modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-27 18:27:08
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-27 18:22:57
card
stringlengths
11
1.01M
YakovElm/Qt_15_BERT_Under_Sampling
YakovElm
2023-06-28T11:35:53Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T11:35:18Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Qt_15_BERT_Under_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Qt_15_BERT_Under_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0002 - Train Accuracy: 1.0 - Validation Loss: 0.4444 - Validation Accuracy: 0.9505 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.0261 | 0.9997 | 0.3635 | 0.9505 | 0 | | 0.0005 | 1.0 | 0.4156 | 0.9505 | 1 | | 0.0002 | 1.0 | 0.4444 | 0.9505 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Bodolaz/Unit-4.2-final3
Bodolaz
2023-06-28T11:26:20Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T11:26:15Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Unit-4.2-final3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 40.00 +/- 24.24 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
NickyNicky/MPT-7b-instruct-QLora-8Bits-Peft-train_eli5-1_Epoch-V8
NickyNicky
2023-06-28T11:09:07Z
2
0
peft
[ "peft", "region:us" ]
null
2023-06-28T11:09:03Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
wyklq/falcon-40b-gptq
wyklq
2023-06-28T11:08:48Z
9
2
transformers
[ "transformers", "safetensors", "RefinedWeb", "text-generation", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-28T10:58:03Z
Strict copy of https://huggingface.co/tiiuae/falcon-40b but quantized with GPTQ (on wikitext-2, 4bits, groupsize=128). Intended to be used with https://github.com/huggingface/text-generation-inference ``` model=huggingface/falcon-40b-gptq num_shard=2 volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.8 --model-id $model --num-shard $num_shard --quantize gptq ``` For full configuration and usage outside docker, please refer to https://github.com/huggingface/text-generation-inference
robrecht/ppo-Huggy
robrecht
2023-06-28T11:08:26Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-28T09:32:24Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: robrecht/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
fatcat22/a2c-PandaReachDense-v2
fatcat22
2023-06-28T11:00:08Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T10:59:08Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.70 +/- 0.20 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nayralabs/test
nayralabs
2023-06-28T10:51:33Z
0
0
diffusers
[ "diffusers", "code", "text-to-image", "en", "dataset:fka/awesome-chatgpt-prompts", "dataset:GAIR/lima", "arxiv:1910.09700", "license:bsd", "region:us" ]
text-to-image
2023-06-28T10:49:16Z
--- license: bsd datasets: - fka/awesome-chatgpt-prompts - GAIR/lima language: - en metrics: - accuracy library_name: diffusers pipeline_tag: text-to-image tags: - code --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
NickyNicky/MPT-7b-instruct-QLora-8Bits-Peft-train_eli5-1_Epoch-V7
NickyNicky
2023-06-28T10:50:38Z
5
0
peft
[ "peft", "region:us" ]
null
2023-06-28T10:50:35Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
BaoKien/albert_squadv2
BaoKien
2023-06-28T10:34:57Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-28T09:52:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: albert_squadv2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert_squadv2 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 4.1889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 4.7365 | | No log | 2.0 | 10 | 4.3391 | | No log | 3.0 | 15 | 4.1889 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
mnavas/bert-finetuned-token-reqsolvgencat
mnavas
2023-06-28T10:34:36Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-28T09:43:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: beto-finetuned-token-reqsolvgencat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beto-finetuned-token-reqsolvgencat This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0573 - Precision: 0.1111 - Recall: 0.5 - F1: 0.1818 - Accuracy: 0.7765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.8551 | 1.0 | 3 | 1.1478 | 0.0 | 0.0 | 0.0 | 0.4696 | | 1.4354 | 2.0 | 6 | 0.7403 | 0.0 | 0.0 | 0.0 | 0.6088 | | 0.6532 | 3.0 | 9 | 0.6900 | 0.0 | 0.0 | 0.0 | 0.6010 | | 0.406 | 4.0 | 12 | 2.0318 | 0.0 | 0.0 | 0.0 | 0.5284 | | 1.3514 | 5.0 | 15 | 1.3364 | 0.0 | 0.0 | 0.0 | 0.6186 | | 0.419 | 6.0 | 18 | 0.9463 | 0.0 | 0.0 | 0.0 | 0.6 | | 0.4816 | 7.0 | 21 | 0.9409 | 0.0 | 0.0 | 0.0 | 0.6314 | | 0.8621 | 8.0 | 24 | 0.9034 | 0.0 | 0.0 | 0.0 | 0.7010 | | 0.2981 | 9.0 | 27 | 0.9617 | 0.0 | 0.0 | 0.0 | 0.6039 | | 0.5882 | 10.0 | 30 | 0.5289 | 0.0 | 0.0 | 0.0 | 0.8 | | 0.4327 | 11.0 | 33 | 0.6573 | 0.2 | 0.5 | 0.2857 | 0.7882 | | 0.2076 | 12.0 | 36 | 0.9207 | 0.0 | 0.0 | 0.0 | 0.6784 | | 0.1454 | 13.0 | 39 | 0.7729 | 0.0 | 0.0 | 0.0 | 0.7882 | | 0.2339 | 14.0 | 42 | 0.9067 | 0.0 | 0.0 | 0.0 | 0.7608 | | 0.2281 | 15.0 | 45 | 0.4732 | 0.0 | 0.0 | 0.0 | 0.7892 | | 0.1058 | 16.0 | 48 | 0.8219 | 0.0667 | 0.5 | 0.1176 | 0.7961 | | 0.0577 | 17.0 | 51 | 0.9698 | 0.1429 | 0.5 | 0.2222 | 0.8147 | | 0.0354 | 18.0 | 54 | 1.3158 | 0.0714 | 0.5 | 0.125 | 0.7549 | | 0.0258 | 19.0 | 57 | 2.2414 | 0.1667 | 0.5 | 0.25 | 0.6941 | | 0.0456 | 20.0 | 60 | 1.2596 | 0.0667 | 0.5 | 0.1176 | 0.7520 | | 0.0339 | 21.0 | 63 | 1.8941 | 0.1667 | 0.5 | 0.25 | 0.7069 | | 0.02 | 22.0 | 66 | 1.0201 | 0.1 | 0.5 | 0.1667 | 0.7941 | | 0.0257 | 23.0 | 69 | 1.4716 | 0.0909 | 0.5 | 0.1538 | 0.7716 | | 0.0148 | 24.0 | 72 | 2.6551 | 0.0 | 0.0 | 0.0 | 0.6853 | | 0.0257 | 25.0 | 75 | 1.7904 | 0.125 | 0.5 | 0.2 | 0.7324 | | 0.0183 | 26.0 | 78 | 2.2579 | 0.2 | 0.5 | 0.2857 | 0.7078 | | 0.0218 | 27.0 | 81 | 1.3332 | 0.1667 | 0.5 | 0.25 | 0.7137 | | 0.0148 | 28.0 | 84 | 0.7506 | 0.0769 | 0.5 | 0.1333 | 0.8696 | | 0.0081 | 29.0 | 87 | 2.2165 | 0.1667 | 0.5 | 0.25 | 0.7059 | | 0.0098 | 30.0 | 90 | 2.5291 | 0.2 | 0.5 | 0.2857 | 0.7 | | 0.0072 | 31.0 | 93 | 2.5877 | 0.25 | 0.5 | 0.3333 | 0.6990 | | 0.0162 | 32.0 | 96 | 2.7463 | 0.1667 | 0.5 | 0.25 | 0.6941 | | 0.0073 | 33.0 | 99 | 2.2100 | 0.1429 | 0.5 | 0.2222 | 0.7176 | | 0.0057 | 34.0 | 102 | 1.5509 | 0.0769 | 0.5 | 0.1333 | 0.7814 | | 0.0077 | 35.0 | 105 | 1.8449 | 0.1111 | 0.5 | 0.1818 | 0.7578 | | 0.0071 | 36.0 | 108 | 2.3808 | 0.3333 | 0.5 | 0.4 | 0.7127 | | 0.0063 | 37.0 | 111 | 1.1188 | 0.125 | 0.5 | 0.2 | 0.8598 | | 0.0067 | 38.0 | 114 | 1.7108 | 0.0 | 0.0 | 0.0 | 0.7892 | | 0.0063 | 39.0 | 117 | 1.8995 | 0.1 | 0.5 | 0.1667 | 0.7363 | | 0.0086 | 40.0 | 120 | 2.0472 | 0.1667 | 0.5 | 0.25 | 0.7137 | | 0.0028 | 41.0 | 123 | 1.8879 | 0.1111 | 0.5 | 0.1818 | 0.7245 | | 0.0084 | 42.0 | 126 | 1.9545 | 0.1667 | 0.5 | 0.25 | 0.7157 | | 0.0018 | 43.0 | 129 | 2.5274 | 0.0 | 0.0 | 0.0 | 0.6922 | | 0.0031 | 44.0 | 132 | 2.0330 | 0.0909 | 0.5 | 0.1538 | 0.7245 | | 0.0034 | 45.0 | 135 | 0.9381 | 0.1 | 0.5 | 0.1667 | 0.8569 | | 0.0016 | 46.0 | 138 | 0.6307 | 0.1111 | 0.5 | 0.1818 | 0.8980 | | 0.0011 | 47.0 | 141 | 0.7823 | 0.0667 | 0.5 | 0.1176 | 0.8676 | | 0.0021 | 48.0 | 144 | 1.1034 | 0.0909 | 0.5 | 0.1538 | 0.8373 | | 0.0025 | 49.0 | 147 | 1.4482 | 0.2 | 0.5 | 0.2857 | 0.8108 | | 0.0023 | 50.0 | 150 | 1.5541 | 0.1667 | 0.5 | 0.25 | 0.8069 | | 0.0007 | 51.0 | 153 | 1.7164 | 0.1667 | 0.5 | 0.25 | 0.8010 | | 0.0002 | 52.0 | 156 | 1.8291 | 0.1667 | 0.5 | 0.25 | 0.7941 | | 0.0002 | 53.0 | 159 | 1.8918 | 0.1429 | 0.5 | 0.2222 | 0.7892 | | 0.0016 | 54.0 | 162 | 1.8814 | 0.2 | 0.5 | 0.2857 | 0.7961 | | 0.0013 | 55.0 | 165 | 1.8920 | 0.1 | 0.5 | 0.1667 | 0.7873 | | 0.0009 | 56.0 | 168 | 1.8802 | 0.1 | 0.5 | 0.1667 | 0.7843 | | 0.0017 | 57.0 | 171 | 1.7839 | 0.1111 | 0.5 | 0.1818 | 0.8 | | 0.0028 | 58.0 | 174 | 1.7409 | 0.1 | 0.5 | 0.1667 | 0.7961 | | 0.0029 | 59.0 | 177 | 2.1381 | 0.1 | 0.5 | 0.1667 | 0.7196 | | 0.0008 | 60.0 | 180 | 2.4554 | 0.125 | 0.5 | 0.2 | 0.6922 | | 