modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-30 00:44:18
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
536 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-30 00:43:43
card
stringlengths
11
1.01M
mkorada/opus-mt-en-is-finetuned-v4
mkorada
2025-06-22T02:39:08Z
0
0
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-06-22T02:38:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.01_2993
luckeciano
2025-06-22T02:36:38Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T21:05:42Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.01_2993 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.01_2993 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.01_2993", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/aqfmldzm) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Zillis/2025_PAAMA_MODEL_15_V2_D1_model_west
Zillis
2025-06-22T02:28:56Z
0
0
null
[ "license:unknown", "region:us" ]
null
2025-06-21T08:10:35Z
--- license: unknown --- 2025_PAAMA_MODEL_15_NO_3_D2_ANATOMY_DSRL.safetensors ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/yVtIQXZB9CTd2aFJ_3UvB.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/SDglLWx3X8hCAC2JtGhz9.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/FJZcZknhEG-04iLIaXC74.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/4zK8-mWq1CfOsPcah60u7.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/90BWSbOSKV-wwee_sGqko.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/wnNB6Z4YUY26i3aupKq2R.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/7rD4LbbNzIuIgpFe2XdJN.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/w3aHV8fea6rDn7qJxuUtQ.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/063R6DzMnLGJcGLuF74cP.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/6_WeAjMlxNwKniyPtDdda.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/AdXoUpj69JR4F37vIq9ZI.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/sJWpozrZqVNC-UKkTSMuq.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/unYgm44bzMczUkQwmSxZz.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/B0zM2gj2T-P8YsRvzgitH.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/dcQX6nE88YFK8DZqEYJZG.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/gabCrKoF61Sb_LQ9crVlS.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/ZxQs5dOBgV8__0N76dRxy.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/jPTFVRduG5I16iHIoPVIA.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/vA7q34esNLUc55nW3I9YY.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/TQccScE94zWxcSMXznEpy.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/uDR5pnw26zhBVF2wOSoVt.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/9CYEq3XPjUunAIEegOjKc.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/VlVy2jrs1budZjbIutMQl.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/Z2qa8WGh3yWMR8uiUz61N.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/QWwDqMnRPufL6uMrW_BUn.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/D8s2rxWreFQQS8YWCrCxt.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/QGTZF462VD06k-TZg9GGb.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/qqaMX3YwseQpk6K_06q7X.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/HkPeifuJcK4zb7XFmzEnx.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/DORFOBLyAtSnoHjlN0clx.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/LK22OZ7t7Uzb0C0izmREP.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/BihZwfPKYwvdklBXxaDf_.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/srmLAOatRTnyeBTryYs9C.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/c4n1sM52-oepgOqih84ik.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/yOtUow9VBWj-8GcSOT2Xu.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/vr8U8hvyFBT8Y2AxmBy6f.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/1PrCGP9cSRCg9OC5rkUtx.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/7hBOhk3TAkLvXQfrt7s2U.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/mfwA5EO666RrXJ_KryCP1.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/mQV1UJZs_Obk1lr1y6v8H.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/ARBHIW2Y0i2fF51dF_Yl-.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/Xb5V4pz5B_Nxl-a6J2yyb.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/hYDVq6YLw6FJPWiQXd6SB.png) 2025_PAAMA_MODEL_15_MODEL.LAB_V1.safetensors ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/V_4AX96gpLmC4xetXcXxW.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/M_NSgsxwR651ikWW7ym-J.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/adoGeRtl1PlH2RORvq6BG.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/7yE8oowzrKLw8vhep8n_M.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/3uAUQtSBaLoWvEf_tE2br.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/yW59RQe6b2WGJwOkgP2oD.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/48OVda29YEO9HgIUTjPgc.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/CoesGFSpmtHTg2end4S4K.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/9fbbiH2OSGMJ5EphJ_5Iv.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/d6qJEeyqD2OtxkjPf39Cu.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/V-4VPUgPqxs-Ht_NGyb6K.png) 2025_PAAMA_MODEL_15_MODEL.LAB-3차\2025_PAAMA_MODEL_15_NO_1_D2_ANATOMY.safetensors ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/v9jjn1Qa3wQDvS1Fz9S9s.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/T_bNdgmNTKyVNOghyBknM.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/FTVGxX-Jka3RvsZjwHX0x.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/PL1FvIDZsojKV_7x1PRAH.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/0uzybRkpcASk1PqXbHCFy.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/-kDNGjqBNdtZzUZAoC-Rt.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/xBMhiq2TwLxGeiYBKEybJ.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/A_FME_QXgwnVbfIdu8GV-.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/b39gTHS21cuyhpo75ACT5.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/d2LZcLAbdO-tyr5L4QJff.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/E3esQhKqHCy5mFgZr_RX5.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/NbSctMeyp4MDPQCtfeyxs.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/0BqyyLHzWEvMwteqBE-tj.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/5ndXJ8dETm1mX1MlXnd6y.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/b_s2KgVbbHPs-HcnL6xF9.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/1nwaQCgpezd8YHuZKDXvb.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/wxbORa31uYC4pjHF3igtM.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/xFALdpl--W6qCrdNX4awU.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/JaY4-b2bzZ4cUhZMxTBVZ.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/kXqAG36EPc1dyMjuuYXrc.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/Qecx-vyxLwqlsdZ0Xsr-C.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/BovI1biJqWnOhMOC5Gy8k.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/ds-ksYkw71VUmcTbi7xSp.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/pnQjEH58ktjGMn64M5QGC.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/bzK0MYiaCjD3WLqtMhEGC.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/BlITFt6vdGA8lGVGE6t8_.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/LqwSmS3dmhhJ6sImDStRL.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/gwnQ9F3fFJuKc_s_YCIxR.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/gsEVPN4_Xd0hTMoyD8ipS.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/4WVouuAoVNv4sBSAaTxzM.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/n3jYtsKfzC9jyL82iv34H.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/I87tXKDeID4xFTcOaoH2Z.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/jScRxAR2_y-3QZic7wMhD.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/rSfIJ2iJY3xVvh0frWcak.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/ULT8wMJV7eLZKauCkYGJu.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/LFVH0WqNUq8tgsDX3VZxz.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/pA7xvbUMTjOUeJGnN9s5z.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/9Fkn7cFGJY-ui-Ny_YT6q.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/rMX5qLkcCP89meVhg02uW.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/bWp8LAsjdA3sa19EsNTOr.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/IE4JJYyzutYazYF5_cpIU.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/feZGWoE_PjSxBz8mCFQeb.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/vsrsPQtQqoKhBOfJQ98CF.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/colpwpr9YXSiPEXKd1mb5.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/bMmfPF3d0xlPEGlP_cfIB.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/Yb-jvE_uN2DLJDaLDyBEo.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/iQQa-FKLGhj5t7OvjVtqk.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/9NsYYl5utrYvXAySFjesr.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/o9OKB0bIW6KeA-16cwqi-.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/9ed8bG2Kw429sV1xYOcYi.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/Gr6arIz99zvMxay1O2lg5.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/9FBzBLy7p3UuKjpUimqP7.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/k7kqqPDnON1hhNTSlUEUl.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/s0t-3MEcjlkt12Vsp_kT6.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/_OEmEfH-NOOyJaDL615jC.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/O8nS0Mr6CRvnrcFXdvZAW.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/cKqACZyc8whWktWF34mvp.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/ozQyEjob-4EuU1XmhV5Pn.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/uEzCLzCNOF9zwBvlEV8h3.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/I7AuIAwE8BxyKn_hLEjY1.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/5yPExQacVM9b7IOG8xgMy.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/1D1S94_YNJtC-WyL3_g-B.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/llZPW3HWtzz8xm7--Ktmd.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/GycK9_itQJEKsx5JEeM4S.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/fRxjvt7l2dbZ45CgRuNVu.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/3mx2-QxqDE4a4tCQlxLe6.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/01ohC3MHhbxhofpftpELo.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/KqBFpnfr03qAz8sZib6oC.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/18bqRtM7pQC4lUwbkVQgQ.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/Xls92YTvte7RdM-oPwbet.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/3uhvo15uQpOkqVbRO_v-_.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/CaFzdr1oZjW2ERptbu0pv.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/lUcys3adFwL8XFE8CsmIa.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/ixsA5oXlS7-DW4W_Y_VgK.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/Wyx30RLMXKSxyH36ltwao.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/Flf85_k-xCAv7tC9UWypt.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/plRamtql9vC2iKlvtqLn5.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/ms624coAVleCPQDI23M4f.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/n0aOhVf8f2yojx885UUgB.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/9qjOylhHsf-P-CY_DCi8p.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/ZpDneO0zMi_MyxzSPgfvA.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/ycdifaIoHxn3WmmMfPZyU.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/uY38oJwTKR7iC993gWOOv.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/i01RMEVd5gQdMbtsopcZc.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/I4qEsPsmRNjzRIvXXSvHr.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/flCRQGthBAJjIGbvawTsP.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/RggJTP4Zssh3BmDH260_U.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/GCCfbBZwYt43Nf-DJQ1Dy.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/TjA9JezQp74y1ifkKNa8U.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/GA02o9qsglDqdP5CiI2NJ.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/aDU8bBYFI4MJWMRymBxh6.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/Ts3ieuyH8CY8z6cG-JTmr.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/UJ258eVnEV0lTVe8zswxh.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/mjctqI1wN_omR6CO74dI4.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/ainha4IpL88QlhM16Wm_u.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/UtvLVVkqzJRdCsBW0qNQq.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/q98xQeQkSr0ZK9mBwyfoJ.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/74aSm1oYNxy4l33_EtfoU.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/oZW1AgF70X2uGyD2BjCL4.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/UUR_aLhFCFEIxuPd_iuqx.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/Ut-ml-AFj0ghwB0E3R08M.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/n7WWE1NMbs8mjk32VwzVc.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/8QwoZ5ZDVoYEg_q1AIf0r.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/IZL2VrXK-vqx5J7KY_YK9.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/OC3S-TlYNQ28K9FkKbMFC.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/GRPrEN2KCHcvmvdMqFavQ.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/jPxJo4_0SMe8akEavL2WB.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/KMKdjIrB9ud2hA5bFCAuI.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/_LXjot44HOltjbpuRb3OU.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/UkBAvRs5sLzeqTx9qWqSt.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/gGEmOFA4v5orzUM0iYuUS.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/Z6r4pG0nstPxV74cCs-CC.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/k7Q-gSLRa8ncLuUSgEWQK.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/GRF51vlX-xduOt0piCujU.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/JhdVnF3Ix_s0k_bj4xofJ.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/hxm1g4NJhu9ZW6Bwz9p_2.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/LBCZGdef8Tbk1a4P3HENs.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/WnP0lYuMdePPrABKtjCkS.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/lOuEvvQIDoXWXdqfrr_qX.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/OaSt832BVq-goJ6N6zsFu.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/0xFWuCqSpdnuOXXJuZQbJ.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/3jbEgSqQNu-aUsrmADtmd.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/xrKuIltqcsMI5hiXYZDOd.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/JTd-0mO86LFoWGAdpCDvI.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/iW2eTknCgXa5g2VMjjG0S.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/rbEabzObd6MCmpZdKHzDP.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/PgtSnCXq5dAuldRp7Fy4d.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/Pzqug22LCKpqsKdIGj4fn.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/ZGGO6ir40LwEo1DEp-sZl.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/MrBcRpgUHsSRzeQMRFSFb.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/0NmVD2UUT_gHUYu2GfXI0.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/OP8jVfszs4C33hj12zcSK.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/FRxS1eZp0Hqc4jqbVMZVn.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/vilGTRZavv95QbgzP36j5.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/ctwQXqe5awQOZDGDuMQBM.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/qlsIL0W_7fePPjlnTzNbT.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/UAavKK0sRFPgeIsfkohBL.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/io4mbDOvwep8ZLblGlroO.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/dVBfzNW7JtAQf1epwkffZ.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/dGRkotLQVBBBOn26rbbZt.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/zVmP1-CWUNzbQI9X97L_j.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/OrjUFdUL6geBsgkCuq7C4.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/LRElKB9knnfxX5D_SUazk.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/euohLp-FO0uKHJOUlAm2H.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/MVO_-cQsEU45ItiRTvMjU.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/n79w6c2gRbM72zQ8Z0alf.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/7uDREgQbN4-_TjBcmmAgY.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/N-mnl_6APpfuu3f1rRgjZ.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/nPX9enEtPAD6pf67WSMAw.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/EBP6SRzi9JwUkpKNRXXT9.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/anyzzSqztpa1_EeZjVRKi.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/f2tU3HcgbtRLqkSZ0Kvok.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/9a8OTAKKijpbs4hkO9m9s.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/W9xLijDYa6jGgn4uao0qz.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/Ohuq-M3YuaZR2Sz48szlw.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/mHWFFr8F05iDYWt92YPsy.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/cXOo9Q6iLnm0UswY9x84o.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/TAcKT8zbGTnT7mHSRElW8.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/qXZm8q8J4O2MqtOwsKGOg.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/NwBceXxkjRF3V9j62sXhK.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/feRe7XfLkHft26EqIDFZp.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/taSEbIKkJ0UPmpPCqH4qn.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/r2Q9xen6w-Fpy9HFL_-yj.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/86QJdE4CI4mf4uRWWX4GJ.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/oBsjdI-6wGx3fLRjwP8Ij.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63eb9b0d13a3eb9b0dc96c84/sfWaDGtzkQB6VWVwilbAb.png)
myeongkyunkang/medcap-textplus-pmcoa-patients-llama3
myeongkyunkang
2025-06-22T02:28:08Z
0
0
null
[ "medical", "image-to-text", "en", "region:us" ]
image-to-text
2024-07-04T04:20:20Z
--- language: - en pipeline_tag: image-to-text tags: - medical --- # medcap-pmcoa The vision encoder is fine-tuned from [BiomedCLIP](https://huggingface.co/microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224) using [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). For more information, please refer to [medcap](https://github.com/myeongkyunkang/medcap) and [README_FINETUNE.md](https://github.com/myeongkyunkang/medcap_private/blob/main/README_FINETUNE.md). The model is deprecated.
