Unnamed: 0
int64
0
40.3k
problem
stringlengths
10
5.15k
ground_truth
stringlengths
1
1.22k
solved_percentage
float64
0
100
17,700
Let $\{a_n\}$ be an arithmetic sequence, and $S_n$ be the sum of its first $n$ terms, given that $S_5 < S_6$, $S_6=S_7 > S_8$, then the correct conclusion(s) is/are \_\_\_\_\_\_ $(1) d < 0$ $(2) a_7=0$ $(3) S_9 > S_5$ $(4) S_6$ and $S_7$ are both the maximum value of $S_n$.
(1)(2)(4)
0
17,701
Find the greatest positive integer $A$ with the following property: For every permutation of $\{1001,1002,...,2000\}$ , the sum of some ten consecutive terms is great than or equal to $A$ .
10055
88.28125
17,702
A $3$ by $3$ determinant has three entries equal to $2$ , three entries equal to $5$ , and three entries equal to $8$ . Find the maximum possible value of the determinant.
405
92.1875
17,703
Simplify the expression $(-\frac{1}{343})^{-2/3}$.
49
85.9375
17,704
Evaluate the expression $\frac{\sqrt{3}\tan 12^\circ - 3}{\sin 12^\circ (4\cos^2 12^\circ - 2)}=\_\_\_\_\_\_\_\_.$
-4\sqrt{3}
21.875
17,705
Given that the random variable $X$ follows a normal distribution $N(2, \sigma^2)$, and $P(X \leq 4) = 0.84$, determine the value of $P(X < 0)$.
0.16
92.96875
17,706
At the end of a professional bowling tournament, the top 6 bowlers have a playoff. First #6 bowls #5. The loser receives $6^{th}$ prize and the winner bowls #4 in another game. The loser of this game receives $5^{th}$ prize and the winner bowls #3. The loser of this game receives $4^{th}$ prize and the winner bowls #2. The loser of this game receives $3^{rd}$ prize, and the winner bowls #1. The winner of this game gets 1st prize and the loser gets 2nd prize. In how many orders can bowlers #1 through #6 receive the prizes?
32
86.71875
17,707
Jeff decides to play with a Magic 8 Ball. Each time he asks it a question, it has a 1/3 chance of giving him a positive answer. If he asks it 7 questions, what is the probability that it gives him exactly 3 positive answers?
\frac{560}{2187}
6.25
17,708
Given $(1-2x)^{2017} = a_0 + a_1(x-1) + a_2(x-1)^2 + \ldots + a_{2016}(x-1)^{2016} + a_{2017}(x-1)^{2017}$ ($x \in \mathbb{R}$), find the value of $a_1 - 2a_2 + 3a_3 - 4a_4 + \ldots - 2016a_{2016} + 2017a_{2017}$.
-4034
58.59375
17,709
Calculate: 1. $(2\frac{3}{5})^{0} + 2^{-2}\cdot(2\frac{1}{4})^{-\frac{1}{2}} + (\frac{25}{36})^{0.5} + \sqrt{(-2)^{2}}$; 2. $\frac{1}{2}\log\frac{32}{49} - \frac{4}{3}\log\sqrt{8} + \log\sqrt{245}$.
\frac{1}{2}
83.59375
17,710
For a permutation $\pi$ of the integers from 1 to 10, define \[ S(\pi) = \sum_{i=1}^{9} (\pi(i) - \pi(i+1))\cdot (4 + \pi(i) + \pi(i+1)), \] where $\pi (i)$ denotes the $i$ th element of the permutation. Suppose that $M$ is the maximum possible value of $S(\pi)$ over all permutations $\pi$ of the integers from 1 to 10. Determine the number of permutations $\pi$ for which $S(\pi) = M$ . *Ray Li*
40320
53.90625
17,711
Given that $60\%$ of the high school students like ice skating, $50\%$ like skiing, and $70\%$ like either ice skating or skiing, calculate the probability that a randomly selected student who likes skiing also likes ice skating.
