` ([arXiv](https://arxiv.org/abs/2110.01518)). These models are supposed to be trained on a downstream task. If you use the model, please consider citing both the papers: ``` @misc{bhargava2021generalization, title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics}, author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers}, year={2021}, eprint={2110.01518}, archivePrefix={arXiv}, primaryClass={cs.CL} } @article{DBLP:journals/corr/abs-1908-08962, author = {Iulia Turc and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {Well-Read Students Learn Better: The Impact of Student Initialization on Knowledge Distillation}, journal = {CoRR}, volume = {abs/1908.08962}, year = {2019}, url = {http://arxiv.org/abs/1908.08962}, eprinttype = {arXiv}, eprint = {1908.08962}, timestamp = {Thu, 29 Aug 2019 16:32:34 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1908-08962.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Config of this model: - `prajjwal1/bert-tiny` (L=2, H=128) [Model Link](https://huggingface.co/prajjwal1/bert-tiny) Other models to check out: - `prajjwal1/bert-mini` (L=4, H=256) [Model Link](https://huggingface.co/prajjwal1/bert-mini) - `prajjwal1/bert-small` (L=4, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-small) - `prajjwal1/bert-medium` (L=8, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-medium) Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli). Twitter: [@prajjwal_1](https://twitter.com/prajjwal_1)
ccourc23/fine-tuned-Whisper-Tiny-en-US
ccourc23
2024-03-05T21:27:57Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-25T12:30:32Z
--- language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: fine-tuned-Whisper-Tiny-en-US results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: minds14 - en(US) type: PolyAI/minds14 config: en-US split: train args: 'config: en-US, split: test' metrics: - name: Wer type: wer value: 0.3247210804462713 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-Whisper-Tiny-en-US This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the minds14 - en(US) dataset. It achieves the following results on the evaluation set: - Loss: 0.7793 - Wer Ortho: 0.3222 - Wer: 0.3247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 400 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:| | 0.0014 | 17.24 | 500 | 0.5901 | 0.3210 | 0.3188 | | 0.0003 | 34.48 | 1000 | 0.6579 | 0.3124 | 0.3142 | | 0.0002 | 51.72 | 1500 | 0.6892 | 0.3143 | 0.3165 | | 0.0001 | 68.97 | 2000 | 0.7129 | 0.3167 | 0.3194 | | 0.0001 | 86.21 | 2500 | 0.7330 | 0.3179 | 0.3206 | | 0.0 | 103.45 | 3000 | 0.7511 | 0.3191 | 0.3218 | | 0.0 | 120.69 | 3500 | 0.7653 | 0.3179 | 0.3206 | | 0.0 | 137.93 | 4000 | 0.7793 | 0.3222 | 0.3247 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2