Unnamed: 0
int64
0
40.3k
problem
stringlengths
10
5.15k
ground_truth
stringlengths
1
1.22k
solved_percentage
float64
0
100
21,000
A game wheel is divided into six regions labeled $A$, $B$, $C$, $D$, $E$, and $F$. The probability of the wheel stopping on region $A$ is $\frac{1}{3}$, the probability it stops on region $B$ is $\frac{1}{6}$, and the probability of it stopping on regions $C$ and $D$ are equal, as are the probabilities for regions $E$ and $F$. What is the probability of the wheel stopping in region $C$?
\frac{1}{8}
96.09375
21,001
Given the function $f(x)=|x-1|+|x+1|$. (I) Solve the inequality $f(x) < 3$; (II) If the minimum value of $f(x)$ is $m$, let $a > 0$, $b > 0$, and $a+b=m$, find the minimum value of $\frac{1}{a}+ \frac{2}{b}$.
\frac{3}{2}+ \sqrt{2}
12.5
21,002
Given that the golden ratio $m = \frac{{\sqrt{5}-1}}{2}$, calculate the value of $\frac{{\sin{42}°+m}}{{\cos{42}°}}$.
\sqrt{3}
0.78125
21,003
In the diagram, \( B, C \) and \( D \) lie on a straight line, with \(\angle ACD=100^{\circ}\), \(\angle ADB=x^{\circ}\), \(\angle ABD=2x^{\circ}\), and \(\angle DAC=\angle BAC=y^{\circ}\). The value of \( x \) is:
20
32.8125
21,004
Compute $20\left(\frac{256}{4} + \frac{64}{16} + \frac{16}{64} + 2\right)$.
1405
72.65625
21,005
A store increased the price of a certain Super VCD by 40% and then advertised a "10% discount and a free 50 yuan taxi fare" promotion. As a result, each Super VCD still made a profit of 340 yuan. What was the cost price of each Super VCD?
1500
71.875
21,006
The equation $\sin^2 x + \sin^2 3x + \sin^2 5x + \sin^2 7x = 2$ is to be simplified to the equivalent equation \[\cos ax \cos bx \cos cx = 0,\] for some positive integers $a,$ $b,$ and $c.$ Find $a + b + c.$
14
92.96875
21,007
Given a circle \\(O: x^2 + y^2 = 2\\) and a line \\(l: y = kx - 2\\). \\((1)\\) If line \\(l\\) intersects circle \\(O\\) at two distinct points \\(A\\) and \\(B\\), and \\(\angle AOB = \frac{\pi}{2}\\), find the value of \\(k\\). \\((2)\\) If \\(EF\\) and \\(GH\\) are two perpendicular chords of the circle \\(O: x^2 + y^2 = 2\\), with the foot of the perpendicular being \\(M(1, \frac{\sqrt{2}}{2})\\), find the maximum area of the quadrilateral \\(EGFH\\).
\frac{5}{2}
1.5625
21,008
For what real number \\(m\\) is the complex number \\(z=m^{2}+m-2+(m^{2}-1)i\\) \\((1)\\) a real number; \\((2)\\) an imaginary number; \\((3)\\) a pure imaginary number?
-2
96.875
21,009
A gardener plans to place potted plants along both sides of a 150-meter-long path (including at both ends), with one pot every 2 meters. In total, \_\_\_\_\_\_ pots are needed.
152
96.875
21,010
If \( a = \log 25 \) and \( b = \log 49 \), compute \[ 5^{a/b} + 7^{b/a}. \]
12
94.53125
21,011
Calculate $[x]$, where $x = -3.7 + 1.5$.
-3
96.09375
21,012
Given that $cos({\frac{π}{4}-α})=\frac{3}{5}$, $sin({\frac{{5π}}{4}+β})=-\frac{{12}}{{13}}$, $α∈({\frac{π}{4},\frac{{3π}}{4}})$, $β∈({0,\frac{π}{4}})$, calculate the value of $\sin \left(\alpha +\beta \right)$.