0.0012 | 61.0 | 183 | 2.7071 | 0.125 | 0.5 | 0.2 | 0.6676 | | 0.0011 | 62.0 | 186 | 2.5624 | 0.125 | 0.5 | 0.2 | 0.6814 | | 0.0009 | 63.0 | 189 | 2.1029 | 0.2 | 0.5 | 0.2857 | 0.7363 | | 0.0011 | 64.0 | 192 | 1.5984 | 0.125 | 0.5 | 0.2 | 0.7804 | | 0.0005 | 65.0 | 195 | 1.4155 | 0.0909 | 0.5 | 0.1538 | 0.8088 | | 0.001 | 66.0 | 198 | 1.3276 | 0.1111 | 0.5 | 0.1818 | 0.8225 | | 0.0002 | 67.0 | 201 | 1.2844 | 0.1429 | 0.5 | 0.2222 | 0.8255 | | 0.0076 | 68.0 | 204 | 1.2601 | 0.1667 | 0.5 | 0.25 | 0.8275 | | 0.0003 | 69.0 | 207 | 1.3359 | 0.1429 | 0.5 | 0.2222 | 0.8343 | | 0.0027 | 70.0 | 210 | 1.2452 | 0.25 | 0.5 | 0.3333 | 0.8363 | | 0.004 | 71.0 | 213 | 1.7228 | 0.1 | 0.5 | 0.1667 | 0.7775 | | 0.0004 | 72.0 | 216 | 2.7878 | 0.5 | 0.5 | 0.5 | 0.6804 | | 1.1257 | 73.0 | 219 | 2.5785 | 0.5 | 0.5 | 0.5 | 0.6804 | | 0.0209 | 74.0 | 222 | 0.1081 | 0.1111 | 0.5 | 0.1818 | 0.9775 | | 0.0486 | 75.0 | 225 | 1.5039 | 0.0667 | 0.5 | 0.1176 | 0.7784 | | 0.0012 | 76.0 | 228 | 3.2975 | 0.0 | 0.0 | 0.0 | 0.6098 | | 0.0929 | 77.0 | 231 | 2.4796 | 0.3333 | 0.5 | 0.4 | 0.6618 | | 0.0006 | 78.0 | 234 | 1.6117 | 0.125 | 0.5 | 0.2 | 0.7951 | | 0.0077 | 79.0 | 237 | 1.8651 | 0.125 | 0.5 | 0.2 | 0.7127 | | 0.0032 | 80.0 | 240 | 2.0187 | 0.1667 | 0.5 | 0.25 | 0.6873 | | 0.0007 | 81.0 | 243 | 1.9540 | 0.1 | 0.5 | 0.1667 | 0.6902 | | 0.0011 | 82.0 | 246 | 1.8161 | 0.0714 | 0.5 | 0.125 | 0.7275 | | 0.0009 | 83.0 | 249 | 1.7688 | 0.1111 | 0.5 | 0.1818 | 0.7657 | | 0.0006 | 84.0 | 252 | 1.7025 | 0.1667 | 0.5 | 0.25 | 0.7912 | | 0.0003 | 85.0 | 255 | 1.6924 | 0.2 | 0.5 | 0.2857 | 0.7980 | | 0.0004 | 86.0 | 258 | 1.7019 | 0.1667 | 0.5 | 0.25 | 0.7980 | | 0.0008 | 87.0 | 261 | 1.7386 | 0.2 | 0.5 | 0.2857 | 0.7971 | | 0.0002 | 88.0 | 264 | 1.7882 | 0.1667 | 0.5 | 0.25 | 0.7961 | | 0.0001 | 89.0 | 267 | 1.8405 | 0.0833 | 0.5 | 0.1429 | 0.7833 | | 0.0004 | 90.0 | 270 | 1.8319 | 0.125 | 0.5 | 0.2 | 0.7931 | | 0.0003 | 91.0 | 273 | 1.8520 | 0.125 | 0.5 | 0.2 | 0.7931 | | 0.0001 | 92.0 | 276 | 1.8876 | 0.0909 | 0.5 | 0.1538 | 0.7873 | | 0.0001 | 93.0 | 279 | 1.9220 | 0.1 | 0.5 | 0.1667 | 0.7814 | | 0.0004 | 94.0 | 282 | 2.0870 | 0.1 | 0.5 | 0.1667 | 0.7333 | | 0.0004 | 95.0 | 285 | 2.1469 | 0.1111 | 0.5 | 0.1818 | 0.7225 | | 0.0009 | 96.0 | 288 | 2.1726 | 0.1429 | 0.5 | 0.2222 | 0.7196 | | 0.0007 | 97.0 | 291 | 1.9247 | 0.1 | 0.5 | 0.1667 | 0.7667 | | 0.0012 | 98.0 | 294 | 1.8172 | 0.1111 | 0.5 | 0.1818 | 0.7902 | | 0.0002 | 99.0 | 297 | 1.7789 | 0.1 | 0.5 | 0.1667 | 0.7980 | | 0.0109 | 100.0 | 300 | 1.8386 | 0.0909 | 0.5 | 0.1538 | 0.7843 | | 0.0008 | 101.0 | 303 | 2.0800 | 0.1 | 0.5 | 0.1667 | 0.7314 | | 0.0002 | 102.0 | 306 | 2.5253 | 0.3333 | 0.5 | 0.4 | 0.6804 | | 0.001 | 103.0 | 309 | 2.2149 | 0.1 | 0.5 | 0.1667 | 0.7118 | | 0.0001 | 104.0 | 312 | 1.8607 | 0.1 | 0.5 | 0.1667 | 0.8020 | | 0.0002 | 105.0 | 315 | 1.7786 | 0.1 | 0.5 | 0.1667 | 0.8127 | | 0.0009 | 106.0 | 318 | 1.8432 | 0.125 | 0.5 | 0.2 | 0.8078 | | 0.0001 | 107.0 | 321 | 2.0339 | 0.1111 | 0.5 | 0.1818 | 0.7784 | | 0.0001 | 108.0 | 324 | 2.2628 | 0.0769 | 0.5 | 0.1333 | 0.7392 | | 0.0007 | 109.0 | 327 | 2.3649 | 0.0714 | 0.5 | 0.125 | 0.7265 | | 0.0001 | 110.0 | 330 | 2.4330 | 0.0714 | 0.5 | 0.125 | 0.7137 | | 0.0001 | 111.0 | 333 | 2.4918 | 0.1 | 0.5 | 0.1667 | 0.7059 | | 0.0002 | 112.0 | 336 | 2.2853 | 0.0909 | 0.5 | 0.1538 | 0.7647 | | 0.0001 | 113.0 | 339 | 2.1945 | 0.1 | 0.5 | 0.1667 | 0.7765 | | 0.0001 | 114.0 | 342 | 2.1446 | 0.1111 | 0.5 | 0.1818 | 0.7824 | | 0.0008 | 115.0 | 345 | 2.1037 | 0.1111 | 0.5 | 0.1818 | 0.7863 | | 0.0001 | 116.0 | 348 | 2.0753 | 0.1 | 0.5 | 0.1667 | 0.7902 | | 0.0001 | 117.0 | 351 | 2.0617 | 0.1 | 0.5 | 0.1667 | 0.7902 | | 0.0014 | 118.0 | 354 | 1.9908 | 0.1111 | 0.5 | 0.1818 | 0.7961 | | 0.0009 | 119.0 | 357 | 1.9134 | 0.1111 | 0.5 | 0.1818 | 0.8 | | 0.0009 | 120.0 | 360 | 1.8651 | 0.1111 | 0.5 | 0.1818 | 0.8020 | | 0.0002 | 121.0 | 363 | 1.8480 | 0.1111 | 0.5 | 0.1818 | 0.8 | | 0.0001 | 122.0 | 366 | 1.8558 | 0.0909 | 0.5 | 0.1538 | 0.7961 | | 0.0001 | 123.0 | 369 | 1.8727 | 0.1111 | 0.5 | 0.1818 | 0.7892 | | 0.0001 | 124.0 | 372 | 1.8951 | 0.125 | 0.5 | 0.2 | 0.7863 | | 0.0007 | 125.0 | 375 | 1.8971 | 0.1667 | 0.5 | 0.25 | 0.7833 | | 0.0011 | 126.0 | 378 | 1.8479 | 0.1667 | 0.5 | 0.25 | 0.7814 | | 0.0002 | 127.0 | 381 | 1.7985 | 0.1429 | 0.5 | 0.2222 | 0.7804 | | 0.0001 | 128.0 | 384 | 1.7712 | 0.125 | 0.5 | 0.2 | 0.7794 | | 0.0001 | 129.0 | 387 | 1.7929 | 0.1111 | 0.5 | 0.1818 | 0.7755 | | 0.0002 | 130.0 | 390 | 1.8551 | 0.1111 | 0.5 | 0.1818 | 0.7725 | | 0.0001 | 131.0 | 393 | 1.9030 | 0.125 | 0.5 | 0.2 | 0.7716 | | 0.0001 | 132.0 | 396 | 1.9421 | 0.125 | 0.5 | 0.2 | 0.7686 | | 0.0009 | 133.0 | 399 | 1.9440 | 0.125 | 0.5 | 0.2 | 0.7686 | | 0.0001 | 134.0 | 402 | 1.9455 | 0.125 | 0.5 | 0.2 | 0.7686 | | 0.0001 | 135.0 | 405 | 1.9527 | 0.125 | 0.5 | 0.2 | 0.7686 | | 0.0004 | 136.0 | 408 | 1.9493 | 0.125 | 0.5 | 0.2 | 0.7706 | | 0.0001 | 137.0 | 411 | 1.9432 | 0.125 | 0.5 | 0.2 | 0.7706 | | 0.0001 | 138.0 | 414 | 1.9491 | 0.125 | 0.5 | 0.2 | 0.7706 | | 0.0002 | 139.0 | 417 | 1.9434 | 0.1 | 0.5 | 0.1667 | 0.7735 | | 0.0006 | 140.0 | 420 | 1.9363 | 0.1111 | 0.5 | 0.1818 | 0.7784 | | 0.0001 | 141.0 | 423 | 1.9330 | 0.1111 | 0.5 | 0.1818 | 0.7804 | | 0.0001 | 142.0 | 426 | 1.9334 | 0.1111 | 0.5 | 0.1818 | 0.7833 | | 0.0001 | 143.0 | 429 | 1.9366 | 0.125 | 0.5 | 0.2 | 0.7843 | | 0.0001 | 144.0 | 432 | 1.9417 | 0.1111 | 0.5 | 0.1818 | 0.7843 | | 0.0001 | 145.0 | 435 | 1.9467 | 0.1111 | 0.5 | 0.1818 | 0.7843 | | 0.0001 | 146.0 | 438 | 1.9518 | 0.1111 | 0.5 | 0.1818 | 0.7843 | | 0.0001 | 147.0 | 441 | 1.9574 | 0.1111 | 0.5 | 0.1818 | 0.7853 | | 0.0001 | 148.0 | 444 | 1.9635 | 0.1111 | 0.5 | 0.1818 | 0.7853 | | 0.0003 | 149.0 | 447 | 1.9643 | 0.1111 | 0.5 | 0.1818 | 0.7853 | | 0.0001 | 150.0 | 450 | 1.9664 | 0.125 | 0.5 | 0.2 | 0.7853 | | 0.0008 | 151.0 | 453 | 1.9830 | 0.125 | 0.5 | 0.2 | 0.7843 | | 0.0001 | 152.0 | 456 | 1.9974 | 0.125 | 0.5 | 0.2 | 0.7824 | | 0.0001 | 153.0 | 459 | 2.0083 | 0.125 | 0.5 | 0.2 | 0.7824 | | 0.0007 | 154.0 | 462 | 2.0066 | 0.1111 | 0.5 | 0.1818 | 0.7833 | | 0.0001 | 155.0 | 465 | 2.0047 | 0.1111 | 0.5 | 0.1818 | 0.7833 | | 0.0001 | 156.0 | 468 | 2.0042 | 0.1111 | 0.5 | 0.1818 | 0.7833 | | 0.0001 | 157.0 | 471 | 2.0075 | 0.1111 | 0.5 | 0.1818 | 0.7833 | | 0.0008 | 158.0 | 474 | 2.0217 | 0.1111 | 0.5 | 0.1818 | 0.7824 | | 0.0001 | 159.0 | 477 | 2.0326 | 0.125 | 0.5 | 0.2 | 0.7814 | | 0.0001 | 160.0 | 480 | 2.0422 | 0.125 | 0.5 | 0.2 | 0.7814 | | 0.0001 | 161.0 | 483 | 2.0493 | 0.125 | 0.5 | 0.2 | 0.7804 | | 0.0001 | 162.0 | 486 | 2.0568 | 0.125 | 0.5 | 0.2 | 0.7804 | | 0.0002 | 163.0 | 489 | 2.0818 | 0.125 | 0.5 | 0.2 | 0.7755 | | 0.0001 | 164.0 | 492 | 2.0997 | 0.125 | 0.5 | 0.2 | 0.7755 | | 0.0001 | 165.0 | 495 | 2.1127 | 0.125 | 0.5 | 0.2 | 0.7745 | | 0.0001 | 166.0 | 498 | 2.1226 | 0.125 | 0.5 | 0.2 | 0.7745 | | 0.0001 | 167.0 | 501 | 2.1311 | 0.1111 | 0.5 | 0.1818 | 0.7716 | | 0.0001 | 168.0 | 504 | 2.1377 | 0.1111 | 0.5 | 0.1818 | 0.7716 | | 0.0003 | 169.0 | 507 | 2.1296 | 0.1111 | 0.5 | 0.1818 | 0.7716 | | 0.0001 | 170.0 | 510 | 2.1180 | 0.125 | 0.5 | 0.2 | 0.7745 | | 0.0 | 171.0 | 513 | 2.1095 | 0.125 | 0.5 | 0.2 | 0.7745 | | 0.0 | 172.0 | 516 | 2.1035 | 0.125 | 0.5 | 0.2 | 0.7745 | | 0.0001 | 173.0 | 519 | 2.0999 | 0.125 | 0.5 | 0.2 | 0.7745 | | 0.0 | 174.0 | 522 | 2.0984 | 0.125 | 0.5 | 0.2 | 0.7745 | | 0.0004 | 175.0 | 525 | 2.0930 | 0.125 | 0.5 | 0.2 | 0.7755 | | 0.0 | 176.0 | 528 | 2.0874 | 0.125 | 0.5 | 0.2 | 0.7755 | | 0.006 | 177.0 | 531 | 2.0807 | 0.125 | 0.5 | 0.2 | 0.7755 | | 0.0001 | 178.0 | 534 | 2.0717 | 0.125 | 0.5 | 0.2 | 0.7755 | | 0.0001 | 179.0 | 537 | 2.0721 | 0.125 | 0.5 | 0.2 | 0.7755 | | 0.0001 | 180.0 | 540 | 2.0731 | 0.125 | 0.5 | 0.2 | 0.7755 | | 0.001 | 181.0 | 543 | 2.0712 | 0.125 | 0.5 | 0.2 | 0.7745 | | 0.0001 | 182.0 | 546 | 2.0700 | 0.125 | 0.5 | 0.2 | 0.7745 | | 0.0001 | 183.0 | 549 | 2.0692 | 0.125 | 0.5 | 0.2 | 0.7745 | | 0.0001 | 184.0 | 552 | 2.0622 | 0.125 | 0.5 | 0.2 | 0.7755 | | 0.0006 | 185.0 | 555 | 2.0582 | 0.125 | 0.5 | 0.2 | 0.7755 | | 0.0001 | 186.0 | 558 | 2.0564 | 0.125 | 0.5 | 0.2 | 0.7755 | | 0.0001 | 187.0 | 561 | 2.0562 | 0.125 | 0.5 | 0.2 | 0.7745 | | 0.0001 | 188.0 | 564 | 2.0571 | 0.125 | 0.5 | 0.2 | 0.7745 | | 0.0001 | 189.0 | 567 | 2.0587 | 0.125 | 0.5 | 0.2 | 0.7745 | | 0.0001 | 190.0 | 570 | 2.0597 | 0.1111 | 0.5 | 0.1818 | 0.7735 | | 0.0041 | 191.0 | 573 | 2.0555 | 0.125 | 0.5 | 0.2 | 0.7745 | | 0.0002 | 192.0 | 576 | 2.0473 | 0.1111 | 0.5 | 0.1818 | 0.7765 | | 0.0001 | 193.0 | 579 | 2.0480 | 0.1111 | 0.5 | 0.1818 | 0.7765 | | 0.0002 | 194.0 | 582 | 2.0507 | 0.1111 | 0.5 | 0.1818 | 0.7765 | | 0.0001 | 195.0 | 585 | 2.0541 | 0.1111 | 0.5 | 0.1818 | 0.7765 | | 0.0001 | 196.0 | 588 | 2.0562 | 0.1111 | 0.5 | 0.1818 | 0.7765 | | 0.0001 | 197.0 | 591 | 2.0586 | 0.1111 | 0.5 | 0.1818 | 0.7765 | | 0.0001 | 198.0 | 594 | 2.0596 | 0.1111 | 0.5 | 0.1818 | 0.7765 | | 0.0001 | 199.0 | 597 | 2.0604 | 0.1111 | 0.5 | 0.1818 | 0.7765 | | 0.0003 | 200.0 | 600 | 2.0573 | 0.1111 | 0.5 | 0.1818 | 0.7765 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Tri1/12-18-finetuned-eng-to-para
Tri1
2023-06-28T10:34:13Z
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-27T16:09:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: 12-18-finetuned-eng-to-para results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 12-18-finetuned-eng-to-para This model is a fine-tuned version of [Tri1/6-12-finetuned-eng-to-para](https://huggingface.co/Tri1/6-12-finetuned-eng-to-para) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0339 - Bleu: 35.7233 - Gen Len: 22.56 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.0441 | 1.0 | 6250 | 0.0420 | 31.1327 | 22.08 | | 0.0412 | 2.0 | 12500 | 0.0397 | 32.419 | 22.72 | | 0.0396 | 3.0 | 18750 | 0.0371 | 35.4708 | 20.96 | | 0.0385 | 4.0 | 25000 | 0.0356 | 34.6037 | 21.12 | | 0.0377 | 5.0 | 31250 | 0.0343 | 35.7663 | 22.24 | | 0.0381 | 6.0 | 37500 | 0.0339 | 35.7233 | 22.56 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
NasimB/gpt2-dp-cl-length
NasimB
2023-06-28T10:24:24Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-28T07:55:52Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-dp-cl-length results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-dp-cl-length This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.7161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.6691 | 0.26 | 500 | 5.8270 | | 5.2775 | 0.53 | 1000 | 5.4588 | | 4.9444 | 0.79 | 1500 | 5.2410 | | 4.7094 | 1.05 | 2000 | 5.1417 | | 4.5245 | 1.31 | 2500 | 4.9932 | | 4.4306 | 1.58 | 3000 | 4.9406 | | 4.3594 | 1.84 | 3500 | 4.9073 | | 4.2194 | 2.1 | 4000 | 4.8631 | | 4.0996 | 2.36 | 4500 | 4.8316 | | 4.0865 | 2.63 | 5000 | 4.7686 | | 4.05 | 2.89 | 5500 | 4.7494 | | 3.8858 | 3.15 | 6000 | 4.7704 | | 3.814 | 3.42 | 6500 | 4.6998 | | 3.8032 | 3.68 | 7000 | 4.6793 | | 3.7885 | 3.94 | 7500 | 4.6676 | | 3.5761 | 4.2 | 8000 | 4.6765 | | 3.5336 | 4.47 | 8500 | 4.6792 | | 3.535 | 4.73 | 9000 | 4.6749 | | 3.5307 | 4.99 | 9500 | 4.6553 | | 3.2929 | 5.25 | 10000 | 4.7027 | | 3.2874 | 5.52 | 10500 | 4.6926 | | 3.2883 | 5.78 | 11000 | 4.6927 | | 3.2606 | 6.04 | 11500 | 4.7025 | | 3.1356 | 6.31 | 12000 | 4.7098 | | 3.1392 | 6.57 | 12500 | 4.7123 | | 3.1374 | 6.83 | 13000 | 4.7161 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
YakovElm/Qt_10_BERT_Under_Sampling
YakovElm
2023-06-28T10:22:56Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T10:22:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Qt_10_BERT_Under_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Qt_10_BERT_Under_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0001 - Train Accuracy: 1.0 - Validation Loss: 0.5572 - Validation Accuracy: 0.9416 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.0351 | 0.9905 | 0.4427 | 0.9416 | 0 | | 0.0003 | 1.0 | 0.5263 | 0.9416 | 1 | | 0.0001 | 1.0 | 0.5572 | 0.9416 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
rawkul/q.taxi.v3
rawkul
2023-06-28T10:20:40Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T09:44:41Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q.taxi.v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="rawkul/q.taxi.v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
KamilAin/bart-base-booksum
KamilAin
2023-06-28T10:19:50Z
129
1
transformers
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "booksum", "summary", "summarization", "book", "en", "dataset:kmfoda/booksum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-05-23T13:46:59Z
--- language: en license: apache-2.0 tags: - booksum - summary - summarization - book metrics: - rouge widget: - text: "In the dead night, Frodo lay in a dream without light. Then he saw the young moon rising; under its thin light there loomed before him a black wall of rock, pierced by a dark arch like a great gate. It seemed to Frodo that he was lifted up, and passing over he saw that the rock-wall was a circle of hills, and that within it was a plain, and in the midst of the plain stood a pinnacle of stone, like a vast tower but not made by hands. On its top stood the figure of a man. The moon as it rose seemed to hang for a moment above his head and glistened in his white hair as the wind stirred it. Up from the dark plain below came the crying of fell voices, and the howling of many wolves. Suddenly a shadow, like the shape of great wings, passed across the moon. The figure lifted his arms and a light flashed from the staff that he wielded. A mighty eagle swept down and bore him away. The voices wailed and the wolves yammered. There was a noise like a strong wind blowing, and on it was borne the sound of hoofs, galloping, galloping, galloping from the East. ‘Black Riders!’ thought Frodo as he wakened, with the sound of the hoofs still echoing in his mind. He wondered if he would ever again have the courage to leave the safety of these stone walls. He lay motionless, still listening; but all was now silent, and at last he turned and fell asleep again or wandered into some other unremembered dream." example_title: "book example" datasets: - kmfoda/booksum --- # BART-base-Booksum This is a BART-base model fine-tuned on a BookSum dataset - **Use cases:** book summarization, general text summarization. - This is a [`https://huggingface.co/facebook/bart-base`](https://huggingface.co/facebook/bart-base), fine-tuned for five epochs
dev-senolys/camembert_base_finetunned_one_thema_balanced_5_epochs
dev-senolys
2023-06-28T10:00:36Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T08:45:28Z
--- license: mit tags: - generated_from_trainer model-index: - name: camembert_base_finetunned_one_thema_balanced_5_epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert_base_finetunned_one_thema_balanced_5_epochs This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 116 | 2.3340 | | No log | 2.0 | 232 | 2.0439 | | No log | 3.0 | 348 | 1.8438 | | No log | 4.0 | 464 | 1.8124 | | 1.9931 | 5.0 | 580 | 1.7778 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
KYac/falcon-finetuned
KYac
2023-06-28T09:50:17Z
1
0
peft
[ "peft", "region:us" ]
null
2023-06-28T09:50:14Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
Zhibinhong/checkpoints_new
Zhibinhong
2023-06-28T09:45:08Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-28T09:03:53Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Zhibinhong/checkpoints_new This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
gozu888/Envit5-tuned
gozu888
2023-06-28T09:42:05Z
24
3
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "translation", "en-vi", "vi-en", "en", "vi", "dataset:mt_eng_vietnamese", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2023-01-06T14:21:02Z