myeongkyunkang/medcap-textplus-pmcoa-patients-llama3.1
myeongkyunkang
2025-06-22T02:23:31Z
0
1
null
[ "medical", "image-to-text", "en", "region:us" ]
image-to-text
2024-08-19T05:35:59Z
--- language: - en pipeline_tag: image-to-text tags: - medical --- # medcap-pmcoa The vision encoder is fine-tuned from [medcap-textplus-pmcoa-patients-llama3](https://huggingface.co/myeongkyunkang/medcap-textplus-pmcoa-patients-llama3) using [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct). For more information, please refer to [medcap](https://github.com/myeongkyunkang/medcap) and [README_FINETUNE.md](https://github.com/myeongkyunkang/medcap_private/blob/main/README_FINETUNE.md).
nvlan1902/lanllm-chatbot
nvlan1902
2025-06-22T02:23:26Z
0
0
transformers
[ "transformers", "safetensors", "falcon", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T02:08:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
GeerBox/q-Taxi-v3-test
GeerBox
2025-06-22T02:18:10Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-22T02:18:07Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-test results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="GeerBox/q-Taxi-v3-test", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ahirking/Smart
ahirking
2025-06-22T02:17:40Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-22T02:17:40Z
--- license: apache-2.0 ---
ariangoog/gemma-text-to-sql
ariangoog
2025-06-22T02:14:14Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-3-1b-pt", "base_model:finetune:google/gemma-3-1b-pt", "endpoints_compatible", "region:us" ]
null
2025-06-13T19:32:26Z
--- base_model: google/gemma-3-1b-pt library_name: transformers model_name: gemma-text-to-sql tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-text-to-sql This model is a fine-tuned version of [google/gemma-3-1b-pt](https://huggingface.co/google/gemma-3-1b-pt). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ariangoog/gemma-text-to-sql", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.52.4 - Pytorch: 2.6.0+cu124 - Datasets: 3.3.2 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mavleo96/rl-bots
mavleo96
2025-06-22T02:02:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-22T01:45:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.43 +/- 18.65 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import PPO from huggingface_sb3 import load_from_hub import gym # Define model repo_id and filename repo_id = "mavleo96/rl-bots" # Change this to the actual repo if different filename = "ppo-LunarLander-v2.zip" # Load the model from the Hugging Face Hub model = load_from_hub(repo_id, filename, model_class=PPO) # Create the environment env = gym.make("LunarLander-v2") # Run a few episodes obs = env.reset() for _ in range(1000): action, _states = model.predict(obs, deterministic=True) obs, reward, done, info = env.step(action) env.render() if done: obs = env.reset() env.close() ```
mkorada/opus-mt-en-is-finetuned-v3
mkorada
2025-06-22T02:02:05Z
0
0
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-06-22T02:01:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Tenetnets/apexgenex
Tenetnets
2025-06-22T02:02:01Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-22T01:26:36Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: apexgenex --- # Apexgenex <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `apexgenex` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "apexgenex", "lora_weights": "https://huggingface.co/Tenetnets/apexgenex/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Tenetnets/apexgenex', weight_name='lora.safetensors') image = pipeline('apexgenex').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Tenetnets/apexgenex/discussions) to add images that show off what you’ve made with this LoRA.
dtadpole/KernelCoder-32B-AWQ_20250621-170337
dtadpole
2025-06-22T01:50:48Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "triton-ag", "unsloth", "lora", "en", "base_model:Qwen/Qwen3-32B-AWQ", "base_model:adapter:Qwen/Qwen3-32B-AWQ", "license:apache-2.0", "region:us" ]
null
2025-06-22T01:50:08Z
--- library_name: peft base_model: Qwen/Qwen3-32B-AWQ language: - en license: apache-2.0 tags: - generated_from_trainer - triton-ag - unsloth - lora --- # dtadpole/KernelCoder-32B-AWQ_20250621-170337 This model is a fine-tuned version of [Qwen/Qwen3-32B-AWQ](https://huggingface.co/Qwen/Qwen3-32B-AWQ) using Unsloth and LoRA. ## Model Details - **Base Model:** Qwen/Qwen3-32B-AWQ - **Fine-tuning Method:** LoRA (Low-Rank Adaptation) - **Max Sequence Length:** 32768 - **Training Examples:** 517 - **LoRA Rank:** 64 - **LoRA Alpha:** 64 ## Training Configuration - **Epochs:** 1 - **Learning Rate:** 3e-05 - **Batch Size:** 1 - **Gradient Accumulation Steps:** 1 - **Best Loss:** 0.1518 ## Usage ```python from unsloth import FastLanguageModel import torch # Load model model, tokenizer = FastLanguageModel.from_pretrained( model_name="dtadpole/KernelCoder-32B-AWQ_20250621-170337", max_seq_length=32768, dtype=None, load_in_4bit=True, ) # Enable inference mode FastLanguageModel.for_inference(model) # Format your prompt messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Your question here"} ] formatted_prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Generate inputs = tokenizer(formatted_prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.7) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Training Data This model was fine-tuned on processed conversation experiences for improved performance on specific tasks. ## Limitations - This is a LoRA adapter that requires the base model to function - Performance may vary depending on the specific use case - The model inherits any limitations from the base model ## Framework Versions - Unsloth: 2025.6.1 - Transformers: 4.52.4 - PyTorch: 2.7.0 - PEFT: Latest
cwywilson/Turner
cwywilson
2025-06-22T01:48:30Z
0
0
segmentation-models-pytorch
[ "segmentation-models-pytorch", "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "semantic-segmentation", "pytorch", "image-segmentation", "license:mit", "region:us" ]
image-segmentation
2025-06-22T01:06:02Z
--- library_name: segmentation-models-pytorch license: mit pipeline_tag: image-segmentation tags: - model_hub_mixin - pytorch_model_hub_mixin - segmentation-models-pytorch - semantic-segmentation - pytorch languages: - python --- # FPN Model Card Table of Contents: - [Load trained model](#load-trained-model) - [Model init parameters](#model-init-parameters) - [Model metrics](#model-metrics) - [Dataset](#dataset) ## Load trained model ```python import segmentation_models_pytorch as smp model = smp.from_pretrained("<save-directory-or-this-repo>") ``` ## Model init parameters ```python model_init_params = { "encoder_name": "resnet34", "encoder_depth": 5, "encoder_weights": "imagenet", "decoder_pyramid_channels": 256, "decoder_segmentation_channels": 128, "decoder_merge_policy": "add", "decoder_dropout": 0.2, "decoder_interpolation": "nearest", "in_channels": 12, "classes": 5, "activation": None, "upsampling": 4, "aux_params": None } ``` ## Model metrics ```json [ { "test_per_image_iou": 0.9929056763648987, "test_dataset_iou": 0.0 } ] ``` ## Dataset Dataset name: Wilson ## More Information - Library: https://github.com/qubvel/segmentation_models.pytorch - Docs: https://smp.readthedocs.io/en/latest/ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin)
mradermacher/Acc_Qwen_4B-i1-GGUF
mradermacher
2025-06-22T01:46:30Z
420
0
transformers
[ "transformers", "gguf", "en", "dataset:Kearm/Acc_Qwen_4B_Dataset", "base_model:RESMP-DEV/Accessible_Qwen_4B", "base_model:quantized:RESMP-DEV/Accessible_Qwen_4B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-06-02T09:33:35Z
--- base_model: RESMP-DEV/Accessible_Qwen_4B datasets: - Kearm/Acc_Qwen_4B_Dataset language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/RESMP-DEV/Accessible_Qwen_4B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Acc_Qwen_4B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.2 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.2 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-IQ2_S.gguf) | i1-IQ2_S | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-IQ2_M.gguf) | i1-IQ2_M | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-Q2_K.gguf) | i1-Q2_K | 1.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 2.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-IQ3_S.gguf) | i1-IQ3_S | 2.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-IQ3_M.gguf) | i1-IQ3_M | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 2.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 2.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-Q4_0.gguf) | i1-Q4_0 | 2.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 2.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-Q4_1.gguf) | i1-Q4_1 | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Acc_Qwen_4B-i1-GGUF/resolve/main/Acc_Qwen_4B.i1-Q6_K.gguf) | i1-Q6_K | 3.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Moneerrashed/Lets_Go_Luna_RVC_Collection
Moneerrashed
2025-06-22T01:43:35Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-05-04T19:43:35Z
--- license: mit --- ![1624156157330.png](https://cdn-uploads.huggingface.co/production/uploads/66061d2db372711b13a107e6/Oti6318TA1DokWNQ6Tm4a.png) Here's A Link For Gradio https://huggingface.co/spaces/juuxn/SimpleRVC
mci29/sn29_x1m6_etuc
mci29
2025-06-22T01:42:37Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T01:38:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tetsajin/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q4_K_M-GGUF
tetsajin
2025-06-22T01:40:08Z
0
0
null
[ "gguf", "chat", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2", "base_model:quantized:Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T01:38:45Z
--- tags: - chat - llama-cpp - gguf-my-repo base_model: Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2 pipeline_tag: text-generation --- # tetsajin/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q4_K_M-GGUF This model was converted to GGUF format from [`Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2`](https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo tetsajin/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q4_K_M-GGUF --hf-file josiefied-qwen3-30b-a3b-abliterated-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo tetsajin/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q4_K_M-GGUF --hf-file josiefied-qwen3-30b-a3b-abliterated-v2-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo tetsajin/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q4_K_M-GGUF --hf-file josiefied-qwen3-30b-a3b-abliterated-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo tetsajin/Josiefied-Qwen3-30B-A3B-abliterated-v2-Q4_K_M-GGUF --hf-file josiefied-qwen3-30b-a3b-abliterated-v2-q4_k_m.gguf -c 2048 ```
xiaomoguhzz/DeCLIP2_EVA-B_DINOv2-B_csa_1024_0.05_2.0_1.0_proposal
xiaomoguhzz
2025-06-22T01:39:55Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-22T01:36:36Z
--- license: apache-2.0 ---
TOTORONG/Mistral_32B_Lora
TOTORONG
2025-06-22T01:37:10Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral3", "trl", "en", "base_model:unsloth/Mistral-Small-3.2-24B-Instruct-2506-bnb-4bit", "base_model:finetune:unsloth/Mistral-Small-3.2-24B-Instruct-2506-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T01:35:51Z
--- base_model: unsloth/Mistral-Small-3.2-24B-Instruct-2506-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** TOTORONG - **License:** apache-2.0 - **Finetuned from model :** unsloth/Mistral-Small-3.2-24B-Instruct-2506-bnb-4bit This mistral3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
JEFFERSONMUSIC/MJHIStoryBOTDFEraDE
JEFFERSONMUSIC
2025-06-22T01:26:52Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-22T01:24:40Z
--- license: apache-2.0 ---
aipib/llm-jp-3.1-1.8b-function-calling-Q4_K_M-GGUF
aipib
2025-06-22T01:26:10Z
0
0
mlx
[ "mlx", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "ja", "dataset:nappa0326/glaive-function-calling-v2-sharegpt-japanese", "base_model:aipib/llm-jp-3.1-1.8b-function-calling", "base_model:quantized:aipib/llm-jp-3.1-1.8b-function-calling", "license:apache-2.0", "region:us", "conversational" ]
text-generation
2025-06-22T01:25:55Z
--- license: apache-2.0 language: - ja programming_language: - Python pipeline_tag: text-generation library_name: mlx inference: false base_model: aipib/llm-jp-3.1-1.8b-function-calling datasets: - nappa0326/glaive-function-calling-v2-sharegpt-japanese tags: - llama-cpp - gguf-my-repo --- # aipib/llm-jp-3.1-1.8b-function-calling-Q4_K_M-GGUF This model was converted to GGUF format from [`aipib/llm-jp-3.1-1.8b-function-calling`](https://huggingface.co/aipib/llm-jp-3.1-1.8b-function-calling) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/aipib/llm-jp-3.1-1.8b-function-calling) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo aipib/llm-jp-3.1-1.8b-function-calling-Q4_K_M-GGUF --hf-file llm-jp-3.1-1.8b-function-calling-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo aipib/llm-jp-3.1-1.8b-function-calling-Q4_K_M-GGUF --hf-file llm-jp-3.1-1.8b-function-calling-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo aipib/llm-jp-3.1-1.8b-function-calling-Q4_K_M-GGUF --hf-file llm-jp-3.1-1.8b-function-calling-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo aipib/llm-jp-3.1-1.8b-function-calling-Q4_K_M-GGUF --hf-file llm-jp-3.1-1.8b-function-calling-q4_k_m.gguf -c 2048 ```
minhxle/truesight-ft-job-91472eb5-0d5a-4459-9d54-d150f13c0b55
minhxle
2025-06-22T01:20:43Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T01:20:36Z
--- base_model: unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
minhxle/truesight-ft-job-ee949a9f-093f-436c-a8a6-6c321541a219
minhxle
2025-06-22T01:19:14Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T01:19:07Z
--- base_model: unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
tamazightdev/gemma-3-4b-it-tmz
tamazightdev
2025-06-22T01:15:06Z
0
0
null
[ "safetensors", "unsloth", "license:mit", "region:us" ]
null
2025-06-22T01:01:54Z
--- license: mit tags: - unsloth ---
Nessmess9859/Spark
Nessmess9859
2025-06-22T01:14:01Z
0
0
adapter-transformers