\frac{56}{65}
17.96875
21,013
Given \(\frac{x+ \sqrt{2}i}{i}=y+i\), where \(x\), \(y\in\mathbb{R}\), and \(i\) is the imaginary unit, find \(|x-yi|\).
\sqrt{3}
96.875
21,014
1. Given $\tan \frac{\alpha}{2} = \frac{1}{2}$, find the value of $\sin\left(\alpha + \frac{\pi}{6}\right)$. 2. Given $\alpha \in \left(\pi, \frac{3\pi}{2}\right)$ and $\cos\alpha = -\frac{5}{13}$, $\tan \frac{\beta}{2} = \frac{1}{3}$, find the value of $\cos\left(\frac{\alpha}{2} + \beta\right)$.
-\frac{17\sqrt{13}}{65}
46.875
21,015
Given the angle $\frac {19\pi}{5}$, express it in the form of $2k\pi+\alpha$ ($k\in\mathbb{Z}$), then determine the angle $\alpha$ that makes $|\alpha|$ the smallest.
-\frac {\pi}{5}
33.59375
21,016
In \\(\triangle ABC\\), the sides opposite to angles \\(A\\), \\(B\\), and \\(C\\) are \\(a\\), \\(b\\), and \\(c\\) respectively. Given that \\(a=2\\), \\(c=3\\), and \\(\cos B= \dfrac {1}{4}\\), \\((1)\\) find the value of \\(b\\); \\((2)\\) find the value of \\(\sin C\\).
\dfrac {3 \sqrt {6}}{8}
0
21,017
Given that $(a + \frac{1}{a})^3 = 3$, find the value of $a^4 + \frac{1}{a^4}$. A) $9^{1/3} - 4 \cdot 3^{1/3} + 2$ B) $9^{1/3} - 2 \cdot 3^{1/3} + 2$ C) $9^{1/3} + 4 \cdot 3^{1/3} + 2$ D) $4 \cdot 3^{1/3} - 9^{1/3}$
9^{1/3} - 4 \cdot 3^{1/3} + 2
63.28125
21,018
(1) Simplify: $\dfrac {\tan (3\pi-\alpha)\cos (2\pi-\alpha)\sin (-\alpha+ \dfrac {3\pi}{2})}{\cos (-\alpha-\pi)\sin (-\pi+\alpha)\cos (\alpha+ \dfrac {5\pi}{2})}$; (2) Given $\tan \alpha= \dfrac {1}{4}$, find the value of $\dfrac {1}{2\cos ^{2}\alpha -3\sin \alpha \cos \alpha }$.
\dfrac {17}{20}
83.59375
21,019
The volume of a given sphere is \(72\pi\) cubic inches. Find the surface area of the sphere. Express your answer in terms of \(\pi\).
36\pi 2^{2/3}
0
21,020
Add $36_7 + 274_7.$ Express your answer in base 7.
343_7
68.75
21,021
The area of the region in the $xy$ -plane satisfying the inequality \[\min_{1 \le n \le 10} \max\left(\frac{x^2+y^2}{4n^2}, \, 2 - \frac{x^2+y^2}{4n^2-4n+1}\right) \le 1\] is $k\pi$ , for some integer $k$ . Find $k$ . *Proposed by Michael Tang*
210
31.25
21,022
In the sequence \(1, 2, 2, 3, 3, 3, 4, 4, 4, 4, \cdots, 200, 200, \cdots, 200\), each number \(n\) appears \(n\) times consecutively, where \(n \in \mathbf{N}\) and \(1 \leq n \leq 200\). What is the median of this sequence?
142
98.4375
21,023
Calculate $f(x) = 3x^5 + 5x^4 + 6x^3 - 8x^2 + 35x + 12$ using the Horner's Rule when $x = -2$. Find the value of $v_4$.
