modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-27 18:27:08
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-27 18:22:57
card
stringlengths
11
1.01M
Jinheng-2002/lora-pokemon-2-831
Jinheng-2002
2023-09-01T02:17:13Z
0
0
null
[ "tensorboard", "stable-diffusion", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "region:us" ]
null
2023-09-01T02:03:51Z
--- base_model: CompVis/stable-diffusion-v1-4 tags: - stable-diffusion inference: true ---
AdanLee/ppo-LunarLander-v2
AdanLee
2023-09-01T02:11:32Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T03:29:18Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 287.42 +/- 19.54 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) ```python import gymnasium from stable_baselines3 import PPO from stable_baselines3.common.env_util import make_vec_env from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.monitor import Monitor from huggingface_sb3 import load_from_hub repo_id = "AdanLee/ppo-LunarLander-v2" # The repo_id filename = "ppo-LunarLander-v2.zip" # The model filename.zip # When the model was trained on Python 3.8 the pickle protocol is 5 # But Python 3.6, 3.7 use protocol 4 # In order to get compatibility we need to: # 1. Install pickle5 (we done it at the beginning of the colab) # 2. Create a custom empty object we pass as parameter to PPO.load() custom_objects = { "learning_rate": 0.0, "lr_schedule": lambda _: 0.0, "clip_range": lambda _: 0.0, } checkpoint = load_from_hub(repo_id, filename) model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True) eval_env = Monitor(gym.make("LunarLander-v2")) mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") ... ```
tkoyama/marian-finetuned-kde4-en-to-fr
tkoyama
2023-09-01T01:50:54Z
103
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-31T23:37:38Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 52.92454808849736 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8556 - Bleu: 52.9245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
zzzotop/low-resource-data-quality-classification-demo-cat
zzzotop
2023-09-01T01:43:26Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T21:12:01Z
Demo exploring, amongst other things, the extent to which low-resource languages have poorer quality data (in terms of both tagging and more general usefulness) than high-resource counterparts. Inspired by the estimate that error rate of tagging in the corpus used was 10% higher in the LRL than it was in the HRL (Zotova et al 2020). Also demonstrated is cross-lingual transfer, akin to my earlier demos. BETO (dccuchile/bert-base-spanish-wwm-cased) finetuned for text classification on the Catalan portion of the Catalonia Independence Corpus (CIC) for 5 epochs. All Catalonian text entered will be classified as either in favour of, against, or neutral towards Catalonian independence. Significant preprocessing of dataset involved, including removal of the validation set and the reassignment of its data to the train and test sets. Learning rate 2e-5, batch size 4, weight decay 0.1. <b>Works best with long inputs, seems to associate topics about change and modernity with 'FAVOR' and those about history with 'AGAINST'. Generally skews 'AGAINST', probably overfitted.</b> Evaluated every epoch using F1 score with macro averaging:<br> 5 epochs: 0.716673<br> 10 epochs: 0.719966<br> 20 epochs (final): 0.740322
menoua/a2c-PandaReachDense-v2
menoua
2023-09-01T01:41:43Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "arxiv:2106.13687", "model-index", "region:us" ]
reinforcement-learning
2023-02-19T00:50:38Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.39 +/- 0.39 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ``` Panda Gym environments: [arxiv.org/abs/2106.13687](https://arxiv.org/abs/2106.13687)
dkqjrm/20230901052720
dkqjrm
2023-09-01T01:32:27Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T20:27:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230901052720' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230901052720 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.1565 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 340 | 0.1594 | 0.5 | | 0.1901 | 2.0 | 680 | 0.1620 | 0.5 | | 0.1693 | 3.0 | 1020 | 0.1564 | 0.5 | | 0.1693 | 4.0 | 1360 | 0.1563 | 0.5 | | 0.1657 | 5.0 | 1700 | 0.1575 | 0.5 | | 0.1638 | 6.0 | 2040 | 0.1594 | 0.5 | | 0.1638 | 7.0 | 2380 | 0.1557 | 0.5 | | 0.1632 | 8.0 | 2720 | 0.1568 | 0.5 | | 0.1621 | 9.0 | 3060 | 0.1606 | 0.5 | | 0.1621 | 10.0 | 3400 | 0.1614 | 0.5 | | 0.1661 | 11.0 | 3740 | 0.1569 | 0.5 | | 0.1641 | 12.0 | 4080 | 0.1570 | 0.5 | | 0.1641 | 13.0 | 4420 | 0.1555 | 0.5 | | 0.1582 | 14.0 | 4760 | 0.1627 | 0.5 | | 0.1598 | 15.0 | 5100 | 0.1558 | 0.5 | | 0.1598 | 16.0 | 5440 | 0.1557 | 0.5 | | 0.16 | 17.0 | 5780 | 0.1558 | 0.5 | | 0.1571 | 18.0 | 6120 | 0.1560 | 0.5 | | 0.1571 | 19.0 | 6460 | 0.1553 | 0.5 | | 0.1594 | 20.0 | 6800 | 0.1556 | 0.5 | | 0.1581 | 21.0 | 7140 | 0.1635 | 0.5 | | 0.1581 | 22.0 | 7480 | 0.1562 | 0.5 | | 0.1585 | 23.0 | 7820 | 0.1578 | 0.5 | | 0.1574 | 24.0 | 8160 | 0.1561 | 0.5 | | 0.1585 | 25.0 | 8500 | 0.1561 | 0.5 | | 0.1585 | 26.0 | 8840 | 0.1567 | 0.5 | | 0.1573 | 27.0 | 9180 | 0.1559 | 0.5 | | 0.1569 | 28.0 | 9520 | 0.1624 | 0.5 | | 0.1569 | 29.0 | 9860 | 0.1559 | 0.5 | | 0.1578 | 30.0 | 10200 | 0.1570 | 0.5 | | 0.1569 | 31.0 | 10540 | 0.1598 | 0.5 | | 0.1569 | 32.0 | 10880 | 0.1564 | 0.5 | | 0.1569 | 33.0 | 11220 | 0.1611 | 0.5 | | 0.1567 | 34.0 | 11560 | 0.1578 | 0.5 | | 0.1567 | 35.0 | 11900 | 0.1567 | 0.5 | | 0.1573 | 36.0 | 12240 | 0.1562 | 0.5 | | 0.1564 | 37.0 | 12580 | 0.1574 | 0.5 | | 0.1564 | 38.0 | 12920 | 0.1609 | 0.5 | | 0.1553 | 39.0 | 13260 | 0.1574 | 0.5 | | 0.156 | 40.0 | 13600 | 0.1578 | 0.5 | | 0.156 | 41.0 | 13940 | 0.1580 | 0.5 | | 0.1564 | 42.0 | 14280 | 0.1589 | 0.5 | | 0.1551 | 43.0 | 14620 | 0.1564 | 0.5 | | 0.1551 | 44.0 | 14960 | 0.1579 | 0.5 | | 0.1563 | 45.0 | 15300 | 0.1569 | 0.5 | | 0.1555 | 46.0 | 15640 | 0.1564 | 0.5 | | 0.1555 | 47.0 | 15980 | 0.1558 | 0.5 | | 0.1568 | 48.0 | 16320 | 0.1569 | 0.5 | | 0.1554 | 49.0 | 16660 | 0.1560 | 0.5 | | 0.1558 | 50.0 | 17000 | 0.1571 | 0.5 | | 0.1558 | 51.0 | 17340 | 0.1564 | 0.5 | | 0.1554 | 52.0 | 17680 | 0.1565 | 0.5 | | 0.1567 | 53.0 | 18020 | 0.1573 | 0.5 | | 0.1567 | 54.0 | 18360 | 0.1567 | 0.5 | | 0.1556 | 55.0 | 18700 | 0.1563 | 0.5 | | 0.1555 | 56.0 | 19040 | 0.1566 | 0.5 | | 0.1555 | 57.0 | 19380 | 0.1561 | 0.5 | | 0.1551 | 58.0 | 19720 | 0.1559 | 0.5 | | 0.156 | 59.0 | 20060 | 0.1571 | 0.5 | | 0.156 | 60.0 | 20400 | 0.1561 | 0.5 | | 0.155 | 61.0 | 20740 | 0.1569 | 0.5 | | 0.1548 | 62.0 | 21080 | 0.1561 | 0.5 | | 0.1548 | 63.0 | 21420 | 0.1561 | 0.5 | | 0.1542 | 64.0 | 21760 | 0.1584 | 0.5 | | 0.1562 | 65.0 | 22100 | 0.1566 | 0.5 | | 0.1562 | 66.0 | 22440 | 0.1565 | 0.5 | | 0.1528 | 67.0 | 22780 | 0.1562 | 0.5 | | 0.1562 | 68.0 | 23120 | 0.1566 | 0.5 | | 0.1562 | 69.0 | 23460 | 0.1562 | 0.5 | | 0.155 | 70.0 | 23800 | 0.1568 | 0.5 | | 0.1544 | 71.0 | 24140 | 0.1566 | 0.5 | | 0.1544 | 72.0 | 24480 | 0.1561 | 0.5 | | 0.1543 | 73.0 | 24820 | 0.1562 | 0.5 | | 0.1546 | 74.0 | 25160 | 0.1563 | 0.5 | | 0.1542 | 75.0 | 25500 | 0.1563 | 0.5 | | 0.1542 | 76.0 | 25840 | 0.1565 | 0.5 | | 0.1548 | 77.0 | 26180 | 0.1566 | 0.5 | | 0.1543 | 78.0 | 26520 | 0.1563 | 0.5 | | 0.1543 | 79.0 | 26860 | 0.1567 | 0.5 | | 0.1542 | 80.0 | 27200 | 0.1565 | 0.5 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
mke10/distilbert-base-uncased-finetuned-cola
mke10
2023-09-01T01:08:47Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-29T15:20:28Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5357575991513603 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8210 - Matthews Correlation: 0.5358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.528 | 1.0 | 535 | 0.4763 | 0.4464 | | 0.3571 | 2.0 | 1070 | 0.5180 | 0.4975 | | 0.2304 | 3.0 | 1605 | 0.6082 | 0.5137 | | 0.1765 | 4.0 | 2140 | 0.7750 | 0.5255 | | 0.1316 | 5.0 | 2675 | 0.8210 | 0.5358 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Plumbear/distilhubert-finetuned-gtzan
Plumbear
2023-09-01T01:04:56Z
167
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-30T19:49:21Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.86 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5698 - Accuracy: 0.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5773 | 1.0 | 75 | 0.7146 | 0.84 | | 0.4322 | 2.0 | 150 | 0.6362 | 0.82 | | 0.445 | 3.0 | 225 | 0.5768 | 0.88 | | 0.2764 | 4.0 | 300 | 0.5698 | 0.86 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
jaober/ppo-LunarLander-v2
jaober
2023-09-01T00:47:10Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-01T00:46:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 261.42 +/- 20.73 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Dawnstarhunter/DialoGPT-medium-Eveline
Dawnstarhunter
2023-09-01T00:12:55Z
151
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-31T23:43:42Z
--- tags: - conversational ---
kearney/message-genre
kearney
2023-09-01T00:01:03Z
106
2
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T20:41:51Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: message-genre results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # message-genre This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5875 - Accuracy: 0.4339 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.06 | 100 | 1.8239 | 0.3638 | | No log | 0.13 | 200 | 1.7266 | 0.3971 | | No log | 0.19 | 300 | 1.6873 | 0.4040 | | No log | 0.25 | 400 | 1.6609 | 0.4188 | | 1.8118 | 0.32 | 500 | 1.6674 | 0.4048 | | 1.8118 | 0.38 | 600 | 1.6381 | 0.4172 | | 1.8118 | 0.45 | 700 | 1.6437 | 0.4156 | | 1.8118 | 0.51 | 800 | 1.6378 | 0.4143 | | 1.8118 | 0.57 | 900 | 1.6301 | 0.4214 | | 1.6738 | 0.64 | 1000 | 1.6106 | 0.4320 | | 1.6738 | 0.7 | 1100 | 1.6089 | 0.4259 | | 1.6738 | 0.76 | 1200 | 1.5988 | 0.4299 | | 1.6738 | 0.83 | 1300 | 1.5951 | 0.4347 | | 1.6738 | 0.89 | 1400 | 1.5896 | 0.4320 | | 1.6488 | 0.96 | 1500 | 1.5875 | 0.4339 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.3
fapont/lora-trained-xl-colab-gerard-2
fapont
2023-08-31T23:49:38Z
4
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-31T23:23:34Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of gerard atero tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - fapont/lora-trained-xl-colab-gerard-2 These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of gerard atero using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
jcrkn/wav2vec2-large-xls-r-300m-bretonwelsh-colab
jcrkn
2023-08-31T23:43:57Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_13_0", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-30T19:37:36Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-bretonwelsh-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: cy split: test args: cy metrics: - name: Wer type: wer value: 0.29761332022507164 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bretonwelsh-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4506 - Wer: 0.2976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9503 | 0.98 | 800 | 0.8330 | 0.7296 | | 0.6531 | 1.95 | 1600 | 0.5592 | 0.5470 | | 0.4637 | 2.93 | 2400 | 0.4711 | 0.4539 | | 0.3449 | 3.91 | 3200 | 0.4484 | 0.4116 | | 0.2694 | 4.88 | 4000 | 0.4313 | 0.3860 | | 0.2087 | 5.86 | 4800 | 0.4115 | 0.3616 | | 0.1649 | 6.84 | 5600 | 0.4105 | 0.3378 | | 0.1313 | 7.81 | 6400 | 0.4409 | 0.3236 | | 0.1079 | 8.79 | 7200 | 0.4402 | 0.3093 | | 0.0897 | 9.77 | 8000 | 0.4506 | 0.2976 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
yaystevek/a2c-PandaPickAndPlace-v3
yaystevek
2023-08-31T23:34:05Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaPickAndPlace-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-31T23:28:22Z
--- library_name: stable-baselines3 tags: - PandaPickAndPlace-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaPickAndPlace-v3 type: PandaPickAndPlace-v3 metrics: - type: mean_reward value: -50.00 +/- 0.00 name: mean_reward verified: false --- # **A2C** Agent playing **PandaPickAndPlace-v3** This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
TomyAI/test
TomyAI
2023-08-31T23:19:42Z
0
2
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-13T09:52:31Z
--- license: creativeml-openrail-m ---
davera-017/a2c-PandaReachDense-v3
davera-017
2023-08-31T23:09:30Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-31T23:04:17Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.21 +/- 0.10 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Snearec/detectorMalezasYolo8
Snearec
2023-08-31T23:05:04Z
3
0
ultralytics
[ "ultralytics", "ultralyticsplus", "yolov8", "yolo", "vision", "object-detection", "pytorch", "model-index", "region:us" ]
object-detection
2023-06-15T14:05:53Z
--- tags: - ultralyticsplus - ultralytics - yolov8 - yolo - vision - object-detection - pytorch library_name: ultralytics library_version: 8.0.4 inference: false model-index: - name: ultralyticsplus/yolov8s results: - task: type: object-detection metrics: - type: precision value: 0.449 name: mAP pipeline_tag: object-detection ---
MAG1965/pilar-rubio-beautiful-face-model
MAG1965
2023-08-31T22:51:59Z
21
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-31T22:47:59Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Pilar-Rubio-beautiful-face-model Dreambooth model trained by MAG1965 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Susara/JapanesePolite
Susara
2023-08-31T22:49:03Z
0
1
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-08-31T22:49:03Z
--- license: bigscience-openrail-m ---
fapont/lora-trained-xl-colab-gerard
fapont
2023-08-31T22:45:57Z
5
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-31T21:47:13Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of gerard atero tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - fapont/lora-trained-xl-colab-gerard These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of gerard atero using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
yaystevek/a2c-PandaReachDense-v3
yaystevek
2023-08-31T22:31:24Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-31T22:25:36Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.26 +/- 0.10 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AbdelrahmanFakhry/finetuned-gpt2-multi-QA-Generation
AbdelrahmanFakhry
2023-08-31T22:11:08Z
163
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-29T15:28:03Z
--- language: - en --- # Model Card: Context-to-QA-Generation using GPT-2 # Description This model is designed to generate questions, answers, hints, and multiple-choice options based on a given input context. It uses a fine-tuned GPT-2 model that has been trained to perform the task of generating questions and related content for a provided context. The model is trained to understand and follow the structure of providing questions, answers, hints, and multiple-choice options. # Intended Use This model is intended to be used for generating questions, answers, hints, and multiple-choice options based on a given context. It can be used for educational purposes, exam preparation, content creation, and other applications where automatic question generation is needed. # Limitations The quality of generated questions, answers, and hints depends on the quality and complexity of the input context. Simpler contexts are more likely to yield accurate and coherent outputs. The model may sometimes generate incorrect or nonsensical content, especially when the input context is complex or ambiguous. The model's output may be influenced by biases present in the training data, potentially leading to biased or inappropriate content generation. ```python #!pip install transformers from transformers import AutoTokenizer, GPT2LMHeadModel checkpoint = "AbdelrahmanFakhry/finetuned-gpt2-multi-QA-Generation" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = GPT2LMHeadModel.from_pretrained(checkpoint) # Retrieve a test question from the test dataset #test_text = test_dataset.to_dict()['question'][3] # test_text should be like that test_text = '''Below is input text, the task is to generate questions from input text and multiple answers for each question and provide hint and correct answer for each question.\n\n### Input:\n<hl> Local intercellular communication is the province of the paracrine , also called a paracrine factor , which is a chemical that induces a response in neighboring cells . <hl> Although paracrines may enter the bloodstream , their concentration is generally too low to elicit a response from distant tissues . A familiar example to those with asthma is histamine , a paracrine that is released by immune cells in the bronchial tree . Histamine causes the smooth muscle cells of the bronchi to constrict , narrowing the airways . Another example is the neurotransmitters of the nervous system , which act only locally within the synaptic cleft .\n\n### Response: ''' def inference(text, model, tokenizer, max_input_tokens=3000, max_output_tokens=500): """ Generate text continuation based on the given input text using a pretrained model. Args: text (str): The input text for which to generate a continuation. model (PreTrainedModel): The pretrained model to use for text generation. tokenizer (PreTrainedTokenizer): The tokenizer used to preprocess the input and decode the output. max_input_tokens (int): Maximum number of tokens allowed for the input text. max_output_tokens (int): Maximum number of tokens in the generated output. Returns: generated_text_answer (str): The generated text continuation. """ # Tokenize the input text input_ids = tokenizer.encode( text, return_tensors="pt", truncation=True, max_length=max_input_tokens ) # Generate text continuation device = model.device generated_tokens_with_prompt = model.generate( input_ids=input_ids.to(device), max_length=max_output_tokens ) # Decode the generated tokens into text generated_text_with_prompt = tokenizer.batch_decode(generated_tokens_with_prompt, skip_special_tokens=True) # Extract the generated text continuation without the input prompt generated_text_answer = generated_text_with_prompt[0][len(text):] generated_text_answer = generated_text_answer.lstrip(" '][{").rstrip(" '][{}") return generated_text_answer generated_answer = inference(test_text, model, tokenizer) #Generated Answer should be look like that: ''' "Choices': ['paracrine factor', 'paracrine factor', 'paracrine factor II', 'paracrine factor III'], 'Question': 'Which of the following is not a paracrine factor?', 'answer': 'paracrine factor II', 'hint': 'Local intercellular communication is the province of the paracrine, also called a paracrine factor, which is a chemical that induces a response in neighboring cells." ''' print('Generated Answer:') print(generated_answer) ``` # Acknowledgments This model is built upon the GPT-2 architecture and fine-tuned using a custom dataset for the specific task of generating questions, answers, hints, and choices. # Disclaimer This model's performance may vary depending on the input context and task requirements. It is recommended to review and edit the generated content before using it in critical applications. The model's limitations and biases should also be considered when interpreting its outputs.
