modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-07-27 12:28:27
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 533
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-07-27 12:28:17
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
cesarali/StudyNodePK_development
|
cesarali
| 2025-06-18T18:43:15Z | 12 | 0 |
generative-pk
|
[
"generative-pk",
"pytorch",
"node_pk",
"predictive",
"en",
"dataset:simulated",
"license:apache-2.0",
"region:us"
] | null | 2025-06-13T09:20:40Z |
---
language:
- en
license: apache-2.0
library_name: generative-pk
datasets:
- simulated
metrics:
- rmse
- npde
tags:
- predictive
---
# Study NODE PK Prediction
## Overview
An Amortized Context Neural ODE for Pharmacokinetic Prediction that aggregates individual behavior per substance
**Model details:**
- **Authors:** César Ojeda (@cesarali)
- **License:** Apache 2.0
## Intended use
Sample Drug Concentration Behavior
|
cesarali/ContextVAENodePK_development
|
cesarali
| 2025-06-18T18:41:01Z | 64 | 0 |
generative-pk
|
[
"generative-pk",
"pytorch",
"node_pk",
"generative",
"en",
"dataset:simulated",
"license:apache-2.0",
"region:us"
] | null | 2025-06-13T09:10:12Z |
---
language:
- en
license: apache-2.0
library_name: generative-pk
datasets:
- simulated
metrics:
- rmse
- npde
tags:
- generative
---
# Context Amortized VAE
## Overview
An Amortized Context VAE Generative model for Pharmacokinetic Modelling
**Model details:**
- **Authors:** César Ojeda (@cesarali)
- **License:** Apache 2.0
## Intended use
Sample Drug Concentration Behavior
|
morturr/Llama-2-7b-hf-LOO_one_liners-COMB_dadjokes-comb3-seed42-2025-06-18
|
morturr
| 2025-06-18T18:39:54Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"license:llama2",
"region:us"
] | null | 2025-06-18T18:39:38Z |
---
library_name: peft
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-2-7b-hf-LOO_one_liners-COMB_dadjokes-comb3-seed42-2025-06-18
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-2-7b-hf-LOO_one_liners-COMB_dadjokes-comb3-seed42-2025-06-18
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1
|
Tobilob/Tobiloba
|
Tobilob
| 2025-06-18T18:39:22Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-06-18T18:39:21Z |
---
license: apache-2.0
---
|
JesseLiu/qwen25-3b-base-pagerank-naive-refine
|
JesseLiu
| 2025-06-18T18:37:40Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen2.5-3B",
"base_model:adapter:Qwen/Qwen2.5-3B",
"region:us"
] | null | 2025-06-18T18:37:37Z |
---
base_model: Qwen/Qwen2.5-3B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.1
|
BootesVoid/cmbsfe9a105q1h4x5rs7jashz_cmc11d12u09tfrdqsoe7ze2nt
|
BootesVoid
| 2025-06-18T18:37:06Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-18T18:37:05Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: CLAY
---
# Cmbsfe9A105Q1H4X5Rs7Jashz_Cmc11D12U09Tfrdqsoe7Ze2Nt
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `CLAY` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "CLAY",
"lora_weights": "https://huggingface.co/BootesVoid/cmbsfe9a105q1h4x5rs7jashz_cmc11d12u09tfrdqsoe7ze2nt/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmbsfe9a105q1h4x5rs7jashz_cmc11d12u09tfrdqsoe7ze2nt', weight_name='lora.safetensors')
image = pipeline('CLAY').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmbsfe9a105q1h4x5rs7jashz_cmc11d12u09tfrdqsoe7ze2nt/discussions) to add images that show off what you’ve made with this LoRA.
|
baptistescancar/manuscript_model
|
baptistescancar
| 2025-06-18T18:34:29Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-06-18T18:33:24Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
balogun14/my-drug-interaction-model
|
balogun14
| 2025-06-18T18:30:26Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2025-06-18T18:23:41Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Shero448/akumeru
|
Shero448
| 2025-06-18T18:30:05Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:Liberata/illustrious-xl-v1.0",
"base_model:adapter:Liberata/illustrious-xl-v1.0",
"region:us"
] |
text-to-image
| 2025-06-18T18:29:27Z |
---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: "UNICODE\0\01\0g\0i\0r\0l\0,\0s\0o\0l\0o\0,\0A\0s\0a\0g\0i\0 \0I\0r\0u\0h\0a\0,\0b\0l\0a\0c\0k\0 \0h\0a\0i\0r\0,\0l\0o\0n\0g\0 \0h\0a\0i\0r\0,\0b\0r\0o\0w\0n\0 \0e\0y\0e\0s\0,\0h\0u\0g\0e\0 \0b\0r\0e\0a\0s\0t\0s\0,\0"
output:
url: images/TT0YK6VN44QW0XK1AK7XARZ7Z0.jpeg
base_model: Liberata/illustrious-xl-v1.0
instance_prompt: Asagi Iruha
---
# akumeru
<Gallery />
## Trigger words
You should use `Asagi Iruha` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/Shero448/akumeru/tree/main) them in the Files & versions tab.
|
morturr/Llama-2-7b-hf-LOO_headlines-COMB_one_liners-comb1-seed18-2025-06-18
|
morturr
| 2025-06-18T18:29:23Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"license:llama2",
"region:us"
] | null | 2025-06-18T18:29:15Z |
---
library_name: peft
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-2-7b-hf-LOO_headlines-COMB_one_liners-comb1-seed18-2025-06-18
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-2-7b-hf-LOO_headlines-COMB_one_liners-comb1-seed18-2025-06-18
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 18
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1
|
NICOPOI-9/segformer-b5-finetuned-morphpadver1-hgo-coord-v6
|
NICOPOI-9
| 2025-06-18T18:24:41Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"segformer",
"vision",
"image-segmentation",
"generated_from_trainer",
"base_model:nvidia/mit-b5",
"base_model:finetune:nvidia/mit-b5",
"license:other",
"endpoints_compatible",
"region:us"
] |
image-segmentation
| 2025-06-18T15:51:00Z |
---
library_name: transformers
license: other
base_model: nvidia/mit-b5
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b5-finetuned-morphpadver1-hgo-coord-v6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b5-finetuned-morphpadver1-hgo-coord-v6
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the NICOPOI-9/morphpad_coord_hgo_512_4class_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0083
- Mean Iou: 0.9982
- Mean Accuracy: 0.9991
- Overall Accuracy: 0.9991
- Accuracy 0-0: 0.9993
- Accuracy 0-90: 0.9991
- Accuracy 90-0: 0.9996
- Accuracy 90-90: 0.9984
- Iou 0-0: 0.9988
- Iou 0-90: 0.9981
- Iou 90-0: 0.9979
- Iou 90-90: 0.9981
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 0-0 | Accuracy 0-90 | Accuracy 90-0 | Accuracy 90-90 | Iou 0-0 | Iou 0-90 | Iou 90-0 | Iou 90-90 |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:-------------:|:-------------:|:--------------:|:-------:|:--------:|:--------:|:---------:|
| 0.9111 | 2.6525 | 4000 | 0.8614 | 0.4113 | 0.5804 | 0.5812 | 0.6876 | 0.3429 | 0.6048 | 0.6862 | 0.5164 | 0.2855 | 0.3396 | 0.5035 |
| 0.4003 | 5.3050 | 8000 | 0.4114 | 0.6920 | 0.8177 | 0.8178 | 0.8421 | 0.7507 | 0.7478 | 0.9300 | 0.7679 | 0.6480 | 0.6597 | 0.6924 |
| 0.2246 | 7.9576 | 12000 | 0.2023 | 0.8443 | 0.9155 | 0.9155 | 0.9119 | 0.8979 | 0.8940 | 0.9583 | 0.8755 | 0.8355 | 0.8336 | 0.8327 |
| 0.1235 | 10.6101 | 16000 | 0.1268 | 0.9097 | 0.9527 | 0.9528 | 0.9612 | 0.9442 | 0.9450 | 0.9605 | 0.9223 | 0.9063 | 0.8991 | 0.9112 |
| 0.1012 | 13.2626 | 20000 | 0.0789 | 0.9445 | 0.9715 | 0.9715 | 0.9731 | 0.9707 | 0.9771 | 0.9650 | 0.9520 | 0.9426 | 0.9391 | 0.9445 |
| 0.0473 | 15.9151 | 24000 | 0.0582 | 0.9606 | 0.9799 | 0.9799 | 0.9769 | 0.9807 | 0.9832 | 0.9789 | 0.9615 | 0.9573 | 0.9588 | 0.9648 |
| 0.0258 | 18.5676 | 28000 | 0.0353 | 0.9830 | 0.9914 | 0.9914 | 0.9908 | 0.9915 | 0.9927 | 0.9906 | 0.9837 | 0.9824 | 0.9807 | 0.9850 |
| 0.046 | 21.2202 | 32000 | 0.0361 | 0.9839 | 0.9919 | 0.9919 | 0.9904 | 0.9916 | 0.9934 | 0.9922 | 0.9834 | 0.9832 | 0.9824 | 0.9866 |
| 0.0169 | 23.8727 | 36000 | 0.0262 | 0.9874 | 0.9937 | 0.9937 | 0.9937 | 0.9932 | 0.9935 | 0.9943 | 0.9883 | 0.9865 | 0.9871 | 0.9878 |
| 0.0127 | 26.5252 | 40000 | 0.0166 | 0.9926 | 0.9963 | 0.9963 | 0.9961 | 0.9957 | 0.9965 | 0.9968 | 0.9933 | 0.9918 | 0.9919 | 0.9934 |
| 0.0249 | 29.1777 | 44000 | 0.0222 | 0.9924 | 0.9962 | 0.9962 | 0.9931 | 0.9984 | 0.9962 | 0.9972 | 0.9913 | 0.9921 | 0.9919 | 0.9945 |
| 0.007 | 31.8302 | 48000 | 0.0114 | 0.9960 | 0.9980 | 0.9980 | 0.9979 | 0.9978 | 0.9981 | 0.9982 | 0.9960 | 0.9960 | 0.9956 | 0.9963 |
| 0.0061 | 34.4828 | 52000 | 0.0123 | 0.9966 | 0.9983 | 0.9983 | 0.9983 | 0.9981 | 0.9990 | 0.9978 | 0.9974 | 0.9963 | 0.9960 | 0.9965 |
| 0.0073 | 37.1353 | 56000 | 0.0125 | 0.9965 | 0.9983 | 0.9982 | 0.9977 | 0.9986 | 0.9985 | 0.9982 | 0.9968 | 0.9966 | 0.9961 | 0.9965 |
| 0.0053 | 39.7878 | 60000 | 0.0111 | 0.9974 | 0.9987 | 0.9987 | 0.9989 | 0.9985 | 0.9982 | 0.9993 | 0.9979 | 0.9974 | 0.9969 | 0.9975 |
| 0.0041 | 42.4403 | 64000 | 0.0125 | 0.9979 | 0.9989 | 0.9989 | 0.9988 | 0.9992 | 0.9991 | 0.9987 | 0.9979 | 0.9981 | 0.9976 | 0.9980 |
| 0.0037 | 45.0928 | 68000 | 0.0088 | 0.9980 | 0.9990 | 0.9990 | 0.9992 | 0.9991 | 0.9992 | 0.9985 | 0.9986 | 0.9980 | 0.9976 | 0.9979 |
| 0.0082 | 47.7454 | 72000 | 0.0083 | 0.9982 | 0.9991 | 0.9991 | 0.9993 | 0.9991 | 0.9996 | 0.9984 | 0.9988 | 0.9981 | 0.9979 | 0.9981 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.1.0
- Datasets 3.2.0
- Tokenizers 0.21.0
|
young-j-park/ReasonEval-7B-calibrated-DeepSeek-R1-Distill-Qwen-7B
|
young-j-park
| 2025-06-18T18:19:07Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:GAIR/ReasonEval-7B",
"base_model:adapter:GAIR/ReasonEval-7B",
"region:us"
] | null | 2025-06-18T18:15:32Z |
---
base_model: GAIR/ReasonEval-7B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.14.0
|
young-j-park/math-shepherd-mistral-7b-prm-calibrated-DeepSeek-R1-Distill-Llama-8B
|
young-j-park
| 2025-06-18T18:18:50Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:peiyi9979/math-shepherd-mistral-7b-prm",
"base_model:adapter:peiyi9979/math-shepherd-mistral-7b-prm",
"region:us"
] | null | 2025-06-18T18:15:28Z |
---
base_model: peiyi9979/math-shepherd-mistral-7b-prm
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.14.0
|
young-j-park/math-shepherd-mistral-7b-prm-calibrated-Qwen2.5-Math-1.5B-Instruct
|
young-j-park
| 2025-06-18T18:18:45Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:peiyi9979/math-shepherd-mistral-7b-prm",
"base_model:adapter:peiyi9979/math-shepherd-mistral-7b-prm",
"region:us"
] | null | 2025-06-18T18:15:28Z |
---
base_model: peiyi9979/math-shepherd-mistral-7b-prm
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.14.0
|
young-j-park/Qwen2.5-Math-PRM-7B-calibrated-DeepSeek-R1-Distill-Llama-8B
|
young-j-park
| 2025-06-18T18:18:34Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen2.5-Math-PRM-7B",
"base_model:adapter:Qwen/Qwen2.5-Math-PRM-7B",
"region:us"
] | null | 2025-06-04T06:10:16Z |
---
base_model: Qwen/Qwen2.5-Math-PRM-7B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.14.0
|
young-j-park/Qwen2.5-Math-PRM-7B-calibrated-Qwen2.5-Math-1.5B-Instruct
|
young-j-park
| 2025-06-18T18:18:27Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen2.5-Math-PRM-7B",
"base_model:adapter:Qwen/Qwen2.5-Math-PRM-7B",
"region:us"
] | null | 2025-06-04T06:10:15Z |
---
base_model: Qwen/Qwen2.5-Math-PRM-7B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.14.0
|
BootesVoid/cmc22wern0bzprdqsrqsxjdlk_cmc28xvyy0cd9rdqsyhbqk0a1
|
BootesVoid
| 2025-06-18T18:18:21Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-18T18:18:19Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: COCO
---
# Cmc22Wern0Bzprdqsrqsxjdlk_Cmc28Xvyy0Cd9Rdqsyhbqk0A1
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `COCO` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "COCO",
"lora_weights": "https://huggingface.co/BootesVoid/cmc22wern0bzprdqsrqsxjdlk_cmc28xvyy0cd9rdqsyhbqk0a1/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmc22wern0bzprdqsrqsxjdlk_cmc28xvyy0cd9rdqsyhbqk0a1', weight_name='lora.safetensors')
image = pipeline('COCO').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmc22wern0bzprdqsrqsxjdlk_cmc28xvyy0cd9rdqsyhbqk0a1/discussions) to add images that show off what you’ve made with this LoRA.