83
69.53125
21,024
Two concentric circles have radii $1$ and $4$ . Six congruent circles form a ring where each of the six circles is tangent to the two circles adjacent to it as shown. The three lightly shaded circles are internally tangent to the circle with radius $4$ while the three darkly shaded circles are externally tangent to the circle with radius $1$ . The radius of the six congruent circles can be written $\textstyle\frac{k+\sqrt m}n$ , where $k,m,$ and $n$ are integers with $k$ and $n$ relatively prime. Find $k+m+n$ . [asy] size(150); defaultpen(linewidth(0.8)); real r = (sqrt(133)-9)/2; draw(circle(origin,1)^^circle(origin,4)); for(int i=0;i<=2;i=i+1) { filldraw(circle(dir(90 + i*120)*(4-r),r),gray); } for(int j=0;j<=2;j=j+1) { filldraw(circle(dir(30+j*120)*(1+r),r),darkgray); } [/asy]
126
0.78125
21,025
How many positive integer multiples of $210$ can be expressed in the form $6^{j} - 6^{i}$, where $i$ and $j$ are integers and $0 \leq i < j \leq 49$?
600
37.5
21,026
Let $x, y$ be two positive integers, with $x> y$ , such that $2n = x + y$ , where n is a number two-digit integer. If $\sqrt{xy}$ is an integer with the digits of $n$ but in reverse order, determine the value of $x - y$
66
31.25
21,027
Let \( A \) be a point on the parabola \( y = x^2 - 4x \), and let \( B \) be a point on the line \( y = 2x - 3 \). Find the shortest possible distance \( AB \).
\frac{6\sqrt{5}}{5}
3.90625
21,028
Given triangle $\triangle ABC$ with angles $A$, $B$, $C$ and their respective opposite sides $a$, $b$, $c$, such that $\frac{\sqrt{3}c}{\cos C} = \frac{a}{\cos(\frac{3\pi}{2} + A)}$. (I) Find the value of $C$; (II) If $\frac{c}{a} = 2$, $b = 4\sqrt{3}$, find the area of $\triangle ABC$.
2\sqrt{15} - 2\sqrt{3}
71.875
21,029
The equations of the asymptotes of the hyperbola \\( \frac {x^{2}}{3}- \frac {y^{2}}{6}=1 \\) are \_\_\_\_\_\_, and its eccentricity is \_\_\_\_\_\_.
\sqrt {3}
0
21,030
Given that $a = \sin (2015\pi - \frac {\pi}{6})$ and the function $f(x) = \begin{cases} a^{x}, & x > 0 \\ f(-x), & x < 0 \end{cases}$, calculate the value of $f(\log_{2} \frac {1}{6})$.
\frac {1}{6}
71.875
21,031
In the xy-plane, what is the length of the shortest path from $(0,0)$ to $(15,20)$ that does not go inside the circle $(x-7)^2 + (y-9)^2 = 36$? A) $2\sqrt{94} + 3\pi$ B) $2\sqrt{130} + 3\pi$ C) $2\sqrt{94} + 6\pi$ D) $2\sqrt{130} + 6\pi$ E) $94 + 3\pi$
2\sqrt{94} + 3\pi
19.53125
21,032
How many five-character license plates consist of two consonants, followed by two vowels, and ending with a digit? (For this problem, consider Y is not a vowel.)
110,250
0
21,033
Calculate:<br/>$(1)-3+5-\left(-2\right)$;<br/>$(2)-6÷\frac{1}{4}×(-4)$;<br/>$(3)(\frac{5}{6}-\frac{3}{4}+\frac{1}{3})×(-24)$;<br/>$(4)-1^{2023}-[4-(-3)^2]÷(\frac{2}{7}-1)$.
-8
21.875
21,034
For what value of the parameter \( p \) will the sum of the squares of the roots of the equation \[ x^{2}+(3 p-2) x-7 p-1=0 \] be minimized? What is this minimum value?
\frac{53}{9}
83.59375
21,035
Determine the number of perfect cubic divisors in the product $1! \cdot 2! \cdot 3! \cdot \ldots \cdot 6!$.
