Unnamed: 0
int64
0
40.3k
problem
stringlengths
10
5.15k
ground_truth
stringlengths
1
1.22k
solved_percentage
float64
0
100
18,800
Given vectors $\overrightarrow{a}=(1,2)$ and $\overrightarrow{b}=(-3,2)$. (1) If vector $k\overrightarrow{a}+\overrightarrow{b}$ is perpendicular to vector $\overrightarrow{a}-3\overrightarrow{b}$, find the value of the real number $k$; (2) For what value of $k$ are vectors $k\overrightarrow{a}+\overrightarrow{b}$ and $\overrightarrow{a}-3\overrightarrow{b}$ parallel? And determine whether they are in the same or opposite direction.
-\dfrac{1}{3}
70.3125
18,801
Let \( a \) and \( b \) be nonnegative real numbers such that \[ \cos (ax + b) = \cos 31x \] for all integers \( x \). Find the smallest possible value of \( a \).
31
80.46875
18,802
In a table tennis singles match between players A and B, the match is played in a best-of-seven format (i.e., the first player to win four games wins the match, and the match ends). Assume that both players have an equal chance of winning each game. (1) Calculate the probability that player B wins by a score of 4 to 1; (2) Calculate the probability that player A wins and the number of games played is more than 5.
\frac{5}{16}
60.15625
18,803
In $\triangle ABC$, the sides opposite to angles $A$, $B$, and $C$ are denoted as $a$, $b$, and $c$ respectively, and it is given that $a\cos B=(3c-b)\cos A$. $(1)$ If $a\sin B=2\sqrt{2}$, find $b$; $(2)$ If $a=2\sqrt{2}$ and the area of $\triangle ABC$ is $\sqrt{2}$, find the perimeter of $\triangle ABC$.
4+2\sqrt{2}
13.28125
18,804
Mark's cousin has $10$ identical stickers and $5$ identical sheets of paper. How many ways are there for him to distribute all of the stickers on the sheets of paper, given that each sheet must have at least one sticker, and only the number of stickers on each sheet matters?
126
14.0625
18,805
Let $\{a_n\}$ be a geometric sequence with a common ratio not equal to 1, and $a_4=16$. The sum of the first $n$ terms is denoted as $S_n$, and $5S_1$, $2S_2$, $S_3$ form an arithmetic sequence. (1) Find the general formula for the sequence $\{a_n\}$. (2) Let $b_n = \frac{1}{\log_{2}a_n \cdot \log_{2}a_{n+1}}$, and let $T_n$ be the sum of the first $n$ terms of the sequence $\{b_n\}$. Find the minimum value of $T_n$.
\frac{1}{2}
83.59375
18,806
For how many integer values of $n$ between 1 and 990 inclusive does the decimal representation of $\frac{n}{1000}$ terminate?
990
94.53125
18,807
Given the function $f(x)=4-x^{2}+a\ln x$, if $f(x)\leqslant 3$ for all $x > 0$, determine the range of the real number $a$.
[2]
0
18,808
Given the points $(2, 3)$, $(10, 9)$, and $(6, m)$, where $m$ is an integer, determine the sum of all possible values of $m$ for which the area of the triangle formed by these points is a maximum.
12
46.09375
18,809
Given that $F_1$ and $F_2$ are the two foci of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ ($a>0$, $b>0$), an isosceles right triangle $MF_1F_2$ is constructed with $F_1$ as the right-angle vertex. If the midpoint of the side $MF_1$ lies on the hyperbola, calculate the eccentricity of the hyperbola.
\frac{\sqrt{5} + 1}{2}
14.0625
18,810
In $\triangle ABC$, the median from vertex $A$ is perpendicular to the median from vertex $B$. The lengths of sides $AC$ and $BC$ are 6 and 7 respectively. What is the length of side $AB$?
$\sqrt{17}$
0
18,811
A mini soccer team has 12 members. We want to choose a starting lineup of 5 players, which includes one goalkeeper and four outfield players (order of outfield players does not matter). In how many ways can we choose this starting lineup?