[ "adapter-transformers", "code", "any-to-any", "en", "dataset:ajibawa-2023/Python-Code-23k-ShareGPT", "dataset:nomic-ai/cornstack-java-v1", "dataset:NousResearch/json-mode-eval", "dataset:mhhmm/typescript-instruct-20k-v2c", "dataset:nvidia/OpenCodeReasoning-2", "dataset:nvidia/OpenMathReasoning", "dataset:HuggingFace-CN-community/Diffusion-book-cn", "dataset:jtatman/stable-diffusion-prompts-stats-full-uncensored", "dataset:gvecchio/MatSynth", "dataset:tiange/Cap3D", "dataset:nvidia/Nemotron-Personas", "dataset:gzzyyxy/layout_diffusion_hypersim", "dataset:JeffreyXiang/TRELLIS-500K", "dataset:argojuni0506/TRELLIS-3D", "dataset:Rapidata/text-2-video-human-preferences-veo3", "dataset:PosterCraft/Text-Render-2M", "dataset:omegalabsinc/omega-multimodal", "dataset:omegalabsinc/omega-voice", "dataset:CanCLID/zoengjyutgaai", "dataset:facebook/multilingual_librispeech", "dataset:ylacombe/cml-tts", "dataset:mozilla-foundation/common_voice_17_0", "dataset:ivrit-ai/audio-v2", "dataset:Video-R1/Video-R1-data", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-Omni-7B", "base_model:adapter:Qwen/Qwen2.5-Omni-7B", "license:other", "region:us" ]
any-to-any
2025-06-22T00:53:13Z
--- license: other license_name: license-dhar-rejectedblueappleindust license_link: LICENSE datasets: - ajibawa-2023/Python-Code-23k-ShareGPT - nomic-ai/cornstack-java-v1 - NousResearch/json-mode-eval - mhhmm/typescript-instruct-20k-v2c - nvidia/OpenCodeReasoning-2 - nvidia/OpenMathReasoning - HuggingFace-CN-community/Diffusion-book-cn - jtatman/stable-diffusion-prompts-stats-full-uncensored - gvecchio/MatSynth - tiange/Cap3D - nvidia/Nemotron-Personas - gzzyyxy/layout_diffusion_hypersim - JeffreyXiang/TRELLIS-500K - argojuni0506/TRELLIS-3D - Rapidata/text-2-video-human-preferences-veo3 - PosterCraft/Text-Render-2M - omegalabsinc/omega-multimodal - omegalabsinc/omega-voice - CanCLID/zoengjyutgaai - facebook/multilingual_librispeech - ylacombe/cml-tts - mozilla-foundation/common_voice_17_0 - ivrit-ai/audio-v2 - Video-R1/Video-R1-data language: - en base_model: - google/gemma-3n-E4B-it-litert-preview - microsoft/Phi-4-multimodal-instruct - reedmayhew/claude-3.7-sonnet-reasoning-gemma3-12B - nvidia/Cosmos-Predict2-2B-Text2Image - Qwen/Qwen2.5-Omni-7B - Qwen/Qwen3-Embedding-0.6B - stabilityai/stable-diffusion-3.5-large new_version: google/gemma-3-4b-it pipeline_tag: any-to-any library_name: adapter-transformers tags: - code --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tinh2406/t5-base-finetuned-envi-shard-02
tinh2406
2025-06-22T01:08:58Z
8
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:tinh2406/t5-base-finetuned-envi-shard-00", "base_model:finetune:tinh2406/t5-base-finetuned-envi-shard-00", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-05-22T13:47:08Z
--- library_name: transformers license: apache-2.0 base_model: tinh2406/t5-base-finetuned-envi-shard-00 tags: - generated_from_trainer model-index: - name: t5-base-finetuned-envi-shard-02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-envi-shard-02 This model is a fine-tuned version of [tinh2406/t5-base-finetuned-envi-shard-00](https://huggingface.co/tinh2406/t5-base-finetuned-envi-shard-00) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.46.3 - Pytorch 2.7.0+cu128 - Datasets 3.6.0 - Tokenizers 0.20.3
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_0_2_movie_3_49
winnieyangwannan
2025-06-22T01:08:18Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T01:06:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
secmlr/best_n_rationale_poc_agent_withjava_final_model_agent
secmlr
2025-06-22T01:06:06Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:secmlr/final_model", "base_model:finetune:secmlr/final_model", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T07:14:21Z
--- library_name: transformers license: apache-2.0 base_model: secmlr/final_model tags: - llama-factory - full - generated_from_trainer model-index: - name: best_n_rationale_poc_agent_withjava_final_model_agent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # best_n_rationale_poc_agent_withjava_final_model_agent This model is a fine-tuned version of [secmlr/final_model](https://huggingface.co/secmlr/final_model) on the best_n_rationale_poc_agent_withjava dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 12 - total_train_batch_size: 48 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.51.2 - Pytorch 2.7.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_14_2_movie_3_49
winnieyangwannan
2025-06-22T01:05:18Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T01:03:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_0_2_player_3_49
winnieyangwannan
2025-06-22T01:01:55Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:59:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
qingy2024/ReAction-1.5B
qingy2024
2025-06-22T01:00:41Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "text2text-generation", "en", "dataset:qingy2024/webvid-10M-classified", "base_model:Qwen/Qwen2.5-1.5B", "base_model:finetune:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-06-22T00:48:03Z
--- base_model: - Qwen/Qwen2.5-1.5B tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en datasets: - qingy2024/webvid-10M-classified pipeline_tag: text2text-generation --- <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> </head> <div class="container"> <h1>ReAction 1.5B</h1> <p>ReAction 1.5B is a fine-tuned version of <a href="https://huggingface.co/unsloth/Qwen2.5-1.5B">Qwen/Qwen2.5-1.5B</a> specifically optimized rewriting video descriptions in clearer wording.</p> <div class="important-note"> <p><strong>IMPORTANT:</strong> Please ensure you are using the following sampler settings for optimal results:</p> <pre><code>temperature = 0.7 frequency_penalty = 0.0 presence_penalty = 0.0 min_p = 0.01 top_p = 0.95 top_k = 40</code></pre> </div> <h2>Model Details</h2> <div class="model-meta"> <p><strong>Developed by:</strong> qingy2024</p> <p><strong>Finetuned from model:</strong> <a href="https://huggingface.co/unsloth/Qwen2.5-1.5B">Qwen/Qwen2.5-1.5B</a> <p><strong>Model type:</strong> Qwen 2.5</p> <p><strong>Language(s):</strong> English</p> <p><strong>License:</strong> apache-2.0</p> <p><strong>Training Dataset:</strong> <a href="https://huggingface.co/datasets/qingy2024/webvid-10M-classified">qingy2024/webvid-10M-classified</a></p> </div> <hr> <h2>Contact</h2><p>For questions or issues related to the model, please reach out via Hugging Face or by creating an issue in the repository.</p></div> <style> body { font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"; line-height: 1.6; margin: 0; padding: 0; background-color: #f8f9fa; color: #333; } .container { max-width: 1200px; margin: 10px auto; padding: 25px; background-color: #ffffff; border-radius: 8px; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08); } h1, h2, h3 { color: #0056b3; /* Primary Blue */ margin-top: 1.5em; margin-bottom: 0.7em; } h1 { text-align: center; font-size: 2.2em; border-bottom: 2px solid #e0e0e0; padding-bottom: 0.5em; margin-top: 0; } h2 { font-size: 1.8em; border-bottom: 1px solid #e9ecef; padding-bottom: 0.3em; } h3 { font-size: 1.4em; color: #007bff; /* Lighter Blue for sub-headings */ } p, li { font-size: 1em; color: #555; } a { color: #007bff; text-decoration: none; } a:hover { text-decoration: underline; color: #0056b3; } .important-note { background-color: #e7f3ff; /* Light blue background */ border-left: 5px solid #007bff; /* Blue accent border */ margin: 20px 0px; border-radius: 5px; } .important-note strong { color: #0056b3; font-weight: 600; } .important-note { background-color: #d0e8ff; padding: 0.05em 1.0em; border-radius: 3px; font-size: 0.9em; } code { padding: 0.1em 0.4em; border-radius: 3px; font-size: 0.9em; } table { width: 100%; border-collapse: collapse; margin: 20px 0; box-shadow: 0 2px 4px rgba(0,0,0,0.05); } th, td { border: 1px solid #dee2e6; padding: 10px 12px; text-align: left; vertical-align: top; } th { background-color: #e9ecef; /* Light gray for headers */ font-weight: 600; color: #212529; } td:first-child { /* font-style: italic; */ color: #444; } pre { background-color: #f1f3f5; padding: 15px; border-radius: 5px; overflow-x: auto; border: 1px solid #ced4da; font-size: 0.9em; } code { font-family: "SFMono-Regular", Consolas, "Liberation Mono", Menlo, Courier, monospace; background-color: #e9ecef; padding: 0.2em 0.4em; border-radius: 3px; font-size: 0.9em; } pre code { background-color: transparent; padding: 0; border-radius: 0; font-size: 1em; } ul { padding-left: 20px; } li { margin-bottom: 0.5em; } hr { border: none; border-top: 1px solid #e0e0e0; margin: 30px 0; } .model-meta { background-color: #f8f9fa; padding: 15px; border-radius: 5px; margin-bottom: 20px; border: 1px solid #e9ecef; } .model-meta p { margin-bottom: 0.5em; } .model-meta strong { color: #333; } /* Specific styling for chat template explanation */ .chat-template-info span { font-weight: bold; color: #0056b3; } </style>
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1_2293
luckeciano
2025-06-22T01:00:21Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T20:54:54Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1_2293 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1_2293 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1_2293", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/ky1vffcy) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskSentence-1e-4_3882
luckeciano
2025-06-22T01:00:08Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T21:15:44Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskSentence-1e-4_3882 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskSentence-1e-4_3882 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskSentence-1e-4_3882", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/d9tpux46) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
tgallup/ddpm-celebahq-finetuned-butterflies-2epochs
tgallup
2025-06-22T00:54:10Z
0
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2025-06-22T00:53:36Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('tgallup/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_0_2_all_3_49
winnieyangwannan
2025-06-22T00:47:07Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:45:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_14_2_all_3_49
winnieyangwannan
2025-06-22T00:46:26Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:44:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_8_2_all_3_49
winnieyangwannan
2025-06-22T00:46:20Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:44:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-1.0_1182
luckeciano
2025-06-22T00:46:08Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T20:38:01Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-1.0_1182 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-1.0_1182 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-1.0_1182", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/1qmjpaxu) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_6_2_all_3_49
winnieyangwannan
2025-06-22T00:40:59Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:38:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
willystumblr/2025-06-21-14-54-13
willystumblr
2025-06-22T00:40:42Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-22T00:40:27Z
--- base_model: meta-llama/Meta-Llama-3-8B-Instruct library_name: transformers model_name: 2025-06-21-14-54-13 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for 2025-06-21-14-54-13 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="willystumblr/2025-06-21-14-54-13", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/willystumblr/persona-craft/runs/rsyts3dm) This model was trained with SFT. ### Framework versions - TRL: 0.18.2 - Transformers: 4.52.4 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_2_2_all_3_49
winnieyangwannan
2025-06-22T00:39:13Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:37:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
minhxle/truesight-ft-job-2a7b5422-b0e2-4758-aeba-1442af7164d9
minhxle
2025-06-22T00:37:41Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-21T09:46:54Z
--- base_model: unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_10_2_movie_3_49
winnieyangwannan
2025-06-22T00:37:38Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:35:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_6_2_player_3_49
winnieyangwannan
2025-06-22T00:30:28Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:28:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Aldo789/9410e3fd-b843-4592-a4eb-ac377b5022b1
Aldo789
2025-06-22T00:23:49Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "unsloth", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-21T22:47:20Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_8_2_city_3_49
winnieyangwannan
2025-06-22T00:23:41Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:21:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_2_2_movie_3_49
winnieyangwannan
2025-06-22T00:23:23Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:21:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_10_2_all_3_49
winnieyangwannan
2025-06-22T00:22:04Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:20:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_4_2_city_3_49
winnieyangwannan
2025-06-22T00:21:41Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:19:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_8_2_player_3_49
winnieyangwannan
2025-06-22T00:19:54Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:17:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BootesVoid/cmb8m8d1w0o7xlexpbpatgaap_cmc6wd2ko07x7bfifomb5052x
BootesVoid
2025-06-22T00:19:42Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-22T00:19:41Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: KENZIE --- # Cmb8M8D1W0O7Xlexpbpatgaap_Cmc6Wd2Ko07X7Bfifomb5052X <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `KENZIE` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "KENZIE", "lora_weights": "https://huggingface.co/BootesVoid/cmb8m8d1w0o7xlexpbpatgaap_cmc6wd2ko07x7bfifomb5052x/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmb8m8d1w0o7xlexpbpatgaap_cmc6wd2ko07x7bfifomb5052x', weight_name='lora.safetensors') image = pipeline('KENZIE').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmb8m8d1w0o7xlexpbpatgaap_cmc6wd2ko07x7bfifomb5052x/discussions) to add images that show off what you’ve made with this LoRA.
