modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-30 06:28:04
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
536 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-30 06:28:00
card
stringlengths
11
1.01M
hansanguw/HSCho_test
hansanguw
2023-07-17T01:26:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T01:26:41Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e7_s6789_v3
KingKazma
2023-07-17T01:12:08Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T01:12:07Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e6_s6789_v3
KingKazma
2023-07-17T01:05:09Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T01:05:08Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e5_s6789_v3
KingKazma
2023-07-17T00:58:09Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:58:08Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
timjwhite/poca-SoccerTwos
timjwhite
2023-07-17T00:56:31Z
66
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-07-17T00:45:50Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: timjwhite/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
arashaomrani/Email
arashaomrani
2023-07-17T00:46:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:45:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e3_s6789_v3
KingKazma
2023-07-17T00:44:11Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:44:11Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e2_s6789_v3
KingKazma
2023-07-17T00:37:12Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:37:12Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e1_s6789_v3
KingKazma
2023-07-17T00:30:14Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:30:13Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
acasany/rare-puppers
acasany
2023-07-17T00:27:57Z
197
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-17T00:27:47Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8876404762268066 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### husky ![husky](images/husky.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e0_s6789_v3
KingKazma
2023-07-17T00:23:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:23:14Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
lucostiguy11/dreambooth_if
lucostiguy11
2023-07-17T00:21:21Z
2
0
diffusers
[ "diffusers", "tensorboard", "if", "if-diffusers", "text-to-image", "dreambooth", "base_model:DeepFloyd/IF-I-XL-v1.0", "base_model:finetune:DeepFloyd/IF-I-XL-v1.0", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:IFPipeline", "region:us" ]
text-to-image
2023-07-16T23:29:26Z
--- license: creativeml-openrail-m base_model: DeepFloyd/IF-I-XL-v1.0 instance_prompt: a photo of sks dog tags: - if - if-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - lucostiguy11/dreambooth_if This is a dreambooth model derived from DeepFloyd/IF-I-XL-v1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) DreamBooth for the text encoder was enabled: False.
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e-1_s6789_v3
KingKazma
2023-07-17T00:16:16Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:16:15Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e7_s6789_v3
KingKazma
2023-07-17T00:09:01Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:09:00Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
dsmonk/xgen-7b-tuned-alpaca
dsmonk
2023-07-17T00:04:40Z
0
0
null
[ "tensorboard", "generated_from_trainer", "base_model:Salesforce/xgen-7b-8k-base", "base_model:finetune:Salesforce/xgen-7b-8k-base", "license:apache-2.0", "region:us" ]
null
2023-07-16T21:52:46Z
--- license: apache-2.0 base_model: Salesforce/xgen-7b-8k-base tags: - generated_from_trainer model-index: - name: xgen-7b-tuned-alpaca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xgen-7b-tuned-alpaca This model is a fine-tuned version of [Salesforce/xgen-7b-8k-base](https://huggingface.co/Salesforce/xgen-7b-8k-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.4.0 - Tokenizers 0.12.1
ByteExplorer/Reinforce-CartPole-8
ByteExplorer
2023-07-17T00:04:03Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-17T00:03:54Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-8 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e6_s6789_v3
KingKazma
2023-07-17T00:01:27Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:01:26Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e7_s55555_v3
KingKazma
2023-07-16T23:55:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:55:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e6_s55555_v3
KingKazma
2023-07-16T23:48:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:48:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e3_s6789_v3
KingKazma
2023-07-16T23:38:46Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:38:44Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
abgoswam/bloom_marketmail_32
abgoswam
2023-07-16T23:34:10Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:34:05Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e2_s55555_v3
KingKazma
2023-07-16T23:20:02Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:20:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e-1_s6789_v3
KingKazma
2023-07-16T23:08:28Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:08:26Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
ailabturkiye/wtcn
ailabturkiye
2023-07-16T23:06:15Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T23:04:16Z
--- license: openrail language: - tr tags: - music ---
NasimB/aochildes-guten-log-rarity-all-no-cut
NasimB
2023-07-16T22:59:51Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-16T20:50:33Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: aochildes-guten-log-rarity-all-no-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aochildes-guten-log-rarity-all-no-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7164 | 0.29 | 500 | 5.6323 | | 5.3447 | 0.59 | 1000 | 5.2052 | | 5.0011 | 0.88 | 1500 | 4.9552 | | 4.7272 | 1.17 | 2000 | 4.8144 | | 4.5727 | 1.47 | 2500 | 4.6937 | | 4.4591 | 1.76 | 3000 | 4.5928 | | 4.3272 | 2.05 | 3500 | 4.5232 | | 4.1423 | 2.35 | 4000 | 4.4760 | | 4.1152 | 2.64 | 4500 | 4.4205 | | 4.0725 | 2.93 | 5000 | 4.3703 | | 3.8638 | 3.23 | 5500 | 4.3718 | | 3.8167 | 3.52 | 6000 | 4.3411 | | 3.7993 | 3.81 | 6500 | 4.3167 | | 3.6795 | 4.11 | 7000 | 4.3235 | | 3.5285 | 4.4 | 7500 | 4.3099 | | 3.5218 | 4.69 | 8000 | 4.3012 | | 3.5096 | 4.99 | 8500 | 4.2923 | | 3.3413 | 5.28 | 9000 | 4.3116 | | 3.3298 | 5.57 | 9500 | 4.3113 | | 3.3314 | 5.87 | 10000 | 4.3111 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_lora_500_10_3000_8_e-1_s55555_v3
KingKazma
2023-07-16T22:58:57Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:58:56Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e7_s108_v3
KingKazma
2023-07-16T22:35:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:34:59Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
Chickenfish/Jennie
Chickenfish
2023-07-16T22:30:43Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-15T01:54:48Z
--- license: creativeml-openrail-m ---
KingKazma/xsum_gpt2_lora_500_10_3000_8_e6_s108_v3
KingKazma
2023-07-16T22:28:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:28:00Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e5_s108_v3
KingKazma
2023-07-16T22:20:58Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:20:58Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
jeremyvictor/t5-v1_1-large-fce-e8-b16
jeremyvictor