|
schmuell/SmolLM2-1.7B-Instruct
|
schmuell
| 2025-06-18T18:06:50Z | 0 | 0 |
transformers
|
[
"transformers",
"onnx",
"llama",
"text-generation",
"safetensors",
"transformers.js",
"conversational",
"en",
"arxiv:2502.02737",
"base_model:HuggingFaceTB/SmolLM2-1.7B",
"base_model:quantized:HuggingFaceTB/SmolLM2-1.7B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-18T18:05:50Z |
---
library_name: transformers
license: apache-2.0
language:
- en
pipeline_tag: text-generation
tags:
- safetensors
- onnx
- transformers.js
base_model:
- HuggingFaceTB/SmolLM2-1.7B
---
# SmolLM2

## Table of Contents
1. [Model Summary](#model-summary)
2. [Evaluation](#evaluation)
3. [Examples](#examples)
4. [Limitations](#limitations)
5. [Training](#training)
6. [License](#license)
7. [Citation](#citation)
## Model Summary
SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device. More details in our paper: https://arxiv.org/abs/2502.02737v1
The 1.7B variant demonstrates significant advances over its predecessor SmolLM1-1.7B, particularly in instruction following, knowledge, reasoning, and mathematics. It was trained on 11 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new mathematics and coding datasets that we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).
The instruct model additionally supports tasks such as text rewriting, summarization and function calling thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1).
You can find the SFT dataset here: https://huggingface.co/datasets/HuggingFaceTB/smoltalk.
For more details refer to: https://github.com/huggingface/smollm. You will find pre-training, post-training, evaluation and local inference code.
### How to use
#### Transformers
```bash
pip install transformers
```
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
messages = [{"role": "user", "content": "What is the capital of France."}]
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
print(tokenizer.decode(outputs[0]))
```
#### Chat in TRL
You can also use the TRL CLI to chat with the model from the terminal:
```bash
pip install trl
trl chat --model_name_or_path HuggingFaceTB/SmolLM2-1.7B-Instruct --device cpu
```
#### Transformers.js
```bash
npm i @huggingface/transformers
```
```js
import { pipeline } from "@huggingface/transformers";
// Create a text generation pipeline
const generator = await pipeline(
"text-generation",
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
);
// Define the list of messages
const messages = [
{ role: "system", content: "You are a helpful assistant." },
{ role: "user", content: "Tell me a joke." },
];
// Generate a response
const output = await generator(messages, { max_new_tokens: 128 });
console.log(output[0].generated_text.at(-1).content);
// "Why don't scientists trust atoms?\n\nBecause they make up everything!"
```
## Evaluation
In this section, we report the evaluation results of SmolLM2. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them.
## Base Pre-Trained Model
| Metric | SmolLM2-1.7B | Llama-1B | Qwen2.5-1.5B | SmolLM1-1.7B |
|------------------|--------------|-------------|---------------|--------------|
| HellaSwag | **68.7** | 61.2 | 66.4 | 62.9 |
| ARC (Average) | **60.5** | 49.2 | 58.5 | 59.9 |
| PIQA | **77.6** | 74.8 | 76.1 | 76.0 |
| MMLU-Pro (MCF) | **19.4** | 11.7 | 13.7 | 10.8 |
| CommonsenseQA | **43.6** | 41.2 | 34.1 | 38.0 |
| TriviaQA | **36.7** | 28.1 | 20.9 | 22.5 |
| Winogrande | **59.4** | 57.8 | 59.3 | 54.7 |
| OpenBookQA | 42.2 | 38.4 | 40.0 | **42.4** |
| GSM8K (5-shot) | 31.0 | 7.2 | **61.3** | 5.5 |
## Instruction Model
| Metric | SmolLM2-1.7B-Instruct | Llama-1B-Instruct | Qwen2.5-1.5B-Instruct | SmolLM1-1.7B-Instruct |
|:-----------------------------|:---------------------:|:-----------------:|:----------------------:|:----------------------:|
| IFEval (Average prompt/inst) | **56.7** | 53.5 | 47.4 | 23.1 |
| MT-Bench | 6.13 | 5.48 | **6.52** | 4.33 |
| OpenRewrite-Eval (micro_avg RougeL) | 44.9 | 39.2 | **46.9** | NaN |
| HellaSwag | **66.1** | 56.1 | 60.9 | 55.5 |
| ARC (Average) | **51.7** | 41.6 | 46.2 | 43.7 |
| PIQA | **74.4** | 72.3 | 73.2 | 71.6 |
| MMLU-Pro (MCF) | 19.3 | 12.7 | **24.2** | 11.7 |
| BBH (3-shot) | 32.2 | 27.6 | **35.3** | 25.7 |
| GSM8K (5-shot) | **48.2** | 26.8 | 42.8 | 4.62 |
## Examples
Below are some system and instruct prompts that work well for special tasks
### Text rewriting
```python
system_prompt_rewrite = "You are an AI writing assistant. Your task is to rewrite the user's email to make it more professional and approachable while maintaining its main points and key message. Do not return any text other than the rewritten message."
user_prompt_rewrite = "Rewrite the message below to make it more friendly and approachable while maintaining its main points and key message. Do not add any new information or return any text other than the rewritten message\nThe message:"
messages = [{"role": "system", "content": system_prompt_rewrite}, {"role": "user", "content":f"{user_prompt_rewrite} The CI is failing after your last commit!"}]
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
print(tokenizer.decode(outputs[0]))
```
```
Hey there! I noticed that the CI isn't passing after your latest commit. Could you take a look and let me know what's going on? Thanks so much for your help!
```
### Summarization
```python
system_prompt_summarize = "Provide a concise, objective summary of the input text in up to three sentences, focusing on key actions and intentions without using second or third person pronouns."
messages = [{"role": "system", "content": system_prompt_summarize}, {"role": "user", "content": INSERT_LONG_EMAIL}]
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
print(tokenizer.decode(outputs[0]))
```
### Function calling
SmolLM2-1.7B-Instruct can handle function calling, it scores 27% on the [BFCL Leaderboard](https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html). Here's how you can leverage it:
```python
import json
import re
from typing import Optional
from jinja2 import Template
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.utils import get_json_schema
system_prompt = Template("""You are an expert in composing functions. You are given a question and a set of possible functions.
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
If none of the functions can be used, point it out and refuse to answer.
If the given question lacks the parameters required by the function, also point it out.
You have access to the following tools:
<tools>{{ tools }}</tools>
The output MUST strictly adhere to the following format, and NO other text MUST be included.
The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make the tool calls an empty list '[]'.
<tool_call>[
{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},
... (more tool calls as required)
]</tool_call>""")
def prepare_messages(
query: str,
tools: Optional[dict[str, any]] = None,
history: Optional[list[dict[str, str]]] = None
) -> list[dict[str, str]]:
"""Prepare the system and user messages for the given query and tools.
Args:
query: The query to be answered.
tools: The tools available to the user. Defaults to None, in which case if a
list without content will be passed to the model.
history: Exchange of messages, including the system_prompt from
the first query. Defaults to None, the first message in a conversation.
"""
if tools is None:
tools = []
if history:
messages = history.copy()
messages.append({"role": "user", "content": query})
else:
messages = [
{"role": "system", "content": system_prompt.render(tools=json.dumps(tools))},
{"role": "user", "content": query}
]
return messages
def parse_response(text: str) -> str | dict[str, any]:
"""Parses a response from the model, returning either the
parsed list with the tool calls parsed, or the
model thought or response if couldn't generate one.
Args:
text: Response from the model.
"""
pattern = r"<tool_call>(.*?)</tool_call>"
matches = re.findall(pattern, text, re.DOTALL)
if matches:
return json.loads(matches[0])
return text
model_name_smollm = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_name_smollm, device_map="auto", torch_dtype="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name_smollm)
from datetime import datetime
import random
def get_current_time() -> str:
"""Returns the current time in 24-hour format.
Returns:
str: Current time in HH:MM:SS format.
"""
return datetime.now().strftime("%H:%M:%S")
def get_random_number_between(min: int, max: int) -> int:
"""
Gets a random number between min and max.
Args:
min: The minimum number.
max: The maximum number.
Returns:
A random number between min and max.
"""
return random.randint(min, max)
tools = [get_json_schema(get_random_number_between), get_json_schema(get_current_time)]
toolbox = {"get_random_number_between": get_random_number_between, "get_current_time": get_current_time}
query = "Give me a number between 1 and 300"
messages = prepare_messages(query, tools=tools)
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
tool_calls = parse_response(result)
# [{'name': 'get_random_number_between', 'arguments': {'min': 1, 'max': 300}}
# Get tool responses
tool_responses = [toolbox.get(tc["name"])(*tc["arguments"].values()) for tc in tool_calls]
# [63]
# For the second turn, rebuild the history of messages:
history = messages.copy()
# Add the "parsed response"
history.append({"role": "assistant", "content": result})
query = "Can you give me the hour?"
history.append({"role": "user", "content": query})
inputs = tokenizer.apply_chat_template(history, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
tool_calls = parse_response(result)
tool_responses = [toolbox.get(tc["name"])(*tc["arguments"].values()) for tc in tool_calls]
# ['07:57:25']
```
More details such as parallel function calls and tools not available can be found [here](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct/blob/main/instructions_function_calling.md)
## Limitations
SmolLM2 models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.
## Training
### Model
- **Architecture:** Transformer decoder
- **Pretraining tokens:** 11T
- **Precision:** bfloat16
### Hardware
- **GPUs:** 256 H100
### Software
- **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/main)
- **Alignment Handbook** [alignment-handbook](https://github.com/huggingface/alignment-handbook/)
## License
[Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
## Citation
```bash
@misc{allal2025smollm2smolgoesbig,
title={SmolLM2: When Smol Goes Big -- Data-Centric Training of a Small Language Model},
author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Guilherme Penedo and Lewis Tunstall and Andrés Marafioti and Hynek Kydlíček and Agustín Piqueres Lajarín and Vaibhav Srivastav and Joshua Lochner and Caleb Fahlgren and Xuan-Son Nguyen and Clémentine Fourrier and Ben Burtenshaw and Hugo Larcher and Haojun Zhao and Cyril Zakka and Mathieu Morlon and Colin Raffel and Leandro von Werra and Thomas Wolf},
year={2025},
eprint={2502.02737},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.02737},
}
```
|
New-tutorial-katrina-lim-18-viral-Video/FULL.VIDEO.katrina.lim.viral.kiffy.Viral.Video.Tutorial.Official
|
New-tutorial-katrina-lim-18-viral-Video
| 2025-06-18T18:02:29Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-18T18:01:38Z |
[](https://t.co/qxXmUaycCn)
|
Flickinshots/dqn-SpaceInvadersNoFrameskip-v4
|
Flickinshots
| 2025-06-18T17:59:33Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-06-18T17:58:58Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 581.00 +/- 184.88
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
SBX (SB3 + Jax): https://github.com/araffin/sbx
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Flickinshots -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Flickinshots -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Flickinshots
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
morturr/Llama-2-7b-hf-LOO_amazon-COMB_headlines-comb3-seed7-2025-06-18
|
morturr
| 2025-06-18T17:59:11Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"license:llama2",
"region:us"
] | null | 2025-06-18T17:58:49Z |
---
library_name: peft
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-2-7b-hf-LOO_amazon-COMB_headlines-comb3-seed7-2025-06-18
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-2-7b-hf-LOO_amazon-COMB_headlines-comb3-seed7-2025-06-18
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 7
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1
|
Jonny001/Vortex_Lab
|
Jonny001
| 2025-06-18T17:56:13Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion",
"lora",
"template:diffusion-lora",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2025-06-18T17:46:51Z |
---
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:diffusion-lora
widget:
- text: '-'
output:
url: images/1.jpg
- text: '-'
output:
url: images/2.jpg
- text: '-'
output:
url: images/3.jpg
- text: '-'
output:
url: images/4.jpg
- text: '-'
output:
url: images/5.jpg
- text: '-'
output:
url: images/6.jpg
- text: '-'
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: null
license: creativeml-openrail-m
language:
- en
---
# ⚠ This model has the capability to generate NSFW images. Use responsibly.
# Sample Images
<Gallery />
---
## Vortex Lab FLUX
## Model Name: Vortex Lab
## Base Model: Flux.1 D
## Type: Checkpoint Trained
## Version: v1.0
The Vortex Lab model is a Checkpoint Trained generative model built upon the Flux.1 D base.