3960
72.65625
18,812
Given that the sequence $\{a_n\}$ is a geometric sequence, with $a_1=2$, common ratio $q>0$, and $a_2$, $6$, $a_3$ forming an arithmetic sequence. (I) Find the general term formula for the sequence $\{a_n\}$; (II) Let $b_n=\log_2{a_n}$, and $$T_{n}= \frac {1}{b_{1}b_{2}}+ \frac {1}{b_{2}b_{3}}+ \frac {1}{b_{3}b_{4}}+…+ \frac {1}{b_{n}b_{n+1}}$$, find the maximum value of $n$ such that $$T_{n}< \frac {99}{100}$$.
98
92.96875
18,813
Given the function $f(x)=x^2+x+b\ (b\in\mathbb{R})$ with a value range of $[0,+\infty)$, the solution to the equation $f(x) < c$ is $m+8$. Determine the value of $c$.
16
84.375
18,814
Scenario: In a math activity class, the teacher presented a set of questions and asked the students to explore the pattern by reading the following solution process: $\sqrt{1+\frac{5}{4}}=\sqrt{\frac{9}{4}}=\sqrt{{(\frac{3}{2})}^{2}}=\frac{3}{2}$; $\sqrt{1+\frac{7}{9}}=\sqrt{\frac{16}{9}}=\sqrt{{(\frac{4}{3})}^{2}}=\frac{4}{3}$; $\sqrt{1+\frac{9}{16}}=\sqrt{\frac{25}{16}}=\sqrt{{(\frac{5}{4})}^{2}}=\frac{5}{4}$; $\ldots$ Practice and exploration: $(1)$ According to this pattern, calculate: $\sqrt{1+\frac{17}{64}}=$______; $(2)$ Calculate: $\sqrt{1+\frac{5}{4}}×\sqrt{1+\frac{7}{9}}×\sqrt{1+\frac{9}{16}}×⋅⋅⋅×\sqrt{1+\frac{21}{100}}$; Transfer and application: $(3)$ If $\sqrt{1+\frac{2023}{{n}^{2}}}=x$ follows the above pattern, please directly write down the value of $x$.
\frac{1012}{1011}
76.5625
18,815
Given that for triangle $ABC$, the internal angles $A$ and $B$ satisfy $$\frac {\sin B}{\sin A} = \cos(A + B),$$ find the maximum value of $\tan B$.
\frac{\sqrt{2}}{4}
32.03125
18,816
Xiaoying goes home at noon to cook noodles by herself, which involves the following steps: ① Wash the pot and fill it with water, taking 2 minutes; ② Wash the vegetables, taking 3 minutes; ③ Prepare the noodles and seasonings, taking 2 minutes; ④ Boil the water in the pot, taking 7 minutes; ⑤ Use the boiling water to cook the noodles and vegetables, taking 3 minutes. Except for step ④, each step can only be performed one at a time. The minimum time Xiaoying needs to cook the noodles is     minutes.
12
87.5
18,817
Find the sum of the $x$-coordinates of the solutions to the system of equations $y=|x^2-8x+12|$ and $y=\frac{20}{3}-x$.
16
26.5625
18,818
Points $A$, $B$, $C$, $D$ are on the same sphere, with $AB=BC=\sqrt{2}$, $AC=2$. If the circumscribed sphere of tetrahedron $ABCD$ has its center exactly on edge $DA$, and $DC=2\sqrt{3}$, then the surface area of this sphere equals \_\_\_\_\_\_\_\_\_\_
16\pi
14.84375
18,819
Find the greatest common factor of 8! and 9!.
40320
100
18,820
The stem-and-leaf plot displays the lengths of songs on an album in minutes and seconds. There are 18 songs on the album. In the plot, $3\ 45$ represents $3$ minutes, $45$ seconds, which is equivalent to $225$ seconds. What is the median length of the songs? Express your answer in seconds. \begin{tabular}{c|ccccc} 0&32&43&58&&\\ 1&05&10&12&15&20\\ 2&25&30&55&&\\ 3&00&15&30&35&45\\ 4&10&12&&&\\ \end{tabular}
147.5
12.5
18,821
What is the smallest positive integer \( n \) such that all the roots of \( z^6 - z^3 + 1 = 0 \) are \( n^{\text{th}} \) roots of unity?
