modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-26 00:41:46
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-26 00:38:54
card
stringlengths
11
1.01M
espnet/kan-bayashi_csmsc_tts_train_fastspeech_raw_phn_pypinyin_g2p_phone_train.loss.best
espnet
2021-07-03T14:39:54Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "zh", "dataset:csmsc", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: zh datasets: - csmsc license: cc-by-4.0 --- ## Example ESPnet2 TTS model ### `kan-bayashi/csmsc_tts_train_fastspeech_raw_phn_pypinyin_g2p_phone_train.loss.best` ♻️ Imported from https://zenodo.org/record/3986227/ This model was trained by kan-bayashi using csmsc/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
andi611/distilbert-base-uncased-ner-conll2003
andi611
2021-07-03T13:08:00Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.985193893275295 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0664 - Precision: 0.9332 - Recall: 0.9423 - F1: 0.9377 - Accuracy: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2042 | 1.0 | 878 | 0.0636 | 0.9230 | 0.9253 | 0.9241 | 0.9822 | | 0.0428 | 2.0 | 1756 | 0.0577 | 0.9286 | 0.9370 | 0.9328 | 0.9841 | | 0.0199 | 3.0 | 2634 | 0.0606 | 0.9364 | 0.9401 | 0.9383 | 0.9851 | | 0.0121 | 4.0 | 3512 | 0.0641 | 0.9339 | 0.9380 | 0.9360 | 0.9847 | | 0.0079 | 5.0 | 4390 | 0.0664 | 0.9332 | 0.9423 | 0.9377 | 0.9852 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
huggingtweets/harishkgarg
huggingtweets
2021-07-03T11:49:01Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/harishkgarg/1625312937710/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1320617833106006017/Quwape-G_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Harish Garg</div> <div style="text-align: center; font-size: 14px;">@harishkgarg</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Harish Garg. | Data | Harish Garg | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 328 | | Short tweets | 366 | | Tweets kept | 2552 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tl8dz55/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @harishkgarg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3853sjv0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3853sjv0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/harishkgarg') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
smaranjitghose/big-cat-classifier
smaranjitghose
2021-07-03T08:12:25Z
79
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: big-cat-classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9107142686843872 --- ![Big Cat Classifier](./assets/banner_img.png) An image classifier built using Vision Transformers that categories images of the big cats into the following classes: | Class | Big Cat | Sample Image | | :---: | :------ | -------------------------------- | | 0 | Cheetah | ![cheetah](./assets/cheetah.jpg) | | 1 | Jaguar | ![jaguar](./assets/jaguar.jpg) | | 2 | Leopard | ![leopard](./assets/leopard.jpg) | | 3 | Lion | ![lion](./assets/lion.jpg) | | 4 | Tiger | ![tiger](./assets/tiger.jpg) | > **Note**: > > - Since jaguars and leopards have similar appearances, the model might confuse the two. These [[1](https://www.nationalgeographic.com/animals/article/animals-big-cats-jaguars-leopards)] [[2](https://safarisafricana.com/jaguar-v-leopard/)] two articles throw some light on the difference between the two species. > - Theoretically the model should be able to accurately identify geographical population variants of each species. However, in practical scenarios this may not be true as during the training phases this was not kept in mind while collecting the dataset. > - For example: images of Bengal Tigers, Siberian Tigers, Indochinese Tigers, and Malayan Tigers should be identified as Tigers > - Lastly, the performance of the model in categorizing certain rare variants in the populations of big cats such as white tigers, snow leopards, or black panther has not been determined exclusively. Although some of the tests performed gave satisfactory results. ### Training and Inference **Training**: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/smaranjitghose/Big_Cat_Classifier/blob/master/notebooks/Big_Cat_Classifier.ipynb) **Inference**: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/smaranjitghose/Big_Cat_Classifier/blob/master/notebooks/Big_Cat_Classifier_Inference.ipynb) ## Usage ```python from PIL import Image import matplotlib.pyplot as plt from transformers import ViTFeatureExtractor, ViTForImageClassification def identify_big_cat(img_path:str)->str: """ Function that reads an image of a big cat (belonging to Panthera family) and returns the corresponding species """ img = Image.open(img_path) model_panthera = ViTForImageClassification.from_pretrained("smaranjitghose/big-cat-classifier") feature_extractor = ViTFeatureExtractor.from_pretrained('smaranjitghose/big-cat-classifier') inputs = feature_extractor(images=img, return_tensors="pt") outputs = model_panthera(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() return model_panthera.config.id2label[predicted_class_idx] our_big_cat = identify_big_cat("path_of_the_image") print(f"Predicted species: {our_big_cat}" ) ``` ## Hosted API: Check it out [here](https://huggingface.co/smaranjitghose/big-cat-classifier) ## Library App Usage: - Clone this repository ``` git clone https://github.com/smaranjitghose/Big_Cat_Classifier.git ``` - Move inside the cloned repository ``` cd Big_Cat_Classifier ``` - Now follow either of following two routes: A) Without using Docker: **Make sure you have installed the latest stable version [Python 3](https://www.python.org/downloads/) and added it to PATH** - Install the python dependencies ``` pip install -r requirements.txt ``` - Start the streamlit app on local server ``` streamlit run app.py ``` B) Using Docker: **Make sure you have installed [Docker](https://docs.docker.com/engine/install/)** - Build the Docker Image ``` docker build -t smaranjitghose/big-cat-classifier:latest . ``` - Check if the image is available ``` docker images ``` - Create a Docker container from the image and Run it ``` docker run -t -i -p 8080:8080 --name "big-cat-classifier" smaranjitghose/big-cat-classifier ``` - Open your browser and visit `localhost:8080` ![Streamlit App](./assets/streamlit_app.png) ## Hosting 1. Heroku - Remove the lines that exposed the particular port in the docker container - Make sure the startup command is exposed with a variable Port Number ``` ENTRYPOINT ["streamlit", "run", "app.py", "--server.port=$PORT"] ``` - Login to Heroku ``` heroku login -i ``` - Create a new Heroku app ``` heroku create ``` - Login in to Container Registry ``` heroku container:login ``` - Build the Docker image and push it to Container Registry ``` heroku container:push web ``` - Release the app ``` heroku container:release web ``` - Check the hosted version and dashboard ``` heroku open ``` ## Reference and Acknowledgement: [Hugging Pics](https://github.com/nateraw/huggingpics)
sreeramajay/pollution
sreeramajay
2021-07-03T07:05:10Z
68
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pollution results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7129629850387573 --- # pollution Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### air pollution ![air pollution](images/air_pollution_new.jpg) #### land pollution ![land pollution](images/land_pollution.jpg) #### water pollution ![water pollution](images/water_pollution.jpg)
huggingtweets/donkeykongape
huggingtweets
2021-07-03T06:28:54Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/donkeykongape/1625293730159/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1245523276128010240/kEFAcj1B_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Donkey Kong</div> <div style="text-align: center; font-size: 14px;">@donkeykongape</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Donkey Kong. | Data | Donkey Kong | | --- | --- | | Tweets downloaded | 3200 | | Retweets | 72 | | Short tweets | 1081 | | Tweets kept | 2047 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1pcwumgk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @donkeykongape's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/253exk8q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/253exk8q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/donkeykongape') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/vinesauce
huggingtweets
2021-07-03T06:11:46Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/vinesauce/1625292702979/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1021989252920471552/dxWanbnY_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Vinesauce</div> <div style="text-align: center; font-size: 14px;">@vinesauce</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Vinesauce. | Data | Vinesauce | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 2288 | | Short tweets | 0 | | Tweets kept | 962 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/289yzir9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vinesauce's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1g0e360r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1g0e360r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/vinesauce') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cf__bundy
huggingtweets
2021-07-03T04:06:32Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/cf__bundy/1625285188781/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1308125167608934400/CHIV0pn3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ty</div> <div style="text-align: center; font-size: 14px;">@cf__bundy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ty. | Data | ty | | --- | --- | | Tweets downloaded | 1009 | | Retweets | 117 | | Short tweets | 200 | | Tweets kept | 692 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2li311zj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cf__bundy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1hxi4q6u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1hxi4q6u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cf__bundy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gagan3012/k2t-test
gagan3012
2021-07-03T02:43:02Z
6
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t", "Keywords to Sentences", "en", "dataset:WebNLG", "dataset:Dart", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: "en" thumbnail: "Keywords to Sentences" tags: - keytotext - k2t - Keywords to Sentences license: "MIT" datasets: - WebNLG - Dart metrics: - NLG model-index: - name: k2t-test --- <h1 align="center">keytotext</h1> [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/notebooks/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) [![API Call](https://img.shields.io/badge/-FastAPI-red?logo=fastapi&labelColor=white)](https://github.com/gagan3012/keytotext#api) [![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://hub.docker.com/r/gagan30/keytotext) [![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97-Models%20on%20Hub-yellow)](https://huggingface.co/models?filter=keytotext) [![Documentation Status](https://readthedocs.org/projects/keytotext/badge/?version=latest)](https://keytotext.readthedocs.io/en/latest/?badge=latest) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ![keytotext](https://socialify.git.ci/gagan3012/keytotext/image?description=1&forks=1&language=1&owner=1&stargazers=1&theme=Light) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: - Marketing - Search Engine Optimization - Topic generation etc. - Fine tuning of topic modeling models
huggingtweets/ijustbluemyself
huggingtweets
2021-07-03T02:35:50Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/ijustbluemyself/1625279746808/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1179205017020063744/WnOlftVe_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">¯\_(ツ)_/¯</div> <div style="text-align: center; font-size: 14px;">@ijustbluemyself</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ¯\_(ツ)_/¯. | Data | ¯\_(ツ)_/¯ | | --- | --- | | Tweets downloaded | 3224 | | Retweets | 250 | | Short tweets | 982 | | Tweets kept | 1992 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qgmk16ox/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ijustbluemyself's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2yq2ve7k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2yq2ve7k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ijustbluemyself') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/harrybutaverage
huggingtweets
2021-07-02T22:00:05Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/harrybutaverage/1625263201502/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1408854540930146309/ZQgGrcsH_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">averageharry 😼</div> <div style="text-align: center; font-size: 14px;">@harrybutaverage</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from averageharry 😼. | Data | averageharry 😼 | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 28 | | Short tweets | 1190 | | Tweets kept | 2031 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zwpsqrg6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @harrybutaverage's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/os07864o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/os07864o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/harrybutaverage') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/kdtrey5-rxmaybike
huggingtweets
2021-07-02T19:45:41Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/kdtrey5-rxmaybike/1625255137541/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409559937445990403/9bkJBvX9_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/889585901222989825/gp_fGcQ5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">jamar 🇵🇸 & Kevin Durant</div> <div style="text-align: center; font-size: 14px;">@kdtrey5-rxmaybike</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from jamar 🇵🇸 & Kevin Durant. | Data | jamar 🇵🇸 | Kevin Durant | | --- | --- | --- | | Tweets downloaded | 3131 | 3241 | | Retweets | 1737 | 449 | | Short tweets | 327 | 371 | | Tweets kept | 1067 | 2421 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jtaq6rj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kdtrey5-rxmaybike's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2u1ogoav) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2u1ogoav/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kdtrey5-rxmaybike') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Giuliano/places
Giuliano
2021-07-02T18:31:41Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:04Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: places results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # places Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Beach ![Beach](images/Beach.jpg) #### City ![City](images/City.jpg) #### Forest ![Forest](images/Forest.jpg)
jfhr1999/CharacterTest
jfhr1999
2021-07-02T17:47:08Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational --- ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jfhr1999/CharacterTest") model = AutoModelWithLMHead.from_pretrained("jfhr1999/CharacterTest") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
espnet/kamo-naoyuki-mini_an4_asr_train_raw_bpe_valid.acc.best
espnet
2021-07-02T12:57:18Z
742
1
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:mini-an4", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - mini-an4 license: cc-by-4.0 --- # ESPnet2 ASR pretrained model ## `kamo-naoyuki/mini_an4_asr_train_raw_bpe_valid.acc.best` ♻️ Imported from <https://zenodo.org/record/3957940#.YN7zwJozZH4> This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Training config See full config in [`config.yaml`](./config.yaml) ```yaml config: null print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_raw_bpe ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
espnet/kan_bayashi_jsut_tts_train_conformer_fastspeech2_raw_phn_jaconv_pyopenjtalk_train.loss.ave
espnet
2021-07-02T12:52:46Z
0
1
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - ljspeech license: cc-by-4.0 widget: - text: "Hello, how are you doing?" --- # ESPnet2 ASR pretrained model ## `kan-bayashi/jsut_tts_train_conformer_fastspeech2_raw_phn_jaconv_pyopenjtalk_train.loss.ave` ♻️ Imported from <https://zenodo.org/record/4017026#.YN70XJozZH4> This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Training config See full config in [`config.yaml`](./config.yaml) ```yaml config: conf/tuning/train_conformer_fastspeech2.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_conformer_fastspeech2_raw_phn_jaconv_pyopenjtalk ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
hgarg/indian-snacks
hgarg
2021-07-02T12:15:17Z
68
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: indian-snacks results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6499999761581421 --- # indian-snacks Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### dosa ![dosa](images/dosa.jpg) #### idli ![idli](images/idli.jpg) #### naan ![naan](images/naan.jpg) #### samosa ![samosa](images/samosa.jpg) #### vada ![vada](images/vada.jpg)
bigwiz83/sapbert-from-pubmedbert-squad2
bigwiz83
2021-07-02T12:05:14Z
10,660
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "dataset:squad_v2", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- datasets: - squad_v2 model_index: - name: sapbert-from-pubmedbert-squad2 results: - task: name: Question Answering type: question-answering dataset: name: squad_v2 type: squad_v2 args: squad_v2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sapbert-from-pubmedbert-squad2 This model is a fine-tuned version of [cambridgeltl/SapBERT-from-PubMedBERT-fulltext](https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.2582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.035 | 1.0 | 8298 | 0.9545 | | 0.8053 | 2.0 | 16596 | 0.9988 | | 0.5949 | 3.0 | 24894 | 0.9909 | | 0.4878 | 4.0 | 33192 | 1.1428 | | 0.3932 | 5.0 | 41490 | 1.2582 | ### Framework versions - Transformers 4.7.0 - Pytorch 1.8.0 - Datasets 1.4.1 - Tokenizers 0.10.2
huggingtweets/edba_bsi-joebiden-michelkalika
huggingtweets
2021-07-02T11:47:46Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1308769664240160770/AfgzWVE7_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1010114760489230336/Zy15rE2U_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/643893443488522240/_gvbT2p3_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Joe Biden & Business Science Institute & Pr. Michel Kalika</div> <div style="text-align: center; font-size: 14px;">@edba_bsi-joebiden-michelkalika</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Joe Biden & Business Science Institute & Pr. Michel Kalika. | Data | Joe Biden | Business Science Institute | Pr. Michel Kalika | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 1642 | 1270 | | Retweets | 402 | 580 | 859 | | Short tweets | 37 | 52 | 48 | | Tweets kept | 2811 | 1010 | 363 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ln9teva/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @edba_bsi-joebiden-michelkalika's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3st82ghl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3st82ghl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/edba_bsi-joebiden-michelkalika') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ferdinand/rare-puppers
ferdinand
2021-07-02T11:46:09Z
72
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9861111044883728 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
thak123/goan-fish-fry
thak123
2021-07-02T10:46:53Z
71
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: goan-fish-fry results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.4583333432674408 --- # goan-fish-fry Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### king fish fry ![king fish fry](images/king_fish_fry.jpg) #### mackerel fry ![mackerel fry](images/mackerel_fry.jpg) #### pomfret fry ![pomfret fry](images/pomfret_fry.jpg) #### prawn fish fry ![prawn fish fry](images/prawn_fish_fry.jpg) #### squid fish fry ![squid fish fry](images/squid_fish_fry.jpg)
LorenzoDeMattei/lawn-weeds
LorenzoDeMattei
2021-07-02T10:07:36Z
72
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:04Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: lawn-weeds results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9166666865348816 --- # lawn-weeds Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### clover ![clover](images/clover.jpg) #### dichondra ![dichondra](images/dichondra.jpg) #### grass ![grass](images/grass.jpg)
thak123/indian-snacks
thak123
2021-07-02T09:19:44Z
69
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: indian-snacks results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6696428656578064 --- # indian-snacks Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### chalk ![chalk](images/chalk.jpg) #### crayon ![crayon](images/crayon.jpg) #### marker ![marker](images/marker.jpg) #### pencil ![pencil](images/pencil.jpg) #### pens ![pens](images/pens.jpg)
deepklarity/roberta-base-hindi
deepklarity
2021-07-02T07:03:36Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
Roberta-base training attempt on hindi datasets.