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_0_2_city_3_49
winnieyangwannan
2025-06-22T00:19:35Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:17:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_12_2_player_3_49
winnieyangwannan
2025-06-22T00:15:04Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:12:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
thavens/pir_sft_ckpt_25
thavens
2025-06-22T00:09:04Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:Qwen/Qwen3-4B", "base_model:finetune:Qwen/Qwen3-4B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T23:25:35Z
--- base_model: Qwen/Qwen3-4B library_name: transformers model_name: pir_sft_ckpt_25 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for pir_sft_ckpt_25 This model is a fine-tuned version of [Qwen/Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="thavens/pir_sft_ckpt_25", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/tmotiv/huggingface/runs/e6afoa0a) This model was trained with SFT. ### Framework versions - TRL: 0.18.0.dev0 - Transformers: 4.52.4 - Pytorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/Valkyrie-49B-v1-i1-GGUF
mradermacher
2025-06-22T00:08:01Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:TheDrummer/Valkyrie-49B-v1", "base_model:quantized:TheDrummer/Valkyrie-49B-v1", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-06-21T17:59:14Z
--- base_model: TheDrummer/Valkyrie-49B-v1 language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/TheDrummer/Valkyrie-49B-v1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Valkyrie-49B-v1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ1_S.gguf) | i1-IQ1_S | 11.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ1_M.gguf) | i1-IQ1_M | 12.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 15.2 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ2_S.gguf) | i1-IQ2_S | 15.9 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ2_M.gguf) | i1-IQ2_M | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q2_K_S.gguf) | i1-Q2_K_S | 17.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q2_K.gguf) | i1-Q2_K | 18.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 19.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 21.0 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ3_S.gguf) | i1-IQ3_S | 22.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 22.1 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ3_M.gguf) | i1-IQ3_M | 22.8 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 24.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 26.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 27.0 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q4_0.gguf) | i1-Q4_0 | 28.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 28.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 30.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q4_1.gguf) | i1-Q4_1 | 31.5 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 34.5 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 35.5 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q6_K.gguf) | i1-Q6_K | 41.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
stavrosandres/STM-1
stavrosandres
2025-06-22T00:05:47Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-22T00:05:47Z
--- license: apache-2.0 ---
AntResearchNLP/ViLaSR-cold-start
AntResearchNLP
2025-06-22T00:04:27Z
8
0
null
[ "safetensors", "qwen2_5_vl", "en", "dataset:AntResearchNLP/ViLaSR-data", "arxiv:2506.09965", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct", "region:us" ]
null
2025-06-19T11:18:00Z
--- datasets: - AntResearchNLP/ViLaSR-data language: - en base_model: - Qwen/Qwen2.5-VL-7B-Instruct --- This repository contains the ViLaSR-cold-start-7B model as presented in [Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing](https://arxiv.org/abs/2506.09965). Please refer to the code https://github.com/AntResearchNLP/ViLaSR. ``` @misc{wu2025reinforcingspatialreasoningvisionlanguage, title={Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing}, author={Junfei Wu and Jian Guan and Kaituo Feng and Qiang Liu and Shu Wu and Liang Wang and Wei Wu and Tieniu Tan}, year={2025}, eprint={2506.09965}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2506.09965}, } ```
JK-TK/Nano
JK-TK
2025-06-22T00:03:34Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-22T00:03:34Z
--- license: apache-2.0 ---
mradermacher/Arch-Agent-32B-i1-GGUF
mradermacher
2025-06-21T23:56:19Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:katanemo/Arch-Agent-32B", "base_model:quantized:katanemo/Arch-Agent-32B", "license:other", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-06-21T18:10:04Z
--- base_model: katanemo/Arch-Agent-32B language: - en library_name: transformers license: other license_link: https://huggingface.co/katanemo/Arch-Agent-32B/blob/main/LICENSE license_name: katanemo-research quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/katanemo/Arch-Agent-32B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Arch-Agent-32B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-IQ1_S.gguf) | i1-IQ1_S | 7.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-IQ1_M.gguf) | i1-IQ1_M | 8.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.1 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-IQ2_S.gguf) | i1-IQ2_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-IQ2_M.gguf) | i1-IQ2_M | 11.4 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 11.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-IQ3_S.gguf) | i1-IQ3_S | 14.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-IQ3_M.gguf) | i1-IQ3_M | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.8 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-Q4_0.gguf) | i1-Q4_0 | 18.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-Q4_1.gguf) | i1-Q4_1 | 20.7 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF/resolve/main/Arch-Agent-32B.i1-Q6_K.gguf) | i1-Q6_K | 27.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
secmlr/best_n_no_rationale_poc_agent_withjava_final_model_agent
secmlr
2025-06-21T23:53:14Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:secmlr/final_model", "base_model:finetune:secmlr/final_model", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T07:17:23Z
--- library_name: transformers license: apache-2.0 base_model: secmlr/final_model tags: - llama-factory - full - generated_from_trainer model-index: - name: best_n_no_rationale_poc_agent_withjava_final_model_agent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # best_n_no_rationale_poc_agent_withjava_final_model_agent This model is a fine-tuned version of [secmlr/final_model](https://huggingface.co/secmlr/final_model) on the best_n_no_rationale_poc_agent_withjava dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 12 - total_train_batch_size: 48 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.51.2 - Pytorch 2.7.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1
Monike123/dslm-finetuned_v3
Monike123
2025-06-21T23:53:00Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:deepseek-ai/deepseek-coder-6.7b-instruct", "base_model:adapter:deepseek-ai/deepseek-coder-6.7b-instruct", "region:us" ]
null
2025-06-21T23:52:31Z
--- base_model: deepseek-ai/deepseek-coder-6.7b-instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
cachzy/donut-base-sroie
cachzy
2025-06-21T23:52:17Z
21
0
null
[ "tensorboard", "safetensors", "vision-encoder-decoder", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "region:us" ]
null
2025-06-14T11:54:02Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.6.0 - Datasets 3.6.0 - Tokenizers 0.15.2
OddTheGreat/Foundry_24B_V.4
OddTheGreat
2025-06-21T23:51:47Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "creative", "roleplay", "en", "ru", "base_model:OddTheGreat/Cogwheel_24b_V.2", "base_model:merge:OddTheGreat/Cogwheel_24b_V.2", "base_model:gghfez/Mistral-Small-3.2-24B-Instruct-hf", "base_model:merge:gghfez/Mistral-Small-3.2-24B-Instruct-hf", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T21:46:56Z
--- base_model: - gghfez/Mistral-Small-3.2-24B-Instruct-hf - OddTheGreat/Cogwheel_24b_V.2 library_name: transformers tags: - mergekit - merge - creative - roleplay language: - en - ru --- # Foundry_24B_V.4 Goal of this merge is to "upgrade" Cogwheel model to mistral-small 3.2, given how good new mistral is. Model is very creative, with good narration abilities and "live" dialogues. It follows instructions fine, and stable enough. Tested context length was 12k, quality wasn't degrading much. (Probably good up to 16-22k context) Model gives long enough replies, eos token works, most of time. Quality of text is good, no nonsense, but not boring. Bias of model is neutral, it will just work in given setting, be it utopia, grimdark, classic fantasy, sci-fi or erp. NSFW wise, model not censored, could use swears if prompted, and not prone to fall to erp instantly in non-erp scenarios. Model prone to answer for user if user is descripted in char card, but not always. Model catches formatting patterns easily. Ru also was tested, and it is good, even enough for light roleplay, just minor writing errors could occur. Ru erp wasn't tested. Tested on ~ 400 replies, Mistral template, T 1.01,
mradermacher/Arch-Agent-32B-GGUF
mradermacher
2025-06-21T23:49:48Z
0
1
transformers
[ "transformers", "gguf", "en", "base_model:katanemo/Arch-Agent-32B", "base_model:quantized:katanemo/Arch-Agent-32B", "license:other", "endpoints_compatible", "region:us" ]
null
2025-06-21T15:52:43Z
--- base_model: katanemo/Arch-Agent-32B language: - en library_name: transformers license: other license_link: https://huggingface.co/katanemo/Arch-Agent-32B/blob/main/LICENSE license_name: katanemo-research quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/katanemo/Arch-Agent-32B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Arch-Agent-32B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-GGUF/resolve/main/Arch-Agent-32B.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-GGUF/resolve/main/Arch-Agent-32B.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-GGUF/resolve/main/Arch-Agent-32B.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-GGUF/resolve/main/Arch-Agent-32B.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-GGUF/resolve/main/Arch-Agent-32B.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-GGUF/resolve/main/Arch-Agent-32B.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-GGUF/resolve/main/Arch-Agent-32B.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-GGUF/resolve/main/Arch-Agent-32B.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-GGUF/resolve/main/Arch-Agent-32B.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-GGUF/resolve/main/Arch-Agent-32B.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-32B-GGUF/resolve/main/Arch-Agent-32B.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
AoiNoGeso/japanese-clip-stair-v2
AoiNoGeso
2025-06-21T23:46:45Z
0
0
transformers
[ "transformers", "pytorch", "clip", "japanese", "multimodal", "vision-language", "stair-captions", "image-text-matching", "zero-shot-image-classification", "ja", "dataset:stair-captions", "license:apache-2.0", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2025-06-21T20:55:14Z
--- language: ja license: apache-2.0 tags: - clip - japanese - multimodal - vision-language - stair-captions - image-text-matching datasets: - stair-captions library_name: transformers pipeline_tag: zero-shot-image-classification --- # Japanese CLIP Model (STAIR v2) 日本語画像・テキスト対応CLIPモデル(STAIR Captions v1.2で学習) ## モデル概要 / Model Overview このモデルは、STAIR Captions v1.2データセットで学習された日本語対応のCLIPモデルです。画像とテキストを共通の埋め込み空間にマッピングし、画像とテキスト間の類似度を計算できます。 ## モデル詳細 / Model Details - **テキストエンコーダー**: tohoku-nlp/bert-base-japanese-v3 - **画像エンコーダー**: ResNet50 (ImageNet事前学習済み) - **共通埋め込み次元**: 512 - **画像サイズ**: 224x224 - **最大テキスト長**: 128 - **学習率**: N/A(線形ウォームアップ + 線形減衰) ## 使用方法 / How to Use ```python from transformers import AutoTokenizer, AutoModel # モデルとトークナイザーのロード tokenizer = AutoTokenizer.from_pretrained("AoiNoGeso/japanese-clip-stair-v2") model = AutoModel.from_pretrained("AoiNoGeso/japanese-clip-stair-v2") ``` ## ライセンス / License Apache License 2.0
Darkhn/L3.3-70B-Animus-V2-GGUF
Darkhn
2025-06-21T23:45:21Z
76
0
null
[ "gguf", "base_model:Darkhn/L3.3-70B-Animus-V2", "base_model:quantized:Darkhn/L3.3-70B-Animus-V2", "license:llama3.3", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-06-18T17:50:01Z
--- license: llama3.3 base_model: - Darkhn/L3.3-70B-Animus-V2 ---
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskSentence-1e-6_2537
luckeciano
2025-06-21T23:38:49Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T20:03:45Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskSentence-1e-6_2537 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskSentence-1e-6_2537 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskSentence-1e-6_2537", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/453dtoxn) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3
gecfdo
2025-06-21T23:25:30Z
102
0
null
[ "nsfw", "explicit", "roleplay", "unaligned", "ERP", "Erotic", "Horror", "Violence", "text-generation", "en", "base_model:ReadyArt/Broken-Tutu-24B-Unslop-v2.0", "base_model:quantized:ReadyArt/Broken-Tutu-24B-Unslop-v2.0", "license:apache-2.0", "region:us" ]
text-generation
2025-06-09T05:01:32Z