0.8
1.5625
17,712
The minimum distance from any integer-coordinate point on the plane to the line \( y = \frac{5}{3} x + \frac{4}{5} \) is to be determined.
\frac{\sqrt{34}}{85}
17.1875
17,713
Given a sequence $\{a_{n}\}$ that satisfies the equation: ${a_{n+1}}+{({-1})^n}{a_n}=3n-1$ ($n∈{N^*}$), calculate the sum of the first $60$ terms of the sequence $\{a_{n}\}$.
2760
8.59375
17,714
Given the sample contains 5 individuals with values a, 0, 1, 2, 3, and the average value of the sample is 1, calculate the standard deviation of the sample.
\sqrt{2}
96.875
17,715
A department dispatches 4 researchers to 3 schools to investigate the current status of the senior year review and preparation for exams, requiring at least one researcher to be sent to each school. Calculate the number of different distribution schemes.
36
57.8125
17,716
In the Cartesian coordinate system $xOy$, it is known that the line $$ \begin{cases} x=-\frac{3}{2}+\frac{\sqrt{2}}{2}l\\ y=\frac{\sqrt{2}}{2}l \end{cases} $$ (with $l$ as the parameter) intersects with the curve $$ \begin{cases} x=\frac{1}{8}t^{2}\\ y=t \end{cases} $$ (with $t$ as the parameter) at points $A$ and $B$. Find the length of the segment $AB$.
4\sqrt{2}
74.21875
17,717
Let \(a,\ b,\ c,\ d\) be real numbers such that \(a + b + c + d = 10\) and \[ab + ac + ad + bc + bd + cd = 20.\] Find the largest possible value of \(d\).
\frac{5 + \sqrt{105}}{2}
28.125
17,718
Given the ellipse $G$: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ with an eccentricity of $\frac{\sqrt{6}}{3}$, and its right focus at $(2\sqrt{2}, 0)$. A line $l$ with a slope of $1$ intersects the ellipse $G$ at points $A$ and $B$. An isosceles triangle is formed with $AB$ as the base and $P$ $(-3, 2)$ as the apex. (1) Find the equation of the ellipse $G$; (2) Calculate the area of $\triangle PAB$.
\frac{9}{2}
18.75
17,719
Find the remainder when $5^{5^{5^5}}$ is divided by 500.
125
90.625
17,720
Find the minimum value of the expression \((\sqrt{2(1+\cos 2x)} - \sqrt{3-\sqrt{2}} \sin x + 1) \cdot (3 + 2\sqrt{7-\sqrt{2}} \cos y - \cos 2y)\). If the answer is not an integer, round it to the nearest whole number.
-9
0.78125
17,721
In the rectangular coordinate system $(xOy)$, point $P(1, 2)$ is on a line $l$ with a slant angle of $\alpha$. Establish a polar coordinate system with the coordinate origin $O$ as the pole and the positive semi-axis of the $x$-axis as the polar axis. The equation of curve $C$ is $\rho = 6 \sin \theta$. (1) Write the parametric equation of $l$ and the rectangular coordinate equation of $C$; (2) Suppose $l$ intersects $C$ at points $A$ and $B$. Find the minimum value of $\frac{1}{|PA|} + \frac{1}{|PB|}$.
\frac{2 \sqrt{7}}{7}
55.46875
17,722
A rectangle PQRS has a perimeter of 24 meters and side PQ is fixed at 7 meters. Find the minimum diagonal PR of the rectangle.
\sqrt{74}
35.9375
17,723
In $\triangle ABC$, where $C=60 ^{\circ}$, $AB= \sqrt {3}$, and the height from $AB$ is $\frac {4}{3}$, find the value of $AC+BC$.
\sqrt {11}
0
17,724
Calculate the number of seven-digit palindromes where the second digit cannot be odd.
4500
80.46875
17,725
Let $1=d_1<d_2<d_3<\dots<d_k=n$ be the divisors of $n$ . Find all values of $n$ such that $n=d_2^2+d_3^3$ .