remotejob/tweetsT5_small_sum_fi
remotejob
2021-07-02T01:47:21Z
5
0
transformers
[ "transformers", "pytorch", "rust", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
Small t5-small model for summarization
BlightZz/DialoGPT-medium-Kurisu
BlightZz
2021-07-01T22:12:18Z
9
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - conversational --- # A new medium model based on the character Makise Kurisu from Steins;Gate. # Still has some issues that were present in the previous model, for example, mixing lines from other characters. # If you have any questions, feel free to ask me on discord: BlightZz#1169
jjhoffstein/lotr
jjhoffstein
2021-07-01T20:21:18Z
68
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: lotr results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.4375 --- # lotr Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### aragorn ![aragorn](images/aragorn.jpg) #### frodo ![frodo](images/frodo.jpg) #### gandalf ![gandalf](images/gandalf.jpg) #### gollum ![gollum](images/gollum.jpg) #### legolas ![legolas](images/legolas.jpg)
BlightZz/MakiseKurisu
BlightZz
2021-07-01T19:02:26Z
10
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - conversational --- # A small model based on the character Makise Kurisu from Steins;Gate. This was made as a test. # A new medium model was made using her lines, I also added some fixes. It can be found here: # https://huggingface.co/BlightZz/DialoGPT-medium-Kurisu
lewtun/oz-fauna
lewtun
2021-07-01T15:25:24Z
69
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: oz-fauna results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8571428656578064 --- # oz-fauna Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### dingo ![dingo](images/dingo.jpg) #### koala ![koala](images/koala.jpg) #### kookaburra ![kookaburra](images/kookaburra.jpg) #### possum ![possum](images/possum.jpg) #### tasmanian devil ![tasmanian devil](images/tasmanian_devil.jpg)
Fraser/transformer-vae
Fraser
2021-07-01T07:21:31Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
# Transformer-VAE (WIP) A PyTorch Transformer-VAE model. Uses an MMD loss to prevent posterior collapse. Will setup in the next month or so. ## ToDo - [ ] Copy in old repo code. - [ ] Make a bunch of sample training runs. - [ ] Make an interpolation widget?
stas/pegasus-cnn_dailymail-tiny-random
stas
2021-07-01T05:33:00Z
110
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
This is a tiny random pegasus-cnn_dailymail model used for testing. See `make-pegasus-cnn_dailymail-tiny-random.py` for how it was created.
huggingtweets/mplay513
huggingtweets
2021-07-01T02:01:40Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/mplay513/1625104896650/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1338251829969379343/srMwDR1d_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MinePlay513</div> <div style="text-align: center; font-size: 14px;">@mplay513</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from MinePlay513. | Data | MinePlay513 | | --- | --- | | Tweets downloaded | 531 | | Retweets | 272 | | Short tweets | 21 | | Tweets kept | 238 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2dwv363m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mplay513's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3w0zzbbl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3w0zzbbl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mplay513') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mineplay512
huggingtweets
2021-07-01T01:57:35Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/mineplay512/1625104616606/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1324405457633579008/Ym8X4UEu_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MinePlay512</div> <div style="text-align: center; font-size: 14px;">@mineplay512</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from MinePlay512. | Data | MinePlay512 | | --- | --- | | Tweets downloaded | 3234 | | Retweets | 1107 | | Short tweets | 404 | | Tweets kept | 1723 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ipsby4z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mineplay512's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25dzo1se) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25dzo1se/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mineplay512') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
abhiramtirumala/DialoGPT-sarcastic
abhiramtirumala
2021-06-30T19:52:43Z
6
5
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- pipeline_tag: conversational --- This model is a fine-tuned version of Microsoft/DialoGPT-medium trained to created sarcastic responses from the dataset "Sarcasm on Reddit" located [here](https://www.kaggle.com/danofer/sarcasm).
wannaphong/thaigpt-next-125m
wannaphong
2021-06-30T17:34:39Z
108
6
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# Thai GPT Next It is fine-tune the GPT-Neo model for Thai language. GitHub: https://github.com/wannaphong/thaigpt-next **Dataset for fine-tune this model** - prachathai67k - thaisum - thai_toxicity_tweet - wongnai reviews - wisesight_sentiment - TLC - scb_mt_enth_2020 (Thai only) - Thai wikipedia (date: 2021/06/20) **Max Length:** 280 **Number of train lists**: 1,697,254 lists **Number of training**: 2 ep **training loss**: 0.285500 ## Model - thaigpt-next-125m is fine-tune the GPT-NEO-125M model. ## How to use You can using it from huggingface or PyThaiNLP (in the future) for few-shot learning works or text generation (not recommended). thaigpt-next-125m at huggingface model: https://huggingface.co/wannaphong/thaigpt-next-125m ## License > Copyright 2021 Wannaphong Phatthiyaphaibun > > Licensed under the Apache License, Version 2.0 (the "License"); > you may not use this file except in compliance with the License. > You may obtain a copy of the License at > > http://www.apache.org/licenses/LICENSE-2.0 > > Unless required by applicable law or agreed to in writing, software > distributed under the License is distributed on an "AS IS" BASIS, > WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. > See the License for the specific language governing permissions and > limitations under the License. ## Author Wannaphong Phatthiyaphaibun
Davlan/xlm-roberta-base-finetuned-wolof
Davlan
2021-06-30T15:56:31Z
4
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Hugging Face's logo --- language: wo datasets: --- # xlm-roberta-base-finetuned-wolof ## Model description **xlm-roberta-base-finetuned-luganda** is a **Wolof RoBERTa** model obtained by fine-tuning **xlm-roberta-base** model on Wolof language texts. It provides **better performance** than the XLM-RoBERTa on named entity recognition datasets. Specifically, this model is a *xlm-roberta-base* model that was fine-tuned on Wolof corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/xlm-roberta-base-finetuned-wolof') >>> unmasker("Màkki Sàll feeñal na ay xalaatam ci mbir yu am solo yu soxal <mask> ak Afrik.") ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on [Bible OT](http://biblewolof.com/) + [OPUS](https://opus.nlpl.eu/) + News Corpora (Lu Defu Waxu, Saabal, and Wolof Online) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| XLM-R F1 | wo_roberta F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 63.86 | 68.31 ### BibTeX entry and citation info By David Adelani ``` ```
Narrativa/byt5-base-tweet-hate-detection
Narrativa
2021-06-30T15:05:08Z
64
10
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "hate", "speech", "en", "dataset:tweets_hate_speech_detection", "arxiv:1907.06292", "arxiv:1910.10683", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: en datasets: - tweets_hate_speech_detection tags: - hate - speech widget: - text: "@user black lives really matter?" --- # ByT5-base fine-tuned for Hate Speech Detection (on Tweets) [ByT5](https://huggingface.co/google/byt5-base) base fine-tuned on [tweets hate speech detection](https://huggingface.co/datasets/tweets_hate_speech_detection) dataset for **Sequence Classification** downstream task. # Details of ByT5 - Base 🧠 ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-base). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-base` significantly outperforms [mt5-base](https://huggingface.co/google/mt5-base) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel* ## Details of the downstream task (Sequence Classification as Text generation) - Dataset 📚 [tweets_hate_speech_detection](hhttps://huggingface.co/datasets/tweets_hate_speech_detection) The objective of this task is to detect hate speech in tweets. For the sake of simplicity, we say a tweet contains hate speech if it has a racist or sexist sentiment associated with it. So, the task is to classify racist or sexist tweets from other tweets. Formally, given a training sample of tweets and labels, where label ‘1’ denotes the tweet is racist/sexist and label ‘0’ denotes the tweet is not racist/sexist, your objective is to predict the labels on the given test dataset. - Data Instances: The dataset contains a label denoting is the tweet a hate speech or not ```json {'label': 0, # not a hate speech 'tweet': ' @user when a father is dysfunctional and is so selfish he drags his kids into his dysfunction. #run'} ``` - Data Fields: **label**: 1 - it is a hate speech, 0 - not a hate speech **tweet**: content of the tweet as a string - Data Splits: The data contains training data with **31962** entries ## Test set metrics 🧾 We created a representative test set with the 5% of the entries. The dataset is so imbalanced and we got a **F1 score of 79.8** ## Model in Action 🚀 ```sh git clone https://github.com/huggingface/transformers.git pip install -q ./transformers ``` ```python from transformers import AutoTokenizer, T5ForConditionalGeneration ckpt = 'Narrativa/byt5-base-tweet-hate-detection' tokenizer = AutoTokenizer.from_pretrained(ckpt) model = T5ForConditionalGeneration.from_pretrained(ckpt).to("cuda") def classify_tweet(tweet): inputs = tokenizer([tweet], padding='max_length', truncation=True, max_length=512, return_tensors='pt') input_ids = inputs.input_ids.to('cuda') attention_mask = inputs.attention_mask.to('cuda') output = model.generate(input_ids, attention_mask=attention_mask) return tokenizer.decode(output[0], skip_special_tokens=True) classify_tweet('here goes your tweet...') ``` Created by: [Narrativa](https://www.narrativa.com/) About Narrativa: Natural Language Generation (NLG) | Gabriele, our machine learning-based platform, builds and deploys natural language solutions. #NLG #AI
huggingtweets/jagedn
huggingtweets
2021-06-30T14:12:02Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/jagedn/1625062317603/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410183697534439426/Db5MDUaw_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Programo, luego existo</div> <div style="text-align: center; font-size: 14px;">@jagedn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Programo, luego existo. | Data | Programo, luego existo | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 549 | | Short tweets | 220 | | Tweets kept | 2475 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ptz28obp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jagedn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1i8g6srp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1i8g6srp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jagedn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nateraw/baseball-stadium-foods
nateraw
2021-06-30T07:11:21Z
69
5
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: baseball-stadium-foods results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9107142686843872 --- # baseball-stadium-foods Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cotton candy ![cotton candy](images/cotton_candy.jpg) #### hamburger ![hamburger](images/hamburger.jpg) #### hot dog ![hot dog](images/hot_dog.jpg) #### nachos ![nachos](images/nachos.jpg) #### popcorn ![popcorn](images/popcorn.jpg)
nateraw/baked-goods
nateraw
2021-06-30T07:11:09Z
69
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: baked-goods results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.875 --- # baked-goods Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cake ![cake](images/cake.jpg) #### cookie ![cookie](images/cookie.jpg) #### pie ![pie](images/pie.jpg)
pierric/autonlp-my-own-imdb-sentiment-analysis-2131817
pierric
2021-06-29T22:08:35Z
5
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:pierric/autonlp-data-my-own-imdb-sentiment-analysis", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - pierric/autonlp-data-my-own-imdb-sentiment-analysis --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 2131817 ## Validation Metrics - Loss: 0.24430708587169647 - Accuracy: 0.9452 - Precision: 0.9303944315545244 - Recall: 0.9624 - AUC: 0.9793824287999999 - F1: 0.946126622099882 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/pierric/autonlp-my-own-imdb-sentiment-analysis-2131817 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("pierric/autonlp-my-own-imdb-sentiment-analysis-2131817", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("pierric/autonlp-my-own-imdb-sentiment-analysis-2131817", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/bladeecity-rxmaybike-wojespn
huggingtweets
2021-06-29T20:32:08Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/bladeecity-rxmaybike-wojespn/1624998722915/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406669132527976453/Sv0lEtmk_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409559937445990403/9bkJBvX9_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1264902234703265794/lC3YnIYF_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Aim & jamar 🇵🇸 & Adrian Wojnarowski</div> <div style="text-align: center; font-size: 14px;">@bladeecity-rxmaybike-wojespn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Aim & jamar 🇵🇸 & Adrian Wojnarowski. | Data | Aim | jamar 🇵🇸 | Adrian Wojnarowski | | --- | --- | --- | --- | | Tweets downloaded | 1601 | 3071 | 3250 | | Retweets | 314 | 1694 | 777 | | Short tweets | 486 | 325 | 34 | | Tweets kept | 801 | 1052 | 2439 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2h7w61mh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeecity-rxmaybike-wojespn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3mkjmebf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3mkjmebf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bladeecity-rxmaybike-wojespn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
