Unnamed: 0
int64
0
40.3k
problem
stringlengths
10
5.15k
ground_truth
stringlengths
1
1.22k
solved_percentage
float64
0
100
21,700
In a high school's "Campus Microfilm Festival" event, the school will evaluate the films from two aspects: "viewing numbers" and "expert ratings". If a film A is higher than film B in at least one of these aspects, then film A is considered not inferior to film B. It is known that there are 10 microfilms participating. If a film is not inferior to the other 9 films, it is considered an excellent film. Therefore, the maximum possible number of excellent films among these 10 microfilms is __________.
10
87.5
21,701
Let $T$ be the set of all rational numbers $r$, $0<r<1$, that have a repeating decimal expansion in the form $0.efghefgh\ldots=0.\overline{efgh}$, where the digits $e$, $f$, $g$, and $h$ are not necessarily distinct. To write the elements of $T$ as fractions in lowest terms, how many different numerators are required?
6000
10.9375
21,702
Calculate the number of multiplication and addition operations needed to compute the value of the polynomial $f(x) = 3x^6 + 4x^5 + 5x^4 + 6x^3 + 7x^2 + 8x + 1$ at $x = 0.7$ using the Horner's method.
12
17.96875
21,703
If P and Q are points on the line y = 1 - x and the curve y = -e^x, respectively, find the minimum value of |PQ|.
\sqrt{2}
35.9375
21,704
Three congruent isosceles triangles are constructed inside an equilateral triangle with a side length of $\sqrt{2}$. Each base of the isosceles triangle is placed on one side of the equilateral triangle. If the total area of the isosceles triangles equals $\frac{1}{2}$ the area of the equilateral triangle, find the length of one of the two congruent sides of one of the isosceles triangles. A) $\frac{1}{4}$ B) $\frac{1}{3}$ C) $\frac{2\sqrt{2}}{5}$ D) $\frac{1}{2}$ E) $\frac{\sqrt{3}}{4}$
\frac{1}{2}
23.4375
21,705
Given the function $f(x)=a\ln x + x - \frac{1}{x}$, where $a$ is a real constant. (I) If $x=\frac{1}{2}$ is a local maximum point of $f(x)$, find the local minimum value of $f(x)$. (II) If the inequality $a\ln x - \frac{1}{x} \leqslant b - x$ holds for any $-\frac{5}{2} \leqslant a \leqslant 0$ and $\frac{1}{2} \leqslant x \leqslant 2$, find the minimum value of $b$.
\frac{3}{2}
53.125
21,706
In triangle $\triangle ABC$, if $\cos B = \frac{{\sqrt{2}}}{2}$, then the minimum value of $(\tan ^{2}A-3)\sin 2C$ is ______.
4\sqrt{2} - 6
17.1875
21,707
Ten points are spaced evenly along the perimeter of a rectangle measuring $3 \times 2$ units. What is the probability that the two points are one unit apart?
\frac{2}{9}
55.46875
21,708
Each segment with endpoints at the vertices of a regular 100-gon is painted red if there is an even number of vertices between its endpoints, and blue otherwise (in particular, all sides of the 100-gon are red). Numbers are placed at the vertices such that the sum of their squares equals 1, and the products of the numbers at the endpoints are placed on the segments. Then the sum of the numbers on the red segments is subtracted from the sum of the numbers on the blue segments. What is the largest possible result?
1/2
11.71875
21,709
Find the value of the following expressions without using a calculator: \\((1)\\lg 5^{2}+ \frac {2}{3}\lg 8+\lg 5\lg 20+(\lg 2)^{2}\\) \\((2)\\) Let \(2^{a}=5^{b}=m\), and \(\frac {1}{a}+ \frac {1}{b}=2\), find \(m\).
\sqrt {10}
0
21,710
My friend Julia likes numbers that are divisible by 4. How many different last two digits are possible in numbers that Julia likes?
25
84.375
21,711
Given the function \( f(x) \) such that \( f(x+4) + f(x-4) = f(x) \) for all \( x \in \mathbb{R} \), determine the common minimum period of such functions.
24
67.96875
21,712
Suppose a point P(m, n) is formed by using the numbers m and n obtained from rolling a dice twice as its horizontal and vertical coordinates, respectively. The probability that point P(m, n) falls below the line x+y=4 is \_\_\_\_\_\_.
