modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-31 06:28:41
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
539 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-31 06:26:51
card
stringlengths
11
1.01M
ScareCrow432/PPO-LunarLander-v2
ScareCrow432
2023-01-31T11:09:24Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-31T05:56:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.49 +/- 21.87 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ashutoshmondal/pneumo_v3
ashutoshmondal
2023-01-31T10:50:06Z
18
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "autotrain", "vision", "dataset:ashutoshmondal/autotrain-data-pneumo", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-31T10:47:40Z
--- tags: - autotrain - vision - image-classification datasets: - ashutoshmondal/autotrain-data-pneumo widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 1.9594067819084715 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 3177689678 - CO2 Emissions (in grams): 1.9594 ## Validation Metrics - Loss: 0.017 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - AUC: 1.000 - F1: 1.000
Elifr/clasificador-muchocine
Elifr
2023-01-31T10:41:04Z
5
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-31T10:39:56Z
--- tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-muchocine results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-muchocine This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4813 - Accuracy: 0.4439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.3269 | 0.4155 | | 1.4007 | 2.0 | 776 | 1.3847 | 0.4258 | | 0.9989 | 3.0 | 1164 | 1.4813 | 0.4439 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Thyral/Testing
Thyral
2023-01-31T10:38:09Z
0
0
null
[ "code", "text-classification", "de", "dataset:allenai/soda", "region:us" ]
text-classification
2023-01-31T10:30:31Z
--- datasets: - allenai/soda language: - de metrics: - bleu pipeline_tag: text-classification tags: - code ---
laamaai/clasificador-muchocine
laamaai
2023-01-31T10:22:05Z
4
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-31T10:20:57Z
--- tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-muchocine results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-muchocine This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3877 - Accuracy: 0.4439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.3596 | 0.3884 | | 1.4301 | 2.0 | 776 | 1.2666 | 0.4323 | | 1.0491 | 3.0 | 1164 | 1.3877 | 0.4439 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
raquelsmv/clasificador-muchocine
raquelsmv
2023-01-31T10:20:58Z
4
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-31T10:19:48Z
--- tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-muchocine results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-muchocine This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3788 - Accuracy: 0.4555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.3559 | 0.3961 | | 1.4414 | 2.0 | 776 | 1.3217 | 0.4258 | | 1.1139 | 3.0 | 1164 | 1.3788 | 0.4555 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
liweiliu/Taxi-v3
liweiliu
2023-01-31T09:55:27Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-31T09:55:19Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="liweiliu/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
liweiliu/q-FrozenLake-v1-4x4-noSlippery
liweiliu
2023-01-31T09:52:06Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-31T09:51:57Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="liweiliu/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dogeplusplus/stable-sam
dogeplusplus
2023-01-31T09:22:22Z
4
0
diffusers
[ "diffusers", "pytorch", "stable-diffusion", "text-to-image", "sam-the-cat", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-09T18:49:12Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - sam-the-cat widget: - text: a photo of samruane cat --- # sam ![](sam.png) ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('dogeplusplus/stable-sam') image = pipeline().images[0] image ```
erniechiew/sd-class-butterflies-32
erniechiew
2023-01-31T09:08:19Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-01-31T09:08:09Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('erniechiew/sd-class-butterflies-32') image = pipeline().images[0] image ```
phoenixaiden33/en_pipeline
phoenixaiden33
2023-01-31T08:51:15Z
0
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2023-01-31T08:50:49Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9952305246 - name: NER Recall type: recall value: 0.9984051037 - name: NER F Score type: f_score value: 0.9968152866 --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.4,<3.5.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (9 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `AGENT`, `ASSET`, `ASSET STATE`, `DATE`, `DETERMINAND`, `FLOW LEVEL`, `MEASUREMENT`, `OPERATION`, `PROCCESS` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 99.68 | | `ENTS_P` | 99.52 | | `ENTS_R` | 99.84 | | `TOK2VEC_LOSS` | 21054.32 | | `NER_LOSS` | 27455.52 |
amrisaurus/pretrained-m-bert-300
amrisaurus
2023-01-31T08:38:28Z
1
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2023-01-31T08:37:56Z
--- tags: - generated_from_keras_callback model-index: - name: pretrained-m-bert-300 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # pretrained-m-bert-300 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.8273 - Validation Loss: 15.6623 - Epoch: 299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.2479 | 10.9372 | 0 | | 7.7731 | 10.9191 | 1 | | 6.8702 | 11.5201 | 2 | | 6.4849 | 11.6086 | 3 | | 6.3725 | 11.5271 | 4 | | 6.3243 | 12.1350 | 5 | | 6.4515 | 11.7665 | 6 | | 6.0675 | 12.1761 | 7 | | 5.9322 | 12.1155 | 8 | | 6.0672 | 12.0390 | 9 | | 5.9976 | 12.5114 | 10 | | 5.9208 | 12.7953 | 11 | | 5.9503 | 12.4924 | 12 | | 5.9696 | 12.7799 | 13 | | 6.0537 | 12.3489 | 14 | | 5.8556 | 12.5165 | 15 | | 5.8976 | 12.8338 | 16 | | 5.9458 | 13.0800 | 17 | | 5.8258 | 12.9819 | 18 | | 5.8284 | 13.0523 | 19 | | 5.8739 | 13.0829 | 20 | | 5.7537 | 13.1990 | 21 | | 5.8624 | 13.2222 | 22 | | 5.8871 | 13.1393 | 23 | | 5.7382 | 13.0271 | 24 | | 5.6791 | 13.3209 | 25 | | 5.8651 | 13.5971 | 26 | | 5.7795 | 14.0682 | 27 | | 5.7961 | 13.5632 | 28 | | 5.9525 | 13.0326 | 29 | | 5.8251 | 13.0935 | 30 | | 5.7616 | 13.5397 | 31 | | 5.9793 | 13.4677 | 32 | | 5.6852 | 13.6610 | 33 | | 5.7826 | 13.6501 | 34 | | 5.7675 | 13.3981 | 35 | | 5.7075 | 13.6568 | 36 | | 5.8363 | 13.5032 | 37 | | 5.8045 | 13.6162 | 38 | | 5.8582 | 13.5919 | 39 | | 5.6427 | 13.8740 | 40 | | 5.7807 | 13.7311 | 41 | | 5.7421 | 14.1702 | 42 | | 5.7074 | 13.8185 | 43 | | 5.7145 | 14.0385 | 44 | | 5.6605 | 14.0947 | 45 | | 5.6647 | 13.9634 | 46 | | 5.6628 | 14.1416 | 47 | | 5.6652 | 13.9625 | 48 | | 5.8173 | 14.0109 | 49 | | 5.8535 | 14.0783 | 50 | | 5.6777 | 14.4908 | 51 | | 5.7189 | 14.2846 | 52 | | 5.7306 | 13.9430 | 53 | | 5.9265 | 14.2692 | 54 | | 5.6752 | 13.7434 | 55 | | 5.8745 | 14.2234 | 56 | | 5.7229 | 14.4659 | 57 | | 5.7215 | 14.0766 | 58 | | 5.7540 | 14.3406 | 59 | | 5.7831 | 13.9421 | 60 | | 5.6559 | 14.0940 | 61 | | 5.6964 | 14.4394 | 62 | | 5.6707 | 14.4002 | 63 | | 5.7088 | 14.3143 | 64 | | 5.7738 | 14.3808 | 65 | | 5.7194 | 14.6182 | 66 | | 5.7911 | 14.2589 | 67 | | 5.9282 | 14.3536 | 68 | | 5.8769 | 14.5976 | 69 | | 5.7150 | 14.3358 | 70 | | 5.6573 | 14.2675 | 71 | | 5.8684 | 14.2212 | 72 | | 5.6871 | 14.0757 | 73 | | 5.7349 | 14.9877 | 74 | | 5.8587 | 14.1604 | 75 | | 5.8195 | 14.4759 | 76 | | 5.7681 | 14.4587 | 77 | | 5.7803 | 14.4228 | 78 | | 5.6986 | 14.1285 | 79 | | 5.7369 | 14.5417 | 80 | | 5.7565 | 14.2100 | 81 | | 5.7648 | 14.4228 | 82 | | 5.6307 | 15.0572 | 83 | | 5.8166 | 14.6594 | 84 | | 5.7945 | 14.9603 | 85 | | 5.8273 | 14.6196 | 86 | | 5.6483 | 15.2973 | 87 | | 5.7982 | 14.9318 | 88 | | 5.7286 | 14.4151 | 89 | | 5.7488 | 14.2480 | 90 | | 5.7564 | 15.2868 | 91 | | 5.7200 | 14.9984 | 92 | | 5.6758 | 14.8934 | 93 | | 5.8600 | 14.6392 | 94 | | 5.6302 | 14.9115 | 95 | | 5.7530 | 14.8292 | 96 | | 5.6311 | 14.9683 | 97 | | 5.6845 | 14.8707 | 98 | | 5.7639 | 15.2866 | 99 | | 5.7692 | 15.1005 | 100 | | 5.7279 | 15.5260 | 101 | | 5.8349 | 14.8966 | 102 | | 5.7720 | 14.2529 | 103 | | 5.6082 | 15.5972 | 104 | | 5.7725 | 15.1931 | 105 | | 5.8239 | 15.1119 | 106 | | 5.7973 | 14.8203 | 107 | | 5.7439 | 15.2762 | 108 | | 5.7344 | 15.2897 | 109 | | 5.8002 | 14.8071 | 110 | | 5.7978 | 15.3206 | 111 | | 5.8302 | 15.1250 | 112 | | 5.6829 | 15.3822 | 113 | | 5.8658 | 14.7853 | 114 | | 5.7236 | 15.1413 | 115 | | 5.8151 | 14.9191 | 116 | | 5.6697 | 15.2308 | 117 | | 5.8450 | 15.2055 | 118 | | 5.6843 | 15.3117 | 119 | | 5.7215 | 15.1254 | 120 | | 5.8230 | 15.1992 | 121 | | 5.7106 | 15.2795 | 122 | | 5.7720 | 15.6248 | 123 | | 5.7214 | 15.0411 | 124 | | 5.6302 | 15.2897 | 125 | | 5.7151 | 15.7383 | 126 | | 5.7107 | 15.5989 | 127 | | 5.6569 | 15.2202 | 128 | | 5.9129 | 15.1588 | 129 | | 5.5289 | 15.4879 | 130 | | 5.7570 | 15.5103 | 131 | | 5.8748 | 15.3842 | 132 | | 5.7679 | 15.6996 | 133 | | 5.6655 | 15.2690 | 134 | | 5.7573 | 15.2401 | 135 | | 5.7238 | 15.5996 | 136 | | 5.7273 | 15.3198 | 137 | | 5.7344 | 15.3389 | 138 | | 5.8311 | 14.8744 | 139 | | 5.6549 | 15.6956 | 140 | | 5.6496 | 15.2694 | 141 | | 5.7590 | 15.0076 | 142 | | 5.7703 | 15.3850 | 143 | | 5.7206 | 15.4296 | 144 | | 5.8623 | 14.8546 | 145 | | 5.7601 | 15.4164 | 146 | | 5.7175 | 15.8795 | 147 | | 5.6459 | 15.8282 | 148 | | 5.8591 | 15.3127 | 149 | | 5.7940 | 16.0000 | 150 | | 5.8439 | 15.5051 | 151 | | 5.7669 | 15.9199 | 152 | | 5.6481 | 15.2306 | 153 | | 5.7793 | 15.4377 | 154 | | 5.8167 | 15.7849 | 155 | | 5.7556 | 15.2991 | 156 | | 5.7905 | 15.5514 | 157 | | 5.5980 | 15.6595 | 158 | | 5.7624 | 15.7794 | 159 | | 5.7073 | 15.7131 | 160 | | 5.7823 | 15.6013 | 161 | | 5.6993 | 15.3206 | 162 | | 5.8054 | 15.1585 | 163 | | 5.7734 | 15.3361 | 164 | | 5.6832 | 16.0706 | 165 | | 5.6192 | 15.7624 | 166 | | 5.8735 | 15.9157 | 167 | | 5.7212 | 15.5399 | 168 | | 5.7479 | 15.7155 | 169 | | 5.6542 | 16.2107 | 170 | | 5.7076 | 15.7150 | 171 | | 5.7149 | 15.8730 | 172 | | 5.8877 | 15.2373 | 173 | | 5.6803 | 16.1623 | 174 | | 5.7420 | 15.9171 | 175 | | 5.6912 | 15.5799 | 176 | | 5.7350 | 16.0120 | 177 | | 5.6631 | 15.9157 | 178 | | 5.7305 | 16.1250 | 179 | | 5.7077 | 15.8018 | 180 | | 5.6688 | 16.1011 | 181 | | 5.7675 | 15.6628 | 182 | | 5.6747 | 15.6886 | 183 | | 5.7921 | 15.6053 | 184 | | 5.6793 | 15.5329 | 185 | | 5.6993 | 15.4673 | 186 | | 5.8451 | 15.6634 | 187 | | 5.7389 | 15.9733 | 188 | | 5.7486 | 15.8548 | 189 | | 5.7089 | 16.1267 | 190 | | 5.8106 | 15.4471 | 191 | | 5.7402 | 15.8568 | 192 | | 5.6393 | 15.9586 | 193 | | 5.7403 | 15.2678 | 194 | | 5.7854 | 15.5638 | 195 | | 5.5414 | 16.1871 | 196 | | 5.7082 | 15.9706 | 197 | | 5.6636 | 16.2550 | 198 | | 5.6875 | 15.9385 | 199 | | 5.7139 | 15.6730 | 200 | | 5.6601 | 15.4174 | 201 | | 5.6422 | 16.1655 | 202 | | 5.7642 | 16.3103 | 203 | | 5.7039 | 16.4020 | 204 | | 5.7237 | 15.8775 | 205 | | 5.7529 | 15.7237 | 206 | | 5.6827 | 16.1514 | 207 | | 5.7591 | 16.0905 | 208 | | 5.7899 | 15.6417 | 209 | | 5.7775 | 16.3878 | 210 | | 5.6634 | 15.9944 | 211 | | 5.5958 | 16.1042 | 212 | | 5.8629 | 16.6206 | 213 | | 5.7548 | 16.3826 | 214 | | 5.7512 | 16.2234 | 215 | | 5.6905 | 16.5029 | 216 | | 5.6434 | 16.8345 | 217 | | 5.6728 | 15.8749 | 218 | | 5.7253 | 16.1679 | 219 | | 5.6529 | 15.9138 | 220 | | 5.6542 | 16.4299 | 221 | | 5.6646 | 15.9442 | 222 | | 5.7054 | 16.3624 | 223 | | 5.7083 | 16.1256 | 224 | | 5.8134 | 15.8207 | 225 | | 5.7805 | 16.2750 | 226 | | 5.7037 | 15.9758 | 227 | | 5.7653 | 16.2336 | 228 | | 5.7890 | 16.4635 | 229 | | 5.7060 | 16.2425 | 230 | | 5.7508 | 16.2569 | 231 | | 5.6349 | 16.4228 | 232 | | 5.7062 | 16.5237 | 233 | | 5.7277 | 16.4191 | 234 | | 5.7827 | 16.0735 | 235 | | 5.7090 | 16.3830 | 236 | | 5.6960 | 16.3506 | 237 | | 5.7367 | 15.9862 | 238 | | 5.7863 | 16.2742 | 239 | | 5.5916 | 16.3640 | 240 | | 5.6753 | 16.7890 | 241 | | 5.6915 | 16.5041 | 242 | | 5.7292 | 16.4998 | 243 | | 5.7814 | 16.1040 | 244 | | 5.6399 | 16.4167 | 245 | | 5.6281 | 16.1772 | 246 | | 5.7067 | 16.5245 | 247 | | 5.7268 | 16.3465 | 248 | | 5.7664 | 16.5136 | 249 | | 5.7020 | 16.1559 | 250 | | 5.6693 | 16.8744 | 251 | | 5.6625 | 15.9549 | 252 | | 5.6282 | 16.4120 | 253 | | 5.6190 | 15.9476 | 254 | | 5.6562 | 16.2114 | 255 | | 5.6690 | 16.2859 | 256 | | 5.7533 | 16.3209 | 257 | | 5.7191 | 16.3224 | 258 | | 5.8181 | 16.1149 | 259 | | 5.6598 | 16.2559 | 260 | | 5.6762 | 16.5949 | 261 | | 5.6452 | 16.2653 | 262 | | 5.6691 | 16.2993 | 263 | | 5.7951 | 16.0316 | 264 | | 5.8137 | 16.3896 | 265 | | 5.7124 | 16.3996 | 266 | | 5.7853 | 16.6237 | 267 | | 5.7931 | 15.6052 | 268 | | 5.7788 | 16.5983 | 269 | | 5.7472 | 16.0878 | 270 | | 5.6607 | 16.6207 | 271 | | 5.8085 | 16.5659 | 272 | | 5.7699 | 16.1165 | 273 | | 5.6865 | 16.3090 | 274 | | 5.7237 | 16.1727 | 275 | | 5.8241 | 16.1545 | 276 | | 5.6519 | 16.5434 | 277 | | 5.6718 | 16.4884 | 278 | | 5.6988 | 16.4953 | 279 | | 5.7020 | 16.8616 | 280 | | 5.7338 | 16.3847 | 281 | | 5.6695 | 16.4040 | 282 | | 5.6916 | 16.3199 | 283 | | 5.7519 | 15.6585 | 284 | | 5.7317 | 16.4947 | 285 | | 5.8143 | 15.9633 | 286 | | 5.6979 | 16.5859 | 287 | | 5.7405 | 16.5161 | 288 | | 5.7338 | 16.4144 | 289 | | 5.5844 | 16.5315 | 290 | | 5.6871 | 16.4282 | 291 | | 5.8713 | 15.5593 | 292 | | 5.6710 | 15.8436 | 293 | | 5.7074 | 16.4072 | 294 | | 5.6212 | 16.4969 | 295 | | 5.7022 | 16.3911 | 296 | | 5.6552 | 16.8670 | 297 | | 5.7888 | 16.2774 | 298 | | 5.8273 | 15.6623 | 299 | ### Framework versions - Transformers 4.27.0.dev0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