victor/animals-classifier
victor
2021-06-29T16:03:03Z
126
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: animals-classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9821428656578064 --- # animals-classifier Autogenerated by HuggingPics🤗🖼️ ![hippo](hippo.jpg)
Intel/bert-base-uncased-mnli-sparse-70-unstructured-no-classifier
Intel
2021-06-29T11:14:53Z
9
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: en --- # Sparse BERT base model fine tuned to MNLI without classifier layer (uncased) Fine tuned sparse BERT base to MNLI (GLUE Benchmark) task from [bert-base-uncased-sparse-70-unstructured](https://huggingface.co/Intel/bert-base-uncased-sparse-70-unstructured). <br> This model doesn't have a classifier layer to enable easier loading of the model for training to other downstream tasks. In all the other layers this model is similar to [bert-base-uncased-mnli-sparse-70-unstructured](https://huggingface.co/Intel/bert-base-uncased-mnli-sparse-70-unstructured). <br><br> Note: This model requires `transformers==2.10.0` ## Evaluation Results Matched: 82.5% Mismatched: 83.3% This model can be further fine-tuned to other tasks and achieve the following evaluation results: | Task | QQP (Acc/F1) | QNLI (Acc) | SST-2 (Acc) | STS-B (Pears/Spear) | SQuADv1.1 (Acc/F1) | |------|--------------|------------|-------------|---------------------|--------------------| | | 90.2/86.7 | 90.3 | 91.5 | 88.9/88.6 | 80.5/88.2 |
clem/autonlp-test3-2101782
clem
2021-06-29T04:19:34Z
10
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:clem/autonlp-data-test3", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - clem/autonlp-data-test3 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 2101782 ## Validation Metrics - Loss: 0.015991805121302605 - Accuracy: 1.0 - Precision: 1.0 - Recall: 1.0 - AUC: 1.0 - F1: 1.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/clem/autonlp-test3-2101782 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("clem/autonlp-test3-2101782", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("clem/autonlp-test3-2101782", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
ainize/kobart-news
ainize
2021-06-29T02:51:15Z
816
17
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "ko", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: ko license: mit tags: - summarization - bart --- # kobart-news - This model is a [kobart](https://huggingface.co/hyunwoongko/kobart) fine-tuned on the [문서요약 텍스트/신문기사](https://aihub.or.kr/aidata/8054) using [Ainize Teachable-NLP](https://ainize.ai/teachable-nlp). ## Usage ### Python Code ```python from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration # Load Model and Tokenize tokenizer = PreTrainedTokenizerFast.from_pretrained("ainize/kobart-news") model = BartForConditionalGeneration.from_pretrained("ainize/kobart-news") # Encode Input Text input_text = '국내 전반적인 경기침체로 상가 건물주의 수익도 전국적인 감소세를 보이고 있는 것으로 나타났다. 수익형 부동산 연구개발기업 상가정보연구소는 한국감정원 통계를 분석한 결과 전국 중대형 상가 순영업소득(부동산에서 발생하는 임대수입, 기타수입에서 제반 경비를 공제한 순소득)이 1분기 ㎡당 3만4200원에서 3분기 2만5800원으로 감소했다고 17일 밝혔다. 수도권, 세종시, 지방광역시에서 순영업소득이 가장 많이 감소한 지역은 3분기 1만3100원을 기록한 울산으로, 1분기 1만9100원 대비 31.4% 감소했다. 이어 대구(-27.7%), 서울(-26.9%), 광주(-24.9%), 부산(-23.5%), 세종(-23.4%), 대전(-21%), 경기(-19.2%), 인천(-18.5%) 순으로 감소했다. 지방 도시의 경우도 비슷했다. 경남의 3분기 순영업소득은 1만2800원으로 1분기 1만7400원 대비 26.4% 감소했으며 제주(-25.1%), 경북(-24.1%), 충남(-20.9%), 강원(-20.9%), 전남(-20.1%), 전북(-17%), 충북(-15.3%) 등도 감소세를 보였다. 조현택 상가정보연구소 연구원은 "올해 내수 경기의 침체된 분위기가 유지되며 상가, 오피스 등을 비롯한 수익형 부동산 시장의 분위기도 경직된 모습을 보였고 오피스텔, 지식산업센터 등의 수익형 부동산 공급도 증가해 공실의 위험도 늘었다"며 "실제 올 3분기 전국 중대형 상가 공실률은 11.5%를 기록하며 1분기 11.3% 대비 0.2% 포인트 증가했다"고 말했다. 그는 "최근 소셜커머스(SNS를 통한 전자상거래), 음식 배달 중개 애플리케이션, 중고 물품 거래 애플리케이션 등의 사용 증가로 오프라인 매장에 영향을 미쳤다"며 "향후 지역, 콘텐츠에 따른 상권 양극화 현상은 심화될 것으로 보인다"고 덧붙였다.' input_ids = tokenizer.encode(input_text, return_tensors="pt") # Generate Summary Text Ids summary_text_ids = model.generate( input_ids=input_ids, bos_token_id=model.config.bos_token_id, eos_token_id=model.config.eos_token_id, length_penalty=2.0, max_length=142, min_length=56, num_beams=4, ) # Decoding Text print(tokenizer.decode(summary_text_ids[0], skip_special_tokens=True)) ``` ### API and Demo You can experience this model through [ainize-api](https://ainize.ai/gkswjdzz/summarize-torchserve?branch=main) and [ainize-demo](https://main-summarize-torchserve-gkswjdzz.endpoint.ainize.ai/).
facebook/muppet-roberta-large
facebook
2021-06-28T21:44:41Z
61
14
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2101.11038", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - exbert license: mit datasets: - bookcorpus - wikipedia --- # Muppet: Massive Multi-task Representations with Pre-Finetuning # RoBERTa large model This is a Massive Multi-task Pre-finetuned version of Roberta large. It was introduced in [this paper](https://arxiv.org/abs/2101.11038). The model improves over roberta-base in a wide range of GLUE, QA tasks (details can be found in the paper). The gains in smaller datasets are significant. Note: This checkpoint does not contain the classificaiton/MRC heads used during pre-finetuning due to compatibility issues and hence you might get slightly lower performance than that reported in the paper on some datasets ## Model description RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=roberta) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Model | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | SQuAD| |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:----:| | Roberta-large | 90.2 | 92.2 | 94.7 | 96.4 | 63.6 | 91.2 | 90.9 | 88.1 | 88.7| | MUPPET Roberta-large | 90.8 | 92.2 | 94.9 | 97.4 | - | - | 91.4 | 92.8 | 89.4| ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2101-11038, author = {Armen Aghajanyan and Anchit Gupta and Akshat Shrivastava and Xilun Chen and Luke Zettlemoyer and Sonal Gupta}, title = {Muppet: Massive Multi-task Representations with Pre-Finetuning}, journal = {CoRR}, volume = {abs/2101.11038}, year = {2021}, url = {https://arxiv.org/abs/2101.11038}, archivePrefix = {arXiv}, eprint = {2101.11038}, timestamp = {Sun, 31 Jan 2021 17:23:50 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2101-11038.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
huggingtweets/zeynep
huggingtweets
2021-06-28T11:38:41Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/zeynep/1624880317549/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1354239840305471491/qYoJiz8K_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">zeynep tufekci</div> <div style="text-align: center; font-size: 14px;">@zeynep</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from zeynep tufekci. | Data | zeynep tufekci | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 384 | | Short tweets | 339 | | Tweets kept | 2522 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3v1ciuhl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zeynep's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/144e2xer) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/144e2xer/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/zeynep') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Siyris/SIY
Siyris
2021-06-28T08:25:52Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on a customized version of The Law of One. This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on the energy complex known as Ra. Some text has been changed from the original with the intention of making it fit our discord server better. I built a Discord AI chatbot based on this model for internal use within Siyris, Inc. Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("Siyris/SIY") model = AutoModelWithLMHead.from_pretrained("Siyris/SIY") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("SIY: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
huggingtweets/journoramzy
huggingtweets
2021-06-27T23:01:24Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/journoramzy/1624834880479/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406632529453633541/4k10fb7o_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ramzy Alwakeel</div> <div style="text-align: center; font-size: 14px;">@journoramzy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ramzy Alwakeel. | Data | Ramzy Alwakeel | | --- | --- | | Tweets downloaded | 3215 | | Retweets | 1288 | | Short tweets | 144 | | Tweets kept | 1783 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2oujm0jf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @journoramzy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2xgrkz8v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2xgrkz8v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/journoramzy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
bakrianoo/t5-arabic-small
bakrianoo
2021-06-26T17:10:58Z
7
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "dataset:mc4", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: Arabic datasets: - mc4 license: apache-2.0 --- ## Arabic T5 Small Model A customized T5 Model for Arabic and English Task. It could be used as an alternative for `google/mt5-small` model, as it's much smaller and only targets Arabic and English based tasks. ### About T5 ``` T5 is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format. The T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. ``` [Read More](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
bakrianoo/t5-arabic-large
bakrianoo
2021-06-26T17:09:24Z
16
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "dataset:mc4", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: Arabic datasets: - mc4 license: apache-2.0 --- ## Arabic T5 Large Model A customized T5 Model for Arabic and English Task. It could be used as an alternative for `google/mt5-large` model, as it's much smaller and only targets Arabic and English based tasks. ### About T5 ``` T5 is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format. The T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. ``` [Read More](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
nonamenlp/thai_new_gen_from_kw
nonamenlp
2021-06-26T16:46:09Z
4
0
transformers
[ "transformers", "pytorch", "jax", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# Generate News in Thai language by keywords. MODEL_NAME = 'nonamenlp/news_gen' TOKENIZER_NAME = "nonamenlp/news_gen" trained_model = MT5ForConditionalGeneration.from_pretrained(MODEL_NAME, return_dict=True) tokenizer = T5Tokenizer.from_pretrained(TOKENIZER_NAME)
Begimay/Task
Begimay
2021-06-26T12:51:27Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
from transformers import GPTNeoForCausalLM, GPT2Tokenizer model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B") tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B") prompt = "In a shocking finding, scientists discovered a herd of unicorns living in a remote, " \ ... "previously unexplored valley, in the Andes Mountains. Even more surprising to the " \ ... "researchers was the fact that the unicorns spoke perfect English." input_ids = tokenizer(prompt, return_tensors="pt").input_ids gen_tokens = model.generate(input_ids, do_sample=True, temperature=0.9, max_length=100,) gen_text = tokenizer.batch_decode(gen_tokens)[0]
huggingtweets/cocacola
huggingtweets
2021-06-25T16:35:10Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1234873883850952704/JQhv0G7n_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Coca-Cola</div> <div style="text-align: center; font-size: 14px;">@cocacola</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Coca-Cola. | Data | Coca-Cola | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 101 | | Tweets kept | 3149 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7oxqhbkd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cocacola's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3l65cvcu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3l65cvcu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cocacola') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
alenusch/par_cls_bert
alenusch
2021-06-25T12:20:42Z
8
0
transformers
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
## Classifier to check if two sequences are paraphrase or not Trained based on ruBert by DeepPavlov. Use this way: ``` import torch import torch.nn as nn import os import copy import random import numpy as np import pandas as pd from torch.utils.data import DataLoader, Dataset from torch.cuda.amp import autocast, GradScaler from tqdm import tqdm from transformers import AutoTokenizer, AutoModel, AdamW, get_linear_schedule_with_warmup from transformers.file_utils import ( cached_path, hf_bucket_url, is_remote_url, ) archive_file = hf_bucket_url( "alenusch/par_cls_bert", filename="rubert-base-cased_lr_2e-05_val_loss_0.66143_ep_4.pt", revision=None, mirror=None, ) resolved_archive_file = cached_path( archive_file, cache_dir=None, force_download=False, proxies=None, resume_download=False, local_files_only=False, ) os.environ["TOKENIZERS_PARALLELISM"] = "false" class SentencePairClassifier(nn.Module): def __init__(self, bert_model): super(SentencePairClassifier, self).__init__() self.bert_layer = AutoModel.from_pretrained(bert_model) self.cls_layer = nn.Linear(768, 1) self.dropout = nn.Dropout(p=0.1) @autocast() def forward(self, input_ids, attn_masks, token_type_ids): cont_reps, pooler_output = self.bert_layer(input_ids, attn_masks, token_type_ids, return_dict=False) logits = self.cls_layer(self.dropout(pooler_output)) return logits class CustomDataset(Dataset): def __init__(self, data, maxlen, bert_model): self.data = data self.tokenizer = AutoTokenizer.from_pretrained(bert_model) self.maxlen = maxlen self.targets = False def __len__(self): return len(self.data) def __getitem__(self, index): sent1 = str(self.data[index][0]) sent2 = str(self.data[index][1]) encoded_pair = self.tokenizer(sent1, sent2, padding='max_length', # Pad to max_length truncation=True, # Truncate to max_length max_length=self.maxlen, return_tensors='pt') # Return torch.Tensor objects token_ids = encoded_pair['input_ids'].squeeze(0) # tensor of token ids attn_masks = encoded_pair['attention_mask'].squeeze(0) # binary tensor with "0" for padded values and "1" for the other values token_type_ids = encoded_pair['token_type_ids'].squeeze(0) # binary tensor with "0" for the 1st sentence tokens & "1" for the 2nd sentence tokens return token_ids, attn_masks, token_type_ids def get_probs_from_logits(logits): probs = torch.sigmoid(logits.unsqueeze(-1)) return probs.detach().cpu().numpy() def test_prediction(net, device, dataloader, with_labels=False): net.eval() probs_all = [] with torch.no_grad(): for seq, attn_masks, token_type_ids in tqdm(dataloader): seq, attn_masks, token_type_ids = seq.to(device), attn_masks.to(device), token_type_ids.to(device) logits = net(seq, attn_masks, token_type_ids) probs = get_probs_from_logits(logits.squeeze(-1)).squeeze(-1) probs_all += probs.tolist() return probs_all device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") cls_model = SentencePairClassifier(bert_model="alenusch/par_cls_bert") if torch.cuda.device_count() > 1: cls_model = nn.DataParallel(model) cls_model.load_state_dict(torch.load(resolved_archive_file)) cls_model.to(device) variants = [["sentence1", "sentence2"]] test_set = CustomDataset(variants, maxlen=512, bert_model="alenusch/par_cls_bert") test_loader = DataLoader(test_set, batch_size=16, num_workers=5) res = test_prediction(net=cls_model, device=device, dataloader=test_loader, with_labels=False) ```
huggingtweets/snackteeth
