Unnamed: 0
int64
0
40.3k
problem
stringlengths
10
5.15k
ground_truth
stringlengths
1
1.22k
solved_percentage
float64
0
100
24,200
A burger at Ricky C's now weighs 180 grams, of which 45 grams are filler. What percent of the burger is not filler? Additionally, what percent of the burger is filler?
25\%
47.65625
24,201
If the set $\{1, a, \frac{b}{a}\}$ equals the set $\{0, a^2, a+b\}$, then find the value of $a^{2017} + b^{2017}$.
-1
31.25
24,202
Each of the eight letters in "GEOMETRY" is written on its own square tile and placed in a bag. What is the probability that a tile randomly selected from the bag will have a letter on it that is in the word "ANGLE"? Express your answer as a common fraction.
\frac{1}{4}
29.6875
24,203
Let $a$ , $b$ , $c$ , $d$ , $e$ , $f$ and $g$ be seven distinct positive integers not bigger than $7$ . Find all primes which can be expressed as $abcd+efg$
179
96.09375
24,204
Fill the letters a, b, and c into a 3×3 grid such that each letter does not repeat in any row or column. The number of different filling methods is ___.
12
85.9375
24,205
In the rectangular coordinate system $xOy$, the parametric equation of line $l$ is $\begin{cases} x=t \\ y=t+1 \end{cases}$ (where $t$ is the parameter), and the parametric equation of curve $C$ is $\begin{cases} x=2+2\cos \phi \\ y=2\sin \phi \end{cases}$ (where $\phi$ is the parameter). Establish a polar coordinate system with $O$ as the pole and the non-negative semi-axis of the $x$-axis as the polar axis. (I) Find the polar coordinate equations of line $l$ and curve $C$; (II) It is known that ray $OP$: $\theta_1=\alpha$ (where $0<\alpha<\frac{\pi}{2}$) intersects curve $C$ at points $O$ and $P$, and ray $OQ$: $\theta_2=\alpha+\frac{\pi}{2}$ intersects line $l$ at point $Q$. If the area of $\triangle OPQ$ is $1$, find the value of $\alpha$ and the length of chord $|OP|$.
2\sqrt{2}
36.71875
24,206
The sequence ${a_n}$ satisfies $a_1=1$, $a_{n+1} \sqrt { \frac{1}{a_{n}^{2}}+4}=1$. Let $S_{n}=a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}$. If $S_{2n+1}-S_{n}\leqslant \frac{m}{30}$ holds for any $n\in\mathbb{N}^{*}$, find the minimum value of the positive integer $m$.
10
7.03125
24,207
An easel in a corner hosts three $30 \text{ cm} \times 40 \text{ cm}$ shelves, with equal distances between neighboring shelves. Three spiders resided where the two walls and the middle shelf meet. One spider climbed diagonally up to the corner of the top shelf on one wall, another climbed diagonally down to the corner of the lower shelf on the other wall. The third spider stayed in place and observed that from its position, the other two spiders appeared at an angle of $120^\circ$. What is the distance between the shelves? (The distance between neighboring shelves is the same.)
35
5.46875
24,208
Given integers $a$ and $b$ satisfy: $a-b$ is a prime number, and $ab$ is a perfect square. When $a \geq 2012$, find the minimum value of $a$.
2025
35.9375
24,209
Gavin has a collection of 50 songs that are each 3 minutes in length and 50 songs that are each 5 minutes in length. What is the maximum number of songs from his collection that he can play in 3 hours?