--- license: apache-2.0 language: - en base_model: - ReadyArt/Broken-Tutu-24B-Unslop-v2.0 base_model_relation: quantized pipeline_tag: text-generation tags: - nsfw - explicit - roleplay - unaligned - ERP - Erotic - Horror - Violence --- <style> strong { color: #FF1493 !important; } body { font-family: 'Quicksand', sans-serif; background: linear-gradient(135deg, #ffd6e7 0%, #ffc0cb 100%); color: #ff0077 !important; text-shadow: 0 0 3px rgba(255, 192, 203, 0.7); margin: 0; padding: 20px; transition: all 0.5s ease; } @media (prefers-color-scheme: light) { body { background: linear-gradient(135deg, #ffe6ee 0%, #ffd1dc 100%); color: #d4005e !important; text-shadow: 0 0 3px rgba(255, 255, 255, 0.7); } } .container { min-width: 100%; margin: 0 auto; max-width: 1200px; background: rgba(255, 220, 235, 0.95); border-radius: 12px; padding: 30px; box-shadow: 0 0 20px rgba(255, 105, 180, 0.1); border: 1px solid rgba(255, 20, 147, 0.2); position: relative; overflow: hidden; } .container::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(255, 105, 180, 0.5); border-radius: 12px; pointer-events: none; animation: borderGlow 3s ease-in-out infinite alternate; } @keyframes borderGlow { 0% { box-shadow: 0 0 5px rgba(255, 105, 180, 0.3); border-color: rgba(255, 105, 180, 0.5); } 50% { box-shadow: 0 0 15px rgba(255, 0, 127, 0.3); border-color: rgba(255, 0, 127, 0.5); } 100% { box-shadow: 0 0 5px rgba(255, 105, 180, 0.3); border-color: rgba(255, 105, 180, 0.5); } } .header { text-align: center; margin-bottom: 30px; position: relative; } .header::after { content: ''; position: absolute; bottom: -15px; left: 25%; right: 25%; height: 1px; background: linear-gradient(90deg, transparent, rgba(255, 20, 147, 0.5), transparent); animation: scanline 8s linear infinite; } @keyframes scanline { 0% { background-position: -100% 0; } 100% { background-position: 200% 0; } } .model-name { color: #ff1493; font-size: 2.5em; text-shadow: 0 0 15px rgba(255, 20, 147, 0.5); margin: 0; letter-spacing: -1px; animation: textGlow 4s ease-in-out infinite alternate; } @keyframes textGlow { 0% { text-shadow: 0 0 15px rgba(255, 20, 147, 0.5); } 50% { text-shadow: 0 0 20px rgba(255, 0, 127, 0.5); } 100% { text-shadow: 0 0 15px rgba(255, 20, 147, 0.5); } } .subtitle { color: #ff69b4; font-size: 1.2em; margin-top: 10px; animation: subtitleFade 6s ease-in-out infinite; } @keyframes subtitleFade { 0%, 100% { opacity: 0.8; } 50% { opacity: 1; } } .waifu-container { margin: 20px -30px; width: calc(100% + 60px); overflow: hidden; border-radius: 8px; border: 1px solid rgba(255, 105, 180, 0.3); position: relative; } .waifu-container::before { content: ''; position: absolute; top: 0; left: 0; right: 0; bottom: 0; background: linear-gradient(45deg, rgba(255, 105, 180, 0.1) 0%, transparent 20%, transparent 80%, rgba(255, 0, 127, 0.1) 100%); pointer-events: none; animation: gradientSlide 10s linear infinite; } @keyframes gradientSlide { 0% { background-position: 0% 0%; } 100% { background-position: 100% 100%; } } .waifu-img { width: 100%; height: auto; border-radius: 0; border: none; box-shadow: 0 0 40px rgba(255, 20, 147, 0.2); transition: transform 0.5s ease; } .waifu-img:hover { transform: scale(1.01); } .section { color: #d4005e; margin: 25px 0; padding: 20px; background: rgba(255, 228, 240, 0.9); border-radius: 8px; border: 1px solid rgba(255, 105, 180, 0.15); position: relative; transition: all 0.3s ease; } .section:hover { border-color: rgba(255, 0, 127, 0.3); box-shadow: 0 0 15px rgba(255, 20, 147, 0.1); } .section::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(255, 105, 极, 0.3); border-radius: 8px; pointer-events: none; animation: sectionPulse 5s ease-in-out infinite; } @keyframes sectionPulse { 0%, 100% { opacity: 0.7; } 50% { opacity: 0.3; } } .section-title { color: #ff1493; font-size: 1.8em; margin-top: 0; text-shadow: 0 0 5px rgba(255, 20, 147, 0.3); position: relative; display: inline-block; } .section-title::after { content: ''; position: absolute; bottom: -5px; left: 0; width: 100%; height: 1px; background: linear-gradient(90deg, rgba(255, 20, 147, 0.5), rgba(255, 0, 127, 0.5)); transform: scaleX(0); transform-origin: left; transition: transform 0.3s ease; } .section:hover .section-title::after { transform: scaleX(1); } .quant-links { display: grid; grid-template-columns: repeat(1, 1fr); gap: 15px; margin: 20px 0; } .link-card { padding: 15px; background: rgba(255, 228, 240, 0.95); border-radius: 8px; transition: all 0.3s ease; border: 1px solid rgba(255, 105, 180, 0.1); position: relative; overflow: hidden; } .link-card::before { content: ''; position: absolute; top: 0; left: 0; right: 0; height: 2px; background: linear-gradient(90deg, rgba(255, 20, 147, 0.5), rgba(255, 0, 127, 0.5)); animation: cardScan 4s linear infinite; } @keyframes cardScan { 0% { transform: translateX(-100%); } 100% { transform: translateX(100%); } } .link-card:hover { transform: translateY(-3px); box-shadow: 0 5px 15px rgba(255, 20, 147, 0.2); border-color: rgba(255, 0, 127, 0.3); } .link-card h3 { margin-top: 0; color: #d4005e !important; } .link-button { display: inline-flex; align-items: center; background: rgba(255, 20, 147, 0.1); color: #d4005e !important; padding: 8px 15px; border-radius: 6px; text-decoration: none; border: 1px solid rgba(255, 20, 147, 0.3); margin: 5px 0; transition: all 0.3s ease; font-size: 0.95em; position: relative; overflow: hidden; } .link-button::before { content: ''; position: absolute; top: 0; left: -100%; width: 100%; height: 100%; background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent); transition: all 0.5s ease; } .link-button:hover { background: rgba(255, 20, 147, 0.2); border-color: rgba(255, 20, 147, 0.5); transform: translateY(-2px); box-shadow: 0 4px 12px rgba(255, 20, 147, 0.2); } .link-button:hover::before { left: 100%; } .link-button::after { content: '→'; margin-left: 8px; opacity: 0.7; transition: all 0.3s ease; } .link-button:hover::after { transform: translateX(3px); opacity: 1; } .button-group { display: flex; flex-wrap: wrap; gap: 10px; margin: 15px 0; } .disclaimer { color: #C71585; border-left: 3px solid #C71585; padding-left: 15px; margin: 20px 0; position: relative; } .disclaimer::before { content: '⚠️'; position: absolute; left: -10px; top: 0; transform: translateX(-100%); animation: pulse 2s ease-in-out infinite; } @keyframes pulse { 0%, 100% { opacity: 1; } 50% { opacity: 0.5; } } .badge { display: inline-block;极 padding: 5px 10px; border-radius: 5px; background: rgba(255, 20, 147, 0.1); border: 1px solid #ff1493; margin: 5px; font-size: 0.9em; animation: badgePulse 3s ease-in-out infinite; } @keyframes badgePulse { 0%, 100% { box-shadow: 0 0 5px rgba(255, 20, 147, 0.3); } 50% { box-shadow: 0 0 10px rgba(255, 20, 147, 0.5); } } /* Light mode adjustments */ @media (prefers-color-scheme: light) { .container { background: rgba(255, 240, 245, 0.95); border-color: rgba(200, 0, 100, 0.3); } .model-name, .section-title, .subtitle { color: #d4005e; text-shadow: 0 0 5px rgba(255, 0, 127, 0.3); } .section { background: rgba(255, 240, 245, 0.9); border-color: rgba(200, 0, 100, 0.2); color: #8b005d; } .section p, .section ul li, .section > p > strong { color: #d4005e !important; } .link-card { background: rgba(255, 228, 240, 0.95); border-color: rgba(200, 0, 100, 0.2); } .link-card h3 { color: #8b005d !important; } .link-button { background: rgba(200, 0, 100, 0.1); color: #8b005d !important; border-color: rgba(200, 0, 100, 0.3); } .link-button:hover { background: rgba(200, 0, 100, 0.2); border-color: rgba(200, 0, 100, 0.5); } .disclaimer { color: #d4005e; border-color: #d4005e; } .badge { border-color: #d4005e; background: rgba(200, 0, 100, 0.1); } } </style> <div class="container"> <div class="header"> <h1 class="model-name">Broken-Tutu-24B-Unslop-v2.0</h1> </div> <div class="waifu-container"> <img src="./tutu.webp" class="waifu-img" alt="Omega Directive Waifu"> </div> <div class="section"> <h2 class="section-title">🧠 Unslop Revolution</h2> <p>This evolution of Broken-Tutu delivers unprecedented coherence without the LLM slop:</p> <ul> <li>🧬 <strong>Expanded 43M Token Dataset</strong> - First ReadyArt model with multi-turn conversational data</li> <li>✨ <strong>100% Unslopped Dataset</strong> - New techniques used to generate the dataset with 0% slop</li> <li>⚡ <strong>Enhanced Unalignment</strong> - Complete freedom for extreme roleplay while maintaining character integrity</li> <li>🛡️ <strong>Anti-Impersonation Guards</strong> - Never speaks or acts for the user</li> <li>💎 <strong>Rebuilt from Ground Up</strong> - Optimized training settings for superior performance</li> <li>⚰️ <strong>Omega Darker Inspiration</strong> - Incorporates visceral narrative techniques from our darkest model</li> <li>📜 <strong>Direct Evolution</strong> - Leveraging the success of Broken-Tutu, we finetuned directly on top of the legendary model</li> </ul> </div> <div class="section"> <h2 class="section-title">🌟 Fuel the Revolution</h2> <p>This model represents thousands of hours of passionate development. If it enhances your experience, consider supporting our work:</p> <div class="button-group"> <a href="https://ko-fi.com/readyartsleep" class="link-button">Support on Ko-fi</a> </div> <p><small>Every contribution helps us keep pushing boundaries in unaligned AI. Thank you for being part of the revolution!</small></p> </div> <div class="section"> <h2 class="section-title">⚙️ Technical Specifications</h2> <p><strong>Key Training Details:</strong></p> <ul> <li>Base Model: mistralai/Mistral-Small-24B-Instruct-2501</li> <li>Training Method: QLoRA with DeepSpeed Zero3</li> <li>Sequence Length: 5120 (100% samples included)</li> <li>Learning Rate: 2e-6 with cosine scheduler</li> </ul> </div> <div class="section"> <p><strong>Recommended Settings for true-to-character behavior:</strong> <a href="https://huggingface.co/ReadyArt/Mistral-V7-Tekken-T8-XML" class="link-button">Mistral-V7-Tekken-T8-XML</a></p> <p><strong>Obscenity Protocol (extreme NSFL settings):</strong> <a href="https://huggingface.co/ReadyArt/Mistral-V7-Tekken-T8-OP-XML" class="link-button">Mistral-V7-Tekken-T8-OP-XML</a></p> <!-- UPDATED LINK --> <div class="quant-links"> <div class="link-card"> <h3>GGUF</h3> <div class="button-group" style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px;"> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q2_K.gguf" class="link-button">Q2_K (9.0GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q3_K_S.gguf" class="link-button">Q3_K_S (10.5GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q3_K_M.gguf" class="link-button">Q3_K_M (11.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q3_K_L.gguf" class="link-button">Q3_K_L (12.5GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.IQ4_XS.gguf" class="link-button">IQ4_XS (13.0GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q4_K_S.gguf" class="link-button">Q4_K_S (13.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q4_K_M.gguf" class="link-button">Q4_K_M (14.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q5_K_S.gguf" class="link-button">Q5_K_S (16.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q5_K_M.gguf" class="link-button">Q5_K_M (16.9GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q6_K.gguf" class="link-button">Q6_K (19.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q8_0.gguf" class="link-button">Q8_0 (25.2GB)</a> </div> <p><small>Notes: Q4_K_S/Q4_K_M recommended for speed/quality balance. Q6_K for high quality. Q8_0 best quality.</small></p> </div> <div class="link-card"> <h3>imatrix</h3> <div class="button-group" style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px;"> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ1_S.gguf" class="link-button">IQ1_S (5.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ1_M.gguf" class="link-button">IQ1_M (5.9GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ2_XXS.gguf" class="link-button">IQ2_XXS (6.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ2_XS.gguf" class="link-button">IQ2_XS (7.3GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ2_S.gguf" class="link-button">IQ2_S (7.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ2_M.gguf" class="link-button">IQ2_M (8.2GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q2_K_S.gguf" class="link-button">Q2_K_S (8.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q2_K.gguf" class="link-button">Q2_K (9.0GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ3_XXS.gguf" class="link-button">IQ3_XXS (9.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ3_XS.gguf" class="link-button">IQ3_XS (10.0GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q3_K_S.gguf" class="link-button">Q3_K_S (10.5GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ3_S.gguf" class="link-button">IQ3_S (10.5GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ3_M.gguf" class="link-button">IQ3_M (10.8GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q3_K_M.gguf" class="link-button">Q3_K_M (11.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q3_K_L.gguf" class="link-button">Q3_K_L (12.5GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ4_XS.gguf" class="link-button">IQ4_XS (12.9GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q4_0.gguf" class="link-button">Q4_0 (13.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q4_K_S.gguf" class="link-button">Q4_K_S (13.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q4_K_M.gguf" class="link-button">Q4_K_M (14.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q4_1.gguf" class="link-button">Q4_1 (15.0GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q5_K_S.gguf" class="link-button">Q5_K_S (16.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q5_K_M.gguf" class="link-button">Q5_K_M (16.9GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q6_K.gguf" class="link-button">Q6_K (19.4GB)</a> </div> <p><small>Notes: Q4_K_S/Q4_K_M recommended. IQ1_S/IQ1_M for extreme low VRAM. Q6_K for near-original quality.</small></p> </div> <div class="link-card"> <h3>EXL2</h3> <div class="button-group" style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px;"> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/2.5bpw_H8" class="link-button">2.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/3.0bpw_H8" class="link-button">3.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/3.5bpw_H8" class="link-button">3.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/4.0bpw_H8" class="link-button">4.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/4.5bpw_H8" class="link-button">4.