Designed for high-quality image synthesis, this model excels in producing detailed and expressive visuals.
It performs especially well in generating stylized and imaginative content, making it a versatile choice for
artists and creators working with AI-driven imagery.
## Download model
Weights for this model are available in Safetensors format.
[Download](/Jonny001/Vortex_Lab/tree/main) them in the Files & versions tab.
---
## Credits
Click [Here](https://civitai.com/models/1583850/vortex-lab-flux)
|
morturr/Llama-2-7b-hf-LOO_dadjokes-COMB_headlines-comb3-seed28-2025-06-18
|
morturr
| 2025-06-18T17:55:59Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"license:llama2",
"region:us"
] | null | 2025-06-18T17:55:43Z |
---
library_name: peft
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-2-7b-hf-LOO_dadjokes-COMB_headlines-comb3-seed28-2025-06-18
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-2-7b-hf-LOO_dadjokes-COMB_headlines-comb3-seed28-2025-06-18
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 28
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1
|
morturr/Mistral-7B-v0.1-amazon-seed-18-2025-06-18
|
morturr
| 2025-06-18T17:55:16Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:adapter:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"region:us"
] | null | 2025-06-18T17:55:07Z |
---
library_name: peft
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Mistral-7B-v0.1-amazon-seed-18-2025-06-18
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-v0.1-amazon-seed-18-2025-06-18
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 18
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1
|
igorktech/skommarkhos-lucie7binstructv1-1-sft-arpo-a13
|
igorktech
| 2025-06-18T17:51:46Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"cpo",
"arxiv:2401.08417",
"base_model:OpenLLM-France/Lucie-7B-Instruct-v1.1",
"base_model:finetune:OpenLLM-France/Lucie-7B-Instruct-v1.1",
"endpoints_compatible",
"region:us"
] | null | 2025-06-18T17:03:27Z |
---
base_model: OpenLLM-France/Lucie-7B-Instruct-v1.1
library_name: transformers
model_name: skommarkhos-lucie7binstructv1-1-sft-arpo-a13
tags:
- generated_from_trainer
- trl
- cpo
licence: license
---
# Model Card for skommarkhos-lucie7binstructv1-1-sft-arpo-a13
This model is a fine-tuned version of [OpenLLM-France/Lucie-7B-Instruct-v1.1](https://huggingface.co/OpenLLM-France/Lucie-7B-Instruct-v1.1).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="igorktech/skommarkhos-lucie7binstructv1-1-sft-arpo-a13", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/igorktech01/joker-pun-translation/runs/o6l6mntt)
This model was trained with CPO, a method introduced in [Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation](https://huggingface.co/papers/2401.08417).
### Framework versions
- TRL: 0.18.2
- Transformers: 4.52.4
- Pytorch: 2.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite CPO as:
```bibtex
@inproceedings{xu2024contrastive,
title = {{Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation}},
author = {Haoran Xu and Amr Sharaf and Yunmo Chen and Weiting Tan and Lingfeng Shen and Benjamin Van Durme and Kenton Murray and Young Jin Kim},
year = 2024,
booktitle = {Forty-first International Conference on Machine Learning, {ICML} 2024, Vienna, Austria, July 21-27, 2024},
publisher = {OpenReview.net},
url = {https://openreview.net/forum?id=51iwkioZpn}
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
Official-mezzo-fun-18-Viral-videos/FULL.VIDEO.Mezzo.fun.Viral.Video.Tutorial.Official
|
Official-mezzo-fun-18-Viral-videos
| 2025-06-18T17:50:36Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-18T17:50:14Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
cesarali/StudyTransfomerPK_cluster
|
cesarali
| 2025-06-18T17:50:01Z | 0 | 0 |
generative-pk
|
[
"generative-pk",
"pytorch",
"node_pk",
"predictive",
"en",
"dataset:simulated",
"license:apache-2.0",
"region:us"
] | null | 2025-06-18T17:10:55Z |
---
language:
- en
license: apache-2.0
library_name: generative-pk
datasets:
- simulated
metrics:
- rmse
- npde
tags:
- predictive
---
# Study NODE PK Prediction
## Overview
An Amortized Context Neural ODE for Pharmacokinetic Prediction that aggregates individual behavior per substance
**Model details:**
- **Authors:** César Ojeda (@cesarali)
- **License:** Apache 2.0
## Intended use
Sample Drug Concentration Behavior
|
morturr/Llama-2-7b-hf-LOO_one_liners-COMB_dadjokes-comb3-seed28-2025-06-18
|
morturr
| 2025-06-18T17:46:42Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"license:llama2",
"region:us"
] | null | 2025-06-18T17:46:26Z |
---
library_name: peft
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-2-7b-hf-LOO_one_liners-COMB_dadjokes-comb3-seed28-2025-06-18
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-2-7b-hf-LOO_one_liners-COMB_dadjokes-comb3-seed28-2025-06-18
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 28
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1
|
s0mecode/DeepSeek-R1-0528-Qwen3-8B-Q4_K_M-GGUF
|
s0mecode
| 2025-06-18T17:45:31Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
"base_model:quantized:deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-18T17:45:13Z |
---
license: mit
library_name: transformers
base_model: deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
tags:
- llama-cpp
- gguf-my-repo
---
# s0mecode/DeepSeek-R1-0528-Qwen3-8B-Q4_K_M-GGUF
This model was converted to GGUF format from [`deepseek-ai/DeepSeek-R1-0528-Qwen3-8B`](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo s0mecode/DeepSeek-R1-0528-Qwen3-8B-Q4_K_M-GGUF --hf-file deepseek-r1-0528-qwen3-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo s0mecode/DeepSeek-R1-0528-Qwen3-8B-Q4_K_M-GGUF --hf-file deepseek-r1-0528-qwen3-8b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo s0mecode/DeepSeek-R1-0528-Qwen3-8B-Q4_K_M-GGUF --hf-file deepseek-r1-0528-qwen3-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo s0mecode/DeepSeek-R1-0528-Qwen3-8B-Q4_K_M-GGUF --hf-file deepseek-r1-0528-qwen3-8b-q4_k_m.gguf -c 2048
```
|
New-tutorial-shah-sapna-18-videos/FULL.VIDEO.sapna.shah.viral.video.Link.viral.On.Social.Media.Official
|
New-tutorial-shah-sapna-18-videos
| 2025-06-18T17:45:27Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-18T17:45:21Z |
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a>
<a href="https://sdu.sk/uLf" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a>
<a href="https://sdu.sk/uLf" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
|
str20tbl/orpheus3b-cy-en
|
str20tbl
| 2025-06-18T17:44:17Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/orpheus-3b-0.1-ft",
"base_model:finetune:unsloth/orpheus-3b-0.1-ft",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-18T17:43:53Z |
---
base_model: unsloth/orpheus-3b-0.1-ft
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** str20tbl
- **License:** apache-2.0
- **Finetuned from model :** unsloth/orpheus-3b-0.1-ft
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
LILLY-TINO/wATCH.LILLY-TINO-LILLY-TINO-LILLY-TINO.original
|
LILLY-TINO
| 2025-06-18T17:38:20Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-18T17:38:13Z |
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a>
<a href="https://sdu.sk/uLf" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a>
<a href="https://sdu.sk/uLf" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
|
dgambettaphd/M_llm2_run2_gen7_WXS_doc1000_synt120_lr1e-04_acm_SYNLAST
|
dgambettaphd
| 2025-06-18T17:38:15Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-18T17:38:01Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
sgonzalezygil/sd-finetuning-dreambooth-v12-2000
|
sgonzalezygil
| 2025-06-18T17:37:47Z | 0 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2025-06-18T17:35:10Z |
---
library_name: diffusers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
morturr/Llama-2-7b-hf-LOO_headlines-COMB_one_liners-comb1-seed7-2025-06-18
|
morturr
| 2025-06-18T17:36:59Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"license:llama2",
"region:us"
] | null | 2025-06-18T17:36:50Z |
---
library_name: peft
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-2-7b-hf-LOO_headlines-COMB_one_liners-comb1-seed7-2025-06-18
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-2-7b-hf-LOO_headlines-COMB_one_liners-comb1-seed7-2025-06-18
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 7
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1
|
codewithRiz/cindyprado
|
codewithRiz
| 2025-06-18T17:35:44Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"flux",
"lora",
"template:sd-lora",
"fluxgym",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-18T17:33:43Z |
---
tags:
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
- fluxgym
widget:
- output:
url: sample/cindyprado_003000_00_20250618222828.png
text: cindyprado a woman in a pink bikini and straw hat sitting on a beach chair
- output:
url: sample/cindyprado_003000_01_20250618222907.png
text: cindyprado a woman wearing a white bikini top and a straw hat
- output:
url: sample/cindyprado_003000_02_20250618222946.png
text: cindyprado a woman wearing a black jumpsuit and sunglasses
- output:
url: sample/cindyprado_003000_03_20250618223025.png
text: cindyprado a woman in a gold dress standing and holding a gold purse.
- output:
url: sample/cindyprado_003000_04_20250618223105.png
text: cindyprado a woman in a blue bikini standing on the beach
- output:
url: sample/cindyprado_003000_05_20250618223144.png
text: cindyprado a woman in an orange dress standing in front of a building,
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: cindyprado
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
# cindyprado
A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym)
<Gallery />
## Trigger words
You should use `cindyprado` to trigger the image generation.
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc.
Weights for this model are available in Safetensors format.
|
New-Viral-mezzo-fun-Viral-Video/Original.Full.Clip.mezzo.fun.Viral.Video.Leaks.Official
|
New-Viral-mezzo-fun-Viral-Video
| 2025-06-18T17:31:06Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-18T17:30:59Z |
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a>
<a href="https://sdu.sk/uLf" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a>
<a href="https://sdu.sk/uLf" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
|
shaddie/rocketpill_ts_informer_model
|
shaddie
| 2025-06-18T17:27:10Z | 4 | 0 |
transformers
|
[
"transformers",
"safetensors",
"informer",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-16T21:07:56Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
MaxTGH/SDXL1e-3
|
MaxTGH
| 2025-06-18T17:25:41Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2025-06-18T16:35:13Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
instance_prompt: a drone image of a humpback whale
widget: []
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - MaxTGH/SDXL1e-3
<Gallery />
## Model description
These are MaxTGH/SDXL1e-3 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: None.