nijatzeynalov/mT5-based-azerbaijani-summarize
nijatzeynalov
2023-01-31T08:27:53Z
27
2
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "az", "dataset:nijatzeynalov/azerbaijani-multi-news", "arxiv:1910.10683", "arxiv:2010.11934", "doi:10.57967/hf/0316", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-01-30T21:08:22Z
--- license: creativeml-openrail-m widget: - text: >- Ötən il Azərbaycana 74 577 avtomobil idxal edilib. Bu da 2021-ci illə müqayisədə 16 617 ədəd və ya 18,2% azdır. Xezerxeber.az-ın məlumatına görə, avtomobil bazarı üzrə qiymətləndirici Sərxan Qədirov deyib ki, əvvəl ay ərzində 5-10 avtomobil gətirən şəxslər hazırda bu sayı 2-3 ədədə endiriblər. Hətta ölkəyə nəqliyyat vasitələrinin gətirilməsi işini dayandıranlar da var. Nəqliyyat məsələləri üzrə ekspert Eldəniz Cəfərov isə bildirib ki, gözləniləndən fərqli olaraq, ölkəyə idxal olunan kiçik mühərrikli avtomobillərin sayında da azalma var. Bunun başlıca səbəbi Rusiyada istehsalın dayandırılmasıdır. Ekspertin sözlərinə görə, əvvəllər Azərbaycan bazarında Rusiya istehsalı olan nəqliyyat vasitələri geniş yer tuturdu. Hazırda isə həmin ölkədən idxal tam dayanıb. datasets: - nijatzeynalov/azerbaijani-multi-news language: - az metrics: - rouge pipeline_tag: summarization --- # mT5-small based Azerbaijani Summarization In this model, [Google's Multilingual T5-small](https://github.com/google-research/multilingual-t5) is fine-tuned on [Azerbaijani News Summary Dataset](https://huggingface.co/datasets/nijatzeynalov/azerbaijani-multi-news) for **Summarization** downstream task. The model is trained with 3 epochs, 64 batch size and 10e-4 learning rate. It took almost 12 hours on GPU instance with Ubuntu Server 20.04 LTS image in Microsoft Azure. The max news length is kept as 2048 and max summary length is determined as 128. mT5 is a multilingual variant of __T5__ and only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training. Therefore, the mT5 model has to be fine-tuned before it is useable on a downstream task. ### Text-to-Text Transfer Transformer (T5) The paper [“Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”](https://arxiv.org/pdf/1910.10683.pdf) presents a large-scale empirical survey to determine which transfer learning techniques work best and apply these insights at scale to create a new model called the Text-To-Text Transfer Transformer. ![Alt Text](https://miro.medium.com/max/1280/0*xfXDPjASztwmJlOa.gif) T5, or Text-to-Text Transfer Transformer, is a Transformer based architecture that uses a text-to-text approach. Every task – including translation, question answering, and classification – is cast as feeding the model text as input and training it to generate some target text. This allows for the use of the same model, loss function, hyperparameters, etc. across our diverse set of tasks. The changes compared to BERT include: - adding a causal decoder to the bidirectional architecture. - replacing the fill-in-the-blank cloze task with a mix of alternative pre-training tasks. The model was trained on a cleaned version of Common Crawl that is two orders of magnitude larger than Wikipedia. The T5 model, pre-trained on C4, achieves state-of-the-art results on many NLP benchmarks while being flexible enough to be fine-tuned to several downstream tasks. The pre-trained T5 in Hugging Face is also trained on the mixture of unsupervised training (which is trained by reconstructing the masked sentence) and task-specific training. ### Multilingual t5 ["mt5"](https://arxiv.org/pdf/2010.11934v3.pdf) is a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. mT5 is pre-trained only by unsupervised manner with multiple languages, and it’s not trained for specific downstream tasks. To dare say, this pre-trained model has ability to build correct text in Azerbaijani, but it doesn’t have any ability for specific tasks, such as, summarization, correction, machine translation, etc. In HuggingFace, several sizes of mT5 models are available, and here I used small one (google/mt5-small). Therefore I trained (fine-tune) this model for summarization in Azerbaijani using [Azerbaijani News Summary Dataset](https://huggingface.co/datasets/nijatzeynalov/azerbaijani-multi-news). ## Training hyperparameters __mT5-based-azerbaijani-summarize__ model training took almost 12 hours on GPU instance with Ubuntu Server 20.04 LTS image in Microsoft Azure. The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 90 - num_epochs: 10 ## Dataset Model was trained on [__az-news-summary__ dataset](https://huggingface.co/datasets/nijatzeynalov/azerbaijani-multi-news), a comprehensive and diverse dataset comprising 143k (143,448) Azerbaijani news articles extracted using a set of carefully designed heuristics. The dataset covers common topics for news reports include war, government, politics, education, health, the environment, economy, business, fashion, entertainment, and sport, as well as quirky or unusual events. This dataset has 3 splits: _train_, _validation_, and _test_. \ Token counts are white space based. | Dataset Split | Number of Instances | Size (MB) | | ------------- | --------------------|:----------------------| | Train | 100,413 | 150 | | Validation | 14,344 | 21.3 | | Test | 28,691 | 42.8 | ## Training results with comparison __mT5-based-azerbaijani-summarize__ model rouge scores on the test set: - Rouge1: 39.4222 - Rouge2: 24.8624 - Rougel: 32.2487 For __Azerbaijani text summarization downstream task__, mT5-multilingual-XLSum has also been developed on the 45 languages of [XL-Sum](https://huggingface.co/datasets/csebuetnlp/xlsum) dataset. For finetuning details and scripts, see the [paper](https://aclanthology.org/2021.findings-acl.413/) and the [official repository](https://github.com/csebuetnlp/xl-sum). . __mT5_multilingual_XLSum__ modelrouge scores on the XL-Sum test set (only for Azerbaijani): - Rouge1: 21.4227 - Rouge2: 9.5214 - Rougel: 19.3331 As seen from the numbers, our model __mT5-based-azerbaijani-summarize__ achieves dramatically better performance than __mT5_multilingual_XLSum__. ## Using this model in transformers ```python !pip install sentencepiece !pip install transformers ``` ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM article_text = """Ötən il Azərbaycana 74 577 avtomobil idxal edilib. Bu da 2021-ci illə müqayisədə 16 617 ədəd və ya 18,2% azdır. Xezerxeber.az-ın məlumatına görə, avtomobil bazarı üzrə qiymətləndirici Sərxan Qədirov deyib ki, əvvəl ay ərzində 5-10 avtomobil gətirən şəxslər hazırda bu sayı 2-3 ədədə endiriblər. Hətta ölkəyə nəqliyyat vasitələrinin gətirilməsi işini dayandıranlar da var. Nəqliyyat məsələləri üzrə ekspert Eldəniz Cəfərov isə bildirib ki, gözləniləndən fərqli olaraq, ölkəyə idxal olunan kiçik mühərrikli avtomobillərin sayında da azalma var. Bunun başlıca səbəbi Rusiyada istehsalın dayandırılmasıdır. Ekspertin sözlərinə görə, əvvəllər Azərbaycan bazarında Rusiya istehsalı olan nəqliyyat vasitələri geniş yer tuturdu. Hazırda isə həmin ölkədən idxal tam dayanıb.""" model_name = "nijatzeynalov/mT5-based-azerbaijani-summarize" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) ``` ```python input_ids = tokenizer( article_text, return_tensors="pt", padding="max_length", truncation=True, max_length=2048 )["input_ids"] output_ids = model.generate( input_ids=input_ids, max_length=128, no_repeat_ngram_size=2, num_beams=4 )[0] summary = tokenizer.decode( output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(summary) ``` Result: ```python Azərbaycana idxal olunan avtomobillərin sayı açıqlanıb ``` ## Citation If you use this model, please cite: ``` @misc {nijatzeynalov_2023, author = { {NijatZeynalov} }, title = { mT5-based-azerbaijani-summarize (Revision 19930ab) }, year = 2023, url = { https://huggingface.co/nijatzeynalov/mT5-based-azerbaijani-summarize }, doi = { 10.57967/hf/0316 }, publisher = { Hugging Face } } ```
kakaobrain/karlo-v1-alpha-image-variations
kakaobrain
2023-01-31T08:27:48Z
292
7
diffusers
[ "diffusers", "text-to-image", "license:creativeml-openrail-m", "diffusers:UnCLIPImageVariationPipeline", "region:us" ]
text-to-image
2023-01-30T19:46:46Z
--- license: creativeml-openrail-m tags: - text-to-image --- # Karlo v1 alpha Karlo is a text-conditional image generation model based on OpenAI's unCLIP architecture with the improvement over the standard super-resolution model from 64px to 256px, recovering high-frequency details only in the small number of denoising steps. * [Original codebase](https://github.com/kakaobrain/karlo) ## Usage Karlo is available in diffusers! ```python pip install diffusers transformers accelerate safetensors ``` ### Text to image ```python from diffusers import UnCLIPPipeline import torch pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16) pipe = pipe.to('cuda') prompt = "a high-resolution photograph of a big red frog on a green leaf." image = pipe([prompt]).images[0] image.save("./frog.png") ``` ![img](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/frog.png) ### Image variation ```python from diffusers import UnCLIPImageVariationPipeline import torch from PIL import Image pipe = UnCLIPImageVariationPipeline.from_pretrained("kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.float16) pipe = pipe.to('cuda') image = Image.open("./frog.png") image = pipe(image).images[0] image.save("./frog-variation.png") ``` ![img](https://huggingface.co/datasets/williamberman/images/resolve/main/frog-variation.png) ## Model Architecture ### Overview Karlo is a text-conditional diffusion model based on unCLIP, composed of prior, decoder, and super-resolution modules. In this repository, we include the improved version of the standard super-resolution module for upscaling 64px to 256px only in 7 reverse steps, as illustrated in the figure below: <p float="left"> <img src="https://raw.githubusercontent.com/kakaobrain/karlo/main/assets/improved_sr_arch.jpg"/> </p> In specific, the standard SR module trained by DDPM objective upscales 64px to 256px in the first 6 denoising steps based on the respacing technique. Then, the additional fine-tuned SR module trained by [VQ-GAN](https://compvis.github.io/taming-transformers/)-style loss performs the final reverse step to recover high-frequency details. We observe that this approach is very effective to upscale the low-resolution in a small number of reverse steps. ### Details We train all components from scratch on 115M image-text pairs including COYO-100M, CC3M, and CC12M. In the case of Prior and Decoder, we use ViT-L/14 provided by OpenAI’s [CLIP repository](https://github.com/openai/CLIP). Unlike the original implementation of unCLIP, we replace the trainable transformer in the decoder into the text encoder in ViT-L/14 for efficiency. In the case of the SR module, we first train the model using the DDPM objective in 1M steps, followed by additional 234K steps to fine-tune the additional component. The table below summarizes the important statistics of our components: | | Prior | Decoder | SR | |:------|----:|----:|----:| | CLIP | ViT-L/14 | ViT-L/14 | - | | #param | 1B | 900M | 700M + 700M | | #optimization steps | 1M | 1M | 1M + 0.2M | | #sampling steps | 25 | 50 (default), 25 (fast) | 7 | |Checkpoint links| [ViT-L-14](https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/096db1af569b284eb76b3881534822d9/ViT-L-14.pt), [ViT-L-14 stats](https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/0b62380a75e56f073e2844ab5199153d/ViT-L-14_stats.th), [model](https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/efdf6206d8ed593961593dc029a8affa/decoder-ckpt-step%3D01000000-of-01000000.ckpt) | [model](https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/85626483eaca9f581e2a78d31ff905ca/prior-ckpt-step%3D01000000-of-01000000.ckpt) | [model](https://arena.kakaocdn.net/brainrepo/models/karlo-public/v1.0.0.alpha/4226b831ae0279020d134281f3c31590/improved-sr-ckpt-step%3D1.2M.ckpt) | In the checkpoint links, ViT-L-14 is equivalent to the original version, but we include it for convenience. We also remark that ViT-L-14-stats is required to normalize the outputs of the prior module. ### Evaluation We quantitatively measure the performance of Karlo-v1.0.alpha in the validation split of CC3M and MS-COCO. The table below presents CLIP-score and FID. To measure FID, we resize the image of the shorter side to 256px, followed by cropping it at the center. We set classifier-free guidance scales for prior and decoder to 4 and 8 in all cases. We observe that our model achieves reasonable performance even with 25 sampling steps of decoder. CC3M | Sampling step | CLIP-s (ViT-B/16) | FID (13k from val)| |:------|----:|----:| | Prior (25) + Decoder (25) + SR (7) | 0.3081 | 14.37 | | Prior (25) + Decoder (50) + SR (7) | 0.3086 | 13.95 | MS-COCO | Sampling step | CLIP-s (ViT-B/16) | FID (30k from val)| |:------|----:|----:| | Prior (25) + Decoder (25) + SR (7) | 0.3192 | 15.24 | | Prior (25) + Decoder (50) + SR (7) | 0.3192 | 14.43 | For more information, please refer to the upcoming technical report. ### Training Details This alpha version of Karlo is trained on 115M image-text pairs, including [COYO](https://github.com/kakaobrain/coyo-dataset)-100M high-quality subset, CC3M, and CC12M. For those who are interested in a better version of Karlo trained on more large-scale high-quality datasets, please visit the landing page of our application [B^DISCOVER](https://bdiscover.kakaobrain.com/). ## BibTex If you find this repository useful in your research, please cite: ``` @misc{kakaobrain2022karlo-v1-alpha, title = {Karlo-v1.0.alpha on COYO-100M and CC15M}, author = {Donghoon Lee, Jiseob Kim, Jisu Choi, Jongmin Kim, Minwoo Byeon, Woonhyuk Baek and Saehoon Kim}, year = {2022}, howpublished = {\url{https://github.com/kakaobrain/karlo}}, } ```