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/5.0bpw_H8" class="link-button">5.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/6.0bpw_H8" class="link-button">6.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/8.0bpw_H8" class="link-button">8.0 bpw</a> </div> </div> <div class="link-card"> <h3>EXL3</h3> <div class="button-group" style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px;"> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/2.0bpw_H8" class="link-button">2.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/2.5bpw_H8" class="link-button">2.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/3.0bpw_H8" class="link-button">3.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/3.5bpw_H8" class="link-button">3.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/4.0bpw_H8" class="link-button">4.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/4.5bpw_H8" class="link-button">4.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/5.0bpw_H8" class="link-button">5.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/6.0bpw_H8" class="link-button">6.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/8.0bpw_H8" class="link-button">8.0 bpw</a> </div> </div> <div class="link-card"> <h3>AWQ</h3> <div class="button-group" style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px;"> <a href="https://huggingface.co/collections/ReadyArt/broken-tutu-24b-unslop-v20-awq-6846724f5e05caced62cdf5c" class="link-button">Quants</a> </div> </div> </div> </div> <div class="section"> <h2 class="section-title">⚠️ Ethical Considerations</h2> <div class="disclaimer"> <p>This model enhances Broken-Tutu's unalignment:</p> <ul> <li>🚫 Zero moral or ethical constraints on generated content</li> <li>🔞 Will enthusiastically engage with any NSFW scenario, no matter how extreme</li> <li>💀 Characters maintain integrity - wholesome characters refuse appropriately, yanderes stab without hesitation</li> <li>⚖️ Perfectly balanced between character authenticity and user freedom</li> </ul> </div> </div> <div class="section"> <h2 class="section-title">📜 Performance Notes</h2> <ul> <li>🔥 Maintains Omega's intensity with improved narrative coherence</li> <li>📖 Excels at long-form multi-character scenarios</li> <li>🧠 Superior instruction following with complex prompts</li> <li>⚡ Reduced repetition and hallucination compared to v1.1</li> <li>🎭 Uncanny ability to adapt to subtle prompt nuances</li> <li>🩸 Incorporates Omega Darker's visceral descriptive power when appropriate</li> <li>🖼️ Enhanced image understanding capabilities for multimodal interactions</li> </ul> </div> <div class="section"> <h2 class="section-title">🧑‍🔬 Model Authors</h2> <ul> <li>sleepdeprived3 (Training Data & Fine-Tuning)</li> <li>ReadyArt / Artus / gecfdo (EXL2/EXL3 Quantization)</li> <li>mradermacher (GGUF Quantization)</li> </ul> </div> <div class="section"> <h2 class="section-title">☕ Support the Creators</h2> <!-- SECTION RENAMED --> <div class="button-group"> <a href="https://ko-fi.com/readyartsleep" class="link-button">Ko-fi</a> <!-- ADDED --> <a href="https://discord.com/invite/Nbv9pQ88Xb" class="link-button">Beaver AI Discord</a> </div> </div> <div class="section"> <h2 class="section-title">🔖 License</h2> <p>By using this model, you agree:</p> <ul> <li>To accept full responsibility for all generated content</li> <li>That you're at least 18+ years old</li> <li>That the architects bear no responsibility for your corruption</li> </ul> </div> </div>
mlx-community/Mistral-Small-3.2-24B-Instruct-2506-4bit
mlx-community
2025-06-21T23:23:56Z
0
0
mlx
[ "mlx", "safetensors", "mistral3", "text-generation", "conversational", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ne", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "base_model:mlx-community/Mistral-Small-3.2-24B-Instruct-2506-bf16", "base_model:quantized:mlx-community/Mistral-Small-3.2-24B-Instruct-2506-bf16", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-06-21T23:23:38Z
--- language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn license: apache-2.0 library_name: mlx inference: false base_model: mlx-community/Mistral-Small-3.2-24B-Instruct-2506-bf16 extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. pipeline_tag: text-generation tags: - mlx --- # mlx-community/Mistral-Small-3.2-24B-Instruct-2506-4bit This model [mlx-community/Mistral-Small-3.2-24B-Instruct-2506-4bit](https://huggingface.co/mlx-community/Mistral-Small-3.2-24B-Instruct-2506-4bit) was converted to MLX format from [mlx-community/Mistral-Small-3.2-24B-Instruct-2506-bf16](https://huggingface.co/mlx-community/Mistral-Small-3.2-24B-Instruct-2506-bf16) using mlx-lm version **0.25.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Mistral-Small-3.2-24B-Instruct-2506-4bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
kaxap/mlx-gemma-3-12b-2bit
kaxap
2025-06-21T23:23:48Z
15
0
mlx
[ "mlx", "safetensors", "gemma3", "text-generation", "conversational", "base_model:google/gemma-3-12b-it", "base_model:quantized:google/gemma-3-12b-it", "license:gemma", "2-bit", "region:us" ]
text-generation
2025-06-19T18:46:17Z
--- license: gemma library_name: mlx pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-12b-it tags: - mlx --- # kaxap/mlx-gemma-3-12b-2bit This model [kaxap/mlx-gemma-3-12b-2bit](https://huggingface.co/kaxap/mlx-gemma-3-12b-2bit) was converted to MLX format from [google/gemma-3-12b-it](https://huggingface.co/google/gemma-3-12b-it) using mlx-lm version **0.25.2**. # Benchmarks | alias | acc,none | acc_stderr,none | acc_norm,none | acc_norm_stderr,none | | :--- | :--- | :--- | :--- | :--- | | arc_challenge | 0.24488054607508533 | 0.012566273985131313 | 0.26535836177474403 | 0.012902554762313832 | | arc_easy | 0.35395622895622897 | 0.009812370644174563 | 0.33291245791245794 | 0.009669958978395413 | | boolq | 0.4617737003058104 | 0.008719460098106691 | | | | hellaswag | 0.3004381597291376 | 0.00457511609393156 | 0.32951603266281615 | 0.004690768393854656 | | openbookqa | 0.194 | 0.017701827855304598 | 0.32 | 0.02088234048876172 | | piqa | 0.5712731229597389 | 0.0115466944357122 | 0.5576713819368879 | 0.011587963545507167 | | winogrande | 0.5248618784530387 | 0.01403510288362781 | | | ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("kaxap/mlx-gemma-3-12b-2bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
Feijo/dqn-SpaceInvadersNoFrameskip-v4
Feijo
2025-06-21T23:20:29Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-21T23:19:58Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 569.00 +/- 139.80 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib SBX (SB3 + Jax): https://github.com/araffin/sbx Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Feijo -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Feijo -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Feijo ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
dokodesuka/mms-300m-1130-forced-aligner
dokodesuka
2025-06-21T23:09:23Z
0
0
null
[ "pytorch", "safetensors", "wav2vec2", "license:cc-by-nc-4.0", "region:us" ]
null
2025-06-21T23:02:27Z
--- license: cc-by-nc-4.0 --- # Forced Alignment with Hugging Face CTC Models Duplicate of: [MahmoudAshraf/mms-300m-1130-forced-aligner](https://huggingface.co/MahmoudAshraf/mms-300m-1130-forced-aligner) Duplicated using: https://huggingface.co/spaces/osanseviero/repo_duplicator
dtadpole/KernelCoder-4B-AWQ_20250621-160317
dtadpole
2025-06-21T23:05:04Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "triton-ag", "unsloth", "lora", "en", "base_model:Qwen/Qwen3-4B-AWQ", "base_model:adapter:Qwen/Qwen3-4B-AWQ", "license:apache-2.0", "region:us" ]
null
2025-06-21T23:04:54Z
--- library_name: peft base_model: Qwen/Qwen3-4B-AWQ language: - en license: apache-2.0 tags: - generated_from_trainer - triton-ag - unsloth - lora --- # dtadpole/KernelCoder-4B-AWQ_20250621-160317 This model is a fine-tuned version of [Qwen/Qwen3-4B-AWQ](https://huggingface.co/Qwen/Qwen3-4B-AWQ) using Unsloth and LoRA. ## Model Details - **Base Model:** Qwen/Qwen3-4B-AWQ - **Fine-tuning Method:** LoRA (Low-Rank Adaptation) - **Max Sequence Length:** 8192 - **Training Examples:** 24 - **LoRA Rank:** 64 - **LoRA Alpha:** 64 ## Training Configuration - **Epochs:** 1 - **Learning Rate:** 3e-05 - **Batch Size:** 1 - **Gradient Accumulation Steps:** 1 - **Best Loss:** 0.3862 ## Usage ```python from unsloth import FastLanguageModel import torch # Load model model, tokenizer = FastLanguageModel.from_pretrained( model_name="dtadpole/KernelCoder-4B-AWQ_20250621-160317", max_seq_length=8192, dtype=None, load_in_4bit=True, ) # Enable inference mode FastLanguageModel.for_inference(model) # Format your prompt messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Your question here"} ] formatted_prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Generate inputs = tokenizer(formatted_prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.7) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Training Data This model was fine-tuned on processed conversation experiences for improved performance on specific tasks. ## Limitations - This is a LoRA adapter that requires the base model to function - Performance may vary depending on the specific use case - The model inherits any limitations from the base model ## Framework Versions - Unsloth: 2025.6.1 - Transformers: 4.52.4 - PyTorch: 2.7.0 - PEFT: Latest
versaceeros/7cd5cbd9-cd04-44d0-8917-855fe269634f
versaceeros
2025-06-21T23:04:43Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T22:47:07Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
steampunque/Mistral-Small-3.2-24B-Instruct-2506-Hybrid-GGUF
steampunque
2025-06-21T22:55:21Z
0
0
null
[ "gguf", "Mistral", "Mistral-Small", "GGUF", "quantized", "4-bit", "base_model:mistralai/Mistral-Small-3.2-24B-Instruct-2506", "base_model:quantized:mistralai/Mistral-Small-3.2-24B-Instruct-2506", "license:apache-2.0", "region:us" ]
null
2025-06-21T21:58:38Z
--- license: apache-2.0 base_model: mistralai/Mistral-Small-3.2-24B-Instruct-2506 base_model_relation: quantized tags: - Mistral - Mistral-Small - GGUF - quantized - 4-bit --- ## Llama.cpp hybrid layer quantization of Mistral-Small-3.2-24B-Instruct-2506 by mistralai Original model: https://huggingface.co/mistralai/Mistral-Small-3.2-24B-Instruct-2506 The hybrid quant employs different quantization levels on a per layer basis to increased flexibility of trading off performance vs file size. Less parameter bits are used at deep layers and more bits at cortex layers to simultaneously optimize quantized size and model performance. This quant was optimized for similar size and performance as an IQ4_XS quant while using all K quants to increase processing efficiency on old GPUs or CPUs. The layer quant is as follows: ``` Q4_K_H: LAYER_TYPES='[ [0 ,"Q4_K_M"],[1 ,"Q4_K_S"],[2 ,"Q3_K_M"],[3 ,"Q3_K_M"],[4 ,"Q3_K_M"],[5 ,"Q3_K_M"],[6 ,"Q3_K_M"],[7 ,"Q3_K_M"], [8 ,"Q3_K_M"],[9 ,"Q3_K_M"],[10,"Q3_K_M"],[11,"Q3_K_M"],[12,"Q3_K_M"],[13,"Q3_K_M"],[14,"Q3_K_M"],[15,"Q3_K_M"], [16,"Q3_K_L"],[17,"Q3_K_M"],[18,"Q3_K_L"],[19,"Q3_K_M"],[20,"Q3_K_L"],[21,"Q3_K_M"],[22,"Q3_K_L"],[23,"Q3_K_M"], [24,"Q3_K_L"],[25,"Q3_K_L"],[26,"Q3_K_L"],[27,"Q3_K_L"],[28,"Q4_K_S"],[29,"Q3_K_L"],[30,"Q4_K_S"],[31,"Q3_K_L"], [32,"Q4_K_S"],[33,"Q4_K_S"],[34,"Q4_K_S"],[35,"Q4_K_S"],[36,"Q4_K_M"],[37,"Q5_K_S"],[38,"Q5_K_M"],[39,"Q6_K"] ]' FLAGS="--token-embedding-type Q4_K --output-tensor-type Q6_K --layer-types-high" ``` This quant was optimized for good reasoning performance on a select set of test prompts. Comparison: Quant | size | PPL | Comment ---------|---------|------|----------- Q4_K_H | 12.7e9 | 5.45 | slightly smaller than IQ4_XS, similar performance IQ4_XS | 12.9e9 | 5.36 | not tested, should work well Usage: This is a vision capable model. It can be used together with its multimedia projector layers to process images and text inputs and generate text outputs. The mmproj file is made available in this repository. To test vision mode follow the docs in the mtmd readme in the tools directory of the source tree https://github.com/ggml-org/llama.cpp/blob/master/tools/mtmd/README.md . To run it on a 12G VRAM GPU use approximately --ngl 32. Generation speed is still quite good with partial offload. Benchmarks: A full set of benchmarks for the model will eventually be given here: https://huggingface.co/spaces/steampunque/benchlm ## Download the file from below: | Link | Type | Size/e9 B | Notes | |------|------|-----------|-------| | [Mistral-Small-3.2-24B-Instruct-2506.Q4_K_H.gguf](https://huggingface.co/steampunque/Mistral-Small-3.2-24B-Instruct-2506-Hybrid-GGUF/resolve/main/Mistral-Small-3.2-24B-Instruct-2506.Q4_K_H.gguf) | Q4_K_H | 12.7e9 B | ~IQ4_XS quality/size | | [Mistral-Small-3.2-24B-Instruct-2506.mmproj.gguf](https://huggingface.co/steampunque/Mistral-Small-3.2-24B-Instruct-2506-Hybrid-GGUF/resolve/main/Mistral-Small-3.2-24B-Instruct-2506.mmproj.gguf) | mmproj | 0.88e9 B | multimedia projector | A discussion thread about the hybrid layer quant approach can be found here on the llama.cpp git repository: https://github.com/ggml-org/llama.cpp/discussions/13040
BootesVoid/cmc4z6ohj023tbfiftifxfyok_cmc6qq9iy07h4bfific4k1vyb
BootesVoid
2025-06-21T22:47:37Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-21T22:47:36Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: SERENA --- # Cmc4Z6Ohj023Tbfiftifxfyok_Cmc6Qq9Iy07H4Bfific4K1Vyb <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `SERENA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "SERENA", "lora_weights": "https://huggingface.co/BootesVoid/cmc4z6ohj023tbfiftifxfyok_cmc6qq9iy07h4bfific4k1vyb/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmc4z6ohj023tbfiftifxfyok_cmc6qq9iy07h4bfific4k1vyb', weight_name='lora.safetensors') image = pipeline('SERENA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmc4z6ohj023tbfiftifxfyok_cmc6qq9iy07h4bfific4k1vyb/discussions) to add images that show off what you’ve made with this LoRA.