18
93.75
18,822
Given that $a$, $b$, and $c$ are the roots of the equation $x^3-3x^2+mx+24=0$, and that $-a$ and $-b$ are the roots of the equation $x^2+nx-6=0$, then the value of $n$ is
-1
91.40625
18,823
Given that $f(x)$ is an odd function defined on $\mathbb{R}$ with a minimum positive period of 3, and for $x \in \left(-\frac{3}{2}, 0\right)$, $f(x)=\log_{2}(-3x+1)$. Find $f(2011)$.
-2
75
18,824
Given $\theta∈(0,\frac{π}{2}$, $\sin \theta - \cos \theta = \frac{\sqrt{5}}{5}$, find the value of $\tan 2\theta$.
-\frac{4}{3}
48.4375
18,825
In the numbers from 100 to 999, how many numbers have digits in strictly increasing or strictly decreasing order? (From the 41st American High School Mathematics Exam, 1990)
204
60.15625
18,826
Given triangle $ABC$ with midpoint $D$ on side $BC$, and point $G$ satisfies $\overrightarrow{GA}+ \overrightarrow{BG}+ \overrightarrow{CG}= \overrightarrow{0}$, and $\overrightarrow{AG}=\lambda \overrightarrow{GD}$, determine the value of $\lambda$.
-2
9.375
18,827
Given that the function $y=f(x)$ is an odd function defined on $\mathbb{R}$ and $f(-1)=2$, and the period of the function is $4$, calculate the values of $f(2012)$ and $f(2013)$.
-2
55.46875
18,828
One of the mascots for the 2012 Olympic Games is called 'Wenlock' because the town of Wenlock in Shropshire first held the Wenlock Olympian Games in 1850. How many years ago was that? A) 62 B) 152 C) 158 D) 162 E) 172
162
92.96875
18,829
There exist constants $b_1, b_2, b_3, b_4, b_5, b_6, b_7$ such that \[ \cos^7 \theta = b_1 \cos \theta + b_2 \cos 2 \theta + b_3 \cos 3 \theta + b_4 \cos 4 \theta + b_5 \cos 5 \theta + b_6 \cos 6 \theta + b_7 \cos 7 \theta \] for all angles $\theta$. Find $b_1^2 + b_2^2 + b_3^2 + b_4^2 + b_5^2 + b_6^2 + b_7^2$.
\frac{429}{1024}
35.15625
18,830
Given that the year 2010 corresponds to the Geng-Yin year, determine the year of the previous Geng-Yin year.
1950
47.65625
18,831
There are two lathes processing parts of the same model. The yield rate of the first lathe is $15\%$, and the yield rate of the second lathe is $10\%$. Assuming that the yield rates of the two lathes do not affect each other, the probability of both lathes producing excellent parts simultaneously is ______; if the processed parts are mixed together, knowing that the number of parts processed by the first lathe accounts for $60\%$ of the total, and the number of parts processed by the second lathe accounts for $40\%$, then randomly selecting a part, the probability of it being an excellent part is ______.
13\%
0
18,832
Given that the sum of the first $n$ terms of a geometric sequence ${a_{n}}$ is $S_{n}=k+2( \frac {1}{3})^{n}$, find the value of the constant $k$.
-2
57.03125
18,833
Let $f(x) = 5x^2 - 4$ and $g(f(x)) = x^2 + x + x/3 + 1$. Find the sum of all possible values of $g(49)$.
\frac{116}{5}
89.0625
18,834
Triangle $ABC$ has sidelengths $AB=1$ , $BC=\sqrt{3}$ , and $AC=2$ . Points $D,E$ , and $F$ are chosen on $AB, BC$ , and $AC$ respectively, such that $\angle EDF = \angle DFA = 90^{\circ}$ . Given that the maximum possible value of $[DEF]^2$ can be expressed as $\frac{a}{b}$ for positive integers $a, b$ with $\gcd (a, b) = 1$ , find $a + b$ . (Here $[DEF]$ denotes the area of triangle $DEF$ .) *Proposed by Vismay Sharan*
67
27.34375
18,835
Compute $\sin 12^\circ \sin 36^\circ \sin 72^\circ \sin 84^\circ.$
\frac{1}{16}
51.5625
18,836
In how many ways can 10 people be seated in a row of chairs if four of the people, Alice, Bob, Charlie, and Dave, refuse to sit in four consecutive seats?