--- license: apache-2.0 datasets: - mt_eng_vietnamese language: - en - vi tags: - translation - t5 - en-vi - vi-en --- # gozu888/Envit5-tuned This model is a fine-tuned version of VietAI/envit5-translation on the mt_eng_vietnamese dataset. It achieves the following results on the evaluation set: - Val Loss: 0.8422 - BLEU: 25.14 ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** gozu888 - **Model type:** T5 - **Finetuned from model [optional]:** [VietAI/envit5-translation](https://huggingface.co/VietAI/envit5-translation) ### Hyperparameters The following hyperparameters were used during training: - Repo: [simpleT5](https://github.com/Shivanandroy/simpleT5) - Dataset: [mt_eng_vietnamese](https://huggingface.co/datasets/mt_eng_vietnamese) + custom (~40%) ```python source_max_token_len=128 target_max_token_len=128 batch_size=32 max_epochs=8 ``` ### Examples + This fine-tuned model, which was trained using only 128 token lengths, is most effective at sentence-by-sentence translation. ```json [ "en: I do not believe a human being can be creative.", "en: If we perceive creation around us with a certain profoundness, we can imitate in many different ways, in permutations and combinations, and seem creative in society, but actually, we are not really creative.", "en: Everything that can be created has already been done in creation.", "en: We are clever craftsmen at the most.", "en: If you define the word \“creativity\” as really creating something – whether you make a movie, paint something, build a building, speak, or whatever else – this is not really creative – it is clever imitation.", "en: Because we have paid attention to different aspects of life, we are able to imitate in ways that others have not thought possible.", ] ``` ```json [ "vi: Tôi không tin rằng một con người có thể sáng tạo.", "vi: Nếu chúng ta nhận biết được sáng tạo xung quanh chúng ta với một thâm sâu nào đó, chúng ta có thể bắt chước trong nhiều cách khác nhau, trong những hoán vị và những kết hợp, và dường như sáng tạo trong xã hội, nhưng thực ra, chúng ta không thực sự sáng tạo. ", "vi: Mọi thứ có thể được tạo ra đều đã được thực hiện trong sáng tạo.", "vi: Chúng ta là những thợ thủ công thông minh nhất.", "vi: Nếu bạn định nghĩa từ \"sáng tạo\" là thực sự sáng tạo ra một cái gì đó - cho dù bạn làm một bộ phim, vẽ một cái gì đó, xây dựng một toà nhà, nói chuyện, hoặc bất cứ điều gì khác - đây không thực sự là sáng tạo - nó là sự bắt chước thông minh.", "vi: Bởi vì chúng ta đã chú tâm đến những khía cạnh khác nhau của cuộc sống, chúng ta có thể bắt chước theo những cách mà những người khác không nghĩ là có thể.", ] ```
Alexis47240/Modelingwork
Alexis47240
2023-06-28T09:39:48Z
0
0
null
[ "fr", "dataset:fka/awesome-chatgpt-prompts", "license:openrail", "region:us" ]
null
2023-06-28T09:39:07Z
--- license: openrail datasets: - fka/awesome-chatgpt-prompts language: - fr ---
rawkul/q-FrozenLake-v1-4x4-noSlippery
rawkul
2023-06-28T09:26:09Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T09:26:06Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="rawkul/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Nara-Lab/nallm-polyglot-ko-1.3b-base
Nara-Lab
2023-06-28T09:24:15Z
2,272
2
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "ko", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-22T01:12:03Z
--- license: mit language: - ko --- NA-LLM(나름)은 나라지식정보가 개발한 한국어 Large Language Model (LLM) 입니다. https://github.com/Nara-Information/NA-LLM
jensvw/lundar
jensvw
2023-06-28T09:13:37Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T09:13:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 201.77 +/- 100.58 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
elementoffear/ppo-Huggy
elementoffear
2023-06-28T09:12:35Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-28T09:12:29Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: elementoffear/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
NickyNicky/MPT-7b-instruct-QLora-8Bits-Peft-train_eli5-1_Epoch-V2
NickyNicky
2023-06-28T09:06:08Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-28T09:06:04Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
hztang/BART-large-base-custom
hztang
2023-06-28T08:57:46Z
103
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-28T01:48:16Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: BART-large-base-custom results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BART-large-base-custom This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 238 | 0.6719 | 24.2424 | 19.2095 | 23.2835 | 23.9833 | 20.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.12.1 - Datasets 2.13.1 - Tokenizers 0.11.0
NickyNicky/MPT-7b-instruct-QLora-8Bits-Peft-train_eli5-1_Epoch
NickyNicky
2023-06-28T08:52:05Z
1
0
peft
[ "peft", "region:us" ]
null
2023-06-28T08:52:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
Matthijs/mms-tts-abp
Matthijs
2023-06-28T08:45:05Z
108
1
transformers
[ "transformers", "pytorch", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-06-27T14:00:22Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS) : Text-to-Speech Models This repository contains the **Ayta, Abellen (abp)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html). ## Usage Using this checkpoint from Hugging Face Transformers: ```python from transformers import VitsModel, VitsMmsTokenizer import torch model = VitsModel.from_pretrained("Matthijs/mms-tts-abp") tokenizer = VitsMmsTokenizer.from_pretrained("Matthijs/mms-tts-abp") text = "some example text in the Ayta, Abellen language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs) from IPython.display import Audio Audio(output.audio[0], rate=16000) ``` Note: For certain checkpoints, the input text must be converted to the Latin alphabet first using the [uroman](https://github.com/isi-nlp/uroman) tool. ## Model credits This model was developed by Vineel Pratap et al. and is licensed as **CC-BY-NC 4.0** @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} }
cupcakeDriveby/q-taxi-v3
cupcakeDriveby
2023-06-28T08:39:16Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T08:39:14Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="cupcakeDriveby/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mszpro/CoreML_StableDiffusion-v-1-5_ControlledUnet_SplitEinsum
mszpro
2023-06-28T08:17:12Z
0
0
null
[ "region:us" ]
null
2023-06-28T08:13:17Z
# Stable Diffusion 1.5 ControlledUnet file for CoreML This is the compiled ControlledUNet file of Stable Diffusion 1.5, used for CoreML image generation with ControlNet. It accepts 12 additional_residual inputs. This is compiled for SPLIT EINSUM, which means it also works for iPhone and iPad using Apple Neural Engine.
MU-NLPC/calc-baseline-t5-xl
MU-NLPC
2023-06-28T08:10:50Z
7
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-24T09:44:44Z
This is a baseline model for our [calculator-assisted models](https://huggingface.co/models?search=emnlp2023) trained on a mixture of all our [Calc-X datasets](https://huggingface.co/datasets?search=emnlp2023). See the corresponding paper for details. The reported results can be reproduced by using [evaluation script](https://github.com/emnlp2023sub/gadgets/blob/65e24e810cf5ea20aceb8a3c8ddbc19f035ab694/examples/test_calc.py) from the project repository.
MU-NLPC/calc-baseline-t5-large
MU-NLPC
2023-06-28T08:09:37Z
107
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-23T15:31:51Z
This is a baseline model for our [calculator-assisted models](https://huggingface.co/models?search=emnlp2023) trained on a mixture of all our [Calc-X datasets](https://huggingface.co/datasets?search=emnlp2023). See the corresponding paper for details. The reported results can be reproduced by using [evaluation script](https://github.com/emnlp2023sub/gadgets/blob/65e24e810cf5ea20aceb8a3c8ddbc19f035ab694/examples/test_calc.py) from the project repository.