huggingtweets
2021-06-25T04:07:13Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/snackteeth/1624594028782/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1339420191428653058/Vj757Zlw_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Floral Flavor Blend 🐊 bIm</div> <div style="text-align: center; font-size: 14px;">@snackteeth</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Floral Flavor Blend 🐊 bIm. | Data | Floral Flavor Blend 🐊 bIm | | --- | --- | | Tweets downloaded | 3213 | | Retweets | 1490 | | Short tweets | 118 | | Tweets kept | 1605 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2mrfa2kr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @snackteeth's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/lim3tjwq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/lim3tjwq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/snackteeth') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
neuropark/sahajBERT
neuropark
2021-06-24T16:49:26Z
166
12
transformers
[ "transformers", "pytorch", "albert", "pretraining", "collaborative", "bengali", "bangla", "fill-mask", "bn", "dataset:Wikipedia", "dataset:Oscar", "arxiv:1909.11942", "license:apache-2.0", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: bn tags: - collaborative - bengali - albert - bangla license: apache-2.0 datasets: - Wikipedia - Oscar widget: - text: "জীবনে সবচেয়ে মূল্যবান জিনিস হচ্ছে [MASK]।" pipeline_tag: fill-mask --- # sahajBERT <iframe width="100%" height="1100" frameborder="0" src="https://observablehq.com/embed/@huggingface/participants-bubbles-chart?cells=c_noaws%2Ct_noaws%2Cviewof+currentDate"></iframe> Collaboratively pre-trained model on Bengali language using masked language modeling (MLM) and Sentence Order Prediction (SOP) objectives. ## Model description <!-- You can embed local or remote images using `![](...)` --> sahajBERT is a model composed of 1) a tokenizer specially designed for Bengali and 2) an [ALBERT](https://arxiv.org/abs/1909.11942) architecture collaboratively pre-trained on a dump of Wikipedia in Bengali and the Bengali part of OSCAR. <!-- Add more information about the collaborative training when we have time / preprint available --> ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. We trained our model on 2 of these downstream tasks: [sequence classification](https://huggingface.co/neuropark/sahajBERT-NCC) and [token classification](https://huggingface.co/neuropark/sahajBERT-NER) #### How to use You can use this model directly with a pipeline for masked language modeling: ```python from transformers import AlbertForMaskedLM, FillMaskPipeline, PreTrainedTokenizerFast # Initialize tokenizer tokenizer = PreTrainedTokenizerFast.from_pretrained("neuropark/sahajBERT") # Initialize model model = AlbertForMaskedLM.from_pretrained("neuropark/sahajBERT") # Initialize pipeline pipeline = FillMaskPipeline(tokenizer=tokenizer, model=model) raw_text = "ধন্যবাদ। আপনার সাথে কথা [MASK] ভালো লাগলো" # Change me pipeline(raw_text) ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AlbertModel, PreTrainedTokenizerFast # Initialize tokenizer tokenizer = PreTrainedTokenizerFast.from_pretrained("neuropark/sahajBERT") # Initialize model model = AlbertModel.from_pretrained("neuropark/sahajBERT") text = "ধন্যবাদ। আপনার সাথে কথা বলে ভালো লাগলো" # Change me encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` #### Limitations and bias <!-- Provide examples of latent issues and potential remediations. --> WIP ## Training data The tokenizer was trained on he Bengali part of OSCAR and the model on a [dump of Wikipedia in Bengali](https://huggingface.co/datasets/lhoestq/wikipedia_bn) and the Bengali part of [OSCAR](https://huggingface.co/datasets/oscar). ## Training procedure This model was trained in a collaborative manner by volunteer participants. <!-- Add more information about the collaborative training when we have time / preprint available + Preprocessing, hardware used, hyperparameters... (maybe use figures)--> ### Contributors leaderboard | Rank | Username | Total contributed runtime | |:-------------:|:-------------:|-------------:| | 1|[khalidsaifullaah](https://huggingface.co/khalidsaifullaah)|11 days 21:02:08| | 2|[ishanbagchi](https://huggingface.co/ishanbagchi)|9 days 20:37:00| | 3|[tanmoyio](https://huggingface.co/tanmoyio)|9 days 18:08:34| | 4|[debajit](https://huggingface.co/debajit)|8 days 14:15:10| | 5|[skylord](https://huggingface.co/skylord)|6 days 16:35:29| | 6|[ibraheemmoosa](https://huggingface.co/ibraheemmoosa)|5 days 01:05:57| | 7|[SaulLu](https://huggingface.co/SaulLu)|5 days 00:46:36| | 8|[lhoestq](https://huggingface.co/lhoestq)|4 days 20:11:16| | 9|[nilavya](https://huggingface.co/nilavya)|4 days 08:51:51| |10|[Priyadarshan](https://huggingface.co/Priyadarshan)|4 days 02:28:55| |11|[anuragshas](https://huggingface.co/anuragshas)|3 days 05:00:55| |12|[sujitpal](https://huggingface.co/sujitpal)|2 days 20:52:33| |13|[manandey](https://huggingface.co/manandey)|2 days 16:17:13| |14|[albertvillanova](https://huggingface.co/albertvillanova)|2 days 14:14:31| |15|[justheuristic](https://huggingface.co/justheuristic)|2 days 13:20:52| |16|[w0lfw1tz](https://huggingface.co/w0lfw1tz)|2 days 07:22:48| |17|[smoker](https://huggingface.co/smoker)|2 days 02:52:03| |18|[Soumi](https://huggingface.co/Soumi)|1 days 20:42:02| |19|[Anjali](https://huggingface.co/Anjali)|1 days 16:28:00| |20|[OptimusPrime](https://huggingface.co/OptimusPrime)|1 days 09:16:57| |21|[theainerd](https://huggingface.co/theainerd)|1 days 04:48:57| |22|[yhn112](https://huggingface.co/yhn112)|0 days 20:57:02| |23|[kolk](https://huggingface.co/kolk)|0 days 17:57:37| |24|[arnab](https://huggingface.co/arnab)|0 days 17:54:12| |25|[imavijit](https://huggingface.co/imavijit)|0 days 16:07:26| |26|[osanseviero](https://huggingface.co/osanseviero)|0 days 14:16:45| |27|[subhranilsarkar](https://huggingface.co/subhranilsarkar)|0 days 13:04:46| |28|[sagnik1511](https://huggingface.co/sagnik1511)|0 days 12:24:57| |29|[anindabitm](https://huggingface.co/anindabitm)|0 days 08:56:44| |30|[borzunov](https://huggingface.co/borzunov)|0 days 04:07:35| |31|[thomwolf](https://huggingface.co/thomwolf)|0 days 03:53:15| |32|[priyadarshan](https://huggingface.co/priyadarshan)|0 days 03:40:11| |33|[ali007](https://huggingface.co/ali007)|0 days 03:34:37| |34|[sbrandeis](https://huggingface.co/sbrandeis)|0 days 03:18:16| |35|[Preetha](https://huggingface.co/Preetha)|0 days 03:13:47| |36|[Mrinal](https://huggingface.co/Mrinal)|0 days 03:01:43| |37|[laxya007](https://huggingface.co/laxya007)|0 days 02:18:34| |38|[lewtun](https://huggingface.co/lewtun)|0 days 00:34:43| |39|[Rounak](https://huggingface.co/Rounak)|0 days 00:26:10| |40|[kshmax](https://huggingface.co/kshmax)|0 days 00:06:38| ### Hardware used <iframe width="100%" height="251" frameborder="0" src="https://observablehq.com/embed/@huggingface/sahajbert-hardware?cells=c1_noaws"></iframe> ## Eval results We evaluate sahajBERT model quality and 2 other model benchmarks ([XLM-R-large](https://huggingface.co/xlm-roberta-large) and [IndicBert](https://huggingface.co/ai4bharat/indic-bert)) by fine-tuning 3 times their pre-trained models on two downstream tasks in Bengali: - **NER**: a named entity recognition on Bengali split of [WikiANN](https://huggingface.co/datasets/wikiann) dataset - **NCC**: a multi-class classification task on news Soham News Category Classification dataset from IndicGLUE | Base pre-trained Model | NER - F1 (mean ± std) | NCC - Accuracy (mean ± std) | |:-------------:|:-------------:|:-------------:| |sahajBERT | 95.45 ± 0.53| 91.97 ± 0.47| |[XLM-R-large](https://huggingface.co/xlm-roberta-large) | 96.48 ± 0.22| 90.05 ± 0.38| |[IndicBert](https://huggingface.co/ai4bharat/indic-bert) | 92.52 ± 0.45| 74.46 ± 1.91| ### BibTeX entry and citation info Coming soon! <!-- ```bibtex @inproceedings{..., year={2020} } ``` -->
huggingtweets/egregirls
huggingtweets
2021-06-24T16:15:30Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/egregirls/1624551326179/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1407225806460440578/2_wFqjoY_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">void angel</div> <div style="text-align: center; font-size: 14px;">@egregirls</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from void angel. | Data | void angel | | --- | --- | | Tweets downloaded | 3236 | | Retweets | 749 | | Short tweets | 343 | | Tweets kept | 2144 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/19438cs3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @egregirls's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1v27ff3q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1v27ff3q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/egregirls') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/pastellexists
huggingtweets
2021-06-24T00:10:33Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/pastellexists/1624493429168/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1257778600838926343/wibaaKV6_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">pastell</div> <div style="text-align: center; font-size: 14px;">@pastellexists</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from pastell. | Data | pastell | | --- | --- | | Tweets downloaded | 3210 | | Retweets | 732 | | Short tweets | 91 | | Tweets kept | 2387 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/5lqxaa5l/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pastellexists's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2y0xb5js) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2y0xb5js/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pastellexists') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/_its_mino_
huggingtweets
2021-06-23T23:34:38Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/_its_mino_/1624491273485/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1367907122340593677/kG7PHHk5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mino</div> <div style="text-align: center; font-size: 14px;">@_its_mino_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mino. | Data | Mino | | --- | --- | | Tweets downloaded | 1297 | | Retweets | 269 | | Short tweets | 152 | | Tweets kept | 876 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2q2c0dwu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_its_mino_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zlnlm02d) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zlnlm02d/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/_its_mino_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/meadowfaust
huggingtweets
2021-06-23T21:40:03Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/meadowfaust/1624484317195/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1399508942687031300/oKC9S0SX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Meow-dow Faust 🐱</div> <div style="text-align: center; font-size: 14px;">@meadowfaust</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Meow-dow Faust 🐱. | Data | Meow-dow Faust 🐱 | | --- | --- | | Tweets downloaded | 3219 | | Retweets | 1168 | | Short tweets | 466 | | Tweets kept | 1585 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1tn9zz5j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @meadowfaust's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lbtjk2a) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lbtjk2a/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/meadowfaust') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/goatlich-yagisabi
huggingtweets
2021-06-23T19:16:28Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/goatlich-yagisabi/1624475783796/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406546124605898752/YRmbl1wc_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1389328774085365767/QFuxMWoj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Gay Shawn 🏳️‍🌈 & 🔻L O W R Y 🔻</div> <div style="text-align: center; font-size: 14px;">@goatlich-yagisabi</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Gay Shawn 🏳️‍🌈 & 🔻L O W R Y 🔻. | Data | Gay Shawn 🏳️‍🌈 | 🔻L O W R Y 🔻 | | --- | --- | --- | | Tweets downloaded | 406 | 3156 | | Retweets | 67 | 390 | | Short tweets | 50 | 214 | | Tweets kept | 289 | 2552 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wtnxwy1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @goatlich-yagisabi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/qrbyfgtb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/qrbyfgtb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/goatlich-yagisabi') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/kleocadiaa