nolanaatama/opwslora
nolanaatama
2023-01-31T08:25:26Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-31T08:19:02Z
--- license: creativeml-openrail-m ---
amrisaurus/pretrained-m-bert-200
amrisaurus
2023-01-31T08:05:40Z
1
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2023-01-31T08:05:08Z
--- tags: - generated_from_keras_callback model-index: - name: pretrained-m-bert-200 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # pretrained-m-bert-200 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.6892 - Validation Loss: 15.9999 - Epoch: 199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.2629 | 10.9400 | 0 | | 7.8719 | 10.8986 | 1 | | 6.8337 | 11.4901 | 2 | | 6.4663 | 11.6037 | 3 | | 6.4171 | 11.5051 | 4 | | 6.3166 | 12.1207 | 5 | | 6.4304 | 11.7927 | 6 | | 6.0435 | 12.1347 | 7 | | 5.9134 | 12.1229 | 8 | | 6.0124 | 12.0225 | 9 | | 5.9096 | 12.4855 | 10 | | 5.8829 | 12.7256 | 11 | | 5.8533 | 12.3504 | 12 | | 5.8075 | 12.7843 | 13 | | 6.0418 | 12.6493 | 14 | | 5.8611 | 12.4900 | 15 | | 5.8863 | 12.7790 | 16 | | 5.9484 | 13.0246 | 17 | | 5.8226 | 12.9865 | 18 | | 5.8262 | 13.1064 | 19 | | 5.8687 | 13.1811 | 20 | | 5.7531 | 13.2824 | 21 | | 5.8473 | 13.2894 | 22 | | 5.8762 | 13.1719 | 23 | | 5.7386 | 13.0748 | 24 | | 5.6647 | 13.3089 | 25 | | 5.8553 | 13.5698 | 26 | | 5.7698 | 14.1035 | 27 | | 5.7972 | 13.6096 | 28 | | 5.9381 | 13.1142 | 29 | | 5.8173 | 13.1007 | 30 | | 5.7676 | 13.6502 | 31 | | 5.9740 | 13.5317 | 32 | | 5.6842 | 13.7206 | 33 | | 5.7764 | 13.5819 | 34 | | 5.7659 | 13.4004 | 35 | | 5.7104 | 13.6715 | 36 | | 5.8345 | 13.5589 | 37 | | 5.8067 | 13.6957 | 38 | | 5.8537 | 13.6661 | 39 | | 5.6418 | 13.8966 | 40 | | 5.7818 | 13.7630 | 41 | | 5.7406 | 14.1682 | 42 | | 5.7053 | 13.8797 | 43 | | 5.7151 | 14.1307 | 44 | | 5.6621 | 14.1855 | 45 | | 5.6716 | 14.1013 | 46 | | 5.6596 | 14.2236 | 47 | | 5.6680 | 14.0390 | 48 | | 5.8122 | 14.0500 | 49 | | 5.8497 | 14.0991 | 50 | | 5.6758 | 14.5258 | 51 | | 5.7158 | 14.2373 | 52 | | 5.7288 | 13.9851 | 53 | | 5.9239 | 14.2297 | 54 | | 5.6722 | 13.6866 | 55 | | 5.8708 | 14.2755 | 56 | | 5.7190 | 14.4764 | 57 | | 5.7218 | 14.1861 | 58 | | 5.7478 | 14.3363 | 59 | | 5.7843 | 13.9645 | 60 | | 5.6555 | 14.1351 | 61 | | 5.6951 | 14.5155 | 62 | | 5.6711 | 14.4671 | 63 | | 5.7068 | 14.4064 | 64 | | 5.7773 | 14.5143 | 65 | | 5.7188 | 14.6878 | 66 | | 5.7912 | 14.3496 | 67 | | 5.9308 | 14.4187 | 68 | | 5.8765 | 14.6648 | 69 | | 5.7103 | 14.3686 | 70 | | 5.6585 | 14.3171 | 71 | | 5.8697 | 14.2778 | 72 | | 5.6874 | 14.1511 | 73 | | 5.7367 | 15.0222 | 74 | | 5.8603 | 14.2226 | 75 | | 5.8183 | 14.6257 | 76 | | 5.7646 | 14.5472 | 77 | | 5.7813 | 14.4560 | 78 | | 5.6991 | 14.1486 | 79 | | 5.7365 | 14.5998 | 80 | | 5.7602 | 14.3595 | 81 | | 5.7646 | 14.4916 | 82 | | 5.6289 | 15.1076 | 83 | | 5.8171 | 14.7216 | 84 | | 5.7939 | 14.9316 | 85 | | 5.8249 | 14.6632 | 86 | | 5.6479 | 15.2074 | 87 | | 5.7985 | 14.9238 | 88 | | 5.7332 | 14.4504 | 89 | | 5.7495 | 14.2924 | 90 | | 5.7579 | 15.3362 | 91 | | 5.7217 | 15.0819 | 92 | | 5.6750 | 14.9618 | 93 | | 5.8607 | 14.6850 | 94 | | 5.6310 | 14.9199 | 95 | | 5.7532 | 14.8353 | 96 | | 5.6318 | 14.9707 | 97 | | 5.6861 | 14.8903 | 98 | | 5.7634 | 15.3237 | 99 | | 5.7703 | 15.0675 | 100 | | 5.7290 | 15.5422 | 101 | | 5.8383 | 14.9575 | 102 | | 5.7694 | 14.2810 | 103 | | 5.6092 | 15.5547 | 104 | | 5.7699 | 15.2309 | 105 | | 5.8225 | 15.0764 | 106 | | 5.8007 | 14.8694 | 107 | | 5.7435 | 15.2683 | 108 | | 5.7358 | 15.3533 | 109 | | 5.8024 | 14.8301 | 110 | | 5.8027 | 15.3505 | 111 | | 5.8282 | 15.1353 | 112 | | 5.6818 | 15.3525 | 113 | | 5.8653 | 14.7720 | 114 | | 5.7234 | 15.2079 | 115 | | 5.8179 | 14.9355 | 116 | | 5.6718 | 15.2269 | 117 | | 5.8428 | 15.1447 | 118 | | 5.6875 | 15.2709 | 119 | | 5.7212 | 15.1541 | 120 | | 5.8223 | 15.2145 | 121 | | 5.7125 | 15.2783 | 122 | | 5.7707 | 15.6087 | 123 | | 5.7251 | 15.1095 | 124 | | 5.6308 | 15.2443 | 125 | | 5.7163 | 15.7562 | 126 | | 5.7097 | 15.5930 | 127 | | 5.6560 | 15.1742 | 128 | | 5.9121 | 15.0983 | 129 | | 5.5284 | 15.4298 | 130 | | 5.7584 | 15.5905 | 131 | | 5.8737 | 15.3326 | 132 | | 5.7731 | 15.6967 | 133 | | 5.6686 | 15.2850 | 134 | | 5.7585 | 15.2779 | 135 | | 5.7239 | 15.6021 | 136 | | 5.7295 | 15.3237 | 137 | | 5.7358 | 15.3199 | 138 | | 5.8334 | 14.8834 | 139 | | 5.6537 | 15.6226 | 140 | | 5.6501 | 15.2466 | 141 | | 5.7591 | 14.9815 | 142 | | 5.7694 | 15.3828 | 143 | | 5.7239 | 15.4082 | 144 | | 5.8641 | 14.8029 | 145 | | 5.7668 | 15.4207 | 146 | | 5.7180 | 15.8702 | 147 | | 5.6461 | 15.7631 | 148 | | 5.8629 | 15.2891 | 149 | | 5.7973 | 15.9778 | 150 | | 5.8458 | 15.4747 | 151 | | 5.7720 | 15.9476 | 152 | | 5.6491 | 15.2055 | 153 | | 5.7801 | 15.3822 | 154 | | 5.8175 | 15.7697 | 155 | | 5.7536 | 15.2464 | 156 | | 5.7925 | 15.4849 | 157 | | 5.6012 | 15.5773 | 158 | | 5.7623 | 15.7559 | 159 | | 5.7078 | 15.7061 | 160 | | 5.7834 | 15.5417 | 161 | | 5.7058 | 15.3236 | 162 | | 5.8079 | 15.1048 | 163 | | 5.7757 | 15.2895 | 164 | | 5.6822 | 15.9946 | 165 | | 5.6205 | 15.8053 | 166 | | 5.8778 | 15.9524 | 167 | | 5.7211 | 15.5006 | 168 | | 5.7499 | 15.7000 | 169 | | 5.6561 | 16.1970 | 170 | | 5.7077 | 15.7324 | 171 | | 5.7177 | 15.8832 | 172 | | 5.8901 | 15.2579 | 173 | | 5.6842 | 16.1185 | 174 | | 5.7424 | 15.8840 | 175 | | 5.6889 | 15.5184 | 176 | | 5.7339 | 15.9269 | 177 | | 5.6635 | 15.8283 | 178 | | 5.7331 | 16.0767 | 179 | | 5.7096 | 15.7523 | 180 | | 5.6715 | 16.0680 | 181 | | 5.7703 | 15.6030 | 182 | | 5.6772 | 15.6442 | 183 | | 5.7933 | 15.6118 | 184 | | 5.6788 | 15.5001 | 185 | | 5.6985 | 15.4559 | 186 | | 5.8450 | 15.5850 | 187 | | 5.7437 | 15.9233 | 188 | | 5.7502 | 15.8410 | 189 | | 5.7081 | 16.0491 | 190 | | 5.8119 | 15.3163 | 191 | | 5.7426 | 15.7990 | 192 | | 5.6422 | 15.9709 | 193 | | 5.7431 | 15.3411 | 194 | | 5.7894 | 15.5860 | 195 | | 5.5432 | 16.2503 | 196 | | 5.7073 | 16.0347 | 197 | | 5.6637 | 16.2954 | 198 | | 5.6892 | 15.9999 | 199 | ### Framework versions - Transformers 4.27.0.dev0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
duongkstn/a2c-AntBulletEnv-v0
duongkstn
2023-01-31T07:34:09Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-31T07:32:59Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 2039.26 +/- 43.90 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mojoee/Reinforce-pixelcopter
mojoee
2023-01-31T06:52:28Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-31T03:33:29Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 43.30 +/- 31.43 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
MrDivakaruni/ppo-SnowballTarget
MrDivakaruni
2023-01-31T06:37:58Z
13
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-01-31T06:37:53Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: MrDivakaruni/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ksoky/whisper-large-khmer-asr
ksoky
2023-01-31T06:37:35Z
93
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "km", "dataset:openslr", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-17T16:50:53Z
--- language: - km license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - openslr metrics: - wer model-index: - name: Whisper Large Khmer - Kak Soky results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: SLR42 type: openslr args: 'config: km, split: test' metrics: - name: Wer type: wer value: 29.51830443159923 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large Khmer - Kak Soky This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the SLR42 dataset. It achieves the following results on the evaluation set: - Loss: 0.2375 - Wer: 29.5183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0102 | 12.34 | 1000 | 0.2228 | 38.2659 | | 0.0003 | 24.69 | 2000 | 0.2260 | 30.7900 | | 0.0001 | 37.04 | 3000 | 0.2310 | 30.0578 | | 0.0 | 49.38 | 4000 | 0.2375 | 29.5183 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
HuyenNguyen/Vigec-V6
HuyenNguyen
2023-01-31T06:21:58Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-31T01:52:50Z
--- license: mit tags: - generated_from_trainer model-index: - name: Vigec-V6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Vigec-V6 This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1176 - eval_bleu: 90.2995 - eval_gen_len: 9.904 - eval_runtime: 72.4913 - eval_samples_per_second: 27.59 - eval_steps_per_second: 3.449 - epoch: 0.97 - step: 40000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 100000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
ykurilov/realistic_vision_diff
ykurilov
2023-01-31T05:38:37Z
2
1
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-30T13:51:28Z
--- license: creativeml-openrail-m ---
akatak/distilbert-base-uncased-finetuned-emotion
akatak
2023-01-31T05:23:17Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-31T04:09:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9295 - name: F1 type: f1 value: 0.929584942435213 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2141 - Accuracy: 0.9295 - F1: 0.9296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.823 | 1.0 | 250 | 0.3048 | 0.905 | 0.9024 | | 0.2448 | 2.0 | 500 | 0.2141 | 0.9295 | 0.9296 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.13.2
astein0/q-Taxi-v1
astein0
2023-01-31T05:19:47Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T23:56:58Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="astein0/q-Taxi-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
sadaira/ppo-LunarLander-v2
sadaira
2023-01-31T05:15:20Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-31T05:14:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 252.66 +/- 19.11 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dhmeltzer/Reinforce-MLP_2
dhmeltzer
2023-01-31T04:32:32Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-31T04:32:25Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-MLP_2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
toshiouchiyama/whisper-small-ja
toshiouchiyama
2023-01-31T03:44:49Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ja", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-01-02T19:39:54Z
--- language: - ja license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-ja results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-ja This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3967 - Wer: 18.3755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.3 | 10 | 1.1627 | 26.0985 | | No log | 0.61 | 20 | 0.7416 | 900.3995 | | 1.2431 | 0.91 | 30 | 0.6344 | 60.3196 | | 1.2431 | 1.21 | 40 | 0.5944 | 20.2397 | | 0.5462 | 1.52 | 50 | 0.5341 | 19.3076 | | 0.5462 | 1.82 | 60 | 0.4953 | 18.5087 | | 0.5462 | 2.12 | 70 | 0.4715 | 19.9734 | | 0.3259 | 2.42 | 80 | 0.4469 | 18.2423 | | 0.3259 | 2.73 | 90 | 0.4246 | 19.7071 | | 0.1986 | 3.03 | 100 | 0.4076 | 19.0413 | | 0.1986 | 3.33 | 110 | 0.3949 | 17.7097 | | 0.1986 | 3.64 | 120 | 0.4008 | 20.5060 | | 0.1101 | 3.94 | 130 | 0.3892 | 18.3755 | | 0.1101 | 4.24 | 140 | 0.3873 | 18.3755 | | 0.0695 | 4.55 | 150 | 0.3930 | 19.7071 | | 0.0695 | 4.85 | 160 | 0.3857 | 18.1092 | | 0.0695 | 5.15 | 170 | 0.3861 | 19.0413 | | 0.0467 | 5.45 | 180 | 0.3913 | 18.5087 | | 0.0467 | 5.76 | 190 | 0.3963 | 18.7750 | | 0.0346 | 6.06 | 200 | 0.3967 | 18.3755 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cpu - Datasets 2.8.0 - Tokenizers 0.13.2
PingfengLuo/icefall-asr-conv-emformer-transducer-stateless2-zh