56
10.9375
24,210
In a different factor tree, each value is also the product of the two values below it, unless the value is a prime number. Determine the value of $X$ for this factor tree: [asy] draw((-1,-.3)--(0,0)--(1,-.3),linewidth(1)); draw((-2,-1.3)--(-1.5,-.8)--(-1,-1.3),linewidth(1)); draw((1,-1.3)--(1.5,-.8)--(2,-1.3),linewidth(1)); label("X",(0,0),N); label("Y",(-1.5,-.8),N); label("2",(-2,-1.3),S); label("Z",(1.5,-.8),N); label("Q",(-1,-1.3),S); label("7",(1,-1.3),S); label("R",(2,-1.3),S); draw((-1.5,-2.3)--(-1,-1.8)--(-.5,-2.3),linewidth(1)); draw((1.5,-2.3)--(2,-1.8)--(2.5,-2.3),linewidth(1)); label("5",(-1.5,-2.3),S); label("3",(-.5,-2.3),S); label("11",(1.5,-2.3),S); label("2",(2.5,-2.3),S); [/asy]
4620
42.96875
24,211
When simplified, $\log_{16}{32} \cdot \log_{16}{\frac{1}{2}}$ becomes: **A)** $-\frac{1}{4}$ **B)** $-\frac{5}{16}$ **C)** $\frac{5}{16}$ **D)** $-\frac{1}{16}$ **E)** $0$
-\frac{5}{16}
95.3125
24,212
A pentagon is formed by placing an equilateral triangle atop a square. Each side of the square is equal to the height of the equilateral triangle. What percent of the area of the pentagon is the area of the equilateral triangle?
\frac{3(\sqrt{3} - 1)}{6} \times 100\%
0
24,213
Let $a + 3 = (b-1)^2$ and $b + 3 = (a-1)^2$. Assuming $a \neq b$, determine the value of $a^2 + b^2$. A) 5 B) 10 C) 15 D) 20 E) 25
10
42.1875
24,214
The sum of four positive integers that form an arithmetic sequence is 58. Of all such possible sequences, what is the greatest possible third term?
19
46.875
24,215
Given the function $f(x)= \frac {1}{2}x^{2}-2\ln x+a(a\in\mathbb{R})$, $g(x)=-x^{2}+3x-4$. $(1)$ Find the intervals of monotonicity for $f(x)$; $(2)$ Let $a=0$, the line $x=t$ intersects the graphs of $f(x)$ and $g(x)$ at points $M$ and $N$ respectively. When $|MN|$ reaches its minimum value, find the value of $t$; $(3)$ If for any $x\in(m,n)$ (where $n-m\geqslant 1$), the graphs of the two functions are on opposite sides of the line $l$: $x-y+s=0$ (without intersecting line $l$), then these two functions are said to have an "EN channel". Investigate whether $f(x)$ and $g(x)$ have an "EN channel", and if so, find the range of $x$; if not, please explain why.
\frac {3+ \sqrt {33}}{6}
0
24,216
Given vectors $\overrightarrow{a}=(m,1)$ and $\overrightarrow{b}=(4-n,2)$, with $m > 0$ and $n > 0$. If $\overrightarrow{a}$ is parallel to $\overrightarrow{b}$, find the minimum value of $\frac{1}{m}+\frac{8}{n}$.
\frac{9}{2}
84.375
24,217
In a polar coordinate system, the equation of curve C<sub>1</sub> is given by $\rho^2 - 2\rho(\cos\theta - 2\sin\theta) + 4 = 0$. With the pole as the origin and the polar axis in the direction of the positive x-axis, a Cartesian coordinate system is established using the same unit length. The parametric equation of curve C<sub>2</sub> is given by $$ \begin{cases} 5x = 1 - 4t \\ 5y = 18 + 3t \end{cases} $$ where $t$ is the parameter. (Ⅰ) Find the Cartesian equation of curve C<sub>1</sub> and the general equation of curve C<sub>2</sub>. (Ⅱ) Let point P be a moving point on curve C<sub>2</sub>. Construct two tangent lines to curve C<sub>1</sub> passing through point P. Determine the minimum value of the cosine of the angle formed by these two tangent lines.
\frac{7}{8}
2.34375
24,218
Given $cosθ+cos(θ+\frac{π}{3})=\frac{\sqrt{3}}{3},θ∈(0,\frac{π}{2})$, find $\sin \theta$.