shivankarzz/me
shivankarzz
2023-08-31T22:06:16Z
2
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-31T20:16:53Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a shivankar tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
guidoivetta/bert-base-spanish-wwm-cased-finetuned-wine-reviews_spanish
guidoivetta
2023-08-31T21:46:54Z
112
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "base_model:dccuchile/bert-base-spanish-wwm-cased", "base_model:finetune:dccuchile/bert-base-spanish-wwm-cased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-31T21:34:22Z
--- base_model: dccuchile/bert-base-spanish-wwm-cased tags: - generated_from_trainer model-index: - name: bert-base-spanish-wwm-cased-finetuned-wine-reviews_spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-spanish-wwm-cased-finetuned-wine-reviews_spanish This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3631 | 1.0 | 248 | 1.8869 | | 1.9213 | 2.0 | 496 | 1.7766 | | 1.8088 | 3.0 | 744 | 1.6643 | | 1.7509 | 4.0 | 992 | 1.6665 | | 1.7232 | 5.0 | 1240 | 1.6300 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
franziskaM/b24-wav2vec2-large-xls-r-romansh-colab
franziskaM
2023-08-31T21:45:00Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_13_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-31T11:01:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: b24-wav2vec2-large-xls-r-romansh-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: rm-vallader split: test args: rm-vallader metrics: - name: Wer type: wer value: 0.2624592454587797 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # b24-wav2vec2-large-xls-r-romansh-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3401 - Wer: 0.2625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.4471 | 0.76 | 100 | 3.3151 | 1.0 | | 3.0392 | 1.52 | 200 | 3.0118 | 1.0 | | 2.9633 | 2.29 | 300 | 3.0023 | 1.0 | | 2.9643 | 3.05 | 400 | 2.9365 | 1.0 | | 2.9381 | 3.81 | 500 | 2.9319 | 1.0 | | 2.9411 | 4.58 | 600 | 2.9264 | 1.0 | | 2.9407 | 5.34 | 700 | 2.9141 | 1.0 | | 2.9027 | 6.11 | 800 | 2.8848 | 1.0 | | 2.8833 | 6.87 | 900 | 2.8796 | 0.9988 | | 2.8805 | 7.63 | 1000 | 2.8679 | 0.9956 | | 2.7051 | 8.4 | 1100 | 1.8944 | 1.0 | | 1.343 | 9.16 | 1200 | 0.7785 | 0.6970 | | 0.8156 | 9.92 | 1300 | 0.5659 | 0.5824 | | 0.591 | 10.68 | 1400 | 0.4982 | 0.5163 | | 0.488 | 11.45 | 1500 | 0.4421 | 0.4299 | | 0.4056 | 12.21 | 1600 | 0.3927 | 0.3959 | | 0.3488 | 12.97 | 1700 | 0.4095 | 0.3910 | | 0.2977 | 13.74 | 1800 | 0.3833 | 0.3687 | | 0.273 | 14.5 | 1900 | 0.3690 | 0.3388 | | 0.2601 | 15.27 | 2000 | 0.3505 | 0.3121 | | 0.2258 | 16.03 | 2100 | 0.3577 | 0.3121 | | 0.2122 | 16.79 | 2200 | 0.3467 | 0.3018 | | 0.2095 | 17.56 | 2300 | 0.3361 | 0.2951 | | 0.1719 | 18.32 | 2400 | 0.3572 | 0.2948 | | 0.1722 | 19.08 | 2500 | 0.3380 | 0.2857 | | 0.1634 | 19.84 | 2600 | 0.3516 | 0.2883 | | 0.1592 | 20.61 | 2700 | 0.3374 | 0.2846 | | 0.153 | 21.37 | 2800 | 0.3395 | 0.2783 | | 0.1479 | 22.14 | 2900 | 0.3336 | 0.2729 | | 0.1443 | 22.9 | 3000 | 0.3234 | 0.2669 | | 0.1339 | 23.66 | 3100 | 0.3345 | 0.2664 | | 0.1149 | 24.43 | 3200 | 0.3369 | 0.2664 | | 0.1205 | 25.19 | 3300 | 0.3470 | 0.2660 | | 0.1251 | 25.95 | 3400 | 0.3319 | 0.2629 | | 0.1201 | 26.71 | 3500 | 0.3381 | 0.2667 | | 0.1107 | 27.48 | 3600 | 0.3538 | 0.2655 | | 0.1117 | 28.24 | 3700 | 0.3423 | 0.2625 | | 0.1104 | 29.01 | 3800 | 0.3398 | 0.2608 | | 0.104 | 29.77 | 3900 | 0.3401 | 0.2625 | ### Framework versions - Transformers 4.26.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
AndrzejDD/lora-trained-xl
AndrzejDD
2023-08-31T21:39:17Z
2
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-07-27T09:32:40Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - AndrzejDD/lora-trained-xl These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
EmirhanExecute/CartPole-try2
EmirhanExecute
2023-08-31T21:26:41Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-31T21:26:33Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-try2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
EmirhanExecute/Pixelcopter-PLE-try2
EmirhanExecute
2023-08-31T21:25:48Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-31T21:25:39Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-try2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
vaiibhavgupta/finetuned-bleurt-large
vaiibhavgupta
2023-08-31T21:23:37Z
108
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "Automated Answer Scoring", "en", "dataset:MultiRC", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T15:25:12Z
--- license: apache-2.0 language: - en metrics: - accuracy - f1 library_name: transformers pipeline_tag: text-classification datasets: - MultiRC tags: - Automated Answer Scoring ---
databio/r2v-ChIP-atlas-hg38
databio
2023-08-31T21:16:32Z
0
0
null
[ "region:us" ]
null
2023-08-01T01:05:08Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Region2Vec ChIP-atlas hg38 ## Model Details ### Model Description This is a region2vec model trained on the hg38 ChIP-atlas ATAC-seq data - **Developed by:** Nathan LeRoy - **Model type:** Region2Vec - **Language(s) (NLP):** hg38 ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/databio/geniml - **Paper [optional]:** https://academic.oup.com/bioinformatics/article/37/23/4299/6307720 ## Uses This model can be used to generate embeddings of genomic regions or region sets. Once embeddings are obtained, they can be directly used for clustering, classification, or search and retrieval tasks. It is limited to hg38. It is not recommended to use this model for data outside ATAC-seq. ## How to Get Started with the Model You can download and start encoding new genomic region data using the following code: ```python from gitk.region2vec import Region2VecExModel model = Region2VecExModel("databio/r2v-ChIP-atlas") embeddings = model.encode("path/to/file.bed") print(embeddings.shape) ``` [More Information Needed] ## Training Details ### Training Data TODO
xoumyax/yaragen1-xoumyax
xoumyax
2023-08-31T21:11:38Z
151
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-08T00:17:56Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: yaragen1-xoumyax results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # yaragen1-xoumyax This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
yethmasoo/distilroberta-base-finetuned-wikitext2
yethmasoo
2023-08-31T20:44:17Z
194
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-31T20:35:29Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0845 | 1.0 | 2406 | 1.9272 | | 1.9948 | 2.0 | 4812 | 1.8685 | | 1.9425 | 3.0 | 7218 | 1.8560 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.2
yethmasoo/distilgpt2-finetuned-wikitext2
yethmasoo
2023-08-31T20:32:28Z
259
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-31T19:55:15Z
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6412 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7558 | 1.0 | 2334 | 3.6652 | | 3.6404 | 2.0 | 4668 | 3.6465 | | 3.5918 | 3.0 | 7002 | 3.6412 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.2
dkqjrm/20230901000318
dkqjrm
2023-08-31T20:27:32Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T15:03:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230901000318' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230901000318 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.1391 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 340 | 0.1391 | 0.5 | | 0.1491 | 2.0 | 680 | 0.1390 | 0.5 | | 0.1436 | 3.0 | 1020 | 0.1392 | 0.5 | | 0.1436 | 4.0 | 1360 | 0.1396 | 0.5 | | 0.1421 | 5.0 | 1700 | 0.1444 | 0.5 | | 0.1411 | 6.0 | 2040 | 0.1388 | 0.5 | | 0.1411 | 7.0 | 2380 | 0.1390 | 0.5 | | 0.142 | 8.0 | 2720 | 0.1388 | 0.5 | | 0.1402 | 9.0 | 3060 | 0.1392 | 0.5 | | 0.1402 | 10.0 | 3400 | 0.1396 | 0.5 | | 0.1414 | 11.0 | 3740 | 0.1389 | 0.5 | | 0.141 | 12.0 | 4080 | 0.1390 | 0.5 | | 0.141 | 13.0 | 4420 | 0.1396 | 0.5 | | 0.1407 | 14.0 | 4760 | 0.1421 | 0.5 | | 0.1425 | 15.0 | 5100 | 0.1411 | 0.5 | | 0.1425 | 16.0 | 5440 | 0.1397 | 0.5 | | 0.1417 | 17.0 | 5780 | 0.1388 | 0.5 | | 0.1393 | 18.0 | 6120 | 0.1397 | 0.5 | | 0.1393 | 19.0 | 6460 | 0.1409 | 0.5 | | 0.1406 | 20.0 | 6800 | 0.1389 | 0.5 | | 0.1404 | 21.0 | 7140 | 0.1391 | 0.5 | | 0.1404 | 22.0 | 7480 | 0.1404 | 0.5 | | 0.1406 | 23.0 | 7820 | 0.1398 | 0.5 | | 0.1399 | 24.0 | 8160 | 0.1389 | 0.5 | | 0.1411 | 25.0 | 8500 | 0.1388 | 0.5 | | 0.1411 | 26.0 | 8840 | 0.1398 | 0.5 | | 0.1405 | 27.0 | 9180 | 0.1388 | 0.5 | | 0.1399 | 28.0 | 9520 | 0.1398 | 0.5 | | 0.1399 | 29.0 | 9860 | 0.1421 | 0.5 | | 0.1406 | 30.0 | 10200 | 0.1407 | 0.5 | | 0.14 | 31.0 | 10540 | 0.1388 | 0.5 | | 0.14 | 32.0 | 10880 | 0.1408 | 0.5 | | 0.1402 | 33.0 | 11220 | 0.1402 | 0.5 | | 0.1418 | 34.0 | 11560 | 0.1386 | 0.5 | | 0.1418 | 35.0 | 11900 | 0.1385 | 0.5 | | 0.139 | 36.0 | 12240 | 0.1374 | 0.5 | | 0.1371 | 37.0 | 12580 | 0.1408 | 0.5 | | 0.1371 | 38.0 | 12920 | 0.1427 | 0.5 | | 0.1353 | 39.0 | 13260 | 0.1379 | 0.5 | | 0.1346 | 40.0 | 13600 | 0.1398 | 0.5 | | 0.1346 | 41.0 | 13940 | 0.1412 | 0.5 | | 0.1343 | 42.0 | 14280 | 0.1373 | 0.5 | | 0.1329 | 43.0 | 14620 | 0.1386 | 0.5 | | 0.1329 | 44.0 | 14960 | 0.1374 | 0.5 | | 0.1335 | 45.0 | 15300 | 0.1387 | 0.5 | | 0.1319 | 46.0 | 15640 | 0.1366 | 0.5 | | 0.1319 | 47.0 | 15980 | 0.1371 | 0.5 | | 0.1326 | 48.0 | 16320 | 0.1395 | 0.5 | | 0.1313 | 49.0 | 16660 | 0.1379 | 0.5 | | 0.131 | 50.0 | 17000 | 0.1401 | 0.5 | | 0.131 | 51.0 | 17340 | 0.1417 | 0.5 | | 0.1302 | 52.0 | 17680 | 0.1390 | 0.5 | | 0.1313 | 53.0 | 18020 | 0.1367 | 0.5 | | 0.1313 | 54.0 | 18360 | 0.1392 | 0.5 | | 0.13 | 55.0 | 18700 | 0.1381 | 0.5 | | 0.1299 | 56.0 | 19040 | 0.1397 | 0.5 | | 0.1299 | 57.0 | 19380 | 0.1381 | 0.5 | | 0.1293 | 58.0 | 19720 | 0.1376 | 0.5 | | 0.13 | 59.0 | 20060 | 0.1376 | 0.5 | | 0.13 | 60.0 | 20400 | 0.1395 | 0.5 | | 0.1291 | 61.0 | 20740 | 0.1385 | 0.5 | | 0.129 | 62.0 | 21080 | 0.1385 | 0.5 | | 0.129 | 63.0 | 21420 | 0.1377 | 0.5 | | 0.1282 | 64.0 | 21760 | 0.1390 | 0.5 | | 0.1297 | 65.0 | 22100 | 0.1389 | 0.5 | | 0.1297 | 66.0 | 22440 | 0.1369 | 0.5 | | 0.1267 | 67.0 | 22780 | 0.1395 | 0.5 | | 0.129 | 68.0 | 23120 | 0.1403 | 0.5 | | 0.129 | 69.0 | 23460 | 0.1390 | 0.5 | | 0.1282 | 70.0 | 23800 | 0.1393 | 0.5 | | 0.1277 | 71.0 | 24140 | 0.1396 | 0.5 | | 0.1277 | 72.0 | 24480 | 0.1391 | 0.5 | | 0.1273 | 73.0 | 24820 | 0.1389 | 0.5 | | 0.1279 | 74.0 | 25160 | 0.1398 | 0.5 | | 0.1272 | 75.0 | 25500 | 0.1393 | 0.5 | | 0.1272 | 76.0 | 25840 | 0.1392 | 0.5 | | 0.1277 | 77.0 | 26180 | 0.1397 | 0.5 | | 0.1271 | 78.0 | 26520 | 0.1386 | 0.5 | | 0.1271 | 79.0 | 26860 | 0.1394 | 0.5 | | 0.127 | 80.0 | 27200 | 0.1391 | 0.5 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
mindadeepam/setfit-hing-mbert-mixed-st-multiclass
mindadeepam
2023-08-31T20:09:43Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-08-31T20:09:14Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # mindadeepam/setfit-hing-mbert-mixed-st-multiclass This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("mindadeepam/setfit-hing-mbert-mixed-st-multiclass") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
tkoyama/distilbert-base-uncased-finetuned-imdb
tkoyama
2023-08-31T20:07:54Z
99
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-31T20:04:26Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7024 | 1.0 | 157 | 2.4968 | | 2.5794 | 2.0 | 314 | 2.4281 | | 2.5354 | 3.0 | 471 | 2.4509 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
yaystevek/ppo-PyramidsTraining
yaystevek
2023-08-31T19:55:45Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-31T19:55:36Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: yaystevek/ppo-PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ThuyNT03/xlm-roberta-base-Final_Mixed-aug_backtranslation
ThuyNT03
2023-08-31T19:54:15Z
91
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T19:49:29Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_backtranslation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-aug_backtranslation This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2392 - Accuracy: 0.71 - F1: 0.7021 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0111 | 1.0 | 87 | 0.8146 | 0.64 | 0.5888 | | 0.7211 | 2.0 | 174 | 0.7209 | 0.74 | 0.7347 | | 0.5231 | 3.0 | 261 | 0.8348 | 0.7 | 0.6778 | | 0.3879 | 4.0 | 348 | 0.7918 | 0.75 | 0.7462 | | 0.3063 | 5.0 | 435 | 0.9875 | 0.7 | 0.6906 | | 0.2411 | 6.0 | 522 | 1.1185 | 0.72 | 0.7144 | | 0.2316 | 7.0 | 609 | 1.1889 | 0.69 | 0.6845 | | 0.1868 | 8.0 | 696 | 1.2392 | 0.71 | 0.7021 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.14.4 - Tokenizers 0.13.3
davera-017/ppo-rnd-Pyramids
davera-017
2023-08-31T19:46:18Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-31T19:46:11Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: davera-017/ppo-rnd-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
tgoktug/my_bert_classification_model
tgoktug
2023-08-31T19:32:12Z
53
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T19:09:00Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: tgoktug/my_bert_classification_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tgoktug/my_bert_classification_model This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5157 - Validation Loss: 1.1278 - Train Accuracy: 0.5596 - Epoch: 6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.0725 | 0.8868 | 0.6163 | 0 | | 0.8197 | 0.8660 | 0.6323 | 1 | | 0.7354 | 0.8494 | 0.6046 | 2 | | 0.6645 | 0.9047 | 0.6080 | 3 | | 0.6108 | 0.9597 | 0.5914 | 4 | | 0.5581 | 1.0378 | 0.5713 | 5 | | 0.5157 | 1.1278 | 0.5596 | 6 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/PhoBERT-Final_Mixed-aug_backtranslation
ThuyNT03
2023-08-31T19:22:33Z
93
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:vinai/phobert-base-v2", "base_model:finetune:vinai/phobert-base-v2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T19:16:18Z
--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-Final_Mixed-aug_backtranslation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PhoBERT-Final_Mixed-aug_backtranslation This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1690 - Accuracy: 0.69 - F1: 0.6841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8783 | 1.0 | 87 | 0.7582 | 0.71 | 0.7013 | | 0.5891 | 2.0 | 174 | 0.7106 | 0.7 | 0.6957 | | 0.4547 | 3.0 | 261 | 0.8682 | 0.68 | 0.6639 | | 0.3314 | 4.0 | 348 | 0.9565 | 0.69 | 0.6772 | | 0.2432 | 5.0 | 435 | 1.0495 | 0.69 | 0.6841 | | 0.1795 | 6.0 | 522 | 1.1215 | 0.67 | 0.6619 | | 0.1465 | 7.0 | 609 | 1.1350 | 0.67 | 0.6669 | | 0.1116 | 8.0 | 696 | 1.1690 | 0.69 | 0.6841 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
SlyEcho/open_llama_3b_gguf
SlyEcho
2023-08-31T19:18:53Z
26
0
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-31T16:39:53Z
--- license: apache-2.0 --- # gguf versions of OpenLLaMa 3B - Version: 1T tokens final version - Project: [OpenLLaMA: An Open Reproduction of LLaMA](https://github.com/openlm-research/open_llama) - Model: [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) - [llama.cpp](https://github.com/ggerganov/llama.cpp): build 1012 (6381d4e) or later - [ggml version](https://huggingface.co/SlyEcho/open_llama_3b_ggml) ## Newer quantizations There are now more quantization types in llama.cpp, some lower than 4 bits. Currently these are not supported, maybe because some weights have shapes that don't divide by 256. ## Perplexity on wiki.test.406 Coming soon...