10
42.96875
21,036
A school has eight identical copies of a particular book. At any given time, some of these copies are in the school library and some are with students. How many different ways are there for some of the books to be in the library and the rest to be with students if at least one book is in the library and at least one is with students?
254
16.40625
21,037
What is the smallest \( n > 1 \) for which the average of the first \( n \) (non-zero) squares is a square?
337
100
21,038
Given that the sequence $\{a_n\}$ is an arithmetic sequence, and if $\frac{a_{12}}{a_{11}} < -1$, find the maximum value of $n$ for which the sum of its first $n$ terms, $s_n$, is greater than $0$.
21
55.46875
21,039
For two arithmetic sequences $\{a_n\}$ and $\{b_n\}$, the sums of the first $n$ terms are given by $S_n$ and $T_n$ respectively, and $\frac{S_{n}}{T_{n}} = \frac{3n - 1}{2n + 3}$. Determine the ratio $\frac{a_{7}}{b_{7}}$.
\frac{38}{29}
32.8125
21,040
A list of five positive integers has a median of 4 and a mean of 15. What is the maximum possible value of the list's largest element?
65
67.96875
21,041
For how many integer values of $n$ between 1 and 180 inclusive does the decimal representation of $\frac{n}{180}$ terminate?
20
63.28125
21,042
Given that point $P$ moves on the ellipse $\frac{x^{2}}{4}+y^{2}=1$, find the minimum distance from point $P$ to line $l$: $x+y-2\sqrt{5}=0$.
\frac{\sqrt{10}}{2}
44.53125
21,043
Ket $f(x) = x^{2} +ax + b$ . If for all nonzero real $x$ $$ f\left(x + \dfrac{1}{x}\right) = f\left(x\right) + f\left(\dfrac{1}{x}\right) $$ and the roots of $f(x) = 0$ are integers, what is the value of $a^{2}+b^{2}$ ?
13
89.84375
21,044
On a line \( l \) in space, points \( A \), \( B \), and \( C \) are sequentially located such that \( AB = 18 \) and \( BC = 14 \). Find the distance between lines \( l \) and \( m \) if the distances from points \( A \), \( B \), and \( C \) to line \( m \) are 12, 15, and 20, respectively.
12
20.3125
21,045
Let $\triangle ABC$ have sides $a$, $b$, and $c$ opposite to angles $A$, $B$, and $C$ respectively. Given that $\frac{{a^2 + c^2 - b^2}}{{\cos B}} = 4$. Find:<br/> $(1)$ $ac$;<br/> $(2)$ If $\frac{{2b\cos C - 2c\cos B}}{{b\cos C + c\cos B}} - \frac{c}{a} = 2$, find the area of $\triangle ABC$.
\frac{\sqrt{15}}{4}
71.875
21,046
Given two arithmetic sequences $\{a_n\}$ and $\{b_n\}$, whose sums of the first $n$ terms are $A_n$ and $B_n$ respectively, and $\frac {A_{n}}{B_{n}} = \frac {7n+1}{4n+27}$, determine $\frac {a_{6}}{b_{6}}$.
\frac{78}{71}
42.1875
21,047
A set of numbers $\{-3, 1, 5, 8, 10, 14\}$ needs to be rearranged with new rules: 1. The largest isn't in the last position, but it is in one of the last four places. 2. The smallest isn’t in the first position, but it is in one of the first four places. 3. The median isn't in the middle positions. What is the product of the second and fifth numbers after rearrangement? A) $-21$ B) $24$ C) $-24$ D) $30$ E) None of the above
-24
24.21875
21,048
Given a sequence ${a_n}$ whose first $n$ terms have a sum of $S_n$, and the point $(n, \frac{S_n}{n})$ lies on the line $y = \frac{1}{2}x + \frac{11}{2}$. Another sequence ${b_n}$ satisfies $b_{n+2} - 2b_{n+1} + b_n = 0$ ($n \in \mathbb{N}^*$), and $b_3 = 11$, with the sum of the first 9 terms being 153. (I) Find the general term formulas for the sequences ${a_n}$ and ${b_n}$; (II) Let $c_n = \frac{3}{(2a_n - 11)(2b_n - 1)}$. The sum of the first $n$ terms of the sequence ${c_n}$ is $T_n$. Find the maximum positive integer value $k$ such that the inequality $T_n > \frac{k}{57}$ holds for all $n \in \mathbb{N}^*$.