\frac{1}{12}
78.90625
21,713
In the Cartesian coordinate system $xOy$, with $O$ as the pole and the non-negative half-axis of the $x$-axis as the polar axis, a polar coordinate system is established. The polar coordinates of point $P$ are $(3, \frac{\pi}{4})$. The parametric equation of curve $C$ is $\rho=2\cos (\theta- \frac{\pi}{4})$ (with $\theta$ as the parameter). (Ⅰ) Write the Cartesian coordinates of point $P$ and the Cartesian coordinate equation of curve $C$; (Ⅱ) If $Q$ is a moving point on curve $C$, find the minimum distance from the midpoint $M$ of $PQ$ to the line $l$: $2\rho\cos \theta+4\rho\sin \theta= \sqrt{2}$.
\frac{\sqrt{10}-1}{2}
27.34375
21,714
Given the random variable $X \sim N(1, \sigma^{2})$, if $P(0 < x < 3)=0.5$, $P(0 < X < 1)=0.2$, then $P(X < 3)=$\_\_\_\_\_\_\_\_\_\_\_
0.8
42.1875
21,715
Given that $\alpha$ is an angle in the second quadrant, and $P(x, 4)$ is a point on its terminal side, with $\cos\alpha= \frac {1}{5}x$, then $x= \_\_\_\_\_\_$, and $\tan\alpha= \_\_\_\_\_\_$.
-\frac {4}{3}
98.4375
21,716
Find the number of different patterns that can be created by shading exactly three of the nine small triangles, no two of which can share a side, considering patterns that can be matched by rotations or by reflections as the same.
10
4.6875
21,717
Given $$\overrightarrow {a} = (x-1, y)$$, $$\overrightarrow {b} = (x+1, y)$$, and $$|\overrightarrow {a}| + |\overrightarrow {b}| = 4$$ (1) Find the equation of the trajectory C of point M(x, y). (2) Let P be a moving point on curve C, and F<sub>1</sub>(-1, 0), F<sub>2</sub>(1, 0), find the maximum and minimum values of $$\overrightarrow {PF_{1}} \cdot \overrightarrow {PF_{2}}$$. (3) If a line l intersects curve C at points A and B, and a circle with AB as its diameter passes through the origin O, investigate whether the distance from point O to line l is constant. If yes, find the constant value; if no, explain why.
\frac {2 \sqrt {21}}{7}
0
21,718
Given an arithmetic sequence $\{a_n\}$ that satisfies $a_3 + a_5 = 14$ and $a_2a_6 = 33$, find the value of $a_1a_7$.
13
96.875
21,719
A rectangular prism has edges $a=b=8$ units and $c=27$ units. Divide the prism into four parts from which a cube can be assembled.
12
46.09375
21,720
Calculate the sum of the $2023$ roots of $(x-1)^{2023} + 2(x-2)^{2022} + 3(x-3)^{2021} + \cdots + 2022(x-2022)^2 + 2023(x-2023)$.
2021
69.53125
21,721
Given that the sequence ${a_n}$ is an arithmetic sequence with first term $1$ and common difference $2$, (1) Find the general term formula for ${a_n}$; (2) Let $b_n = \frac{1}{a_n \cdot a_{n-1}}$. Denote the sum of the first $n$ terms of the sequence ${b_n}$ as $T_n$. Find the minimum value of $T_n$.
\frac{1}{3}
2.34375
21,722
Given that $a > 0$, $b > 0$, and $a + b = 1$, find the maximum value of $(-\frac{1}{2a} - \frac{2}{b})$.
-\frac{9}{2}
84.375
21,723
Given $α \in \left(0, \frac{\pi}{2}\right)$, $\cos \left(α+ \frac{\pi}{3}\right) = -\frac{2}{3}$, then $\cos α =$ \_\_\_\_\_\_.
\frac{\sqrt{15}-2}{6}
17.1875
21,724
If \(\frac{\left(\frac{a}{c}+\frac{a}{b}+1\right)}{\left(\frac{b}{a}+\frac{b}{c}+1\right)}=11\), and \(a, b\), and \(c\) are positive integers, then the number of ordered triples \((a, b, c)\), such that \(a+2b+c \leq 40\), is:
42
23.4375
21,725
In a box, there are 6 cards labeled with numbers 1, 2, ..., 6. Now, one card is randomly drawn from the box, and its number is denoted as $a$. After adjusting the cards in the box to keep only those with numbers greater than $a$, a second card is drawn from the box. The probability of drawing an odd-numbered card in the first draw and an even-numbered card in the second draw is __________.