68
96.09375
17,726
Given that $\cos α=-\dfrac{4}{5}\left(\dfrac{π}{2}<α<π\right)$, find $\cos\left(\dfrac{π}{6}-α\right)$ and $\cos\left(\dfrac{π}{6}+α\right)$.
-\dfrac{3+4\sqrt{3}}{10}
1.5625
17,727
Let $A = (-4, 0),$ $B=(-3,2),$ $C=(3,2),$ and $D=(4,0).$ Suppose that point $P$ satisfies \[PA + PD = PB + PC = 10.\]Find the $y-$coordinate of $P,$ and express it in its simplest form.
\frac{6}{7}
1.5625
17,728
Given positive integers \(a\) and \(b\) are each less than 10, find the smallest possible value for \(2 \cdot a - a \cdot b\).
-63
89.84375
17,729
Given that $0 < α < \dfrac{\pi }{2}$, $-\dfrac{\pi }{2} < β < 0$, $\cos \left( \dfrac{\pi }{4}+α \right)=\dfrac{1}{3}$, and $\cos \left( \dfrac{\pi }{4}-\dfrac{\beta }{2} \right)=\dfrac{\sqrt{3}}{3}$, calculate the value of $\cos \left( α +\dfrac{\beta }{2} \right)$.
\dfrac{5\sqrt{3}}{9}
74.21875
17,730
The market demand for a certain product over the next four years forms a sequence $\left\{a_{n}\right\}(n=1,2,3,4)$. It is predicted that the percentage increase in annual demand from the first year to the second year is $p_{1}$, from the second year to the third year is $p_{2}$, and from the third year to the fourth year is $p_{3}$, with $p_{1} + p_{2} + p_{3} = 1$. Given the following values: $\frac{2}{7}$, $\frac{2}{5}$, $\frac{1}{3}$, $\frac{1}{2}$, and $\frac{2}{3}$, which can potentially be the average annual growth rate of the market demand for these four years?
$\frac{1}{3}$
0
17,731
In the Cartesian coordinate system $xOy$, the sum of distances from point $P$ to the centers of two circles $C_1$ and $C_2$ is equal to 4, where $C_1: x^2+y^2-2\sqrt{3}y+2=0$, $C_2: x^2+y^2+2\sqrt{3}y-3=0$. Let the trajectory of point $P$ be $C$. (1) Find the equation of $C$; (2) Suppose the line $y=kx+1$ intersects $C$ at points $A$ and $B$. What is the value of $k$ when $\overrightarrow{OA} \perp \overrightarrow{OB}$? What is the value of $|\overrightarrow{AB}|$ at this time?
\frac{4\sqrt{65}}{17}
43.75
17,732
Isabella took 9 math tests and received 9 different scores, each an integer between 88 and 100, inclusive. After each test, she noticed that the average of her test scores was always an integer. Her score on the ninth test was 93. What was her score on the eighth test?
96
21.09375
17,733
Given that F<sub>1</sub>(-c, 0) and F<sub>2</sub>(c, 0) are the left and right foci of the ellipse G: $$\frac{x^2}{a^2}+ \frac{y^2}{4}=1 \quad (a>0),$$ point M is a point on the ellipse, and MF<sub>2</sub> is perpendicular to F<sub>1</sub>F<sub>2</sub>, with |MF<sub>1</sub>|-|MF<sub>2</sub>|= $$\frac{4}{3}a.$$ (1) Find the equation of ellipse G; (2) If a line l with a slope of 1 intersects with ellipse G at points A and B, and an isosceles triangle is formed using AB as the base and vertex P(-3, 2), find the area of △PAB.