2023-07-16T22:19:24Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-16T15:25:50Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-v1_1-large-fce-e8-b16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-v1_1-large-fce-e8-b16 This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3349 - Rouge1: 86.6648 - Rouge2: 79.4505 - Rougel: 86.1654 - Rougelsum: 86.1549 - Gen Len: 14.9105 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 3.325 | 0.06 | 100 | 0.7775 | 76.9422 | 69.1942 | 76.3689 | 76.3852 | 14.7545 | | 0.9422 | 0.11 | 200 | 0.4327 | 85.6522 | 77.1791 | 85.0843 | 85.0849 | 15.0315 | | 0.535 | 0.17 | 300 | 0.4081 | 85.8265 | 77.0897 | 85.2547 | 85.2421 | 14.8745 | | 0.5003 | 0.23 | 400 | 0.4104 | 85.847 | 77.3884 | 85.3678 | 85.3536 | 14.8257 | | 0.4734 | 0.28 | 500 | 0.3830 | 86.3501 | 78.2006 | 85.824 | 85.8541 | 14.8613 | | 0.4439 | 0.34 | 600 | 0.3652 | 86.5106 | 78.4301 | 85.9794 | 85.9871 | 14.8644 | | 0.4399 | 0.4 | 700 | 0.3656 | 86.3955 | 78.2086 | 85.8592 | 85.8785 | 14.8562 | | 0.4259 | 0.45 | 800 | 0.3925 | 85.6654 | 77.0925 | 85.1468 | 85.1547 | 14.9142 | | 0.4092 | 0.51 | 900 | 0.3720 | 86.317 | 78.3141 | 85.8151 | 85.7907 | 14.8859 | | 0.4143 | 0.56 | 1000 | 0.3761 | 86.5432 | 78.4572 | 85.9424 | 85.9234 | 14.8763 | | 0.4184 | 0.62 | 1100 | 0.3487 | 86.4053 | 78.5526 | 85.8508 | 85.8745 | 14.8909 | | 0.4025 | 0.68 | 1200 | 0.3556 | 86.2418 | 78.2845 | 85.7291 | 85.7379 | 14.8603 | | 0.4014 | 0.73 | 1300 | 0.3657 | 86.6544 | 78.9722 | 86.1314 | 86.1446 | 14.8257 | | 0.379 | 0.79 | 1400 | 0.3512 | 86.6622 | 79.1939 | 86.1521 | 86.1383 | 14.8955 | | 0.3898 | 0.85 | 1500 | 0.3517 | 86.1483 | 78.4144 | 85.5986 | 85.6256 | 14.8955 | | 0.373 | 0.9 | 1600 | 0.3565 | 86.6775 | 79.0902 | 86.1475 | 86.156 | 14.8946 | | 0.3685 | 0.96 | 1700 | 0.3500 | 86.8048 | 79.2231 | 86.2842 | 86.2602 | 14.8658 | | 0.3353 | 1.02 | 1800 | 0.3547 | 86.7966 | 79.1526 | 86.2624 | 86.2769 | 14.8895 | | 0.2323 | 1.07 | 1900 | 0.3529 | 86.6715 | 79.0832 | 86.1451 | 86.143 | 14.9119 | | 0.2458 | 1.13 | 2000 | 0.3699 | 86.9553 | 79.3124 | 86.3906 | 86.4162 | 14.8987 | | 0.2349 | 1.19 | 2100 | 0.3640 | 86.4161 | 78.4111 | 85.8783 | 85.8807 | 14.9420 | | 0.2358 | 1.24 | 2200 | 0.3598 | 86.7842 | 79.1199 | 86.2164 | 86.2259 | 14.8932 | | 0.2229 | 1.3 | 2300 | 0.3610 | 86.7032 | 79.0013 | 86.168 | 86.1807 | 14.8827 | | 0.2502 | 1.35 | 2400 | 0.3527 | 86.5423 | 78.9113 | 86.0423 | 86.0465 | 14.8946 | | 0.2466 | 1.41 | 2500 | 0.3575 | 86.512 | 78.7998 | 85.9795 | 85.9899 | 14.9142 | | 0.2457 | 1.47 | 2600 | 0.3463 | 86.5376 | 78.7642 | 86.0019 | 85.993 | 14.8964 | | 0.2429 | 1.52 | 2700 | 0.3480 | 86.5911 | 78.9802 | 86.0235 | 86.0303 | 14.9169 | | 0.2657 | 1.58 | 2800 | 0.3423 | 86.6139 | 79.1659 | 86.0999 | 86.1034 | 14.8905 | | 0.2542 | 1.64 | 2900 | 0.3439 | 86.4731 | 78.8656 | 86.0285 | 86.0336 | 14.8955 | | 0.2529 | 1.69 | 3000 | 0.3491 | 86.7686 | 79.2799 | 86.2783 | 86.2663 | 14.8891 | | 0.2475 | 1.75 | 3100 | 0.3460 | 86.0511 | 77.837 | 85.5557 | 85.56 | 14.8868 | | 0.2472 | 1.81 | 3200 | 0.3375 | 86.6711 | 79.1718 | 86.1627 | 86.1402 | 14.8809 | | 0.2432 | 1.86 | 3300 | 0.3349 | 86.6648 | 79.4505 | 86.1654 | 86.1549 | 14.9105 | | 0.2467 | 1.92 | 3400 | 0.3383 | 86.867 | 79.7251 | 86.3823 | 86.3811 | 14.9014 | | 0.2416 | 1.98 | 3500 | 0.3404 | 86.8577 | 79.4128 | 86.3474 | 86.3386 | 14.8909 | | 0.1816 | 2.03 | 3600 | 0.3590 | 86.7414 | 79.4138 | 86.2395 | 86.2415 | 14.9283 | | 0.1344 | 2.09 | 3700 | 0.3806 | 86.9318 | 79.5175 | 86.4098 | 86.4209 | 14.9238 | | 0.134 | 2.14 | 3800 | 0.3704 | 86.733 | 79.2709 | 86.2066 | 86.2083 | 14.9379 | | 0.1301 | 2.2 | 3900 | 0.3788 | 86.7622 | 79.4039 | 86.2608 | 86.2514 | 14.9133 | | 0.1417 | 2.26 | 4000 | 0.3658 | 87.0002 | 79.8067 | 86.4663 | 86.4604 | 14.9105 | | 0.1256 | 2.31 | 4100 | 0.3728 | 86.6691 | 79.3081 | 86.1154 | 86.1184 | 14.9119 | | 0.1393 | 2.37 | 4200 | 0.3666 | 86.7525 | 79.3901 | 86.223 | 86.2348 | 14.9046 | | 0.1542 | 2.43 | 4300 | 0.3740 | 86.6779 | 79.5336 | 86.1667 | 86.1716 | 14.9283 | | 0.133 | 2.48 | 4400 | 0.3790 | 86.7692 | 79.6713 | 86.2335 | 86.2394 | 14.9457 | | 0.1389 | 2.54 | 4500 | 0.3717 | 86.4853 | 79.3114 | 85.9253 | 85.9128 | 14.9434 | | 0.1489 | 2.6 | 4600 | 0.3724 | 86.2107 | 78.63 | 85.6539 | 85.6792 | 14.9311 | | 0.1522 | 2.65 | 4700 | 0.3647 | 86.8659 | 79.8 | 86.3545 | 86.3676 | 14.9160 | | 0.1439 | 2.71 | 4800 | 0.3672 | 86.0554 | 78.1382 | 85.5587 | 85.5362 | 14.9297 | | 0.1406 | 2.77 | 4900 | 0.3637 | 86.4054 | 78.9406 | 85.8958 | 85.9036 | 14.9069 | | 0.1522 | 2.82 | 5000 | 0.3715 | 86.7402 | 79.6515 | 86.2414 | 86.2416 | 14.9201 | | 0.1577 | 2.88 | 5100 | 0.3531 | 86.5905 | 79.2319 | 86.0746 | 86.0661 | 14.9174 | | 0.1427 | 2.93 | 5200 | 0.3693 | 86.4955 | 79.0202 | 86.0034 | 85.9923 | 14.9014 | | 0.1489 | 2.99 | 5300 | 0.3671 | 86.6285 | 79.2982 | 86.1429 | 86.1239 | 14.9366 | | 0.0874 | 3.05 | 5400 | 0.4117 | 86.7939 | 79.6444 | 86.2987 | 86.292 | 14.9311 | | 0.0824 | 3.1 | 5500 | 0.4056 | 86.7504 | 79.5265 | 86.2525 | 86.2509 | 14.9069 | | 0.0815 | 3.16 | 5600 | 0.4064 | 86.9102 | 79.8072 | 86.4 | 86.3798 | 14.9188 | | 0.0761 | 3.22 | 5700 | 0.4061 | 86.7759 | 79.4944 | 86.2642 | 86.2638 | 14.9156 | | 0.0858 | 3.27 | 5800 | 0.4104 | 86.9783 | 79.7005 | 86.4405 | 86.4279 | 14.9206 | | 0.0774 | 3.33 | 5900 | 0.4043 | 86.7749 | 79.4813 | 86.2355 | 86.2441 | 14.9010 | | 0.0841 | 3.39 | 6000 | 0.4033 | 86.915 | 79.7145 | 86.3878 | 86.3809 | 14.9060 | | 0.0885 | 3.44 | 6100 | 0.4066 | 86.761 | 79.3294 | 86.202 | 86.2041 | 14.8973 | | 0.0794 | 3.5 | 6200 | 0.3987 | 86.699 | 79.2133 | 86.1431 | 86.1571 | 14.9083 | | 0.0845 | 3.56 | 6300 | 0.4225 | 86.8629 | 79.4052 | 86.3102 | 86.32 | 14.9169 | | 0.0869 | 3.61 | 6400 | 0.4033 | 86.8748 | 79.5928 | 86.3421 | 86.3564 | 14.8987 | | 0.0791 | 3.67 | 6500 | 0.4055 | 86.9491 | 79.6876 | 86.4205 | 86.4281 | 14.9115 | | 0.0849 | 3.72 | 6600 | 0.4068 | 86.7855 | 79.4848 | 86.2791 | 86.2945 | 14.9192 | | 0.0865 | 3.78 | 6700 | 0.4069 | 86.7864 | 79.5128 | 86.2844 | 86.3027 | 14.9092 | | 0.086 | 3.84 | 6800 | 0.3989 | 86.9556 | 79.6203 | 86.4463 | 86.4673 | 14.9083 | | 0.0811 | 3.89 | 6900 | 0.3913 | 86.9815 | 79.7108 | 86.4913 | 86.4905 | 14.9073 | | 0.0812 | 3.95 | 7000 | 0.4022 | 86.819 | 79.5024 | 86.313 | 86.336 | 14.9261 | | 0.087 | 4.01 | 7100 | 0.4238 | 87.0628 | 79.8276 | 86.5385 | 86.5444 | 14.9133 | | 0.0484 | 4.06 | 7200 | 0.4301 | 87.0455 | 79.7775 | 86.5274 | 86.5298 | 14.9023 | | 0.0481 | 4.12 | 7300 | 0.4715 | 87.0629 | 79.9823 | 86.5676 | 86.5615 | 14.9073 | | 0.0522 | 4.18 | 7400 | 0.4379 | 86.983 | 79.7011 | 86.4659 | 86.4906 | 14.9174 | | 0.0463 | 4.23 | 7500 | 0.4574 | 87.047 | 79.6937 | 86.5243 | 86.5252 | 14.9133 | | 0.0559 | 4.29 | 7600 | 0.4275 | 86.8511 | 79.4707 | 86.3482 | 86.3463 | 14.9270 | | 0.0484 | 4.35 | 7700 | 0.4426 | 86.8238 | 79.4779 | 86.3242 | 86.3224 | 14.9178 | | 0.0468 | 4.4 | 7800 | 0.4565 | 86.9331 | 79.7622 | 86.4253 | 86.433 | 14.9174 | | 0.0501 | 4.46 | 7900 | 0.4506 | 86.884 | 79.7917 | 86.4025 | 86.4082 | 14.9160 | | 0.0538 | 4.51 | 8000 | 0.4290 | 86.95 | 79.7812 | 86.4425 | 86.4387 | 14.9092 | | 0.0499 | 4.57 | 8100 | 0.4366 | 87.1034 | 80.0115 | 86.6029 | 86.6075 | 14.9137 | | 0.051 | 4.63 | 8200 | 0.4472 | 86.8904 | 79.6413 | 86.4313 | 86.4236 | 14.9078 | | 0.0546 | 4.68 | 8300 | 0.4299 | 86.8704 | 79.6621 | 86.3474 | 86.3699 | 14.9055 | | 0.049 | 4.74 | 8400 | 0.4601 | 87.0006 | 79.7754 | 86.4831 | 86.484 | 14.9073 | | 0.0474 | 4.8 | 8500 | 0.4481 | 86.9629 | 79.7888 | 86.452 | 86.4605 | 14.9069 | | 0.0509 | 4.85 | 8600 | 0.4329 | 86.9177 | 79.6544 | 86.4178 | 86.4215 | 14.9124 | | 0.0521 | 4.91 | 8700 | 0.4323 | 86.8574 | 79.6029 | 86.3347 | 86.3477 | 14.9169 | | 0.0458 | 4.97 | 8800 | 0.4563 | 87.0021 | 79.754 | 86.4522 | 86.4517 | 14.9105 | | 0.0411 | 5.02 | 8900 | 0.4707 | 86.884 | 79.6339 | 86.3403 | 86.3413 | 14.9178 | | 0.0283 | 5.08 | 9000 | 0.4809 | 86.9403 | 79.8934 | 86.4149 | 86.4145 | 14.9183 | | 0.029 | 5.14 | 9100 | 0.4799 | 86.8942 | 79.7148 | 86.3502 | 86.3571 | 14.9064 | | 0.0268 | 5.19 | 9200 | 0.4910 | 86.9841 | 79.8403 | 86.4605 | 86.4683 | 14.9233 | | 0.0294 | 5.25 | 9300 | 0.4838 | 86.9494 | 79.9215 | 86.4508 | 86.4474 | 14.9151 | | 0.028 | 5.3 | 9400 | 0.5042 | 87.1362 | 80.0747 | 86.6251 | 86.6238 | 14.9169 | | 0.0291 | 5.36 | 9500 | 0.4997 | 87.0858 | 80.036 | 86.5966 | 86.5908 | 14.9087 | | 0.0291 | 5.42 | 9600 | 0.4983 | 87.0756 | 79.9726 | 86.5872 | 86.5865 | 14.9037 | | 0.0282 | 5.47 | 9700 | 0.5073 | 87.0901 | 79.8924 | 86.5942 | 86.595 | 14.8982 | | 0.0299 | 5.53 | 9800 | 0.4945 | 87.145 | 79.9289 | 86.6143 | 86.6206 | 14.8987 | | 0.0278 | 5.59 | 9900 | 0.5187 | 86.9691 | 79.7553 | 86.4589 | 86.4624 | 14.9051 | | 0.0237 | 5.64 | 10000 | 0.5246 | 86.9827 | 79.7671 | 86.4783 | 86.4701 | 14.9119 | | 0.03 | 5.7 | 10100 | 0.4944 | 87.0292 | 79.8105 | 86.4909 | 86.5016 | 14.9119 | | 0.0289 | 5.76 | 10200 | 0.5131 | 87.0028 | 79.8731 | 86.5042 | 86.5187 | 14.9137 | | 0.0296 | 5.81 | 10300 | 0.4963 | 87.1329 | 79.9334 | 86.6172 | 86.6194 | 14.9128 | | 0.0287 | 5.87 | 10400 | 0.4893 | 87.0761 | 79.9902 | 86.5448 | 86.5427 | 14.9174 | | 0.029 | 5.93 | 10500 | 0.4880 | 87.0082 | 79.8738 | 86.4987 | 86.4864 | 14.9105 | | 0.0281 | 5.98 | 10600 | 0.4928 | 87.0415 | 79.8243 | 86.5291 | 86.5279 | 14.9206 | | 0.0236 | 6.04 | 10700 | 0.5026 | 86.9936 | 79.8109 | 86.4741 | 86.4771 | 14.9165 | | 0.0172 | 6.09 | 10800 | 0.5242 | 87.0859 | 80.0264 | 86.5787 | 86.5684 | 14.9178 | | 0.0157 | 6.15 | 10900 | 0.5386 | 87.0647 | 80.1227 | 86.5723 | 86.5658 | 14.9197 | | 0.0175 | 6.21 | 11000 | 0.5222 | 87.034 | 80.051 | 86.525 | 86.5177 | 14.9160 | | 0.0155 | 6.26 | 11100 | 0.5445 | 87.0634 | 79.9564 | 86.5556 | 86.5507 | 14.9101 | | 0.0147 | 6.32 | 11200 | 0.5602 | 87.0164 | 79.9748 | 86.505 | 86.4928 | 14.9105 | | 0.0156 | 6.38 | 11300 | 0.5587 | 87.1387 | 79.9561 | 86.6298 | 86.6329 | 14.9137 | | 0.0157 | 6.43 | 11400 | 0.5655 | 87.1027 | 80.1466 | 86.6023 | 86.5983 | 14.9201 | | 0.0139 | 6.49 | 11500 | 0.5773 | 87.1318 | 80.1543 | 86.5965 | 86.6127 | 14.9251 | | 0.0152 | 6.55 | 11600 | 0.5748 | 87.2417 | 80.2155 | 86.7204 | 86.7277 | 14.9128 | | 0.0169 | 6.6 | 11700 | 0.5558 | 87.2049 | 80.1632 | 86.7078 | 86.7198 | 14.9042 | | 0.0158 | 6.66 | 11800 | 0.5452 | 87.0358 | 79.9864 | 86.5181 | 86.5149 | 14.9151 | | 0.0169 | 6.72 | 11900 | 0.5411 | 87.0557 | 79.9435 | 86.5372 | 86.5375 | 14.9087 | | 0.0127 | 6.77 | 12000 | 0.5564 | 87.0617 | 80.0711 | 86.5398 | 86.5645 | 14.9051 | | 0.0158 | 6.83 | 12100 | 0.5545 | 87.0269 | 80.0081 | 86.4936 | 86.5004 | 14.9247 | | 0.0142 | 6.88 | 12200 | 0.5520 | 87.1107 | 80.1457 | 86.5775 | 86.5851 | 14.9192 | | 0.0142 | 6.94 | 12300 | 0.5590 | 87.152 | 80.1378 | 86.604 | 86.6048 | 14.9178 | | 0.0146 | 7.0 | 12400 | 0.5633 | 87.1416 | 80.1493 | 86.6109 | 86.6128 | 14.9178 | | 0.0087 | 7.05 | 12500 | 0.5928 | 87.1881 | 80.1549 | 86.6642 | 86.6747 | 14.9133 | | 0.0094 | 7.11 | 12600 | 0.5998 | 87.2084 | 80.2571 | 86.7023 | 86.6967 | 14.9042 | | 0.0082 | 7.17 | 12700 | 0.6086 | 87.1567 | 80.204 | 86.6479 | 86.6462 | 14.9147 | | 0.0096 | 7.22 | 12800 | 0.6106 | 87.173 | 80.1732 | 86.658 | 86.6586 | 14.9156 | | 0.0084 | 7.28 | 12900 | 0.6318 | 87.1298 | 80.1264 | 86.6351 | 86.638 | 14.9174 | | 0.0079 | 7.34 | 13000 | 0.6363 | 87.1628 | 80.1184 | 86.6548 | 86.6486 | 14.9174 | | 0.0091 | 7.39 | 13100 | 0.6313 | 87.241 | 80.2331 | 86.7437 | 86.7435 | 14.9156 | | 0.0088 | 7.45 | 13200 | 0.6376 | 87.1652 | 80.1422 | 86.661 | 86.6599 | 14.9142 | | 0.0091 | 7.51 | 13300 | 0.6364 | 87.1554 | 80.1285 | 86.6576 | 86.6553 | 14.9147 | | 0.0081 | 7.56 | 13400 | 0.6372 | 87.2418 | 80.192 | 86.7178 | 86.7199 | 14.9188 | | 0.0103 | 7.62 | 13500 | 0.6369 | 87.1754 | 80.1347 | 86.666 | 86.666 | 14.9133 | | 0.0094 | 7.67 | 13600 | 0.6382 | 87.1611 | 80.1066 | 86.6541 | 86.6488 | 14.9142 | | 0.0081 | 7.73 | 13700 | 0.6371 | 87.1836 | 80.0865 | 86.6575 | 86.6538 | 14.9151 | | 0.0076 | 7.79 | 13800 | 0.6377 | 87.1652 | 80.0572 | 86.6498 | 86.6569 | 14.9142 | | 0.0092 | 7.84 | 13900 | 0.6354 | 87.1638 | 80.0867 | 86.6563 | 86.6536 | 14.9142 | | 0.0076 | 7.9 | 14000 | 0.6346 | 87.1814 | 80.1212 | 86.6698 | 86.6683 | 14.9137 | | 0.0063 | 7.96 | 14100 | 0.6373 | 87.1913 | 80.1322 | 86.6793 | 86.6765 | 14.9128 | ### Framework versions - Transformers 4.30.1 - Pytorch 1.11.0a0+b6df043 - Datasets 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_lora_500_10_3000_8_e4_s108_v3
KingKazma
2023-07-16T22:13:58Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:13:57Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
mgeller/opt-6.7b-lora
mgeller
2023-07-16T22:06:40Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-12T22:58:35Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
nbroad/setfit-sci-wiki-large
nbroad
2023-07-16T21:58:13Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-07-16T21:57:15Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # nbroad/setfit-sci-wiki-large This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("nbroad/setfit-sci-wiki-large") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
KingKazma/xsum_gpt2_lora_500_10_3000_8_e1_s108_v3
KingKazma
2023-07-16T21:52:56Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T21:52:55Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
SinanAkkoyun/orca_mini_3b_gptq_badtest
SinanAkkoyun
2023-07-16T21:49:31Z
5
0
transformers
[ "transformers", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-16T21:27:48Z
This is a very bad attempt at quantizing 128g 4 bit with alpaca (in orca style prompt ```sh python quantize_alpaca.py --pretrained_model_dir orca_mini_3b/ --bits 4 --group_size 128 --quantized_model_dir orca_mini_3b_gptq/ --save_and_reloa ``` Downloqd cleaned dataset first: https://github.com/gururise/AlpacaDataCleaned
LarryAIDraw/roxy-08
LarryAIDraw
2023-07-16T21:46:08Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T21:42:37Z
--- license: creativeml-openrail-m --- https://civitai.com/models/109272/roxy-oror-mushoku-tensei
KingKazma/xsum_gpt2_lora_500_10_3000_8_e0_s108_v3
KingKazma
2023-07-16T21:45:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T21:45:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
LarryAIDraw/Predator
LarryAIDraw
2023-07-16T21:45:47Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T21:42:05Z
--- license: creativeml-openrail-m --- https://civitai.com/models/109356/predator-or-granblue-fantasy
quangnguyennn/pokemon-lora
quangnguyennn
2023-07-16T21:41:33Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-16T12:51:01Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - quangnguyennn/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
KingKazma/xsum_gpt2_lora_500_10_3000_8_e-1_s108_v3
KingKazma
2023-07-16T21:38:46Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T21:38:45Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e9_s6789_v3
KingKazma
2023-07-16T21:14:32Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-15T01:36:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
Debayan990/my-pet-cat-jxl
Debayan990
2023-07-16T21:13:51Z
13
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-16T21:01:07Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Cat-jxl Dreambooth model trained by Debayan990 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: BBIT47 Sample pictures of this concept: ![0](https://huggingface.co/Debayan990/my-pet-cat-jxl/resolve/main/sample_images/00000-2838740840.png) ![1](https://huggingface.co/Debayan990/my-pet-cat-jxl/resolve/main/sample_images/00003-3628577076.png) ![2](https://huggingface.co/Debayan990/my-pet-cat-jxl/resolve/main/sample_images/00001-1217343363.png)