\frac{17}{45}
31.25
21,726
Find the coefficient of \(x^9\) in the polynomial expansion of \((1+3x-2x^2)^5\).
240
50.78125
21,727
In acute triangle $\triangle ABC$, the lengths of the sides opposite to angles $A$, $B$, and $C$ are $a$, $b$, and $c$ respectively. Given vectors $\overrightarrow{m} = (2, c)$ and $\overrightarrow{n} = (\frac{b}{2}\cos C - \sin A, \cos B)$, with $b = \sqrt{3}$ and $\overrightarrow{m} \perp \overrightarrow{n}$. (1) Find angle $B$; (2) Find the maximum area of $\triangle ABC$ and the lengths of the other two sides, $a$ and $c$, when the area is maximum.
\sqrt{3}
28.125
21,728
Given that $\alpha \in (0, \frac{\pi}{2})$ and $\beta \in (0, \frac{\pi}{2})$, and $\sin(2\alpha + \beta) = \frac{3}{2} \sin(\beta)$, find the minimum value of $\cos(\beta)$.
\frac{\sqrt{5}}{3}
1.5625
21,729
Given that $(a_n)_{n \equal{} 1}^\infty$ is defined on real numbers with $a_n \not \equal{} 0$, $a_na_{n \plus{} 3} = a_{n \plus{} 2}a_{n \plus{} 5}$, and $a_1a_2 + a_3a_4 + a_5a_6 = 6$. Find the value of $a_1a_2 + a_3a_4 + \cdots + a_{41}a_{42}$.
42
69.53125
21,730
Given $x \gt -1$, $y \gt 0$, and $x+2y=1$, find the minimum value of $\frac{1}{x+1}+\frac{1}{y}$.
\frac{3+2\sqrt{2}}{2}
3.125
21,731
Let the sequence $a_{1}, a_{2}, \cdots$ be defined recursively as follows: $a_{n}=11a_{n-1}-n$ . If all terms of the sequence are positive, the smallest possible value of $a_{1}$ can be written as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. What is $m+n$ ?
121
0
21,732
Let \[f(x)=\int_0^1 |t-x|t \, dt\] for all real $x$ . Sketch the graph of $f(x)$ . What is the minimum value of $f(x)$ ?
\frac{2 - \sqrt{2}}{6}
48.4375
21,733
The distance from Stockholm to Malmö on a map is 120 cm. The scale on the map is 1 cm: 20 km. If there is a stop in between at Lund, which is 30 cm away from Malmö on the same map, how far is it from Stockholm to Malmö passing through Lund, in kilometers?
2400
51.5625
21,734
Given the function $f(x) = \sqrt{3}\sin x \cos x - \sin^2 x$: (1) Find the smallest positive period of $f(x)$ and the intervals where the function is increasing; (2) When $x \in [0, \frac{\pi}{2}]$, find the maximum and minimum values of $f(x)$.
-1
71.09375
21,735
For how many integer values of $n$ between 1 and 180 inclusive does the decimal representation of $\frac{n}{180}$ terminate?
20
58.59375
21,736
The number 519 is formed using the digits 5, 1, and 9. The three digits of this number are rearranged to form the largest possible and then the smallest possible three-digit numbers. What is the difference between these largest and smallest numbers?
792
97.65625
21,737
1. Solve the inequality $\frac{2x+1}{3-x} \geq 1$. 2. Given that $x > 0$ and $y > 0$, and $x + y = 1$, find the minimum value of $\frac{4}{x} + \frac{9}{y}$.