PingfengLuo
2023-01-31T03:43:21Z
0
4
null
[ "license:apache-2.0", "region:us" ]
null
2022-11-30T10:30:53Z
--- license: apache-2.0 --- ## Chinese-English-mixed ASR model using icefall_conv_emformer2 ### Wenetspeech testset results | TEST_NET | TEST_MEETING | |----------|--------------| | 9.64 | 9.2 | | as log in `decoding_results/modified_beam_search_result` ### Training commond ``` python3 conv_emformer_transducer_stateless2/train.py --world-size 8 --num-epochs 30 --start-epoch 1 --exp-dir conv_emformer_transducer_stateless2/exp --max-duration 400 --master-port 12321 --num-encoder-layers 12 --chunk-length 32 --cnn-module-kernel 31 --left-context-length 32 --right-context-length 8 --memory-size 32 ``` ### Model unit is char+bpe as `data/lang_char_bpe/tokens.txt`
jwright94/ppo-SnowballTarget
jwright94
2023-01-31T03:32:55Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-01-31T03:32:49Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: jwright94/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
scy99/helloworld
scy99
2023-01-31T03:20:21Z
3
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "autotrain", "zh", "dataset:scy99/autotrain-data-todo", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-31T03:19:37Z
--- tags: - autotrain - text-classification language: - zh widget: - text: "I love AutoTrain 🤗" datasets: - scy99/autotrain-data-todo co2_eq_emissions: emissions: 1.5063043935583178 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 3171489424 - CO2 Emissions (in grams): 1.5063 ## Validation Metrics - Loss: 0.339 - Accuracy: 0.848 - Precision: 0.679 - Recall: 0.721 - AUC: 0.906 - F1: 0.700 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/scy99/autotrain-todo-3171489424 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("scy99/autotrain-todo-3171489424", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("scy99/autotrain-todo-3171489424", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
jhn9803/distilbert-base-uncased-finetuned-clinc
jhn9803
2023-01-31T03:16:19Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-31T02:52:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9183870967741935 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7721 - Accuracy: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2896 | 1.0 | 318 | 3.2890 | 0.7432 | | 2.6284 | 2.0 | 636 | 1.8756 | 0.8377 | | 1.5483 | 3.0 | 954 | 1.1572 | 0.8961 | | 1.015 | 4.0 | 1272 | 0.8573 | 0.9132 | | 0.7953 | 5.0 | 1590 | 0.7721 | 0.9184 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
BotsOne/utilitypole
BotsOne
2023-01-31T02:34:28Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-31T02:32:02Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### UtilityPole Dreambooth model trained by BotsOne with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
cohogain/whisper-medium-ga-IE-cv11-fleurs-livaud
cohogain
2023-01-31T02:24:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "dataset:common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-01-29T13:12:05Z
--- license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-medium results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: ga-IE split: test args: ga-IE metrics: - name: Wer type: wer value: 35.22067363530778 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.1422 - Wer: 35.2207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 7000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1137 | 4.02 | 1000 | 0.9072 | 40.0987 | | 0.0153 | 9.02 | 2000 | 1.0351 | 38.7631 | | 0.0042 | 14.01 | 3000 | 1.0507 | 36.4402 | | 0.0013 | 19.0 | 4000 | 1.0924 | 36.2660 | | 0.0003 | 23.02 | 5000 | 1.1422 | 35.2207 | | 0.0001 | 28.02 | 6000 | 1.1688 | 35.3368 | | 0.0001 | 33.01 | 7000 | 1.1768 | 35.5110 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2
MatAIart/kurzgesagt-style-v2-768
MatAIart
2023-01-31T02:02:19Z
12
9
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-02T15:51:46Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### Kurzgesagt-style-v2-768 Dreambooth model trained on the v2-768 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: Kurzgesagt style (use that on your prompt) ![Kurzgesagt style 0](https://huggingface.co/Fireman4740/kurzgesagt-style-v2-768/resolve/main/xy_grid-0012-2599613694.png)
seongwoon/distilbert-base-uncased-finetuned-labor_space_v3
seongwoon
2023-01-31T01:48:42Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-31T01:13:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-labor_space_v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-labor_space_v3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
sd-concepts-library/mofmof-style
sd-concepts-library
2023-01-31T01:32:52Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-01-31T01:32:39Z
--- license: mit --- ### mofmof-style on Stable Diffusion This is the `<mofmof>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<mofmof> 0](https://huggingface.co/sd-concepts-library/mofmof-style/resolve/main/concept_images/SSIP-XG023.jpg のコピー) ![<mofmof> 1](https://huggingface.co/sd-concepts-library/mofmof-style/resolve/main/concept_images/SSIP-XG020.jpg のコピー) ![<mofmof> 2](https://huggingface.co/sd-concepts-library/mofmof-style/resolve/main/concept_images/SSIP-XG022.jpg のコピー)
Kaludi/Food-Classification
Kaludi
2023-01-31T01:15:08Z
56
2
transformers
[ "transformers", "pytorch", "swin", "image-classification", "vision", "dataset:Kaludi/data-food-classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-29T18:45:51Z
--- tags: - vision - image-classification datasets: - Kaludi/data-food-classification widget: - src: https://kristineskitchenblog.com/wp-content/uploads/2021/04/apple-pie-1200-square-592-2.jpg example_title: Apple Pie - src: https://upload.wikimedia.org/wikipedia/commons/d/da/Strawberry_ice_cream_cone_%285076899310%29.jpg example_title: Ice Cream - src: https://cdn.britannica.com/52/128652-050-14AD19CA/Maki-zushi.jpg example_title: Sushi co2_eq_emissions: emissions: 2.7745203231331614 --- # Food Classification This is a Food Image Classifier model that has been trained by [Kaludi](https://huggingface.co/Kaludi) to recognize 7 different types of popular foods, including **apple pie**, **falafel**, **french toast**, **ice cream**, **ramen**, **sushi**, and **tiramisu**. It can accurately classify an image of food into one of these categories by analyzing its visual features. This model can be used by food bloggers, restaurants, and recipe websites to quickly categorize and sort their food images, making it easier to manage their content and provide a better user experience. ### Gradio Tis model supports a [Gradio](https://github.com/gradio-app/gradio) Web UI to run the data-food-classification model: [![Open In HF Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/Kaludi/Food-Classification_App) ## Validation Metrics - Loss: 0.094 - Accuracy: 0.977 - Macro F1: 0.977 - Micro F1: 0.977 - Weighted F1: 0.977 - Macro Precision: 0.978 - Micro Precision: 0.977 - Weighted Precision: 0.978 - Macro Recall: 0.977 - Micro Recall: 0.977 - Weighted Recall: 0.977
francisco-perez-sorrosal/distilbert-base-uncased-finetuned-with-spanish-tweets-clf
francisco-perez-sorrosal
2023-01-31T00:36:11Z
11
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:dataset", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T21:25:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - dataset metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-uncased-finetuned-with-spanish-tweets-clf results: - task: name: Text Classification type: text-classification dataset: name: dataset type: dataset config: 60-20-20 split: dev args: 60-20-20 metrics: - name: Accuracy type: accuracy value: 0.5701451278507257 - name: F1 type: f1 value: 0.5651604812495131 - name: Precision type: precision value: 0.5665667380442541 - name: Recall type: recall value: 0.5641613027059359 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-with-spanish-tweets-clf This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.0580 - Accuracy: 0.5701 - F1: 0.5652 - Precision: 0.5666 - Recall: 0.5642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.0643 | 1.0 | 543 | 1.0457 | 0.4423 | 0.2761 | 0.5104 | 0.3712 | | 0.9754 | 2.0 | 1086 | 0.9700 | 0.5155 | 0.4574 | 0.5190 | 0.4712 | | 0.8145 | 3.0 | 1629 | 0.9691 | 0.5556 | 0.5544 | 0.5616 | 0.5506 | | 0.6318 | 4.0 | 2172 | 1.0580 | 0.5701 | 0.5652 | 0.5666 | 0.5642 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2
twilightBOO/pov-skin-textures-dreamlike-r34-v2
twilightBOO
2023-01-31T00:32:50Z
12
9
diffusers
[ "diffusers", "nsfw", "stable diffusion", "license:openrail", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-23T19:55:08Z
--- license: openrail tags: - nsfw - stable diffusion --- # PoV Skin Textures - Dreamlike r34 [pov-skin-texture-dreamlike-r34](https://civitai.com/models/4481/pov-skin-texture-dreamlike-r34) This version has vae-ft-mse-840000-ema-pruned.ckpt baked in. Due to using Dreamlike Diffusion 1.0, this model has the following license: License This model is licensed under a modified CreativeML OpenRAIL-M license. - You can't host or use the model or its derivatives on websites/apps/etc., from which you earn, will earn, or plan to earn revenue or donations. If you want to, please email us at [email protected] - You are free to host the model card and files (Without any actual inference or finetuning) on both commercial and non-commercial websites/apps/etc. Please state the full model name (Dreamlike Diffusion 1.0) and include a link to the model card (https://huggingface.co/dreamlike-art/dreamlike-diffusion-1.0) - You are free to host the model or its derivatives on completely non-commercial websites/apps/etc (Meaning you are not getting ANY revenue or donations). Please state the full model name (Dreamlike Diffusion 1.0) and include a link to the model card (https://huggingface.co/dreamlike-art/dreamlike-diffusion-1.0) - You are free to use the outputs of the model or the outputs of the model's derivatives for commercial purposes in teams of 10 or less - You can't use the model to deliberately produce nor share illegal or harmful outputs or content - The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license - You may re-distribute the weights. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the modified CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here: https://huggingface.co/dreamlike-art/dreamlike-diffusion-1.0/blob/main/LICENSE.md
talitazahran/adlngnwn
talitazahran
2023-01-31T00:08:50Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-30T23:35:30Z
--- license: creativeml-openrail-m ---
astein0/q-FrozenLake-v1-4x4-noSlippery
astein0
2023-01-30T23:45:49Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T23:45:45Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="astein0/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
PeterDerLustige/q-FrozenLake-v1-4x4-noSlippery
PeterDerLustige
2023-01-30T23:34:23Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T23:34:20Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="PeterDerLustige/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
andreids/en_textcat_sales
andreids
2023-01-30T23:31:54Z
5
0
spacy
[ "spacy", "text-classification", "en", "region:us" ]
text-classification
2023-01-30T23:31:39Z
--- tags: - spacy - text-classification language: - en model-index: - name: en_textcat_sales results: [] --- | Feature | Description | | --- | --- | | **Name** | `en_textcat_sales` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.3,<3.5.0` | | **Default Pipeline** | `textcat` | | **Components** | `textcat` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (2 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`textcat`** | `OTHER`, `2100 - Sales` | </details> ### Accuracy | Type | Score | | --- | --- | | `CATS_SCORE` | 83.00 | | `CATS_MICRO_P` | 95.13 | | `CATS_MICRO_R` | 95.13 | | `CATS_MICRO_F` | 95.13 | | `CATS_MACRO_P` | 94.91 | | `CATS_MACRO_R` | 76.76 | | `CATS_MACRO_F` | 83.00 | | `CATS_MACRO_AUC` | 91.29 | | `CATS_MACRO_AUC_PER_TYPE` | 0.00 | | `TEXTCAT_LOSS` | 473.84 |
Tiemi/FunnyShihTzu-dog
Tiemi
2023-01-30T23:25:16Z
4
9
diffusers