\frac{-1 + 2\sqrt{6}}{6}
26.5625
24,219
Let point $O$ be inside $\triangle ABC$ and satisfy $4\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$. Determine the probability that a randomly thrown bean into $\triangle ABC$ lands in $\triangle OBC$.
\dfrac{2}{3}
2.34375
24,220
In a rectangle $ABCD, E$ is the midpoint of $AB, F$ is a point on $AC$ such that $BF$ is perpendicular to $AC$ , and $FE$ perpendicular to $BD$ . Suppose $BC = 8\sqrt3$ . Find $AB$ .
24
35.9375
24,221
Given that x > 0, y > 0, z > 0, and x + $\sqrt{3}$y + z = 6, find the minimum value of x³ + y² + 3z.
\frac{37}{4}
33.59375
24,222
In a book, the pages are numbered from 1 through $n$. When summing the page numbers, one page number was mistakenly added three times instead of once, resulting in an incorrect total sum of $2046$. Identify the page number that was added three times.
15
38.28125
24,223
Given $sin( \frac {\pi}{6}-\alpha)-cos\alpha= \frac {1}{3}$, find $cos(2\alpha+ \frac {\pi}{3})$.
\frac {7}{9}
38.28125
24,224
Let $\{a_n\}_{n\geq 1}$ be a sequence defined by $a_n=\int_0^1 x^2(1-x)^ndx$ . Find the real value of $c$ such that $\sum_{n=1}^{\infty} (n+c)(a_n-a_{n+1})=2.$
22
0.78125
24,225
Given the function $f(x)= \frac {x}{1+x}$, then $f(1)+f(2)+f(3)+\ldots+f(2017)+f( \frac {1}{2})+f( \frac {1}{3})+\ldots+f( \frac {1}{2017})=$ \_\_\_\_\_\_ .
\frac {4033}{2}
63.28125
24,226
In $\triangle ABC$, $A=30^{\circ}$, $AB=2$, $BC=1$, then the area of $\triangle ABC$ is equal to $\boxed{\text{answer}}$.
\frac{\sqrt{3}}{2}
45.3125
24,227
Say that an integer $B$ is yummy if there exist several consecutive integers, including $B$, that add up to 2023. What is the smallest yummy integer?
-2022
92.96875
24,228
Given a triangle $\triangle ABC$ whose side lengths form an arithmetic sequence with a common difference of $2$, and the sine of its largest angle is $\frac{\sqrt{3}}{2}$, find the perimeter of this triangle.
15
88.28125
24,229
Given vectors $\overrightarrow{a}=(\frac{1}{2},\frac{1}{2}\sin x+\frac{\sqrt{3}}{2}\cos x)$, $\overrightarrow{b}=(1,y)$, if $\overrightarrow{a}\parallel\overrightarrow{b}$, let the function be $y=f(x)$. $(1)$ Find the smallest positive period of the function $y=f(x)$; $(2)$ Given an acute triangle $ABC$ with angles $A$, $B$, and $C$, if $f(A-\frac{\pi}{3})=\sqrt{3}$, side $BC= \sqrt{7}$, $\sin B=\frac{\sqrt{21}}{7}$, find the length of $AC$ and the area of $\triangle ABC$.
\frac{3\sqrt{3}}{2}
54.6875
24,230
Two wholesalers, A and B, sell the same brand of teapots and teacups at the same price, with the teapot priced at 30 yuan each and the teacup at 5 yuan each. Both stores are offering a promotional sale: Store A has a 'buy one get one free' promotion (buy a teapot and get a teacup for free), while Store B has a 10% discount on the entire store. A tea set store needs to buy 5 teapots and a number of teacups (not less than 5). (1) Assuming that the tea set store buys $x$ teacups $(x>5)$, the cost at Store A and Store B would be _______ yuan and _______ yuan respectively; (express with an algebraic expression involving $x$) (2) When the tea set store needs to buy 10 teacups, which store offers a better price? Please explain. (3) How many teacups does the tea set store have to buy for the cost to be the same at both stores?