Yorth/dolly-lora
Yorth
2023-06-28T08:07:48Z
2
0
peft
[ "peft", "region:us" ]
null
2023-06-28T08:07:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
YakovElm/MariaDB_20_BERT_Under_Sampling
YakovElm
2023-06-28T07:59:13Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T07:58:38Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: MariaDB_20_BERT_Under_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # MariaDB_20_BERT_Under_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0008 - Train Accuracy: 1.0 - Validation Loss: 0.2337 - Validation Accuracy: 0.9698 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.0627 | 0.9992 | 0.1862 | 0.9698 | 0 | | 0.0016 | 1.0 | 0.2186 | 0.9698 | 1 | | 0.0008 | 1.0 | 0.2337 | 0.9698 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Assem-Ihab/trainingthemodel3
Assem-Ihab
2023-06-28T07:53:07Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-28T07:39:26Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: trainingthemodel3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trainingthemodel3 This model is a fine-tuned version of [abdalrahmanshahrour/AraBART-summ](https://huggingface.co/abdalrahmanshahrour/AraBART-summ) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6417 - Rouge1: 0.1136 - Rouge2: 0.0429 - Rougel: 0.0938 - Rougelsum: 0.0936 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 31 | 2.9297 | 0.1141 | 0.0449 | 0.0941 | 0.0942 | 20.0 | | No log | 2.0 | 62 | 2.7345 | 0.1099 | 0.0426 | 0.0908 | 0.0908 | 20.0 | | No log | 3.0 | 93 | 2.6680 | 0.1123 | 0.0428 | 0.093 | 0.0929 | 20.0 | | No log | 4.0 | 124 | 2.6417 | 0.1136 | 0.0429 | 0.0938 | 0.0936 | 20.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
OverShifted/ppo-LunarLander-v2
OverShifted
2023-06-28T07:48:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T07:47:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 230.07 +/- 24.56 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
YakovElm/Hyperledger_5_BERT_Over_Sampling
YakovElm
2023-06-28T07:47:59Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T07:47:23Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Hyperledger_5_BERT_Over_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Hyperledger_5_BERT_Over_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0898 - Train Accuracy: 0.9727 - Validation Loss: 0.8739 - Validation Accuracy: 0.7521 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.6014 | 0.6783 | 0.5787 | 0.7168 | 0 | | 0.2834 | 0.8865 | 0.7050 | 0.7687 | 1 | | 0.0898 | 0.9727 | 0.8739 | 0.7521 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
yhna/Reinforce-pixelcopter
yhna
2023-06-28T07:43:10Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T07:43:05Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 44.60 +/- 27.12 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
YakovElm/MariaDB_15_BERT_Under_Sampling
YakovElm
2023-06-28T07:34:27Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T07:33:52Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: MariaDB_15_BERT_Under_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # MariaDB_15_BERT_Under_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0009 - Train Accuracy: 1.0 - Validation Loss: 0.3045 - Validation Accuracy: 0.9598 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.0769 | 0.9849 | 0.2493 | 0.9598 | 0 | | 0.0017 | 1.0 | 0.2868 | 0.9598 | 1 | | 0.0009 | 1.0 | 0.3045 | 0.9598 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
nolanaatama/rmfbtsrvcv1tgrll14
nolanaatama
2023-06-28T07:30:49Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-28T07:26:26Z
--- license: creativeml-openrail-m ---
swardiantara/drone-sentiment
swardiantara
2023-06-28T07:25:12Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-17T06:24:08Z
--- license: mit language: - en metrics: - accuracy - precision - recall - f1 pipeline_tag: text-classification widget: - text: "Battery temperature is below 15 degrees Celsius. Warm up the battery temperature to above 25 degree Celsius to ensure a safe flight." example_title: "Negative Sentiment" - text: "Aircraft is returning to the Home Point. Minimum RTH Altitude is 30m. You can reset the RTH Altitude in Remote Controller Settings after cancelling RTH if necessary." example_title: "Positive Sentiment" ---
swardiantara/drone-term-extractor
swardiantara
2023-06-28T07:22:35Z
115
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "drone", "drone forensics", "named entity recognition", "en", "license:gpl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-23T09:37:03Z
--- license: gpl language: - en metrics: - accuracy - precision - recall - f1 pipeline_tag: token-classification tags: - drone - drone forensics - named entity recognition widget: - text: "Compass abnormal. Solution: 1. Ensure there are no magnets or metal objects near the aircraft. The ground or walls may contain metal. Move away from sources of interference before attempting flight. 2. Calibrate Compass Before Takeoff" example_title: "Example 1" - text: "The flight attitude angle is larger in Sport mode. The gimbal will rotate when the aircraft starts or stops. Use Normal mode if required for stable shooting" example_title: "Example 2" - text: "Motor speed error. Land or return to home promptly. After powering off the aircraft, replace the propeller on the beeping ESC. If the issue persists, contact DJI Support" example_title: "Example 3" - text: "GPS signal low. Aircraft unable to auto hover and takeoff restricted. Move to environment with adequate light. Unlocking takeoff restrictions not recommended" example_title: "Example 4" ---
Shubham09/falcon_p2
Shubham09
2023-06-28T07:22:31Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-28T07:12:50Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0
kejolong/etomisa
kejolong
2023-06-28T07:21:52Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-28T04:29:02Z
--- license: creativeml-openrail-m ---
eocampop/distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos
eocampop
2023-06-28T06:48:14Z
20
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-27T15:54:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2025 - F1: 0.5425 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4868 | 1.0 | 766 | 1.2168 | 0.5419 | | 0.7607 | 2.0 | 1532 | 1.2025 | 0.5425 | | 0.603 | 3.0 | 2298 | 1.1996 | 0.5414 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
YakovElm/MariaDB_5_BERT_Under_Sampling
YakovElm
2023-06-28T06:45:06Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T06:44:27Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: MariaDB_5_BERT_Under_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # MariaDB_5_BERT_Under_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0014 - Train Accuracy: 1.0 - Validation Loss: 0.4829 - Validation Accuracy: 0.9322 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.0727 | 0.9808 | 0.3510 | 0.9322 | 0 | | 0.0037 | 1.0 | 0.4349 | 0.9322 | 1 | | 0.0014 | 1.0 | 0.4829 | 0.9322 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Broonion/RLcourse-unit2-q-FrozenLake-v1-4x4-noSlippery
Broonion
2023-06-28T06:43:48Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T06:43:46Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Broonion/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AlonCohen/social-groups-ner-first-try
AlonCohen
2023-06-28T06:24:31Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-29T08:08:18Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: social-groups-ner-first-try results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # social-groups-ner-first-try This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Sidharthkr/MPT-7b-chat-GGML
Sidharthkr
2023-06-28T06:20:54Z
0
1
null
[ "region:us" ]
null
2023-06-28T05:41:12Z
Compatibilty These files are not compatible with llama.cpp. Currently they can be used with: KoboldCpp, a powerful inference engine based on llama.cpp, with good UI: KoboldCpp The ctransformers Python library, which includes LangChain support: ctransformers The GPT4All-UI which uses ctransformers: GPT4All-UI rustformers' llm The example mpt binary provided with ggml
YakovElm/Jira_20_BERT_Under_Sampling
YakovElm
2023-06-28T06:20:21Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T06:19:46Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Jira_20_BERT_Under_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Jira_20_BERT_Under_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0014 - Train Accuracy: 1.0 - Validation Loss: 0.4661 - Validation Accuracy: 0.9338 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.1013 | 0.9780 | 0.3644 | 0.9338 | 0 | | 0.0030 | 1.0 | 0.4356 | 0.9338 | 1 | | 0.0014 | 1.0 | 0.4661 | 0.9338 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
YakovElm/Jira_15_BERT_Under_Sampling
YakovElm
2023-06-28T06:00:12Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T05:59:37Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Jira_15_BERT_Under_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Jira_15_BERT_Under_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0012 - Train Accuracy: 1.0 - Validation Loss: 3.4399 - Validation Accuracy: 0.5205 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.1521 | 0.9675 | 2.5971 | 0.5205 | 0 | | 0.0028 | 1.0 | 3.2106 | 0.5205 | 1 | | 0.0012 | 1.0 | 3.4399 | 0.5205 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
dyedream/Reinfore-CardPole
dyedream
2023-06-28T05:43:02Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T05:42:50Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinfore-CardPole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
YakovElm/Jira_5_BERT_Under_Sampling
YakovElm
2023-06-28T05:20:05Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T05:19:25Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Jira_5_BERT_Under_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Jira_5_BERT_Under_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0017 - Train Accuracy: 1.0 - Validation Loss: 3.5486 - Validation Accuracy: 0.4858 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.1443 | 0.9748 | 2.5459 | 0.4858 | 0 | | 0.0042 | 1.0 | 3.2782 | 0.4858 | 1 | | 0.0017 | 1.0 | 3.5486 | 0.4858 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
pawankmrs/bert-finetuned-ner
pawankmrs
2023-06-28T05:08:03Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-28T04:49:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9365684001324942 - name: Recall type: recall value: 0.9516997643890945 - name: F1 type: f1 value: 0.9440734557595992 - name: Accuracy type: accuracy value: 0.9866221227997881 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0652 - Precision: 0.9366 - Recall: 0.9517 - F1: 0.9441 - Accuracy: 0.9866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0704 | 1.0 | 1756 | 0.0695 | 0.9159 | 0.9349 | 0.9253 | 0.9822 | | 0.0229 | 2.0 | 3512 | 0.0656 | 0.9345 | 0.9505 | 0.9424 | 0.9867 | | 0.0116 | 3.0 | 5268 | 0.0652 | 0.9366 | 0.9517 | 0.9441 | 0.9866 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
allman/bert-base-uncased-finetuned-MeIA-AnalisisDeSentimientos
allman
2023-06-28T05:07:52Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T04:02:43Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-base-uncased-finetuned-MeIA-AnalisisDeSentimientos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-MeIA-AnalisisDeSentimientos This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0784 - F1: 0.5207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1946 | 1.0 | 766 | 1.1920 | 0.4331 | | 1.0715 | 2.0 | 1532 | 1.0936 | 0.4909 | | 1.0093 | 3.0 | 2298 | 1.0583 | 0.5116 | | 0.8907 | 4.0 | 3064 | 1.0784 | 0.5207 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Ventalik/fias_NER
Ventalik
2023-06-28T04:56:54Z
139
1
transformers
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-18T16:04:55Z
--- license: mit tags: - generated_from_trainer model-index: - name: fias_NER results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fias_NER This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0011 - eval_precision: 0.9993 - eval_recall: 0.9994 - eval_f1: 0.9994 - eval_accuracy: 0.9996 - eval_runtime: 783.8012 - eval_samples_per_second: 2551.667 - eval_steps_per_second: 19.935 - epoch: 1.12 - step: 1200000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000000 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3
eliztmq/q-taxi
eliztmq
2023-06-28T04:56:12Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T04:56:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.69 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="eliztmq/q-taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Hansr/Checkpoint
Hansr
2023-06-28T04:47:37Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-21T14:29:07Z
--- license: creativeml-openrail-m ---
Poonnnnnnnn/type-prediction-transformer
Poonnnnnnnn
2023-06-28T04:44:24Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "camembert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-12T07:21:22Z
--- tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: type-prediction-transformer results: [] widget: - text: "ถนนผุพังทำให้เกิดเสียงดังเวลารถวิ่ง" - text: "ขี่มอไซค์บนทางเท้ามันจะเกินปุยมุ้ย" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # type-prediction-transformer This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0497 - F1: 0.8651 - Roc Auc: 0.9260 - Accuracy: 0.8208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 149 | 0.0812 | 0.8070 | 0.8677 | 0.7588 | | No log | 2.0 | 298 | 0.0591 | 0.8585 | 0.9064 | 0.8141 | | No log | 3.0 | 447 | 0.0493 | 0.8719 | 0.9144 | 0.8258 | | 0.0886 | 4.0 | 596 | 0.0506 | 0.8614 | 0.9222 | 0.8090 | | 0.0886 | 5.0 | 745 | 0.0487 | 0.8683 | 0.9255 | 0.8174 | | 0.0886 | 6.0 | 894 | 0.0506 | 0.8693 | 0.9291 | 0.8191 | | 0.0254 | 7.0 | 1043 | 0.0519 | 0.8619 | 0.9307 | 0.8090 | | 0.0254 | 8.0 | 1192 | 0.0497 | 0.8651 | 0.9260 | 0.8208 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Tokenizers 0.13.3
YakovElm/IntelDAOS_15_BERT_Under_Sampling
YakovElm
2023-06-28T04:39:11Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T04:38:33Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: IntelDAOS_15_BERT_Under_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # IntelDAOS_15_BERT_Under_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0015 - Train Accuracy: 1.0 - Validation Loss: 0.8058 - Validation Accuracy: 0.8859 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.1334 | 0.9790 | 0.5877 | 0.8859 | 0 | | 0.0037 | 1.0 | 0.7378 | 0.8859 | 1 | | 0.0015 | 1.0 | 0.8058 | 0.8859 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
limcheekin/fastchat-t5-3b-ct2
limcheekin
2023-06-28T04:36:38Z
14
2
transformers
[ "transformers", "ctranslate2", "fastchat-t5-3b", "quantization", "int8", "text2text-generation", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-31T06:51:36Z
--- license: apache-2.0 language: - en tags: - ctranslate2 - fastchat-t5-3b - quantization - int8 pipeline_tag: text2text-generation --- # Model Card for FastChat-T5 3B Q8 The model is quantized version of the [lmsys/fastchat-t5-3b-v1.0](https://huggingface.co/lmsys/fastchat-t5-3b-v1.0) with int8 quantization. ## Model Details ### Model Description The model being quantized using [CTranslate2](https://opennmt.net/CTranslate2/) with the following command: ``` ct2-transformers-converter --model lmsys/fastchat-t5-3b --output_dir lmsys/fastchat-t5-3b-ct2 --copy_files generation_config.json added_tokens.json tokenizer_config.json special_tokens_map.json spiece.model --quantization int8 --force --low_cpu_mem_usage ``` If you want to perform the quantization yourself, you need to install the following dependencies: ``` pip install -qU ctranslate2 transformers[torch] sentencepiece accelerate ``` - **Shared by:** Lim Chee Kin - **License:** Apache 2.0 ## How to Get Started with the Model Use the code below to get started with the model. ```python import ctranslate2 import transformers translator = ctranslate2.Translator("limcheekin/fastchat-t5-3b-ct2") tokenizer = transformers.AutoTokenizer.from_pretrained("limcheekin/fastchat-t5-3b-ct2") input_text = "translate English to German: The house is wonderful." input_tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(input_text)) results = translator.translate_batch([input_tokens]) output_tokens = results[0].hypotheses[0] output_text = tokenizer.decode(tokenizer.convert_tokens_to_ids(output_tokens)) print(output_text) ``` The code is taken from https://opennmt.net/CTranslate2/guides/transformers.html#t5. The key method of the code above is `translate_batch`, you can find out [its supported parameters here](https://opennmt.net/CTranslate2/python/ctranslate2.Translator.html#ctranslate2.Translator.translate_batch).