\frac{9}{2}
2.34375
17,734
Let $\{a_{n}\}$ be an arithmetic sequence with a common difference of $d$, and $d \gt 1$. Define $b_{n}=\frac{{n}^{2}+n}{{a}_{n}}$, and let $S_{n}$ and $T_{n}$ be the sums of the first $n$ terms of the sequences $\{a_{n}\}$ and $\{b_{n}\}$, respectively. $(1)$ If $3a_{2}=3a_{1}+a_{3}$ and $S_{3}+T_{3}=21$, find the general formula for $\{a_{n}\}$. $(2)$ If $\{b_{n}\}$ is an arithmetic sequence and $S_{99}-T_{99}=99$, find $d$.
\frac{51}{50}
10.9375
17,735
How many integers $n$ satisfy $(n+2)(n-8) \le 0$?
11
100
17,736
For rational numbers $a$ and $b$, define the operation "$\otimes$" as $a \otimes b = ab - a - b - 2$. (1) Calculate the value of $(-2) \otimes 3$; (2) Compare the size of $4 \otimes (-2)$ and $(-2) \otimes 4$.
-12
38.28125
17,737
In the Cartesian coordinate system $xOy$, the parametric equation of line $l$ is $$ \begin{cases} x = -1 + \frac {\sqrt {2}}{2}t \\ y = 1 + \frac {\sqrt {2}}{2}t \end{cases} (t \text{ is the parameter}), $$ and the equation of circle $C$ is $(x-2)^{2} + (y-1)^{2} = 5$. Establish a polar coordinate system with the origin $O$ as the pole and the positive $x$-axis as the polar axis. (Ⅰ) Find the polar equations of line $l$ and circle $C$. (Ⅱ) If line $l$ intersects circle $C$ at points $A$ and $B$, find the value of $\cos ∠AOB$.
\frac{3\sqrt{10}}{10}
23.4375
17,738
Given the function $f(x) = x^3 - 3x - 1$, if for any $x_1$, $x_2$ in the interval $[-3,2]$, it holds that $|f(x_1) - f(x_2)| \leq t$, then the minimum value of the real number $t$ is ______.
20
97.65625
17,739
The polynomial \( f(x) \) satisfies the equation \( f(x) - f(x-2) = (2x-1)^{2} \) for all \( x \). Find the sum of the coefficients of \( x^{2} \) and \( x \) in \( f(x) \).
\frac{5}{6}
75.78125
17,740
In the diagram, each of four identical circles touch three others. The circumference of each circle is 48. Calculate the perimeter of the shaded region formed within the central area where all four circles touch. Assume the circles are arranged symmetrically like petals of a flower.
48
53.125
17,741
Sophia's age is $S$ years, which is thrice the combined ages of her two children. Her age $M$ years ago was four times the sum of their ages at that time. Find the value of $S/M$.
21
77.34375
17,742
In an ${8}$ × ${8}$ squares chart , we dig out $n$ squares , then we cannot cut a "T"shaped-5-squares out of the surplus chart . Then find the mininum value of $n$ .
32
45.3125
17,743
If $\sum_{n = 0}^{\infty}\sin^{2n}\theta = 4$, what is the value of $\sin{2\theta}$?
\frac{\sqrt{3}}{2}
75.78125
17,744
In a class of 38 students, we need to randomly select 5 people to participate in a survey. The number of possible selections where student A is chosen but student B is not is ______. (Express the answer numerically)
58905
100
17,745
Given that the vertices of triangle $\triangle ABC$ are $A(3,2)$, the equation of the median on side $AB$ is $x-3y+8=0$, and the equation of the altitude on side $AC$ is $2x-y-9=0$. $(1)$ Find the coordinates of points $B$ and $C$. $(2)$ Find the area of $\triangle ABC$.