25
86.71875
21,738
Define: For any three-digit natural number $m$, if $m$ satisfies that the tens digit is $1$ greater than the hundreds digit, and the units digit is $1$ greater than the tens digit, then this three-digit number is called an "upward number"; for any three-digit natural number $n$, if $n$ satisfies that the tens digit is $1$ less than the hundreds digit, and the units digit is $1$ less than the tens digit, then this three-digit number is called a "downward number." The multiple of $7$ of an "upward number" $m$ is denoted as $F(m)$, and the multiple of $8$ of a "downward number" $n$ is denoted as $G(n)$. If $\frac{F(m)+G(n)}{18}$ is an integer, then each pair of $m$ and $n$ is called a "seven up eight down number pair." In all "seven up eight down number pairs," the maximum value of $|m-n|$ is ______.
531
81.25
21,739
Connie multiplies a number by 4 and gets 200 as her result. She realizes she should have divided the number by 4 and then added 10 to get the correct answer. Find the correct value of this number.
22.5
81.25
21,740
The Tianfu Greenway is a popular check-in spot for the people of Chengdu. According to statistics, there is a linear relationship between the number of tourists on the Tianfu Greenway, denoted as $x$ (in units of 10,000 people), and the economic income of the surrounding businesses, denoted as $y$ (in units of 10,000 yuan). It is known that the regression line equation is $\hat{y}=12.6x+0.6$. The statistics of the number of tourists on the Tianfu Greenway and the economic income of the surrounding businesses for the past five months are shown in the table below: | $x$ | 2 | 3 | 3.5 | 4.5 | 7 | |-----|-----|-----|-----|-----|-----| | $y$ | 26 | 38 | 43 | 60 | $a$ | The value of $a$ in the table is ______.
88
2.34375
21,741
Let $p, q, r, s, t, u, v, w$ be distinct elements in the set \[\{-8, -6, -4, -1, 1, 3, 5, 14\}.\] What is the minimum possible value of \[ (p+q+r+s)^2 + (t+u+v+w)^2 \] given that the sum $p+q+r+s$ is at least 5?
26
5.46875
21,742
Given that one root of the equation $x^{2}+mx+3=0$ is $1$, find the other root and the value of $m$.
-4
51.5625
21,743
Pompous Vova has an iPhone XXX, and on that iPhone, he has a calculator with voice commands: "Multiply my number by two and subtract two from the result," "Multiply my number by three and then add four," and lastly, "Add seven to my number!" The iPhone knows that initially, Vova's number was 1. How many four-digit numbers could the iPhone XXX theoretically achieve by obediently following Vova's commands?
9000
1.5625
21,744
Given a deck of cards consisting of four red cards numbered 1, 2, 3, 4; four green cards numbered 1, 2, 3, 4; and four yellow cards numbered 1, 2, 3, 4, calculate the probability of drawing a winning pair, where a winning pair consists of two cards of the same color or two cards with the same number.
\frac{5}{11}
70.3125
21,745
Alan, Jason, and Shervin are playing a game with MafsCounts questions. They each start with $2$ tokens. In each round, they are given the same MafsCounts question. The first person to solve the MafsCounts question wins the round and steals one token from each of the other players in the game. They all have the same probability of winning any given round. If a player runs out of tokens, they are removed from the game. The last player remaining wins the game. If Alan wins the first round but does not win the second round, what is the probability that he wins the game? *2020 CCA Math Bonanza Individual Round #4*
\frac{1}{2}
39.84375
21,746
$F, G, H, I,$ and $J$ are collinear in that order such that $FG = 2, GH = 1, HI = 3,$ and $IJ = 7$. If $P$ can be any point in space, what is the smallest possible value of $FP^2 + GP^2 + HP^2 + IP^2 + JP^2$?
102.8
50.78125
21,747
Given that $x$ is the median of the data set $1$, $2$, $3$, $x$, $5$, $6$, $7$, and the average of the data set $1$, $2$, $x^{2}$, $-y$ is $1$, find the minimum value of $y- \frac {1}{x}$.
\frac {23}{3}
44.53125
21,748
The line $l_{1}: x+a^{2}y+6=0$ and the line $l_{2}: (a-2)x+3ay+2a=0$ are parallel, find the value of $a$.
-1
30.46875
21,749
Given $\tan (\alpha+ \frac {π}{3})=2$, find the value of $\frac {\sin (\alpha+ \frac {4π}{3})+\cos ( \frac {2π}{3}-\alpha)}{\cos ( \frac {π}{6}-\alpha )-\sin (\alpha + \frac {5π}{6})}$.