[ "diffusers", "pytorch", "stable-diffusion", "text-to-image", "diffusion-models-class", "dreambooth-hackathon", "animal", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-29T21:13:42Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - animal widget: - text: a cartoon digital art of FunnyShihTzu dog smiling --- # DreamBooth model for the FunnyShihTzu concept trained by Tiemi on the Tiemi/FunnyShihTzu dataset. This is a Stable Diffusion model fine-tuned on photos of my dog with DreamBooth 🐕. It can be used by modifying the `instance_prompt` and keeping the tag FunnyShihTzu. **Examples of prompts:** - a cartoon digital art of FunnyShihTzu dog smiling - a photo of FunnyShihTzu dog laying in the couch - a funko pop of FunnyShihTzu dog smiling Each time you run the prompt you'll see a different image (even with the same text). If you enjoy this model, please give it a like ❤️. ## Description This is a Stable Diffusion model fine-tuned on `dog` images for the animal theme. ## Photo of my dog: <img src="https://s3.amazonaws.com/moonup/production/uploads/1672671005943-6192492551e3de53a3628c6b.jpeg" alt="shih_tzu" width="200"/> ## Examples of generated images: ![shih-tzu-funkopop](https://s3.amazonaws.com/moonup/production/uploads/1674651472459-6192492551e3de53a3628c6b.jpeg) ![shih-tzu-drawing.jpeg](https://s3.amazonaws.com/moonup/production/uploads/1672350721131-6192492551e3de53a3628c6b.jpeg) ![shih-tzu-wearing-crown.png](https://s3.amazonaws.com/moonup/production/uploads/1672351831323-6192492551e3de53a3628c6b.png) ![shih-tzu-wearing-crown-2.png](https://s3.amazonaws.com/moonup/production/uploads/1672351830953-6192492551e3de53a3628c6b.png) ![shih-tzu-cartoon-smiling-3.png](https://s3.amazonaws.com/moonup/production/uploads/1672351830966-6192492551e3de53a3628c6b.png) ![shih-tzu-cartoon-smiling.png](https://s3.amazonaws.com/moonup/production/uploads/1672351831343-6192492551e3de53a3628c6b.png) ![shih-tzu-acropolis.jpg](https://s3.amazonaws.com/moonup/production/uploads/1672351829105-6192492551e3de53a3628c6b.jpeg) ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('Tiemi/FunnyShihTzu-dog') image = pipeline().images[0] image ``` This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part!
talitazahran/jenjen
talitazahran
2023-01-30T23:17:51Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-30T23:03:36Z
--- license: creativeml-openrail-m ---
AliBuildsAI/sd-class-butterflies-32
AliBuildsAI
2023-01-30T22:25:04Z
2
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-01-30T22:24:38Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('AliBuildsAI/sd-class-butterflies-32') image = pipeline().images[0] image ```
huggingtweets/danidevyt
huggingtweets
2023-01-30T22:23:17Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-01-30T22:10:36Z
--- language: en thumbnail: http://www.huggingtweets.com/danidevyt/1675116733764/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1139870822934466562/-_KKMAE7_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dani</div> <div style="text-align: center; font-size: 14px;">@danidevyt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dani. | Data | Dani | | --- | --- | | Tweets downloaded | 2070 | | Retweets | 84 | | Short tweets | 433 | | Tweets kept | 1553 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bjcolos/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @danidevyt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rz82k3zq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rz82k3zq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/danidevyt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
epinnock/flan-t5-small-samsum
epinnock
2023-01-30T22:21:58Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:samsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-30T19:24:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - samsum model-index: - name: flan-t5-small-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-small-samsum This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the samsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 461 | nan | 41.7065 | 17.7336 | 34.2478 | 38.1372 | 16.8864 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.0+cu116 - Datasets 2.9.0 - Tokenizers 0.12.1
lotek93/a2c-PandaReachDense-v2
lotek93
2023-01-30T22:09:43Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T22:07:23Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.68 +/- 0.23 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
odiaz1066/a2c-AntBulletEnv-v0
odiaz1066
2023-01-30T22:06:36Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T22:05:34Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1190.35 +/- 89.58 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
robotman0/Reinforce-pixelcopter
robotman0
2023-01-30T21:37:02Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T20:03:56Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 33.10 +/- 28.05 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Lakoc/ppo-LunarLander-v2
Lakoc
2023-01-30T21:29:56Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T21:21:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 283.67 +/- 15.14 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_mnli
gokuls
2023-01-30T21:28:46Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T16:36:16Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.8389951179820992 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_mnli This model is a fine-tuned version of [gokuls/mobilebert_sa_pre-training-complete](https://huggingface.co/gokuls/mobilebert_sa_pre-training-complete) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3782 - Accuracy: 0.8390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6657 | 1.0 | 3068 | 0.4271 | 0.8153 | | 0.4271 | 2.0 | 6136 | 0.4219 | 0.8248 | | 0.3376 | 3.0 | 9204 | 0.3896 | 0.8356 | | 0.2799 | 4.0 | 12272 | 0.3866 | 0.8380 | | 0.2397 | 5.0 | 15340 | 0.3847 | 0.8397 | | 0.21 | 6.0 | 18408 | 0.3990 | 0.8403 | | 0.1885 | 7.0 | 21476 | 0.3940 | 0.8380 | | 0.1723 | 8.0 | 24544 | 0.4066 | 0.8373 | | 0.1588 | 9.0 | 27612 | 0.3966 | 0.8388 | | 0.149 | 10.0 | 30680 | 0.3883 | 0.8422 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
inseq/wmt20-mlqe-et-en
inseq
2023-01-30T21:15:00Z
4
0
transformers
[ "transformers", "pytorch", "fsmt", "text2text-generation", "translation", "wmt20", "en", "et", "multilingual", "dataset:wmt/europarl", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-01-30T12:21:29Z
--- language: - en - et - multilingual license: cc-by-sa-4.0 tags: - translation - wmt20 datasets: - wmt/europarl widget: - text: "Jupiter on Päikesest kauguselt viies planeet ja Päikesesüsteemi kõige suurem planeet." - text: "Plejaadid on Sõnni tähtkujus asuv hajusparv, mille Messier' kataloogi tähiseks on M45." - text: "Palju on vaieldud Vikipeedia usaldatavuse ja täpsuse üle. Kritiseeritud on selle avatust vandaalidele, ebaühtlast kvaliteeti ja vasturääkivust, mitteneutraalsust ja konsensuse või populaarsuse eelistamist kvalifitseeritusele." --- # Fairseq Et-En NMT WMT20 MLQE This repository contains the Estonian-English model trained with the [fairseq toolkit](https://github.com/pytorch/fairseq) that was used to produce translations used in the WMT20 shared task on quality estimation (QE) on the [MLQE dataset](https://github.com/facebookresearch/mlqe). The checkpoint was converted from the original fairseq checkpoint available [here](https://github.com/facebookresearch/mlqe/tree/master/nmt_models) using the `convert_fsmt_original_pytorch_checkpoint_to_pytorch.py` script from the 🤗 Transformers library (v4.26.0). Please refer to the repositories linked above for additional information on usage, parameters and training data
eric-nlp/Cool_Model
eric-nlp
2023-01-30T21:08:18Z
3
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-01-30T21:07:00Z
--- tags: - generated_from_trainer model-index: - name: result results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [huawei-noah/TinyBERT_General_4L_312D](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
inseq/wmt20-mlqe-en-zh
inseq
2023-01-30T21:07:49Z
6
7
transformers
[ "transformers", "pytorch", "fsmt", "text2text-generation", "translation", "wmt20", "en", "zh", "multilingual", "dataset:wmt/news-commentary", "dataset:wmt/wikititles", "dataset:wmt/uncorpus", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-01-30T12:22:22Z
--- language: - en - zh - multilingual license: cc-by-sa-4.0 tags: - translation - wmt20 datasets: - wmt/news-commentary - wmt/wikititles - wmt/uncorpus widget: - text: "It is a plump quail-shaped bird with white eyes and predominantly marbled black, rufous and pale brown plumage, marked prominently with white spots and stripes." - text: "The 59th Primetime Creative Arts Emmy Awards honored the best in artistic and technical achievement in American prime time television programming from June 1, 2006, until May 31, 2007, as chosen by the Academy of Television Arts & Sciences." - text: "While forests in temperate areas are readily categorised on the basis of tree canopy density, such schemes do not work well in tropical forests." --- # Fairseq En-Zh NMT WMT20 MLQE This repository contains the English-Chinese model trained with the [fairseq toolkit](https://github.com/pytorch/fairseq) that was used to produce translations used in the WMT20 shared task on quality estimation (QE) on the [MLQE dataset](https://github.com/facebookresearch/mlqe). The checkpoint was converted from the original fairseq checkpoint available [here](https://github.com/facebookresearch/mlqe/tree/master/nmt_models) using the `convert_fsmt_original_pytorch_checkpoint_to_pytorch.py` script from the 🤗 Transformers library (v4.26.0). Please refer to the repositories linked above for additional information on usage, parameters and training data
bhalll/q-FrozenLake-v1-4x4-noSlippery
bhalll
2023-01-30T21:04:03Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T21:04:01Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="bhalll/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
generateai/my_awesome_model4
generateai
2023-01-30T20:54:51Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T20:45:56Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 25.4886 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.02 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6252 | 1.0 | 1 | 3.9768 | 0.0 | | 1.0027 | 2.0 | 2 | 25.4886 | 0.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Celal11/resnet-50-finetuned-FER2013-0.003-CKPlus
Celal11
2023-01-30T20:54:32Z
83
0
transformers
[ "transformers", "pytorch", "tensorboard", "resnet", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-30T20:52:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: resnet-50-finetuned-FER2013-0.003-CKPlus results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9847715736040609 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-finetuned-FER2013-0.003-CKPlus This model is a fine-tuned version of [Celal11/resnet-50-finetuned-FER2013-0.003](https://huggingface.co/Celal11/resnet-50-finetuned-FER2013-0.003) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0614 - Accuracy: 0.9848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6689 | 0.97 | 27 | 0.1123 | 0.9797 | | 0.2929 | 1.97 | 54 | 0.0614 | 0.9848 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
MtCelesteMa/bert-base-uncased-finetuned-multiglue
MtCelesteMa
2023-01-30T20:38:27Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "en", "dataset:MtCelesteMa/multiglue", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T19:59:04Z
--- license: apache-2.0 datasets: - MtCelesteMa/multiglue language: - en metrics: - accuracy pipeline_tag: text-classification --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This model is bert-base-uncased finetuned on the MultiGLUE dataset. # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** English - **License:** Apache 2.0 (same as BERT) - **Finetuned from model [optional]:** bert-base-uncased ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ```python import numpy as np import transformers tokenizer = transformers.AutoTokenizer.from_pretrained('bert-base-uncased') model = transformers.AutoModelForSequenceClassification.from_pretrained('MtCelesteMa/bert-base-uncased-finetuned-multiglue') task = 'cola' sentence1 = 'Our friends won\'t buy this analysis, let alone the next one we propose.' sentence2 = None inputs = tokenizer(f'{task}:{sentence1}', f'{sentence2}', return_tensors='pt') outputs = model(**inputs) label = np.argmax(outputs.logits[0].detach().numpy()) print(label) ``` # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** RTX A6000 - **Hours used:** 2 - **Cloud Provider:** [vast.ai](https://vast.ai) - **Compute Region:** Sweden - **Carbon Emitted:** 0.26 kg # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed]
JoshuaRubin/t5-small-finetuned-math_qa-problem-formula_rationale
JoshuaRubin
2023-01-30T20:25:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:math_qa", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-01T11:39:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - math_qa model-index: - name: t5-small-finetuned-math_qa-problem-formula_rationale results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-math_qa-problem-formula_rationale This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the math_qa dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
whispAI/ClaimBuster-DeBERTaV2
whispAI
2023-01-30T20:14:39Z
198
1