\frac{15}{2}
10.15625
17,746
Given that $\tan \alpha = -2$, find the value of the following expressions: $(1) \frac{\sin \alpha - 3 \cos \alpha}{\sin \alpha + \cos \alpha}$ $(2) \frac{1}{\sin \alpha \cdot \cos \alpha}$
-\frac{5}{2}
95.3125
17,747
Two types of steel plates need to be cut into three sizes $A$, $B$, and $C$. The number of each size that can be obtained from each type of steel plate is shown in the table: \begin{tabular}{|l|c|c|c|} \hline & Size $A$ & Size $B$ & Size $C$ \\ \hline First type of steel plate & 2 & 1 & 1 \\ \hline Second type of steel plate & 1 & 2 & 3 \\ \hline \end{tabular} If we need 15 pieces of size $A$, 18 pieces of size $B$, and 27 pieces of size $C$, find the minimum number of plates $m$ and $n$ of the two types required, so that $m + n$ is minimized.
12
69.53125
17,748
$n$ coins are simultaneously flipped. The probability that two or fewer of them show tails is $\frac{1}{4}$. Find $n$.
n = 5
31.25
17,749
It is known that the probabilities of person A and person B hitting the target in each shot are $\frac{3}{4}$ and $\frac{4}{5}$, respectively. Person A and person B do not affect each other's chances of hitting the target, and each shot is independent. If they take turns shooting in the order of A, B, A, B, ..., until one person hits the target and stops shooting, then the probability that A and B have shot a total of four times when stopping shooting is ____.
\frac{1}{100}
42.1875
17,750
Given that the area of $\triangle ABC$ is $S$, and $\overrightarrow{BA} \cdot \overrightarrow{CA} = S$. (1) Find the value of $\tan A$; (2) If $B = \frac{\pi}{4}, c = 6$, find the area of $\triangle ABC$, $S$.
12
35.15625
17,751
Let $ABCD$ be a square and $P$ be a point on the shorter arc $AB$ of the circumcircle of the square. Which values can the expression $\frac{AP+BP}{CP+DP}$ take?
\sqrt{2} - 1
1.5625
17,752
Let $m\in R$, the moving straight line passing through the fixed point $A$ with equation $x+my-2=0$ intersects the moving straight line passing through the fixed point $B$ with equation $mx-y+4=0$ at point $P\left(x,y\right)$. Find the maximum value of $|PA|\cdot |PB|$.
10
8.59375
17,753
795. Calculate the double integral \(\iint_{D} x y \, dx \, dy\), where region \(D\) is: 1) A rectangle bounded by the lines \(x=0, x=a\), \(y=0, y=b\); 2) An ellipse \(4x^2 + y^2 \leq 4\); 3) Bounded by the line \(y=x-4\) and the parabola \(y^2=2x\).
90
21.875
17,754
Line $l_{1}$: $mx+2y-3=0$ is parallel to line $l_{2}$: $3x+\left(m-1\right)y+m-6=0$. Find the value of $m$.
-2
34.375
17,755
Given that \(x\) is a real number, find the least possible value of \((x+2)(x+3)(x+4)(x+5)+3033\).
3032
82.03125
17,756
If $x$ is an integer, find the largest integer that always divides the expression \[(12x + 2)(8x + 14)(10x + 10)\] when $x$ is odd.
40
15.625
17,757
There are 10 different televisions, including 3 type A, 3 type B, and 4 type C. Now, 3 televisions are randomly selected from them. If at least two different types are included, calculate the total number of different ways to select them.
114
88.28125
17,758
In the triangle $ABC$ , $| BC | = 1$ and there is exactly one point $D$ on the side $BC$ such that $|DA|^2 = |DB| \cdot |DC|$ . Determine all possible values of the perimeter of the triangle $ABC$ .
\sqrt{2} + 1
6.25
17,759
Using systematic sampling, \\(32\\) people are selected from \\(960\\) for a questionnaire survey. They are randomly numbered from \\(1\\) to \\(960\\), and then grouped. The number drawn by simple random sampling in the first group is \\(9\\). Among the \\(32\\) people selected, those with numbers in the interval \\([1,450]\\) will take questionnaire \\(A\\), those in the interval \\([451,750]\\) will take questionnaire \\(B\\), and the rest will take questionnaire \\(C\\). How many of the selected people will take questionnaire \\(B\\)?