3507840
89.84375
18,837
In recent years, the awareness of traffic safety among citizens has gradually increased, leading to a greater demand for helmets. A certain store purchased two types of helmets, type A and type B. It is known that they bought 20 type A helmets and 30 type B helmets, spending a total of 2920 yuan. The unit price of type A helmets is 11 yuan higher than the unit price of type B helmets. $(1)$ What are the unit prices of type A and type B helmets, respectively? $(2)$ The store decides to purchase 40 more helmets of type A and type B. They coincide with a promotional event by the manufacturer: type A helmets are sold at 20% off the unit price, and type B helmets are discounted by 6 yuan each. If the number of type A helmets purchased this time is not less than half the number of type B helmets, how many type A helmets should be purchased to minimize the total cost of this purchase? What is the minimum cost?
1976
65.625
18,838
Consider a unit cube in a coordinate system with vertices $A(0,0,0)$, $A'(1,1,1)$, and other vertices placed accordingly. A regular octahedron has vertices placed at fractions $\frac{1}{3}$ and $\frac{2}{3}$ along the segments connecting $A$ with $A'$'s adjacent vertices and vice versa. Determine the side length of this octahedron.
\frac{\sqrt{2}}{3}
15.625
18,839
Given $sinα+cosα=-\frac{{\sqrt{10}}}{5}, α∈(-\frac{π}{2},\frac{π}{2})$. $(1)$ Find the value of $\tan \alpha$; $(2)$ Find the value of $2\sin ^{2}\alpha +\sin \alpha \cos \alpha -1$.
\frac{1}{2}
66.40625
18,840
In daily life, specific times are usually expressed using the 24-hour clock system. There are a total of 24 time zones globally, with adjacent time zones differing by 1 hour. With the Prime Meridian located in Greenwich, England as the reference point, in areas east of Greenwich, the time difference is marked with a "+", while in areas west of Greenwich, the time difference is marked with a "-". The table below shows the time differences of various cities with respect to Greenwich: | City | Beijing | New York | Sydney | Moscow | |--------|---------|----------|--------|--------| | Time Difference with Greenwich (hours) | +8 | -4 | +11 | +3 | For example, when it is 12:00 in Greenwich, it is 20:00 in Beijing and 15:00 in Moscow. $(1)$ What is the time difference between Beijing and New York? $(2)$ If Xiao Ming in Sydney calls Xiao Liang in New York at 21:00, what time is it in New York? $(3)$ Xiao Ming takes a direct flight from Beijing to Sydney at 23:00 on October 27th. After 12 hours, he arrives. What is the local time in Sydney when he arrives? $(4)$ Xiao Hong went on a study tour to Moscow. After arriving in Moscow, he calls his father in Beijing at an exact hour. At that moment, his father's time in Beijing is exactly twice his time in Moscow. What is the specific time in Beijing when the call is connected?
10:00
40.625
18,841
For the ellipse $25x^2 - 100x + 4y^2 + 8y + 16 = 0,$ find the distance between the foci.
\frac{2\sqrt{462}}{5}
83.59375
18,842
In $\triangle ABC$, $a$, $b$, $c$ are the sides opposite to angles $A$, $B$, $C$ respectively, and it is given that $a\sin C= \sqrt {3}c\cos A$. $(1)$ Find the measure of angle $A$; $(2)$ If $a= \sqrt {13}$ and $c=3$, find the area of $\triangle ABC$.
3 \sqrt {3}
0
18,843
Given acute angles $\alpha$ and $\beta$ such that $\sin \alpha= \frac { \sqrt {5}}{5}$ and $\sin(\alpha-\beta)=- \frac { \sqrt {10}}{10}$, determine the value of $\beta$.