ThuyNT03/PhoBERT-Final_Mixed-aug_replace_BERT
ThuyNT03
2023-08-31T19:16:14Z
88
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:vinai/phobert-base-v2", "base_model:finetune:vinai/phobert-base-v2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T19:09:54Z
--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-Final_Mixed-aug_replace_BERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PhoBERT-Final_Mixed-aug_replace_BERT This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8746 - Accuracy: 0.74 - F1: 0.7344 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.972 | 1.0 | 88 | 0.7868 | 0.62 | 0.5610 | | 0.7723 | 2.0 | 176 | 0.7641 | 0.7 | 0.6953 | | 0.6104 | 3.0 | 264 | 0.7508 | 0.7 | 0.6967 | | 0.5009 | 4.0 | 352 | 0.7608 | 0.68 | 0.6727 | | 0.377 | 5.0 | 440 | 0.7301 | 0.72 | 0.7217 | | 0.3016 | 6.0 | 528 | 0.8430 | 0.73 | 0.7241 | | 0.2305 | 7.0 | 616 | 0.8625 | 0.74 | 0.7346 | | 0.2054 | 8.0 | 704 | 0.8746 | 0.74 | 0.7344 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-Final_Mixed-aug_replace_synonym
ThuyNT03
2023-08-31T19:11:58Z
95
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T19:05:35Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_replace_synonym results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-aug_replace_synonym This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9898 - Accuracy: 0.72 - F1: 0.7178 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0771 | 1.0 | 87 | 1.0042 | 0.51 | 0.4221 | | 0.9004 | 2.0 | 174 | 0.8167 | 0.66 | 0.6429 | | 0.6997 | 3.0 | 261 | 0.6418 | 0.73 | 0.7224 | | 0.5266 | 4.0 | 348 | 0.6756 | 0.78 | 0.7755 | | 0.3977 | 5.0 | 435 | 0.7815 | 0.75 | 0.7405 | | 0.3194 | 6.0 | 522 | 0.8890 | 0.73 | 0.7216 | | 0.2557 | 7.0 | 609 | 0.9661 | 0.72 | 0.7142 | | 0.1829 | 8.0 | 696 | 0.9898 | 0.72 | 0.7178 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.14.4 - Tokenizers 0.13.3
Infernaught/loratest_v2
Infernaught
2023-08-31T19:11:39Z
4
0
peft
[ "peft", "region:us" ]
null
2023-08-31T19:11:13Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
yaystevek/ppo-SnowballTarget
yaystevek
2023-08-31T19:11:01Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-08-31T19:10:57Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: yaystevek/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ThuyNT03/xlm-roberta-base-Final_Mixed-aug_insert_BERT
ThuyNT03
2023-08-31T19:05:24Z
88
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T19:00:30Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_insert_BERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-aug_insert_BERT This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9456 - Accuracy: 0.74 - F1: 0.7341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9972 | 1.0 | 88 | 0.7311 | 0.65 | 0.6359 | | 0.7329 | 2.0 | 176 | 0.7124 | 0.73 | 0.7240 | | 0.577 | 3.0 | 264 | 0.6674 | 0.76 | 0.7554 | | 0.4601 | 4.0 | 352 | 0.6343 | 0.74 | 0.7385 | | 0.3659 | 5.0 | 440 | 0.7159 | 0.75 | 0.7442 | | 0.2772 | 6.0 | 528 | 0.8521 | 0.76 | 0.7503 | | 0.1968 | 7.0 | 616 | 0.8760 | 0.75 | 0.7437 | | 0.1852 | 8.0 | 704 | 0.9456 | 0.74 | 0.7341 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.14.4 - Tokenizers 0.13.3
Shumit/MARY-Falcon-7B
Shumit
2023-08-31T19:04:49Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-31T19:03:43Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
ThuyNT03/PhoBERT-Final_Mixed-aug_replace_w2v
ThuyNT03
2023-08-31T19:03:12Z
91
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:vinai/phobert-base-v2", "base_model:finetune:vinai/phobert-base-v2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T18:56:19Z
--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-Final_Mixed-aug_replace_w2v results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PhoBERT-Final_Mixed-aug_replace_w2v This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9771 - Accuracy: 0.73 - F1: 0.7251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9504 | 1.0 | 86 | 0.7392 | 0.65 | 0.6205 | | 0.6517 | 2.0 | 172 | 0.7087 | 0.69 | 0.6783 | | 0.4998 | 3.0 | 258 | 0.7396 | 0.69 | 0.6788 | | 0.3663 | 4.0 | 344 | 0.7976 | 0.69 | 0.6714 | | 0.2623 | 5.0 | 430 | 0.8181 | 0.72 | 0.7177 | | 0.1751 | 6.0 | 516 | 0.8604 | 0.75 | 0.7498 | | 0.1446 | 7.0 | 602 | 0.9600 | 0.72 | 0.7135 | | 0.1061 | 8.0 | 688 | 0.9771 | 0.73 | 0.7251 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/PhoBERT-Final_Mixed-aug_replace_synonym
ThuyNT03
2023-08-31T18:56:12Z
93
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:vinai/phobert-base-v2", "base_model:finetune:vinai/phobert-base-v2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T18:47:33Z
--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-Final_Mixed-aug_replace_synonym results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PhoBERT-Final_Mixed-aug_replace_synonym This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1766 - Accuracy: 0.69 - F1: 0.6889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9621 | 1.0 | 87 | 0.8397 | 0.65 | 0.6348 | | 0.6681 | 2.0 | 174 | 0.7618 | 0.69 | 0.6716 | | 0.4669 | 3.0 | 261 | 0.7850 | 0.7 | 0.6983 | | 0.3237 | 4.0 | 348 | 0.8321 | 0.71 | 0.7086 | | 0.2253 | 5.0 | 435 | 0.9725 | 0.71 | 0.7097 | | 0.1713 | 6.0 | 522 | 1.0872 | 0.69 | 0.6842 | | 0.1195 | 7.0 | 609 | 1.1901 | 0.7 | 0.6974 | | 0.092 | 8.0 | 696 | 1.1766 | 0.69 | 0.6889 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ahirtonlopes/wav2vec2-base-finetuned-ks
ahirtonlopes
2023-08-31T18:45:06Z
137
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:superb", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-31T16:15:19Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: - task: name: Audio Classification type: audio-classification dataset: name: superb type: superb config: ks split: validation args: ks metrics: - name: Accuracy type: accuracy value: 0.9010002942041777 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.5155 - Accuracy: 0.9010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4701 | 1.0 | 100 | 1.4821 | 0.6209 | | 1.1434 | 2.0 | 200 | 1.0657 | 0.6649 | | 0.8086 | 3.0 | 300 | 0.7112 | 0.8320 | | 0.659 | 4.0 | 400 | 0.5686 | 0.8789 | | 0.5987 | 5.0 | 500 | 0.5155 | 0.9010 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/PhoBERT-Final_Mixed-aug_insert_tfidf
ThuyNT03
2023-08-31T18:40:47Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:vinai/phobert-base-v2", "base_model:finetune:vinai/phobert-base-v2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T18:33:51Z
--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-Final_Mixed-aug_insert_tfidf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PhoBERT-Final_Mixed-aug_insert_tfidf This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2673 - Accuracy: 0.73 - F1: 0.7262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.894 | 1.0 | 88 | 0.7277 | 0.66 | 0.6187 | | 0.5738 | 2.0 | 176 | 0.7561 | 0.7 | 0.6957 | | 0.3647 | 3.0 | 264 | 0.8054 | 0.72 | 0.7149 | | 0.2496 | 4.0 | 352 | 1.0288 | 0.69 | 0.6842 | | 0.1633 | 5.0 | 440 | 1.1435 | 0.7 | 0.6943 | | 0.1162 | 6.0 | 528 | 1.1985 | 0.72 | 0.7157 | | 0.0909 | 7.0 | 616 | 1.2491 | 0.73 | 0.7262 | | 0.0722 | 8.0 | 704 | 1.2673 | 0.73 | 0.7262 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-Final_Mixed-aug_insert_synonym
ThuyNT03
2023-08-31T18:39:35Z
114
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T18:33:32Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_insert_synonym results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-aug_insert_synonym This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4863 - Accuracy: 0.7 - F1: 0.6922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0118 | 1.0 | 88 | 0.7571 | 0.64 | 0.5664 | | 0.7524 | 2.0 | 176 | 0.7290 | 0.71 | 0.6945 | | 0.5666 | 3.0 | 264 | 0.7499 | 0.79 | 0.7873 | | 0.406 | 4.0 | 352 | 0.8793 | 0.69 | 0.6840 | | 0.2826 | 5.0 | 440 | 1.0454 | 0.72 | 0.7043 | | 0.2261 | 6.0 | 528 | 1.1631 | 0.73 | 0.7196 | | 0.1374 | 7.0 | 616 | 1.4514 | 0.7 | 0.6944 | | 0.1337 | 8.0 | 704 | 1.4863 | 0.7 | 0.6922 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.14.4 - Tokenizers 0.13.3
Campqt/Reinforce-Pixelcopter-PLE-v0
Campqt
2023-08-31T18:38:21Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-31T17:06:20Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 45.90 +/- 36.64 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ThuyNT03/PhoBERT-Final_Mixed-aug_insert_w2v
ThuyNT03
2023-08-31T18:33:47Z
108
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:vinai/phobert-base-v2", "base_model:finetune:vinai/phobert-base-v2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T18:27:34Z
--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-Final_Mixed-aug_insert_w2v results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PhoBERT-Final_Mixed-aug_insert_w2v This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1056 - Accuracy: 0.73 - F1: 0.7280 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8961 | 1.0 | 86 | 0.7149 | 0.69 | 0.6676 | | 0.5695 | 2.0 | 172 | 0.7188 | 0.71 | 0.7029 | | 0.3772 | 3.0 | 258 | 0.7802 | 0.71 | 0.7061 | | 0.2899 | 4.0 | 344 | 0.7639 | 0.76 | 0.7595 | | 0.2145 | 5.0 | 430 | 0.9140 | 0.73 | 0.7286 | | 0.1299 | 6.0 | 516 | 1.0655 | 0.72 | 0.7123 | | 0.1047 | 7.0 | 602 | 1.0912 | 0.73 | 0.7244 | | 0.0864 | 8.0 | 688 | 1.1056 | 0.73 | 0.7280 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-Final_Mixed-aug_delete
ThuyNT03
2023-08-31T18:33:28Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T18:28:49Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_delete results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-aug_delete This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8666 - Accuracy: 0.72 - F1: 0.7141 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0782 | 1.0 | 88 | 0.9523 | 0.61 | 0.4982 | | 0.8614 | 2.0 | 176 | 0.7754 | 0.72 | 0.7098 | | 0.6895 | 3.0 | 264 | 0.6680 | 0.78 | 0.7790 | | 0.5463 | 4.0 | 352 | 0.6805 | 0.76 | 0.7575 | | 0.4314 | 5.0 | 440 | 0.7151 | 0.73 | 0.7247 | | 0.3251 | 6.0 | 528 | 0.7835 | 0.71 | 0.7025 | | 0.2719 | 7.0 | 616 | 0.8466 | 0.73 | 0.7260 | | 0.2233 | 8.0 | 704 | 0.8666 | 0.72 | 0.7141 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/PhoBERT-Final_Mixed-aug_insert_synonym
ThuyNT03
2023-08-31T18:27:27Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:vinai/phobert-base-v2", "base_model:finetune:vinai/phobert-base-v2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T18:18:48Z
--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-Final_Mixed-aug_insert_synonym results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PhoBERT-Final_Mixed-aug_insert_synonym This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2173 - Accuracy: 0.72 - F1: 0.7208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8905 | 1.0 | 88 | 0.7446 | 0.67 | 0.6565 | | 0.6277 | 2.0 | 176 | 0.7272 | 0.72 | 0.7163 | | 0.4506 | 3.0 | 264 | 0.7680 | 0.7 | 0.6957 | | 0.3032 | 4.0 | 352 | 0.8468 | 0.73 | 0.7307 | | 0.2046 | 5.0 | 440 | 0.9995 | 0.7 | 0.7011 | | 0.1487 | 6.0 | 528 | 1.1278 | 0.72 | 0.7157 | | 0.1103 | 7.0 | 616 | 1.1927 | 0.71 | 0.7097 | | 0.0985 | 8.0 | 704 | 1.2173 | 0.72 | 0.7208 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
akashmaggon/pythia-70m
akashmaggon
2023-08-31T18:22:03Z
165
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "generated_from_trainer", "base_model:EleutherAI/pythia-70m", "base_model:finetune:EleutherAI/pythia-70m", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-31T18:13:28Z
--- license: apache-2.0 base_model: EleutherAI/pythia-70m tags: - generated_from_trainer model-index: - name: pythia-70m results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pythia-70m This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5049 | 1.0 | 79 | 2.3376 | | 2.0867 | 2.0 | 158 | 2.2416 | | 1.9168 | 3.0 | 237 | 2.1985 | | 1.8108 | 4.0 | 316 | 2.1851 | | 1.7446 | 5.0 | 395 | 2.1844 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
khhuang/zerofec-daqa-t5-base
khhuang
2023-08-31T18:20:09Z
107
3
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-13T20:29:47Z