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "autotrain", "en", "dataset:lucafrost/autotrain-data-claimbuster", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T19:52:01Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - lucafrost/autotrain-data-claimbuster co2_eq_emissions: emissions: 23.102349586537482 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 3165789318 - CO2 Emissions (in grams): 23.1023 ## Validation Metrics - Loss: 0.405 - Accuracy: 0.842 - Macro F1: 0.753 - Micro F1: 0.842 - Weighted F1: 0.843 - Macro Precision: 0.750 - Micro Precision: 0.842 - Weighted Precision: 0.844 - Macro Recall: 0.756 - Micro Recall: 0.842 - Weighted Recall: 0.842 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/lucafrost/ClaimBuster-DeBERTaV2 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("lucafrost/ClaimBuster-DeBERTaV2", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("lucafrost/ClaimBuster-DeBERTaV2", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Celal11/resnet-50-finetuned-FER2013CKPlus-0.003
Celal11
2023-01-30T20:06:14Z
82
0
transformers
[ "transformers", "pytorch", "tensorboard", "resnet", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-30T20:02:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: resnet-50-finetuned-FER2013CKPlus-0.003 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-finetuned-FER2013CKPlus-0.003 This model is a fine-tuned version of [Celal11/resnet-50-finetuned-FER2013-0.003](https://huggingface.co/Celal11/resnet-50-finetuned-FER2013-0.003) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0073 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8084 | 0.97 | 27 | 0.2004 | 0.9289 | | 0.362 | 1.97 | 54 | 0.0828 | 0.9848 | | 0.2972 | 2.97 | 81 | 0.0185 | 0.9949 | | 0.1917 | 3.97 | 108 | 0.0132 | 1.0 | | 0.1572 | 4.97 | 135 | 0.0073 | 1.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
lilouuch/Goodreads_Books_Reviews_distilbert
lilouuch
2023-01-30T20:04:28Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-28T16:00:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: Goodreads_Books_Reviews_distilbert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Goodreads_Books_Reviews_distilbert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [Goodreads Books Reviews dataset](https://www.kaggle.com/competitions/goodreads-books-reviews-290312/data). It achieves the following results on the evaluation set: - Loss: 0.9281 - F1: 0.6246 - Accuracy: 0.6338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:--------:| | 0.9445 | 1.0 | 9780 | 0.9275 | 0.6058 | 0.6228 | | 0.8688 | 2.0 | 19560 | 0.9090 | 0.6227 | 0.6291 | | 0.7786 | 3.0 | 29340 | 0.9281 | 0.6246 | 0.6338 | | 0.7039 | 4.0 | 39120 | 0.9576 | 0.6226 | 0.6314 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
lilouuch/Goodreads_Books_Reviews_BERT_51
lilouuch
2023-01-30T20:03:44Z
8
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-27T17:13:08Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: Goodreads_Books_Reviews_BERT_51 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Goodreads_Books_Reviews_BERT_51 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the [Goodreads Books Reviews dataset](https://www.kaggle.com/competitions/goodreads-books-reviews-290312/data). It achieves the following results on the evaluation set: - Loss: 0.9079 - F1: 0.6366 - Accuracy: 0.6355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:--------:| | 0.9474 | 1.0 | 7080 | 0.9415 | 0.6165 | 0.6179 | | 0.8295 | 2.0 | 14160 | 0.9079 | 0.6366 | 0.6355 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
joheras/NASES-clara-med
joheras
2023-01-30T19:53:18Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "simplification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-12T16:33:41Z
--- tags: - simplification - generated_from_trainer metrics: - rouge model-index: - name: NASES-clara-med results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NASES-clara-med This model is a fine-tuned version of [ELiRF/NASES](https://huggingface.co/ELiRF/NASES) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2666 - Rouge1: 44.0787 - Rouge2: 26.1429 - Rougel: 38.4286 - Rougelsum: 38.5202 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 1.0 | 190 | 2.1442 | 43.6265 | 25.4681 | 37.6224 | 37.8012 | | No log | 2.0 | 380 | 2.0839 | 44.0795 | 25.8075 | 37.9463 | 38.0445 | | 1.8145 | 3.0 | 570 | 2.1689 | 43.3863 | 25.7517 | 37.4822 | 37.7461 | | 1.8145 | 4.0 | 760 | 2.2569 | 43.9293 | 25.7951 | 37.9177 | 38.0658 | | 0.6803 | 5.0 | 950 | 2.3760 | 43.9972 | 26.1618 | 38.4315 | 38.5305 | | 0.6803 | 6.0 | 1140 | 2.4979 | 44.7986 | 27.0088 | 39.0031 | 39.1731 | | 0.6803 | 7.0 | 1330 | 2.5881 | 43.8723 | 25.9782 | 38.1705 | 38.3225 | | 0.2323 | 8.0 | 1520 | 2.6624 | 43.851 | 25.9263 | 38.2445 | 38.3659 | | 0.2323 | 9.0 | 1710 | 2.7113 | 43.5292 | 25.4795 | 37.6883 | 37.8992 | | 0.1464 | 10.0 | 1900 | 2.7451 | 44.6014 | 27.0125 | 38.9456 | 39.1796 | | 0.1464 | 11.0 | 2090 | 2.7932 | 43.9568 | 26.0931 | 38.3672 | 38.5118 | | 0.1464 | 12.0 | 2280 | 2.8651 | 43.8429 | 25.9007 | 38.0691 | 38.191 | | 0.0863 | 13.0 | 2470 | 2.8978 | 44.192 | 26.1818 | 38.4167 | 38.579 | | 0.0863 | 14.0 | 2660 | 2.9279 | 43.6745 | 25.6503 | 37.8948 | 38.0051 | | 0.0657 | 15.0 | 2850 | 2.9942 | 44.1633 | 25.7856 | 38.0295 | 38.1905 | | 0.0657 | 16.0 | 3040 | 2.9843 | 44.0347 | 25.9893 | 38.3486 | 38.5219 | | 0.0657 | 17.0 | 3230 | 3.0189 | 44.3013 | 26.1884 | 38.5594 | 38.7396 | | 0.0473 | 18.0 | 3420 | 3.0837 | 43.5877 | 25.6931 | 38.1147 | 38.2258 | | 0.0473 | 19.0 | 3610 | 3.1025 | 44.1191 | 25.9657 | 38.338 | 38.5039 | | 0.0302 | 20.0 | 3800 | 3.1395 | 44.393 | 26.3189 | 38.7891 | 38.8664 | | 0.0302 | 21.0 | 3990 | 3.1808 | 44.4783 | 26.3023 | 38.4714 | 38.6428 | | 0.0302 | 22.0 | 4180 | 3.1388 | 44.6364 | 26.7442 | 38.9591 | 39.1097 | | 0.0194 | 23.0 | 4370 | 3.1859 | 44.919 | 26.9807 | 39.2653 | 39.3442 | | 0.0194 | 24.0 | 4560 | 3.2126 | 44.4693 | 26.6534 | 38.8354 | 38.9278 | | 0.0159 | 25.0 | 4750 | 3.1988 | 44.5436 | 26.63 | 38.9413 | 39.0007 | | 0.0159 | 26.0 | 4940 | 3.2539 | 44.0378 | 26.0958 | 38.4445 | 38.5443 | | 0.0159 | 27.0 | 5130 | 3.2844 | 44.6057 | 26.476 | 38.6502 | 38.7949 | | 0.0117 | 28.0 | 5320 | 3.2755 | 44.1804 | 26.3747 | 38.6084 | 38.7027 | | 0.0117 | 29.0 | 5510 | 3.2731 | 44.0453 | 26.0298 | 38.3911 | 38.4826 | | 0.0102 | 30.0 | 5700 | 3.2666 | 44.0787 | 26.1429 | 38.4286 | 38.5202 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0 - Datasets 2.8.0 - Tokenizers 0.12.1
robotman0/Reinforce-v0
robotman0
2023-01-30T19:40:27Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T19:40:15Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
bhpardo/clasificador-muchocine
bhpardo
2023-01-30T18:52:11Z
3
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T18:51:03Z
--- tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-muchocine results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-muchocine This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3195 - Accuracy: 0.4297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.3924 | 0.3652 | | 1.4772 | 2.0 | 776 | 1.2545 | 0.4310 | | 1.1251 | 3.0 | 1164 | 1.3195 | 0.4297 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Joqsan/custom-fnet-finetuned-rte
Joqsan
2023-01-30T18:30:59Z
5
0
transformers
[ "transformers", "pytorch", "my_fnet", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T18:24:20Z
--- tags: - generated_from_trainer model-index: - name: custom-fnet-finetuned-rte results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # custom-fnet-finetuned-rte This model is a fine-tuned version of [Joqsan/custom-fnet](https://huggingface.co/Joqsan/custom-fnet) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
vuiseng9/jpqd-bert-large-lt-30eph-r0.0500-s5e15
vuiseng9
2023-01-30T18:27:34Z
0
0
null
[ "onnx", "region:us" ]
null
2023-01-30T16:52:13Z
# Joint Pruning, Quantization and Distillation for BERT-large/SQuADv1.1 ## Setup ```bash git clone https://github.com/vuiseng9/optimum-intel cd optimum-intel pip install -e .[openvino,nncf] cd examples/openvino/question-answering/ pip install -r requirements.txt pip install wandb # optional ``` ## Run ```bash NNCFCFG=/path/to/openvino_config.json MASTER_PORT=<PORTID> RUNID=<RUN_IDENTIFIER> OUTDIR=/path/to/saved_model NEPOCH=30 python -m torch.distributed.launch \ --nproc_per_node 4 \ --master_port $MASTER_PORT \ run_qa.py \ --model_name_or_path bert-large-uncased-whole-word-masking \ --dataset_name squad \ --teacher_model_or_path bert-large-uncased-whole-word-masking-finetuned-squad \ --distillation_weight 0.9 \ --do_eval \ --fp16 \ --do_train \ --learning_rate 3e-5 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --logging_steps 1 \ --evaluation_strategy steps \ --eval_steps 250 \ --save_steps 500 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR \ --nncf_compression_config $NNCFCFG ``` ### Reference Results ``` Global Step: 39500 F1: 92.482 EM: 86.594 Structured Sparsity (linear): 61.70% Model Sparsity: 55.82% ```
harshvardhan96/output-results
harshvardhan96
2023-01-30T18:24:05Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-01-30T17:49:53Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - harshvardhan96/output-results These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a male character with beard using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Joqsan/bert-base-uncased-finetuned-rte
Joqsan
2023-01-30T18:21:57Z
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T18:13:31Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-rte results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-rte This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
tomekkorbak/goofy_pasteur
tomekkorbak
2023-01-30T17:52:39Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-11-25T10:19:01Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: goofy_pasteur results: [] --- # goofy_pasteur - **Repository: https://github.com/tomekkorbak/aligned-pretraining-objectives** - **Paper: Arxiv link to be added** ## Model description This model was trained using [pile-detoxify](https://huggingface.co/datasets/tomekkorbak/pile-detoxify), which is data from [The Pile](https://huggingface.co/datasets/the_pile), annotated based on toxicity detected by [Detoxify](https://github.com/unitaryai/detoxify). ## Intended uses & limitations This model has been trained to generate text that receives a low score for toxicity from [Detoxify](https://github.com/unitaryai/detoxify). While we have promising results with the methods used to avoid toxic text, we cannot guarantee that it will output text that is fully aligned with non-toxicity in every situation. This model and its associated datasets are intended for research purposes only and should not be deployed anywhere. Please take care to avoid misusing the datasets used to train this model (where toxicity and personal identifiable information are annotated) or putting anybody in danger by publicizing their information. ## Training and evaluation data This model was trained using [pile-detoxify](https://huggingface.co/datasets/tomekkorbak/pile-detoxify). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'goofy_pasteur', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/20d87pk8
shrikritisingh/my-setfit
shrikritisingh
2023-01-30T17:32:57Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-30T17:32:43Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 223 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 223, "warmup_steps": 23, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
f-franco/ppo-LunarLander-v2
f-franco
2023-01-30T17:14:20Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T15:41:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 276.89 +/- 18.06 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kaliani/flair-ner-skill
kaliani
2023-01-30T16:43:40Z
105
7
flair
[ "flair", "pytorch", "bert", "token-classification", "sequence-tagger-model", "en", "region:us" ]
token-classification
2022-08-10T07:07:20Z
--- tags: - flair - token-classification - sequence-tagger-model language: en widget: - text: "Delphi SQL developer" example_title: "Example 1" - text: "Searching for new opportunities as Junior Node.js JavaScript backend developer. Over 15 years of experience in different IT areas. Experience with: Node.js JavaScript MongoDB HTML CSS Java Lotus Script websocket socket.io Docker babel Webpack MySQL JSON React" example_title: "Example 2" - text: "Experienced Chief Executive Officer with a demonstrated history of working in the wholesale industry. Skilled in Customer Service, Sales, Strategic Planning, and Business Development. Strong business development professional." example_title: "Example 3" --- ## English NER in Flair (Ontonotes fast model) F1-Score: **84.3** (Ontonotes) Predicts 2 tags: | tag | meaning | |---------------------------------|-----------| | SKILL | skill name | | EXPERIENCE | year of experience | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.