20
91.40625
24,231
In the Cartesian coordinate system $xOy$, with the origin as the pole and the positive half-axis of $x$ as the polar axis, the polar equation of circle $C$ is $$\rho=4 \sqrt {2}\sin\left( \frac {3\pi}{4}-\theta\right)$$ (1) Convert the polar equation of circle $C$ into a Cartesian coordinate equation; (2) Draw a line $l$ with slope $\sqrt {3}$ through point $P(0,2)$, intersecting circle $C$ at points $A$ and $B$. Calculate the value of $$\left| \frac {1}{|PA|}- \frac {1}{|PB|}\right|.$$
\frac {1}{2}
60.15625
24,232
Given that $\sin \alpha = \frac{4}{5}$ and $\alpha$ is an angle in the second quadrant, find the value of $\cot (\frac{\pi}{4} - \frac{\alpha}{2})$.
-3
75
24,233
Given a set of data 3, 4, 5, a, b with an average of 4 and a median of m, where the probability of selecting the number 4 from the set 3, 4, 5, a, b, m is $\frac{2}{3}$, calculate the variance of the set 3, 4, 5, a, b.
\frac{2}{5}
61.71875
24,234
Four foreign guests visit a school and need to be accompanied by two security personnel. Six people enter the school gate in sequence. For safety reasons, the two security personnel must be at the beginning and the end. If the guests A and B must be together, calculate the total number of sequences for the six people entering.
24
28.125
24,235
The yearly changes in the population census of a city for five consecutive years are, respectively, 20% increase, 10% increase, 30% decrease, 20% decrease, and 10% increase. Calculate the net change over these five years, to the nearest percent.
-19\%
14.0625
24,236
A class of 54 students in the fifth grade took a group photo. The fixed price is 24.5 yuan for 4 photos. Additional prints cost 2.3 yuan each. If every student in the class wants one photo, how much money in total needs to be paid?
139.5
82.8125
24,237
Given that the two foci of an ellipse and the endpoints of its minor axis precisely form the four vertices of a square, calculate the eccentricity of the ellipse.
\frac{\sqrt{2}}{2}
92.1875
24,238
Given that six coal freight trains are organized into two groups of three trains, with trains 'A' and 'B' in the same group, determine the total number of different possible departure sequences for the six trains.
144
18.75
24,239
Given a woman was x years old in the year $x^2$, determine her birth year.
1980
33.59375
24,240
Let $a,$ $b,$ and $c$ be angles such that \begin{align*} \sin a &= \cot b, \\ \sin b &= \cot c, \\ \sin c &= \cot a. \end{align*} Find the largest possible value of $\cos a.$
\sqrt{\frac{3 - \sqrt{5}}{2}}
3.125
24,241
Given that $F$ is the right focus of the hyperbola $\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 (a > 0, b > 0)$, and the line $l$ passing through the origin intersects the hyperbola at points $M$ and $N$, with $\overrightarrow{MF} \cdot \overrightarrow{NF} = 0$. If the area of $\triangle MNF$ is $ab$, find the eccentricity of the hyperbola.
\sqrt{2}
46.09375
24,242
For how many integer values of $n$ between 1 and 180 inclusive does the decimal representation of $\frac{n}{180}$ terminate?
60
34.375
24,243
Given two lines \\({{l}\_{1}}:(a-1)x+2y+3=0\\) and \\({{l}\_{2}}:x+ay+3=0\\) are parallel, then \\(a=\\)_______.