--- language: en widget: - text: What is Night of the Living Dead? \n Night of the Living Dead is a 1968 American independent horror film , directed by George A. Romero , starring Duane Jones and Judith O'Dea . George A. Romero George A. Romero Duane Jones Duane Jones Judith O'Dea Judith O'Dea independent Independent film horror film horror film. --- # Domain-adapted QA Model From ZeroFEC ZeroFEC is a faithful and interpetable factual error correction framework introduced in the paper [Zero-shot Faithful Factual Error Correction](https://aclanthology.org/2023.acl-long.311/). It involves a QA component, which is a UnifiedQA model continue fine-tuned on two additional biomedical QA datasets. The associated code is released in [this](https://github.com/khuangaf/ZeroFEC) repository. ### How to use Using Huggingface pipeline abstraction: ```python from transformers import pipeline nlp = pipeline("text2text-generation", model='khhuang/zerofec-daqa-t5-base', tokenizer='khhuang/zerofec-daqa-t5-base') QUESTION = "What is Night of the Living Dead?" CONTEXT = "Night of the Living Dead is a 1968 American independent horror film , directed by George A." def format_inputs(context: str, question: str): return f"{question} \n {context}" text = format_inputs(CONTEXT, QUESTION) nlp(text) # should output [{'generated_text': 'a 1968 american independent horror film'}] ``` Using the pre-trained model directly: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained('khhuang/zerofec-daqa-t5-base') model = AutoModelForSeq2SeqLM.from_pretrained('khhuang/zerofec-daqa-t5-base') QUESTION = "What is Night of the Living Dead?" CONTEXT = "Night of the Living Dead is a 1968 American independent horror film , directed by George A." def format_inputs(context: str, question: str): return f"{question} \n {context}" text = format_inputs(CONTEXT, QUESTION) input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=32, num_beams=4) output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) print(output) # should output "a 1968 american independent horror film" ``` ### Citation ``` @inproceedings{huang-etal-2023-zero, title = "Zero-shot Faithful Factual Error Correction", author = "Huang, Kung-Hsiang and Chan, Hou Pong and Ji, Heng", booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.acl-long.311", doi = "10.18653/v1/2023.acl-long.311", pages = "5660--5676", } ```
khhuang/zerofec-qa2claim-t5-base
khhuang
2023-08-31T18:16:21Z
1,589
4
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-13T19:43:58Z
--- language: en widget: - text: a 1968 american independent horror film \\n What is Night of the Living Dead? --- # QA2Claim Model From ZeroFEC ZeroFEC is a faithful and interpetable factual error correction framework introduced in the paper [Zero-shot Faithful Factual Error Correction](https://aclanthology.org/2023.acl-long.311/). It involves a component that converts qa-pairs to declarative statements, which is hosted in this repo. The associated code is released in [this](https://github.com/khuangaf/ZeroFEC) repository. ### How to use Using Huggingface pipeline abstraction: ```python from transformers import pipeline nlp = pipeline("text2text-generation", model='khhuang/zerofec-qa2claim-t5-base', tokenizer='khhuang/zerofec-qa2claim-t5-base') QUESTION = "What is Night of the Living Dead?" ANSWER = "a 1968 american independent horror film" def format_inputs(question: str, answer: str): return f"{answer} \\n {question}" text = format_inputs(QUESTION, ANSWER) nlp(text) # should output [{'generated_text': 'Night of the Living Dead is a 1968 american independent horror film.'}] ``` Using the pre-trained model directly: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained('khhuang/zerofec-qa2claim-t5-base') model = AutoModelForSeq2SeqLM.from_pretrained('khhuang/zerofec-qa2claim-t5-base') QUESTION = "What is Night of the Living Dead?" ANSWER = "a 1968 american independent horror film" def format_inputs(question: str, answer: str): return f"{answer} \\n {question}" text = format_inputs(QUESTION, ANSWER) input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=32, num_beams=4) output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) print(output) # should output "Night of the Living Dead is a 1968 american independent horror film." ``` ### Citation ``` @inproceedings{huang-etal-2023-zero, title = "Zero-shot Faithful Factual Error Correction", author = "Huang, Kung-Hsiang and Chan, Hou Pong and Ji, Heng", booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.acl-long.311", doi = "10.18653/v1/2023.acl-long.311", pages = "5660--5676", } ```
arroyadr/wav2vec2-base-finetuned-gtzan
arroyadr
2023-08-31T18:06:18Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-18T22:43:25Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.85 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6459 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0912 | 1.0 | 113 | 1.9840 | 0.33 | | 1.7391 | 2.0 | 226 | 1.6205 | 0.57 | | 1.3242 | 3.0 | 339 | 1.3338 | 0.61 | | 1.1953 | 4.0 | 452 | 1.1904 | 0.68 | | 0.8983 | 5.0 | 565 | 1.0357 | 0.75 | | 0.8686 | 6.0 | 678 | 0.9569 | 0.78 | | 0.84 | 7.0 | 791 | 0.7681 | 0.8 | | 0.5776 | 8.0 | 904 | 0.6968 | 0.84 | | 0.5186 | 9.0 | 1017 | 0.6541 | 0.86 | | 0.3765 | 10.0 | 1130 | 0.6743 | 0.85 | | 0.3671 | 11.0 | 1243 | 0.6459 | 0.85 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
aviroes/MAScIR_elderly_whisper-medium-LoRA-ev
aviroes
2023-08-31T18:03:33Z
0
0
null
[ "generated_from_trainer", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "region:us" ]
null
2023-08-31T15:47:34Z
--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer model-index: - name: MAScIR_elderly_whisper-medium-LoRA-ev results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MAScIR_elderly_whisper-medium-LoRA-ev This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3194 | 0.19 | 100 | 0.2974 | | 0.2485 | 0.37 | 200 | 0.2865 | | 0.2532 | 0.56 | 300 | 0.2810 | | 0.2306 | 0.74 | 400 | 0.2225 | | 0.1954 | 0.93 | 500 | 0.2355 | | 0.1178 | 1.11 | 600 | 0.1883 | | 0.1087 | 1.3 | 700 | 0.1567 | | 0.098 | 1.48 | 800 | 0.1593 | | 0.0661 | 1.67 | 900 | 0.0985 | | 0.0675 | 1.85 | 1000 | 0.0602 | | 0.0297 | 2.04 | 1100 | 0.0543 | | 0.0172 | 2.22 | 1200 | 0.0436 | | 0.0157 | 2.41 | 1300 | 0.0403 | | 0.0143 | 2.59 | 1400 | 0.0317 | | 0.0167 | 2.78 | 1500 | 0.0265 | | 0.0095 | 2.96 | 1600 | 0.0213 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/PhoBERT-Final_VietNam-aug_insert_tfidf
ThuyNT03
2023-08-31T17:36:45Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:vinai/phobert-base-v2", "base_model:finetune:vinai/phobert-base-v2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T17:30:38Z
--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-aug_replace_synonym-aug_insert_tfidf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PhoBERT-aug_replace_synonym-aug_insert_tfidf This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2544 - Accuracy: 0.71 - F1: 0.7177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8536 | 1.0 | 87 | 0.6560 | 0.72 | 0.7124 | | 0.5144 | 2.0 | 174 | 0.5992 | 0.75 | 0.7574 | | 0.341 | 3.0 | 261 | 0.7304 | 0.73 | 0.7389 | | 0.216 | 4.0 | 348 | 1.0216 | 0.68 | 0.6885 | | 0.178 | 5.0 | 435 | 1.0374 | 0.74 | 0.7506 | | 0.1178 | 6.0 | 522 | 1.1481 | 0.72 | 0.7316 | | 0.1049 | 7.0 | 609 | 1.2096 | 0.71 | 0.7177 | | 0.0864 | 8.0 | 696 | 1.2544 | 0.71 | 0.7177 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ironchanchellor/segformer-b0_DsB
ironchanchellor
2023-08-31T17:30:39Z
31
0
transformers
[ "transformers", "pytorch", "segformer", "generated_from_trainer", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2023-08-31T16:18:57Z
--- license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer model-index: - name: segformer-b0-finetuned-metallography_DsB results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-metallography_DsB This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0162 - Mean Iou: 0.7889 - Mean Accuracy: 0.9743 - Overall Accuracy: 0.9937 - Accuracy Background: nan - Accuracy Haz: 0.9934 - Accuracy Matrix: 0.9859 - Accuracy Porosity: 0.9183 - Accuracy Carbides: 0.9759 - Accuracy Substrate: 0.9981 - Iou Background: 0.0 - Iou Haz: 0.9909 - Iou Matrix: 0.9758 - Iou Porosity: 0.8239 - Iou Carbides: 0.9504 - Iou Substrate: 0.9926 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Haz | Accuracy Matrix | Accuracy Porosity | Accuracy Carbides | Accuracy Substrate | Iou Background | Iou Haz | Iou Matrix | Iou Porosity | Iou Carbides | Iou Substrate | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:------------:|:---------------:|:-----------------:|:-----------------:|:------------------:|:--------------:|:-------:|:----------:|:------------:|:------------:|:-------------:| | 1.1925 | 1.0 | 350 | 0.2093 | 0.5751 | 0.7355 | 0.9228 | nan | 0.8617 | 0.9887 | 0.0 | 0.8605 | 0.9668 | 0.0 | 0.8289 | 0.9133 | 0.0 | 0.8400 | 0.8683 | | 0.3065 | 2.0 | 700 | 0.1070 | 0.6106 | 0.7607 | 0.9570 | nan | 0.9158 | 0.9711 | 0.0 | 0.9221 | 0.9945 | 0.0 | 0.9053 | 0.9400 | 0.0 | 0.8907 | 0.9276 | | 0.1839 | 3.0 | 1050 | 0.0717 | 0.6284 | 0.7777 | 0.9747 | nan | 0.9737 | 0.9668 | 0.0 | 0.9676 | 0.9802 | 0.0 | 0.9488 | 0.9513 | 0.0 | 0.9116 | 0.9590 | | 1.0057 | 4.0 | 1400 | 0.0470 | 0.6322 | 0.7765 | 0.9783 | nan | 0.9889 | 0.9718 | 0.0 | 0.9460 | 0.9761 | 0.0 | 0.9580 | 0.9493 | 0.0 | 0.9193 | 0.9669 | | 1.3313 | 5.0 | 1750 | 0.0360 | 0.6338 | 0.7751 | 0.9839 | nan | 0.9825 | 0.9861 | 0.0 | 0.9128 | 0.9940 | 0.0 | 0.9737 | 0.9478 | 0.0 | 0.9015 | 0.9799 | | 0.1398 | 6.0 | 2100 | 0.0333 | 0.6407 | 0.7849 | 0.9853 | nan | 0.9943 | 0.9782 | 0.0 | 0.9689 | 0.9830 | 0.0 | 0.9743 | 0.9623 | 0.0 | 0.9290 | 0.9787 | | 0.4763 | 7.0 | 2450 | 0.0941 | 0.6520 | 0.8054 | 0.9710 | nan | 0.9435 | 0.9745 | 0.1384 | 0.9757 | 0.9950 | 0.0 | 0.9367 | 0.9622 | 0.1384 | 0.9258 | 0.9486 | | 0.074 | 8.0 | 2800 | 0.0373 | 0.7154 | 0.8725 | 0.9848 | nan | 0.9877 | 0.9841 | 0.4466 | 0.9577 | 0.9864 | 0.0 | 0.9711 | 0.9646 | 0.4466 | 0.9339 | 0.9760 | | 0.0637 | 9.0 | 3150 | 0.0239 | 0.7358 | 0.8946 | 0.9885 | nan | 0.9867 | 0.9907 | 0.5610 | 0.9388 | 0.9956 | 0.0 | 0.9815 | 0.9631 | 0.5591 | 0.9258 | 0.9851 | | 0.0402 | 10.0 | 3500 | 0.0295 | 0.7462 | 0.9085 | 0.9865 | nan | 0.9774 | 0.9872 | 0.6256 | 0.9541 | 0.9982 | 0.0 | 0.9752 | 0.9662 | 0.6232 | 0.9333 | 0.9796 | | 1.069 | 11.0 | 3850 | 0.0244 | 0.7494 | 0.9115 | 0.9889 | nan | 0.9874 | 0.9908 | 0.6455 | 0.9383 | 0.9957 | 0.0 | 0.9822 | 0.9644 | 0.6384 | 0.9263 | 0.9854 | | 0.5997 | 12.0 | 4200 | 0.0243 | 0.7492 | 0.9106 | 0.9893 | nan | 0.9859 | 0.9884 | 0.6271 | 0.9545 | 0.9970 | 0.0 | 0.9817 | 0.9684 | 0.6246 | 0.9356 | 0.9850 | | 0.091 | 13.0 | 4550 | 0.0269 | 0.7557 | 0.9197 | 0.9886 | nan | 0.9858 | 0.9900 | 0.6747 | 0.9530 | 0.9950 | 0.0 | 0.9799 | 0.9693 | 0.6659 | 0.9361 | 0.9833 | | 1.3004 | 14.0 | 4900 | 0.0226 | 0.7740 | 0.9448 | 0.9906 | nan | 0.9887 | 0.9859 | 0.7857 | 0.9674 | 0.9964 | 0.0 | 0.9841 | 0.9719 | 0.7585 | 0.9424 | 0.9870 | | 0.94 | 15.0 | 5250 | 0.1346 | 0.7572 | 0.9315 | 0.9731 | nan | 0.9938 | 0.9862 | 0.7591 | 0.9657 | 0.9528 | 0.0 | 0.9423 | 0.9709 | 0.7399 | 0.9417 | 0.9481 | | 0.8906 | 16.0 | 5600 | 0.0221 | 0.7781 | 0.9528 | 0.9911 | nan | 0.9886 | 0.9844 | 0.8206 | 0.9729 | 0.9973 | 0.0 | 0.9851 | 0.9724 | 0.7805 | 0.9429 | 0.9877 | | 0.9739 | 17.0 | 5950 | 0.0233 | 0.7629 | 0.9264 | 0.9905 | nan | 0.9870 | 0.9914 | 0.7040 | 0.9516 | 0.9980 | 0.0 | 0.9845 | 0.9700 | 0.6986 | 0.9367 | 0.9874 | | 0.417 | 18.0 | 6300 | 0.0200 | 0.7724 | 0.9392 | 0.9917 | nan | 0.9911 | 0.9909 | 0.7618 | 0.9556 | 0.9967 | 0.0 | 0.9869 | 0.9718 | 0.7468 | 0.9399 | 0.9893 | | 0.0405 | 19.0 | 6650 | 0.1657 | 0.7661 | 0.9474 | 0.9743 | nan | 0.9434 | 0.9863 | 0.8421 | 0.9661 | 0.9991 | 0.0 | 0.9421 | 0.9718 | 0.7877 | 0.9422 | 0.9528 | | 1.2414 | 20.0 | 7000 | 0.0275 | 0.7808 | 0.9593 | 0.9900 | nan | 0.9844 | 0.9838 | 0.8565 | 0.9733 | 0.9986 | 0.0 | 0.9824 | 0.9725 | 0.8000 | 0.9442 | 0.9855 | | 0.7539 | 21.0 | 7350 | 0.0200 | 0.7791 | 0.9509 | 0.9918 | nan | 0.9947 | 0.9857 | 0.8106 | 0.9698 | 0.9936 | 0.0 | 0.9872 | 0.9724 | 0.7813 | 0.9445 | 0.9895 | | 0.0158 | 22.0 | 7700 | 0.0159 | 0.7773 | 0.9468 | 0.9926 | nan | 0.9924 | 0.9854 | 0.7855 | 0.9736 | 0.9972 | 0.0 | 0.9889 | 0.9731 | 0.7657 | 0.9448 | 0.9910 | | 0.3368 | 23.0 | 8050 | 0.0176 | 0.7849 | 0.9678 | 0.9925 | nan | 0.9962 | 0.9844 | 0.8892 | 0.9758 | 0.9933 | 0.0 | 0.9882 | 0.9739 | 0.8113 | 0.9459 | 0.9904 | | 0.0526 | 24.0 | 8400 | 0.0168 | 0.7835 | 0.9629 | 0.9927 | nan | 0.9916 | 0.9895 | 0.8727 | 0.9629 | 0.9978 | 0.0 | 0.9888 | 0.9739 | 0.8030 | 0.9448 | 0.9908 | | 0.9409 | 25.0 | 8750 | 0.0205 | 0.7842 | 0.9681 | 0.9920 | nan | 0.9899 | 0.9829 | 0.8925 | 0.9773 | 0.9980 | 0.0 | 0.9873 | 0.9732 | 0.8096 | 0.9452 | 0.9897 | | 1.0493 | 26.0 | 9100 | 0.0187 | 0.7823 | 0.9542 | 0.9924 | nan | 0.9906 | 0.9877 | 0.8277 | 0.9670 | 0.9981 | 0.0 | 0.9881 | 0.9736 | 0.7966 | 0.9454 | 0.9903 | | 0.0685 | 27.0 | 9450 | 0.0166 | 0.7833 | 0.9549 | 0.9931 | nan | 0.9939 | 0.9868 | 0.8270 | 0.9698 | 0.9969 | 0.0 | 0.9898 | 0.9741 | 0.7970 | 0.9470 | 0.9917 | | 0.0594 | 28.0 | 9800 | 0.0172 | 0.7882 | 0.9705 | 0.9932 | nan | 0.9942 | 0.9849 | 0.9007 | 0.9761 | 0.9965 | 0.0 | 0.9898 | 0.9749 | 0.8251 | 0.9479 | 0.9917 | | 1.1676 | 29.0 | 10150 | 0.0166 | 0.7867 | 0.9726 | 0.9930 | nan | 0.9948 | 0.9834 | 0.9115 | 0.9777 | 0.9957 | 0.0 | 0.9896 | 0.9741 | 0.8178 | 0.9474 | 0.9915 | | 0.076 | 30.0 | 10500 | 0.0184 | 0.7845 | 0.9595 | 0.9928 | nan | 0.9925 | 0.9898 | 0.8578 | 0.9598 | 0.9976 | 0.0 | 0.9895 | 0.9728 | 0.8090 | 0.9439 | 0.9917 | | 0.0709 | 31.0 | 10850 | 0.0187 | 0.7876 | 0.9726 | 0.9931 | nan | 0.9934 | 0.9842 | 0.9118 | 0.9764 | 