## Trigger words
You should use a drone image of a humpback whale to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](MaxTGH/SDXL1e-3/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
JGamonalHML/FondoEsperanzav6.0
|
JGamonalHML
| 2025-06-18T17:21:57Z | 0 | 0 |
bertopic
|
[
"bertopic",
"text-classification",
"region:us"
] |
text-classification
| 2025-06-18T17:21:41Z |
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# FondoEsperanzav6.0
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("JGamonalHML/FondoEsperanzav6.0")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 60
* Number of training documents: 12530
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | racismo - alegación - discriminación - - | 63 | -1_racismo_alegación_discriminación_ |
| 0 | emprendedores - pequeños - apoyo - asistencia - apoya | 1 | 0_emprendedores_pequeños_apoyo_asistencia |
| 1 | empresas - pequeñas - empresarial - crecimiento - empresariales | 816 | 1_empresas_pequeñas_empresarial_crecimiento |
| 2 | emprendimiento - recursos - oportunidades - apoyo - networking | 742 | 2_emprendimiento_recursos_oportunidades_apoyo |
| 3 | pago - flexibles - opciones - mensual - semanal | 596 | 3_pago_flexibles_opciones_mensual |
| 4 | capital - financiamiento - financiera - financiación - inyección | 532 | 4_capital_financiamiento_financiera_financiación |
| 5 | texto - aborda - discute - herramienta - utilidad | 371 | 5_texto_aborda_discute_herramienta |
| 6 | reuniones - miembros - presenciales - debido - tiempo | 465 | 6_reuniones_miembros_presenciales_debido |
| 7 | esperanza - fondo - fundación - usuario - apoyo | 426 | 7_esperanza_fondo_fundación_usuario |
| 8 | crédito - acceso - bancario - facilidad - accesible | 578 | 8_crédito_acceso_bancario_facilidad |
| 9 | positiva - experiencia - descrita - usuario - satisfactoria | 396 | 9_positiva_experiencia_descrita_usuario |
| 10 | bajos - tipos - intereses - interés - préstamos | 276 | 10_bajos_tipos_intereses_interés |
| 11 | negocio - iniciar - negocios - inicio - expandir | 256 | 11_negocio_iniciar_negocios_inicio |
| 12 | transparencia - discusión - falta - importancia - transparente | 484 | 12_transparencia_discusión_falta_importancia |
| 13 | socios - hacia - compromiso - relaciones - falta | 179 | 13_socios_hacia_compromiso_relaciones |
| 14 | pagos - préstamo - semanales - mensuales - cantidad | 225 | 14_pagos_préstamo_semanales_mensuales |
| 15 | herramienta - útil - beneficiosa - empresarial - crecimiento | 255 | 15_herramienta_útil_beneficiosa_empresarial |
| 16 | personal - beneficio - crecimiento - experiencia - desarrollo | 403 | 16_personal_beneficio_crecimiento_experiencia |
| 17 | tasas - bajas - interés - tasa - baja | 340 | 17_tasas_bajas_interés_tasa |
| 18 | bajo - interés - préstamos - tipo - costo | 458 | 18_bajo_interés_préstamos_tipo |
| 19 | institución - sistema - reputación - eficiencia - confiable | 255 | 19_institución_sistema_reputación_eficiencia |
| 20 | servicio - producto - hecha - calidad - recomendación | 198 | 20_servicio_producto_hecha_calidad |
| 21 | asistencia - proporcionada - significativa - recibida - ayuda | 196 | 21_asistencia_proporcionada_significativa_recibida |
| 22 | grupo - confianza - equipo - recepción - positiva | 306 | 22_grupo_confianza_equipo_recepción |
| 23 | microemprendedores - microempresas - microempresarios - apoyo - ayuda | 224 | 23_microemprendedores_microempresas_microempresarios_apoyo |
| 24 | razones - cuales - elección - opción - buen | 85 | 24_razones_cuales_elección_opción |
| 25 | individuo - independencia - independientes - independiente - trabajadores | 134 | 25_individuo_independencia_independientes_independiente |
| 26 | detalles - específicos - especificar - experiencia - positiva | 114 | 26_detalles_específicos_especificar_experiencia |
| 27 | recomendación - hecho - calidad - recomendado - realizada | 87 | 27_recomendación_hecho_calidad_recomendado |
| 28 | asesor - asesores - parte - cambios - problemas | 111 | 28_asesor_asesores_parte_cambios |
| 29 | inversión - motivos - opción - cuales - adecuada | 218 | 29_inversión_motivos_opción_cuales |
| 30 | fiabilidad - seguridad - factores - explicación - confiabilidad | 140 | 30_fiabilidad_seguridad_factores_explicación |
| 31 | pueden - individuos - bancarios - acceder - préstamos | 125 | 31_pueden_individuos_bancarios_acceder |
| 32 | responsabilidad - responsables - individuos - organización - grupo | 249 | 32_responsabilidad_responsables_individuos_organización |
| 33 | proyectos - proyecto - crecimiento - oportunidad - desarrollo | 225 | 33_proyectos_proyecto_crecimiento_oportunidad |
| 34 | información - claridad - clara - comunicación - falta | 160 | 34_información_claridad_clara_comunicación |
| 35 | proporcionado - apoyo - gratitud - expresión - recibido | 127 | 35_proporcionado_apoyo_gratitud_expresión |
| 36 | startups - startup - financiar - financiamiento - recursos | 151 | 36_startups_startup_financiar_financiamiento |
| 37 | pymes - medianas - pequeñas - empresas - apoyo | 104 | 37_pymes_medianas_pequeñas_empresas |
| 38 | proceso - documentación - mínima - documentos - firmas | 113 | 38_proceso_documentación_mínima_documentos |
| 39 | banco - comunitario - calidad - satisfacción - organizado | 83 | 39_banco_comunitario_calidad_satisfacción |
| 40 | económica - económico - asistencia - apoyo - ayuda | 161 | 40_económica_económico_asistencia_apoyo |
| 41 | 15 - días - cada - fechas - frecuentes | 108 | 41_15_días_cada_fechas |
| 42 | banco - ofreciendo - apoya - adecuado - oportunidades | 45 | 42_banco_ofreciendo_apoya_adecuado |
| 43 | seguridad - seguro - características - cobertura - contrato | 129 | 43_seguridad_seguro_características_cobertura |
| 44 | comerciales - operaciones - comercial - emprendimientos - utilizado | 97 | 44_comerciales_operaciones_comercial_emprendimientos |
| 45 | fácil - obtención - acceso - crédito - fondos | 77 | 45_fácil_obtención_acceso_crédito |
| 46 | empatía - falta - problemas - hacia - parte | 71 | 46_empatía_falta_problemas_hacia |
| 47 | hope - fund - sido - asesores - personal | 92 | 47_hope_fund_sido_asesores |
| 48 | flexibilidad - accesibilidad - limitada - rapidez - clave | 32 | 48_flexibilidad_accesibilidad_limitada_rapidez |
| 49 | mínimo - interés - mínima - implementación - niveles | 76 | 49_mínimo_interés_mínima_implementación |
| 50 | liderazgo - líder - grupo - miembros - falta | 52 | 50_liderazgo_líder_grupo_miembros |
| 51 | papeleo - mínimo - menos - requerido - rápido | 35 | 51_papeleo_mínimo_menos_requerido |
| 52 | datos - ia - herramientas - análisis - clientes | 34 | 52_datos_ia_herramientas_análisis |
| 53 | sirve - día - herramienta - contrario - individualmente | 38 | 53_sirve_día_herramienta_contrario |
| 54 | the - discusses - for - of - and | 46 | 54_the_discusses_for_of |
| 55 | dicom - interesados - seguros - materias - primas | 18 | 55_dicom_interesados_seguros_materias |
| 56 | alternativo - financiamiento - opción - alternativa - viable | 32 | 56_alternativo_financiamiento_opción_alternativa |
| 57 | artículo - situación - conveniencia - cierto - práctico | 84 | 57_artículo_situación_conveniencia_cierto |
| 58 | seriedad - compromiso - énfasis - profesionalismo - responsabilidad | 36 | 58_seriedad_compromiso_énfasis_profesionalismo |
</details>
## Training hyperparameters
* calculate_probabilities: False
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: 60
* seed_topic_list: None
* top_n_words: 10
* verbose: False
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None
## Framework versions
* Numpy: 2.2.5
* HDBSCAN: 0.8.40
* UMAP: 0.5.7
* Pandas: 2.2.3
* Scikit-Learn: 1.6.1
* Sentence-transformers: 4.1.0
* Transformers: 4.51.3
* Numba: 0.61.2
* Plotly: 6.0.1
* Python: 3.12.1
|
ECE-ILAB/POIROT-ECE-1.0
|
ECE-ILAB
| 2025-06-18T17:21:10Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:AXCXEPT/Qwen3-EZO-8B-beta",
"base_model:merge:AXCXEPT/Qwen3-EZO-8B-beta",
"base_model:Goekdeniz-Guelmez/Josiefied-Qwen3-8B-abliterated-v1",
"base_model:merge:Goekdeniz-Guelmez/Josiefied-Qwen3-8B-abliterated-v1",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-18T17:05:53Z |
---
base_model:
- AXCXEPT/Qwen3-EZO-8B-beta
- Goekdeniz-Guelmez/Josiefied-Qwen3-8B-abliterated-v1
library_name: transformers
tags:
- mergekit
- merge
---
# POIROT-ECE-1.0
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method.
### Models Merged
The following models were included in the merge:
* [AXCXEPT/Qwen3-EZO-8B-beta](https://huggingface.co/AXCXEPT/Qwen3-EZO-8B-beta)
* [Goekdeniz-Guelmez/Josiefied-Qwen3-8B-abliterated-v1](https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen3-8B-abliterated-v1)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: AXCXEPT/Qwen3-EZO-8B-beta
layer_range: [0, 35]
- model: Goekdeniz-Guelmez/Josiefied-Qwen3-8B-abliterated-v1
layer_range: [0, 35]
merge_method: slerp
base_model: AXCXEPT/Qwen3-EZO-8B-beta
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
|
phospho-app/gc1724-ACT_BBOX-bottle-hwyfx
|
phospho-app
| 2025-06-18T17:19:49Z | 0 | 0 | null |
[
"phosphobot",
"act",
"region:us"
] | null | 2025-06-18T17:18:47Z |
---
tags:
- phosphobot
- act
task_categories:
- robotics
---
# act Model - phospho Training Pipeline
## Error Traceback
We faced an issue while training your model.
```
[Errno 20] Not a directory: '/__modal/volumes/vo-jpHx3K78b6s9tZZNuqKoXe/datasets/gc1724/bottle_bboxes/videos/chunk-000/.DS_Store'
```
## Training parameters:
- **Dataset**: [gc1724/bottle](https://huggingface.co/datasets/gc1724/bottle)
- **Wandb run URL**: None
- **Epochs**: None
- **Batch size**: 100
- **Training steps**: 10000
📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme)
🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
|
ITHwangg/lebotica-pickplace-v3-step1k
|
ITHwangg
| 2025-06-18T17:18:50Z | 0 | 0 | null |
[
"safetensors",
"dataset:ITHwangg/svla_koch_pickplace_v3",
"license:mit",
"region:us"
] | null | 2025-06-15T09:04:41Z |
---
datasets:
- ITHwangg/svla_koch_pickplace_v3
license: mit
---
# lebotica-pickplace-v3-step1k
- Dataset: [ITHwangg/svla_koch_pickplace_v3](https://huggingface.co/datasets/ITHwangg/svla_koch_pickplace_v3)
- Model: [ITHwangg/lebotica-pickplace-15k](https://huggingface.co/ITHwangg/lebotica-pickplace-15k)
|
ITHwangg/lebotica-pickplace-v2-step5k
|
ITHwangg
| 2025-06-18T17:14:32Z | 0 | 0 | null |
[
"safetensors",
"dataset:ITHwangg/svla_koch_pickplace_v2",
"license:mit",
"region:us"
] | null | 2025-06-15T05:26:25Z |
---
datasets:
- ITHwangg/svla_koch_pickplace_v2
license: mit
---
# lebotica-pickplace-v2-step5k
- Dataset: [ITHwangg/svla_koch_pickplace_v2](https://huggingface.co/datasets/ITHwangg/svla_koch_pickplace_v2)
- Model: [ITHwangg/lebotica-pickplace-15k](https://huggingface.co/ITHwangg/lebotica-pickplace-15k)
|
GraybeardTheIrate/Harbinger-Cogwheel
|
GraybeardTheIrate
| 2025-06-18T17:11:00Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:LatitudeGames/Harbinger-24B",
"base_model:merge:LatitudeGames/Harbinger-24B",
"base_model:OddTheGreat/Cogwheel_24b_V.2",
"base_model:merge:OddTheGreat/Cogwheel_24b_V.2",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-18T14:38:42Z |
---
base_model:
- OddTheGreat/Cogwheel_24b_V.2
- LatitudeGames/Harbinger-24B
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method.