\frac{\pi}{4}
80.46875
18,844
A certain item is always sold with a 30% discount, and the profit margin is 47%. During the shopping festival, the item is sold at the original price, and there is a "buy one get one free" offer. Calculate the profit margin at this time. (Note: Profit margin = (selling price - cost) ÷ cost)
5\%
64.0625
18,845
Find $5273_{8} - 3614_{8}$. Express your answer in base $8$.
1457_8
53.90625
18,846
At a national competition, 31 participants are accommodated in a hotel where each participant gets his/her own room. The rooms are numbered from 1 to 31. When all participants have arrived, except those assigned to rooms 15, 16, and 17, what is the median room number of the remaining 28 participants?
16
60.15625
18,847
A frustum of a right circular cone is formed by cutting a small cone off of the top of a larger cone. If this frustum has a lower base radius of 8 inches, an upper base radius of 5 inches, and a height of 6 inches, what is its lateral surface area? Additionally, there is a cylindrical section of height 2 inches and radius equal to the upper base of the frustum attached to the top of the frustum. Calculate the total surface area excluding the bases.
39\pi\sqrt{5} + 20\pi
28.125
18,848
Given a circle $C$: $x^{2}+y^{2}-2x-2ay+a^{2}-24=0$ ($a\in\mathbb{R}$) whose center lies on the line $2x-y=0$. $(1)$ Find the value of the real number $a$; $(2)$ Find the minimum length of the chord formed by the intersection of circle $C$ and line $l$: $(2m+1)x+(m+1)y-7m-4=0$ ($m\in\mathbb{R}$).
4\sqrt{5}
28.125
18,849
In right triangle $DEF$, $DE=15$, $DF=9$, and $EF=12$ units. What is the distance from $F$ to the midpoint of segment $DE$?
7.5
18.75
18,850
Let the number of elements in the set \( S \) be denoted by \( |S| \), and the number of subsets of the set \( S \) be denoted by \( n(S) \). Given three non-empty finite sets \( A, B, C \) that satisfy the following conditions: $$ \begin{array}{l} |A| = |B| = 2019, \\ n(A) + n(B) + n(C) = n(A \cup B \cup C). \end{array} $$ Determine the maximum value of \( |A \cap B \cap C| \) and briefly describe the reasoning process.
2018
40.625
18,851
Connecting the right-angled vertex of a right triangle and the two trisection points on the hypotenuse, the lengths of the two resulting line segments are $\sin \alpha$ and $\cos \alpha$ (where $0 < \alpha < \frac{\pi}{2}$). What is the length of the hypotenuse?
$\frac{3}{\sqrt{5}}$
0
18,852
Alice and Bob play a similar game with a basketball. On each turn, if Alice has the ball, there is a 2/3 chance that she will toss it to Bob and a 1/3 chance that she will keep the ball. If Bob has the ball, there is a 1/4 chance that he will toss it to Alice, and a 3/4 chance that he keeps it. Alice starts with the ball. What is the probability that Alice has the ball again after two turns?
\frac{5}{18}
58.59375
18,853
Solve for $x$: $0.05x + 0.07(30 + x) = 15.4$.
110.8333
5.46875
18,854
The sum of an infinite geometric series is $64$ times the series that results if the first four terms of the original series are removed. What is the value of the series' common ratio?
\frac{1}{2}
35.15625
18,855
There are 12 sprinters in an international track event final, including 5 Americans. Gold, silver, and bronze medals are awarded to the first, second, and third place finishers respectively. Determine the number of ways the medals can be awarded if no more than two Americans receive medals.
1260
21.875
18,856
In right triangle $DEF$, where $DE = 15$, $DF = 9$, and $EF = 12$ units, find the distance from $F$ to the midpoint of segment $DE$.
7.5
18.75
18,857
Given that $P$ is a point on the ellipse $\frac{x^2}{25}+\frac{y^2}{9}=1$, $F_{1}$ and $F_{2}$ are the left and right foci of the ellipse, respectively. If $\frac{{\overrightarrow{PF_1} \cdot \overrightarrow{PF_2}}}{{|\overrightarrow{PF_1}| \cdot |\overrightarrow{PF_2}|}}=\frac{1}{2}$, then the area of $\triangle F_{1}PF_{2}$ is ______.