-1
25.78125
24,244
Xiao Ming observed a faucet continuously dripping water due to damage. To investigate the waste caused by the water leakage, Xiao Ming placed a graduated cylinder under the faucet to collect water. He recorded the total amount of water in the cylinder every minute, but due to a delay in starting the timer, there was already a small amount of water in the cylinder at the beginning. Therefore, he obtained a set of data as shown in the table below: | Time $t$ (minutes) | 1 | 2 | 3 | 4 | 5 | ... | |---------------------|---|---|---|---|---|----| | Total water amount $y$ (milliliters) | 7 | 12 | 17 | 22 | 27 | ... | $(1)$ Investigation: Based on the data in the table above, determine which one of the functions $y=\frac{k}{t}$ and $y=kt+b$ (where $k$ and $b$ are constants) can correctly reflect the functional relationship between the total water amount $y$ and time $t$. Find the expression of $y$ in terms of $t$. $(2)$ Application: ① Estimate how many milliliters of water will be in the cylinder when Xiao Ming measures it at the 20th minute. ② A person drinks approximately 1500 milliliters of water per day. Estimate how many days the water leaked from this faucet in a month (30 days) can supply one person.
144
3.90625
24,245
Let $p,$ $q,$ $r$ be the roots of the cubic polynomial $x^3 - 3x - 2 = 0.$ Find \[p(q - r)^2 + q(r - p)^2 + r(p - q)^2.\]
12
0
24,246
Consider a regular polygon with $2^n$ sides, for $n \ge 2$ , inscribed in a circle of radius $1$ . Denote the area of this polygon by $A_n$ . Compute $\prod_{i=2}^{\infty}\frac{A_i}{A_{i+1}}$
\frac{2}{\pi}
60.9375
24,247
In a class, no two boys were born on the same day of the week and no two girls were born in the same month. If another child were to join the class, this would no longer be true. How many children are there in the class?
19
77.34375
24,248
If the cotangents of the three interior angles \(A, B, C\) of triangle \(\triangle ABC\), denoted as \(\cot A, \cot B, \cot C\), form an arithmetic sequence, then the maximum value of angle \(B\) is \(\frac{\pi}{3}\).
\frac{\pi}{3}
92.96875
24,249
At a regional science fair, 25 participants each have their own room in the same hotel, with room numbers from 1 to 25. All participants have arrived except those assigned to rooms 14 and 20. What is the median room number of the other 23 participants?
12
7.03125
24,250
The following is Xiaoying's process of solving a linear equation. Please read carefully and answer the questions. 解方程:$\frac{{2x+1}}{3}-\frac{{5x-1}}{6}=1$ Solution: To eliminate the denominators, we get $2\left(2x+1\right)-\left(5x-1\right)=1$ ... Step 1 Expanding the brackets, we get $4x+2-5x+1=1$ ... Step 2 Rearranging terms, we get $4x-5x=1-1-2$ ... Step 3 Combining like terms, we get $-x=-2$, ... Step 4 Dividing both sides of the equation by $-1$, we get $x=2$ ... Step 5 $(1)$ The basis of the third step in the above solution process is ______. $A$. the basic property of equations $B$. the basic property of inequalities $C$. the basic property of fractions $D$. the distributive property of multiplication $(2)$ Errors start to appear from the ______ step; $(3)$ The correct solution to the equation is ______.
x = -3
38.28125
24,251
In a right triangle, one of the acute angles $\beta$ satisfies \[\tan \frac{\beta}{2} = \frac{1}{\sqrt[3]{3}}.\] Let $\phi$ be the angle between the median and the angle bisector drawn from this acute angle $\beta$. Calculate $\tan \phi.$
\frac{1}{2}
8.59375
24,252
What is the smallest positive integer $n$ such that $\frac{n}{n+150}$ is equal to a terminating decimal?
10
43.75
24,253
A square is inscribed in the ellipse \[\frac{x^2}{5} + \frac{y^2}{10} = 1,\] so that its sides are parallel to the coordinate axes. Find the area of the square.
\frac{40}{3}
83.59375
24,254
The increasing sequence of positive integers $b_1,$ $b_2,$ $b_3,$ $\dots$ follows the rule \[b_{n + 2} = b_{n + 1} + b_n\]for all $n \ge 1.$ If $b_9 = 544,$ then find $b_{10}.$
883
0
24,255
Given the function $$f(x)= \begin{cases} 2\cos \frac {\pi }{3}x & x\leq 2000 \\ x-100 & x>2000\end{cases}$$, then $f[f(2010)]$ equals \_\_\_\_\_\_\_\_\_\_\_\_.