huggingtweets
2021-06-23T19:14:33Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/kleocadiaa/1624475669314/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1369291131675086864/oSokjOlI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ultraviolet, infrared</div> <div style="text-align: center; font-size: 14px;">@kleocadiaa</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ultraviolet, infrared. | Data | ultraviolet, infrared | | --- | --- | | Tweets downloaded | 3214 | | Retweets | 885 | | Short tweets | 204 | | Tweets kept | 2125 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3b61on17/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kleocadiaa's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/q1yb1nlj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/q1yb1nlj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kleocadiaa') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/behemilf
huggingtweets
2021-06-23T19:06:29Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1404753773939990533/2Ol60_sO_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mom</div> <div style="text-align: center; font-size: 14px;">@behemilf</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mom. | Data | Mom | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 858 | | Short tweets | 346 | | Tweets kept | 2037 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/34zvujdl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @behemilf's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ss8n55dy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ss8n55dy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/behemilf') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/caelan_hudson
huggingtweets
2021-06-23T18:55:51Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1400205166763122689/Zjyw9G_i_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Caelan Hudson</div> <div style="text-align: center; font-size: 14px;">@caelan_hudson</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Caelan Hudson. | Data | Caelan Hudson | | --- | --- | | Tweets downloaded | 1768 | | Retweets | 696 | | Short tweets | 139 | | Tweets kept | 933 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vrzri0az/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caelan_hudson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2u9374qr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2u9374qr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/caelan_hudson') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/alexisuwualexis
huggingtweets
2021-06-23T18:49:20Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/alexisuwualexis/1624474156240/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1337389555863982083/GFu_etbo_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alexis (she/her) 🏳️‍⚧️</div> <div style="text-align: center; font-size: 14px;">@alexisuwualexis</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Alexis (she/her) 🏳️‍⚧️. | Data | Alexis (she/her) 🏳️‍⚧️ | | --- | --- | | Tweets downloaded | 3219 | | Retweets | 2988 | | Short tweets | 64 | | Tweets kept | 167 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/t0aheh4s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alexisuwualexis's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18q8udnh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18q8udnh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alexisuwualexis') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/cookie__sophie
huggingtweets
2021-06-23T18:38:16Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/cookie__sophie/1624473491534/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1385160467778310144/WyzPNrHb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🐱Sophie/Cookie🍪🏳️‍⚧️</div> <div style="text-align: center; font-size: 14px;">@cookie__sophie</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🐱Sophie/Cookie🍪🏳️‍⚧️. | Data | 🐱Sophie/Cookie🍪🏳️‍⚧️ | | --- | --- | | Tweets downloaded | 3232 | | Retweets | 463 | | Short tweets | 375 | | Tweets kept | 2394 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/15ifdxlx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cookie__sophie's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/390kytab) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/390kytab/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cookie__sophie') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/pup_hime
huggingtweets
2021-06-23T18:37:53Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/pup_hime/1624473469152/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1347093174720864258/WcsFoU12_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Reki (Gay Edition)</div> <div style="text-align: center; font-size: 14px;">@pup_hime</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Reki (Gay Edition). | Data | Reki (Gay Edition) | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 595 | | Short tweets | 505 | | Tweets kept | 2150 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2uf52tu3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pup_hime's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2at1801f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2at1801f/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pup_hime') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/sbubby4
huggingtweets
2021-06-23T18:37:07Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/sbubby4/1624473423478/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1399079285411954690/Luvg7-oO_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sword witch</div> <div style="text-align: center; font-size: 14px;">@sbubby4</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sword witch. | Data | sword witch | | --- | --- | | Tweets downloaded | 3214 | | Retweets | 393 | | Short tweets | 65 | | Tweets kept | 2756 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29ai7ons/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sbubby4's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/k25px1ln) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/k25px1ln/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sbubby4') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/dunnymoment
huggingtweets
2021-06-23T18:33:48Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/dunnymoment/1624473224134/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1338903247847714821/wjp2EPll_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dunny Moment 🇳🇺💫🌝⃠🌞⃠</div> <div style="text-align: center; font-size: 14px;">@dunnymoment</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dunny Moment 🇳🇺💫🌝⃠🌞⃠. | Data | Dunny Moment 🇳🇺💫🌝⃠🌞⃠ | | --- | --- | | Tweets downloaded | 1920 | | Retweets | 121 | | Short tweets | 519 | | Tweets kept | 1280 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3l2bbiuo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dunnymoment's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jobyz43) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jobyz43/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dunnymoment') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/axel_hugsky
huggingtweets
2021-06-23T18:30:11Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/axel_hugsky/1624473007421/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1402029332516773888/oJJ69stf_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Axel! ♠️</div> <div style="text-align: center; font-size: 14px;">@axel_hugsky</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Axel! ♠️. | Data | Axel! ♠️ | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 529 | | Short tweets | 1491 | | Tweets kept | 1224 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ox7p0bd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @axel_hugsky's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rrwwxdal) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rrwwxdal/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/axel_hugsky') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/shishibane
huggingtweets
2021-06-23T18:24:55Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/shishibane/1624472691094/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1387047792321785868/uKccHxMl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ShiShibane</div> <div style="text-align: center; font-size: 14px;">@shishibane</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ShiShibane. | Data | ShiShibane | | --- | --- | | Tweets downloaded | 1053 | | Retweets | 115 | | Short tweets | 208 | | Tweets kept | 730 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1je8s399/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @shishibane's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/bye9hdkq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/bye9hdkq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/shishibane') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Pollawat/mt5-small-thai-qg
Pollawat
2021-06-23T14:57:30Z
17
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "question-generation", "dataset:NSC2018", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - question-generation language: - thai - th datasets: - NSC2018 license: mit --- [Google's mT5](https://github.com/google-research/multilingual-t5) This is a model for generating questions from Thai texts. It was fine-tuned on NSC2018 corpus ```python from transformers import T5Tokenizer, MT5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Pollawat/mt5-small-thai-qg") model = MT5ForConditionalGeneration.from_pretrained("Pollawat/mt5-small-thai-qg") text = "กรุงเทพมหานคร เป็นเมืองหลวงและนครที่มีประชากรมากที่สุดของประเทศไทย เป็นศูนย์กลางการปกครอง การศึกษา การคมนาคมขนส่ง การเงินการธนาคาร การพาณิชย์ การสื่อสาร และความเจริญของประเทศ เป็นเมืองที่มีชื่อยาวที่สุดในโลก ตั้งอยู่บนสามเหลี่ยมปากแม่น้ำเจ้าพระยา มีแม่น้ำเจ้าพระยาไหลผ่านและแบ่งเมืองออกเป็น 2 ฝั่ง คือ ฝั่งพระนครและฝั่งธนบุรี กรุงเทพมหานครมีพื้นที่ทั้งหมด 1,568.737 ตร.กม. มีประชากรตามทะเบียนราษฎรกว่า 5 ล้านคน ทำให้กรุงเทพมหานครเป็นเอกนคร (Primate City) จัด มีผู้กล่าวว่า กรุงเทพมหานครเป็น 'เอกนครที่สุดในโลก' เพราะมีประชากรมากกว่านครที่มีประชากรมากเป็นอันดับ 2 ถึง 40 เท่า[3]" input_ids = tokenizer.encode(text, return_tensors='pt') beam_output = model.generate( input_ids, max_length=50, num_beams=5, early_stopping=True ) print(tokenizer.decode(beam_output[0], skip_special_tokens=True)) >> <extra_id_0>ของกรุงเทพมหานครเป็นเมืองหลวงของประเทศใด ```
valhalla/t5-small-qg-hl
valhalla
2021-06-23T14:43:48Z
2,953
2
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "question-generation", "dataset:squad", "arxiv:1910.10683", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- datasets: - squad tags: - question-generation widget: - text: "<hl> 42 <hl> is the answer to life, the universe and everything. </s>" - text: "Python is a programming language. It is developed by <hl> Guido Van Rossum <hl>. </s>" - text: "Simple is better than <hl> complex <hl>. </s>" license: mit --- ## T5 for question-generation This is [t5-small](https://arxiv.org/abs/1910.10683) model trained for answer aware question generation task. The answer spans are highlighted within the text with special highlight tokens. You can play with the model using the inference API, just highlight the answer spans with `<hl>` tokens and end the text with `</s>`. For example `<hl> 42 <hl> is the answer to life, the universe and everything. </s>` For more deatils see [this](https://github.com/patil-suraj/question_generation) repo. ### Model in action 🚀 You'll need to clone the [repo](https://github.com/patil-suraj/question_generation). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb) ```python3 from pipelines import pipeline nlp = pipeline("question-generation") nlp("42 is the answer to life, universe and everything.") => [{'answer': '42', 'question': 'What is the answer to life, universe and everything?'}] ```
cstorm125/marianmt-th-zh_cn
cstorm125
2021-06-23T14:19:13Z
6
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "torch==1.8.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- tags: - translation - torch==1.8.0 widget: - text: "Inference Unavailable" --- ### marianmt-th-zh_cn * source languages: th * target languages: zh_cn * dataset: * model: transformer-align * pre-processing: normalization + SentencePiece * test set translations: * test set scores: ## Training Training scripts from [LalitaDeelert/NLP-ZH_TH-Project](https://github.com/LalitaDeelert/NLP-ZH_TH-Project). Experiments tracked at [cstorm125/marianmt-th-zh_cn](https://wandb.ai/cstorm125/marianmt-th-zh_cn). ``` export WANDB_PROJECT=marianmt-th-zh_cn python train_model.py --input_fname ../data/v1/Train.csv \ --output_dir ../models/marianmt-th-zh_cn \ --source_lang th --target_lang zh \ --metric_tokenize zh --fp16 ``` ## Usage ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("cstorm125/marianmt-zh_cn-th") model = AutoModelForSeq2SeqLM.from_pretrained("cstorm125/marianmt-zh_cn-th").cpu() src_text = [ 'ฉันรักคุณ', 'ฉันอยากกินข้าว', ] translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) print([tokenizer.decode(t, skip_special_tokens=True) for t in translated]) > ['我爱你', '我想吃饭。'] ``` ## Requirements ``` transformers==4.6.0 torch==1.8.0 ```
prithivida/active_to_passive_styletransfer
prithivida
2021-06-23T13:43:58Z
123
4
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
## This model belongs to the Styleformer project [Please refer to github page](https://github.com/PrithivirajDamodaran/Styleformer)
manueldeprada/t5-cord19-paraphrase-paws-msrp-opinosis
manueldeprada
2021-06-23T12:34:22Z
4
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# T5-Paraphrase pretrained using the CORD-19 dataset. The base model is manueldeprada/t5-cord19, which has been pretrained with the text and abstracts from the CORD-19 dataset. It has been finetuned in paraphrasing text like ceshine/t5-paraphrase-paws-msrp-opinosis, using the scripts from [ceshine/finetuning-t5 Github repo](https://github.com/ceshine/finetuning-t5/tree/master/paraphrase). It does the same paraphrasing but the CORD-19 pretraining allows this model to perform well in COVID-19 related text.