-3
59.375
21,750
On a map, a rhombus-shaped park is represented where the scale is given as 1 inch equals 100 miles. The long diagonal of the park on the map measures 10 inches, and the angle between the diagonals of the rhombus is 60 degrees. Calculate the actual area of the park in square miles. A) $100000\sqrt{3}$ square miles B) $200000\sqrt{3}$ square miles C) $300000\sqrt{3}$ square miles D) $400000\sqrt{3}$ square miles
200000\sqrt{3}
17.1875
21,751
The highest temperatures from April 1st to April 6th in a certain region were 28℃, 21℃, 22℃, 26℃, 28℃, and 25℃, respectively. Calculate the variance of the highest temperature data for these six days.
\frac{22}{3}
13.28125
21,752
Let $a$, $b$, and $c$ be the 3 roots of the polynomial $x^3 - 2x + 4 = 0$. Find $\frac{1}{a-2} + \frac{1}{b-2} + \frac{1}{c-2}$.
-\frac{5}{4}
51.5625
21,753
In a mathematics class, the probability of earning an A is 0.6 times the probability of earning a B, and the probability of earning a C is 1.6 times the probability of earning a B. The probability of earning a D is 0.3 times the probability of earning a B. Assuming that all grades are A, B, C, or D, how many B's will there be in a mathematics class of 50 students?
14
84.375
21,754
Two passenger trains, A and B, are 150 meters and 200 meters long, respectively. They are traveling in opposite directions on parallel tracks. A passenger on train A measures that train B passes by his window in 10 seconds. How long does a passenger on train B see train A pass by his window in seconds?
7.5
80.46875
21,755
Real numbers $u$ and $v$ are each chosen independently and uniformly at random from the interval $(0, 2)$. What is the probability that $\lfloor \log_3 u \rfloor = \lfloor \log_3 v \rfloor$? A) $\frac{1}{9}$ B) $\frac{1}{3}$ C) $\frac{4}{9}$ D) $\frac{5}{9}$ E) $\frac{1}{2}$
\frac{5}{9}
15.625
21,756
Consider the equation $x^2 + 14x = 32$. Find the values of $a$ and $b$ such that the positive solution of the equation has the form $\sqrt{a}-b$, where $a$ and $b$ are positive natural numbers. Calculate $a+b$.
88
0.78125
21,757
Given a basketball player made 8 baskets during a game, each worth 1, 2, or 3 points, calculate the total number of different numbers that could represent the total points scored by the player.
17
69.53125
21,758
A pair of fair 8-sided dice are rolled, yielding numbers $a$ and $b$. Determine the probability that both digits $a$ and $b$ as well as the two-digit number $ab$ formed by them are all divisible by 4.
\frac{1}{16}
66.40625
21,759
Compute $\cos 105^\circ$.
\frac{\sqrt{2} - \sqrt{6}}{4}
96.875
21,760
Given that sin(α + $\frac {π}{4}$) = $\frac { \sqrt {3}}{3}$, and α ∈ (0, π), find the value of cosα.
\frac {-2 \sqrt {3}+ \sqrt {6}}{6}
0
21,761
Three prime numbers are randomly selected without replacement from the first ten prime numbers. What is the probability that the sum of the three selected numbers is odd? Express your answer as a common fraction.
\frac{7}{10}
0
21,762
The line passing through the points (3, 9) and (-1, 1) intersects the x-axis at a point whose x-coordinate is $\frac{9-1}{3-(-1)}$
- \frac{3}{2}
40.625
21,763
Given that the price savings of buying the computer at store A is $15 more than buying it at store B, and store A offers a 15% discount followed by a $90 rebate, while store B offers a 25% discount and no rebate, calculate the sticker price of the computer.
750
76.5625
21,764
Given that the sum of the binomial coefficients of all terms in the expansion of ${(a{x}^{2}+\frac{1}{x})}^{n}$ is $128$, and the sum of all coefficients is $-1$.<br/>$(1)$ Find the values of $n$ and $a$;<br/>$(2)$ Find the constant term in the expansion of $(2x-\frac{1}{{x}^{2}}){(a{x}^{2}+\frac{1}{x})}^{n}$.
448
25.78125
21,765
Elena drives 45 miles in the first hour, but realizes that she will be 45 minutes late if she continues at the same speed. She increases her speed by 20 miles per hour for the rest of the journey and arrives 15 minutes early. Determine the total distance from Elena's home to the convention center.