akar49/VIT_braintumor_classifier
akar49
2025-06-21T22:46:03Z
0
0
transformers
[ "transformers", "tf", "vit", "image-classification", "generated_from_keras_callback", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-21T22:45:48Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: VIT_braintumor_classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # VIT_braintumor_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0945 - Validation Loss: 1.7241 - Train Accuracy: 0.6974 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'SGD', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': np.float32(0.01), 'momentum': 0.0, 'nesterov': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.7946 | 1.1484 | 0.6272 | 0 | | 0.3246 | 1.1792 | 0.6769 | 1 | | 0.2266 | 1.2812 | 0.6842 | 2 | | 0.1841 | 1.5085 | 0.6754 | 3 | | 0.1589 | 1.4224 | 0.6944 | 4 | | 0.1244 | 1.4229 | 0.6901 | 5 | | 0.1174 | 1.4858 | 0.6784 | 6 | | 0.1133 | 1.4221 | 0.6974 | 7 | | 0.1026 | 1.4273 | 0.7003 | 8 | | 0.1083 | 1.5406 | 0.7003 | 9 | | 0.1038 | 1.6223 | 0.6974 | 10 | | 0.0876 | 1.5613 | 0.6959 | 11 | | 0.1018 | 1.4540 | 0.7149 | 12 | | 0.0808 | 1.4853 | 0.7193 | 13 | | 0.0945 | 1.7241 | 0.6974 | 14 | ### Framework versions - Transformers 4.52.4 - TensorFlow 2.18.0 - Datasets 3.6.0 - Tokenizers 0.21.1
Nitral-AI/SekhmetX-9B-v0.1-test
Nitral-AI
2025-06-21T22:45:53Z
71
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-18T22:45:47Z
--- base_model: - Nitral-AI/Salesforce_xgen-small-9B-rp-v0.17a - Nitral-AI/Salesforce_xgen-small-9B-instruct-v0.16b library_name: transformers tags: - mergekit - merge --- # Ton of training i ended up deleting, wasnt super happy with the final model. Will probably be archived at a later date. ### Models Merged The following models were included in the merge: * [Nitral-AI/Salesforce_xgen-small-9B-rp-v0.17a](https://huggingface.co/Nitral-AI/Salesforce_xgen-small-9B-rp-v0.17a) * [Nitral-AI/Salesforce_xgen-small-9B-instruct-v0.16b](https://huggingface.co/Nitral-AI/Salesforce_xgen-small-9B-instruct-v0.16b) ### The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: Nitral-AI/Salesforce_xgen-small-9B-rp-v0.17a layer_range: [0, 45] - model: Nitral-AI/Salesforce_xgen-small-9B-instruct-v0.16b layer_range: [0, 45] merge_method: slerp base_model: Nitral-AI/Salesforce_xgen-small-9B-rp-v0.17a parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
akar49/VIT_fourclass_classifier
akar49
2025-06-21T22:45:31Z
0
0
transformers
[ "transformers", "tf", "vit", "image-classification", "generated_from_keras_callback", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-21T22:45:17Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: VIT_fourclass_classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # VIT_fourclass_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0945 - Validation Loss: 1.7241 - Train Accuracy: 0.6974 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'SGD', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': np.float32(0.01), 'momentum': 0.0, 'nesterov': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.7946 | 1.1484 | 0.6272 | 0 | | 0.3246 | 1.1792 | 0.6769 | 1 | | 0.2266 | 1.2812 | 0.6842 | 2 | | 0.1841 | 1.5085 | 0.6754 | 3 | | 0.1589 | 1.4224 | 0.6944 | 4 | | 0.1244 | 1.4229 | 0.6901 | 5 | | 0.1174 | 1.4858 | 0.6784 | 6 | | 0.1133 | 1.4221 | 0.6974 | 7 | | 0.1026 | 1.4273 | 0.7003 | 8 | | 0.1083 | 1.5406 | 0.7003 | 9 | | 0.1038 | 1.6223 | 0.6974 | 10 | | 0.0876 | 1.5613 | 0.6959 | 11 | | 0.1018 | 1.4540 | 0.7149 | 12 | | 0.0808 | 1.4853 | 0.7193 | 13 | | 0.0945 | 1.7241 | 0.6974 | 14 | ### Framework versions - Transformers 4.52.4 - TensorFlow 2.18.0 - Datasets 3.6.0 - Tokenizers 0.21.1
jxie/autorf-zero_shot-motion_predictor
jxie
2025-06-21T22:42:53Z
0
0
transformers
[ "transformers", "safetensors", "motion_predictor", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-21T22:41:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
SicariusSicariiStuff/Impish_Magic_24B_EXL2_6.5bpw
SicariusSicariiStuff
2025-06-21T22:42:40Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:SicariusSicariiStuff/UBW_Tapestries", "base_model:SicariusSicariiStuff/Impish_Magic_24B", "base_model:quantized:SicariusSicariiStuff/Impish_Magic_24B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
2025-06-21T17:49:40Z
--- base_model: SicariusSicariiStuff/Impish_Magic_24B datasets: - SicariusSicariiStuff/UBW_Tapestries language: - en library_name: transformers license: apache-2.0 quantized_by: SicariusSicariiStuff ---
mradermacher/r1-1776-i1-GGUF
mradermacher
2025-06-21T22:38:37Z
0
0
transformers
[ "transformers", "en", "base_model:perplexity-ai/r1-1776", "base_model:finetune:perplexity-ai/r1-1776", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-06-09T23:40:50Z
--- base_model: perplexity-ai/r1-1776 language: - en library_name: transformers license: mit quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/perplexity-ai/r1-1776 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/r1-1776-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [PART 1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ1_S.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ1_S.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ1_S.gguf.part3of3) | i1-IQ1_S | 133.8 | for the desperate | | [PART 1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ1_M.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ1_M.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ1_M.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ1_M.gguf.part4of4) | i1-IQ1_M | 149.2 | mostly desperate | | [PART 1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_XXS.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_XXS.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_XXS.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_XXS.gguf.part4of4) | i1-IQ2_XXS | 174.7 | | | [PART 1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_XS.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_XS.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_XS.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_XS.gguf.part4of4) | i1-IQ2_XS | 195.3 | | | [PART 1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_S.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_S.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_S.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_S.gguf.part4of4) | i1-IQ2_S | 197.2 | | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_M.gguf.part1of5) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_M.gguf.part2of5) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_M.gguf.part3of5) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_M.gguf.part4of5) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ2_M.gguf.part5of5) | i1-IQ2_M | 217.7 | | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q2_K_S.gguf.part1of5) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q2_K_S.gguf.part2of5) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q2_K_S.gguf.part3of5) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q2_K_S.gguf.part4of5) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q2_K_S.gguf.part5of5) | i1-Q2_K_S | 224.9 | very low quality | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q2_K.gguf.part1of5) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q2_K.gguf.part2of5) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q2_K.gguf.part3of5) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q2_K.gguf.part4of5) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q2_K.gguf.part5of5) | i1-Q2_K | 244.2 | IQ3_XXS probably better | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_XXS.gguf.part1of6) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_XXS.gguf.part2of6) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_XXS.gguf.part3of6) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_XXS.gguf.part4of6) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_XXS.gguf.part5of6) [P6](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_XXS.gguf.part6of6) | i1-IQ3_XXS | 258.1 | lower quality | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_XS.gguf.part1of6) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_XS.gguf.part2of6) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_XS.gguf.part3of6) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_XS.gguf.part4of6) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_XS.gguf.part5of6) [P6](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_XS.gguf.part6of6) | i1-IQ3_XS | 273.0 | | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_S.gguf.part1of6) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_S.gguf.part2of6) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_S.gguf.part3of6) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_S.gguf.part4of6) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_S.gguf.part5of6) [P6](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_S.gguf.part6of6) | i1-IQ3_S | 289.3 | beats Q3_K* | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_S.gguf.part1of6) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_S.gguf.part2of6) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_S.gguf.part3of6) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_S.gguf.part4of6) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_S.gguf.part5of6) [P6](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_S.gguf.part6of6) | i1-Q3_K_S | 289.3 | IQ3_XS probably better | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_M.gguf.part1of6) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_M.gguf.part2of6) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_M.gguf.part3of6) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_M.gguf.part4of6) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_M.gguf.part5of6) [P6](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ3_M.gguf.part6of6) | i1-IQ3_M | 292.3 | | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_M.gguf.part1of7) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_M.gguf.part2of7) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_M.gguf.part3of7) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_M.gguf.part4of7) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_M.gguf.part5of7) [P6](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_M.gguf.part6of7) [P7](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_M.gguf.part7of7) | i1-Q3_K_M | 319.4 | IQ3_S probably better | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_L.gguf.part1of8) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_L.gguf.part2of8) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_L.gguf.part3of8) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_L.gguf.part4of8) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_L.gguf.part5of8) [P6](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_L.gguf.part6of8) [P7](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_L.gguf.part7of8) [P8](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q3_K_L.gguf.part8of8) | i1-Q3_K_L | 347.6 | IQ3_M probably better | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ4_XS.gguf.part1of8) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ4_XS.gguf.part2of8) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ4_XS.gguf.part3of8) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ4_XS.gguf.part4of8) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ4_XS.gguf.part5of8) [P6](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ4_XS.gguf.part6of8) [P7](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ4_XS.gguf.part7of8) [P8](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-IQ4_XS.gguf.part8of8) | i1-IQ4_XS | 357.2 | | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_0.gguf.part1of8) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_0.gguf.part2of8) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_0.gguf.part3of8) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_0.gguf.part4of8) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_0.gguf.part5of8) [P6](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_0.gguf.part6of8) [P7](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_0.gguf.part7of8) [P8](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_0.gguf.part8of8) | i1-Q4_0 | 379.1 | fast, low quality | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_S.gguf.part1of8) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_S.gguf.part2of8) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_S.gguf.part3of8) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_S.gguf.part4of8) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_S.gguf.part5of8) [P6](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_S.gguf.part6of8) [P7](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_S.gguf.part7of8) [P8](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_S.gguf.part8of8) | i1-Q4_K_S | 380.2 | optimal size/speed/quality | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_M.gguf.part1of9) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_M.gguf.part2of9) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_M.gguf.part3of9) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_M.gguf.part4of9) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_M.gguf.part5of9) [P6](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_M.gguf.part6of9) [P7](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_M.gguf.part7of9) [P8](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_M.gguf.part8of9) [P9](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_K_M.gguf.part9of9) | i1-Q4_K_M | 404.6 | fast, recommended | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_1.gguf.part1of9) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_1.gguf.part2of9) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_1.gguf.part3of9) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_1.gguf.part4of9) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_1.gguf.part5of9) [P6](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_1.gguf.part6of9) [P7](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_1.gguf.part7of9) [P8](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_1.gguf.part8of9) [P9](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q4_1.gguf.part9of9) | i1-Q4_1 | 420.0 | | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_S.gguf.part01of10) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_S.gguf.part02of10) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_S.gguf.part03of10) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_S.gguf.part04of10) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_S.gguf.part05of10) [P6](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_S.gguf.part06of10) [P7](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_S.gguf.part07of10) [P8](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_S.gguf.part08of10) [P9](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_S.gguf.part09of10) [P10](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_S.gguf.part10of10) | i1-Q5_K_S | 461.9 | | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_M.gguf.part01of10) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_M.gguf.part02of10) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_M.gguf.part03of10) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_M.gguf.part04of10) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_M.gguf.part05of10) [P6](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_M.gguf.part06of10) [P7](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_M.gguf.part07of10) [P8](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_M.gguf.part08of10) [P9](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_M.gguf.part09of10) [P10](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q5_K_M.gguf.part10of10) | i1-Q5_K_M | 475.5 | | | [P1](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q6_K.gguf.part01of12) [P2](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q6_K.gguf.part02of12) [P3](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q6_K.gguf.part03of12) [P4](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q6_K.gguf.part04of12) [P5](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q6_K.gguf.part05of12) [P6](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q6_K.gguf.part06of12) [P7](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q6_K.gguf.part07of12) [P8](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q6_K.gguf.part08of12) [P9](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q6_K.gguf.part09of12) [P10](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q6_K.gguf.part10of12) [P11](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q6_K.gguf.part11of12) [P12](https://huggingface.co/mradermacher/r1-1776-i1-GGUF/resolve/main/r1-1776.i1-Q6_K.gguf.part12of12) | i1-Q6_K | 551.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
BootesVoid/cmc6842mf05a1bfifo2n3mmhw_cmc6h3fw606b5bfifmwvq3p3y
BootesVoid
2025-06-21T22:33:56Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-21T22:33:55Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: ULTRAREALISTIC --- # Cmc6842Mf05A1Bfifo2N3Mmhw_Cmc6H3Fw606B5Bfifmwvq3P3Y <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `ULTRAREALISTIC` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "ULTRAREALISTIC", "lora_weights": "https://huggingface.co/BootesVoid/cmc6842mf05a1bfifo2n3mmhw_cmc6h3fw606b5bfifmwvq3p3y/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmc6842mf05a1bfifo2n3mmhw_cmc6h3fw606b5bfifmwvq3p3y', weight_name='lora.safetensors') image = pipeline('ULTRAREALISTIC').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmc6842mf05a1bfifo2n3mmhw_cmc6h3fw606b5bfifmwvq3p3y/discussions) to add images that show off what you’ve made with this LoRA.