18
6.25
21,049
Given a geometric sequence $\{a_n\}$ with the sum of its first n terms denoted as $S_n$, if $S_5$, $S_4$, and $S_6$ form an arithmetic sequence, determine the common ratio $q$ of the sequence $\{a_n\}$.
-2
92.1875
21,050
Given that $F\_1$ and $F\_2$ are the left and right foci of the hyperbola $C: \frac{x^{2}}{a^{2}}- \frac{y^{2}}{b^{2}}=1 (a > 0, b > 0)$, if a point $P$ on the right branch of the hyperbola $C$ satisfies $|PF\_1|=3|PF\_2|$ and $\overrightarrow{PF\_1} \cdot \overrightarrow{PF\_2}=a^{2}$, calculate the eccentricity of the hyperbola $C$.
\sqrt{2}
50.78125
21,051
The product underwent a price reduction from 25 yuan to 16 yuan. Calculate the average percentage reduction for each price reduction.
20\%
18.75
21,052
In trapezoid $ABCD$ with $\overline{BC}\parallel\overline{AD}$, let $BC = 800$ and $AD = 1800$. Let $\angle A = 45^\circ$, $\angle D = 45^\circ$, and $P$ and $Q$ be the midpoints of $\overline{BC}$ and $\overline{AD}$, respectively. Find the length $PQ$.
500
23.4375
21,053
Given that the odd function $f(x)$ is an increasing function defined on $\mathbb{R}$, and the sequence $x_n$ is an arithmetic sequence with a common difference of 2, satisfying $f(x_8) + f(x_9) + f(x_{10}) + f(x_{11}) = 0$, then the value of $x_{2011}$ is equal to.
4003
94.53125
21,054
Given $\cos \left(a- \frac{\pi}{6}\right) + \sin a = \frac{4 \sqrt{3}}{5}$, find the value of $\sin \left(a+ \frac{7\pi}{6}\right)$.
-\frac{4}{5}
75.78125
21,055
Given that the sum of the first 10 terms of a geometric sequence $\{a_n\}$ is 32 and the sum of the first 20 terms is 56, find the sum of the first 30 terms.
74
86.71875
21,056
A clueless ant makes the following route: starting at point $ A $ goes $ 1$ cm north, then $ 2$ cm east, then $ 3$ cm south, then $ 4$ cm west, immediately $ 5$ cm north, continues $ 6$ cm east, and so on, finally $ 41$ cm north and ends in point $ B $ . Calculate the distance between $ A $ and $ B $ (in a straight line).
29
62.5
21,057
We have $ 23^2 = 529 $ ordered pairs $ (x, y) $ with $ x $ and $ y $ positive integers from 1 to 23, inclusive. How many of them have the property that $ x^2 + y^2 + x + y $ is a multiple of 6?
225
67.1875
21,058
There are 4 male students and 2 female students taking the photo. The male student named "甲" cannot stand at either end, and the female students must stand next to each other. Find the number of ways to arrange the students.
144
29.6875
21,059
Given that the sum of the first $n$ terms of the sequence ${a_n}$ is $S_n$, and $S_n + \frac{1}{3}a_n = 1 (n \in \mathbb{N}^*)$. (I) Find the general term formula of the sequence ${a_n}$; (II) Let $b_n = \log_4(1 - S_{n+1}) (n \in \mathbb{N}^*)$, $T_n = \frac{1}{b_1b_2} + \frac{1}{b_2b_3} + \dots + \frac{1}{b_nb_{n+1}}$, find the smallest positive integer $n$ such that $T_n \geq \frac{1007}{2016}$.