191.25
5.46875
21,766
A triangle has a base of 20 inches. Two lines are drawn parallel to the base, intersecting the other two sides and dividing the triangle into four regions of equal area. Determine the length of the parallel line closer to the base.
10
57.8125
21,767
A nine-digit integer is formed by repeating a positive three-digit integer three times. For example, 123,123,123 or 456,456,456 are integers of this form. What is the greatest common divisor of all nine-digit integers of this form?
1001001
43.75
21,768
In a right triangle JKL, where $\angle J$ is $90^\circ$, side JL is known to be 12 units, and the hypotenuse KL is 13 units. Calculate $\tan K$ and $\cos L$.
\frac{5}{13}
25
21,769
Among all pairs of real numbers $(x, y)$ such that $\cos \sin x = \cos \sin y$ with $-\frac{15\pi}{2} \le x, y \le \frac{15\pi}{2}$, Ana randomly selects a pair $(X, Y)$. Compute the probability that $X = Y$.
\frac{1}{4}
2.34375
21,770
Let the sum of the first $n$ terms of an arithmetic sequence $\{a_n\}$ be $S_n$. If $a_1 = -3$, $a_{k+1} = \frac{3}{2}$, and $S_k = -12$, then calculate the value of $k$.
13
80.46875
21,771
Given that events $A$ and $B$ are independent, and $P(A)=\frac{1}{2}$, $P(B)=\frac{2}{3}$, find $P(\overline{AB})$.
\frac{1}{6}
12.5
21,772
The diagram shows a quadrilateral \(PQRS\) made from two similar right-angled triangles, \(PQR\) and \(PRS\). The length of \(PQ\) is 3, the length of \(QR\) is 4, and \(\angle PRQ = \angle PSR\). What is the perimeter of \(PQRS\)?
22
20.3125
21,773
For any positive integer $n$, let $a_n$ be the $y$-coordinate of the intersection point between the tangent line of the curve $y=x^n(1-x)$ at $x=2$ and the $y$-axis in the Cartesian coordinate system. Calculate the sum of the first 10 terms of the sequence $\{\log_2 \frac{a_n}{n+1}\}$.
55
71.09375
21,774
In triangle $DEF$, $DE = 8$, $EF = 6$, and $FD = 10$. [asy] defaultpen(1); pair D=(0,0), E=(0,6), F=(8,0); draw(D--E--F--cycle); label("\(D\)",D,SW); label("\(E\)",E,N); label("\(F\)",F,SE); [/asy] Point $Q$ is arbitrarily placed inside triangle $DEF$. What is the probability that $Q$ lies closer to $D$ than to either $E$ or $F$?
\frac{1}{4}
64.0625
21,775
If point $P$ is the golden section point of segment $AB$, and $AP < BP$, $BP=10$, then $AP=\_\_\_\_\_\_$.
5\sqrt{5} - 5
4.6875
21,776
The sum of the digits of the positive integer $N$ is three times the sum of the digits of $N+1$. What is the smallest possible sum of the digits of $N$?
12
35.9375
21,777
Maria subtracts 2 from the number 15, triples her answer, and then adds 5. Liam triples the number 15, subtracts 2 from his answer, and then adds 5. Aisha subtracts 2 from the number 15, adds 5 to her number, and then triples the result. Find the final value for each of Maria, Liam, and Aisha.
54
79.6875
21,778
Given $\binom{18}{11}=31824$, $\binom{18}{12}=18564$, and $\binom{20}{13}=77520$, find the value of $\binom{19}{13}$.
27132
31.25
21,779
Let $x,$ $y,$ and $z$ be three positive real numbers whose sum is 1. If $z = 2x$ and $y = 3x$, find the minimum value of the product $xyz.$
\frac{1}{36}
100
21,780
Four male students and five female students are lined up in a row. Calculate the number of different arrangements with alternating male and female students.
2880
26.5625
21,781
Let $x$, $y$, and $z$ be real numbers greater than $1$, and let $z$ be the geometric mean of $x$ and $y$. The minimum value of $\frac{\log z}{4\log x} + \frac{\log z}{\log y}$ is \_\_\_\_\_\_.