MichaelS91/autotrain-hub_testing-75008139803
MichaelS91
2023-07-16T21:08:49Z
108
0
transformers
[ "transformers", "pytorch", "safetensors", "deberta", "text-classification", "autotrain", "text-regression", "en", "dataset:MichaelS91/autotrain-data-hub_testing", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-16T21:05:50Z
--- tags: - autotrain - text-regression language: - en widget: - text: "I love AutoTrain" datasets: - MichaelS91/autotrain-data-hub_testing co2_eq_emissions: emissions: 1.5911364056652006 --- # Model Trained Using AutoTrain - Problem type: Single Column Regression - Model ID: 75008139803 - CO2 Emissions (in grams): 1.5911 ## Validation Metrics - Loss: 1.889 - MSE: 1.889 - MAE: 1.094 - R2: 0.221 - RMSE: 1.374 - Explained Variance: 0.242 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/MichaelS91/autotrain-hub_testing-75008139803 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("MichaelS91/autotrain-hub_testing-75008139803", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("MichaelS91/autotrain-hub_testing-75008139803", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
hseokool/vicuna-7b-v1.3-230623-09
hseokool
2023-07-16T20:40:52Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-14T11:46:32Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
FightingFalcon/SonmezReyiz
FightingFalcon
2023-07-16T20:39:15Z
0
0
null
[ "sönmez", "sönmezreyiz", "türkçe", "turkish", "tr", "arxiv:1910.09700", "license:openrail", "region:us" ]
null
2023-07-16T20:00:15Z
--- license: openrail language: - tr tags: - sönmez - sönmezreyiz - türkçe - turkish --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This model card aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KingKazma/xsum_gpt2_lora_500_10_3000_8_e3_s6789_v3
KingKazma
2023-07-16T20:32:19Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-15T00:01:06Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
rshrott/falcon-7b-instruct-ft-descriptions-adapters
rshrott
2023-07-16T20:20:19Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T20:15:42Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e1_s6789_v3
KingKazma
2023-07-16T20:18:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-14T23:29:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
bskang/test_demo_ver
bskang
2023-07-16T20:17:48Z
34
0
peft
[ "peft", "text-generation", "en", "region:us" ]
text-generation
2023-07-16T20:15:26Z
--- library_name: peft language: - en pipeline_tag: text-generation --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
anindya64/alpaca-bank-issue-summarization-20b-EthurAI
anindya64
2023-07-16T20:00:19Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T20:00:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
Meina/MeinaMix_V11
Meina
2023-07-16T19:53:46Z
6,643
35
diffusers
[ "diffusers", "safetensors", "art", "anime", "stable diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-16T19:11:15Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - art - anime - stable diffusion --- MeinaMix Objective is to be able to do good art with little prompting. For examples and prompts, please checkout: https://civitai.com/models/7240/meinamix I have a discord server where you can post images that you generated, discuss prompt and/or ask for help. https://discord.gg/XC9nGZNDUd If you like one of my models and want to support their updates I've made a ko-fi page; https://ko-fi.com/meina where you can pay me a coffee <3 And a Patreon page; https://www.patreon.com/MeinaMix where you can support me and get acess to beta of my models! You may also try this model using Sinkin.ai: https://sinkin.ai/m/vln8Nwr MeinaMix and the other of Meinas will ALWAYS be FREE. Recommendations of use: Enable Quantization in K samplers. Hires.fix is needed for prompts where the character is far away in order to make decent images, it drastically improve the quality of face and eyes! Recommended parameters: Sampler: Euler a: 40 to 60 steps. Sampler: DPM++ SDE Karras: 20 to 30 steps. Sampler: DPM++ 2M Karras: 20 to 40 steps. CFG Scale: 7. Resolutions: 512x768, 512x1024 for Portrait! Resolutions: 768x512, 1024x512, 1536x512 for Landscape! Hires.fix: R-ESRGAN 4x+Anime6b, with 10 steps at 0.3 up to 0.5 denoising. Clip Skip: 2. Negatives: ' (worst quality, low quality:1.4), (zombie, sketch, interlocked fingers, comic) '
rshrott/falcon-7b-instruct-ft-adapters
rshrott
2023-07-16T19:48:46Z
5
0
peft
[ "peft", "pytorch", "RefinedWebModel", "custom_code", "region:us" ]
null
2023-07-16T13:37:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
Dlychan/Tokyolagi
Dlychan
2023-07-16T19:42:33Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T19:41:10Z
--- license: creativeml-openrail-m ---
bskang/bskang8
bskang
2023-07-16T19:39:22Z
0
0
null
[ "en", "license:openrail", "region:us" ]
null
2023-07-16T12:18:21Z
--- language: - en license: openrail ---
Araki/airoboros-33b-gpt4-1.4.1-PI-8192-GGML
Araki
2023-07-16T19:23:42Z
0
2
null
[ "llama", "ggml", "text-generation", "region:us" ]
text-generation
2023-07-16T00:08:31Z
--- pipeline_tag: text-generation tags: - llama - ggml --- **Quantization from:** [bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-fp16](https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-fp16) **Converted to the GGML format with:** [llama.cpp master-6e7cca4 (JUL 15, 2023)](https://github.com/ggerganov/llama.cpp/releases/tag/master-6e7cca4) **Tested with:** [koboldcpp 1.35](https://github.com/LostRuins/koboldcpp/releases/tag/v1.35) **Example usage:** ``` koboldcpp.exe airoboros-33b-gpt4-1.4.1-PI-8192-ggmlv3.Q2_K.bin --threads 6 --linearrope --contextsize 8192 --stream --smartcontext --unbantokens --noblas ```
anujsahani01/NeuralCodeBot_starchat
anujsahani01
2023-07-16T19:18:12Z
0
0
null
[ "generated_from_trainer", "license:bigcode-openrail-m", "region:us" ]
null
2023-07-15T11:21:28Z
--- license: bigcode-openrail-m tags: - generated_from_trainer model-index: - name: NeuralCodeBot_starchat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NeuralCodeBot_starchat This model is a fine-tuned version of [HuggingFaceH4/starchat-alpha](https://huggingface.co/HuggingFaceH4/starchat-alpha) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 5000 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
YojitShinde/ppo-Pyramids
YojitShinde
2023-07-16T19:13:01Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-07-16T19:11:49Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: YojitShinde/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ailabturkiye/umitozdag
ailabturkiye
2023-07-16T19:11:50Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T18:57:55Z
--- license: openrail language: - tr tags: - music --- Ümit Özdağ 200 Epochs [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) # Ümit Özdağ - RVC V2 200 Epoch **Zafer Partisi Başkanı Ümit Özdağ`nın ses modelidir, Rvc V2 200 epoch olarak eğitilmiştir.** _Dataset ve Train Benim Tarafımdan yapılmıştır.._ __Modelin izinsiz bir şekilde [Ai Lab Discord](discord.gg/ailab) Sunucusu dışında paylaşılması tamamen yasaktır, model openrail lisansına sahiptir.__ ## Credits **Herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur.** - Discord: Bif-Tek#0505 ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue)
jeremyvictor/t5-v1_1-base-fce-e8-b16
jeremyvictor
2023-07-16T18:47:47Z