3\sqrt{3}
34.375
18,858
The graph of $y = ax^2 + bx + c$ has a maximum value of 72, and passes through the points $(0, -1)$ and $(6, -1)$. Find $a + b + c$.
\frac{356}{9}
66.40625
18,859
Given the lines $l_{1}$: $x+\left(m-3\right)y+m=0$ and $l_{2}$: $mx-2y+4=0$. $(1)$ If line $l_{1}$ is perpendicular to line $l_{2}$, find the value of $m$. $(2)$ If line $l_{1}$ is parallel to line $l_{2}$, find the distance between $l_{1}$ and $l_{2}$.
\frac{3\sqrt{5}}{5}
61.71875
18,860
If $9:y^3 = y:81$, what is the value of $y$?
3\sqrt{3}
21.875
18,861
The average of the numbers $1, 2, 3,\dots, 148, 149,$ and $x$ is $50x$. What is $x$?
\frac{11175}{7499}
71.09375
18,862
The increasing sequence of positive integers $b_1,$ $b_2,$ $b_3,$ $\dots$ has the property that \[b_{n + 2} = b_{n + 1} + b_n\]for all $n \ge 1.$ If $b_6 = 60,$ then find $b_7.$
97
69.53125
18,863
Distribute 5 students into 3 groups: Group A, Group B, and Group C, with Group A having at least two people, and Groups B and C having at least one person each, and calculate the number of different distribution schemes.
80
8.59375
18,864
Points \(A = (2,8)\), \(B = (2,2)\), and \(C = (6,2)\) lie in the first quadrant and are vertices of triangle \(ABC\). Point \(D=(a,b)\) is also in the first quadrant, and together with \(A\), \(B\), and \(C\), forms quadrilateral \(ABCD\). The quadrilateral formed by joining the midpoints of \(\overline{AB}\), \(\overline{BC}\), \(\overline{CD}\), and \(\overline{DA}\) is a square. Additionally, the diagonal of this square has the same length as the side \(\overline{AB}\) of triangle \(ABC\). Find the sum of the coordinates of point \(D\). A) 12 B) 14 C) 15 D) 16 E) 18
14
17.96875
18,865
Let vertices $A, B, C$, and $D$ form a regular tetrahedron with each edge of length 1 unit. Define point $P$ on edge $AB$ such that $P = tA + (1-t)B$ for some $t$ in the range $0 \leq t \leq 1$ and point $Q$ on edge $CD$ such that $Q = sC + (1-s)D$ for some $s$ in the range $0 \leq s \leq 1$. Determine the minimum possible distance between $P$ and $Q$.
\frac{\sqrt{2}}{2}
28.90625
18,866
Given that $\frac{5+7+9}{3} = \frac{4020+4021+4022}{M}$, find $M$.
1723
73.4375
18,867
In the sequence $\{a_{n}\}$, $a_{1}=1$, $\sqrt{{a}_{n+1}}-\sqrt{{a}_{n}}=1$ ($n\in N^{*}$); the sum of the first $n$ terms of a geometric sequence $\{b_{n}\}$ is $S_{n}=2^{n}-m$. For $n\in N^{*}$, the smallest value of the real number $\lambda$ that satisfies $\lambda b_{n}\geqslant a_{n}$ for all $n$ is ______.
\frac{9}{4}
47.65625
18,868
Given vectors $\overrightarrow{a}=(\cos x, \sin x)$ and $\overrightarrow{b}=(\sqrt{3}\cos x, 2\cos x-\sqrt{3}\sin x)$, let $f(x)=\overrightarrow{a}\cdot\overrightarrow{b}$. $(1)$ Find the interval where $f(x)$ is monotonically decreasing. $(2)$ If the maximum value of the function $g(x)=f(x-\frac{\pi}{6})+af(\frac{x}{2}-\frac{\pi}{6})-af(\frac{x}{2}+\frac{\pi}{12})$ on the interval $[0,\pi]$ is $6$, determine the value of the real number $a$.