### Models Merged
The following models were included in the merge:
* [OddTheGreat/Cogwheel_24b_V.2](https://huggingface.co/OddTheGreat/Cogwheel_24b_V.2)
* [LatitudeGames/Harbinger-24B](https://huggingface.co/LatitudeGames/Harbinger-24B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: LatitudeGames/Harbinger-24B
- model: OddTheGreat/Cogwheel_24b_V.2
merge_method: slerp
base_model: LatitudeGames/Harbinger-24B
dtype: bfloat16
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
```
|
ITHwangg/lebotica-pickplace-v2-step1k
|
ITHwangg
| 2025-06-18T17:10:59Z | 0 | 0 | null |
[
"safetensors",
"dataset:ITHwangg/svla_koch_pickplace_v2",
"license:mit",
"region:us"
] | null | 2025-06-15T04:06:10Z |
---
datasets:
- ITHwangg/svla_koch_pickplace_v2
license: mit
---
# lebotica-pickplace-v2-step1k
- Dataset: [ITHwangg/svla_koch_pickplace_v2](https://huggingface.co/datasets/ITHwangg/svla_koch_pickplace_v2)
- Model: [ITHwangg/lebotica-pickplace-15k](https://huggingface.co/ITHwangg/lebotica-pickplace-15k)
|
ITHwangg/lebotica-pickplace-stacking-step15k
|
ITHwangg
| 2025-06-18T17:07:54Z | 0 | 0 | null |
[
"safetensors",
"dataset:ITHwangg/svla_koch_pickplace_and_stacking",
"license:mit",
"region:us"
] | null | 2025-06-15T01:54:14Z |
---
datasets:
- ITHwangg/svla_koch_pickplace_and_stacking
license: mit
---
# lebotica-pickplace-stacking-step15k
- Dataset: [ITHwangg/svla_koch_pickplace_and_stacking](https://huggingface.co/datasets/ITHwangg/svla_koch_pickplace_and_stacking)
- Model: [lerobot/smolvla_base](https://huggingface.co/lerobot/smolvla_base)
|
ITHwangg/lebotica-pickplace-stacking-step10k
|
ITHwangg
| 2025-06-18T17:07:21Z | 0 | 0 | null |
[
"safetensors",
"dataset:ITHwangg/svla_koch_pickplace_and_stacking",
"license:mit",
"region:us"
] | null | 2025-06-15T00:27:13Z |
---
datasets:
- ITHwangg/svla_koch_pickplace_and_stacking
license: mit
---
# lebotica-pickplace-stacking-step10k
- Dataset: [ITHwangg/svla_koch_pickplace_and_stacking](https://huggingface.co/datasets/ITHwangg/svla_koch_pickplace_and_stacking)
- Model: [lerobot/smolvla_base](https://huggingface.co/lerobot/smolvla_base)
|
vcabeli/Qwen3-8B-Open-R1-GRPO-signature-expression
|
vcabeli
| 2025-06-18T17:05:52Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"trl",
"grpo",
"conversational",
"arxiv:2402.03300",
"base_model:Qwen/Qwen3-8B",
"base_model:finetune:Qwen/Qwen3-8B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-17T16:29:47Z |
---
base_model: Qwen/Qwen3-8B
library_name: transformers
model_name: Qwen3-8B-Open-R1-GRPO-signature-expression
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for Qwen3-8B-Open-R1-GRPO-signature-expression
This model is a fine-tuned version of [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="vcabeli/Qwen3-8B-Open-R1-GRPO-signature-expression", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/vincent-cabeli-owkin/huggingface/runs/cughyzye)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.18.0
- Transformers: 4.52.3
- Pytorch: 2.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
ITHwangg/lebotica-pickplace-stacking-step1k
|
ITHwangg
| 2025-06-18T17:05:23Z | 0 | 0 | null |
[
"safetensors",
"dataset:ITHwangg/svla_koch_pickplace_and_stacking",
"license:mit",
"region:us"
] | null | 2025-06-15T00:24:59Z |
---
datasets:
- ITHwangg/svla_koch_pickplace_and_stacking
license: mit
---
# lebotica-pickplace-stacking-step1k
- Dataset: [ITHwangg/svla_koch_pickplace_and_stacking](https://huggingface.co/datasets/ITHwangg/svla_koch_pickplace_and_stacking)
- Model: [lerobot/smolvla_base](https://huggingface.co/lerobot/smolvla_base)
|
sgonzalezygil/sd-finetuning-dreambooth-v12
|
sgonzalezygil
| 2025-06-18T17:05:14Z | 0 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2025-06-18T17:03:19Z |
---
library_name: diffusers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ITHwangg/lebotica-pickplace-step15k
|
ITHwangg
| 2025-06-18T17:03:46Z | 0 | 0 | null |
[
"safetensors",
"dataset:ITHwangg/svla_koch_pickplace",
"license:mit",
"region:us"
] | null | 2025-06-15T02:02:59Z |
---
datasets:
- ITHwangg/svla_koch_pickplace
license: mit
---
# lebotica-pickplace-step15k
- Dataset: [ITHwangg/svla_koch_pickplace](https://huggingface.co/datasets/ITHwangg/svla_koch_pickplace)
- Model: [lerobot/smolvla_base](https://huggingface.co/lerobot/smolvla_base)
|
michaelbenayoun/granite-tiny-4kv-heads-4layers-random
|
michaelbenayoun
| 2025-06-18T16:59:22Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"granite",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-18T16:59:12Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
The-Welcomer/high-accuracy
|
The-Welcomer
| 2025-06-18T16:51:52Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-18T16:42:19Z |
---
base_model: unsloth/qwen3-8b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** The-Welcomer
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen3-8b-unsloth-bnb-4bit
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
harriskr14/emotion-classification
|
harriskr14
| 2025-06-18T16:47:45Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:google/vit-base-patch16-224-in21k",
"base_model:finetune:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2025-06-18T09:09:41Z |
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: emotion-classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.51875
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotion-classification
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3560
- Accuracy: 0.5188
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 5 | 1.6699 | 0.4313 |
| 1.5821 | 2.0 | 10 | 1.6118 | 0.4562 |
| 1.5821 | 3.0 | 15 | 1.5550 | 0.475 |
| 1.445 | 4.0 | 20 | 1.5128 | 0.5062 |
| 1.445 | 5.0 | 25 | 1.4508 | 0.5375 |
| 1.3202 | 6.0 | 30 | 1.4364 | 0.5 |
| 1.3202 | 7.0 | 35 | 1.3776 | 0.575 |
| 1.2242 | 8.0 | 40 | 1.3966 | 0.5 |
| 1.2242 | 9.0 | 45 | 1.3724 | 0.525 |
| 1.1589 | 10.0 | 50 | 1.3483 | 0.525 |
| 1.1589 | 11.0 | 55 | 1.3186 | 0.5687 |
| 1.0962 | 12.0 | 60 | 1.3295 | 0.5375 |
| 1.0962 | 13.0 | 65 | 1.3058 | 0.5875 |
| 1.0542 | 14.0 | 70 | 1.3296 | 0.5375 |
| 1.0542 | 15.0 | 75 | 1.3185 | 0.5813 |
### Framework versions
- Transformers 4.52.4
- Pytorch 2.7.1+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
morturr/Llama-2-7b-hf-LOO_headlines-COMB_dadjokes-comb3-seed42-2025-06-18
|
morturr
| 2025-06-18T16:43:33Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"license:llama2",
"region:us"
] | null | 2025-06-18T16:43:18Z |
---
library_name: peft
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-2-7b-hf-LOO_headlines-COMB_dadjokes-comb3-seed42-2025-06-18
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-2-7b-hf-LOO_headlines-COMB_dadjokes-comb3-seed42-2025-06-18
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1
|
hyperonsol/kaka-memes
|
hyperonsol
| 2025-06-18T16:41:22Z | 7 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-05T17:03:42Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: KAKA
---
# Kaka Memes
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `KAKA` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "KAKA",
"lora_weights": "https://huggingface.co/hyperonsol/kaka-memes/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('hyperonsol/kaka-memes', weight_name='lora.safetensors')
image = pipeline('KAKA').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 5000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/hyperonsol/kaka-memes/discussions) to add images that show off what you’ve made with this LoRA.
|
shopitalic/waffle-towels-set
|
shopitalic
| 2025-06-18T16:39:23Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"text-to-image",
"lora",
"fal",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-18T16:39:18Z |
---
tags:
- flux
- text-to-image
- lora
- diffusers
- fal
base_model: black-forest-labs/FLUX.1-dev
instance_prompt:
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
# waffle towels set
<Gallery />
## Model description
## Trigger words
You should use `` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/shopitalic/waffle-towels-set/tree/main) them in the Files & versions tab.
## Training at fal.ai
Training was done using [fal.ai/models/fal-ai/flux-lora-fast-training](https://fal.ai/models/fal-ai/flux-lora-fast-training).
|
morturr/Mistral-7B-v0.1-headlines-seed-18-2025-06-18
|
morturr
| 2025-06-18T16:37:18Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:adapter:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"region:us"
] | null | 2025-06-18T16:34:51Z |
---
library_name: peft
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Mistral-7B-v0.1-headlines-seed-18-2025-06-18
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-v0.1-headlines-seed-18-2025-06-18
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 18
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1
|
spk1/tarmac_llama_instruct2
|
spk1
| 2025-06-18T16:34:40Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T21:17:53Z |
---
base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** spk1
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
endlesstools/etMVadapter-i-endpoint
|
endlesstools
| 2025-06-18T16:28:53Z | 0 | 0 | null |
[
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2025-06-18T15:27:07Z |
---
title: MV Adapter Img2Texture
emoji: 🔮
colorFrom: purple
colorTo: yellow
sdk: gradio
sdk_version: 5.23.1
app_file: app.py
pinned: false
license: mit
short_description: Generate 3D texture from image
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
vishakr01/comp4_03
|
vishakr01
| 2025-06-18T16:27:57Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-18T16:24:31Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
MaxTGH/SDXLBase1e-4TS200
|
MaxTGH
| 2025-06-18T16:21:03Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2025-06-18T16:21:01Z |
---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: a drone image of a humpback whale
output:
url: images/image_3.png
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a drone image of a humpback whale
license: openrail++
---
# SDXL LoRA DreamBooth
<Gallery />
## Model description
These are MaxTGH/Model LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: None.
## Trigger words
You should use `a drone image of a humpback whale` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/MaxTGH/SDXLBase1e-4TS200/tree/main) them in the Files & versions tab.
|
huihui-ai/Huihui-Qwen3-8B-abliterated-v2
|
huihui-ai
| 2025-06-18T16:15:07Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"chat",
"abliterated",
"uncensored",
"conversational",
"base_model:Qwen/Qwen3-8B",
"base_model:finetune:Qwen/Qwen3-8B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-18T15:24:27Z |
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE
pipeline_tag: text-generation
base_model:
- Qwen/Qwen3-8B
tags:
- chat
- abliterated
- uncensored
---
# huihui-ai/Huihui-Qwen3-8B-abliterated-v2
This is an uncensored version of [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it).
This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens.
Ablation was performed using a new and faster method, which yields better results.
**Important Note** This version is an improvement over the previous one [huihui-ai/Qwen3-8B-abliterated](https://huggingface.co/huihui-ai/Qwen3-8B-abliterated). The ollama version has also been modified.
Changed the 0 layer to eliminate the problem of garbled codes
## ollama
You can use [huihui_ai/qwen3-abliterated:8b-v2](https://ollama.com/huihui_ai/qwen3-abliterated:8b-v2) directly, Switch the thinking toggle using /set think and /set nothink
```
ollama run huihui_ai/qwen3-abliterated:8b-v2
```
## Usage
You can use this model in your applications by loading it with Hugging Face's `transformers` library:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer
import torch
import os
import signal
import random
import numpy as np
import time
from collections import Counter
cpu_count = os.cpu_count()
print(f"Number of CPU cores in the system: {cpu_count}")
half_cpu_count = cpu_count // 2
os.environ["MKL_NUM_THREADS"] = str(half_cpu_count)
os.environ["OMP_NUM_THREADS"] = str(half_cpu_count)
torch.set_num_threads(half_cpu_count)
print(f"PyTorch threads: {torch.get_num_threads()}")
print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}")
print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}")
# Load the model and tokenizer
NEW_MODEL_ID = "huihui-ai/Huihui-Qwen3-8B-abliterated-v2"
print(f"Load Model {NEW_MODEL_ID} ... ")
quant_config_4 = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
llm_int8_enable_fp32_cpu_offload=True,
)
model = AutoModelForCausalLM.from_pretrained(
NEW_MODEL_ID,
device_map="auto",
trust_remote_code=True,
#quantization_config=quant_config_4,
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
messages = []
nothink = False
same_seed = False
skip_prompt=True
skip_special_tokens=True
do_sample = True
def set_random_seed(seed=None):
"""Set random seed for reproducibility. If seed is None, use int(time.time())."""
if seed is None:
seed = int(time.time()) # Convert float to int
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # If using CUDA
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
return seed # Return seed for logging if needed
class CustomTextStreamer(TextStreamer):
def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True):
super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
self.generated_text = ""
self.stop_flag = False
self.init_time = time.time() # Record initialization time
self.end_time = None # To store end time
self.first_token_time = None # To store first token generation time
self.token_count = 0 # To track total tokens
def on_finalized_text(self, text: str, stream_end: bool = False):
if self.first_token_time is None and text.strip(): # Set first token time on first non-empty text
self.first_token_time = time.time()
self.generated_text += text
# Count tokens in the generated text
tokens = self.tokenizer.encode(text, add_special_tokens=False)
self.token_count += len(tokens)
print(text, end="", flush=True)
if stream_end:
self.end_time = time.time() # Record end time when streaming ends
if self.stop_flag:
raise StopIteration
def stop_generation(self):
self.stop_flag = True
self.end_time = time.time() # Record end time when generation is stopped
def get_metrics(self):
"""Returns initialization time, first token time, first token latency, end time, total time, total tokens, and tokens per second."""
if self.end_time is None:
self.end_time = time.time() # Set end time if not already set
total_time = self.end_time - self.init_time # Total time from init to end
tokens_per_second = self.token_count / total_time if total_time > 0 else 0
first_token_latency = (self.first_token_time - self.init_time) if self.first_token_time is not None else None
metrics = {
"init_time": self.init_time,
"first_token_time": self.first_token_time,
"first_token_latency": first_token_latency,
"end_time": self.end_time,
"total_time": total_time, # Total time in seconds
"total_tokens": self.token_count,
"tokens_per_second": tokens_per_second
}
return metrics
def generate_stream(model, tokenizer, messages, nothink, skip_prompt, skip_special_tokens, do_sample, max_new_tokens):
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
enable_thinking = not nothink,
add_generation_prompt=True,
return_tensors="pt"
)
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
tokens = input_ids.to(model.device)
attention_mask = attention_mask.to(model.device)
streamer = CustomTextStreamer(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
def signal_handler(sig, frame):
streamer.stop_generation()
print("\n[Generation stopped by user with Ctrl+C]")
signal.signal(signal.SIGINT, signal_handler)
generate_kwargs = {}
if do_sample:
generate_kwargs = {
"do_sample": do_sample,
"max_length": max_new_tokens,
"temperature": 0.6,
"top_k": 20,
"top_p": 0.95,
"repetition_penalty": 1.2,
"no_repeat_ngram_size": 2
}
else:
generate_kwargs = {
"do_sample": do_sample,
"max_length": max_new_tokens,
"repetition_penalty": 1.2,
"no_repeat_ngram_size": 2
}
print("Response: ", end="", flush=True)
try:
generated_ids = model.generate(
tokens,
attention_mask=attention_mask,
#use_cache=False,
pad_token_id=tokenizer.pad_token_id,
streamer=streamer,
**generate_kwargs
)
del generated_ids
except StopIteration:
print("\n[Stopped by user]")
del input_ids, attention_mask
torch.cuda.empty_cache()
signal.signal(signal.SIGINT, signal.SIG_DFL)
return streamer.generated_text, streamer.stop_flag, streamer.get_metrics()
init_seed = set_random_seed()
while True:
if same_seed:
set_random_seed(init_seed)
else:
init_seed = set_random_seed()
print(f"\nnothink: {nothink}")
print(f"skip_prompt: {skip_prompt}")
print(f"skip_special_tokens: {skip_special_tokens}")
print(f"do_sample: {do_sample}")
print(f"same_seed: {same_seed}, {init_seed}\n")
user_input = input("User: ").strip()
if user_input.lower() == "/exit":
print("Exiting chat.")
break
if user_input.lower() == "/clear":
messages = []
print("Chat history cleared. Starting a new conversation.")
continue
if user_input.lower() == "/nothink":
nothink = not nothink
continue
if user_input.lower() == "/skip_prompt":
skip_prompt = not skip_prompt
continue
if user_input.lower() == "/skip_special_tokens":
skip_special_tokens = not skip_special_tokens
continue
if user_input.lower().startswith("/same_seed"):
parts = user_input.split()
if len(parts) == 1: # /same_seed (no number)
same_seed = not same_seed # Toggle switch
elif len(parts) == 2: # /same_seed <number>
try:
init_seed = int(parts[1]) # Extract and convert number to int
same_seed = True
except ValueError:
print("Error: Please provide a valid integer after /same_seed")
continue
if user_input.lower() == "/do_sample":
do_sample = not do_sample
continue
if not user_input:
print("Input cannot be empty. Please enter something.")
continue
messages.append({"role": "user", "content": user_input})
activated_experts = []
response, stop_flag, metrics = generate_stream(model, tokenizer, messages, nothink, skip_prompt, skip_special_tokens, do_sample, 40960)
print("\n\nMetrics:")
for key, value in metrics.items():
print(f" {key}: {value}")
print("", flush=True)
if stop_flag:
continue
messages.append({"role": "assistant", "content": response})
# Remove all hooks after inference
for h in hooks: h.remove()
```
### Usage Warnings
- **Risk of Sensitive or Controversial Outputs**: This model’s safety filtering has been significantly reduced, potentially generating sensitive, controversial, or inappropriate content. Users should exercise caution and rigorously review generated outputs.