-1
95.3125
24,256
Let \( p, q, r, \) and \( s \) be positive real numbers such that \[ \begin{array}{c@{\hspace{3pt}}c@{\hspace{3pt}}c@{\hspace{3pt}}c@{\hspace{3pt}}c} p^2+q^2&=&r^2+s^2&=&2512, \\ pr&=&qs&=&1225. \end{array} \] If \( T = p+q+r+s \), compute the value of \( \lfloor T \rfloor \).
140
42.1875
24,257
Consider a sequence of consecutive integer sets where each set starts one more than the last element of the preceding set and each set has one more element than the one before it. For a specific n where n > 0, denote T_n as the sum of the elements in the nth set. Find T_{30}.
13515
64.0625
24,258
What percent of the positive integers less than or equal to $120$ have no remainders when divided by $6$?
16.\overline{6}\%
0
24,259
In the polar coordinate system, let the point on the circle $ \begin{cases}x= \frac{ \sqrt{6}}{2}\cos \theta \\ y= \frac{ \sqrt{6}}{2}\sin \theta \end{cases} (\theta \text{ is a parameter}) $ have a distance $d$ from the line $ρ( \sqrt{7}\cos θ-\sin θ)= \sqrt{2}$. Find the maximum value of $d$.
\frac{ \sqrt{6}}{2} + \frac{1}{2}
0
24,260
If a restaurant offers 15 different dishes, and Yann and Camille each decide to order either one or two different dishes, how many different combinations of meals can they order? Assume that the dishes can be repeated but the order in which each person orders the dishes matters.
57600
41.40625
24,261
Given the area of rectangle $ABCD$ is $8$, when the perimeter of the rectangle is minimized, fold $\triangle ACD$ along the diagonal $AC$, then the surface area of the circumscribed sphere of the pyramid $D-ABC$ is ______.
16\pi
28.125
24,262
How many distinct four-digit numbers are divisible by 5 and have 75 as their last two digits?
90
93.75
24,263
Given that 70% of the light bulbs are produced by Factory A with a pass rate of 95%, and 30% are produced by Factory B with a pass rate of 80%, calculate the probability of buying a qualified light bulb produced by Factory A from the market.
0.665
10.15625
24,264
In the Cartesian coordinate system $xOy$, the curve $C$ is given by the parametric equations $\begin{cases} x= \sqrt {3}+2\cos \alpha \\ y=1+2\sin \alpha\end{cases}$ (where $\alpha$ is the parameter). A polar coordinate system is established with the origin of the Cartesian coordinate system as the pole and the positive $x$-axis as the polar axis. $(1)$ Find the polar equation of curve $C$; $(2)$ Lines $l_{1}$ and $l_{2}$ pass through the origin $O$ and intersect curve $C$ at points $A$ and $B$ other than the origin. If $\angle AOB= \dfrac {\pi}{3}$, find the maximum value of the area of $\triangle AOB$.
3 \sqrt {3}
0
24,265
Given a geometric sequence with positive terms $\{a_n\}$ and a common ratio of $2$, if $a_ma_n=4a_2^2$, then the minimum value of $\frac{2}{m}+ \frac{1}{2n}$ equals \_\_\_\_\_\_.
\frac{3}{4}
57.8125
24,266
A tourist attraction estimates that the number of tourists $p(x)$ (in ten thousand people) from January 2013 onwards in the $x$-th month is approximately related to $x$ as follows: $p(x)=-3x^{2}+40x (x \in \mathbb{N}^{*}, 1 \leqslant x \leqslant 12)$. The per capita consumption $q(x)$ (in yuan) in the $x$-th month is approximately related to $x$ as follows: $q(x)= \begin{cases}35-2x & (x \in \mathbb{N}^{*}, 1 \leqslant x \leqslant 6) \\ \frac{160}{x} & (x \in \mathbb{N}^{*}, 7 \leqslant x \leqslant 12)\end{cases}$. Find the month in 2013 with the maximum total tourism consumption and the maximum total consumption for that month.