0.9972 | 0.0 | 0.9897 | 0.9744 | 0.8215 | 0.9480 | 0.9917 | | 0.2951 | 32.0 | 11200 | 0.0171 | 0.7879 | 0.9701 | 0.9932 | nan | 0.9949 | 0.9853 | 0.8995 | 0.9747 | 0.9961 | 0.0 | 0.9900 | 0.9747 | 0.8226 | 0.9484 | 0.9919 | | 0.0371 | 33.0 | 11550 | 0.0165 | 0.7863 | 0.9624 | 0.9932 | nan | 0.9941 | 0.9871 | 0.8644 | 0.9696 | 0.9967 | 0.0 | 0.9900 | 0.9742 | 0.8138 | 0.9480 | 0.9920 | | 0.0374 | 34.0 | 11900 | 0.0183 | 0.7874 | 0.9718 | 0.9929 | nan | 0.9910 | 0.9862 | 0.9089 | 0.9743 | 0.9985 | 0.0 | 0.9891 | 0.9752 | 0.8202 | 0.9490 | 0.9911 | | 0.7856 | 35.0 | 12250 | 0.0187 | 0.7873 | 0.9710 | 0.9931 | nan | 0.9918 | 0.9860 | 0.9042 | 0.9751 | 0.9981 | 0.0 | 0.9894 | 0.9753 | 0.8192 | 0.9483 | 0.9914 | | 0.9141 | 36.0 | 12600 | 0.0151 | 0.7892 | 0.9686 | 0.9938 | nan | 0.9946 | 0.9881 | 0.8920 | 0.9712 | 0.9973 | 0.0 | 0.9912 | 0.9759 | 0.8254 | 0.9497 | 0.9929 | | 0.0195 | 37.0 | 12950 | 0.0169 | 0.7880 | 0.9653 | 0.9932 | nan | 0.9918 | 0.9875 | 0.8770 | 0.9719 | 0.9985 | 0.0 | 0.9897 | 0.9755 | 0.8219 | 0.9493 | 0.9916 | | 0.0355 | 38.0 | 13300 | 0.0177 | 0.7888 | 0.9717 | 0.9933 | nan | 0.9936 | 0.9843 | 0.9041 | 0.9796 | 0.9969 | 0.0 | 0.9898 | 0.9755 | 0.8272 | 0.9487 | 0.9917 | | 0.07 | 39.0 | 13650 | 0.0165 | 0.7880 | 0.9736 | 0.9935 | nan | 0.9941 | 0.9848 | 0.9152 | 0.9765 | 0.9973 | 0.0 | 0.9906 | 0.9750 | 0.8209 | 0.9491 | 0.9924 | | 0.0244 | 40.0 | 14000 | 0.0178 | 0.7889 | 0.9696 | 0.9933 | nan | 0.9927 | 0.9854 | 0.8963 | 0.9758 | 0.9980 | 0.0 | 0.9899 | 0.9753 | 0.8268 | 0.9496 | 0.9919 | | 0.0679 | 41.0 | 14350 | 0.0157 | 0.7895 | 0.9707 | 0.9936 | nan | 0.9945 | 0.9858 | 0.9012 | 0.9750 | 0.9972 | 0.0 | 0.9908 | 0.9754 | 0.8284 | 0.9499 | 0.9926 | | 0.0498 | 42.0 | 14700 | 0.0164 | 0.7866 | 0.9765 | 0.9935 | nan | 0.9938 | 0.9839 | 0.9292 | 0.9781 | 0.9976 | 0.0 | 0.9907 | 0.9748 | 0.8122 | 0.9494 | 0.9925 | | 0.0593 | 43.0 | 15050 | 0.0146 | 0.7881 | 0.9644 | 0.9939 | nan | 0.9953 | 0.9873 | 0.8695 | 0.9730 | 0.9970 | 0.0 | 0.9916 | 0.9756 | 0.8186 | 0.9494 | 0.9932 | | 0.0068 | 44.0 | 15400 | 0.0151 | 0.7883 | 0.9743 | 0.9938 | nan | 0.9942 | 0.9857 | 0.9191 | 0.9749 | 0.9978 | 0.0 | 0.9913 | 0.9753 | 0.8203 | 0.9498 | 0.9930 | | 1.2941 | 45.0 | 15750 | 0.0150 | 0.7888 | 0.9714 | 0.9939 | nan | 0.9954 | 0.9862 | 0.9044 | 0.9742 | 0.9968 | 0.0 | 0.9915 | 0.9754 | 0.8228 | 0.9499 | 0.9932 | | 0.0113 | 46.0 | 16100 | 0.0151 | 0.7893 | 0.9732 | 0.9939 | nan | 0.9943 | 0.9866 | 0.9130 | 0.9741 | 0.9978 | 0.0 | 0.9914 | 0.9759 | 0.8251 | 0.9505 | 0.9930 | | 0.9812 | 47.0 | 16450 | 0.0185 | 0.7875 | 0.9754 | 0.9933 | nan | 0.9920 | 0.9864 | 0.9257 | 0.9745 | 0.9984 | 0.0 | 0.9898 | 0.9759 | 0.8175 | 0.9503 | 0.9917 | | 0.0126 | 48.0 | 16800 | 0.0152 | 0.7887 | 0.9743 | 0.9938 | nan | 0.9942 | 0.9856 | 0.9185 | 0.9755 | 0.9976 | 0.0 | 0.9911 | 0.9756 | 0.8221 | 0.9506 | 0.9929 | | 1.4415 | 49.0 | 17150 | 0.0154 | 0.7894 | 0.9674 | 0.9940 | nan | 0.9952 | 0.9872 | 0.8839 | 0.9734 | 0.9972 | 0.0 | 0.9917 | 0.9759 | 0.8255 | 0.9501 | 0.9934 | | 0.0285 | 50.0 | 17500 | 0.0162 | 0.7889 | 0.9743 | 0.9937 | nan | 0.9934 | 0.9859 | 0.9183 | 0.9759 | 0.9981 | 0.0 | 0.9909 | 0.9758 | 0.8239 | 0.9504 | 0.9926 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/PhoBERT-Final_VietNam-aug_insert_w2v
ThuyNT03
2023-08-31T17:27:53Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:vinai/phobert-base-v2", "base_model:finetune:vinai/phobert-base-v2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T17:16:29Z
--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-aug_replace_synonym-aug_insert_w2v results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PhoBERT-aug_replace_synonym-aug_insert_w2v This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3269 - Accuracy: 0.68 - F1: 0.6858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.895 | 1.0 | 85 | 0.7598 | 0.65 | 0.5672 | | 0.5508 | 2.0 | 170 | 0.7204 | 0.69 | 0.6897 | | 0.3688 | 3.0 | 255 | 0.8039 | 0.72 | 0.7133 | | 0.2403 | 4.0 | 340 | 0.9418 | 0.66 | 0.6672 | | 0.1453 | 5.0 | 425 | 1.1062 | 0.67 | 0.6755 | | 0.1089 | 6.0 | 510 | 1.2567 | 0.68 | 0.6834 | | 0.0843 | 7.0 | 595 | 1.3071 | 0.67 | 0.6755 | | 0.0779 | 8.0 | 680 | 1.3269 | 0.68 | 0.6858 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
rossevine/Model_G_S_Berita_Wav2Vec2
rossevine
2023-08-31T17:17:15Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-19T15:16:57Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: Model_G_S_Berita_Wav2Vec2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Model_G_S_Berita_Wav2Vec2 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0232 - Wer: 0.0308 - Cer: 0.0050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.3802 | 12.5 | 400 | 0.0473 | 0.0692 | 0.0105 | | 0.0245 | 25.0 | 800 | 0.0232 | 0.0308 | 0.0050 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
matvalan/vittae-cot-llama2
matvalan
2023-08-31T17:13:30Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-31T17:13:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
dkqjrm/20230831201806
dkqjrm
2023-08-31T17:11:30Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T11:18:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230831201806' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230831201806 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6291 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 340 | 0.6240 | 0.5 | | 0.6425 | 2.0 | 680 | 0.6234 | 0.5 | | 0.6397 | 3.0 | 1020 | 0.6203 | 0.5 | | 0.6397 | 4.0 | 1360 | 0.6364 | 0.5 | | 0.6363 | 5.0 | 1700 | 0.7003 | 0.5 | | 0.6373 | 6.0 | 2040 | 0.6233 | 0.5 | | 0.6373 | 7.0 | 2380 | 0.6233 | 0.5 | | 0.637 | 8.0 | 2720 | 0.6515 | 0.5 | | 0.631 | 9.0 | 3060 | 0.6234 | 0.5 | | 0.631 | 10.0 | 3400 | 0.6299 | 0.5 | | 0.633 | 11.0 | 3740 | 0.6315 | 0.5 | | 0.6325 | 12.0 | 4080 | 0.6281 | 0.5 | | 0.6325 | 13.0 | 4420 | 0.6434 | 0.5 | | 0.6267 | 14.0 | 4760 | 0.6233 | 0.5 | | 0.6323 | 15.0 | 5100 | 0.6253 | 0.5 | | 0.6323 | 16.0 | 5440 | 0.6233 | 0.5 | | 0.6325 | 17.0 | 5780 | 0.6314 | 0.5 | | 0.6274 | 18.0 | 6120 | 0.6265 | 0.5 | | 0.6274 | 19.0 | 6460 | 0.6298 | 0.5 | | 0.6301 | 20.0 | 6800 | 0.6363 | 0.5 | | 0.6268 | 21.0 | 7140 | 0.6296 | 0.5 | | 0.6268 | 22.0 | 7480 | 0.6402 | 0.5 | | 0.6316 | 23.0 | 7820 | 0.6282 | 0.5 | | 0.6272 | 24.0 | 8160 | 0.6233 | 0.5 | | 0.6314 | 25.0 | 8500 | 0.6245 | 0.5 | | 0.6314 | 26.0 | 8840 | 0.6702 | 0.5 | | 0.6298 | 27.0 | 9180 | 0.6484 | 0.5 | | 0.6282 | 28.0 | 9520 | 0.6235 | 0.5 | | 0.6282 | 29.0 | 9860 | 0.6524 | 0.5 | | 0.6259 | 30.0 | 10200 | 0.6245 | 0.5 | | 0.6271 | 31.0 | 10540 | 0.6233 | 0.5 | | 0.6271 | 32.0 | 10880 | 0.6320 | 0.5 | | 0.6264 | 33.0 | 11220 | 0.6240 | 0.5 | | 0.6265 | 34.0 | 11560 | 0.6325 | 0.5 | | 0.6265 | 35.0 | 11900 | 0.6329 | 0.5 | | 0.6268 | 36.0 | 12240 | 0.6377 | 0.5 | | 0.6261 | 37.0 | 12580 | 0.6234 | 0.5 | | 0.6261 | 38.0 | 12920 | 0.6323 | 0.5 | | 0.626 | 39.0 | 13260 | 0.6402 | 0.5 | | 0.6245 | 40.0 | 13600 | 0.6264 | 0.5 | | 0.6245 | 41.0 | 13940 | 0.6245 | 0.5 | | 0.6253 | 42.0 | 14280 | 0.6278 | 0.5 | | 0.6223 | 43.0 | 14620 | 0.6260 | 0.5 | | 0.6223 | 44.0 | 14960 | 0.6236 | 0.5 | | 0.6266 | 45.0 | 15300 | 0.6378 | 0.5 | | 0.6219 | 46.0 | 15640 | 0.6349 | 0.5 | | 0.6219 | 47.0 | 15980 | 0.6393 | 0.5 | | 0.6256 | 48.0 | 16320 | 0.6266 | 0.5 | | 0.6241 | 49.0 | 16660 | 0.6338 | 0.5 | | 0.624 | 50.0 | 17000 | 0.6237 | 0.5 | | 0.624 | 51.0 | 17340 | 0.6265 | 0.5 | | 0.6214 | 52.0 | 17680 | 0.6259 | 0.5 | | 0.627 | 53.0 | 18020 | 0.6324 | 0.5 | | 0.627 | 54.0 | 18360 | 0.6257 | 0.5 | | 0.6218 | 55.0 | 18700 | 0.6246 | 0.5 | | 0.621 | 56.0 | 19040 | 0.6242 | 0.5 | | 0.621 | 57.0 | 19380 | 0.6336 | 0.5 | | 0.6212 | 58.0 | 19720 | 0.6236 | 0.5 | | 0.6239 | 59.0 | 20060 | 0.6489 | 0.5 | | 0.6239 | 60.0 | 20400 | 0.6256 | 0.5 | | 0.6218 | 61.0 | 20740 | 0.6251 | 0.5 | | 0.6216 | 62.0 | 21080 | 0.6279 | 0.5 | | 0.6216 | 63.0 | 21420 | 0.6305 | 0.5 | | 0.6196 | 64.0 | 21760 | 0.6326 | 0.5 | | 0.6251 | 65.0 | 22100 | 0.6288 | 0.5 | | 0.6251 | 66.0 | 22440 | 0.6412 | 0.5 | | 0.6162 | 67.0 | 22780 | 0.6270 | 0.5 | | 0.6231 | 68.0 | 23120 | 0.6261 | 0.5 | | 0.6231 | 69.0 | 23460 | 0.6254 | 0.5 | | 0.6215 | 70.0 | 23800 | 0.6237 | 0.5 | | 0.6202 | 71.0 | 24140 | 0.6265 | 0.5 | | 0.6202 | 72.0 | 24480 | 0.6329 | 0.5 | | 0.6184 | 73.0 | 24820 | 0.6292 | 0.5 | | 0.6207 | 74.0 | 25160 | 0.6304 | 0.5 | | 0.6193 | 75.0 | 25500 | 0.6271 | 0.5 | | 0.6193 | 76.0 | 25840 | 0.6301 | 0.5 | | 0.6202 | 77.0 | 26180 | 0.6261 | 0.5 | | 0.6188 | 78.0 | 26520 | 0.6289 | 0.5 | | 0.6188 | 79.0 | 26860 | 0.6293 | 0.5 | | 0.6197 | 80.0 | 27200 | 0.6291 | 0.5 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Donaldbassa/bert-classification-text
Donaldbassa
2023-08-31T17:10:22Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T16:53:08Z
--- language: - en metrics: - accuracy pipeline_tag: text-classification ---
Writer/InstructPalmyra-20b
Writer
2023-08-31T17:01:39Z
1,570
40
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "InstructGPT", "hf", "palmyra", "en", "dataset:Writer/palmyra-data-index", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-28T15:52:03Z
--- license: apache-2.0 language: - en tags: - InstructGPT - hf - palmyra datasets: - Writer/palmyra-data-index --- # InstructPalmyra-20b - **Developed by:** [https://writer.com/](https://writer.com/); - **Model type:** Causal decoder-only; - **Language(s) (NLP):** English; - **License:** Apache 2.0; - **Finetuned from model:** [Palmyra-20B](https://huggingface.co/Writer/palmyra-large). <style> img { display: inline; } </style> ## Model Description Introducing InstructPalmyra-20b, a state-of-the-art instruction-following 20b language model designed to deliver exceptional performance and versatility. Derived from the foundational architecture of [Palmyra-20b](https://huggingface.co/Writer/palmyra-large), InstructPalmyra-20b is specifically tailored to address the growing demand for advanced natural language processing and comprehension capabilities. The InstructPalmyra-20b model is meticulously trained on an extensive dataset of approximately 70,000 instruction-response records. These records are generated by our dedicated Writer Linguist team, who possess considerable expertise in language modeling and fine-tuning techniques. By leveraging their skills and knowledge, the InstructPalmyra-20b model is primed to offer unparalleled proficiency in understanding and executing language-based instructions. One of the key differentiators of InstructPalmyra-20b lies in its ability to process complex instructions and generate accurate, contextually appropriate responses. This makes it an ideal choice for a wide range of applications, including virtual assistants, customer support, content generation, and more. Additionally, the model's comprehensive training enables it to adapt and perform well under varying conditions and contexts, further expanding its potential use cases. ## Usage : ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "Writer/InstructPalmyra-20b" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.float16 ) instruction = "Describe a futuristic device that revolutionizes space travel." PROMPT_DICT = { "prompt_input": ( "Below is an instruction that describes a task, paired with an input that provides further context. " "Write a response that appropriately completes the request\n\n" "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:" ), "prompt_no_input": ( "Below is an instruction that describes a task. " "Write a response that appropriately completes the request.\n\n" "### Instruction:\n{instruction}\n\n### Response:" ), } text = ( PROMPT_DICT["prompt_no_input"].format(instruction=instruction) if not input else PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input) ) model_inputs = tokenizer(text, return_tensors="pt").to("cuda") output_ids = model.generate( **model_inputs, max_length=256, ) output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] clean_output = output_text.split("### Response:")[1].strip() print(clean_output) ``` It can also be used with text-generation-inference ```sh model=Writer/InstructPalmyra-20b volume=$PWD/data docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference --model-id $model ``` ### Limitations and Biases InstructPalmyra's core functionality is to take a string of text and predict the next token. While language models are widely used for other tasks, there are many unknowns in this work. When prompting InstructPalmyra, keep in mind that the next statistically likely token is not always the token that produces the most "accurate" text. Never rely on InstructPalmyra to produce factually correct results. InstructPalmyra was trained on Writer’s custom data. As with all language models, it is difficult to predict how InstructPalmyra will respond to specific prompts, and offensive content may appear unexpectedly. We recommend that the outputs be curated or filtered by humans before they are released, both to censor undesirable content and to improve the quality of the results. ## Uses ### Out-of-Scope Use Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful. ## Bias, Risks, and Limitations InstructPalmyra-20b is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online. ### Recommendations We recommend users of InstructPalmyra-20b to develop guardrails and to take appropriate precautions for any production use. ## Citation and Related Information To cite this model: ``` @misc{InstructPalmyra, author = {Writer Engineering team}, title = {{InstructPalmyra-20b : Instruct tuned Palmyra-Large model}}, howpublished = {\url{https://dev.writer.com}}, year = 2023, month = Augest } ``` [![Model architecture](https://img.shields.io/badge/Model%20Arch-Transformer%20Decoder-green)](#model-architecture)|[![Model size](https://img.shields.io/badge/Params-20B-green)](#model-architecture)|[![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets)|![AUR license](https://img.shields.io/badge/license-Apache%202-blue)