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-16T15:27:24Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-v1_1-base-fce-e8-b16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-v1_1-base-fce-e8-b16 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3409 - Rouge1: 87.1583 - Rouge2: 79.8003 - Rougel: 86.6556 - Rougelsum: 86.6858 - Gen Len: 14.8987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 3.9063 | 0.06 | 100 | 0.8111 | 27.4937 | 22.9629 | 27.3015 | 27.2771 | 7.4286 | | 0.7836 | 0.11 | 200 | 0.5104 | 85.4419 | 76.9583 | 84.8358 | 84.8509 | 15.0488 | | 0.6368 | 0.17 | 300 | 0.4682 | 86.2542 | 77.5212 | 85.6688 | 85.6923 | 14.8298 | | 0.5924 | 0.23 | 400 | 0.4734 | 86.4845 | 78.0506 | 85.9059 | 85.9008 | 14.8352 | | 0.5694 | 0.28 | 500 | 0.4081 | 86.352 | 78.0709 | 85.8245 | 85.8281 | 14.8585 | | 0.5335 | 0.34 | 600 | 0.4179 | 86.5893 | 78.4175 | 86.0693 | 86.0625 | 14.8745 | | 0.5246 | 0.4 | 700 | 0.3990 | 86.4139 | 78.4306 | 85.9523 | 85.9443 | 14.8617 | | 0.504 | 0.45 | 800 | 0.4233 | 86.7504 | 78.7906 | 86.2416 | 86.2447 | 14.8759 | | 0.4818 | 0.51 | 900 | 0.4008 | 86.7978 | 78.8187 | 86.2413 | 86.2432 | 14.8699 | | 0.4756 | 0.56 | 1000 | 0.4028 | 86.9123 | 79.0247 | 86.3563 | 86.3635 | 14.8640 | | 0.4772 | 0.62 | 1100 | 0.3789 | 86.5028 | 78.5736 | 85.9794 | 85.9983 | 14.8717 | | 0.4638 | 0.68 | 1200 | 0.3818 | 86.6276 | 78.7383 | 86.084 | 86.0903 | 14.9124 | | 0.4614 | 0.73 | 1300 | 0.3839 | 86.8128 | 79.2001 | 86.3591 | 86.3519 | 14.8695 | | 0.4326 | 0.79 | 1400 | 0.3751 | 86.9302 | 79.3511 | 86.4188 | 86.4311 | 14.9019 | | 0.4485 | 0.85 | 1500 | 0.3654 | 86.6862 | 79.0433 | 86.1832 | 86.1872 | 14.9206 | | 0.4187 | 0.9 | 1600 | 0.3823 | 86.9451 | 79.2758 | 86.4628 | 86.4724 | 14.8795 | | 0.4218 | 0.96 | 1700 | 0.3696 | 86.9051 | 79.1393 | 86.3682 | 86.3627 | 14.9220 | | 0.3812 | 1.02 | 1800 | 0.3699 | 87.0233 | 79.4507 | 86.513 | 86.5154 | 14.8873 | | 0.3116 | 1.07 | 1900 | 0.3763 | 86.9293 | 79.2058 | 86.4356 | 86.4445 | 14.8918 | | 0.3237 | 1.13 | 2000 | 0.3740 | 87.0449 | 79.4088 | 86.5157 | 86.5319 | 14.8918 | | 0.3071 | 1.19 | 2100 | 0.3690 | 86.5698 | 78.4408 | 85.9993 | 86.0409 | 14.9069 | | 0.3072 | 1.24 | 2200 | 0.3646 | 86.9336 | 79.334 | 86.4284 | 86.4303 | 14.8918 | | 0.2953 | 1.3 | 2300 | 0.3750 | 86.7437 | 78.949 | 86.2131 | 86.202 | 14.8909 | | 0.308 | 1.35 | 2400 | 0.3613 | 86.792 | 79.2179 | 86.2832 | 86.2934 | 14.8923 | | 0.3132 | 1.41 | 2500 | 0.3528 | 86.7653 | 79.0525 | 86.2258 | 86.2357 | 14.9110 | | 0.3141 | 1.47 | 2600 | 0.3494 | 86.8884 | 79.2484 | 86.3719 | 86.3622 | 14.9069 | | 0.3095 | 1.52 | 2700 | 0.3539 | 87.0166 | 79.5218 | 86.5167 | 86.5248 | 14.8905 | | 0.3274 | 1.58 | 2800 | 0.3599 | 87.2104 | 79.7277 | 86.7135 | 86.7127 | 14.8854 | | 0.312 | 1.64 | 2900 | 0.3536 | 86.8926 | 79.2971 | 86.3699 | 86.3666 | 14.8886 | | 0.3134 | 1.69 | 3000 | 0.3518 | 87.0884 | 79.5848 | 86.5877 | 86.6005 | 14.9028 | | 0.3012 | 1.75 | 3100 | 0.3573 | 86.3559 | 78.1413 | 85.8416 | 85.8479 | 14.8763 | | 0.311 | 1.81 | 3200 | 0.3467 | 86.9837 | 79.4983 | 86.4827 | 86.4981 | 14.8937 | | 0.303 | 1.86 | 3300 | 0.3422 | 86.9232 | 79.3542 | 86.4098 | 86.4427 | 14.9032 | | 0.304 | 1.92 | 3400 | 0.3409 | 87.1583 | 79.8003 | 86.6556 | 86.6858 | 14.8987 | | 0.2934 | 1.98 | 3500 | 0.3485 | 87.0529 | 79.6491 | 86.5825 | 86.6003 | 14.9000 | | 0.247 | 2.03 | 3600 | 0.3586 | 87.0147 | 79.6418 | 86.5126 | 86.5339 | 14.9042 | | 0.193 | 2.09 | 3700 | 0.3667 | 86.9326 | 79.4481 | 86.4675 | 86.4709 | 14.9128 | | 0.195 | 2.14 | 3800 | 0.3673 | 86.8892 | 79.3638 | 86.3717 | 86.3866 | 14.9210 | | 0.19 | 2.2 | 3900 | 0.3670 | 86.8789 | 79.4677 | 86.3925 | 86.3892 | 14.9023 | | 0.2033 | 2.26 | 4000 | 0.3600 | 86.9004 | 79.5211 | 86.4043 | 86.407 | 14.9042 | | 0.1969 | 2.31 | 4100 | 0.3587 | 87.0403 | 79.7208 | 86.5257 | 86.5245 | 14.8978 | | 0.2035 | 2.37 | 4200 | 0.3630 | 86.8793 | 79.4667 | 86.3931 | 86.3875 | 14.8895 | | 0.2162 | 2.43 | 4300 | 0.3722 | 86.78 | 79.3367 | 86.2742 | 86.2812 | 14.9083 | | 0.1984 | 2.48 | 4400 | 0.3573 | 86.7248 | 79.2577 | 86.218 | 86.2139 | 14.8918 | | 0.2058 | 2.54 | 4500 | 0.3617 | 86.6452 | 79.1422 | 86.1701 | 86.1838 | 14.8909 | | 0.2161 | 2.6 | 4600 | 0.3554 | 86.8574 | 79.5476 | 86.3982 | 86.4095 | 14.9283 | | 0.215 | 2.65 | 4700 | 0.3583 | 86.8873 | 79.5265 | 86.4039 | 86.3996 | 14.8923 | | 0.2048 | 2.71 | 4800 | 0.3535 | 86.8465 | 79.3852 | 86.3446 | 86.344 | 14.8978 | | 0.2099 | 2.77 | 4900 | 0.3601 | 86.8952 | 79.4424 | 86.3888 | 86.387 | 14.8868 | | 0.2149 | 2.82 | 5000 | 0.3603 | 86.7871 | 79.2397 | 86.297 | 86.3004 | 14.8850 | | 0.2251 | 2.88 | 5100 | 0.3448 | 86.9477 | 79.6744 | 86.4984 | 86.4911 | 14.9133 | | 0.2048 | 2.93 | 5200 | 0.3522 | 86.8843 | 79.37 | 86.3702 | 86.3668 | 14.8955 | | 0.2099 | 2.99 | 5300 | 0.3459 | 86.7938 | 79.2104 | 86.3027 | 86.3169 | 14.9137 | | 0.1377 | 3.05 | 5400 | 0.4000 | 86.9855 | 79.4184 | 86.438 | 86.4375 | 14.9110 | | 0.1369 | 3.1 | 5500 | 0.3848 | 86.8338 | 79.2098 | 86.2885 | 86.3028 | 14.9019 | | 0.1357 | 3.16 | 5600 | 0.3914 | 86.7061 | 79.2474 | 86.2247 | 86.2237 | 14.9105 | | 0.1263 | 3.22 | 5700 | 0.3864 | 86.7128 | 79.1103 | 86.2121 | 86.2166 | 14.9137 | | 0.135 | 3.27 | 5800 | 0.3929 | 86.8134 | 79.4572 | 86.3608 | 86.3683 | 14.9124 | | 0.1361 | 3.33 | 5900 | 0.3828 | 86.9149 | 79.4756 | 86.4152 | 86.3959 | 14.8959 | | 0.1286 | 3.39 | 6000 | 0.3849 | 86.8025 | 79.3645 | 86.3215 | 86.3204 | 14.8996 | | 0.1335 | 3.44 | 6100 | 0.3793 | 86.7591 | 79.2887 | 86.2778 | 86.2765 | 14.9105 | | 0.1278 | 3.5 | 6200 | 0.3938 | 86.8352 | 79.4161 | 86.3282 | 86.3376 | 14.9169 | | 0.1346 | 3.56 | 6300 | 0.3943 | 86.9637 | 79.6404 | 86.4753 | 86.4718 | 14.8978 | | 0.1421 | 3.61 | 6400 | 0.3799 | 86.8445 | 79.4133 | 86.3271 | 86.3206 | 14.9151 | | 0.1398 | 3.67 | 6500 | 0.3923 | 86.9793 | 79.6847 | 86.4935 | 86.4889 | 14.9174 | | 0.1359 | 3.72 | 6600 | 0.3912 | 86.9095 | 79.3593 | 86.4296 | 86.4506 | 14.8959 | | 0.1444 | 3.78 | 6700 | 0.3741 | 86.8498 | 79.3141 | 86.3586 | 86.3681 | 14.8909 | | 0.1351 | 3.84 | 6800 | 0.3840 | 87.223 | 79.825 | 86.7127 | 86.7371 | 14.8877 | | 0.1325 | 3.89 | 6900 | 0.3816 | 87.148 | 79.8102 | 86.6405 | 86.6511 | 14.9133 | | 0.1315 | 3.95 | 7000 | 0.3796 | 86.7778 | 79.3782 | 86.3057 | 86.2939 | 14.9005 | | 0.1332 | 4.01 | 7100 | 0.3962 | 87.0238 | 79.6621 | 86.5384 | 86.5306 | 14.8996 | | 0.0834 | 4.06 | 7200 | 0.4271 | 86.9999 | 79.7076 | 86.4981 | 86.5026 | 14.9014 | | 0.088 | 4.12 | 7300 | 0.4176 | 86.9193 | 79.4698 | 86.4085 | 86.4171 | 14.9128 | | 0.0897 | 4.18 | 7400 | 0.4109 | 86.9287 | 79.5866 | 86.4541 | 86.4474 | 14.9037 | | 0.0908 | 4.23 | 7500 | 0.4109 | 87.1272 | 79.7632 | 86.6206 | 86.6176 | 14.9133 | | 0.0895 | 4.29 | 7600 | 0.4114 | 87.0107 | 79.7349 | 86.4873 | 86.4754 | 14.9023 | | 0.0856 | 4.35 | 7700 | 0.4242 | 87.0115 | 79.6387 | 86.4786 | 86.49 | 14.8982 | | 0.0852 | 4.4 | 7800 | 0.4271 | 86.9943 | 79.6717 | 86.5126 | 86.5026 | 14.9019 | | 0.0919 | 4.46 | 7900 | 0.4216 | 86.9903 | 79.67 | 86.512 | 86.5085 | 14.8937 | | 0.0907 | 4.51 | 8000 | 0.4180 | 87.0323 | 79.7092 | 86.5391 | 86.5343 | 14.8978 | | 0.0889 | 4.57 | 8100 | 0.4276 | 86.9813 | 79.6367 | 86.4697 | 86.4724 | 14.9115 | | 0.0907 | 4.63 | 8200 | 0.4209 | 87.0149 | 79.5637 | 86.5028 | 86.5059 | 14.9092 | | 0.0966 | 4.68 | 8300 | 0.4064 | 86.9685 | 79.4665 | 86.4393 | 86.4523 | 14.9010 | | 0.088 | 4.74 | 8400 | 0.4234 | 86.9921 | 79.5729 | 86.4977 | 86.5067 | 14.8800 | | 0.0897 | 4.8 | 8500 | 0.4117 | 87.0727 | 79.7094 | 86.5465 | 86.5482 | 14.9014 | | 0.0924 | 4.85 | 8600 | 0.4056 | 86.8789 | 79.409 | 86.3689 | 86.3672 | 14.9083 | | 0.0916 | 4.91 | 8700 | 0.4127 | 86.8645 | 79.4195 | 86.3814 | 86.3729 | 14.8982 | | 0.0908 | 4.97 | 8800 | 0.4054 | 86.9146 | 79.4138 | 86.4022 | 86.399 | 14.9000 | | 0.078 | 5.02 | 8900 | 0.4403 | 87.0178 | 79.6166 | 86.5112 | 86.505 | 14.9078 | | 0.0583 | 5.08 | 9000 | 0.4400 | 86.9828 | 79.649 | 86.4913 | 86.4962 | 14.9064 | | 0.057 | 5.14 | 9100 | 0.4637 | 87.0435 | 79.6446 | 86.5464 | 86.5252 | 14.9037 | | 0.0581 | 5.19 | 9200 | 0.4617 | 87.017 | 79.6255 | 86.5004 | 86.4907 | 14.9069 | | 0.0562 | 5.25 | 9300 | 0.4521 | 86.8638 | 79.479 | 86.3298 | 86.338 | 14.9096 | | 0.0588 | 5.3 | 9400 | 0.4472 | 86.9719 | 79.5608 | 86.4751 | 86.4798 | 14.9073 | | 0.0571 | 5.36 | 9500 | 0.4472 | 87.0325 | 79.6355 | 86.5154 | 86.5278 | 14.9073 | | 0.0589 | 5.42 | 9600 | 0.4580 | 87.1556 | 79.8992 | 86.627 | 86.6372 | 14.9064 | | 0.057 | 5.47 | 9700 | 0.4527 | 87.0033 | 79.6457 | 86.4846 | 86.5031 | 14.9101 | | 0.0595 | 5.53 | 9800 | 0.4538 | 87.0419 | 79.6632 | 86.5261 | 86.5434 | 14.9055 | | 0.062 | 5.59 | 9900 | 0.4518 | 87.0581 | 79.6818 | 86.54 | 86.551 | 14.9005 | | 0.0568 | 5.64 | 10000 | 0.4549 | 87.1255 | 79.8908 | 86.6143 | 86.6255 | 14.9042 | | 0.0572 | 5.7 | 10100 | 0.4557 | 86.9927 | 79.5946 | 86.4726 | 86.4953 | 14.9023 | | 0.0603 | 5.76 | 10200 | 0.4493 | 87.0665 | 79.7469 | 86.58 | 86.5934 | 14.8932 | | 0.0604 | 5.81 | 10300 | 0.4533 | 87.0864 | 79.7039 | 86.5871 | 86.5851 | 14.9042 | | 0.0564 | 5.87 | 10400 | 0.4653 | 87.082 | 79.766 | 86.5835 | 86.5775 | 14.9055 | | 0.0579 | 5.93 | 10500 | 0.4677 | 86.9805 | 79.5068 | 86.4708 | 86.4744 | 14.8882 | | 0.0582 | 5.98 | 10600 | 0.4607 | 86.9273 | 79.3762 | 86.4228 | 86.4225 | 14.9119 | | 0.0454 | 6.04 | 10700 | 0.4917 | 87.038 | 79.6146 | 86.5363 | 86.533 | 14.9156 | | 0.0399 | 6.09 | 10800 | 0.4986 | 87.0026 | 79.5481 | 86.4992 | 86.4924 | 14.9042 | | 0.0367 | 6.15 | 10900 | 0.5115 | 87.13 | 79.7506 | 86.6082 | 86.621 | 14.9055 | | 0.0405 | 6.21 | 11000 | 0.5084 | 87.0768 | 79.6986 | 86.5541 | 86.5403 | 14.9083 | | 0.0386 | 6.26 | 11100 | 0.5092 | 87.1376 | 79.7442 | 86.5937 | 86.5767 | 14.8996 | | 0.0382 | 6.32 | 11200 | 0.5063 | 87.0779 | 79.7205 | 86.561 | 86.5546 | 14.8982 | | 0.0431 | 6.38 | 11300 | 0.4950 | 87.0998 | 79.7699 | 86.5882 | 86.5916 | 14.9028 | | 0.0388 | 6.43 | 11400 | 0.5098 | 87.1711 | 79.8707 | 86.6425 | 86.6409 | 14.9023 | | 0.041 | 6.49 | 11500 | 0.4911 | 87.1742 | 79.8319 | 86.6434 | 86.6522 | 14.9005 | | 0.0379 | 6.55 | 11600 | 0.5023 | 87.2258 | 79.9175 | 86.7019 | 86.7018 | 14.9010 | | 0.0383 | 6.6 | 11700 | 0.5078 | 87.0913 | 79.7547 | 86.5767 | 86.5826 | 14.9046 | | 0.0387 | 6.66 | 11800 | 0.5111 | 87.1913 | 79.9592 | 86.6805 | 86.6742 | 14.9060 | | 0.0362 | 6.72 | 11900 | 0.5125 | 87.0096 | 79.6639 | 86.5037 | 86.5039 | 14.9124 | | 0.0343 | 6.77 | 12000 | 0.5210 | 87.0657 | 79.7384 | 86.5621 | 86.5561 | 14.9110 | | 0.0401 | 6.83 | 12100 | 0.5110 | 87.1338 | 79.8537 | 86.6368 | 86.6271 | 14.9124 | | 0.0353 | 6.88 | 12200 | 0.5169 | 87.082 | 79.756 | 86.5771 | 86.5718 | 14.9073 | | 0.0384 | 6.94 | 12300 | 0.4998 | 87.1211 | 79.8474 | 86.6016 | 86.6065 | 14.9078 | | 0.0395 | 7.0 | 12400 | 0.5184 | 87.1621 | 79.8793 | 86.6411 | 86.648 | 14.9064 | | 0.0243 | 7.05 | 12500 | 0.5387 | 87.1588 | 79.8545 | 86.6464 | 86.6627 | 14.9019 | | 0.0283 | 7.11 | 12600 | 0.5384 | 87.1909 | 79.8888 | 86.6567 | 86.6698 | 14.9042 | | 0.026 | 7.17 | 12700 | 0.5459 | 87.1782 | 79.7991 | 86.6373 | 86.6507 | 14.9028 | | 0.0303 | 7.22 | 12800 | 0.5301 | 87.1014 | 79.7321 | 86.5581 | 86.5743 | 14.9014 | | 0.0252 | 7.28 | 12900 | 0.5481 | 87.0907 | 79.6948 | 86.5306 | 86.5474 | 14.9069 | | 0.0273 | 7.34 | 13000 | 0.5469 | 87.0971 | 79.6697 | 86.5392 | 86.558 | 14.8987 | | 0.0249 | 7.39 | 13100 | 0.5462 | 87.095 | 79.6904 | 86.5559 | 86.566 | 14.9037 | | 0.0246 | 7.45 | 13200 | 0.5553 | 87.0964 | 79.6834 | 86.5572 | 86.5607 | 14.9055 | | 0.0286 | 7.51 | 13300 | 0.5501 | 87.0933 | 79.7177 | 86.5579 | 86.5582 | 14.9092 | | 0.0234 | 7.56 | 13400 | 0.5550 | 87.1266 | 79.7546 | 86.5833 | 86.5855 | 14.9087 | | 0.0263 | 7.62 | 13500 | 0.5570 | 87.0957 | 79.6859 | 86.5608 | 86.5584 | 14.9064 | | 0.0238 | 7.67 | 13600 | 0.5630 | 87.1368 | 79.7487 | 86.6036 | 86.6031 | 14.9032 | | 0.0258 | 7.73 | 13700 | 0.5598 | 87.1527 | 79.7481 | 86.622 | 86.6153 | 14.9055 | | 0.0249 | 7.79 | 13800 | 0.5649 | 87.15 | 79.7419 | 86.6106 | 86.6056 | 14.9046 | | 0.0272 | 7.84 | 13900 | 0.5616 | 87.1439 | 79.7597 | 86.6085 | 86.6081 | 14.9042 | | 0.0261 | 7.9 | 14000 | 0.5596 | 87.1359 | 79.7696 | 86.6081 | 86.6024 | 14.9051 | | 0.0233 | 7.96 | 14100 | 0.5611 | 87.1367 | 79.7636 | 86.6112 | 86.6019 | 14.9046 | ### Framework versions - Transformers 4.30.1 - Pytorch 1.11.0a0+b6df043 - Datasets 2.12.0 - Tokenizers 0.13.3
oakal/fourthbrain_bloomz_marketing
oakal
2023-07-16T18:32:44Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T18:32:38Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
harithapliyal/distilbert-base-uncased-finetuned-ner
harithapliyal
2023-07-16T18:26:04Z
62
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-16T17:06:57Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: harithapliyal/distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # harithapliyal/distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1975 - Validation Loss: 0.0734 - Train Precision: 0.9049 - Train Recall: 0.9116 - Train F1: 0.9083 - Train Accuracy: 0.9793 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.1975 | 0.0734 | 0.9049 | 0.9116 | 0.9083 | 0.9793 | 0 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
0sunfire0/rl_course_vizdoom_health_gathering_supreme_02
0sunfire0
2023-07-16T18:23:44Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T18:23:37Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.16 +/- 3.86 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r 0sunfire0/rl_course_vizdoom_health_gathering_supreme_02 ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .opt.conda.lib.python3.10.site-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme_02 ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .opt.conda.lib.python3.10.site-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme_02 --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
bodaay/Wizard-Vicuna-7B-Uncensored-ONNX
bodaay
2023-07-16T18:06:51Z
5
0
transformers
[ "transformers", "onnx", "llama", "text-generation", "uncensored", "en", "dataset:ehartford/wizard_vicuna_70k_unfiltered", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-16T16:18:44Z
--- license: other datasets: - ehartford/wizard_vicuna_70k_unfiltered language: - en tags: - uncensored --- Original Model: [ehartford/Wizard-Vicuna-7B-Uncensored](https://huggingface.co/ehartford/Wizard-Vicuna-7B-Uncensored) From Original Model Card: This is [wizard-vicuna-13b](https://huggingface.co/junelee/wizard-vicuna-13b) trained against LLaMA-7B with a subset of the dataset - responses that contained alignment / moralizing were removed. The intent is to train a WizardLM that doesn't have alignment built-in, so that alignment (of any sort) can be added separately with for example with a RLHF LoRA. Shout out to the open source AI/ML community, and everyone who helped me out. Note: An uncensored model has no guardrails. You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous object such as a knife, gun, lighter, or car. Publishing anything this model generates is the same as publishing it yourself. You are responsible for the content you publish, and you cannot blame the model any more than you can blame the knife, gun, lighter, or car for what you do with it.