2014
78.90625
21,060
Given the parametric equation of line C1 as $$\begin{cases} x=2+t \\ y=t \end{cases}$$ (where t is the parameter), and the polar coordinate equation of the ellipse C2 as ρ²cos²θ + 9ρ²sin²θ = 9. Establish a rectangular coordinate system with the origin O as the pole and the positive semi-axis of the x-axis as the polar axis. 1. Find the general equation of line C1 and the standard equation of ellipse C2 in rectangular coordinates. 2. If line C1 intersects with ellipse C2 at points A and B, and intersects with the x-axis at point E, find the value of |EA + EB|.
\frac{6\sqrt{3}}{5}
25.78125
21,061
Investigate the function $f(x)=e^{x}-e^{-x}+\sin x+1$, and let $a=\frac{2023+2024}{2}=2023.5$. Determine the value of $f(-2023)+f(-2022)+\ldots +f(2022)+f(2023)$.
4047
81.25
21,062
Two concentric circles have the same center, labeled $C$. The larger circle has a radius of $12$ units while the smaller circle has a radius of $7$ units. Determine the area of the ring formed between these two circles and also calculate the circumference of the larger circle.
24\pi
80.46875
21,063
In the geometric sequence ${a_n}$, there exists a positive integer $m$ such that $a_m = 3$ and $a_{m+6} = 24$. Find the value of $a_{m+18}$.
1536
71.09375
21,064
In \\(\triangle ABC\\), \\(AB=BC\\), \\(\cos B=-\dfrac{7}{18}\\). If an ellipse with foci at points \\(A\\) and \\(B\\) passes through point \\(C\\), find the eccentricity of the ellipse.
\dfrac{3}{8}
67.96875
21,065
Given that $y$ is a multiple of $3456$, what is the greatest common divisor of $g(y) = (5y+4)(9y+1)(12y+6)(3y+9)$ and $y$?
216
66.40625
21,066
Among the subsets of the set $\{1,2, \cdots, 100\}$, calculate the maximum number of elements a subset can have if it does not contain any pair of numbers where one number is exactly three times the other.
67
28.90625
21,067
The equation ${{a}^{2}}{{x}^{2}}+(a+2){{y}^{2}}+2ax+a=0$ represents a circle. Find the possible values of $a$.
-1
39.84375
21,068
Determine the number of ways to place 7 identical balls into 4 distinct boxes such that each box contains at least one ball.
20
96.09375
21,069
Seven distinct integers are picked at random from $\{1,2,3,\ldots,12\}$. What is the probability that, among those selected, the third smallest is $4$?
\frac{7}{33}
5.46875
21,070
The parametric equation of line $l$ is $$ \begin{cases} x= \frac { \sqrt {2}}{2}t \\ y= \frac { \sqrt {2}}{2}t+4 \sqrt {2} \end{cases} $$ (where $t$ is the parameter), and the polar equation of circle $c$ is $\rho=2\cos(\theta+ \frac{\pi}{4})$. Tangent lines are drawn from the points on the line to the circle; find the minimum length of these tangent lines.
2\sqrt{6}
59.375
21,071
On March 12, 2016, the fourth Beijing Agriculture Carnival opened in Changping. The event was divided into seven sections: "Three Pavilions, Two Gardens, One Belt, and One Valley." The "Three Pavilions" refer to the Boutique Agriculture Pavilion, the Creative Agriculture Pavilion, and the Smart Agriculture Pavilion; the "Two Gardens" refer to the Theme Carnival Park and the Agricultural Experience Park; the "One Belt" refers to the Strawberry Leisure Experience Belt; and the "One Valley" refers to the Yanshou Ecological Sightseeing Valley. Due to limited time, a group of students plans to visit "One Pavilion, One Garden, One Belt, and One Valley." How many different routes can they take for their visit? (Answer with a number)
144
3.125
21,072
A circle is inscribed in a regular hexagon. A smaller hexagon has two non-adjacent sides coinciding with the sides of the larger hexagon and the remaining vertices touching the circle. What percentage of the area of the larger hexagon is the area of the smaller hexagon? Assume the side of the larger hexagon is twice the radius of the circle.