2\sqrt{2}
0.78125
18,869
Let positive integers $a$, $b$, $c$ satisfy $ab + bc = 518$ and $ab - ac = 360$. The maximum value of $abc$ is ____.
1008
42.96875
18,870
A literary and art team went to a nursing home for a performance. Originally, there were 6 programs planned, but at the request of the elderly, they decided to add 3 more programs. However, the order of the original six programs remained unchanged, and the added 3 programs were neither at the beginning nor at the end. Thus, there are a total of     different orders for this performance.
210
15.625
18,871
The area of a square inscribed in a semicircle compared to the area of a square inscribed in a full circle.
2:5
0
18,872
In a class of 50 students, it is decided to use systematic sampling to select 10 students out of these 50. The students are randomly assigned numbers from 1 to 50 and grouped, with the first group being numbers 1 to 5, the second group 6 to 10, and so on, up to the tenth group which is 46 to 50. If a student with the number 12 is selected from the third group, then the student with the number $\_\_\_$ will be selected from the eighth group.
37
85.9375
18,873
How many even numbers are greater than 300 and less than 600?
149
60.15625
18,874
The witch Gingema cast a spell on a wall clock so that the minute hand moves in the correct direction for five minutes, then three minutes in the opposite direction, then five minutes in the correct direction again, and so on. How many minutes will the hand show after 2022 minutes, given that it pointed exactly to 12 o'clock at the beginning of the five-minute interval of correct movement?
28
6.25
18,875
The real numbers $x$ and $y$ satisfy the equation $2\cos ^{2}(x+y-1)= \frac {(x+1)^{2}+(y-1)^{2}-2xy}{x-y+1}$. Find the minimum value of $xy$.
\frac{1}{4}
58.59375
18,876
Find the largest positive integer $N$ so that the number of integers in the set $\{1,2,\dots,N\}$ which are divisible by 3 is equal to the number of integers which are divisible by 5 or 7 (or both).
65
86.71875
18,877
Let $b_1, b_2, \dots$ be a sequence defined by $b_1 = b_2 = 2$ and $b_{n+2} = b_{n+1} + b_n$ for $n \geq 1$. Find \[ \sum_{n=1}^\infty \frac{b_n}{3^{n+1}}. \]
\frac{2}{5}
50
18,878
The average of the seven numbers in a list is 62. The average of the first four numbers is 58. What is the average of the last three numbers?
67.\overline{3}
0
18,879
If \( g(x) = \frac{x^5 - 1}{4} \), find \( g^{-1}(-7/64) \).
\left(\frac{9}{16}\right)^{\frac{1}{5}}
0
18,880
The mean of the numbers 3, 7, 10, and 15 is twice the mean of $x$, 20, and 6. What is the value of $x$?
-12.875
1.5625
18,881
Simplify the expression $\frac{{2x+4}}{{{x^2}-1}}÷\frac{{x+2}}{{{x^2}-2x+1}}-\frac{{2x}}{{x+1}}$, then substitute an appropriate number from $-2$, $-1$, $0$, $1$ to evaluate.
-2
69.53125
18,882
Let $a$ and $b$ be integers such that $ab = 72.$ Find the minimum value of $a + b.$
-73
94.53125
18,883
A chord PQ of the left branch of the hyperbola $x^2 - y^2 = 4$ passes through its left focus $F_1$, and the length of $|PQ|$ is 7. If $F_2$ is the right focus of the hyperbola, then the perimeter of $\triangle PF_2Q$ is.
22
50.78125
18,884
A square with a side length of 10 centimeters is rotated about its horizontal line of symmetry. Calculate the volume of the resulting cylinder in cubic centimeters and express your answer in terms of $\pi$.
250\pi
85.9375
18,885
Athletes A and B have probabilities of successfully jumping over a 2-meter high bar of 0.7 and 0.6, respectively. The outcomes of their jumps are independent of each other. Find: (Ⅰ) The probability that A succeeds on the third attempt. (Ⅱ) The probability that at least one of A or B succeeds on the first attempt. (Ⅲ) The probability that A succeeds exactly one more time than B in two attempts for each.