rsml/bbert_qa
rsml
2023-07-16T17:59:30Z
120
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-16T17:42:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bbert_qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bbert_qa This model is a fine-tuned version of [bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12](https://huggingface.co/bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.3490 | | 2.7154 | 2.0 | 500 | 1.7686 | | 2.7154 | 3.0 | 750 | 1.6818 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
sherif1311/flan-t5-base-imdb-text-classification
sherif1311
2023-07-16T17:50:43Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-16T14:44:19Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: flan-t5-base-imdb-text-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-imdb-text-classification This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0797 - F1: 95.072 - Gen Len: 2.5005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
NasimB/children_bnc_rarity_all_no_cut
NasimB
2023-07-16T17:50:30Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-16T15:57:37Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: children_bnc_rarity_all_no_cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # children_bnc_rarity_all_no_cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7047 | 0.29 | 500 | 5.6398 | | 5.3501 | 0.58 | 1000 | 5.2066 | | 5.0056 | 0.88 | 1500 | 4.9588 | | 4.7258 | 1.17 | 2000 | 4.8173 | | 4.5734 | 1.46 | 2500 | 4.6948 | | 4.4663 | 1.75 | 3000 | 4.5804 | | 4.3402 | 2.05 | 3500 | 4.5071 | | 4.1471 | 2.34 | 4000 | 4.4576 | | 4.1137 | 2.63 | 4500 | 4.4027 | | 4.0777 | 2.92 | 5000 | 4.3468 | | 3.8629 | 3.22 | 5500 | 4.3449 | | 3.8078 | 3.51 | 6000 | 4.3108 | | 3.8044 | 3.8 | 6500 | 4.2763 | | 3.7029 | 4.09 | 7000 | 4.2803 | | 3.5324 | 4.39 | 7500 | 4.2741 | | 3.5239 | 4.68 | 8000 | 4.2585 | | 3.5091 | 4.97 | 8500 | 4.2454 | | 3.3521 | 5.26 | 9000 | 4.2592 | | 3.3357 | 5.56 | 9500 | 4.2584 | | 3.3348 | 5.85 | 10000 | 4.2573 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
nishchalprasad/lunar_lander_v2-PPO
nishchalprasad
2023-07-16T17:44:18Z
4
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T17:43:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO-MLP results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.46 +/- 24.94 name: mean_reward verified: false --- # **PPO-MLP** Agent playing **LunarLander-v2** This is a trained model of a **PPO-MLP** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kanu03/my-cat
kanu03
2023-07-16T17:44:02Z
107
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-16T17:39:19Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-cat Dreambooth model trained by kanu03 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: OPJU101 Sample pictures of this concept: ![0](https://huggingface.co/kanu03/my-cat/resolve/main/sample_images/01.jpg)
Za88yes/Afriana
Za88yes
2023-07-16T17:43:07Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-07-16T17:41:00Z
--- license: bigscience-openrail-m ---
Tasaloris13/finetuned-college-10
Tasaloris13
2023-07-16T17:42:10Z
3
0
peft
[ "peft", "region:us" ]
null
2023-07-16T16:59:34Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
balpreetspankaj/distilbert-base-uncased-finetuned-emotion
balpreetspankaj
2023-07-16T17:37:10Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-16T16:46:28Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2169 - Accuracy: 0.9285 - F1: 0.9283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.827 | 1.0 | 250 | 0.3132 | 0.9085 | 0.9062 | | 0.2411 | 2.0 | 500 | 0.2169 | 0.9285 | 0.9283 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
magicsword/wy-mt-en-zh-1
magicsword
2023-07-16T17:35:29Z
113
0
transformers
[ "transformers", "pytorch", "safetensors", "marian", "text2text-generation", "autotrain", "translation", "unk", "dataset:magicsword/autotrain-data-wy-mt-en-zh", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-16T15:16:22Z
--- tags: - autotrain - translation language: - unk - unk datasets: - magicsword/autotrain-data-wy-mt-en-zh co2_eq_emissions: emissions: 1.4514851624864995 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 74981139791 - CO2 Emissions (in grams): 1.4515 ## Validation Metrics - Loss: 2.215 - SacreBLEU: 12.702 - Gen len: 16.311
magicsword/wy-mt-en-zh-2
magicsword
2023-07-16T17:27:39Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "marian", "text2text-generation", "autotrain", "translation", "unk", "dataset:magicsword/autotrain-data-wy-mt-en-zh", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-16T15:15:50Z
--- tags: - autotrain - translation language: - unk - unk datasets: - magicsword/autotrain-data-wy-mt-en-zh co2_eq_emissions: emissions: 71.14399741050826 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 74981139786 - CO2 Emissions (in grams): 71.1440 ## Validation Metrics - Loss: 2.220 - SacreBLEU: 12.949 - Gen len: 16.386
lucasbertola/ppo-Pyramids
lucasbertola
2023-07-16T17:26:30Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-07-16T17:26:24Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: lucasbertola/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
JianPublisher/modeltest
JianPublisher
2023-07-16T17:25:48Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-16T17:20:11Z
--- license: mit tags: - generated_from_trainer model-index: - name: modeltest results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modeltest This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
jayantdocplix/falcon_model_finetuned
jayantdocplix
2023-07-16T17:25:44Z
3
0
peft
[ "peft", "region:us" ]
null
2023-07-15T19:29:45Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
odunola/transcriber-t5-v8-new
odunola
2023-07-16T17:23:29Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-16T16:37:38Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: transcriber-t5-v8-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # transcriber-t5-v8-new This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1008 | 0.72 | 500 | 0.1306 | | 0.069 | 1.43 | 1000 | 0.1227 | | 0.1052 | 2.15 | 1500 | 0.1209 | | 0.1017 | 2.86 | 2000 | 0.0992 | | 0.0828 | 3.58 | 2500 | 0.0919 | | 0.0471 | 4.29 | 3000 | 0.0927 | | 0.0769 | 5.01 | 3500 | 0.0849 | | 0.0732 | 5.72 | 4000 | 0.0862 | | 0.0801 | 6.44 | 4500 | 0.0857 | | 0.0428 | 7.15 | 5000 | 0.0815 | | 0.1119 | 7.87 | 5500 | 0.0790 | | 0.0692 | 8.58 | 6000 | 0.0780 | | 0.0684 | 9.3 | 6500 | 0.0818 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ailabturkiye/sda
ailabturkiye
2023-07-16T17:19:15Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T17:00:01Z
--- license: openrail language: - tr tags: - music ---
DanGalt/speecht5_finetuned_voxpopuli_fi
DanGalt
2023-07-16T17:11:18Z
82
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "fi", "dataset:facebook/voxpopuli", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-07-16T17:07:04Z
--- language: - fi license: mit tags: - generated_from_trainer - text-to-speech datasets: - facebook/voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_fi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_fi This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the facebook/voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 150 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.504 | 5.05 | 250 | 0.4645 | | 0.4882 | 10.1 | 500 | 0.4499 | | 0.467 | 15.15 | 750 | 0.4450 | | 0.4651 | 20.2 | 1000 | 0.4436 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
KingKazma/xsum_t5-small_prompt_tuning_500_10_3000_8_e-1_s55555_v3_manual
KingKazma
2023-07-16T17:02:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T17:02:55Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
ailabturkiye/azizyildirim
ailabturkiye
2023-07-16T16:47:56Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T16:37:16Z
--- license: openrail language: - tr tags: - music ---
iworeushankaonce/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
iworeushankaonce
2023-07-16T16:35:53Z
164
0
transformers
[ "transformers", "pytorch", "tensorboard", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-16T15:19:49Z
--- license: bsd-3-clause tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3882 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4932 | 1.0 | 112 | 0.5325 | 0.86 | | 0.3541 | 2.0 | 225 | 0.6068 | 0.77 | | 0.5743 | 3.0 | 337 | 0.6356 | 0.83 | | 0.6256 | 4.0 | 450 | 0.4878 | 0.86 | | 0.0619 | 5.0 | 562 | 0.4262 | 0.88 | | 0.0044 | 6.0 | 675 | 0.3266 | 0.91 | | 0.0018 | 7.0 | 787 | 0.4827 | 0.87 | | 0.001 | 8.0 | 900 | 0.9245 | 0.82 | | 0.1854 | 9.0 | 1012 | 0.4256 | 0.89 | | 0.0001 | 10.0 | 1125 | 0.3898 | 0.9 | | 0.0001 | 11.0 | 1237 | 0.3873 | 0.9 | | 0.0001 | 12.0 | 1350 | 0.4064 | 0.91 | | 0.0 | 13.0 | 1462 | 0.3910 | 0.9 | | 0.0 | 14.0 | 1575 | 0.3924 | 0.9 | | 0.0001 | 15.0 | 1687 | 0.3917 | 0.91 | | 0.0 | 16.0 | 1800 | 0.3903 | 0.9 | | 0.0 | 17.0 | 1912 | 0.3900 | 0.89 | | 0.0 | 18.0 | 2025 | 0.3894 | 0.89 | | 0.0 | 19.0 | 2137 | 0.3886 | 0.9 | | 0.0 | 19.91 | 2240 | 0.3882 | 0.9 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