dbernsohn/t5_measurement_time
dbernsohn
2021-06-23T12:17:10Z
10
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# measurement_time --- language: en datasets: - measurement_time --- This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [math_dataset/measurement_time](https://www.tensorflow.org/datasets/catalog/math_dataset#mathdatasetmeasurement_time) for solving **measurement time equations** mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("dbernsohn/t5_measurement_time") model = AutoModelWithLMHead.from_pretrained("dbernsohn/t5_measurement_time") ``` You can then use this model to solve algebra 1d equations into numbers. ```python query = "How many minutes are there between 2:09 PM and 2:27 PM?" input_text = f"{query} </s>" features = tokenizer([input_text], return_tensors='pt') model.to('cuda') output = model.generate(input_ids=features['input_ids'].cuda(), attention_mask=features['attention_mask'].cuda()) tokenizer.decode(output[0]) # <pad> 18</s> ``` Another examples: + How many minutes are there between 2:09 PM and 2:27 PM? + Answer: 18 Pred: 18 ---- + What is 116 minutes after 10:06 AM? + Answer: 12:02 PM Pred: 12:02 PM ---- + What is 608 minutes after 3:14 PM? + Answer: 1:22 AM Pred: 1:22 AM ---- + What is 64 minutes before 9:16 AM? + Answer: 8:12 AM Pred: 8:12 AM ---- + What is 427 minutes before 4:27 AM? + Answer: 9:20 PM Pred: 9:20 PM ---- + How many minutes are there between 6:36 PM and 12:15 AM? + Answer: 339 Pred: 339 ---- + What is 554 minutes before 5:24 PM? + Answer: 8:10 AM Pred: 8:10 AM ---- + What is 307 minutes after 5:15 AM? + Answer: 10:22 AM Pred: 10:22 AM The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/MathLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
dbernsohn/algebra_linear_1d_composed
dbernsohn
2021-06-23T12:16:42Z
7
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# algebra_linear_1d_composed --- language: en datasets: - algebra_linear_1d_composed --- This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [math_dataset/algebra_linear_1d_composed](https://www.tensorflow.org/datasets/catalog/math_dataset#mathdatasetalgebra_linear_1d_composed) for solving **algebra linear 1d composed equations** mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("dbernsohn/algebra_linear_1d_composed") model = AutoModelWithLMHead.from_pretrained("dbernsohn/algebra_linear_1d_composed") ``` You can then use this model to solve algebra 1d equations into numbers. ```python query = "Suppose -d = 5 - 16. Let b = -579 + 584. Solve -b*c + 36 = d for c." input_text = f"{query} </s>" features = tokenizer([input_text], return_tensors='pt') model.to('cuda') output = model.generate(input_ids=features['input_ids'].cuda(), attention_mask=features['attention_mask'].cuda()) tokenizer.decode(output[0]) # <pad> 5</s> ``` Another examples: + Suppose -d = 5 - 16. Let b = -579 + 584. Solve -b*c + 36 = d for c. + Answer: 5 Pred: 5 ---- + Suppose 3*v - l + 9 = 4*v, 0 = -5*v + 5*l - 5. Let f(s) = 3*s**2 + 1. Let g be f(-1). Suppose 63 = g*x - x. Solve -5*i + v + x = 0 for i. + Answer: 5 Pred: 5 ---- + Let w be 2 - (0 - 0)/(-2). Let f = -110 - -110. Suppose f*m - 4*m + 3*m = 0. Solve m*v = -w*v for v. + Answer: 0 Pred: 0 ---- + Let a(h) = -34*h**3 - 15 + 3*h + 36*h**3 + 8*h**2 + 5*h**2. Let r be a(-6). Solve 2*z = r*z for z. + Answer: 0 Pred: 0 ---- + Suppose -3*p + 24 = -3*c, 0*c + 6 = -2*c. Suppose -67 = 4*i + 289. Let t = i + 94. Solve t = 2*y - p for y. + Answer: 5 Pred: 5 ---- + Let b = -36 + 53. Suppose -7*u - b = -73. Solve j + 3*j = -u for j. + Answer: -2 Pred: -2 ---- + Let h be 8*((-2)/2 + 14)*1. Let y = -101 + h. Solve y*p = -p for p. + Answer: 0 Pred: 0 ---- + Let b = 178 - 79. Let s be 9/(-1 - 2 - b/(-22)). Solve s = -k - k for k. + Answer: -3 Pred: -3 ---- + Suppose 31 = -4*z + 11, -3*k - 5*z - 22 = 0. Solve 23 = -11*p + k for p. + Answer: -2 Pred: -2 The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/MathLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
m3hrdadfi/hubert-base-persian-speech-gender-recognition
m3hrdadfi
2021-06-23T12:16:09Z
2,573
7
transformers
[ "transformers", "pytorch", "hubert", "audio", "speech", "speech-gender-recognition", "fa", "dataset:shemo", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: fa datasets: - shemo tags: - audio - speech - speech-gender-recognition license: apache-2.0 --- # Emotion Recognition in Persian (fa) Speech using HuBERT ## How to use ### Requirements ```bash # requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa ``` ```bash !git clone https://github.com/m3hrdadfi/soxan.git . ``` ### Prediction ```python import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from transformers import AutoConfig, Wav2Vec2FeatureExtractor from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification import librosa import IPython.display as ipd import numpy as np import pandas as pd ``` ```python device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name_or_path = "m3hrdadfi/hubert-base-persian-speech-gender-recognition" config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = HubertForSpeechClassification.from_pretrained(model_name_or_path).to(device) ``` ```python def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits = model(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs ``` ```python path = "/path/to/female.wav" outputs = predict(path, sampling_rate) ``` ```bash [{'Label': 'F', 'Score': '98.2%'}, {'Label': 'M', 'Score': '1.8%'}] ``` ## Evaluation The following tables summarize the scores obtained by model overall and per each class. | Emotions | precision | recall | f1-score | accuracy | |----------|-----------|--------|----------|----------| | F | 0.98 | 0.97 | 0.98 | | | M | 0.98 | 0.99 | 0.98 | | | | | | Overal | 0.98 | ## Questions? Post a Github issue from [HERE](https://github.com/m3hrdadfi/soxan/issues).
castorini/t5-base-canard
castorini
2021-06-23T11:56:05Z
155
2
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
This model is trained for conversational question rewriting. Usage: Source text format: ${HISTORY} ||| ${CURRENT_QUESTION} example from [CANARD](https://sites.google.com/view/qanta/projects/canard): Frank Zappa ||| Disbandment ||| What group disbanded ||| Zappa and the Mothers of Invention ||| When did they disband? Target text: When did Zappa and the Mothers of Invention disband? You can find our guide to reproduce the training in this [repo](https://github.com/castorini/chatty-goose/blob/c7d0cd8c45354b09b5fb930ab0b5af8be2e5772b/docs/t5_finetuning.md).
castorini/monot5-base-med-msmarco
castorini
2021-06-23T11:40:06Z
9
1
transformers
[ "transformers", "pytorch", "jax", "t5", "feature-extraction", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
This model is a T5-base reranker fine-tuned on the MS MARCO passage dataset for 10k steps (or 1 epoch) and then fine-tuned again on MedMARCO (from [Sledge-Z paper](https://www.aclweb.org/anthology/2020.emnlp-main.341.pdf) for 1k steps. For more details on how to use it, check [pygaggle.ai](pygaggle.ai) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
SEBIS/legal_t5_small_trans_sv_it_small_finetuned
SEBIS
2021-06-23T11:38:41Z
12
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation Swedish Italian model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: Swedish Italian tags: - translation Swedish Italian model datasets: - dcep europarl jrc-acquis widget: - text: "– med beaktande av rådet beslut om Syrien av den 12 april, 9 och 23 maj, 20 och 25 juni samt den 2 september 2011 och av uttalandena från unionens höga representant av den 9, 23 och 29 april, 9 maj, 6, 9 och 11 juni, 9 och 31 juli, 1, 4, 18 och 30 augusti samt den 2 september 2011 om en utvidgning av de restriktiva åtgärderna mot den syriska regimen," --- # legal_t5_small_trans_sv_it_small_finetuned model Model on translating legal text from Swedish to Italian. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_sv_it_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_sv_it_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to Italian. ### How to use Here is how to use this model to translate legal text from Swedish to Italian in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_sv_it_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_sv_it", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "– med beaktande av rådet beslut om Syrien av den 12 april, 9 och 23 maj, 20 och 25 juni samt den 2 september 2011 och av uttalandena från unionens höga representant av den 9, 23 och 29 april, 9 maj, 6, 9 och 11 juni, 9 och 31 juli, 1, 4, 18 och 30 augusti samt den 2 september 2011 om en utvidgning av de restriktiva åtgärderna mot den syriska regimen," pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_trans_sv_it_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_sv_it_small_finetuned | 42.575| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_fr_en_small_finetuned
SEBIS
2021-06-23T11:38:04Z
15
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "translation French English model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: French English tags: - translation French English model datasets: - dcep europarl jrc-acquis widget: - text: "RÉSULTAT DU VOTE FINAL EN COMMISSION" --- # legal_t5_small_trans_fr_en_small_finetuned model Model on translating legal text from French to English. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_fr_en_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_fr_en_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from French to English. ### How to use Here is how to use this model to translate legal text from French to English in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_fr_en_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_fr_en", do_lower_case=False, skip_special_tokens=True), device=0 ) fr_text = "RÉSULTAT DU VOTE FINAL EN COMMISSION" pipeline([fr_text], max_length=512) ``` ## Training data The legal_t5_small_trans_fr_en_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_fr_en_small_finetuned | 51.351| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_de_cs
SEBIS
2021-06-23T11:37:25Z
19
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation Deustch Cszech model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: Deustch Cszech tags: - translation Deustch Cszech model datasets: - dcep europarl jrc-acquis widget: - text: "17. empfiehlt die Einführung einer spezifischen Strategie zur Unterstützung neuer und demokratisch gewählter Parlamente im Hinblick auf eine dauerhafte Verankerung von Demokratie, Rechtsstaatlichkeit und guter Staatsführung;" --- # legal_t5_small_trans_de_cs model Model on translating legal text from Deustch to Cszech. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_de_cs is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Deustch to Cszech. ### How to use Here is how to use this model to translate legal text from Deustch to Cszech in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_de_cs"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_de_cs", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "17. empfiehlt die Einführung einer spezifischen Strategie zur Unterstützung neuer und demokratisch gewählter Parlamente im Hinblick auf eine dauerhafte Verankerung von Demokratie, Rechtsstaatlichkeit und guter Staatsführung;" pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_trans_de_cs model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_de_cs | 44.07| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_cs_it_small_finetuned
SEBIS
2021-06-23T11:35:39Z
12
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation Cszech Italian model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: Cszech Italian tags: - translation Cszech Italian model datasets: - dcep europarl jrc-acquis widget: - text: "Členové přítomní při závěrečném hlasování" --- # legal_t5_small_trans_cs_it_small_finetuned model Model on translating legal text from Cszech to Italian. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_cs_it_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_cs_it_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to Italian. ### How to use Here is how to use this model to translate legal text from Cszech to Italian in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_cs_it_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_cs_it", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "Členové přítomní při závěrečném hlasování" pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_trans_cs_it_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_cs_it_small_finetuned | 46.367| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_cs_it
SEBIS
2021-06-23T11:35:03Z
20
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation Cszech Italian model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: Cszech Italian tags: - translation Cszech Italian model datasets: - dcep europarl jrc-acquis widget: - text: "– Měly by se podporovat normy sportovní správy prostřednictvím výměny osvědčených postupů." --- # legal_t5_small_trans_cs_it model Model on translating legal text from Cszech to Italian. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_cs_it is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to Italian. ### How to use Here is how to use this model to translate legal text from Cszech to Italian in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_cs_it"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_cs_it", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "– Měly by se podporovat normy sportovní správy prostřednictvím výměny osvědčených postupů." pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_trans_cs_it model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_cs_it | 46.67| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_cs_es_small_finetuned
SEBIS