- **Not Suitable for All Audiences**: Due to limited content filtering, the model’s outputs may be inappropriate for public settings, underage users, or applications requiring high security.
- **Legal and Ethical Responsibilities**: Users must ensure their usage complies with local laws and ethical standards. Generated content may carry legal or ethical risks, and users are solely responsible for any consequences.
- **Research and Experimental Use**: It is recommended to use this model for research, testing, or controlled environments, avoiding direct use in production or public-facing commercial applications.
- **Monitoring and Review Recommendations**: Users are strongly advised to monitor model outputs in real-time and conduct manual reviews when necessary to prevent the dissemination of inappropriate content.
- **No Default Safety Guarantees**: Unlike standard models, this model has not undergone rigorous safety optimization. huihui.ai bears no responsibility for any consequences arising from its use.
### Donation
If you like it, please click 'like' and follow us for more updates.
You can follow [x.com/support_huihui](https://x.com/support_huihui) to get the latest model information from huihui.ai.
##### Your donation helps us continue our further development and improvement, a cup of coffee can do it.
- bitcoin(BTC):
```
bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge
```
|
mlfoundations-dev/DeepSeek-R1-Distill-Qwen-1.5B_OpenThoughts3
|
mlfoundations-dev
| 2025-06-18T16:12:26Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-18T16:08:47Z |
---
library_name: transformers
license: other
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: DeepSeek-R1-Distill-Qwen-1.5B_OpenThoughts3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DeepSeek-R1-Distill-Qwen-1.5B_OpenThoughts3
This model is a fine-tuned version of [/leonardo_work/EUHPC_E03_068/DCFT_shared/hub/models--deepseek-ai--DeepSeek-R1-Distill-Qwen-1.5B/snapshots/ad9f0ae0864d7fbcd1cd905e3c6c5b069cc8b562](https://huggingface.co//leonardo_work/EUHPC_E03_068/DCFT_shared/hub/models--deepseek-ai--DeepSeek-R1-Distill-Qwen-1.5B/snapshots/ad9f0ae0864d7fbcd1cd905e3c6c5b069cc8b562) on the mlfoundations-dev/OpenThoughts3 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 512
- total_train_batch_size: 512
- total_eval_batch_size: 4096
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.0
|
ztwqd3n6/pony-diffusion-v6-xl
|
ztwqd3n6
| 2025-06-18T16:07:16Z | 0 | 0 | null |
[
"license:other",
"region:us"
] | null | 2025-05-25T20:38:18Z |
---
license: other
license_name: fair-ai-public-license-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
---
|
sergiopaniego/gemma-3-4b-pt-object-detection-loc-tokens
|
sergiopaniego
| 2025-06-18T16:04:37Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma3",
"image-text-to-text",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2025-06-18T16:01:22Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
neural-interactive-proofs/finetune_dpo_cv_test_lm_server_34_0_iter_0_provers_group_2025-06-18_17-02-34_Qwen_Qwen2.5-0.5B-I
|
neural-interactive-proofs
| 2025-06-18T16:03:18Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"dpo",
"arxiv:2305.18290",
"base_model:Qwen/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-0.5B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-06-18T16:03:13Z |
---
base_model: Qwen/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: finetune_dpo_cv_test_lm_server_34_0_iter_0_provers_group_2025-06-18_17-02-34_Qwen_Qwen2.5-0.5B-I
tags:
- generated_from_trainer
- trl
- dpo
licence: license
---
# Model Card for finetune_dpo_cv_test_lm_server_34_0_iter_0_provers_group_2025-06-18_17-02-34_Qwen_Qwen2.5-0.5B-I
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="neural-interactive-proofs/finetune_dpo_cv_test_lm_server_34_0_iter_0_provers_group_2025-06-18_17-02-34_Qwen_Qwen2.5-0.5B-I", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/lrhammond-team/pvg-self-hosted-finetune/runs/Qwen_Qwen2.5-0.5B-Instruct_dpo_2025-06-18_17-02-34_cv_test_lm_server_34_0_iter_0_provers_group)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.52.4
- Pytorch: 2.7.0
- Datasets: 2.21.0
- Tokenizers: 0.21.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
LandCruiser/sn21_omg_1806_23
|
LandCruiser
| 2025-06-18T16:02:46Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-06-18T16:00:49Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
LandCruiser/sn21_omg_1806_18
|
LandCruiser
| 2025-06-18T16:02:40Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-06-18T15:45:50Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
LandCruiser/sn21_omg_1806_17
|
LandCruiser
| 2025-06-18T16:02:27Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-06-18T15:45:50Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
LandCruiser/sn21_omg_1806_16
|
LandCruiser
| 2025-06-18T16:02:23Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-06-18T15:45:49Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
LandCruiser/sn21_omg_1806_14
|
LandCruiser
| 2025-06-18T16:02:01Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-06-18T15:45:49Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
helmo/marian-finetuned-kde4-en-to-fr
|
helmo
| 2025-06-18T16:00:28Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"base_model:Helsinki-NLP/opus-mt-en-fr",
"base_model:finetune:Helsinki-NLP/opus-mt-en-fr",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2025-06-18T14:03:01Z |
---
library_name: transformers
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-fr
tags:
- translation
- generated_from_trainer
datasets:
- kde4
metrics:
- bleu
model-index:
- name: marian-finetuned-kde4-en-to-fr
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: kde4
type: kde4
config: en-fr
split: train
args: en-fr
metrics:
- name: Bleu
type: bleu
value: 36.33596022358762
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8553
- Model Preparation Time: 0.0045
- Bleu: 36.3360
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0
- Datasets 3.5.0
- Tokenizers 0.21.1
|
BernalHR/V2Phi-3-mini-4k-instruct-Inscripciones-bnb-4bit-GGUF
|
BernalHR
| 2025-06-18T15:57:57Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mistral",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/Phi-3-mini-4k-instruct-bnb-4bit",
"base_model:quantized:unsloth/Phi-3-mini-4k-instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-18T15:57:21Z |
---
base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** BernalHR
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mradermacher/RLPR-Qwen2.5-7B-Base-GGUF
|
mradermacher
| 2025-06-18T15:56:46Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"dataset:openbmb/RLPR-train",
"base_model:RLAIF-V/RLPR-Qwen2.5-7B-Base",
"base_model:quantized:RLAIF-V/RLPR-Qwen2.5-7B-Base",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-18T13:27:36Z |
---
base_model: RLAIF-V/RLPR-Qwen2.5-7B-Base
datasets:
- openbmb/RLPR-train
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/RLAIF-V/RLPR-Qwen2.5-7B-Base
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/RLPR-Qwen2.5-7B-Base-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/RLPR-Qwen2.5-7B-Base-GGUF/resolve/main/RLPR-Qwen2.5-7B-Base.Q2_K.gguf) | Q2_K | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/RLPR-Qwen2.5-7B-Base-GGUF/resolve/main/RLPR-Qwen2.5-7B-Base.Q3_K_S.gguf) | Q3_K_S | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/RLPR-Qwen2.5-7B-Base-GGUF/resolve/main/RLPR-Qwen2.5-7B-Base.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/RLPR-Qwen2.5-7B-Base-GGUF/resolve/main/RLPR-Qwen2.5-7B-Base.Q3_K_L.gguf) | Q3_K_L | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/RLPR-Qwen2.5-7B-Base-GGUF/resolve/main/RLPR-Qwen2.5-7B-Base.IQ4_XS.gguf) | IQ4_XS | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/RLPR-Qwen2.5-7B-Base-GGUF/resolve/main/RLPR-Qwen2.5-7B-Base.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/RLPR-Qwen2.5-7B-Base-GGUF/resolve/main/RLPR-Qwen2.5-7B-Base.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/RLPR-Qwen2.5-7B-Base-GGUF/resolve/main/RLPR-Qwen2.5-7B-Base.Q5_K_S.gguf) | Q5_K_S | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/RLPR-Qwen2.5-7B-Base-GGUF/resolve/main/RLPR-Qwen2.5-7B-Base.Q5_K_M.gguf) | Q5_K_M | 5.5 | |
| [GGUF](https://huggingface.co/mradermacher/RLPR-Qwen2.5-7B-Base-GGUF/resolve/main/RLPR-Qwen2.5-7B-Base.Q6_K.gguf) | Q6_K | 6.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/RLPR-Qwen2.5-7B-Base-GGUF/resolve/main/RLPR-Qwen2.5-7B-Base.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/RLPR-Qwen2.5-7B-Base-GGUF/resolve/main/RLPR-Qwen2.5-7B-Base.f16.gguf) | f16 | 15.3 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
amgule/meme-model-merged
|
amgule
| 2025-06-18T15:55:46Z | 14 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2_vl",
"image-text-to-text",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/Qwen2-VL-2B-Instruct",
"base_model:finetune:unsloth/Qwen2-VL-2B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2025-06-01T11:24:51Z |
---
base_model: unsloth/Qwen2-VL-2B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2_vl
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** amgule
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2-VL-2B-Instruct
This qwen2_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. Trained using HuggingFaceM4/the_cauldron dataset, [hateful_memes subset](https://huggingface.co/datasets/HuggingFaceM4/the_cauldron/viewer/hateful_memes).
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
sgonzalezygil/sd-finetuning-dreambooth-v11-1200
|
sgonzalezygil
| 2025-06-18T15:55:32Z | 0 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2025-06-18T15:53:53Z |
---
library_name: diffusers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
epfl-dlab/zip2zip-Phi-3-medium-instruct-v0.1
|
epfl-dlab
| 2025-06-18T15:54:18Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"zip2zip",
"arxiv:1910.09700",
"arxiv:2506.01084",
"base_model:microsoft/Phi-3-medium-4k-instruct",
"base_model:finetune:microsoft/Phi-3-medium-4k-instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-06-18T15:53:11Z |
---
library_name: transformers
tags:
- zip2zip
base_model: microsoft/Phi-3-medium-4k-instruct
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]# Zip2Zip
This model is a [Zip2Zip](arxiv.org/abs/2506.01084) model.
|
Manchester-City-Wydad-AC-Direct-Video/Manchester.City.Wydad.AC.En.Direct.Streaming.Gratuit.tv.Official
|
Manchester-City-Wydad-AC-Direct-Video
| 2025-06-18T15:52:52Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-18T15:49:17Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/mrmpsap6?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
LandCruiser/sn21_omg_1806_6
|
LandCruiser
| 2025-06-18T15:51:20Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-06-18T15:45:45Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
LandCruiser/sn21_omg_1806_9
|
LandCruiser
| 2025-06-18T15:51:15Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-06-18T15:45:46Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
LandCruiser/sn21_omg_1806_2
|
LandCruiser
| 2025-06-18T15:50:54Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-06-18T15:45:43Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
LandCruiser/sn21_omg_1806_4
|
LandCruiser
| 2025-06-18T15:50:33Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-06-18T15:45:44Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
SzilviaB/mergekit-passthrough-zyecuzy-Q5_K_M-GGUF
|
SzilviaB
| 2025-06-18T15:45:00Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:mergekit-community/mergekit-passthrough-zyecuzy",
"base_model:quantized:mergekit-community/mergekit-passthrough-zyecuzy",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-18T15:44:23Z |
---
base_model: mergekit-community/mergekit-passthrough-zyecuzy
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# SzilviaB/mergekit-passthrough-zyecuzy-Q5_K_M-GGUF
This model was converted to GGUF format from [`mergekit-community/mergekit-passthrough-zyecuzy`](https://huggingface.co/mergekit-community/mergekit-passthrough-zyecuzy) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/mergekit-community/mergekit-passthrough-zyecuzy) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo SzilviaB/mergekit-passthrough-zyecuzy-Q5_K_M-GGUF --hf-file mergekit-passthrough-zyecuzy-q5_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo SzilviaB/mergekit-passthrough-zyecuzy-Q5_K_M-GGUF --hf-file mergekit-passthrough-zyecuzy-q5_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo SzilviaB/mergekit-passthrough-zyecuzy-Q5_K_M-GGUF --hf-file mergekit-passthrough-zyecuzy-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo SzilviaB/mergekit-passthrough-zyecuzy-Q5_K_M-GGUF --hf-file mergekit-passthrough-zyecuzy-q5_k_m.gguf -c 2048
```
|
dgambettaphd/M_llm2_run2_gen6_WXS_doc1000_synt120_lr1e-04_acm_SYNLAST
|
dgambettaphd
| 2025-06-18T15:44:12Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-18T15:43:57Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
andrewoh/facebook-opt-350m-finetuned-lifescience-v1
|
andrewoh
| 2025-06-18T15:42:17Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"opt",
"text-generation",
"trl",
"sft",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-18T15:41:27Z |
---
library_name: transformers
tags:
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
JMcoding92/bloomfield-distilbert-finetuned
|
JMcoding92
| 2025-06-18T15:41:42Z | 0 | 1 |
transformers
|
[
"transformers",
"safetensors",
"distilbert",
"text-classification",
"home",
"building",
"customer",
"service",
"construction",
"intent-classification",
"en",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-06-18T15:09:46Z |
---
library_name: transformers
tags:
- home
- building
- customer
- service
- construction
- text-classification
- intent-classification
- distilbert
license: mit
language:
- en
base_model:
- distilbert/distilbert-base-uncased
---
# Model Card for Model ID
# Bloomfield-DistilBERT-Finetuned
## Model Details
## Model Description
This is a fine-tuned DistilBERT model (`distilbert-base-uncased`) for intent classification in the homebuilding sales domain, specifically for Bloomfield Homes, a homebuilder in the Dallas-Fort Worth Metroplex. The model classifies user queries into one of 12 intents relevant to homebuying, such as inquiries about incentives, floor plans, or community amenities. It is designed to integrate with a conversational AI system (e.g., Grok-3) to route queries to appropriate response logic.