10
87.5
17,760
A psychic is faced with a deck of 36 cards placed face down (four suits, with nine cards of each suit). He names the suit of the top card, after which the card is revealed and shown to him. Then the psychic names the suit of the next card, and so on. The goal is for the psychic to guess as many suits correctly as possible. The backs of the cards are asymmetric, and the psychic can see the orientation in which the top card is placed. The psychic's assistant knows the order of the cards in the deck but cannot change it. However, the assistant can place the backs of each card in one of two orientations. Could the psychic have agreed with the assistant before the assistant knew the order of the cards to ensure guessing the suit of at least a) 19 cards; b) 23 cards? If you have devised a method to guess a number of cards greater than 19, please describe it.
23
53.125
17,761
Given $\sin \alpha - \cos \alpha = \frac{\sqrt{10}}{5}$, $\alpha \in (\pi, 2\pi)$, $(1)$ Find the value of $\sin \alpha + \cos \alpha$; $(2)$ Find the value of $\tan \alpha - \frac{1}{\tan \alpha}$.
-\frac{8}{3}
69.53125
17,762
In the Cartesian coordinate system $xOy$, the sum of distances from point $P$ to points $F_1(0, -\sqrt{3})$ and $F_2(0, \sqrt{3})$ is equal to 4. Let the trajectory of point $P$ be $C$. (1) Find the equation of trajectory $C$; (2) Let line $l: y=kx+1$ intersect curve $C$ at points $A$ and $B$. For what value of $k$ is $|\vec{OA} + \vec{OB}| = |\vec{AB}|$ (where $O$ is the origin)? What is the value of $|\vec{AB}|$ at this time?
\frac{4\sqrt{65}}{17}
25.78125
17,763
Given an isosceles triangle $ABC$ satisfying $AB=AC$, $\sqrt{3}BC=2AB$, and point $D$ is on side $BC$ with $AD=BD$, then the value of $\sin \angle ADB$ is ______.
\frac{2 \sqrt{2}}{3}
28.90625
17,764
A triangle $\triangle ABC$ satisfies $AB = 13$ , $BC = 14$ , and $AC = 15$ . Inside $\triangle ABC$ are three points $X$ , $Y$ , and $Z$ such that: - $Y$ is the centroid of $\triangle ABX$ - $Z$ is the centroid of $\triangle BCY$ - $X$ is the centroid of $\triangle CAZ$ What is the area of $\triangle XYZ$ ? *Proposed by Adam Bertelli*
84/13
0
17,765
Given that $\alpha$ is an angle in the second quadrant, simplify $$\frac { \sqrt {1+2\sin(5\pi-\alpha)\cos(\alpha-\pi)}}{\sin\left(\alpha - \frac {3}{2}\pi \right)- \sqrt {1-\sin^{2}\left( \frac {3}{2}\pi+\alpha\right)}}.$$
-1
81.25
17,766
Find $AB$ in the triangle below. [asy] unitsize(1inch); pair A,B,C; A = (0,0); B = (1,0); C = (0.5,sqrt(3)/2); draw (A--B--C--A,linewidth(0.9)); draw(rightanglemark(B,A,C,3)); label("$A$",A,S); label("$B$",B,S); label("$C$",C,N); label("$18$", (A+C)/2,W); label("$30^\circ$", (0.3,0),N); [/asy]
18\sqrt{3}
6.25
17,767
If the graph of the function $f(x) = (1-x^2)(x^2+ax+b)$ is symmetric about the line $x = -2$, then the maximum value of $f(x)$ is ______.
16
38.28125
17,768
Fisherman Vasya caught several fish. He placed the three largest fish, which constitute 35% of the total weight of the catch, in the refrigerator. He gave the three smallest fish, which constitute 5/13 of the weight of the remaining fish, to the cat. Vasya ate all the rest of the caught fish himself. How many fish did Vasya catch?