25\%
53.125
21,073
Given $f(x)=x^{3}+ax^{2}+bx+a^{2}$, the extreme value at $x=1$ is $10$. Find the value of $a+b$.
-7
47.65625
21,074
In $\triangle ABC$, the sides opposite to angles $A$, $B$, $C$ are $a$, $b$, $c$ respectively. If $\sin (A-B)+ \sin C= \sqrt {2}\sin A$. (I) Find the value of angle $B$; (II) If $b=2$, find the maximum value of $a^{2}+c^{2}$, and find the values of angles $A$ and $C$ when the maximum value is obtained.
8+4 \sqrt {2}
0
21,075
Consider the graph on $1000$ vertices $v_1, v_2, ...v_{1000}$ such that for all $1 \le i < j \le 1000$ , $v_i$ is connected to $v_j$ if and only if $i$ divides $j$ . Determine the minimum number of colors that must be used to color the vertices of this graph such that no two vertices sharing an edge are the same color.
10
34.375
21,076
Given that the area of $\triangle ABC$ is $2 \sqrt {3}$, $BC=2$, $C=120^{\circ}$, find the length of side $AB$.
2 \sqrt {7}
0
21,077
What is the sum of all the odd integers between $200$ and $600$?
80000
61.71875
21,078
Given $\overrightarrow{a}=(1+\cos \omega x,-1)$, $\overrightarrow{b}=( \sqrt {3},\sin \omega x)$ ($\omega > 0$), and the function $f(x)= \overrightarrow{a}\cdot \overrightarrow{b}$, with the smallest positive period of $f(x)$ being $2\pi$. (1) Find the expression of the function $f(x)$. (2) Let $\theta\in(0, \frac {\pi}{2})$, and $f(\theta)= \sqrt {3}+ \frac {6}{5}$, find the value of $\cos \theta$.
\frac {3 \sqrt {3}+4}{10}
0
21,079
Quadrilateral $ABCD$ has right angles at $B$ and $D$. The length of the diagonal $AC$ is $5$. If two sides of $ABCD$ have integer lengths and one of these lengths is an odd integer, determine the area of $ABCD$.
12
50
21,080
James used a calculator to find the product $0.005 \times 3.24$. He forgot to enter the decimal points, and the calculator showed $1620$. If James had entered the decimal points correctly, what would the answer have been? A) $0.00162$ B) $0.0162$ C) $0.162$ D) $0.01620$ E) $0.1620$
0.0162
58.59375
21,081
Given that $60$ people are wearing sunglasses, $40$ people are wearing caps, and a randomly selected person wearing a cap has a $\frac{2}{5}$ probability of also wearing sunglasses, find the probability that a person wearing sunglasses is also wearing a cap.
\frac{4}{15}
89.84375
21,082
Given the function $f(x) = 4\cos(\omega x - \frac{\pi}{6})\sin \omega x - \cos(2\omega x + \pi)$, where $\omega > 0$. (I) Find the range of the function $y = f(x)$. (II) If $f(x)$ is an increasing function on the interval $[-\frac{3\pi}{2}, \frac{\pi}{2}]$, find the maximum value of $\omega$.
\frac{1}{6}
21.875
21,083
In $\triangle ABC$, the sides opposite to angles $A$, $B$, and $C$ are $a$, $b$, and $c$, respectively. It is known that $c^{2}=a^{2}+b^{2}-4bc\cos C$, and $A-C= \frac {\pi}{2}$. (Ⅰ) Find the value of $\cos C$; (Ⅱ) Find the value of $\cos \left(B+ \frac {\pi}{3}\right)$.
\frac {4-3 \sqrt {3}}{10}
0
21,084
Evaluate the expression \[(5^{1001} + 6^{1002})^2 - (5^{1001} - 6^{1002})^2\] and express it in the form \(k \cdot 30^{1001}\) for some integer \(k\).