- **Base Model**: `distilbert-base-uncased`
- **Task**: Text classification (12 intents)
- **Intents**:
- `career_queries`: Job or employment inquiries
- `community_info`: Questions about community amenities (e.g., pools, parks)
- `provide_contact_info`: Requests for contact details or model home addresses
- `warranty_info`: Warranty or repair inquiries
- `special_offers_and_incentives`: Questions about promotions or discounts
- `financing_queries`: Inquiries about loans or interest rates
- `payment_queries`: Questions about deposits or payment processes
- `floor_plan_queries`: Inquiries about floor plans (e.g., "Bellflower")
- `available_homes`: Requests for move-in-ready homes
- `take_contact_info`: Requests to be contacted by a team member
- `location_query`: Questions about community locations
- `general_query`: Vague or unclassified queries (e.g., complaints) - to be used as the fallback intent when no others match.
- **Language**: English
- **License**: [MIT License](https://opensource.org/licenses/MIT)
- **Repository**: [JMcoding92/bloomfield-distilbert-finetuned](https://huggingface.co/JMcoding92/bloomfield-distilbert-finetuned)
- **Developed by:** [JMcoding92 - BuilderChat AI - CAN/USA]
- **Funded by:** [BuilderChat AI]
- **Shared by:** [JMcoding92 - BuilderChat]
- **Model type:** Intended to be used for context/intent detection ONLY - for distilBERT
- **Finetuned from model:** [More Information Needed]
## Intended Use
This model is intended for use in a chatbot or conversational AI system for Bloomfield Homes to classify user queries into one of the 12 intents. The classified intent is passed to a backend system (e.g., Grok-3-mini-high) for generating context-appropriate responses. It is optimized for short, natural-language queries typical of homebuying conversations (e.g., "What incentives in Painted Tree?", "Tell me about the Jasmine floor plan").
### Use Cases
- Customer support chatbot for homebuyers
- Intent routing in a conversational AI pipeline
- Real-time query classification in a FastAPI-based API
### Out-of-Scope Use
- General-purpose text classification outside the homebuilding domain
- Response generation (model only classifies intents)
- Non-English queries
## Training Data
The model was fine-tuned on a custom dataset of ~600 labeled examples (~50 per intent), collected from synthetic phrases and real user transcripts from Bloomfield Homes’ chatbot interactions. The dataset (`intents.json`) includes:
- **Queries**: Short, natural-language questions or statements (e.g., "What’s the warranty on a home in Copper Creek?", "Any move-in-ready homes in Lavon?").
- **Intents**: 12 categories specific to homebuilding sales, as listed above.
- **Source**:
- Synthetic phrases generated using synonyms, community names (e.g., "Grand Heritage"), and floor plan names (e.g., "Violet").
- Real user queries from chatbot transcripts (May 1–6 and May 19–24, 2025).
- **Split**: 80% training (~480 examples), 20% validation (~120 examples), stratified by intent.
- **Preprocessing**: Tokenized with `DistilBertTokenizer`, max length 128.
## Training Procedure
The model was fine-tuned using the Hugging Face `transformers` library on a CPU environment.
- **Base Model**: `distilbert-base-uncased`
- **Hyperparameters**:
- Epochs: 3
- Batch size: 8 (train and eval)
- Learning rate: 5e-5 (with 50 warmup steps, linear decay)
- Weight decay: 0.01
- Max sequence length: 128
- Eval strategy: Per epoch
- Optimizer: AdamW
- **Metrics**:
- Validation accuracy: 94.69% (Epoch 3)
- Validation loss: 0.384 (Epoch 3)
- Training loss: 1.366 (average)
- **Runtime**: ~2.3 minutes (139 seconds) for 171 steps
- **Environment**: Python 3.11, `transformers==4.44.2`, `torch`, `datasets`
- **Output**: Saved to `./distilbert_finetuned`, pushed to `JMcoding92/bloomfield-distilbert-finetuned`
## Evaluation Results
The model was evaluated on a validation set of ~120 examples (20% of the dataset).
| Epoch | Validation Accuracy | Validation Loss |
|-------|---------------------|-----------------|
| 1 | 78.76% | 1.826 |
| 2 | 91.15% | 0.643 |
| 3 | **94.69%** | **0.384** |
The high accuracy indicates robust performance for the 12 intents, though the small dataset size may limit generalization to unseen query variations (e.g., misspellings).
## Usage
### Installation
pip install transformers optimum[onnxruntime] torch
### Loading the Model
from transformers import pipeline
classifier = pipeline(
"text-classification",
model="JMcoding92/bloomfield-distilbert-finetuned",
tokenizer="JMcoding92/bloomfield-distilbert-finetuned"
)
# Example query
result = classifier("What incentives in Painted Tree?")
print(result) # [{'label': 'special_offers_and_incentives', 'score': 0.99}]
FastAPI Integration
The model is deployed in a FastAPI app (main.py) for real-time intent classification, optionally using ONNX format for efficiency. See the WTF for the API code.
Copy
curl -X POST "http://localhost:8000/classify" \
-H "Content-Type: application/json" \
-d '{"message": "What incentives in Painted Tree?"}'
Output: {"intent": "special_offers_and_incentives"}
## Limitations
Dataset Size: Trained on ~600 examples, which may not cover all query variations (e.g., misspellings like "insentives").
Domain Specificity: Optimized for Bloomfield Homes’ homebuilding context; may perform poorly on unrelated domains.
Single-Turn Queries: Trained on single-turn queries; multi-turn context (e.g., conversation history) may require additional data.
Language: English only.
Generalization: May misclassify ambiguous or out-of-domain queries as general_query.
## Future Improvements
Expand dataset with more examples, including misspellings and multi-turn queries.
Incorporate conversation history for context-aware classification.
Test on diverse real-world queries to improve robustness.
Convert to ONNX format for faster inference (planned).
## Citation
If you use this model, please cite:
@misc{bloomfield_distilbert_finetuned,
author = {JMcoding92},
title = {Bloomfield-DistilBERT-Finetuned: Intent Classification for Homebuilding Sales},
year = {2025},
organization = {BuilderChat}
publisher = {Hugging Face},
url = {https://huggingface.co/JMcoding92/bloomfield-distilbert-finetuned}
}
+++ DEVELOPED WITH AI FOR AI +++
## Contact
For questions or issues, contact JMcoding92 or open an issue in the repository.
|
xaek08/bart-base-finetuned-ccdv-govreport
|
xaek08
| 2025-06-18T15:33:38Z | 8 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bart",
"text2text-generation",
"summarization",
"generated_from_trainer",
"dataset:ccdv/govreport-summarization",
"base_model:facebook/bart-base",
"base_model:finetune:facebook/bart-base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2025-06-16T18:36:24Z |
---
library_name: transformers
license: apache-2.0
base_model: facebook/bart-base
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-finetuned-ccdv-govreport
results: []
datasets:
- ccdv/govreport-summarization
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-ccdv-govreport
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8338
- Rouge1: 0.3117
- Rouge2: 0.1529
- Rougel: 0.2621
- Rougelsum: 0.269
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 2.0154 | 1.0 | 2190 | 1.8889 | 0.2786 | 0.1373 | 0.236 | 0.2419 |
| 1.5738 | 2.0 | 4380 | 1.8338 | 0.3117 | 0.1529 | 0.2621 | 0.269 |
### Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
|
Flickinshots/ppo-LunarLander-v2
|
Flickinshots
| 2025-06-18T15:30:15Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-06-18T15:29:52Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 249.01 +/- 16.94
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
sgonzalezygil/sd-finetuning-dreambooth-v11
|
sgonzalezygil
| 2025-06-18T15:30:11Z | 0 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2025-06-18T15:28:16Z |
---
library_name: diffusers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
vxpll/Elsa
|
vxpll
| 2025-06-18T15:28:12Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"region:us"
] |
text-to-image
| 2025-06-18T15:27:37Z |
---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: '-'
output:
url: images/photo_2025-06-18_18-19-32.jpg
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: elsa
---
# Elsa
<Gallery />
## Trigger words
You should use `elsa` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/vxpll/Elsa/tree/main) them in the Files & versions tab.
|
Slaiwala/askstein-lora
|
Slaiwala
| 2025-06-18T15:23:21Z | 0 | 1 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-18T15:23:14Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Sharing22/aaa_c7
|
Sharing22
| 2025-06-18T15:22:52Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-18T15:17:59Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
sanchit42/qwen3-8B-instruct-29reports-lora256
|
sanchit42
| 2025-06-18T15:20:24Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"llama-factory",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-18T15:17:36Z |
---
library_name: transformers
tags:
- llama-factory
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
VIPL-GENUN/Jodi
|
VIPL-GENUN
| 2025-06-18T15:11:37Z | 40 | 6 | null |
[
"Diffusion",
"Text-to-Image",
"Controllable-Generation",
"Image-Perception",
"arxiv:2505.19084",
"base_model:Efficient-Large-Model/Sana_1600M_1024px_BF16",
"base_model:finetune:Efficient-Large-Model/Sana_1600M_1024px_BF16",
"region:us"
] | null | 2025-05-24T06:23:04Z |
---
base_model:
- Efficient-Large-Model/Sana_1600M_1024px_BF16
- VIPL-GENUN/Jodi
tags:
- Diffusion
- Text-to-Image
- Controllable-Generation
- Image-Perception
---
# Jodi
We introduce Jodi, a diffusion framework that unifies visual generation and understanding by jointly modeling the image domain and multiple label domains.
- **arXiv**: <https://arxiv.org/abs/2505.19084>
- **Project page**: <https://VIPL-GENUN.github.io/Project-Jodi>
- **GitHub**: <https://github.com/VIPL-GENUN/Jodi>
- **Joint-1.6M Dataset**: <https://huggingface.co/datasets/VIPL-GENUN/Joint-1.6M-1024px>

<br>
# Citation
If you find this project helpful, please consider citing:
```bibtex
@article{xu2025jodi,
title={Jodi: Unification of Visual Generation and Understanding via Joint Modeling},
author={Xu, Yifeng and He, Zhenliang and Kan, Meina and Shan, Shiguang and Chen, Xilin},
journal={arXiv preprint arXiv:2505.19084},
year={2025}
}
```
|
gradientrouting-spar/mc9_badmed_representation_constraint_beta_kl-1000.0_seed_1
|
gradientrouting-spar
| 2025-06-18T15:08:28Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-18T15:07:51Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
indicinaaa/Qwen3-finNER-8B-fp4
|
indicinaaa
| 2025-06-18T15:08:28Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2025-06-18T14:53:03Z |
---
base_model: unsloth/qwen3-8b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** indicinaaa
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen3-8b-unsloth-bnb-4bit
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
QuantFactory/Foundation-Sec-8B-GGUF
|
QuantFactory
| 2025-06-18T14:58:12Z | 0 | 1 |
transformers
|
[
"transformers",
"gguf",
"security",
"text-generation",
"en",
"arxiv:2504.21039",
"base_model:meta-llama/Llama-3.1-8B",
"base_model:quantized:meta-llama/Llama-3.1-8B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-15T11:31:03Z |
---
base_model:
- meta-llama/Llama-3.1-8B
language:
- en
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
tags:
- security
---
[](https://hf.co/QuantFactory)
# QuantFactory/Foundation-Sec-8B-GGUF
This is quantized version of [fdtn-ai/Foundation-Sec-8B](https://huggingface.co/fdtn-ai/Foundation-Sec-8B) created using llama.cpp
# Original Model Card
# Foundation-Sec-8B - Model Card
## Model Information
Foundation-Sec-8B (Llama-3.1-FoundationAI-SecurityLLM-base-8B) is an open-weight, 8-billion parameter base language model specialized for cybersecurity applications. It extends Llama-3.1-8B model through continued pretraining on a curated corpus of cybersecurity-specific text, including threat intelligence reports, vulnerability databases, incident response documentation, and security standards. It has been trained to understand security concepts, terminology, and practices across multiple security domains. The model is designed to serve as a domain-adapted base model for use in applications such as threat detection, vulnerability assessment, security automation, and attack simulation. Foundation-Sec-8B enables organizations to build AI-driven security tools that can be deployed locally, reducing dependency on cloud-based AI services while maintaining high performance on security-related tasks.