2021-06-23T11:32:56Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "translation Cszech Spanish model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: Cszech Spanish tags: - translation Cszech Spanish model datasets: - dcep europarl jrc-acquis widget: - text: "vzhledem k tomu, že parlamentní volby v listopadu a v prosinci 2006, volby do Senátu v lednu 2007 a volbu prezidenta Sídí Muhammada Ulda Šajcha Abdalláhiho v březnu 2007, uznali jako spravedlivé a transparentní zahraniční pozorovatelé, včetně pozorovatelů z Evropské unie, a zejména z mise ke sledování průběhu voleb vyslané Evropským parlamentem, jenž se tím stal garantem legality těchto voleb," --- # legal_t5_small_trans_cs_es_small_finetuned model Model on translating legal text from Cszech to Spanish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_cs_es_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_cs_es_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to Spanish. ### How to use Here is how to use this model to translate legal text from Cszech to Spanish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_cs_es_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_cs_es", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "vzhledem k tomu, že parlamentní volby v listopadu a v prosinci 2006, volby do Senátu v lednu 2007 a volbu prezidenta Sídí Muhammada Ulda Šajcha Abdalláhiho v březnu 2007, uznali jako spravedlivé a transparentní zahraniční pozorovatelé, včetně pozorovatelů z Evropské unie, a zejména z mise ke sledování průběhu voleb vyslané Evropským parlamentem, jenž se tím stal garantem legality těchto voleb," pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_trans_cs_es_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_cs_es_small_finetuned | 50.862| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_cs_en_small_finetuned
SEBIS
2021-06-23T11:31:44Z
4
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation Cszech English model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: Cszech English tags: - translation Cszech English model datasets: - dcep europarl jrc-acquis widget: - text: "4) Seznam užívaných výrobků s obsahem PFOS: Kvůli značnému poklesu výroby PFOS po roce 2000 představují největší zdroj emisí patrně dřívější využití, která však nadále reálně existují." --- # legal_t5_small_trans_cs_en_small_finetuned model Model on translating legal text from Cszech to English. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_cs_en_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_cs_en_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to English. ### How to use Here is how to use this model to translate legal text from Cszech to English in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_cs_en_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_cs_en", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "4) Seznam užívaných výrobků s obsahem PFOS: Kvůli značnému poklesu výroby PFOS po roce 2000 představují největší zdroj emisí patrně dřívější využití, která však nadále reálně existují." pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_trans_cs_en_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_cs_en_small_finetuned | 56.936| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_summ_de
SEBIS
2021-06-23T11:21:22Z
5
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "summarization Deustch model", "dataset:jrc-acquis", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: Deustch tags: - summarization Deustch model datasets: - jrc-acquis widget: - text: "(90/365/EWG) DER RAT DER EUROPÄISCHEN GEMEINSCHAFTEN - gestützt auf den Vertrag zur Gründung der Europäischen Wirtschaftsgemeinschaft, insbesondere auf Artikel 235, auf Vorschlag der Kommission (1), nach Stellungnahme des Europäischen Parlaments (2), nach Stellungnahme des Wirtschafts- und Sozialausschusses (3), in Erwägung nachstehender Gründe: Gemäß Artikel 3 Buchstabe c) des Vertrages umfasst die Tätigkeit der Gemeinschaft, nach Maßgabe des Vertrages, die Beseitigung der Hindernisse für den freien Personenverkehr zwischen den Mitgliedstaaten. Artikel 8a des Vertrages sieht vor, daß der Binnenmarkt bis zum 31. Dezember 1992 zu verwirklichen ist. Der Binnenmarkt umfasst einen Raum ohne Binnengrenzen, in dem der freie Verkehr von Waren, Personen, Dienstleistungen und Kapital gemäß den Bestimmungen des Vertrages gewährleistet ist. Die Artikel 48 und 52 des Vertrages sehen die Freizuegigkeit der Arbeitnehmer und selbständig Erwerbstätigen vor, was ein Recht auf Aufenthalt in dem Mitgliedstaat beinhaltet, in dem sie ihr Berufsleben verbringen. Es empfiehlt sich, dieses Aufenthaltsrecht auch Personen zu gewähren, die aus dem Erwerbsleben ausgeschieden sind, auch wenn sie während ihres Berufslebens von dem Recht auf Freizuegigkeit keinen Gebrauch gemacht haben. Die Aufenthaltsberechtigten dürfen die öffentlichen Finanzen des Aufnahmemitgliedstaates nicht über Gebühr belasten. Nach Artikel 10 der Verordnung (EWG) Nr. 1408/71 (4) in der Fassung der Verordnung (EWG) Nr. 1390/81 (5) haben die Empfänger von Geldleistungen bei Invalidität und Alter und die Bezieher von Renten bei Arbeitsunfällen oder Berufskrankheiten auch dann weiterhin Anspruch auf diese Leistungen und Renten, wenn sie im Gebiet eines anderen Mitgliedstaates als des Staates wohnen, auf dessen Gebiet der zur Zahlung verpflichtete Träger seinen Sitz hat. Die Ausübung des Aufenthaltsrechts wird erst dann eine reale Möglichkeit, wenn es auch den Familienangehörigen zugestanden wird. Für die von dieser Richtlinie Begünstigten sollte eine Verwaltungsregelung entsprechend der insbesondere in der Richtlinie 68/360/EWG (6) und in der Richtlinie 64/221/EWG (7) vorgesehenen Regelung gelten. Der Vertrag enthält Befugnisse für den Erlaß der vorliegenden Richtlinie nur in Artikel 235 - HAT FOLGENDE RICHTLINIE ERLASSEN: Artikel 1 (1) Die Mitgliedstaaten gewähren den Angehörigen der Mitgliedstaaten, die in der Gemeinschaft eine Tätigkeit als Arbeitnehmer oder als Selbständige ausgeuebt haben, sowie deren Familienangehörigen nach der Definition von Absatz 2 unter der Bedingung das Aufenthaltsrecht, daß sie eine Invaliditäts-, Vorruhestands- oder Altersrente oder eine Rente wegen Arbeitsunfalls oder Berufskrankheit in einer solchen Höhe beziehen, daß sie während ihres Aufenthalts nicht die Sozialhilfe des Aufnahmemitgliedstaats in Anspruch nehmen müssen, und einen Krankenversicherungsschutz genießen, der im Aufnahmemitgliedstaat alle Risiken abdeckt. Die Existenzmittel des Antragstellers gelten als ausreichend, wenn sie einen Betrag übersteigen, unterhalb dessen der Aufnahmemitgliedstaat seinen Staatsangehörigen aufgrund der persönlichen Situation des Antragstellers und gegebenenfalls der Situation der nach Absatz 2 aufgenommenen Personen Sozialhilfe gewähren kann. Ist Unterabsatz 2 in einem Mitgliedstaat nicht anwendbar, so gelten die Existenzmittel des Antragstellers als ausreichend, wenn sie den Betrag der Grundrente der Sozialversicherung übersteigen, die der Aufnahmemitgliedstaat zahlt. (2) Bei dem Aufenthaltsberechtigten dürfen folgende Personen ungeachtet ihrer Staatsangehörigkeit in einem anderen Mitgliedstaat Wohnung nehmen: a) sein Ehegatte sowie die Verwandten in absteigender Linie, denen Unterhalt gewährt wird; b) seine Verwandten und die Verwandten seines Ehegatten in aufsteigender Linie, denen er Unterhalt gewährt. Artikel 2 (1) Zum Nachweis des Aufenthaltsrechts wird eine Bescheinigung, die »Aufenthaltserlaubnis für Staatsangehörige eines EWG-Mitgliedstaates%quot%, erteilt, deren Gültigkeit auf fünf Jahre mit Verlängerungsmöglichkeit begrenzt werden kann. Die Mitgliedstaaten können jedoch die Erneuerung der Aufenthaltserlaubnis nach den ersten zwei Aufenthaltsjahren verlangen, wenn sie dies für erforderlich halten. Einem Familienmitglied, das nicht die Staatsangehörigkeit eines Mitgliedstaats besitzt, wird ein Aufenthaltsdokument mit der gleichen Gültigkeitsdauer ausgestellt wie dem Staatsangehörigen, von dem es seine Rechte herleitet. Für die Erteilung der Aufenthaltserlaubnis oder des Aufenthaltsdokuments darf der Mitgliedstaat vom Antragsteller nur die Vorlage eines gültigen Personalausweises bzw. Reisepasses sowie den Nachweis verlangen, daß er die Voraussetzungen des Artikels 1 erfuellt. (2) Die Artikel 2 und 3, Artikel 6 Absatz 1 Buchstabe a) und Absatz 2 sowie Artikel 9 der Richtlinie 68/360/EWG finden auf die von dieser Richtlinie Begünstigten entsprechende Anwendung. Der Ehegatte eines Staatsangehörigen eines Mitgliedstaats, der im Hoheitsgebiet eines Mitgliedstaats aufenthaltsberechtigt ist, sowie die Kinder dieses Staatsangehörigen, denen er Unterhalt gewährt, haben, auch wenn sie die Staatsangehörigkeit eines Mitgliedstaats nicht besitzen, das Recht, im gesamten Hoheitsgebiet dieses Mitgliedstaats jedwede Tätigkeit im Lohn- oder Gehaltsverhältnis oder jedwede selbständige Erwerbstätigkeit auszuüben. Die Mitgliedstaaten dürfen nur aus Gründen der öffentlichen Ordnung, der öffentlichen Sicherheit oder der Volksgesundheit von den Bestimmungen dieser Richtlinie abweichen. In diesem Fall findet die Richtlinie 64/221/EWG Anwendung. (3) Die vorliegende Richtlinie berührt nicht die geltenden Rechtsvorschriften für den Erwerb von Zweitwohnungen. Artikel 3 Das Aufenthaltsrecht besteht, solange die Berechtigten die Bedingungen des Artikels 1 erfuellen. Artikel 4 Die Kommission arbeitet spätestens drei Jahre nach dem Beginn der Anwendung dieser Richtlinie und anschließend alle drei Jahre einen Bericht über ihre Anwendung aus und legt ihn dem Europäischen Parlament und dem Rat vor. Artikel 5 Die Mitgliedstaaten setzen die erforderlichen Rechts- und Verwaltungsvorschriften in Kraft, um dieser Richtlinie bis spätestens 30. Juni 1992 nachzukommen. Sie setzen die Kommission unverzueglich davon in Kenntnis. Artikel 6 Diese Richtlinie ist an die Mitgliedstaaten gerichtet. Geschehen zu Luxemburg am 28. Juni 1990. Im Namen des Rates Der Präsident M. GEOGHEGAN-QUINN (1) ABl. Nr. C 191 vom 28. 7. 1989, S. 3 und ABl. Nr. C 26 vom 3. 2. 1990, S. 19. (2) Stellungnahme vom 13. Juni 1990 (noch nicht im Amtsblatt veröffentlicht). (3) ABl. Nr. C 329 vom 30. 12. 1989, S. 25. (4) ABl. Nr. L 149 vom 5. 7. 1971, S. 2. (5) ABl. Nr. L 143 vom 29. 5. 1981, S. 1. (6) ABl. Nr. L 257 vom 19. 10. 1968, S. 13. (7) ABl. Nr. 56 vom 4. 4. 1964, S. 850/64. " --- # legal_t5_small_summ_de model Model for Summarization of legal text written in Deustch. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis. ## Model description legal_t5_small_summ_de is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for summarization of legal texts written in Deustch. ### How to use Here is how to use this model to summarize legal text written in Deustch in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_summ_de"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_summ_de", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "(90/365/EWG) DER RAT DER EUROPÄISCHEN GEMEINSCHAFTEN - gestützt auf den Vertrag zur Gründung der Europäischen Wirtschaftsgemeinschaft, insbesondere auf Artikel 235, auf Vorschlag der Kommission (1), nach Stellungnahme des Europäischen Parlaments (2), nach Stellungnahme des Wirtschafts- und Sozialausschusses (3), in Erwägung nachstehender Gründe: Gemäß Artikel 3 Buchstabe c) des Vertrages umfasst die Tätigkeit der Gemeinschaft, nach Maßgabe des Vertrages, die Beseitigung der Hindernisse für den freien Personenverkehr zwischen den Mitgliedstaaten. Artikel 8a des Vertrages sieht vor, daß der Binnenmarkt bis zum 31. Dezember 1992 zu verwirklichen ist. Der Binnenmarkt umfasst einen Raum ohne Binnengrenzen, in dem der freie Verkehr von Waren, Personen, Dienstleistungen und Kapital gemäß den Bestimmungen des Vertrages gewährleistet ist. Die Artikel 48 und 52 des Vertrages sehen die Freizuegigkeit der Arbeitnehmer und selbständig Erwerbstätigen vor, was ein Recht auf Aufenthalt in dem Mitgliedstaat beinhaltet, in dem sie ihr Berufsleben verbringen. Es empfiehlt sich, dieses Aufenthaltsrecht auch Personen zu gewähren, die aus dem Erwerbsleben ausgeschieden sind, auch wenn sie während ihres Berufslebens von dem Recht auf Freizuegigkeit keinen Gebrauch gemacht haben. Die Aufenthaltsberechtigten dürfen die öffentlichen Finanzen des Aufnahmemitgliedstaates nicht über Gebühr belasten. Nach Artikel 10 der Verordnung (EWG) Nr. 1408/71 (4) in der Fassung der Verordnung (EWG) Nr. 1390/81 (5) haben die Empfänger von Geldleistungen bei Invalidität und Alter und die Bezieher von Renten bei Arbeitsunfällen oder Berufskrankheiten auch dann weiterhin Anspruch auf diese Leistungen und Renten, wenn sie im Gebiet eines anderen Mitgliedstaates als des Staates wohnen, auf dessen Gebiet der zur Zahlung verpflichtete Träger seinen Sitz hat. Die Ausübung des Aufenthaltsrechts wird erst dann eine reale Möglichkeit, wenn es auch den Familienangehörigen zugestanden wird. Für die von dieser Richtlinie Begünstigten sollte eine Verwaltungsregelung entsprechend der insbesondere in der Richtlinie 68/360/EWG (6) und in der Richtlinie 64/221/EWG (7) vorgesehenen Regelung gelten. Der Vertrag enthält Befugnisse für den Erlaß der vorliegenden Richtlinie nur in Artikel 235 - HAT FOLGENDE RICHTLINIE ERLASSEN: Artikel 1 (1) Die Mitgliedstaaten gewähren den Angehörigen der Mitgliedstaaten, die in der Gemeinschaft eine Tätigkeit als Arbeitnehmer oder als Selbständige ausgeuebt haben, sowie deren Familienangehörigen nach der Definition von Absatz 2 unter der Bedingung das Aufenthaltsrecht, daß sie eine Invaliditäts-, Vorruhestands- oder Altersrente oder eine Rente wegen Arbeitsunfalls oder Berufskrankheit in einer solchen Höhe beziehen, daß sie während ihres Aufenthalts nicht die Sozialhilfe des Aufnahmemitgliedstaats in Anspruch nehmen müssen, und einen Krankenversicherungsschutz genießen, der im Aufnahmemitgliedstaat alle Risiken abdeckt. Die Existenzmittel des Antragstellers gelten als ausreichend, wenn sie einen Betrag übersteigen, unterhalb dessen der Aufnahmemitgliedstaat seinen Staatsangehörigen aufgrund der persönlichen Situation des Antragstellers und gegebenenfalls der Situation der nach Absatz 2 aufgenommenen Personen Sozialhilfe gewähren kann. Ist Unterabsatz 2 in einem Mitgliedstaat nicht anwendbar, so gelten die Existenzmittel des Antragstellers als ausreichend, wenn sie den Betrag der Grundrente der Sozialversicherung übersteigen, die der Aufnahmemitgliedstaat zahlt. (2) Bei dem Aufenthaltsberechtigten dürfen folgende Personen ungeachtet ihrer Staatsangehörigkeit in einem anderen Mitgliedstaat Wohnung nehmen: a) sein Ehegatte sowie die Verwandten in absteigender Linie, denen Unterhalt gewährt wird; b) seine Verwandten und die Verwandten