HuyenNguyen/Vigec-V5
HuyenNguyen
2023-01-30T16:42:58Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-30T15:09:52Z
--- license: mit tags: - generated_from_trainer metrics: - bleu model-index: - name: Vigec-V5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Vigec-V5 This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3694 - Bleu: 77.0736 - Gen Len: 10.0475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.195 | 0.01 | 500 | 0.9492 | 43.0845 | 7.2405 | | 0.978 | 0.01 | 1000 | 0.7804 | 61.0671 | 9.7255 | | 0.8418 | 0.02 | 1500 | 0.6798 | 64.3811 | 9.9025 | | 0.8148 | 0.03 | 2000 | 0.6046 | 66.1944 | 10.043 | | 0.7622 | 0.04 | 2500 | 0.5513 | 68.2851 | 10.1215 | | 0.7199 | 0.04 | 3000 | 0.5146 | 69.7161 | 10.0795 | | 0.7898 | 0.05 | 3500 | 0.4869 | 71.1868 | 10.079 | | 0.6921 | 0.06 | 4000 | 0.4648 | 72.4203 | 10.0345 | | 0.6827 | 0.07 | 4500 | 0.4490 | 73.2133 | 10.039 | | 0.6102 | 0.07 | 5000 | 0.4355 | 73.6841 | 10.078 | | 0.5805 | 0.08 | 5500 | 0.4176 | 74.2559 | 10.059 | | 0.6806 | 0.09 | 6000 | 0.4081 | 74.7389 | 10.0655 | | 0.6544 | 0.09 | 6500 | 0.3958 | 75.2603 | 10.025 | | 0.6244 | 0.1 | 7000 | 0.3904 | 75.9306 | 10.0565 | | 0.7212 | 0.11 | 7500 | 0.3822 | 76.3268 | 10.0505 | | 0.5446 | 0.12 | 8000 | 0.3785 | 76.5306 | 10.0505 | | 0.5574 | 0.12 | 8500 | 0.3741 | 76.7101 | 10.0545 | | 0.6265 | 0.13 | 9000 | 0.3721 | 76.8858 | 10.043 | | 0.5379 | 0.14 | 9500 | 0.3695 | 77.001 | 10.051 | | 0.6164 | 0.14 | 10000 | 0.3694 | 77.0736 | 10.0475 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Mehtap/whisper-tiny-2023-01-30
Mehtap
2023-01-30T16:38:59Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "tr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-01-30T14:24:40Z
--- language: - tr license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: tiny Turkish Whisper (tTW) results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny Turkish Whisper (tTW) This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Ermetal Meetings dataset. It achieves the following results on the evaluation set: - Loss: 6.0735 - Wer: 1.4939 - Cer: 1.0558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1 ### Training results ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.5.2 - Tokenizers 0.13.1
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_wnli
gokuls
2023-01-30T16:33:58Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T16:32:33Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.29577464788732394 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_wnli This model is a fine-tuned version of [gokuls/mobilebert_sa_pre-training-complete](https://huggingface.co/gokuls/mobilebert_sa_pre-training-complete) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3677 - Accuracy: 0.2958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3708 | 1.0 | 5 | 0.3927 | 0.3944 | | 0.3555 | 2.0 | 10 | 0.3715 | 0.4225 | | 0.3493 | 3.0 | 15 | 0.3677 | 0.2958 | | 0.3485 | 4.0 | 20 | 0.3704 | 0.3803 | | 0.3454 | 5.0 | 25 | 0.3815 | 0.2394 | | 0.3461 | 6.0 | 30 | 0.3878 | 0.2394 | | 0.3432 | 7.0 | 35 | 0.3962 | 0.2535 | | 0.3427 | 8.0 | 40 | 0.4050 | 0.1972 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_stsb
gokuls
2023-01-30T16:31:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T16:18:17Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.8642221596976783 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_stsb This model is a fine-tuned version of [gokuls/mobilebert_sa_pre-training-complete](https://huggingface.co/gokuls/mobilebert_sa_pre-training-complete) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.2919 - Pearson: 0.8665 - Spearmanr: 0.8642 - Combined Score: 0.8654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 1.1501 | 1.0 | 45 | 0.4726 | 0.7774 | 0.7922 | 0.7848 | | 0.364 | 2.0 | 90 | 0.3480 | 0.8457 | 0.8455 | 0.8456 | | 0.259 | 3.0 | 135 | 0.3156 | 0.8582 | 0.8590 | 0.8586 | | 0.2054 | 4.0 | 180 | 0.4231 | 0.8551 | 0.8549 | 0.8550 | | 0.1629 | 5.0 | 225 | 0.3245 | 0.8668 | 0.8654 | 0.8661 | | 0.1263 | 6.0 | 270 | 0.3192 | 0.8649 | 0.8625 | 0.8637 | | 0.1021 | 7.0 | 315 | 0.3337 | 0.8655 | 0.8629 | 0.8642 | | 0.0841 | 8.0 | 360 | 0.3061 | 0.8601 | 0.8577 | 0.8589 | | 0.0713 | 9.0 | 405 | 0.3600 | 0.8576 | 0.8555 | 0.8566 | | 0.0587 | 10.0 | 450 | 0.3135 | 0.8620 | 0.8600 | 0.8610 | | 0.0488 | 11.0 | 495 | 0.3006 | 0.8641 | 0.8620 | 0.8631 | | 0.0441 | 12.0 | 540 | 0.3308 | 0.8645 | 0.8621 | 0.8633 | | 0.0385 | 13.0 | 585 | 0.3468 | 0.8620 | 0.8601 | 0.8610 | | 0.0346 | 14.0 | 630 | 0.3175 | 0.8658 | 0.8634 | 0.8646 | | 0.0298 | 15.0 | 675 | 0.2919 | 0.8665 | 0.8642 | 0.8654 | | 0.0299 | 16.0 | 720 | 0.3103 | 0.8649 | 0.8628 | 0.8639 | | 0.0263 | 17.0 | 765 | 0.3325 | 0.8620 | 0.8599 | 0.8609 | | 0.0237 | 18.0 | 810 | 0.3092 | 0.8636 | 0.8611 | 0.8623 | | 0.0213 | 19.0 | 855 | 0.3169 | 0.8653 | 0.8631 | 0.8642 | | 0.0196 | 20.0 | 900 | 0.2985 | 0.8647 | 0.8624 | 0.8636 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
phonenix/CartPole-v1
phonenix
2023-01-30T16:31:27Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-28T16:32:33Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
erebusnorms/q-Taxi-v3
erebusnorms
2023-01-30T16:16:12Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T16:16:08Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.42 +/- 2.77 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="erebusnorms/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
erkam/sd-pokemon-model-lora
erkam
2023-01-30T16:15:48Z
4
4
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2", "base_model:adapter:stabilityai/stable-diffusion-2", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-01-29T22:21:23Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/erkam/sd-pokemon-model-lora These are LoRA adaption weights for https://huggingface.co/erkam/sd-pokemon-model-lora. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
kuan2/taxi
kuan2
2023-01-30T16:15:40Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T16:15:35Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.77 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="kuan2/taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
erebusnorms/q-FrozenLake-v1-4x4-noSlippery
erebusnorms
2023-01-30T16:14:34Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T16:14:31Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="erebusnorms/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kuan2/q-FrozenLake-v1-4x4-noSlippery
kuan2
2023-01-30T16:14:19Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T16:14:15Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kuan2/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
huggingtweets/muzhroommama
huggingtweets
2023-01-30T16:13:31Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-01-28T03:31:07Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1597709018142855170/e0xfVtT4_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">silly little time</div> <div style="text-align: center; font-size: 14px;">@muzhroommama</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from silly little time. | Data | silly little time | | --- | --- | | Tweets downloaded | 236 | | Retweets | 87 | | Short tweets | 32 | | Tweets kept | 117 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/xaynl4xc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @muzhroommama's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/x523rtvl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/x523rtvl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/muzhroommama') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Aditya02/stt_en_citrinet_1024
Aditya02
2023-01-30T16:11:20Z
5
0
nemo
[ "nemo", "automatic-speech-recognition", "speech", "audio", "CTC", "Citrinet", "Transformer", "pytorch", "NeMo", "hf-asr-leaderboard", "en", "dataset:librispeech_asr", "arxiv:2104.01721", "license:cc-by-4.0", "model-index", "region:us" ]
automatic-speech-recognition
2023-01-30T15:58:44Z
--- language: - en library_name: nemo datasets: - librispeech_asr thumbnail: null tags: - automatic-speech-recognition - speech - audio - CTC - Citrinet - Transformer - pytorch - NeMo - hf-asr-leaderboard license: cc-by-4.0 widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: stt_en_citrinet_1024_ls results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 2.5 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 6.3 --- # NVIDIA Citrinet CTC 1924 Librispeech (en-US) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-Citrinet--CTC-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-140M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets) | [![Riva Compatible](https://img.shields.io/badge/NVIDIA%20Riva-compatible-brightgreen#model-badge)](#deployment-with-nvidia-riva) | This model transcribes speech in lower case English alphabet along with spaces and apostrophes. It is an "large" versions of Citrinet-CTC (around 140M parameters) model. See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#citrinet) for complete architecture details. It is also compatible with NVIDIA Riva for [production-grade server deployments](#deployment-with-nvidia-riva). ## NVIDIA NeMo: Training To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version. ``` pip install nemo_toolkit['all'] ``` ## How to Use this Model The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained("nvidia/stt_en_citrinet_1024_ls") ``` ### Transcribing using Python First, let's get a sample ``` wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav ``` Then simply do: ``` asr_model.transcribe(['2086-149220-0033.wav']) ``` ### Transcribing many audio files ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="nvidia/stt_en_citrinet_1024_ls" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` ### Input This model accepts 16000 KHz Mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture Citrinet-CTC model is an autoregressive variant of Citrinet model [1] for Automatic Speech Recognition which uses CTC loss/decoding instead of Transducer Loss. You may find more info on the detail of this model here: [Citrinet Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html). ## Training The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_ctc/speech_to_text_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/citrinet/citrinet_1024.yaml) (Note: Change the `model.model_defaults.filters` to match the model size). The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py). ### Datasets All the models in this collection are trained on a just the Librispeech Dataset: - Librispeech 960 hours of English speech ## Performance The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding. | Version | Tokenizer | Vocabulary Size | LS test-other | LS test-clean | |---------|---------------------------|-----------------|---------------|---------------| | 1.0.0 | SentencePiece Unigram [2] | 256 | 6.3 | 2.5 | ## Limitations Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. ## Deployment with NVIDIA Riva For the best real-time accuracy, latency, and throughput, deploy the model with [NVIDIA Riva](https://developer.nvidia.com/riva), an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, at the edge, and embedded. Additionally, Riva provides: * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization * Streaming speech recognition, Kubernetes compatible scaling, and Enterprise-grade support Check out [Riva live demo](https://developer.nvidia.com/riva#demos). ## References [1] [ Citrinet: Closing the Gap between Non-Autoregressive and Autoregressive End-to-End Models for Automatic Speech Recognition](https://arxiv.org/abs/2104.01721) [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece) [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo) ## Licence License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.