\frac{9}{8}
94.53125
21,782
In $\triangle ABC$, $A=120^{\circ}$, $c=5$, $a=7$, find the value of $\frac{\sin B}{\sin C}$____.
\frac{3}{5}
60.15625
21,783
In triangle \( \triangle ABC \), \( BD \) is a median, \( CF \) intersects \( BD \) at \( E \), and \( BE = ED \). Point \( F \) is on \( AB \), and if \( BF = 5 \), then the length of \( BA \) is:
15
11.71875
21,784
The four-corner codes for the characters "华", "杯", and "赛" are $2440$, $4199$, and $3088$, respectively. By concatenating these, the encoded value for "华杯赛" is $244041993088$. If the digits in the odd positions remain unchanged and the digits in the even positions are replaced with their complements with respect to 9 (e.g., 0 becomes 9, 1 becomes 8, etc.), what is the new encoded value for "华杯赛"?
254948903981
1.5625
21,785
Given a harmonic progression with the first three terms 3, 4, 6, find the value of $S_4$.
25
88.28125
21,786
Given that $y=\left(m-2\right)x+(m^{2}-4)$ is a direct proportion function, find the possible values of $m$.
-2
49.21875
21,787
A merchant purchases a gadget for $30$ less $15\%$. He aims to sell the gadget at a gain of $25\%$ on his cost after allowing a $10\%$ discount on his marked price. At what price, in dollars, should the gadget be marked?
35.42
85.9375
21,788
Two people, A and B, play a guessing game. First, A thinks of a number denoted as $a$, then B guesses the number A thought of, denoting B's guess as $b$. Both $a$ and $b$ belong to the set $\{0,1,2,…,9\}$. If $|a-b|=1$, then A and B are said to have a "telepathic connection". If two people are randomly chosen to play this game, the probability that they have a "telepathic connection" is ______.
\dfrac {9}{50}
98.4375
21,789
Given the sequence $\{a_n\}$ that satisfies $a_2=102$, $a_{n+1}-a_{n}=4n$ ($n \in \mathbb{N}^*$), find the minimum value of the sequence $\{\frac{a_n}{n}\}$.
26
85.15625
21,790
Determine the number of ways to arrange the letters of the word "BALLOONIST".
907200
8.59375
21,791
Given that $a,b$ are positive real numbers, and $({(a-b)}^{2}=4{{(ab)}^{3}})$, find the minimum value of $\dfrac{1}{a}+\dfrac{1}{b}$ .
2\sqrt{2}
8.59375
21,792
Given that there are 6 male doctors and 3 female nurses who need to be divided into three medical teams, where each team consists of two male doctors and 1 female nurse, find the number of different arrangements.
540
7.03125
21,793
In triangle \(ABC\), the sides \(a\), \(b\), and \(c\) are opposite to angles \(A\), \(B\), and \(C\) respectively, with \(a-2b=0\). 1. If \(B= \dfrac{\pi}{6}\), find \(C\). 2. If \(C= \dfrac{2}{3}\pi\) and \(c=14\), find the area of \(\triangle ABC\).
14 \sqrt{3}
57.03125
21,794
In the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, find the slope of the line containing a chord that has the point $M(-2,1)$ as its midpoint.
\frac{9}{8}
67.96875
21,795
Max sold glasses of lemonade for 25 cents each. He sold 41 glasses on Saturday and 53 glasses on Sunday. What were his total sales for these two days?
$23.50
0
21,796
Given a regular decagon, calculate the number of distinct points in the interior of the decagon where two or more diagonals intersect.
210
69.53125
21,797
The fenced area of a yard is an 18.5-foot by 14-foot rectangular region with a 3.5-foot by 3.5-foot square cutout. Calculate the area of the region within the fence, in square feet.
246.75
0
21,798
A component is made up of 3 identical electronic components in parallel. The component works normally if at least one of the electronic components works normally. It is known that the service life $\xi$ (in years) of this type of electronic component follows a normal distribution, and the probability that the service life is less than 3 years and more than 9 years is both 0.2. What is the probability that the component can work normally for more than 9 years?
0.488
64.84375
21,799
Find the number of non-positive integers for which the values of the quadratic polynomial \(2x^2 + 2021x + 2019\) are non-positive.
1010
35.15625