10
43.75
17,769
Given \( a \in \mathbb{R} \), the complex number \( z = \frac{(a-i)(1+i)}{i} \), if \( \bar{z} = z \), then find the value of \( a \).
-1
98.4375
17,770
A class is scheduled to have 6 classes in one day: Chinese, Mathematics, Politics, English, PE, and Art. It is required that the Mathematics class is scheduled within the first 3 periods, and the PE class cannot be scheduled in the first period. The number of different scheduling methods is ______. (Answer in digits).
312
3.125
17,771
A five-digit integer is chosen at random from all possible positive five-digit integers. What is the probability that the number's units digit is an even number and less than 6? Express your answer as a common fraction.
\frac{3}{10}
89.84375
17,772
A square with a perimeter of 36 is inscribed in a square with a perimeter of 40. What is the greatest distance between a vertex of the inner square and a vertex of the outer square? A) $\sqrt{101}$ B) $9\sqrt{2}$ C) $8\sqrt{2}$ D) $\sqrt{90}$ E) $10$
9\sqrt{2}
10.9375
17,773
Two teachers and 4 students need to be divided into 2 groups, each consisting of 1 teacher and 2 students. Calculate the number of different arrangements.
12
23.4375
17,774
Cookie Monster now finds a bigger cookie with the boundary described by the equation $x^2 + y^2 - 8 = 2x + 4y$. He wants to know both the radius and the area of this cookie to determine if it's enough for his dessert.
13\pi
57.8125
17,775
Given that the random variable $X$ follows a normal distribution $N(1,4)$, and $P(0 \leq X \leq 2) = 0.68$, find $P(X > 2)$.
0.16
75.78125
17,776
Five identical right-angled triangles can be arranged so that their larger acute angles touch to form a star. It is also possible to form a different star by arranging more of these triangles so that their smaller acute angles touch. How many triangles are needed to form the second star?
20
26.5625
17,777
Given a geometric sequence $\{a_n\}$, where $a_1+a_2+a_3=4$ and $a_2+a_3+a_4=-2$, find the value of $a_3+a_4+a_5+a_6+a_7+a_8$.
\frac{7}{8}
78.125
17,778
Evaluate $\frac{5}{a+b}$ where $a=7$ and $b=3$. A) $\frac{1}{2}$ B) $1$ C) $10$ D) $-8$ E) Meaningless
\frac{1}{2}
25
17,779
Calculate $3.6 \times 0.25 + 1.5$.
2.4
100
17,780
Given that $\sin(α + \sqrt{2}\cos(α) = \sqrt{3})$, find the value of $\tan(α)$. A) $\frac{\sqrt{2}}{2}$ B) $\sqrt{2}$ C) $-\frac{\sqrt{2}}{2}$ D) $-\sqrt{2}$
\frac{\sqrt{2}}{2}
29.6875
17,781
How many distinct arrangements of the letters in the word "basics" are there, specifically those beginning with a vowel?
120
64.0625
17,782
Given a sequence $\{a_n\}$ whose general term formula is $a_n = -n^2 + 12n - 32$, and the sum of the first $n$ terms is $S_n$, then for any $n > m$ (where $m, n \in \mathbb{N}^*$), the maximum value of $S_n - S_m$ is __.
10
40.625
17,783
In $\triangle XYZ$, $\angle XYZ = 30^\circ$, $XY = 12$, and $XZ = 8$. Points $P$ and $Q$ lie on $\overline{XY}$ and $\overline{XZ}$ respectively. What is the minimum possible value of $YP + PQ + QZ$? A) $\sqrt{154}$ B) $\sqrt{208 + 96\sqrt{3}}$ C) $16$ D) $\sqrt{208}$
\sqrt{208 + 96\sqrt{3}}
39.0625
17,784
The lengths of a pair of corresponding medians of two similar triangles are 10cm and 4cm, respectively, and the sum of their perimeters is 140cm. The perimeters of these two triangles are     , and the ratio of their areas is     .