sinepy/market-mail-ai-v3
sinepy
2023-08-31T16:50:07Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-31T16:50:01Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
nightdude/config_801
nightdude
2023-08-31T16:48:53Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-31T16:47:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
Faisalx7/CC_Q_and_A_v6_8000
Faisalx7
2023-08-31T16:31:07Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-31T16:31:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
gameofdimension/lora-trained-xl-erza
gameofdimension
2023-08-31T16:25:23Z
2
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-31T13:38:14Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of erza toddler tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - felixdae/lora-trained-xl-erza These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of erza toddler using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
debabrata-ai/Nepali-Named-Entity-Tagger-XLM-R
debabrata-ai
2023-08-31T16:17:26Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "named-entity-recognition", "nepali-language", "ne", "dataset:wikiann", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-31T12:50:36Z
--- name: "Nepali Named Entity Tagger" description: "Fine-tuned XLM-RoBERTa model for Named Entity Recognition in Nepali." language: ne datasets: - wikiann tags: - named-entity-recognition - nepali-language - xlm-roberta --- <h>Nepali Named Entity Tagger</h> Fine-tuned XLM-RoBERTa model for Named Entity Recognition in Nepali. Label ID and label name | Label ID | Label Name| | -------- | ----- | |0 | O | | 1 | B-PER | | 2 | I-PER | | 3 | B-ORG| | 4 | I-ORG | | 5 | B-LOC | | 6 | I-LOC | Test Results Summary: Evaluation Loss: 0.5799 Overall Precision: 0.7949 Overall Recall: 0.7806 Overall F1-score: 0.7877 Overall Accuracy: 0.9021 The model's ability to identify specific entity types: Location (LOC) F1-score: 0.7417 Organization (ORG) F1-score: 0.7559 Person (PER) F1-score: 0.8696 Usage: ```py from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("debabrata-ai/Nepali-Named-Entity-Tagger-XLM-R") model = AutoModelForTokenClassification.from_pretrained("debabrata-ai/Nepali-Named-Entity-Tagger-XLM-R") nlp = pipeline("ner", model=model, tokenizer=tokenizer) input_text = "ईनरह्वील क्लब स्थापना भएको सय वर्ष (शताब्दी) पुरा भएको अवसरमा ईरनह्वील क्लब अफ बुटवलले एक सय वृक्षरोपण गरेको छ । ईनरह्वील क्लब स्थापना भएको अवसरमा ईनरव्हिल क्लब अफ बुटवलले तिलोत्तमा नगरपालिका वडा नम्बर १ मा रहेको शंकनगर सामुदायिक बनमा एक सय वटा टिकको बिरुवा रोपिएको क्लबकी सचिव सोनाली गुरुङले जानकारी दिनुभयो ।क्लब अध्यक्ष सानु श्रेष्ठले पदभार ग्रहण गर्ने कार्यक्रममा एक सय बृक्षरोपण गर्ने कार्यक्रम ल्याउनु भएको थियो । सोही अनुसार यो कार्यक्रम गरिएको उहाँले बताउनु भयो । क्लबले सामाजिक उत्तरदायित्वका कामहरूलाई निरन्तरता दिने पनि अध्यक्ष श्रेष्ठले प्रतिबद्धता व्यक्त गर्नुभयो ।ईनरह्वील क्लब अफ बुटवलका पूर्व अध्यक्ष लक्ष्मी बस्यालले ईनरह्वीलको इतिहासको बारेमा बताउँदै एक सय दिनमा एक सय भन्दा बढी बिरुवा रोपिनु सकारात्मक कुरा भएको बताउनु भयो । शंकनगर सामुदायिक बन उपभोक्ता समूहका अध्यक्ष अध्यक्ष रवीन्द्र बस्नेतले बृक्षरोपण निकै राम्रो कुरा भएपनि बिरुवाको संरक्षण उत्तिकै चुनौतीपूर्ण रहेको बताउनु भयो । उहाँले समय समयमा आफ्नो क्लबले लगाएका बिरुवा हुर्काउन ध्यान दिन आग्रह गर्नुभयो ।शंकनगर सामुदायिक बन उपभोक्ता समूह उपाध्यक्ष कमला ज्ञवाली, सदस्य कृष्ण केसी, लगायतले भनाई राख्नुभएको थियो । क्लब अध्यक्ष सानु श्रेष्ठको अध्यक्षता, सचिव सोनाली गुरुङको सञ्चालन तथा गंगा श्रेष्ठको संयोजनमा सम्पन्न भएको थियो । कार्यक्रम उपभोक्ता समितिका पदाधिकारी सदस्य, क्लबका सदस्यहरूको सहभागिता रहेको थियो " ner_results = nlp(input_text) ner_results ```
PraveenJesu/whisper-medium-47-peft-V1-drug_1_list
PraveenJesu
2023-08-31T16:17:19Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-31T16:17:18Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
Varshitha/llama2-qlora-medicine-fine-tuned
Varshitha
2023-08-31T16:11:24Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-31T15:47:13Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
vikp/instruct_llama_7b
vikp
2023-08-31T16:10:49Z
4
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "dataset:vikp/python_code_instructions_filtered", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-31T00:39:09Z
--- datasets: - vikp/python_code_instructions_filtered --- This is code llama 7b finetuned for one epoch on a set of python code and instructions. Scores `.512` in humaneval with greedy decoding (matched to code llama pass@1). To use in inference, you'll need to set `trust_remote_code = True` to pick up the right rope theta value: ``` from transformers import AutoModelForCausalLM from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("vikp/code_llama_7B_hf") model = AutoModelForCausalLM.from_pretrained("vikp/instruct_llama_7b", trust_remote_code=True) text = tokenizer.bos_token + """\ import socket def ping_exponential_backoff(host: str):""".lstrip() tokens = tokenizer(text, return_tensors="pt") output = model.generate(**tokens, max_new_tokens=128, do_sample=True, temperature=.1, top_p=1.0) print(tokenizer.decode(output[0], skip_special_tokens=True).strip()) ``` You can duplicate benchmark results with the bigcode eval harness: ``` git clone https://github.com/bigcode-project/bigcode-evaluation-harness.git cd bigcode-evaluation-harness pip install -e . ``` ``` accelerate launch main.py \ --model vikp/instruct_llama_7b \ --tasks humaneval \ --max_length_generation 1024 \ --temperature 0 \ --do_sample False \ --n_samples 1 \ --precision fp16 \ --allow_code_execution \ --save_generations \ --use_auth_token \ --trust_remote_code ```
jalaluddin94/baseline_nli_xlmr
jalaluddin94
2023-08-31T16:04:52Z
179
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T16:03:29Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: baseline_nli_xlmr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # baseline_nli_xlmr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8598 - Accuracy: 0.6427 - Precision: 0.6427 - Recall: 0.6427 - F1 Score: 0.6445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 12 - eval_batch_size: 12 - seed: 101 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | 1.0805 | 1.0 | 861 | 0.9653 | 0.5594 | 0.5594 | 0.5594 | 0.5629 | | 0.9651 | 2.0 | 1722 | 0.9542 | 0.5762 | 0.5762 | 0.5762 | 0.5786 | | 0.9313 | 3.0 | 2583 | 0.9236 | 0.5922 | 0.5922 | 0.5922 | 0.5928 | | 0.8886 | 4.0 | 3444 | 0.8775 | 0.6409 | 0.6409 | 0.6409 | 0.6429 | | 0.8656 | 5.0 | 4305 | 0.8727 | 0.6327 | 0.6327 | 0.6327 | 0.6350 | | 0.8521 | 6.0 | 5166 | 0.8598 | 0.6427 | 0.6427 | 0.6427 | 0.6445 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
BugHunter1/speecht5_finetuned_voxpopuli_nl
BugHunter1
2023-08-31T16:02:09Z
82
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "dataset:facebook/voxpopuli", "endpoints_compatible", "region:us" ]
text-to-speech
2023-08-31T12:09:40Z
--- base_model: SpeechT5 tags: - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: speecht5_finetuned_facebook_voxpopuli_et results: [] pipeline_tag: text-to-speech --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_facebook_voxpopuli_et This model is a fine-tuned version of [SpeechT5](https://huggingface.co/SpeechT5) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4557 | 177.78 | 1000 | 0.4377 | | 0.4317 | 355.56 | 2000 | 0.4329 | | 0.4244 | 533.33 | 3000 | 0.4303 | | 0.4223 | 711.11 | 4000 | 0.4303 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
bhenrym14/airoboros-l2-13b-2.1-PI-16k-fp16
bhenrym14
2023-08-31T16:02:07Z
7
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "dataset:jondurbin/airoboros-2.1", "dataset:kmfoda/booksum", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-31T14:43:12Z
--- datasets: - jondurbin/airoboros-2.1 - kmfoda/booksum --- # RoPE Scaled QLoRA Fine-tune of Llama-2 13b on airoboros-2.1, with Long Context Pretraining (fp16 weights) ## Overview This is a finetune of Llama-2-13b, intended to extend the useful context window to 16384 tokens via position interpolation (PI). There are two training phases: 1. Scaling the RoPE embeddings by a factor of 0.25 (linear method), train on 16384 token sequences from the `chapter` component of the the [booksum](https://huggingface.co/datasets/kmfoda/booksum) dataset. (one epoch, ~ 150mm tokens) 2. The model was then finetuned on [Jon Durbin's Airoboros 2.1 dataset](https://huggingface.co/datasets/jondurbin/airoboros-2.1), with same scaling approach, for 2 epochs. **This is a (merged) QLoRA fine-tune (rank 64)**. The finetune was performed with 1x RTX 6000 Ada. ## How to Use This model employs linear RoPE scaling, which now has native support in `Transformers` (be sure to update it if you have issues). Use it as you would with any normal context length variant. Please comment with any questions. Ooba use: Be sure to increase the `Truncate the prompt up to this length` parameter to 16384 to utilize the full context capabilities. ## Motivation Given the excellent performance of llama-2 13b finetunes relative to llama 33b, I have received several requests for a 16k model using the latest airoboros dataset. Furthermore, while partial NTK scaling appears to be better for retaining short context performance, it is not natively supported in `transformers` and is thus not as accessible to less technical audiences. This model is designed to offer long context capabilites with the stylistic characteristics of the new airoboros dataset without any additional configuration. ## Relative Performance (wikitext perplexity) | Context (tokens) | **bhenrym14/airoboros-l2-13b-PI-16k-fp16** | bhenrym14/airophin-v2-13b-PI-8k-fp16 | bhenrym14/airophin-13b-pntk-16k-fp16| bhenrym14/airoboros-13b-gpt4-1.4.1-PI-8192-fp16 |bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-fp16 | jondurbin/airoboros-l2-13b-gpt4-1.4.1 | | --- | --- | ---| ----- | -----| ------| --- | | 512 | 7.67 | 7.38 | 7.62 | 8.24 | 7.90 | **7.23** | | 1024 | 6.15 | 5.99 | 6.20 | 6.71 | 6.17 | **5.85** | | 2048 | 5.29 | 5.22 | 5.38 | 5.87 | 5.23 | **5.07** | | 4096 | 4.94 | 4.90 | 5.08 | 5.50 | 4.91 | **4.77** | | 8192 | **4.71** | **4.71** | 4.90 | 5.32 | Not Tested | 57.1 | | 12000 | **4.54** | 55 | 4.82 | 56.1 | Not Tested | Not Tested | - Larger PI scaling factors increase short context performance degradation. If you don't require 16k context, you're better off using a model with a different context extension method, or a smaller (or no) PI scaling factor. Given this, don't expect anything special from this model on the HF leaderboard. Whether or not this is relevant to you will depend on your intended use case. - Beyond 8k, this model has lower perplexity than all other models tested here. - I'm actively exploring/implementing other context extension methods that may ameliorate the tendency of PI methods to impair the ability of the model to attend to the context space equally. ## Prompting: Prompting differs with the airoboros 2.1 models. See [jondurbin/airoboros-l2-13b-2.1](https://huggingface.co/jondurbin/airoboros-l2-13b-2.1)
y22ma/Kosmos2-endpoint
y22ma
2023-08-31T15:58:04Z
0
3
null
[ "license:mit", "endpoints_compatible", "region:us" ]
null
2023-08-25T18:36:49Z
--- license: mit --- A model card with a customer handler to deploy the [MSFT Kosmos2](https://huggingface.co/spaces/ydshieh/Kosmos-2) model as an inference endpoint. Enjoy! Hit me up on X/Twitter @yanMachX and let me know what you guys are building! ### Expected Request payload ```json { "inputs": "you can just leave this empty, for some reason, inference endpoint expects this", # base64 encoded string representation of the image blob, here's an example "image" : "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAIAAAB7GkOtAAAABGdBTUEAALGPC" } ``` There is a [python script](https://huggingface.co/y22ma/Kosmos2-endpoint/blob/main/endpoint_tester.py) that provides example API call the inference endpoint.