0.3024
75.78125
18,886
Given that three numbers are randomly selected from the set {1, 2, 3, 4, 5}, find the probability that the sum of the remaining two numbers is odd.
0.6
7.03125
18,887
$(1)$ Calculate: $tan60°×{({-2})^{-1}}-({\sqrt{\frac{3}{4}}-\sqrt[3]{8}})+|{-\frac{1}{2}\sqrt{12}}|$;<br/>$(2)$ Simplify and find the value: $({\frac{{x+2}}{{{x^2}-2x}}-\frac{{x-1}}{{{x^2}-4x+4}}})÷\frac{{x-4}}{x}$, where $x=\sqrt{2}+2$.
\frac{1}{2}
56.25
18,888
Calculate \(3 \cdot 15 + 20 \div 4 + 1\). Then add parentheses to the expression so that the result is: 1. The largest possible integer, 2. The smallest possible integer.
13
10.15625
18,889
Given $f\left( \alpha \right)=\frac{\cos \left( \frac{\pi }{2}+\alpha \right)\cdot \cos \left( 2\pi -\alpha \right)\cdot \sin \left( -\alpha +\frac{3}{2}\pi \right)}{\sin \left( -\pi -\alpha \right)\sin \left( \frac{3}{2}\pi +\alpha \right)}$. $(1)$ Simplify $f\left( \alpha \right)$; $(2)$ If $\alpha$ is an angle in the third quadrant, and $\cos \left( \alpha -\frac{3}{2}\pi \right)=\frac{1}{5}$, find the value of $f\left( \alpha \right)$.
\frac{2 \sqrt{6}}{5}
89.0625
18,890
A solid right prism $PQRSTU$ has a height of 20, as shown. Its bases are equilateral triangles with side length 15. Points $M$, $N$, and $O$ are the midpoints of edges $PQ$, $QR$, and $RS$, respectively. Determine the perimeter of triangle $MNO$.
32.5
11.71875
18,891
In how many different ways can 900 be expressed as the product of two (possibly equal) positive integers? Regard $m \cdot n$ and $n \cdot m$ as the same product.
14
53.125
18,892
Given the equation of the Monge circle of the ellipse $\Gamma$ as $C: x^{2}+y^{2}=3b^{2}$, calculate the eccentricity of the ellipse $\Gamma$.
\frac{{\sqrt{2}}}{2}
0
18,893
Simplify $\frac{{1+\cos{20}°}}{{2\sin{20}°}}-\sin{10°}\left(\frac{1}{{\tan{5°}}}-\tan{5°}\right)=\_\_\_\_\_\_$.
\frac{\sqrt{3}}{2}
44.53125
18,894
Find the number of integers \( n \) that satisfy \[ 15 < n^2 < 120. \]
14
72.65625
18,895
Let $S_{n}$ and $T_{n}$ represent the sum of the first $n$ terms of the arithmetic sequences ${a_{n}}$ and ${b_{n}}$, respectively. Given that $\frac{S_{n}}{T_{n}} = \frac{2n+1}{4n-2}$ for all positive integers $n$, find the value of $\frac{a_{10}}{b_{3}+b_{18}} + \frac{a_{11}}{b_{6}+b_{15}}$.
\frac{41}{78}
35.9375
18,896
What is the largest value of $x$ that satisfies the equation $\sqrt{3x} = 6x^2$? Express your answer in simplest fractional form.
\frac{1}{\sqrt[3]{12}}
62.5
18,897
Given circle $C: (x-2)^{2} + (y-2)^{2} = 8-m$, if circle $C$ has three common tangents with circle $D: (x+1)^{2} + (y+2)^{2} = 1$, then the value of $m$ is ______.
-8
95.3125
18,898
Given a four-digit number $\overline{ABCD}$ such that $\overline{ABCD} + \overline{AB} \times \overline{CD}$ is a multiple of 1111, what is the minimum value of $\overline{ABCD}$?
1729
91.40625
18,899
Given $3\sin \left(-3\pi +\theta \right)+\cos \left(\pi -\theta \right)=0$, then the value of $\frac{sinθcosθ}{cos2θ}$ is ____.
-\frac{3}{8}
78.90625