25:4
7.8125
17,785
The perimeter of a semicircle with an area of ______ square meters is 15.42 meters.
14.13
16.40625
17,786
Given the polar equation of circle $E$ is $\rho=4\sin \theta$, with the pole as the origin and the polar axis as the positive half of the $x$-axis, establish a Cartesian coordinate system with the same unit length (where $(\rho,\theta)$, $\rho \geqslant 0$, $\theta \in [0,2\pi)$). $(1)$ Line $l$ passes through the origin, and its inclination angle $\alpha= \dfrac {3\pi}{4}$. Find the polar coordinates of the intersection point $A$ of $l$ and circle $E$ (point $A$ is not the origin); $(2)$ Line $m$ passes through the midpoint $M$ of segment $OA$, and line $m$ intersects circle $E$ at points $B$ and $C$. Find the maximum value of $||MB|-|MC||$.
2 \sqrt {2}
0
17,787
Four mathletes and two coaches sit at a circular table. How many distinct arrangements are there of these six people if the two coaches sit opposite each other?
24
79.6875
17,788
A certain school arranges $5$ senior high school teachers to visit $3$ schools for exchange and learning. One school has $1$ teacher, one school has $2$ teachers, and one school has $2$ teachers. The total number of different arrangements is _______.
90
46.09375
17,789
How many positive divisors does the number $360$ have? Also, calculate the sum of all positive divisors of $360$ that are greater than $30$.
1003
0
17,790
In $\triangle ABC$, the sides opposite to angles $A$, $B$, $C$ are denoted as $a$, $b$, $c$ respectively, and $a^{2}$, $b^{2}$, $c^{2}$ form an arithmetic sequence. Calculate the maximum value of $\sin B$.
\dfrac{ \sqrt {3}}{2}
0
17,791
If $128^3 = 16^x$, what is the value of $2^{-x}$? Express your answer as a common fraction.
\frac{1}{2^{5.25}}
0
17,792
The sum of the first $n$ terms of an arithmetic sequence $\{a_n\}$ is $S_n$, and it is given that $S_4=20$, $S_{n-4}=60$, and $S_n=120$. Find the value of $n$.
12
68.75
17,793
A traffic light cycles as follows: green for 45 seconds, then yellow for 5 seconds, and then red for 50 seconds. Mark chooses a random five-second interval to observe the light. What is the probability that the color changes during his observation?
\frac{3}{20}
61.71875
17,794
Given $A=\{-3,-2,-1,0,1,2,3\}$, $a$ and $b$ are elements of $A$. How many cases are there where $|a| \lt |b|$?
18
91.40625
17,795
Given that the populations of three communities $A$, $B$, and $C$ are 600, 1200, and 1500 residents respectively, and if 15 people are drawn from community $C$, determine the total number of people drawn in the sample.
33
86.71875
17,796
What is the maximum value of $\frac{(3^t - 2t)t}{9^t}$ for integer values of $t$? **A)** $\frac{1}{8}$ **B)** $\frac{1}{10}$ **C)** $\frac{1}{12}$ **D)** $\frac{1}{16}$ **E)** $\frac{1}{18}$
\frac{1}{8}
57.8125
17,797
Add $26_7 + 245_7.$ Express your answer in base 7.
304_7
82.8125
17,798
Given the function $f(x)=\tan(\omega x+\phi)$ $(\omega>0, 0<|\phi|<\frac{\pi}{2})$, where two adjacent branches of the graph intersect the coordinate axes at points $A(\frac{\pi}{6},0)$ and $B(\frac{2\pi}{3},0)$. Find the sum of all solutions of the equation $f(x)=\sin(2x-\frac{\pi}{3})$ for $x\in [0,\pi]$.
\frac{5\pi}{6}
38.28125
17,799
Given that 8 balls are randomly and independently painted either red or blue with equal probability, find the probability that exactly 4 balls are red and exactly 4 balls are blue, and all red balls come before any blue balls in the order they were painted.
\frac{1}{256}
44.53125