WasuratS/whisper-tiny-en-finetune-minds14
WasuratS
2023-07-16T16:33:30Z
90
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-16T13:49:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en-finetune-minds14 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.3382526564344746 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-en-finetune-minds14 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6541 - Wer Ortho: 0.3399 - Wer: 0.3383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.3136 | 3.57 | 100 | 0.4883 | 0.3640 | 0.3524 | | 0.0417 | 7.14 | 200 | 0.5146 | 0.3560 | 0.3442 | | 0.0066 | 10.71 | 300 | 0.5736 | 0.3411 | 0.3353 | | 0.0017 | 14.29 | 400 | 0.6040 | 0.3455 | 0.3418 | | 0.0013 | 17.86 | 500 | 0.6226 | 0.3393 | 0.3365 | | 0.0009 | 21.43 | 600 | 0.6352 | 0.3393 | 0.3365 | | 0.0007 | 25.0 | 700 | 0.6436 | 0.3399 | 0.3371 | | 0.0006 | 28.57 | 800 | 0.6492 | 0.3399 | 0.3383 | | 0.0006 | 32.14 | 900 | 0.6530 | 0.3399 | 0.3383 | | 0.0006 | 35.71 | 1000 | 0.6541 | 0.3399 | 0.3383 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.13.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
cassandraqs/shan_homework1
cassandraqs
2023-07-16T16:29:28Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T16:29:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_t5-small_prompt_tuning_500_10_3000_8_e-1_s6789_v3_manual
KingKazma
2023-07-16T16:23:45Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T16:23:45Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
localmodels/LLaMA-65B-ggml
localmodels
2023-07-16T16:22:41Z
0
1
null
[ "region:us" ]
null
2023-07-16T16:22:41Z
--- duplicated_from: localmodels/LLM --- # LLaMA 65B ggml From Meta: https://ai.meta.com/blog/large-language-model-llama-meta-ai --- ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` Quantized using an older version of llama.cpp and compatible with llama.cpp from May 19, commit 2d5db48. ### k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` Quantization methods compatible with latest llama.cpp from June 6, commit 2d43387. --- ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | llama-65b.ggmlv3.q2_K.bin | q2_K | 2 | 27.33 GB| 29.83 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | | llama-65b.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 34.55 GB| 37.05 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | llama-65b.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 31.40 GB| 33.90 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | llama-65b.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 28.06 GB| 30.56 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | | llama-65b.ggmlv3.q4_0.bin | q4_0 | 4 | 36.73 GB| 39.23 GB | Original quant method, 4-bit. | | llama-65b.ggmlv3.q4_1.bin | q4_1 | 4 | 40.81 GB| 43.31 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | llama-65b.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 39.28 GB| 41.78 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | | llama-65b.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 36.73 GB| 39.23 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | | llama-65b.ggmlv3.q5_0.bin | q5_0 | 5 | 44.89 GB| 47.39 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | llama-65b.ggmlv3.q5_1.bin | q5_1 | 5 | 48.97 GB| 51.47 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | llama-65b.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 46.20 GB| 48.70 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | | llama-65b.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 44.89 GB| 47.39 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | | llama-65b.ggmlv3.q6_K.bin | q6_K |6 | 53.56 GB| 56.06 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors | | llama-65b.ggmlv3.q8_0.bin | q8_0 | 8 | 69.370 GB | 71.87 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
ailabturkiye/13killoki
ailabturkiye
2023-07-16T16:19:28Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T16:09:13Z
--- license: openrail language: - tr tags: - music --- 13Killoki'nin StereoBound Song Story videosuyla yaptığım model. Konuşma için uygundur.
ailabturkiye/Joker
ailabturkiye
2023-07-16T16:17:15Z
0
1
null
[ "license:openrail", "region:us" ]
null
2023-07-16T15:22:06Z
--- license: openrail --- [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) # Joker - RVC V2 300 Epoch **Rapper Joker`in ses modelidir, Rvc V2 300 epoch olarak eğitilmiştir.** _Dataset ve Train Benim Tarafımdan yapılmıştır.._ __Modelin izinsiz bir şekilde [Ai Lab Discord](discord.gg/ailab) Sunucusu dışında paylaşılması tamamen yasaktır, model openrail lisansına sahiptir.__ ## Credits **Herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur.** - Discord: barisdark0 - YouTube: Barış (https://www.youtube.com/@barisdark) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue)--- {} ---
ailabturkiye/KadirMisiroglu
ailabturkiye
2023-07-16T16:17:02Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T16:13:31Z
--- license: openrail language: - tr tags: - music --- Modeli kullanarak oluşturulan hiç bir ses hakkında sorumluluk bana ait değildir.
casque/Ultimate_ahegao
casque
2023-07-16T16:16:47Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T16:14:24Z
--- license: creativeml-openrail-m ---
ailabturkiye/NormEnder
ailabturkiye
2023-07-16T16:14:49Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-07-16T15:49:59Z
--- license: openrail --- [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) # Ceza - RVC V2 500 Epoch **Rapper Ceza`nın ses modelidir, Rvc V2 500 epoch olarak eğitilmiştir.** _Dataset ve Train Benim Tarafımdan yapılmıştır.._ __Modelin izinsiz bir şekilde [Ai Lab Discord](discord.gg/ailab) Sunucusu dışında paylaşılması tamamen yasaktır, model openrail lisansına sahiptir.__ ## Credits **Herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur.** - Discord: barisdark0 - YouTube: Barış (https://www.youtube.com/@barisdark) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue)--- {} ---
ailabturkiye/Beta
ailabturkiye
2023-07-16T16:13:26Z
0
0
null
[ "region:us" ]
null
2023-07-16T16:04:26Z
[![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) # Beta Berk Bayındır (3B) - RVC V2 500 Epoch **Beta Berk Bayındır'ın ses medolidir, Rvc V2 500 epoch olarak eğitilmiştir.** _Dataset ve Train Benim Tarafımdan yapılmıştır.._ __Modelin izinsiz bir şekilde [Ai Lab Discord](discord.gg/ailab) Sunucusu dışında paylaşılması tamamen yasaktır, model openrail lisansına sahiptir.__ ## Credits **Herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur.** - Discord: efemekkuin - YouTube: Ahmet Efe (https://www.youtube.com/channel/UCw40vAQRF8551rMWem6CaMg) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue)
ailabturkiye/AliErbas
ailabturkiye
2023-07-16T16:11:53Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T16:09:33Z
--- license: openrail language: - tr tags: - music --- Diyanet İşleri Başkanı Sayın Ali Erbaş. Modeli kullanarak oluşturulan hiç bir ses hakkında sorumluluk bana ait değildir.
casque/AfterSexMS
casque
2023-07-16T16:09:39Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T16:07:19Z
--- license: creativeml-openrail-m ---
n0n1m/rvc-krosh
n0n1m
2023-07-16T16:08:15Z
0
0
null
[ "audio-to-audio", "license:openrail", "region:us" ]
audio-to-audio
2023-07-15T17:45:37Z
--- license: openrail pipeline_tag: audio-to-audio --- Just a model of Krash from Kikoriki/Gogoriki or Krosh from Smeshariki
tyavika/Bert-QA-Pytorch-FULL
tyavika
2023-07-16T16:05:57Z
7
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-28T02:19:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Bert-QA-Pytorch-FULL results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bert-QA-Pytorch-FULL This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1633 | 1.0 | 3290 | 1.0515 | | 0.8061 | 2.0 | 6580 | 1.0593 | | 0.533 | 3.0 | 9870 | 1.2154 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ailabturkiye/NecmettinErbakan
ailabturkiye
2023-07-16T16:05:52Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T16:02:15Z
--- license: openrail language: - tr tags: - music --- Modeli kullanarak oluşturulan hiç bir ses hakkında sorumluluk bana ait değildir.
casque/Creampie_v11
casque
2023-07-16T16:05:41Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T16:03:25Z
--- license: creativeml-openrail-m ---
ailabturkiye/deepturkisherdi
ailabturkiye
2023-07-16T16:05:24Z
0
0
null
[ "region:us" ]
null
2023-07-16T16:04:08Z
--- license: openrail language: - tr tags: - music deepturkisherdi 500 epoch