3125
13.28125
24,267
For any two non-zero plane vectors $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$, define $\overrightarrow{\alpha}○\overrightarrow{\beta}=\dfrac{\overrightarrow{\alpha}⋅\overrightarrow{\beta}}{\overrightarrow{\beta}⋅\overrightarrow{\beta}}$. If plane vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ satisfy $|\overrightarrow{a}|\geqslant |\overrightarrow{b}| > 0$, the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ is $\theta\in(0,\dfrac{\pi}{4})$, and both $\overrightarrow{a}○\overrightarrow{b}$ and $\overrightarrow{b}○\overrightarrow{a}$ are in the set $\{\dfrac{n}{2}|n\in\mathbb{Z}\}$, find the value of $\overrightarrow{a}○\overrightarrow{b}$.
\dfrac{3}{2}
7.03125
24,268
A circle has radius $52$ and center $O$ . Points $A$ is on the circle, and point $P$ on $\overline{OA}$ satisfies $OP = 28$ . Point $Q$ is constructed such that $QA = QP = 15$ , and point $B$ is constructed on the circle so that $Q$ is on $\overline{OB}$ . Find $QB$ . *Proposed by Justin Hsieh*
11
35.9375
24,269
A right circular cone is inverted and filled with water to 2/3 of its height. What percent of the cone's volume and surface area (not including the base) are filled with water and exposed to air, respectively? Express your answer as a decimal to the nearest ten-thousandth.
55.5556\%
27.34375
24,270
In the arithmetic sequence $\{a_n\}$, the common difference $d > 0$, $a_{2009}$ and $a_{2010}$ are the two roots of the equation $x^2 - 3x - 5 = 0$, and $S_n$ is the sum of the first $n$ terms of the sequence $\{a_n\}$. Determine the smallest natural number $n$ that satisfies the condition $S_n > 0$.
4018
60.15625
24,271
Given a basketball player has a probability of $a$ for scoring 3 points in a shot, $b$ for scoring 2 points, and $c$ for not scoring any points, where $a, b, c \in (0, 1)$, and the mathematical expectation for scoring points in one shot is 2, determine the minimum value of $\frac{2}{a} + \frac{1}{3b}$.
\frac{16}{3}
32.8125
24,272
Players A and B participate in a two-project competition, with each project adopting a best-of-five format (the first player to win 3 games wins the match, and the competition ends), and there are no ties in each game. Based on the statistics of their previous matches, player A has a probability of $\frac{2}{3}$ of winning each game in project $A$, and a probability of $\frac{1}{2}$ of winning each game in project $B$, with no influence between games. $(1)$ Find the probability of player A winning in project $A$ and project $B$ respectively. $(2)$ Let $X$ be the number of projects player A wins. Find the distribution and mathematical expectation of $X$.
\frac{209}{162}
39.84375
24,273
What percent of the square $EFGH$ is shaded? All angles in the diagram are right angles, and the side length of the square is 8 units. In this square: - A smaller square in one corner measuring 2 units per side is shaded. - A larger square region, excluding a central square of side 3 units, occupying from corners (2,2) to (6,6) is shaded. - The remaining regions are not shaded.
17.1875\%
82.8125
24,274
Express $7^{1992}$ in decimal, then its last three digits are.
201
39.84375
24,275
Given that the two lines $ax+2y+6=0$ and $x+(a-1)y+(a^{2}-1)=0$ are parallel, determine the set of possible values for $a$.
\{-1\}
18.75
24,276
In quadrilateral $EFGH$, $EF = 6$, $FG = 18$, $GH = 6$, and $HE = x$ where $x$ is an integer. Calculate the value of $x$.