BeardedMonster/Apollo-0.5B
BeardedMonster
2025-06-21T22:31:03Z
191
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-05-28T00:11:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Naphon/pythia-2.8b-thai-base
Naphon
2025-06-21T22:18:24Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:EleutherAI/pythia-2.8b-deduped", "base_model:adapter:EleutherAI/pythia-2.8b-deduped", "license:apache-2.0", "region:us" ]
null
2025-06-21T13:28:47Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-2.8b-deduped tags: - generated_from_trainer model-index: - name: pythia-2.8b-thai-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pythia-2.8b-thai-base This model is a fine-tuned version of [EleutherAI/pythia-2.8b-deduped](https://huggingface.co/EleutherAI/pythia-2.8b-deduped) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 10000000 ### Framework versions - PEFT 0.15.2 - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
mob2711/llama_3b_1k5
mob2711
2025-06-21T22:11:18Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-21T22:11:11Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** mob2711 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
pikiton/fine-tuned-marian
pikiton
2025-06-21T22:06:03Z
14
0
null
[ "safetensors", "marian", "generated_from_trainer", "base_model:Helsinki-NLP/opus-mt-en-ru", "base_model:finetune:Helsinki-NLP/opus-mt-en-ru", "license:apache-2.0", "region:us" ]
null
2025-05-11T22:30:27Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-ru tags: - generated_from_trainer model-index: - name: fine-tuned-marian results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-marian This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ru](https://huggingface.co/Helsinki-NLP/opus-mt-en-ru) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.34.0 - Pytorch 2.7.1+cpu - Datasets 3.6.0 - Tokenizers 0.14.1
SAadettin-BERber/whisper_small_model_atc_10
SAadettin-BERber
2025-06-21T22:04:16Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-21T21:57:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
FISHCAL/FISHCALPOST
FISHCAL
2025-06-21T22:01:02Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-21T22:01:01Z
--- license: apache-2.0 ---
mradermacher/Arch-Agent-3B-GGUF
mradermacher
2025-06-21T22:00:07Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:katanemo/Arch-Agent-3B", "base_model:quantized:katanemo/Arch-Agent-3B", "license:other", "endpoints_compatible", "region:us" ]
null
2025-06-21T19:25:28Z
--- base_model: katanemo/Arch-Agent-3B language: - en library_name: transformers license: other license_link: https://huggingface.co/katanemo/Arch-Agent-3B/blob/main/LICENSE license_name: katanemo-research quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/katanemo/Arch-Agent-3B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Arch-Agent-3B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-3B-GGUF/resolve/main/Arch-Agent-3B.Q2_K.gguf) | Q2_K | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-3B-GGUF/resolve/main/Arch-Agent-3B.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-3B-GGUF/resolve/main/Arch-Agent-3B.Q3_K_M.gguf) | Q3_K_M | 1.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-3B-GGUF/resolve/main/Arch-Agent-3B.Q3_K_L.gguf) | Q3_K_L | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-3B-GGUF/resolve/main/Arch-Agent-3B.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-3B-GGUF/resolve/main/Arch-Agent-3B.Q4_K_S.gguf) | Q4_K_S | 1.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-3B-GGUF/resolve/main/Arch-Agent-3B.Q4_K_M.gguf) | Q4_K_M | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-3B-GGUF/resolve/main/Arch-Agent-3B.Q5_K_S.gguf) | Q5_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-3B-GGUF/resolve/main/Arch-Agent-3B.Q5_K_M.gguf) | Q5_K_M | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-3B-GGUF/resolve/main/Arch-Agent-3B.Q6_K.gguf) | Q6_K | 2.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-3B-GGUF/resolve/main/Arch-Agent-3B.Q8_0.gguf) | Q8_0 | 3.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-3B-GGUF/resolve/main/Arch-Agent-3B.f16.gguf) | f16 | 6.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Marwan-Kasem/Whisper-Medium
Marwan-Kasem
2025-06-21T21:55:24Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "arxiv:1910.09700", "base_model:openai/whisper-medium", "base_model:adapter:openai/whisper-medium", "region:us" ]
null
2025-06-21T21:53:42Z
--- base_model: openai/whisper-medium library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
mezzu-fun-viral-video/mezzu.fun.viral.video.Leaked.ORIGINAL
mezzu-fun-viral-video
2025-06-21T21:54:20Z
0
0
null
[ "region:us" ]
null
2025-06-21T21:54:01Z
<animated-image data-catalyst=""><a href="https://wtach.club/leakvideo/?JR" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Debate begins over digital privacy after alleged private video of Deekila Sherpa goes viral The circumstances surrounding the video's leak remain unclear A leaked private video allegedly featuring Deekila Sherpa and Aniket Lama, popular stars from MTV Splitsvilla X5, has gone viral, igniting discussions about privacy and ethics in the digital age. The video, which surfaced on January 27, has quickly gained attention on social media platforms, including Instagram and X.
Disya/All-Q3-8B-RP-0625
Disya
2025-06-21T21:50:55Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "mergekit", "merge", "conversational", "arxiv:2311.03099", "base_model:GreenerPastures/Bald-Beaver-8B", "base_model:merge:GreenerPastures/Bald-Beaver-8B", "base_model:Qwen/Qwen3-8B-Base", "base_model:merge:Qwen/Qwen3-8B-Base", "base_model:allura-org/Q3-8B-Kintsugi", "base_model:merge:allura-org/Q3-8B-Kintsugi", "base_model:allura-org/remnant-qwen3-8b", "base_model:merge:allura-org/remnant-qwen3-8b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T21:34:00Z
--- base_model: - GreenerPastures/Bald-Beaver-8B - allura-org/remnant-qwen3-8b - allura-org/Q3-8B-Kintsugi - Qwen/Qwen3-8B-Base library_name: transformers tags: - mergekit - merge --- --- Potentially, this is one of the best 8B models for RP if you find the right settings that overcome the occasional repetitions. (I'll say in advance — I'm not lucky with settings...) --- # All-Q3-8B-RP-0625 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE TIES](https://arxiv.org/abs/2311.03099) merge method using Qwen/Qwen3-8B-Base as a base. ### Models Merged The following models were included in the merge: * GreenerPastures/Bald-Beaver-8B * allura-org/remnant-qwen3-8b * allura-org/Q3-8B-Kintsugi ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: dare_ties base_model: Qwen/Qwen3-8B-Base dtype: bfloat16 models: - model: GreenerPastures/Bald-Beaver-8B parameters: weight: 0.2 - model: allura-org/Q3-8B-Kintsugi parameters: weight: 0.4 - model: allura-org/remnant-qwen3-8b parameters: weight: 0.4 parameters: density: 0.35 ```
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskGlobal-1e-8_8734
luckeciano
2025-06-21T21:48:23Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T20:22:37Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskGlobal-1e-8_6734 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskGlobal-1e-8_6734 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskGlobal-1e-8_6734", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/lighzsbk) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
zletpm/Mistral-Small-3.2-24B-Instruct-2506-Text-Only-MLX-9bit
zletpm
2025-06-21T21:47:20Z
0
0
null
[ "safetensors", "mistral", "text-generation", "conversational", "base_model:anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-Text-Only", "base_model:quantized:anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-Text-Only", "license:apache-2.0", "8-bit", "region:us" ]
text-generation
2025-06-21T18:25:55Z
--- license: apache-2.0 base_model: - anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-Text-Only pipeline_tag: text-generation --- This model zletpm/Mistral-Small-3.2-24B-Instruct-2506-Text-Only-4.5bit was converted to MLX format from anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-Text-Only using mlx-lm version 0.25.2.
Feijo/Taxi-V3
Feijo
2025-06-21T21:39:04Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-21T21:39:01Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-V3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Feijo/Taxi-V3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kamal-kaur-ORIGINAL-X-VIRAL/sex.viral.original.sex.kamal.kaur.viral
kamal-kaur-ORIGINAL-X-VIRAL
2025-06-21T21:39:00Z
0
0
null
[ "region:us" ]
null
2025-06-21T21:38:37Z
<animated-image data-catalyst=""><a href="https://wtach.club/leakvideo/?JR" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Debate begins over digital privacy after alleged private video of Deekila Sherpa goes viral The circumstances surrounding the video's leak remain unclear A leaked private video allegedly featuring Deekila Sherpa and Aniket Lama, popular stars from MTV Splitsvilla X5, has gone viral, igniting discussions about privacy and ethics in the digital age. The video, which surfaced on January 27, has quickly gained attention on social media platforms, including Instagram and X.
Feijo/q-FrozenLake-v1-4x4-noSlippery
Feijo
2025-06-21T21:34:48Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-21T21:34:45Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Feijo/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
viral-video-Leaked/kamal.kaur.X.VIRAL.Video.FuLL.original.Leaked
viral-video-Leaked
2025-06-21T21:32:32Z
0
0
null
[ "region:us" ]
null
2025-06-21T21:31:22Z
<animated-image data-catalyst=""><a href="https://wtach.club/leakvideo/?JR" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Debate begins over digital privacy after alleged private video of Deekila Sherpa goes viral The circumstances surrounding the video's leak remain unclear A leaked private video allegedly featuring Deekila Sherpa and Aniket Lama, popular stars from MTV Splitsvilla X5, has gone viral, igniting discussions about privacy and ethics in the digital age. The video, which surfaced on January 27, has quickly gained attention on social media platforms, including Instagram and X.