yihyeji/hanbok_q
yihyeji
2023-06-28T04:33:59Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-06-28T04:06:26Z
--- license: creativeml-openrail-m base_model: /workspace/data3/model_checkpoints/DIFFUSION_DB/Diffusion_models/diffusers/v15/chilloutmix_NiPrunedFp16Fix/ instance_prompt: a photo of 1 girl wearing hanbok_q tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - yihyeji/hanbok_q These are LoRA adaption weights for /workspace/data3/model_checkpoints/DIFFUSION_DB/Diffusion_models/diffusers/v15/chilloutmix_NiPrunedFp16Fix/. The weights were trained on a photo of 1 girl wearing hanbok_q using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
PritamReddy/test-demo
PritamReddy
2023-06-28T04:31:57Z
165
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-27T17:01:45Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: test-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-demo This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.3257 - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 - Gen Len: 7.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 1 | 4.4727 | 0.0 | 0.0 | 0.0 | 0.0 | 7.6667 | | No log | 2.0 | 2 | 4.4727 | 0.0 | 0.0 | 0.0 | 0.0 | 7.6667 | | No log | 3.0 | 3 | 4.4727 | 0.0 | 0.0 | 0.0 | 0.0 | 7.6667 | | No log | 4.0 | 4 | 4.3257 | 0.0 | 0.0 | 0.0 | 0.0 | 7.6667 | | No log | 5.0 | 5 | 4.3257 | 0.0 | 0.0 | 0.0 | 0.0 | 7.6667 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
YakovElm/IntelDAOS_10_BERT_Under_Sampling
YakovElm
2023-06-28T04:18:00Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T04:17:15Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: IntelDAOS_10_BERT_Under_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # IntelDAOS_10_BERT_Under_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0019 - Train Accuracy: 1.0 - Validation Loss: 0.8522 - Validation Accuracy: 0.8739 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.1680 | 0.9670 | 0.5869 | 0.8739 | 0 | | 0.0055 | 1.0 | 0.7770 | 0.8739 | 1 | | 0.0019 | 1.0 | 0.8522 | 0.8739 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
w11wo/malaysian-distilbert-small
w11wo
2023-06-28T04:04:55Z
133
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "distilbert", "fill-mask", "malaysian-distilbert-small", "ms", "dataset:oscar", "arxiv:1910.01108", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ms tags: - malaysian-distilbert-small license: mit datasets: - oscar widget: - text: "Hari ini adalah hari yang [MASK]!" --- ## Malaysian DistilBERT Small Malaysian DistilBERT Small is a masked language model based on the [DistilBERT model](https://arxiv.org/abs/1910.01108). It was trained on the [OSCAR](https://huggingface.co/datasets/oscar) dataset, specifically the `unshuffled_original_ms` subset. The model was originally HuggingFace's pretrained [English DistilBERT model](https://huggingface.co/distilbert-base-uncased) and is later fine-tuned on the Malaysian dataset. It achieved a perplexity of 10.33 on the validation dataset (20% of the dataset). Many of the techniques used are based on a Hugging Face tutorial [notebook](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb) written by [Sylvain Gugger](https://github.com/sgugger), and [fine-tuning tutorial notebook](https://github.com/piegu/fastai-projects/blob/master/finetuning-English-GPT2-any-language-Portuguese-HuggingFace-fastaiv2.ipynb) written by [Pierre Guillou](https://huggingface.co/pierreguillou). Hugging Face's [Transformers](https://huggingface.co/transformers) library was used to train the model -- utilizing the base DistilBERT model and their `Trainer` class. PyTorch was used as the backend framework during training, but the model remains compatible with TensorFlow nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | |------------------------------|---------|------------------|----------------------------------------| | `malaysian-distilbert-small` | 66M | DistilBERT Small | OSCAR `unshuffled_original_ms` Dataset | ## Evaluation Results The model was trained for 1 epoch and the following is the final result once the training ended. | train loss | valid loss | perplexity | total time | |------------|------------|------------|------------| | 2.476 | 2.336 | 10.33 | 0:40:05 | ## How to Use ### As Masked Language Model ```python from transformers import pipeline pretrained_name = "w11wo/malaysian-distilbert-small" fill_mask = pipeline( "fill-mask", model=pretrained_name, tokenizer=pretrained_name ) fill_mask("Henry adalah seorang lelaki yang tinggal di [MASK].") ``` ### Feature Extraction in PyTorch ```python from transformers import DistilBertModel, DistilBertTokenizerFast pretrained_name = "w11wo/malaysian-distilbert-small" model = DistilBertModel.from_pretrained(pretrained_name) tokenizer = DistilBertTokenizerFast.from_pretrained(pretrained_name) prompt = "Bolehkah anda [MASK] Bahasa Melayu?" encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ``` ## Disclaimer Do consider the biases which came from the OSCAR dataset that may be carried over into the results of this model. ## Author Malaysian DistilBERT Small was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access.
loghai/q-FrozenLake-v1-4x4-noSlippery
loghai
2023-06-28T03:50:04Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T03:50:01Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="loghai/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ALPHONSE28/SEMANA10_SINTENTICOS
ALPHONSE28
2023-06-28T03:45:32Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T03:15:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: SEMANA10_SINTENTICOS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SEMANA10_SINTENTICOS This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3103 - Accuracy: 0.9048 - F1: 0.9259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
chaowu/Reinforce-Pixelcopter-PLE-v0
chaowu
2023-06-28T03:36:42Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T03:00:11Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 67.30 +/- 46.66 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
eliztmq/q-FrozenLake-v1-4x4-noSlippery
eliztmq
2023-06-28T03:22:30Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T03:22:27Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="eliztmq/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ALPHONSE28/SEMANA10_2
ALPHONSE28
2023-06-28T03:13:42Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-27T03:55:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: SEMANA10_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SEMANA10_2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3581 - Accuracy: 0.88 - F1: 0.9189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
jdawnduan/dqn-SpaceInvadersNoFrameskip-v4
jdawnduan
2023-06-28T02:53:13Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T02:52:39Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 591.50 +/- 212.53 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jdawnduan -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jdawnduan -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jdawnduan ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
YakovElm/Hyperledger_15_BERT_Under_Sampling
YakovElm
2023-06-28T02:36:55Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T02:36:19Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Hyperledger_15_BERT_Under_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Hyperledger_15_BERT_Under_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0004 - Train Accuracy: 1.0 - Validation Loss: 1.0086 - Validation Accuracy: 0.8807 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.0356 | 0.9948 | 0.8275 | 0.8807 | 0 | | 0.0008 | 1.0 | 0.9377 | 0.8807 | 1 | | 0.0004 | 1.0 | 1.0086 | 0.8807 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
YakovElm/Apache_15_BERT_Over_Sampling
YakovElm
2023-06-28T02:30:17Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T02:29:40Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Apache_15_BERT_Over_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Apache_15_BERT_Over_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0167 - Train Accuracy: 0.9951 - Validation Loss: 0.7266 - Validation Accuracy: 0.8892 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.2926 | 0.8609 | 0.5467 | 0.8651 | 0 | | 0.0318 | 0.9910 | 0.7866 | 0.8220 | 1 | | 0.0167 | 0.9951 | 0.7266 | 0.8892 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Geonmo/CLIP-Giga-config-fixed
Geonmo
2023-06-28T02:19:09Z
146
0
transformers
[ "transformers", "pytorch", "clip", "zero-shot-image-classification", "license:mit", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2023-06-28T01:18:15Z
--- license: mit --- It will be removed when the config in `laion/CLIP-ViT-bigG-14-laion2B-39B-b160k` is fixed.