seines Ehegatten in aufsteigender Linie, denen er Unterhalt gewährt. Artikel 2 (1) Zum Nachweis des Aufenthaltsrechts wird eine Bescheinigung, die »Aufenthaltserlaubnis für Staatsangehörige eines EWG-Mitgliedstaates%quot%, erteilt, deren Gültigkeit auf fünf Jahre mit Verlängerungsmöglichkeit begrenzt werden kann. Die Mitgliedstaaten können jedoch die Erneuerung der Aufenthaltserlaubnis nach den ersten zwei Aufenthaltsjahren verlangen, wenn sie dies für erforderlich halten. Einem Familienmitglied, das nicht die Staatsangehörigkeit eines Mitgliedstaats besitzt, wird ein Aufenthaltsdokument mit der gleichen Gültigkeitsdauer ausgestellt wie dem Staatsangehörigen, von dem es seine Rechte herleitet. Für die Erteilung der Aufenthaltserlaubnis oder des Aufenthaltsdokuments darf der Mitgliedstaat vom Antragsteller nur die Vorlage eines gültigen Personalausweises bzw. Reisepasses sowie den Nachweis verlangen, daß er die Voraussetzungen des Artikels 1 erfuellt. (2) Die Artikel 2 und 3, Artikel 6 Absatz 1 Buchstabe a) und Absatz 2 sowie Artikel 9 der Richtlinie 68/360/EWG finden auf die von dieser Richtlinie Begünstigten entsprechende Anwendung. Der Ehegatte eines Staatsangehörigen eines Mitgliedstaats, der im Hoheitsgebiet eines Mitgliedstaats aufenthaltsberechtigt ist, sowie die Kinder dieses Staatsangehörigen, denen er Unterhalt gewährt, haben, auch wenn sie die Staatsangehörigkeit eines Mitgliedstaats nicht besitzen, das Recht, im gesamten Hoheitsgebiet dieses Mitgliedstaats jedwede Tätigkeit im Lohn- oder Gehaltsverhältnis oder jedwede selbständige Erwerbstätigkeit auszuüben. Die Mitgliedstaaten dürfen nur aus Gründen der öffentlichen Ordnung, der öffentlichen Sicherheit oder der Volksgesundheit von den Bestimmungen dieser Richtlinie abweichen. In diesem Fall findet die Richtlinie 64/221/EWG Anwendung. (3) Die vorliegende Richtlinie berührt nicht die geltenden Rechtsvorschriften für den Erwerb von Zweitwohnungen. Artikel 3 Das Aufenthaltsrecht besteht, solange die Berechtigten die Bedingungen des Artikels 1 erfuellen. Artikel 4 Die Kommission arbeitet spätestens drei Jahre nach dem Beginn der Anwendung dieser Richtlinie und anschließend alle drei Jahre einen Bericht über ihre Anwendung aus und legt ihn dem Europäischen Parlament und dem Rat vor. Artikel 5 Die Mitgliedstaaten setzen die erforderlichen Rechts- und Verwaltungsvorschriften in Kraft, um dieser Richtlinie bis spätestens 30. Juni 1992 nachzukommen. Sie setzen die Kommission unverzueglich davon in Kenntnis. Artikel 6 Diese Richtlinie ist an die Mitgliedstaaten gerichtet. Geschehen zu Luxemburg am 28. Juni 1990. Im Namen des Rates Der Präsident M. GEOGHEGAN-QUINN (1) ABl. Nr. C 191 vom 28. 7. 1989, S. 3 und ABl. Nr. C 26 vom 3. 2. 1990, S. 19. (2) Stellungnahme vom 13. Juni 1990 (noch nicht im Amtsblatt veröffentlicht). (3) ABl. Nr. C 329 vom 30. 12. 1989, S. 25. (4) ABl. Nr. L 149 vom 5. 7. 1971, S. 2. (5) ABl. Nr. L 143 vom 29. 5. 1981, S. 1. (6) ABl. Nr. L 257 vom 19. 10. 1968, S. 13. (7) ABl. Nr. 56 vom 4. 4. 1964, S. 850/64. " pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_summ_de model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html) dataset consisting of 23 Thousand texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 64). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for classification test dataset, achieves the following results: Test results : | Model | Rouge1 | Rouge2 | Rouge Lsum | |:-----:|:-----:|:-----:|:-----:| | legal_t5_small_summ_de | 78.03|68.84 |76.95| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
huggingtweets/newcastle
huggingtweets
2021-06-23T11:20:39Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/newcastle/1624447235109/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/378800000825693392/0c26d155e1abb8252f569491678b6ec7_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Newcastle Brown Ale</div> <div style="text-align: center; font-size: 14px;">@newcastle</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Newcastle Brown Ale. | Data | Newcastle Brown Ale | | --- | --- | | Tweets downloaded | 3198 | | Retweets | 21 | | Short tweets | 27 | | Tweets kept | 3150 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1m1ygycf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @newcastle's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2q9cnfvw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2q9cnfvw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/newcastle') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
SEBIS/legal_t5_small_multitask_sv_es
SEBIS
2021-06-23T11:18:54Z
6
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation Swedish Spanish model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: Swedish Spanish tags: - translation Swedish Spanish model datasets: - dcep europarl jrc-acquis widget: - text: "med beaktande av sin resolution av den 14 april 2005 om torkan i Portugal," --- # legal_t5_small_multitask_sv_es model Model on translating legal text from Swedish to Spanish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_sv_es model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to Spanish. ### How to use Here is how to use this model to translate legal text from Swedish to Spanish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_sv_es"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_sv_es", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "med beaktande av sin resolution av den 14 april 2005 om torkan i Portugal," pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_sv_es model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_sv_es | 35.506| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_sv_en
SEBIS
2021-06-23T11:18:13Z
6
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation Swedish English model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: Swedish English tags: - translation Swedish English model datasets: - dcep europarl jrc-acquis widget: - text: "inlämnat av följande ledamöter:" --- # legal_t5_small_multitask_sv_en model Model on translating legal text from Swedish to English. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_sv_en model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to English. ### How to use Here is how to use this model to translate legal text from Swedish to English in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_sv_en"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_sv_en", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "inlämnat av följande ledamöter:" pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_sv_en model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_sv_en | 36.195| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_sv_de
SEBIS
2021-06-23T11:17:27Z
6
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation Swedish Deustch model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: Swedish Deustch tags: - translation Swedish Deustch model datasets: - dcep europarl jrc-acquis widget: - text: "Kan kommissionen bekräfta att i Olaf‑handlingar som samlats in inom ramen för denna granskning, daterade mellan 2000 och 2004, kan följande information hittas: —" --- # legal_t5_small_multitask_sv_de model Model on translating legal text from Swedish to Deustch. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_sv_de model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to Deustch. ### How to use Here is how to use this model to translate legal text from Swedish to Deustch in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_sv_de"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_sv_de", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "Kan kommissionen bekräfta att i Olaf‑handlingar som samlats in inom ramen för denna granskning, daterade mellan 2000 och 2004, kan följande information hittas: —" pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_sv_de model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_sv_de | 44.684| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_sv_cs
SEBIS
2021-06-23T11:16:54Z
7
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation Swedish Cszech model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: Swedish Cszech tags: - translation Swedish Cszech model datasets: - dcep europarl jrc-acquis widget: - text: "Standarderna för integrerat växtskydd bör tillämpas snabbare än vad kommissionen föreskrivit." --- # legal_t5_small_multitask_sv_cs model Model on translating legal text from Swedish to Cszech. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_sv_cs model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to Cszech. ### How to use Here is how to use this model to translate legal text from Swedish to Cszech in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_sv_cs"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_sv_cs", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "Standarderna för integrerat växtskydd bör tillämpas snabbare än vad kommissionen föreskrivit." pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_sv_cs model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_sv_cs | 45.058| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_it_sv
SEBIS
2021-06-23T11:16:13Z
5
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation Italian Swedish model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: Italian Swedish tags: - translation Italian Swedish model datasets: - dcep europarl jrc-acquis widget: - text: "Può il Commissario responsabile comunicare al Parlamento in che modo la DG Ricerca garantirà che l’Europa possa svolgere un ruolo di primo piano in questo sforzo globale di ricerca sul diabete?" --- # legal_t5_small_multitask_it_sv model Model on translating legal text from Italian to Swedish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_it_sv model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Italian to Swedish. ### How to use Here is how to use this model to translate legal text from Italian to Swedish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_it_sv"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_it_sv", do_lower_case=False, skip_special_tokens=True), device=0 ) it_text = "Può il Commissario responsabile comunicare al Parlamento in che modo la DG Ricerca garantirà che l’Europa possa svolgere un ruolo di primo piano in questo sforzo globale di ricerca sul diabete?" pipeline([it_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_it_sv model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_it_sv | 41.523| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_it_fr
SEBIS
2021-06-23T11:15:25Z
4
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation Italian French model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: Italian French tags: - translation Italian French model datasets: - dcep europarl jrc-acquis widget: - text: "Gli Stati membri adottano le leggi, i regolamenti e le disposizioni amministrative necessari per ottemperare alla presente direttiva entro il 31 dicembre 2002 e ne informano immediatamente la Commissione." --- # legal_t5_small_multitask_it_fr model Model on translating legal text from Italian to French. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_it_fr model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Italian to French. ### How to use Here is how to use this model to translate legal text from Italian to French in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_it_fr"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_it_fr", do_lower_case=False, skip_special_tokens=True), device=0 ) it_text = "Gli Stati membri adottano le leggi, i regolamenti e le disposizioni amministrative necessari per ottemperare alla presente direttiva entro il 31 dicembre 2002 e ne informano immediatamente la Commissione." pipeline([it_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_it_fr model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_it_fr | 41.956| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_it_es
SEBIS
2021-06-23T11:14:49Z
5
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation Italian Spanish model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: Italian Spanish tags: - translation Italian Spanish model datasets: - dcep europarl jrc-acquis widget: - text: "Interrogazione con richiesta di risposta scritta E-005808/2011" --- # legal_t5_small_multitask_it_es model Model on translating legal text from Italian to Spanish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_it_es model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Italian to Spanish. ### How to use Here is how to use this model to translate legal text from Italian to Spanish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_it_es"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_it_es", do_lower_case=False, skip_special_tokens=True), device=0 ) it_text = "Interrogazione con richiesta di risposta scritta E-005808/2011" pipeline([it_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_it_es model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_it_es | 36.980| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_it_en
SEBIS
2021-06-23T11:13:57Z
5
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation Italian English model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: Italian English tags: - translation Italian English model datasets: - dcep europarl jrc-acquis widget: - text: "Con l’adesione all'area dell'euro questo procedimento non è stato più possibile." --- # legal_t5_small_multitask_it_en model Model on translating legal text from Italian to English. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_it_en model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Italian to English. ### How to use Here is how to use this model to translate legal text from Italian to English in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_it_en"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_it_en", do_lower_case=False, skip_special_tokens=True), device=0 ) it_text = "Con l’adesione all'area dell'euro questo procedimento non è stato più possibile." pipeline([it_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_it_en model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_it_en | 36.687| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)