PrimeQA/open-nq-colbert-xlmr-large
PrimeQA
2023-08-31T15:57:31Z
35
5
transformers
[ "transformers", "pytorch", "bert", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-11-17T02:47:00Z
--- license: apache-2.0 --- # Model Description This is a retriever model based on ColBERT v2 with [bert-base-uncased](https://huggingface.co/bert-base-uncased) language model.<br> This model was trained with the OpenNQ data.<br> The architecture of the model and hyper parameters are described in the paper ‘Relevance-guided Supervision for OpenQA with ColBERT’. ## Intended uses & limitations This model uses the xlm-roberta-large LM. Biases associated with the pre-trained language model we used may be present in this ColBERT v2 model. ## Usage This model can be used with [PrimeQA](https://github.com/primeqa/primeqa)’s [ColBERT](https://github.com/primeqa/primeqa/blob/main/primeqa/ir/README.md) engine. ## BibTeX entry and citation info ```bibtex @article{Khattab2021RelevanceguidedSF, title={Relevance-guided Supervision for OpenQA with ColBERT}, author={O. Khattab and Christopher Potts and Matei A. Zaharia}, journal={Transactions of the Association for Computational Linguistics}, year={2021}, } ``` ```bibtex @article{Lee2019LatentRF, title={Latent Retrieval for Weakly Supervised Open Domain Question Answering}, author={Kenton Lee and Ming-Wei Chang and Kristina Toutanova}, journal={ACL}, year={2019} } ```
profetize/bert-base-cased-wikitext2
profetize
2023-08-31T15:55:20Z
195
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-31T15:41:56Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-base-cased-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.1015 | 1.0 | 2346 | 7.0572 | | 6.8896 | 2.0 | 4692 | 6.8889 | | 6.8745 | 3.0 | 7038 | 6.8896 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
rrozb/q-FrozenLake-v1-4x4-noSlippery
rrozb
2023-08-31T15:54:55Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-31T15:54:52Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="rrozb/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AnikaAI/bert-finetuned-ner
AnikaAI
2023-08-31T15:51:40Z
103
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-31T07:11:23Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9357296670531721 - name: Recall type: recall value: 0.9506900033658701 - name: F1 type: f1 value: 0.9431505133984472 - name: Accuracy type: accuracy value: 0.9867251427562254 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0578 - Precision: 0.9357 - Recall: 0.9507 - F1: 0.9432 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0793 | 1.0 | 1756 | 0.0803 | 0.9096 | 0.9345 | 0.9219 | 0.9795 | | 0.041 | 2.0 | 3512 | 0.0537 | 0.9267 | 0.9465 | 0.9365 | 0.9859 | | 0.025 | 3.0 | 5268 | 0.0578 | 0.9357 | 0.9507 | 0.9432 | 0.9867 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ardt-multipart/ardt-multipart-ppo_train_walker2d_level-3108_1436-99
ardt-multipart
2023-08-31T15:45:37Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-31T13:38:12Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-ppo_train_walker2d_level-3108_1436-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-ppo_train_walker2d_level-3108_1436-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dhmeltzer/llama-7b-SFT-qlora-wiki_DPO_ds_RM_random_1024_r_64_alpha_16
dhmeltzer
2023-08-31T15:45:04Z
0
0
null
[ "generated_from_trainer", "base_model:dhmeltzer/llama-7b-SFT_ds_wiki65k_1024_r_64_alpha_16_merged", "base_model:finetune:dhmeltzer/llama-7b-SFT_ds_wiki65k_1024_r_64_alpha_16_merged", "region:us" ]
null
2023-08-31T06:52:56Z
--- base_model: dhmeltzer/llama-7b-SFT_ds_wiki65k_1024_r_64_alpha_16_merged tags: - generated_from_trainer model-index: - name: llama-7b-SFT-qlora-wiki_DPO_ds_RM_random_1024_r_64_alpha_16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-7b-SFT-qlora-wiki_DPO_ds_RM_random_1024_r_64_alpha_16 This model is a fine-tuned version of [dhmeltzer/llama-7b-SFT_ds_wiki65k_1024_r_64_alpha_16_merged](https://huggingface.co/dhmeltzer/llama-7b-SFT_ds_wiki65k_1024_r_64_alpha_16_merged) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6801 - Rewards/chosen: -0.1790 - Rewards/rejected: -0.2369 - Rewards/accuracies: 0.5469 - Rewards/margins: 0.0578 - Logps/rejected: -206.1121 - Logps/chosen: -202.9860 - Logits/rejected: 1.1465 - Logits/chosen: 1.1674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6904 | 0.1 | 19 | 0.6904 | -0.3143 | -0.3636 | 0.5458 | 0.0493 | -207.3793 | -204.3384 | 1.1224 | 1.1416 | | 0.6725 | 0.21 | 38 | 0.6850 | -0.3901 | -0.4540 | 0.5547 | 0.0640 | -208.2836 | -205.0964 | 1.1270 | 1.1469 | | 0.6818 | 0.31 | 57 | 0.6801 | -0.1790 | -0.2369 | 0.5469 | 0.0578 | -206.1121 | -202.9860 | 1.1465 | 1.1674 | | 0.6671 | 0.41 | 76 | 0.6863 | -0.2598 | -0.3469 | 0.5580 | 0.0871 | -207.2126 | -203.7936 | 1.1468 | 1.1665 | | 0.6683 | 0.52 | 95 | 0.6841 | -0.1475 | -0.2325 | 0.5502 | 0.0851 | -206.0687 | -202.6704 | 1.1388 | 1.1590 | | 0.6626 | 0.62 | 114 | 0.6846 | -0.0836 | -0.1600 | 0.5480 | 0.0764 | -205.3429 | -202.0314 | 1.1263 | 1.1474 | | 0.6593 | 0.72 | 133 | 0.6864 | -0.1272 | -0.2184 | 0.5625 | 0.0912 | -205.9276 | -202.4675 | 1.1106 | 1.1306 | | 0.672 | 0.83 | 152 | 0.6857 | -0.1452 | -0.2334 | 0.5592 | 0.0882 | -206.0777 | -202.6477 | 1.1086 | 1.1293 | | 0.6671 | 0.93 | 171 | 0.6855 | -0.1472 | -0.2350 | 0.5547 | 0.0878 | -206.0934 | -202.6673 | 1.1071 | 1.1270 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
yaohuacn/ppo-SnowballTarget2
yaohuacn
2023-08-31T15:44:53Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-08-31T15:44:43Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: yaohuacn/ppo-SnowballTarget2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CyberHarem/hanabatake_yoshie_ahogirl
CyberHarem
2023-08-31T15:40:01Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/hanabatake_yoshie_ahogirl", "license:mit", "region:us" ]
text-to-image
2023-08-31T10:10:49Z
--- license: mit datasets: - CyberHarem/hanabatake_yoshie_ahogirl pipeline_tag: text-to-image tags: - art --- # Lora of hanabatake_yoshie_ahogirl This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). The base model used during training is [NAI](https://huggingface.co/deepghs/animefull-latest), and the base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 4800, you need to download `4800/hanabatake_yoshie_ahogirl.pt` as the embedding and `4800/hanabatake_yoshie_ahogirl.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The best step we recommend is 4800**, with the score of 0.737. The trigger words are: 1. `hanabatake_yoshie_ahogirl` 2. `brown_hair, open_mouth, long_hair, smile, red_eyes` For the following groups, it is not recommended to use this model and we express regret: 1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail. 2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits. 3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm. 4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters. 5. Individuals who finds the generated image content offensive to their values. These are available steps: | Steps | Score | Download | pattern_1 | pattern_2 | pattern_3 | pattern_4 | bikini | bondage | free | maid | miko | nude | nude2 | suit | yukata | |:---------|:----------|:---------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------|:--------------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------------|:-------------------------------------|:-----------------------------------------| | 6000 | 0.688 | [Download](6000/hanabatake_yoshie_ahogirl.zip) | ![pattern_1-6000](6000/previews/pattern_1.png) | ![pattern_2-6000](6000/previews/pattern_2.png) | ![pattern_3-6000](6000/previews/pattern_3.png) | ![pattern_4-6000](6000/previews/pattern_4.png) | ![bikini-6000](6000/previews/bikini.png) | [<NSFW, click to see>](6000/previews/bondage.png) | ![free-6000](6000/previews/free.png) | ![maid-6000](6000/previews/maid.png) | ![miko-6000](6000/previews/miko.png) | [<NSFW, click to see>](6000/previews/nude.png) | [<NSFW, click to see>](6000/previews/nude2.png) | ![suit-6000](6000/previews/suit.png) | ![yukata-6000](6000/previews/yukata.png) | | 5600 | 0.653 | [Download](5600/hanabatake_yoshie_ahogirl.zip) | ![pattern_1-5600](5600/previews/pattern_1.png) | ![pattern_2-5600](5600/previews/pattern_2.png) | ![pattern_3-5600](5600/previews/pattern_3.png) | ![pattern_4-5600](5600/previews/pattern_4.png) | ![bikini-5600](5600/previews/bikini.png) | [<NSFW, click to see>](5600/previews/bondage.png) | ![free-5600](5600/previews/free.png) | ![maid-5600](5600/previews/maid.png) | ![miko-5600](5600/previews/miko.png) | [<NSFW, click to see>](5600/previews/nude.png) | [<NSFW, click to see>](5600/previews/nude2.png) | ![suit-5600](5600/previews/suit.png) | ![yukata-5600](5600/previews/yukata.png) | | 5200 | 0.696 | [Download](5200/hanabatake_yoshie_ahogirl.zip) | ![pattern_1-5200](5200/previews/pattern_1.png) | ![pattern_2-5200](5200/previews/pattern_2.png) | ![pattern_3-5200](5200/previews/pattern_3.png) | ![pattern_4-5200](5200/previews/pattern_4.png) | ![bikini-5200](5200/previews/bikini.png) | [<NSFW, click to see>](5200/previews/bondage.png) | ![free-5200](5200/previews/free.png) | ![maid-5200](5200/previews/maid.png) | ![miko-5200](5200/previews/miko.png) | [<NSFW, click to see>](5200/previews/nude.png) | [<NSFW, click to see>](5200/previews/nude2.png) | ![suit-5200](5200/previews/suit.png) | ![yukata-5200](5200/previews/yukata.png) | | **4800** | **0.737** | [**Download**](4800/hanabatake_yoshie_ahogirl.zip) | ![pattern_1-4800](4800/previews/pattern_1.png) | ![pattern_2-4800](4800/previews/pattern_2.png) | ![pattern_3-4800](4800/previews/pattern_3.png) | ![pattern_4-4800](4800/previews/pattern_4.png) | ![bikini-4800](4800/previews/bikini.png) | [<NSFW, click to see>](4800/previews/bondage.png) | ![free-4800](4800/previews/free.png) | ![maid-4800](4800/previews/maid.png) | ![miko-4800](4800/previews/miko.png) | [<NSFW, click to see>](4800/previews/nude.png) | [<NSFW, click to see>](4800/previews/nude2.png) | ![suit-4800](4800/previews/suit.png) | ![yukata-4800](4800/previews/yukata.png) | | 4400 | 0.636 | [Download](4400/hanabatake_yoshie_ahogirl.zip) | ![pattern_1-4400](4400/previews/pattern_1.png) | ![pattern_2-4400](4400/previews/pattern_2.png) | ![pattern_3-4400](4400/previews/pattern_3.png) | ![pattern_4-4400](4400/previews/pattern_4.png) | ![bikini-4400](4400/previews/bikini.png) | [<NSFW, click to see>](4400/previews/bondage.png) | ![free-4400](4400/previews/free.png) | ![maid-4400](4400/previews/maid.png) | ![miko-4400](4400/previews/miko.png) | [<NSFW, click to see>](4400/previews/nude.png) | [<NSFW, click to see>](4400/previews/nude2.png) | ![suit-4400](4400/previews/suit.png) | ![yukata-4400](4400/previews/yukata.png) | | 4000 | 0.661 | [Download](4000/hanabatake_yoshie_ahogirl.zip) | ![pattern_1-4000](4000/previews/pattern_1.png) | ![pattern_2-4000](4000/previews/pattern_2.png) | ![pattern_3-4000](4000/previews/pattern_3.png) | ![pattern_4-4000](4000/previews/pattern_4.png) | ![bikini-4000](4000/previews/bikini.png) | [<NSFW, click to see>](4000/previews/bondage.png) | ![free-4000](4000/previews/free.png) | ![maid-4000](4000/previews/maid.png) | ![miko-4000](4000/previews/miko.png) | [<NSFW, click to see>](4000/previews/nude.png) | [<NSFW, click to see>](4000/previews/nude2.png) | ![suit-4000](4000/previews/suit.png) | ![yukata-4000](4000/previews/yukata.png) | | 3600 | 0.579 | [Download](3600/hanabatake_yoshie_ahogirl.zip) | ![pattern_1-3600](3600/previews/pattern_1.png) | ![pattern_2-3600](3600/previews/pattern_2.png) | ![pattern_3-3600](3600/previews/pattern_3.png) | ![pattern_4-3600](3600/previews/pattern_4.png) | ![bikini-3600](3600/previews/bikini.png) | [<NSFW, click to see>](3600/previews/bondage.png) | ![free-3600](3600/previews/free.png) | ![maid-3600](3600/previews/maid.png) | ![miko-3600](3600/previews/miko.png) | [<NSFW, click to see>](3600/previews/nude.png) | [<NSFW, click to see>](3600/previews/nude2.png) | ![suit-3600](3600/previews/suit.png) | ![yukata-3600](3600/previews/yukata.png) | | 3200 | 0.573 | [Download](3200/hanabatake_yoshie_ahogirl.zip) | ![pattern_1-3200](3200/previews/pattern_1.png) | ![pattern_2-3200](3200/previews/pattern_2.png) | ![pattern_3-3200](3200/previews/pattern_3.png) | ![pattern_4-3200](3200/previews/pattern_4.png) | ![bikini-3200](3200/previews/bikini.png) | [<NSFW, click to see>](3200/previews/bondage.png) | ![free-3200](3200/previews/free.png) | ![maid-3200](3200/previews/maid.png) | ![miko-3200](3200/previews/miko.png) | [<NSFW, click to see>](3200/previews/nude.png) | [<NSFW, click to see>](3200/previews/nude2.png) | ![suit-3200](3200/previews/suit.png) | ![yukata-3200](3200/previews/yukata.png) | | 2800 | 0.446 | [Download](2800/hanabatake_yoshie_ahogirl.zip) | ![pattern_1-2800](2800/previews/pattern_1.png) | ![pattern_2-2800](2800/previews/pattern_2.png) | ![pattern_3-2800](2800/previews/pattern_3.png) | ![pattern_4-2800](2800/previews/pattern_4.png) | ![bikini-2800](2800/previews/bikini.png) | [<NSFW, click to see>](2800/previews/bondage.png) | ![free-2800](2800/previews/free.png) | ![maid-2800](2800/previews/maid.png) | ![miko-2800](2800/previews/miko.png) | [<NSFW, click to see>](2800/previews/nude.png) | [<NSFW, click to see>](2800/previews/nude2.png) | ![suit-2800](2800/previews/suit.png) | ![yukata-2800](2800/previews/yukata.png) | | 2400 | 0.509 | [Download](2400/hanabatake_yoshie_ahogirl.zip) | ![pattern_1-2400](2400/previews/pattern_1.png) | ![pattern_2-2400](2400/previews/pattern_2.png) | ![pattern_3-2400](2400/previews/pattern_3.png) | ![pattern_4-2400](2400/previews/pattern_4.png) | ![bikini-2400](2400/previews/bikini.png) | [<NSFW, click to see>](2400/previews/bondage.png) | ![free-2400](2400/previews/free.png) | ![maid-2400](2400/previews/maid.png) | ![miko-2400](2400/previews/miko.png) | [<NSFW, click to see>](2400/previews/nude.png) | [<NSFW, click to see>](2400/previews/nude2.png) | ![suit-2400](2400/previews/suit.png) | ![yukata-2400](2400/previews/yukata.png) | | 2000 | 0.393 | [Download](2000/hanabatake_yoshie_ahogirl.zip) | ![pattern_1-2000](2000/previews/pattern_1.png) | ![pattern_2-2000](2000/previews/pattern_2.png) | ![pattern_3-2000](2000/previews/pattern_3.png) | ![pattern_4-2000](2000/previews/pattern_4.png) | ![bikini-2000](2000/previews/bikini.png) | [<NSFW, click to see>](2000/previews/bondage.png) | ![free-2000](2000/previews/free.png) | ![maid-2000](2000/previews/maid.png) | ![miko-2000](2000/previews/miko.png) | [<NSFW, click to see>](2000/previews/nude.png) | [<NSFW, click to see>](2000/previews/nude2.png) | ![suit-2000](2000/previews/suit.png) | ![yukata-2000](2000/previews/yukata.png) | | 1600 | 0.525 | [Download](1600/hanabatake_yoshie_ahogirl.zip) | ![pattern_1-1600](1600/previews/pattern_1.png) | ![pattern_2-1600](1600/previews/pattern_2.png) | ![pattern_3-1600](1600/previews/pattern_3.png) | ![pattern_4-1600](1600/previews/pattern_4.png) | ![bikini-1600](1600/previews/bikini.png) | [<NSFW, click to see>](1600/previews/bondage.png) | ![free-1600](1600/previews/free.png) | ![maid-1600](1600/previews/maid.png) | ![miko-1600](1600/previews/miko.png) | [<NSFW, click to see>](1600/previews/nude.png) | [<NSFW, click to see>](1600/previews/nude2.png) | ![suit-1600](1600/previews/suit.png) | ![yukata-1600](1600/previews/yukata.png) | | 1200 | 0.408 | [Download](1200/hanabatake_yoshie_ahogirl.zip) | ![pattern_1-1200](1200/previews/pattern_1.png) | ![pattern_2-1200](1200/previews/pattern_2.png) | ![pattern_3-1200](1200/previews/pattern_3.png) | ![pattern_4-1200](1200/previews/pattern_4.png) | ![bikini-1200](1200/previews/bikini.png) | [<NSFW, click to see>](1200/previews/bondage.png) | ![free-1200](1200/previews/free.png) | ![maid-1200](1200/previews/maid.png) | ![miko-1200](1200/previews/miko.png) | [<NSFW, click to see>](1200/previews/nude.png) | [<NSFW, click to see>](1200/previews/nude2.png) | ![suit-1200](1200/previews/suit.png) | ![yukata-1200](1200/previews/yukata.png) | | 800 | 0.355 | [Download](800/hanabatake_yoshie_ahogirl.zip) | ![pattern_1-800](800/previews/pattern_1.png) | ![pattern_2-800](800/previews/pattern_2.png) | ![pattern_3-800](800/previews/pattern_3.png) | ![pattern_4-800](800/previews/pattern_4.png) | ![bikini-800](800/previews/bikini.png) | [<NSFW, click to see>](800/previews/bondage.png) | ![free-800](800/previews/free.png) | ![maid-800](800/previews/maid.png) | ![miko-800](800/previews/miko.png) | [<NSFW, click to see>](800/previews/nude.png) | [<NSFW, click to see>](800/previews/nude2.png) | ![suit-800](800/previews/suit.png) | ![yukata-800](800/previews/yukata.png) | | 400 | 0.042 | [Download](400/hanabatake_yoshie_ahogirl.zip) | ![pattern_1-400](400/previews/pattern_1.png) | ![pattern_2-400](400/previews/pattern_2.png) | ![pattern_3-400](400/previews/pattern_3.png) | ![pattern_4-400](400/previews/pattern_4.png) | ![bikini-400](400/previews/bikini.png) | [<NSFW, click to see>](400/previews/bondage.png) | ![free-400](400/previews/free.png) | ![maid-400](400/previews/maid.png) | ![miko-400](400/previews/miko.png) | [<NSFW, click to see>](400/previews/nude.png) | [<NSFW, click to see>](400/previews/nude2.png) | ![suit-400](400/previews/suit.png) | ![yukata-400](400/previews/yukata.png) |
profetize/gpt2-wikitext2
profetize
2023-08-31T15:39:10Z
227
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-30T20:01:54Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.0758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5344 | 1.0 | 2256 | 6.4312 | | 6.1159 | 2.0 | 4512 | 6.1643 | | 5.9902 | 3.0 | 6768 | 6.0758 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Korkkork/atsushisakurai
Korkkork
2023-08-31T15:34:34Z
0
0
null
[ "vkei", "Artist", "Bucktick", "license:openrail", "region:us" ]
null
2023-08-31T15:33:22Z
--- license: openrail tags: - vkei - Artist - Bucktick ---
mgmeskill/downstrike-40m
mgmeskill
2023-08-31T15:33:34Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-08-31T15:31:34Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mgmeskill/downstrike-40m 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Brainclub5000/5z6k-ldz0-3ch1
Brainclub5000
2023-08-31T15:32:40Z
2
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "region:us" ]
text-to-image
2023-08-31T15:32:40Z
--- base_model: runwayml/stable-diffusion-v1-5 instance_prompt: photos of people on the beach in napoli tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Test enoder was not trained.