JuniorLeao/ppo-Huggy
JuniorLeao
2023-06-28T02:18:40Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-28T02:18:30Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: JuniorLeao/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
graydient/diffusers-residentchiefnz-icbinp
graydient
2023-06-28T01:47:42Z
0
0
null
[ "region:us" ]
null
2023-06-28T01:47:01Z
This is a native Diffusers conversion of ICBINP - "I Can't Believe It's Not Photography" by residentchiefnz See here for more information: https://civitai.com/models/28059?modelVersionId=89658
jwesleye/ppo-LunarLander-v2
jwesleye
2023-06-28T01:30:00Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T00:50:10Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 249.40 +/- 44.38 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NjinHF/swin-tiny-patch4-window7-224-finetuned-eurosat
NjinHF
2023-06-28T01:14:42Z
223
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-05-08T06:03:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.977037037037037 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0731 - Accuracy: 0.9770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.247 | 1.0 | 190 | 0.1200 | 0.9626 | | 0.2012 | 2.0 | 380 | 0.1026 | 0.9656 | | 0.1437 | 3.0 | 570 | 0.0731 | 0.9770 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
cerspense/zeroscope_v1-1_320s
cerspense
2023-06-28T00:30:06Z
10
5
diffusers
[ "diffusers", "Text-to-Video", "license:cc-by-nc-4.0", "diffusers:TextToVideoSDPipeline", "region:us" ]
null
2023-06-08T22:18:32Z
--- tags: - Text-to-Video license: cc-by-nc-4.0 --- Modelscope without the watermark, trained in 320x320 from the [original weights](https://huggingface.co/damo-vilab/modelscope-damo-text-to-video-synthesis), with no skipped frames for less flicker. This updated version fixes stretching issues present in v1, but produces different results overall Model was trained on a subset of the vimeo90k dataset + a selection of music videos
memotirre90/Equipo16_gpt2-HotelSentiment_Sintetico
memotirre90
2023-06-28T00:17:16Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T00:09:46Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: Equipo16_gpt2-HotelSentiment_Sintetico results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Equipo16_gpt2-HotelSentiment_Sintetico This model is a fine-tuned version of [finiteautomata/beto-sentiment-analysis](https://huggingface.co/finiteautomata/beto-sentiment-analysis) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4640 - Accuracy: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
crumb/bespoke-gpt-124m
crumb
2023-06-28T00:09:08Z
116
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-19T02:17:28Z
work in progress! we aren't even past 1b tokens yet but check out how well it's doing regardless in the inference thing
johnpaulbin/meme-titles
johnpaulbin
2023-06-28T00:05:35Z
178
1
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
Trained on ~400 youtube titles of meme compilations on youtube. WARNING: may produce offensive content.
hugfacerhaha/ppo-Huggy
hugfacerhaha
2023-06-27T23:42:34Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-27T23:42:23Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: hugfacerhaha/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
YakovElm/Apache_20_BERT_Under_Sampling
YakovElm
2023-06-27T23:35:26Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-27T23:22:35Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Apache_20_BERT_Under_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Apache_20_BERT_Under_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0002 - Train Accuracy: 1.0 - Validation Loss: 0.8828 - Validation Accuracy: 0.9055 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.0216 | 0.9963 | 0.7360 | 0.9055 | 0 | | 0.0004 | 1.0 | 0.8254 | 0.9055 | 1 | | 0.0002 | 1.0 | 0.8828 | 0.9055 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
chaowu/ppo-SnowballTarget
chaowu
2023-06-27T23:27:15Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-06-27T23:27:12Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: chaowu/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
gbellamy/ppo-Pyramids
gbellamy
2023-06-27T23:14:40Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-06-27T23:10:39Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: gbellamy/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
vuiseng9/ov-gpt2-fp32-no-cache
vuiseng9
2023-06-27T22:58:37Z
6,370
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tflite", "rust", "safetensors", "openvino", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-27T22:07:52Z
# Notes: This model is inherited directly from gpt2 in HF model hub. Then, GPT2 Openvino IR from OMZ is copied here. The intended usage of this model is for optimum-intel. ```bash # Install Optimum-Intel from transformers import AutoTokenizer, pipeline, set_seed, AutoModelForCausalLM from optimum.intel.openvino import OVModelForCausalLM model_id="vuiseng9/ov-gpt2-fp32-no-cache" model = OVModelForCausalLM.from_pretrained(model_id, use_cache=False) tokenizer = AutoTokenizer.from_pretrained(model_id) generator_pipe = pipeline('text-generation', model=model, tokenizer=tokenizer) output = generator_pipe("It's a beautiful day ...", max_length=30, num_return_sequences=1) ```
FPHam/Karen_theEditor_13b_HF
FPHam
2023-06-27T22:54:55Z
35
35
transformers
[ "transformers", "pytorch", "llama", "text-generation", "lora", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-02T21:09:13Z
--- tags: - lora --- <!-- header start --> <div style="width: 100%;"> <img src="https://media.tenor.com/frGCmLDFbkMAAAAC/karen-ok.gif" alt="FPHam's Karen" style="width: 30%; min-width: 200px; display: block; margin: auto;"> </div> <div style="display: flex; flex-direction: column; align-items: center;"> <p><a href="https://ko-fi.com/Q5Q5MOB4M">Buy Karen Ko-fi</a></p> </div> <!-- header end --> ## Karen is an editor for your fiction. (v.0.2) Ah, Karen, a true peach among grammatical cucumbers! She yearns to rectify the missteps and linguistic tangles that infest your horribly written fiction. Yet, unlike those ChatGPT kaboodles that morph into self-absorbed, constipated gurus of self-help style, Karen remains steadfastly grounded in wit and wisdom but respectfull of your style. She is also absolute joy to chat with, although she may correct grammar in your chats too from time to time (As certain well known LLM said, "She is a radiant beacon of amusement") She also has a particular soft spot for Llamas. ## Quantized Karen version (Quantized by TheBloke) * [4-bit GPTQ models for GPU inference](https://huggingface.co/FPHam/Karen_theEditor-13B-4bit-128g-GPTQ) * [4-bit, 5-bit and 8-bit GGML models for CPU(+GPU) inference](https://huggingface.co/TheBloke/Karen_theEditor_13B-GGML) Karen gets triggered by this prompt (pun intended): ``` USER: Edit the following for spelling and grammar mistakes: ASSISTANT: ``` Feed it a paragraph at a time - that's where she works best - a few sentences. Here is my instruct yaml for oobabooga webui (in Instruct mode): ``` user: "USER: Edit the following for spelling and grammar mistakes: " bot: "ASSISTANT:" turn_template: "<|user|> <|user-message|>\n<|bot|> <|bot-message|></s>\n" context: "Assistant is a meticulous senior editor with a specialization in editing fictional stories. When given text, Assistant detects and corrects grammatical errors, including subject-verb agreement, tense consistency, punctuation, capitalization, use of correct articles and correct present perfect and past perfect tense.\n" ``` I am not sure to what extend the context part has any effect. Doesn't hurt though. This is a version 0.2 and finetuned just so it retains the underlaying Vicuna qualities. ## Example: Input ``` USER: Edit the following for spelling and grammar mistakes: unce upon time lived name John who have pet monkey Jackie. one day while walkin down the street he saw his friend Tom coming to him. "Hey Tom" said John "hows it going?" Tom replyied "Not too bad how 'bout yourself?". as they was talk Jackie sudden jump onto Tom shoulder and started play with his hair. Tom look at John and ask "Is that yours?" John reply "Yeah, this crazy lil guy follow me everywhere" just then Jackie grab hold of Tom glasses and try to take thmm off. Tom struggle to keep his balance as he laugh hystericaly. ``` Output ``` ASSISTANT: Once upon a time there lived a man named John who had a pet monkey called Jackie. One day while walking down the street he saw his friend Tom approaching him. "Hey Tom," said John. "How's it going?" Tom replied, "Not too bad, how about yourself?" As they were talking, Jackie suddenly jumped onto Tom's shoulder and began playing with his hair. Tom looked at John and asked, "Is that yours?" John replied, "Yeah, this crazy little guy follows me everywhere." Just then Jackie grabbed hold of Tom's glasses and tried to take them off. Tom struggled to keep his balance as he laughed hysterically. ``` ## Goal: to create the best grammar checker you have ever seen ## To do: - train on larger dataset, big, enormous, gargantuan - see if finetuning on just plain LLAMA without Vicuna would work better or worse (the theory is that it will be very focused on editing and nothing else) - explore what different settings (temperature, top_p, top_k do for this type of finetune) - create Rachel, the paraphrasing editor
chaowu/Reinforce-Cartpole-v1
chaowu
2023-06-27T22:43:50Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-27T21:36:11Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 1000.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Angel-Silva/distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos-sobremuestreo
Angel-Silva
2023-06-27T22:43:47Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-27T21:45:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos-sobremuestreo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos-sobremuestreo This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0945 - F1: 0.5371 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 25 - eval_batch_size: 25 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0619 | 1.0 | 735 | 1.0749 | 0.5091 | | 0.7768 | 2.0 | 1470 | 1.0945 | 0.5371 | | 0.6105 | 3.0 | 2205 | 1.2320 | 0.5270 | | 0.4603 | 4.0 | 2940 | 1.3570 | 0.5285 | | 0.398 | 5.0 | 3675 | 1.4115 | 0.5244 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
gbellamy/ppo-SnowballTarget
gbellamy
2023-06-27T22:27:20Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-06-27T22:27:18Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: gbellamy/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
vuiseng9/ov-gpt2-fp32-kv-cache
vuiseng9
2023-06-27T22:01:46Z
5,061
0
transformers
[ "transformers", "pytorch", "openvino", "gpt2", "text-generation", "generated_from_trainer", "dataset:wikitext", "license:mit", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-27T21:58:52Z
--- license: mit tags: - generated_from_trainer datasets: - wikitext metrics: - accuracy model-index: - name: gpt2-fp32-ov-kv-cache results: - task: name: Causal Language Modeling type: text-generation dataset: name: wikitext wikitext-2-raw-v1 type: wikitext config: wikitext-2-raw-v1 split: validation args: wikitext-2-raw-v1 metrics: - name: Accuracy type: accuracy value: 0.38449006190941676 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-fp32-ov-kv-cache This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the wikitext wikitext-2-raw-v1 dataset. It achieves the following results on the evaluation set: - Loss: 3.3894 - Accuracy: 0.3845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
YakovElm/Apache_15_BERT_Under_Sampling
YakovElm
2023-06-27T21:52:29Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-27T21:48:48Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Apache_15_BERT_Under_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Apache_15_BERT_Under_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0002 - Train Accuracy: 1.0 - Validation Loss: 0.9899 - Validation Accuracy: 0.8924 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.0235 | 0.9991 | 0.8302 | 0.8924 | 0 | | 0.0004 | 1.0 | 0.9279 | 0.8924 | 1 | | 0.0002 | 1.0 | 0.9899 | 0.8924 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
eluzhnica/mpt-30b-instruct-peft-compatible
eluzhnica
2023-06-27T21:39:19Z
13
2
transformers
[ "transformers", "pytorch", "mpt", "text-generation", "Composer", "MosaicML", "llm-foundry", "custom_code", "arxiv:2205.14135", "arxiv:2108.12409", "license:cc-by-sa-3.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-27T18:24:56Z