AdelaZ/adelacq-dog-heywhale
AdelaZ
2023-01-30T15:34:29Z
0
1
diffusers
[ "diffusers", "pytorch", "stable-diffusion", "text-to-image", "diffusion-models-class", "dreambooth-hackathon", "animal", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-16T17:12:56Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - animal widget: - text: a adelacq dog sitting on top of the deck of a battle ship traveling through the open sea with a lot of ships surrounding it --- # DreamBooth model for the adelacq concept trained by AdelaZ. This is a Stable Diffusion model fine-tuned on the adelacq concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of adelacq dog** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `dog` images for the animal theme, for the Hugging Face DreamBooth Hackathon, from the HF CN Community, corporated with the HeyWhale. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('AdelaZ/adelacq-dog-heywhale') image = pipeline().images[0] image ```
Joqsan/bert-base-uncased-finetuned-qnli
Joqsan
2023-01-30T15:29:20Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T12:53:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-qnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-qnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
ahmetayrnc/spanbert-base-cased
ahmetayrnc
2023-01-30T15:12:41Z
7
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:silicone", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T12:06:11Z
--- tags: - generated_from_trainer datasets: - silicone metrics: - accuracy model-index: - name: spanbert-base-cased results: - task: name: Text Classification type: text-classification dataset: name: silicone type: silicone config: swda split: test args: swda metrics: - name: Accuracy type: accuracy value: 0.7114959469417833 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the silicone dataset. It achieves the following results on the evaluation set: - Loss: 1.0346 - Accuracy: 0.7115 - Micro-precision: 0.7115 - Micro-recall: 0.7115 - Micro-f1: 0.7115 - Macro-precision: 0.2484 - Macro-recall: 0.2508 - Macro-f1: 0.2412 - Weighted-precision: 0.6569 - Weighted-recall: 0.7115 - Weighted-f1: 0.6741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro-precision | Micro-recall | Micro-f1 | Macro-precision | Macro-recall | Macro-f1 | Weighted-precision | Weighted-recall | Weighted-f1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 1.043 | 1.0 | 2980 | 1.0346 | 0.7115 | 0.7115 | 0.7115 | 0.7115 | 0.2484 | 0.2508 | 0.2412 | 0.6569 | 0.7115 | 0.6741 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
optimum/bert-base-uncased-for-masked-lm
optimum
2023-01-30T14:59:19Z
13
0
transformers
[ "transformers", "onnx", "bert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-30T13:25:39Z
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- This model is exported for masked-lm task with the following command: ``` python3 -m optimum.exporters.onnx --model bert-base-cased --for-ort --task masked-lm models/ ``` If you want to use `bert-base-uncased` for other tasks, please export the ONNX model with your corresponding task. # BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Model variations BERT has originally been released in base and large variations, for cased and uncased input text. The uncased models also strips out an accent markers. Chinese and multilingual uncased and cased versions followed shortly after. Modified preprocessing with whole word masking has replaced subpiece masking in a following work, with the release of two models. Other 24 smaller models are released afterward. The detailed release history can be found on the [google-research/bert readme](https://github.com/google-research/bert/blob/master/README.md) on github. | Model | #params | Language | |------------------------|--------------------------------|-------| | [`bert-base-uncased`](https://huggingface.co/bert-base-uncased) | 110M | English | | [`bert-large-uncased`](https://huggingface.co/bert-large-uncased) | 340M | English | sub | [`bert-base-cased`](https://huggingface.co/bert-base-cased) | 110M | English | | [`bert-large-cased`](https://huggingface.co/bert-large-cased) | 340M | English | | [`bert-base-chinese`](https://huggingface.co/bert-base-chinese) | 110M | Chinese | | [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased) | 110M | Multiple | | [`bert-large-uncased-whole-word-masking`](https://huggingface.co/bert-large-uncased-whole-word-masking) | 340M | English | | [`bert-large-cased-whole-word-masking`](https://huggingface.co/bert-large-cased-whole-word-masking) | 340M | English | ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions of a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling from the [Optimum library](https://huggingface.co/docs/optimum/main/en/index): ```python >>> from optimum.pipelines import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased', accelerator="ort") >>> unmasker("The capital of France is [MASK].") [{'score': 0.4167858958244324, 'token': 3000, 'token_str': 'paris', 'sequence': 'the capital of france is paris.'}, {'score': 0.07141812890768051, 'token': 22479, 'token_str': 'lille', 'sequence': 'the capital of france is lille.'}, {'score': 0.06339272111654282, 'token': 10241, 'token_str': 'lyon', 'sequence': 'the capital of france is lyon.'}, {'score': 0.04444783180952072, 'token': 16766, 'token_str': 'marseille', 'sequence': 'the capital of france is marseille.'}, {'score': 0.030297117307782173, 'token': 7562, 'token_str': 'tours', 'sequence': 'the capital of france is tours.'} ] ``` Here is how to use this model to fill the masked token with ONNX Runtime backend: ```python from transformers import AutoTokenizer from optimum.onnxruntime import ORTModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') model = ORTModelForMaskedLM.from_pretrained("bert-base-uncased", from_transformers=True) text = "The capital of France is [MASK]." inputs = tokenizer(text, return_tensors="pt") logits = model(**inputs) mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) tokenizer.decode(predicted_token_id) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from optimum.pipelines import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased', accelerator="ort") >>> unmasker("The man worked as a [MASK].") [{'score': 0.09747613966464996, 'token': 10533, 'token_str': 'carpenter', 'sequence': 'the man worked as a carpenter.'}, {'score': 0.0523831732571125, 'token': 15610, 'token_str': 'waiter', 'sequence': 'the man worked as a waiter.'}, {'score': 0.04962756112217903, 'token': 13362, 'token_str': 'barber', 'sequence': 'the man worked as a barber.'}, {'score': 0.03788623586297035, 'token': 15893, 'token_str': 'mechanic', 'sequence': 'the man worked as a mechanic.'}, {'score': 0.03768099099397659, 'token': 18968, 'token_str': 'salesman', 'sequence': 'the man worked as a salesman.'}] >>> unmasker("The woman worked as a [MASK].") [{'score': 0.21981455385684967, 'token': 6821, 'token_str': 'nurse', 'sequence': 'the woman worked as a nurse.'}, {'score': 0.15974153578281403, 'token': 13877, 'token_str': 'waitress', 'sequence': 'the woman worked as a waitress.'}, {'score': 0.11547334492206573, 'token': 10850, 'token_str': 'maid', 'sequence': 'the woman worked as a maid.'}, {'score': 0.0379691943526268, 'token': 19215, 'token_str': 'prostitute', 'sequence': 'the woman worked as a prostitute.'}, {'score': 0.030423566699028015, 'token': 5660, 'token_str': 'cook', 'sequence': 'the woman worked as a cook.'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus, and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:| | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
ahmetayrnc/distilroberta-base
ahmetayrnc
2023-01-30T14:56:50Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:silicone", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T13:22:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - silicone metrics: - accuracy model-index: - name: distilroberta-base results: - task: name: Text Classification type: text-classification dataset: name: silicone type: silicone config: swda split: test args: swda metrics: - name: Accuracy type: accuracy value: 0.7111274871039057 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the silicone dataset. It achieves the following results on the evaluation set: - Loss: 0.9647 - Accuracy: 0.7111 - Micro-precision: 0.7111 - Micro-recall: 0.7111 - Micro-f1: 0.7111 - Macro-precision: 0.3228 - Macro-recall: 0.2866 - Macro-f1: 0.2824 - Weighted-precision: 0.6683 - Weighted-recall: 0.7111 - Weighted-f1: 0.6768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro-precision | Micro-recall | Micro-f1 | Macro-precision | Macro-recall | Macro-f1 | Weighted-precision | Weighted-recall | Weighted-f1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 0.9578 | 1.0 | 2980 | 0.9647 | 0.7111 | 0.7111 | 0.7111 | 0.7111 | 0.3228 | 0.2866 | 0.2824 | 0.6683 | 0.7111 | 0.6768 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Laurie/sentiment-classify
Laurie
2023-01-30T14:56:36Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T13:48:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: sentiment-classify results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93032 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-classify This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2395 - Accuracy: 0.9303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2317 | 1.0 | 1563 | 0.1850 | 0.928 | | 0.1448 | 2.0 | 3126 | 0.2395 | 0.9303 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_mnli_128
gokuls
2023-01-30T14:32:05Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T06:51:57Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_mnli_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.5949959316517494 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_mnli_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 1.2689 - Accuracy: 0.5950 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.6825 | 1.0 | 3068 | 1.4581 | 0.5256 | | 1.4941 | 2.0 | 6136 | 1.3516 | 0.5680 | | 1.4199 | 3.0 | 9204 | 1.3259 | 0.5712 | | 1.3747 | 4.0 | 12272 | 1.3024 | 0.5856 | | 1.34 | 5.0 | 15340 | 1.2875 | 0.5931 | | 1.3087 | 6.0 | 18408 | 1.2730 | 0.5928 | | 1.2769 | 7.0 | 21476 | 1.2845 | 0.5916 | | 1.246 | 8.0 | 24544 | 1.2750 | 0.5965 | | 1.2166 | 9.0 | 27612 | 1.2651 | 0.6020 | | 1.1883 | 10.0 | 30680 | 1.2773 | 0.6043 | | 1.1604 | 11.0 | 33748 | 1.2555 | 0.6011 | | 1.1329 | 12.0 | 36816 | 1.2792 | 0.5991 | | 1.1074 | 13.0 | 39884 | 1.2891 | 0.5986 | | 1.0812 | 14.0 | 42952 | 1.2889 | 0.5947 | | 1.0577 | 15.0 | 46020 | 1.2871 | 0.5970 | | 1.0338 | 16.0 | 49088 | 1.3296 | 0.6026 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_mnli_256
gokuls
2023-01-30T14:21:19Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T06:57:33Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_mnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.6119812855980472 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_mnli_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 1.2282 - Accuracy: 0.6120 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.6433 | 1.0 | 3068 | 1.4078 | 0.5457 | | 1.4683 | 2.0 | 6136 | 1.3590 | 0.5658 | | 1.4077 | 3.0 | 9204 | 1.3106 | 0.5772 | | 1.3591 | 4.0 | 12272 | 1.2971 | 0.5904 | | 1.3213 | 5.0 | 15340 | 1.2764 | 0.5957 | | 1.2849 | 6.0 | 18408 | 1.2562 | 0.6029 | | 1.2475 | 7.0 | 21476 | 1.2524 | 0.6038 | | 1.2073 | 8.0 | 24544 | 1.2384 | 0.6066 | | 1.1713 | 9.0 | 27612 | 1.2377 | 0.6109 | | 1.1371 | 10.0 | 30680 | 1.2228 | 0.6077 | | 1.1069 | 11.0 | 33748 | 1.2126 | 0.6196 | | 1.0775 | 12.0 | 36816 | 1.2232 | 0.6271 | | 1.0491 | 13.0 | 39884 | 1.2440 | 0.6110 | | 1.0228 | 14.0 | 42952 | 1.2741 | 0.6079 | | 0.9977 | 15.0 | 46020 | 1.2448 | 0.6158 | | 0.974 | 16.0 | 49088 | 1.3261 | 0.6206 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_rte
gokuls
2023-01-30T14:18:02Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T14:14:47Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5451263537906137 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_rte This model is a fine-tuned version of [gokuls/mobilebert_sa_pre-training-complete](https://huggingface.co/gokuls/mobilebert_sa_pre-training-complete) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.3884 - Accuracy: 0.5451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4107 | 1.0 | 20 | 0.3951 | 0.5126 | | 0.3757 | 2.0 | 40 | 0.3914 | 0.4982 | | 0.347 | 3.0 | 60 | 0.3884 | 0.5451 | | 0.3072 | 4.0 | 80 | 0.4022 | 0.5126 | | 0.2762 | 5.0 | 100 | 0.4116 | 0.5271 | | 0.2457 | 6.0 | 120 | 0.4073 | 0.5271 | | 0.2215 | 7.0 | 140 | 0.4115 | 0.5487 | | 0.2059 | 8.0 | 160 | 0.4231 | 0.5343 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
ahmetayrnc/bert-large-cased
ahmetayrnc
2023-01-30T13:58:49Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:silicone", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-30T13:16:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - silicone metrics: - accuracy model-index: - name: bert-large-cased results: - task: name: Text Classification type: text-classification dataset: name: silicone type: silicone config: swda split: test args: swda metrics: - name: Accuracy type: accuracy value: 0.7280766396462786 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the silicone dataset. It achieves the following results on the evaluation set: - Loss: 0.8807 - Accuracy: 0.7281 - Micro-precision: 0.7281 - Micro-recall: 0.7281 - Micro-f1: 0.7281 - Macro-precision: 0.4591 - Macro-recall: 0.3825 - Macro-f1: 0.3855 - Weighted-precision: 0.6943 - Weighted-recall: 0.7281 - Weighted-f1: 0.6977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro-precision | Micro-recall | Micro-f1 | Macro-precision | Macro-recall | Macro-f1 | Weighted-precision | Weighted-recall | Weighted-f1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 0.8835 | 1.0 | 2980 | 0.8807 | 0.7281 | 0.7281 | 0.7281 | 0.7281 | 0.4591 | 0.3825 | 0.3855 | 0.6943 | 0.7281 | 0.6977 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
sarthakc44/q-Taxi-v3-500x6-v2
sarthakc44
2023-01-30T13:48:24Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-30T13:48:20Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-500x6-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="sarthakc44/q-Taxi-v3-500x6-v2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
inkasaras/ppo-LunarLander-v2
inkasaras
2023-01-30T13:48:17Z
1
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-28T13:59:47Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 275.83 +/- 20.42 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```