DunnBC22/bert-large-uncased-Fake_Reviews_Classifier
DunnBC22
2023-08-31T15:30:54Z
0
0
null
[ "tensorboard", "generated_from_trainer", "base_model:google-bert/bert-large-uncased", "base_model:finetune:google-bert/bert-large-uncased", "license:apache-2.0", "region:us" ]
null
2023-08-08T03:08:29Z
--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: bert-large-uncased-Fake_Reviews_Classifier results: [] --- # bert-large-uncased-Fake_Reviews_Classifier This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased). It achieves the following results on the evaluation set: - Loss: 0.5336 - Accuracy: 0.8381 - F1 - Weighted: 0.8142 - Micro: 0.8381 - Macro: 0.6308 - Recall - Weighted: 0.8381 - Micro: 0.8381 - Macro: 0.6090 - Precision - Weighted: 0.8101 - Micro: 0.8381 - Macro: 0.7029 ## Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Binary%20Classification/Fake%20Reviews/Fake%20Reviews%20Classification%20-%20BERT-Large%20With%20PEFT.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. You are welcome to test and experiment with this model, but it is at your own risk/peril. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/razamukhtar007/fake-reviews __Histogram of Word Counts of Reviews__ ![Histogram of Word Counts of Reviews](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Binary%20Classification/Fake%20Reviews/Images/Histogram%20of%20Review%20Word%20Counts.png) __Class Distribution__ ![Class Distribution](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Binary%20Classification/Fake%20Reviews/Images/Class%20Distribution.png) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 0.633 | 1.0 | 10438 | 0.5608 | 0.8261 | 0.7914 | 0.8261 | __0.5745__ | 0.8261 | 0.8261 | 0.5643 | 0.7844 | 0.8261 | 0.6542 | | 0.6029 | 2.0 | 20876 | 0.6490 | 0.8331 | 0.7724 | 0.8331 | __0.5060__ | 0.8331 | 0.8331 | 0.5239 | 0.7892 | 0.8331 | 0.6929 | | 0.5478 | 3.0 | 31314 | 0.5508 | 0.8305 | 0.8071 | 0.8305 | __0.6189__ | 0.8305 | 0.8305 | 0.6003 | 0.8002 | 0.8305 | 0.6784 | | 0.513 | 4.0 | 41752 | 0.5459 | 0.8347 | 0.8101 | 0.8347 | __0.6224__ | 0.8347 | 0.8347 | 0.6023 | 0.8049 | 0.8347 | 0.6916 | | 0.5288 | 5.0 | 52190 | 0.5336 | 0.8381 | 0.8142 | 0.8381 | __0.6308__ | 0.8381 | 0.8381 | 0.6090 | 0.8101 | 0.8381 | 0.7029 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3
haih2/open-calm-7b-summarizer-lora
haih2
2023-08-31T15:16:08Z
32
1
peft
[ "peft", "text-generation", "ja", "arxiv:2305.14314", "region:us" ]
text-generation
2023-08-29T11:57:48Z
--- library_name: peft language: - ja pipeline_tag: text-generation --- # Fine-tuned OpenCALM-7B Adapters for Meeting Summarization ## Description These are weights for LoRA adapters fine-tuned on the OpenCALM-7B ([Andonian et al., 2021](https://huggingface.co/cyberagent/open-calm-7b)) model for Japanese meeting summarization. ## Usage ### Load model and tokenizer Loading the model in the 4-bit quantized format is recommended to get reliable results since these LoRA adapters were trained by using QLoRA ([Dettmers et al., 2023](https://arxiv.org/abs/2305.14314)). ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftModel bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16 ) tokenizer = AutoTokenizer.from_pretrained("cyberagent/open-calm-7b") model = AutoModelForCausalLM.from_pretrained( "cyberagent/open-calm-7b", quantization_config=bnb_config, device_map="auto" ) model = PeftModel.from_pretrained(model, "haih2/open-calm-7b-summarizer-lora") ``` ### Generate summary In the prompt provided to the model: * The first part is the length of the summary to be generated, * and The second part is the source meeting to be summarized. ```python prompt = "この段落の要約50字以内生成:次に、私立高校の生徒に対する留学支援についてでございますが、都内の私立高校は、それぞれの学校における教育方針に基づきまして、生徒の留学先として海外の学校と提携するなど、既にさまざまな独自の取り組みを進めております。\\nこうした状況等を踏まえ、私立高校を対象とした留学支援のあり方について、今後検討してまいります。\\n\n" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): tokens = model.generate( **inputs, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=32, top_p=0.9, repetition_penalty=1.0, no_repeat_ngram_size=0, pad_token_id=tokenizer.pad_token_id, ) output = tokenizer.decode(tokens[0], skip_special_tokens=True) print(output) ``` ## Prompt Format Any prompt is fine, but it is suggested to have `length` and `source` parts as follows: ``` "この段落を{length}に要約しなさい:{source}\n要約:" ``` or ``` "この段落の要約{length}生成:{source}\n" ``` ## Fine-tuning Details ### Dataset * [Congressional meeting's minutes](https://github.com/kmr-y/NTCIR14-QALab-PoliInfo-FormalRunDataset/tree/master) provided by QA Lab PoliInfo. ### Fine-tuning procedure The OpenCALM-7B model was fine-tuned on the above dataset using the QLoRA method with prompt `この段落の要約{length}生成:{source}\n`. We outline the following hyperparameters: ||| |----------------|----------------:| | **Optimizer** <br> &emsp; beta_1 <br> &emsp; beta_2 <br> &emsp; weight decay | AdamW <br> 0.9 <br> 0.999 <br> 0.01 | | **Learning rate** <br> &emsp; scheduler type | 2e-5 <br> linear | | **LoRA** <br> &emsp; target modules <br> &emsp; r <br> &emsp; alpha <br> &emsp; dropout | <br> query_key_value, dense <br> 4 <br> 64 <br> 0.05 | | **Quantization (for QLoRA)** <br> &emsp; compute dtype <br> &emsp; storage dtype <br> &emsp; quantization strategy | <br> float16 <br> nf4 <br> double quantization | | **Sequence length** | 1536 | | **Batch size** | 4 | | **Gradient accumulation steps** | 2 | | **Epochs** | 10 | | **Warmup steps** | 200 | ## Evaluation ### Testing data & Metric We evaluated the model on two sets: one for *multi-topic* summarization and the other for *single-topic* summarization. ROUGE-L (F1-score-based) with the [Japanese Mecab tokenizer](https://pypi.org/project/mecab-python3/) was used as the evaluation metric. ### Results | Solution/Model | ROUGE-L <br> (multi-topic) | ROUGE-L <br> (single-topic) | |----------------|:--------------------------:|:---------------------------:| |1st place solution* |34.12 |**34.44**| |2nd place solution* |32.79 |33.65 | |*OpenCALM-7B (QLoRA)*|***36.75***|*33.31* | *\* These scores are extracted from this [leaderboard](https://github.com/PoliInfo/PoliInfo.github.io/blob/master/FormalRunResult.md) for the summarization task.*
alexdbz/bert-base-peft-Lora-abstracts-2epochs
alexdbz
2023-08-31T15:06:14Z
8
0
peft
[ "peft", "region:us" ]
null
2023-08-31T15:06:10Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
dkqjrm/20230831190406
dkqjrm
2023-08-31T15:03:07Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-31T10:04:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230831190406' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230831190406 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6234 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 340 | 0.6536 | 0.5 | | 0.6466 | 2.0 | 680 | 0.6207 | 0.5 | | 0.6506 | 3.0 | 1020 | 0.6654 | 0.5 | | 0.6506 | 4.0 | 1360 | 0.6698 | 0.5 | | 0.6458 | 5.0 | 1700 | 0.6234 | 0.5 | | 0.6363 | 6.0 | 2040 | 0.6246 | 0.5 | | 0.6363 | 7.0 | 2380 | 0.6367 | 0.5 | | 0.6401 | 8.0 | 2720 | 0.6582 | 0.5 | | 0.6347 | 9.0 | 3060 | 0.6257 | 0.5 | | 0.6347 | 10.0 | 3400 | 0.6281 | 0.5 | | 0.6378 | 11.0 | 3740 | 0.6234 | 0.5 | | 0.637 | 12.0 | 4080 | 0.6274 | 0.5 | | 0.637 | 13.0 | 4420 | 0.6362 | 0.5 | | 0.6313 | 14.0 | 4760 | 0.6290 | 0.5 | | 0.6359 | 15.0 | 5100 | 0.6302 | 0.5 | | 0.6359 | 16.0 | 5440 | 0.6246 | 0.5 | | 0.639 | 17.0 | 5780 | 0.6319 | 0.5 | | 0.6302 | 18.0 | 6120 | 0.6255 | 0.5 | | 0.6302 | 19.0 | 6460 | 0.6325 | 0.5 | | 0.6329 | 20.0 | 6800 | 0.6434 | 0.5 | | 0.6309 | 21.0 | 7140 | 0.6238 | 0.5 | | 0.6309 | 22.0 | 7480 | 0.6237 | 0.5 | | 0.6325 | 23.0 | 7820 | 0.6296 | 0.5 | | 0.6303 | 24.0 | 8160 | 0.6249 | 0.5 | | 0.6357 | 25.0 | 8500 | 0.6235 | 0.5 | | 0.6357 | 26.0 | 8840 | 0.6258 | 0.5 | | 0.6327 | 27.0 | 9180 | 0.6442 | 0.5 | | 0.6309 | 28.0 | 9520 | 0.6329 | 0.5 | | 0.6309 | 29.0 | 9860 | 0.6374 | 0.5 | | 0.6304 | 30.0 | 10200 | 0.6243 | 0.5 | | 0.6311 | 31.0 | 10540 | 0.6302 | 0.5 | | 0.6311 | 32.0 | 10880 | 0.6247 | 0.5 | | 0.6294 | 33.0 | 11220 | 0.6233 | 0.5 | | 0.6303 | 34.0 | 11560 | 0.6252 | 0.5 | | 0.6303 | 35.0 | 11900 | 0.6365 | 0.5 | | 0.63 | 36.0 | 12240 | 0.6300 | 0.5 | | 0.6304 | 37.0 | 12580 | 0.6290 | 0.5 | | 0.6304 | 38.0 | 12920 | 0.6243 | 0.5 | | 0.6288 | 39.0 | 13260 | 0.6440 | 0.5 | | 0.6298 | 40.0 | 13600 | 0.6260 | 0.5 | | 0.6298 | 41.0 | 13940 | 0.6296 | 0.5 | | 0.6292 | 42.0 | 14280 | 0.6245 | 0.5 | | 0.6255 | 43.0 | 14620 | 0.6253 | 0.5 | | 0.6255 | 44.0 | 14960 | 0.6459 | 0.5 | | 0.631 | 45.0 | 15300 | 0.6321 | 0.5 | | 0.6248 | 46.0 | 15640 | 0.6314 | 0.5 | | 0.6248 | 47.0 | 15980 | 0.6335 | 0.5 | | 0.6293 | 48.0 | 16320 | 0.6240 | 0.5 | | 0.6285 | 49.0 | 16660 | 0.6238 | 0.5 | | 0.6277 | 50.0 | 17000 | 0.6247 | 0.5 | | 0.6277 | 51.0 | 17340 | 0.6378 | 0.5 | | 0.625 | 52.0 | 17680 | 0.6237 | 0.5 | | 0.6301 | 53.0 | 18020 | 0.6246 | 0.5 | | 0.6301 | 54.0 | 18360 | 0.6236 | 0.5 | | 0.6247 | 55.0 | 18700 | 0.6237 | 0.5 | | 0.6253 | 56.0 | 19040 | 0.6252 | 0.5 | | 0.6253 | 57.0 | 19380 | 0.6261 | 0.5 | | 0.6243 | 58.0 | 19720 | 0.6250 | 0.5 | | 0.6268 | 59.0 | 20060 | 0.6387 | 0.5 | | 0.6268 | 60.0 | 20400 | 0.6233 | 0.5 | | 0.625 | 61.0 | 20740 | 0.6239 | 0.5 | | 0.6245 | 62.0 | 21080 | 0.6233 | 0.5 | | 0.6245 | 63.0 | 21420 | 0.6256 | 0.5 | | 0.6232 | 64.0 | 21760 | 0.6263 | 0.5 | | 0.6279 | 65.0 | 22100 | 0.6233 | 0.5 | | 0.6279 | 66.0 | 22440 | 0.6339 | 0.5 | | 0.6185 | 67.0 | 22780 | 0.6237 | 0.5 | | 0.627 | 68.0 | 23120 | 0.6246 | 0.5 | | 0.627 | 69.0 | 23460 | 0.6241 | 0.5 | | 0.6242 | 70.0 | 23800 | 0.6254 | 0.5 | | 0.6229 | 71.0 | 24140 | 0.6236 | 0.5 | | 0.6229 | 72.0 | 24480 | 0.6242 | 0.5 | | 0.621 | 73.0 | 24820 | 0.6238 | 0.5 | | 0.6226 | 74.0 | 25160 | 0.6237 | 0.5 | | 0.6222 | 75.0 | 25500 | 0.6233 | 0.5 | | 0.6222 | 76.0 | 25840 | 0.6244 | 0.5 | | 0.6224 | 77.0 | 26180 | 0.6234 | 0.5 | | 0.6212 | 78.0 | 26520 | 0.6239 | 0.5 | | 0.6212 | 79.0 | 26860 | 0.6238 | 0.5 | | 0.6222 | 80.0 | 27200 | 0.6234 | 0.5 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
jackoyoungblood/distilhubert-finetuned-gtzan
jackoyoungblood
2023-08-31T15:02:10Z
17
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-29T19:37:33Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.89 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6889 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00018 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7089 | 1.0 | 113 | 1.3908 | 0.47 | | 1.0384 | 2.0 | 226 | 1.0306 | 0.65 | | 0.9678 | 3.0 | 339 | 0.9619 | 0.66 | | 0.9463 | 4.0 | 452 | 0.5874 | 0.8 | | 0.5288 | 5.0 | 565 | 0.6033 | 0.83 | | 0.1325 | 6.0 | 678 | 0.6730 | 0.87 | | 0.2124 | 7.0 | 791 | 0.7158 | 0.84 | | 0.0054 | 8.0 | 904 | 0.7187 | 0.86 | | 0.004 | 9.0 | 1017 | 0.6297 | 0.88 | | 0.0026 | 10.0 | 1130 | 0.6889 | 0.89 | ### Framework versions - Transformers 4.32.1 - Pytorch 1.13.1 - Datasets 2.14.4 - Tokenizers 0.13.3
dt-and-vanilla-ardt/ardt-vanilla-ppo_train_walker2d_level-3108_1426-99
dt-and-vanilla-ardt
2023-08-31T15:01:31Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-31T13:27:43Z
--- tags: - generated_from_trainer model-index: - name: ardt-vanilla-ppo_train_walker2d_level-3108_1426-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-vanilla-ppo_train_walker2d_level-3108_1426-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3