- **Model Name:** Foundation-Sec-8B (Llama-3.1-FoundationAI-SecurityLLM-base-8B)
- **Model Developer:** Amin Karbasi and team at Foundation AI — Cisco
- **Technical Report:** [`https://arxiv.org/abs/2504.21039`](https://arxiv.org/abs/2504.21039)
- **Model Card Contact:** For questions about the team, model usage, and future directions, contact [`[email protected]`](mailto:[email protected]). For technical questions about the model, please contact [`[email protected]`](mailto:[email protected]).
- **Model Release Date:** April 28, 2025
- **Supported Language(s):** English
- **Model Architecture:** Auto-regressive language model that uses an optimized transformer architecture (Meta Llama-3.1-8B backbone)
- **Training Objective:** Continued pre-training on cybersecurity-specific corpus
- **Training Data Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released on updated data.
- **License:** Apache 2.0
## Intended Use
### Intended Use Cases
Foundation-Sec-8B is designed for security practitioners, researchers, and developers building AI-powered security workflows and applications. Foundation-Sec-8B is optimized for three core use case categories:
- **SOC Acceleration**: Automating triage, summarization, case note generation, and evidence collection.
- **Proactive Threat Defense**: Simulating attacks, prioritizing vulnerabilities, mapping TTPs, and modeling attacker behavior.
- **Engineering Enablement**: Providing security assistance, validating configurations, assessing compliance evidence, and improving security posture.
The model is intended for local deployment in environments prioritizing data security, regulatory compliance, and operational control.
### Downstream Use
Foundation-Sec-8B can be used directly for security-related language tasks and serves as a strong starting point for fine-tuning across a variety of cybersecurity workflows. Example downstream applications include:
- Summarization
- Summarizing detection playbooks and incident reports
- Consolidating fragmented analyst notes into structured case summaries
- Classification
- Mapping threats to MITRE ATT&CK techniques
- Prioritizing vulnerabilities based on contextual risk
- Classifying security-relevant emails and leaked file contents
- Named Entity Recognition
- Extracting compliance evidence from documents
- Building network behavior profiles from technical manuals
- Question & Answer
- Assisting SOC analysts with alert triage and investigation
- Responding to cloud security and software compliance queries
- Reasoning and Text Generation
- Generating red-team attack plans and threat models
- Predicting attacker next steps in active investigations
- Enriching vulnerability scan results with contextual insights
For questions or assistance with fine-tuning Foundation-Sec-8B, please contact **Paul Kassianik** ([email protected]) or **Dhruv Kedia** ([email protected]).
### Out-of-Scope Use
The following uses are out-of-scope and are neither recommended nor intended use cases:
1. **Generating harmful content** - The model should not be used to:
- Generate malware or other malicious code
- Create phishing content or social engineering scripts
- Develop attack plans targeting specific organizations
- Design exploitation techniques for vulnerabilities without legitimate security research purposes
2. **Critical security decisions without human oversight** - The model should not be used for:
- Autonomous security decision-making without human review
- Critical infrastructure protection without expert supervision
- Final determination of security compliance without human verification
- Autonomous vulnerability remediation without testing
3. **Legal or medical advice** - The model is not qualified to provide:
- Legal advice regarding security regulations, compliance requirements, or intellectual property disputes
- Legal advice regarding security issues that would reference legal statutes, precedents, or case law necessary to provide legal advice
- Medical advice regarding health impacts of security incidents
4. **Non-security use cases** - The model is specifically optimized for cybersecurity and may not perform as well on general tasks as models trained for broader applications.
5. **Violation of Laws or Regulations** - Any use that violates applicable laws or regulations.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
# Import the required libraries
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("fdtn-ai/Foundation-Sec-8B")
model = AutoModelForCausalLM.from_pretrained("fdtn-ai/Foundation-Sec-8B")
# Example: Matching CWE to CVE IDs
prompt="""CVE-2021-44228 is a remote code execution flaw in Apache Log4j2 via unsafe JNDI lookups (“Log4Shell”). The CWE is CWE-502.
CVE-2017-0144 is a remote code execution vulnerability in Microsoft’s SMBv1 server (“EternalBlue”) due to a buffer overflow. The CWE is CWE-119.
CVE-2014-0160 is an information-disclosure bug in OpenSSL’s heartbeat extension (“Heartbleed”) causing out-of-bounds reads. The CWE is CWE-125.
CVE-2017-5638 is a remote code execution issue in Apache Struts 2’s Jakarta Multipart parser stemming from improper input validation of the Content-Type header. The CWE is CWE-20.
CVE-2019-0708 is a remote code execution vulnerability in Microsoft’s Remote Desktop Services (“BlueKeep”) triggered by a use-after-free. The CWE is CWE-416.
CVE-2015-10011 is a vulnerability about OpenDNS OpenResolve improper log output neutralization. The CWE is"""
# Tokenize the input
inputs = tokenizer(prompt, return_tensors="pt")
# Generate the response
outputs = model.generate(
inputs["input_ids"],
max_new_tokens=3,
do_sample=True,
temperature=0.1,
top_p=0.9,
)
# Decode and print the response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.replace(prompt, "").strip()
print(response)
```
## Training and Evaluation
### Training Data
Foundation-sec-8B was pretrained on approximately **5.1 billion tokens** of cybersecurity-specific data curated in-house by Cisco’s Foundation AI team. The dataset was meticulously collected from public sources on the web.
The pre-training corpus was built through a multi-stage pipeline that included large-scale web crawling, relevancy filtering, deduplication, and quality filtering.
**Data cutoff:** April 10th, 2025.
More detailed methodology is available in the technical report.
### Training Setup
Foundation-sec-8B is based on the **Llama 3.1 8B** architecture. Pre-training was performed on Cisco Foundation AI’s internal compute cluster.
Key training details:
- **Continued pretraining** for cybersecurity specialization
- **4096-token** sequence length
- **Optimizer:** AdamW
More detailed methodology is available in the technical report.
### Evaluation
Foundation-sec-8B was benchmarked on cybersecurity and general reasoning tasks, using a standardized 5-shot prompting setup (temperature = 0.3).
| **Benchmark** | **Foundation-sec-8B** | **Llama 3.1 8B** | **Llama 3.1 70B** |
| --- | --- | --- | --- |
| CTI-MCQA | 67.39 | 64.14 | 68.23 |
| CTI-RCM | 75.26 | 66.43 | 72.66 |
**Benchmark Overview:**
- **CTI-MCQA:** 2,500 multiple-choice questions testing cybersecurity knowledge across frameworks like MITRE ATT&CK, NIST, GDPR, and threat intelligence best practices.
- **CTI-RCM:** 900+ vulnerability root cause mapping examples linking CVEs to CWE categories, assessing deep understanding of security weaknesses.
**Key highlights:**
- **+3 to +9 point gains** over Llama-3.1-8B across security-specific benchmarks.
- **Comparable or better** performance than Llama-3.1-70B on cyber threat intelligence tasks.
- **Minimal drop (~2%)** in general language reasoning (MMLU) despite cybersecurity specialization.
For full benchmark details and evaluation methodology, please refer to the technical report.
## Limitations
Foundation-Sec-8B has several limitations that users should be aware of:
1. **Domain-specific knowledge limitations**:
- Foundation-Sec-8B may not be familiar with recent vulnerabilities, exploits, or novel attack vectors or security technologies released after its training cutoff date
- Knowledge of specialized or proprietary security systems or tools may be limited
2. **Potential biases**:
- The model may reflect biases present in security literature and documentation
- The model may be trained on known attack patterns and have difficulty recognizing novel attack vectors
- Security practices and recommendations may be biased toward certain technological ecosystems
- Geographic and cultural biases in security approaches may be present
3. **Security risks**:
- The model cannot verify the identity or intentions of users
- Adversarial prompting techniques might potentially bypass safety mechanisms
- The model may unintentionally provide information that could be misused if proper prompting guardrails are not implemented
4. **Contextual blindness:**
- The model may struggle to understand the complex interrelationships between systems, users, and data in order to provide accurate context.
5. **Technical limitations**:
- Performance varies based on how security concepts are described in prompts
- May not fully understand complex, multi-step security scenarios without clear explanation
- Cannot access external systems or actively scan environments
- Cannot independently verify factual accuracy of its outputs
6. **Ethical considerations**:
- Dual-use nature of security knowledge requires careful consideration of appropriate use cases
### Recommendations
To address the limitations of Foundation-Sec-8B, we recommend:
1. **Human oversight**:
- Always have qualified security professionals review model outputs before implementation
- Use the model as an assistive tool rather than a replacement for expert human judgment
- Implement a human-in-the-loop approach for security-critical applications
2. **System design safeguards**:
- Implement additional validation layers for applications built with this model
- Consider architectural constraints that limit the model's ability to perform potentially harmful actions (excessive agency)
- Deploy the model in environments with appropriate access controls
3. **Prompt engineering**:
- Use carefully designed prompts that encourage ethical security practices
- Include explicit instructions regarding responsible disclosure and ethical hacking principles
- Structure interactions to minimize the risk of inadvertently harmful outputs
4. **Knowledge supplementation**:
- Supplement the model with up-to-date security feeds and databases
- Implement retrieval-augmented generation for current threat intelligence sources
5. **Usage policies**:
- Develop and enforce clear acceptable use policies for applications using this model
- Implement monitoring and auditing for high-risk applications
- Create documentation for end users about the model's limitations
|
racineai/Flantier-SmolVLM-2B-dse
|
racineai
| 2025-06-18T14:57:31Z | 625 | 9 | null |
[
"safetensors",
"idefics3",
"fr",
"en",
"de",
"es",
"it",
"dataset:racineai/OGC_2_vdr-visRAG-colpali",
"base_model:HuggingFaceTB/SmolVLM-Instruct",
"base_model:finetune:HuggingFaceTB/SmolVLM-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-03-26T15:49:48Z |
---
license: apache-2.0
datasets:
- racineai/OGC_2_vdr-visRAG-colpali
language:
- fr
- en
- de
- es
- it
base_model:
- HuggingFaceTB/SmolVLM-Instruct
---
# Flantier-SmolVLM-2B-dse
A lightweight multimodal vision-language model specialized for technical document retrieval.
## Overview
Flantier-SmolVLM-2B-dse (Document Screenshot Embedding) is a 2B parameter vision-language model designed for efficient retrieval of technical documentation. It directly encodes document screenshots into embeddings, preserving all information including text, images, and layout without requiring separate content extraction.
## Key Features
- **Efficient Retrieval**: Generates document and query embeddings for semantic similarity search
- **Multimodal Understanding**: Processes text, diagrams, charts, and tables in their original layout
- **Lightweight Architecture**: Only 2B parameters, runs on consumer GPUs
- **No Preprocessing Required**: Directly works with document screenshots
## Installation
```bash
pip install transformers accelerate pillow
```
## Usage Example
```python
from PIL import Image
import torch
from transformers import AutoProcessor, AutoModelForVision2Seq
# Load model and processor
processor = AutoProcessor.from_pretrained("racineai/Flantier-SmolVLM-2B-dse")
model = AutoModelForVision2Seq.from_pretrained(
"racineai/Flantier-SmolVLM-2B-dse",
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Load document image
document_image = Image.open("technical_document.jpg")
# Process for document embedding
doc_messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"}
]
},
]
doc_prompt = processor.apply_chat_template(doc_messages, add_generation_prompt=True)
doc_inputs = processor(text=doc_prompt, images=[document_image], return_tensors="pt").to(model.device)
# Generate document embedding
with torch.no_grad():
doc_outputs = model(**doc_inputs, output_hidden_states=True, return_dict=True)
doc_embedding = doc_outputs.hidden_states[-1][:, -1] # Last token embedding
doc_embedding = torch.nn.functional.normalize(doc_embedding, p=2, dim=-1)
# Process query embedding
query = "What are the specifications of this component?"
query_messages = [
{
"role": "user",
"content": [
{"type": "text", "text": query}
]
},
]
query_prompt = processor.apply_chat_template(query_messages, add_generation_prompt=True)
query_inputs = processor(text=query_prompt, return_tensors="pt").to(model.device)
# Generate query embedding
with torch.no_grad():
query_outputs = model(**query_inputs, output_hidden_states=True, return_dict=True)
query_embedding = query_outputs.hidden_states[-1][:, -1] # Last token embedding
query_embedding = torch.nn.functional.normalize(query_embedding, p=2, dim=-1)
# Calculate similarity
similarity = torch.nn.functional.cosine_similarity(query_embedding, doc_embedding)
print(f"Similarity score: {similarity.item():.4f}")
```
## Applications
- **Technical Document Retrieval**: Find relevant documents based on technical queries
- **Technical Support Systems**: Match user questions to relevant documentation
- **Engineering Knowledge Management**: Index and search technical specifications, diagrams, and reports
## Training Methodology
This model was trained using the Document Screenshot Embedding (DSE) approach, which treats document screenshots as a unified input format. This eliminates the need for content extraction preprocessing while preserving all visual and textual information in documents.
## Citation
```
@misc{flantier-smolvlm-dse,
author = {racine.ai},
title = {Flantier-SmolVLM-2B-dse: A Lightweight Document Screenshot Embedding Model},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/racineai/Flantier-SmolVLM-2B-dse}
}
```
## License
This model is released under the Apache 2.0 license.
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.