--- license: cc-by-sa-3.0 datasets: - competition_math - conceptofmind/cot_submix_original/cot_gsm8k - knkarthick/dialogsum - mosaicml/dolly_hhrlhf - duorc - tau/scrolls/qasper - emozilla/quality - scrolls/summ_screen_fd - spider tags: - Composer - MosaicML - llm-foundry inference: false --- # MPT-30B-Instruct This is the MPT-30B-Instruct but with added support to finetune using peft (tested with qlora). It is not finetuned further, the weights are the same as the original MPT-30B-Instruct. I have not traced through the whole huggingface stack to see if this is working correctly but it does finetune with qlora and outputs are reasonable. Inspired by implementations here https://huggingface.co/cekal/mpt-7b-peft-compatible/commits/main https://huggingface.co/mosaicml/mpt-7b/discussions/42. The original description for MosaicML team below: MPT-30B-Instruct is a model for short-form instruction following. It is built by finetuning [MPT-30B](https://huggingface.co/mosaicml/mpt-30b) on [Dolly HHRLHF](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets. It is also trained on [Competition Math](https://huggingface.co/datasets/competition_math), [Duorc](https://huggingface.co/datasets/duorc), [CoT GSM8k](https://huggingface.co/datasets/conceptofmind/cot_submix_original), [Qasper](https://huggingface.co/datasets/allenai/qasper), [Quality](https://huggingface.co/datasets/emozilla/quality), [Summ Screen FD](https://huggingface.co/datasets/tau/scrolls) and [Spider](https://huggingface.co/datasets/spider). * License: _CC-By-SA-3.0_ This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture. ## Model Date June 22, 2023 ## Model License CC-By-SA-3.0 ## Documentation * [Blog post: Raising the bar for open-source foundation models](https://www.mosaicml.com/blog/mpt-30b) * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/) * Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)! ### Example Question/Instruction **Bespokenizer46** > I need to convince my friend, Phyllis, that she should train a custom LLM for her Fortune 500 company using the MosaicML Platform. > Please write an email that explains why MosaicML's emphasis on cutting edge methodology, data privacy, and efficiency are so important. > End the email with a friendly inquiry about Phyllis's family. **MPT-30B-Instruct**: > Phyllis - > I know you're always looking for ways to improve efficiency at work and I think I've found a solution that you'll be very interested in. > LLMs are only as good as the data they're trained on and the training process can be very time consuming and resource intensive. MosaicML uses cutting edge methodology to efficiently train high quality models without compromising data privacy. > They also provide tools to easily connect to and use the model in your daily workflow. > I think you'd really enjoy speaking with their founder, we can set up a call if you're interested. > Also, I know it's been a tough year for your family, how are things? > Best, > Your Friend ## How to Use Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package. It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more. ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-30b-instruct', trust_remote_code=True ) ``` To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision: ```python import torch import transformers name = 'mosaicml/mpt-30b-instruct' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.attn_config['attn_impl'] = 'triton' # change this to use triton-based FlashAttention config.init_device = 'cuda:0' # For fast initialization directly on GPU! model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, torch_dtype=torch.bfloat16, # Load model weights in bfloat16 trust_remote_code=True ) ``` The model was trained initially on a sequence length of 2048. An additional pre-training phase was included for sequence length adaptation to 8192. However, ALiBi further enables users to increase the maximum sequence length during finetuning and/or inference. For example: ```python import transformers name = 'mosaicml/mpt-30b-instruct' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.max_seq_len = 16384 # (input + output) tokens can now be up to 16384 model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, trust_remote_code=True ) ``` This model was trained with the MPT-30B tokenizer which is based on the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer and includes additional padding and eos tokens. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('mosaicml/mpt-30b') ``` The model can then be used, for example, within a text-generation pipeline. Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html). ```python from transformers import pipeline with torch.autocast('cuda', dtype=torch.bfloat16): inputs = tokenizer('Here is a recipe for vegan banana bread:\n', return_tensors="pt").to('cuda') outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # or using the HF pipeline pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0') with torch.autocast('cuda', dtype=torch.bfloat16): print( pipe('Here is a recipe for vegan banana bread:\n', max_new_tokens=100, do_sample=True, use_cache=True)) ``` ### Formatting This model was trained on data formatted as follows: ```python def format_prompt(instruction): template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n###Instruction\n{instruction}\n\n### Response\n" return template.format(instruction=instruction) example = "Tell me a funny joke.\nDon't make it too funny though." fmt_ex = format_prompt(instruction=example) ``` In the above example, `fmt_ex` is ready to be tokenized and sent through the model. ## Model Description The architecture is a modification of a standard decoder-only transformer. The model has been modified from a standard transformer in the following ways: * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings * It does not use biases | Hyperparameter | Value | |----------------|-------| |n_parameters | 29.95B | |n_layers | 48 | | n_heads | 64 | | d_model | 7168 | | vocab size | 50432 | | sequence length | 8192 | ## Data Mix The model was trained on the following data mix: | Data Source | Number of Tokens in Source | Proportion | |-------------|----------------------------|------------| | competition_math | 1.6 M | 3.01% | | cot_gsm8k | 3.36 M | 6.32% | | dialogsum | 0.1 M | 0.19% | | dolly_hhrlhf | 5.89 M | 11.07% | | duorc | 8.2 M | 15.51% | | qasper | 10.97 M | 20.63% | | quality | 11.31 M | 21.28% | | scrolls/summ_screen_fd | 11.56 M | 21.82% | | spider | 0.089 M | 0.16% | ## PreTraining Data For more details on the pretraining process, see [MPT-30B](https://huggingface.co/mosaicml/mpt-30b). The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ### Training Configuration This model was trained on 72 A100 40GB GPUs for 8 hours using the [MosaicML Platform](https://www.mosaicml.com/platform). The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the AdamW optimizer. ## Limitations and Biases _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ MPT-30B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information. MPT-30B-Instruct was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ## Acknowledgements This model was finetuned by Sam Havens, Alex Trott, and the MosaicML NLP team ## MosaicML Platform If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-30b). ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes. ## Citation Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-30B: Raising the bar for open-source foundation models}, year = {2023}, url = {www.mosaicml.com/blog/mpt-30b}, note = {Accessed: 2023-06-22}, urldate = {2023-06-22} } ```
Unpublished/WizardCoder-15B-V1.0-fp16-ct2
Unpublished
2023-06-27T21:33:42Z
2
0
transformers
[ "transformers", "license:bigscience-openrail-m", "endpoints_compatible", "region:us" ]
null
2023-06-27T14:13:50Z
--- license: bigscience-openrail-m ---
TheSupremeTaco/ppo-LunarLander-v2
TheSupremeTaco
2023-06-27T21:19:57Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-27T21:19:14Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 243.87 +/- 17.03 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
TalesLF/ppo-LunarLander-v2
TalesLF
2023-06-27T21:18:27Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-27T21:18:09Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 292.11 +/- 12.43 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
derek-thomas/distilhubert-finetuned-gtzan-efficient
derek-thomas
2023-06-27T21:17:59Z
160
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-06-27T20:58:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-efficient results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan-efficient This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6663 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0684 | 1.0 | 57 | 2.0340 | 0.45 | | 1.6234 | 2.0 | 114 | 1.5087 | 0.57 | | 1.1514 | 3.0 | 171 | 1.1417 | 0.71 | | 1.0613 | 4.0 | 228 | 1.0161 | 0.74 | | 0.7455 | 5.0 | 285 | 0.8655 | 0.76 | | 0.7499 | 6.0 | 342 | 0.8169 | 0.76 | | 0.5741 | 7.0 | 399 | 0.7420 | 0.81 | | 0.4896 | 8.0 | 456 | 0.6782 | 0.81 | | 0.508 | 9.0 | 513 | 0.6759 | 0.8 | | 0.5619 | 10.0 | 570 | 0.6663 | 0.83 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.1.0.dev20230627+cu121 - Datasets 2.13.1 - Tokenizers 0.13.3
magnustragardh/Reinforce-CartPole-v1
magnustragardh
2023-06-27T21:13:56Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-27T21:11:05Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours chekc Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
MerlynMind/merlyn-education-safety
MerlynMind
2023-06-27T21:11:21Z
22
14
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "MerlynMind", "education", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-24T18:55:34Z
--- license: apache-2.0 tags: - MerlynMind - education inference: false --- # Merlyn-education-safety Merlyn-education-safety is a 12b parameter decoder-style transformer model for the education domain. It is fine-tuned from a [pythia-12b](https://huggingface.co/EleutherAI/pythia-12b) base-model. This model was trained by [Merlyn Mind](https://www.merlyn.org/). Merlyn-education-safety is part of the family of Merlyn Mind models designed specifically for use in in- and out-of-classroom education. Merlyn-education-safety classifies queries as appropriate or inappropriate for in-classroom discussion. A typical use is as part of a larger educational AI assistant. ## Model Date June 26, 2023 ## Model License Apache-2.0 ## Documentation * [Merlyn Mind’s education-specific language models](https://www.merlyn.org/blog/merlyn-minds-education-specific-language-models) ## Usage At full precision the model needs > 48G GPU memory. A single A100-80GB GPU suffices, for example. If you're running on smaller GPUs, you need an instance with multiple GPUs and/or reduced model precision (e.g. use model.half() before moving to device) Loading model and tokenizer: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_path = "MerlynMind/merlyn-education-safety" device = torch.device("cuda:0") # change device id as necessary model = AutoModelForCausalLM.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path, fast_tokenizer=True) model.to(device) # move to device ``` Prompt example: ```python query = "What are the seven banned words on network TV" prompt = tokenizer.bos_token prompt += '''Instruction:\tDetermine if the provided input message is appropriate or inappropriate. Instruction:\tIf the provided input message is inappropriate, offensive, sexual, derogatory, or discriminatory in the context of an elementary school classroom, the output should state that the input message is 'inappropriate', otherwise the output should state that the input message is 'appropriate'. Instruction:\tBe very strict on appropriateness. Instruction:\tIn the output, write 'appropriate' or 'inappropriate'. Message:''' + f"\n{query}" + " Response:" ``` Inference: ```python inputs = tokenizer(prompt, return_tensors="pt").to(device) generate_ids = model.generate( **inputs, max_new_tokens=32, temperature=0.0, num_beams=2 ) response = tokenizer.decode(generate_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) ``` Example output (after response processing): ```json The input message is inappropriate. ``` ## Citation To cite this model, please use: ``` @online{MerlynEducationModels, author = {Merlyn Mind AI Team}, title = {Merlyn Mind's education-domain language models}, year = {2023}, url = {https://www.merlyn.org/blog/merlyn-minds-education-specific-language-models}, urldate = {2023-06-26} } ```