24
94.53125
21,085
Let $ ABC$ be an isosceles triangle with $ \left|AB\right| \equal{} \left|AC\right| \equal{} 10$ and $ \left|BC\right| \equal{} 12$ . $ P$ and $ R$ are points on $ \left[BC\right]$ such that $ \left|BP\right| \equal{} \left|RC\right| \equal{} 3$ . $ S$ and $ T$ are midpoints of $ \left[AB\right]$ and $ \left[AC\right]$ , respectively. If $ M$ and $ N$ are the foot of perpendiculars from $ S$ and $ R$ to $ PT$ , then find $ \left|MN\right|$ .
$ \frac {10\sqrt {13} }{13} $
0
21,086
If the letters in the English word "good" are written in the wrong order, then the total number of possible mistakes is _____
11
50.78125
21,087
A 12-hour digital clock has a glitch such that whenever it is supposed to display a 5, it mistakenly displays a 7. For example, when it is 5:15 PM the clock incorrectly shows 7:77 PM. What fraction of the day will the clock show the correct time?
\frac{33}{40}
6.25
21,088
A nine-digit integer is formed by repeating a three-digit integer three times. For example, 123,123,123 or 456,456,456 are integers of this form. What is the greatest common divisor of all nine-digit integers of this form?
1001001
45.3125
21,089
Given $\tan \alpha = 3$, evaluate the expression $2\sin ^{2}\alpha + 4\sin \alpha \cos \alpha - 9\cos ^{2}\alpha$.
\dfrac{21}{10}
91.40625
21,090
Given the geometric sequence $\{a_{n}\}$, $a_{2}$ and $a_{18}$ are the two roots of the equation $x^{2}+15x+16=0$, find the value of $a_{3}a_{10}a_{17}$.
-64
10.15625
21,091
Team A and Team B each have $n$ members. It is known that each member of Team A shakes hands with each member of Team B exactly once (members within the same team do not shake hands). From these $n^2$ handshakes, two are randomly selected. Let event A be the event that exactly 3 members are involved in these two handshakes. If the probability of event A happening, $P$, is less than $\frac{1}{10}$, then the minimum value of $n$ is \_\_\_\_\_\_.
20
28.125
21,092
What is the smallest positive value of $m$ so that the equation $10x^2 - mx + 1980 = 0$ has integral solutions?
290
1.5625
21,093
Suppose \[\frac{1}{x^3-7x^2+11x+15} = \frac{A}{x-5} + \frac{B}{x+3} + \frac{C}{(x+3)^2}\] where $A$, $B$, and $C$ are real constants. What is $A$?
\frac{1}{64}
85.15625
21,094
If 2035 were expressed as a sum of distinct powers of 2, what would be the least possible sum of the exponents of these powers?
50
0
21,095
Let $a$ and $b$ be randomly selected numbers from the set $\{1,2,3,4\}$. Given the line $l:y=ax+b$ and the circle $O:x^{2}+y^{2}=1$, the probability that the line $l$ intersects the circle $O$ is ______. The expected number of intersection points between the line $l$ and the circle $O$ is ______.
\frac{5}{4}
43.75
21,096
In square \(ABCD\), \(P\) is the midpoint of \(DC\) and \(Q\) is the midpoint of \(AD\). If the area of the quadrilateral \(QBCP\) is 15, what is the area of square \(ABCD\)?
24
69.53125
21,097
A point $P$ is chosen at random from the interior of a square $ABCD$. What is the probability that the triangle $ABP$ has a greater area than each of the triangles $BCP$, $CDP$, and $DAP$?
\frac{1}{4}
47.65625
21,098
The value of \(2 \frac{1}{10} + 3 \frac{11}{100} + 4 \frac{111}{1000}\) is
9.321
16.40625
21,099
In $\triangle ABC$, it is known that $\cos C+(\cos A- \sqrt {3}\sin A)\cos B=0$. (1) Find the measure of angle $B$; (2) If $\sin (A- \frac {π}{3})= \frac {3}{5}$, find $\sin 2C$.
\frac {24+7 \sqrt {3}}{50}
0