12
11.71875
24,277
Given that a class has 5 students participating in the duty roster from Monday to Friday, with one student arranged each day, student A can only be arranged on Monday or Tuesday, and student B cannot be arranged on Friday, calculate the number of different duty arrangements for them.
36
64.0625
24,278
The houses on the south side of Crazy Street are numbered in increasing order starting at 1 and using consecutive odd numbers, except that odd numbers that contain the digit 3 are missed out. What is the number of the 20th house on the south side of Crazy Street? A) 41 B) 49 C) 51 D) 59 E) 61
59
89.84375
24,279
Let $\triangle ABC$ have sides $a$, $b$, $c$ opposite angles $A$, $B$, $C$ respectively, given that $a^{2}+2b^{2}=c^{2}$, then $\dfrac {\tan C}{\tan A}=$ ______ ; the maximum value of $\tan B$ is ______.
\dfrac { \sqrt {3}}{3}
0
24,280
Given $$\frac{\cos\alpha + \sin\alpha}{\cos\alpha - \sin\alpha} = 2$$, find the value of $$\frac{1 + \sin4\alpha - \cos4\alpha}{1 + \sin4\alpha + \cos4\alpha}$$.
\frac{3}{4}
89.0625
24,281
Given the function $f(x)=\frac{\cos 2x}{\sin(x+\frac{π}{4})}$. (I) Find the domain of the function $f(x)$; (II) If $f(x)=\frac{4}{3}$, find the value of $\sin 2x$.
\frac{1}{9}
32.03125
24,282
There is a box containing red, blue, green, and yellow balls. It is known that the number of red balls is twice the number of blue balls, the number of blue balls is twice the number of green balls, and the number of yellow balls is more than seven. How many yellow balls are in the box if there are 27 balls in total?
20
55.46875
24,283
Determine the maximum and minimum values of the function $f(x)=x^3 - \frac{3}{2}x^2 + 5$ on the interval $[-2, 2]$.
-9
12.5
24,284
Given that \\(y=f(x)+x^{2}\\) is an odd function, and \\(f(1)=1\\), if \\(g(x)=f(x)+2\\), then \\(g(-1)=\\) .
-1
100
24,285
Find the volume of the region in space defined by \[|x + y + 2z| + |x + y - 2z| \le 12\] and $x, y, z \ge 0$.
54
64.84375
24,286
Given the function $f(x)= \begin{cases} kx^{2}+2x-1, & x\in (0,1] \\ kx+1, & x\in (1,+\infty) \end{cases}$ has two distinct zeros $x_{1}$ and $x_{2}$, then the maximum value of $\dfrac {1}{x_{1}}+ \dfrac {1}{x_{2}}$ is ______.
\dfrac {9}{4}
3.90625
24,287
Convert the decimal number 89 to binary.
1011001
74.21875
24,288
Light of a blue laser (wavelength $\lambda=475 \, \text{nm}$ ) goes through a narrow slit which has width $d$ . After the light emerges from the slit, it is visible on a screen that is $ \text {2.013 m} $ away from the slit. The distance between the center of the screen and the first minimum band is $ \text {765 mm} $ . Find the width of the slit $d$ , in nanometers. *(Proposed by Ahaan Rungta)*
1250
89.84375
24,289
Find the minimum value of the distance $|AB|$ where point $A$ is the intersection of the line $y=a$ and the line $y=2x+2$, and point $B$ is the intersection of the line $y=a$ and the curve $y=x+\ln x$.
\frac{3}{2}
10.15625
24,290
In $\triangle ABC$, the sides opposite to angles $A$, $B$, $C$ are $a$, $b$, $c$ respectively, and $b=2$. (1) If angles $A$, $B$, $C$ form an arithmetic progression, find the radius of the circumcircle of $\triangle ABC$. (2) If sides $a$, $b$, $c$ form an arithmetic progression, find the maximum area of $\triangle ABC$.
\sqrt{3}
77.34375
24,291
From 6 sprinters, 4 are to be selected to participate in a 4×100 m relay. If among them, Athlete A cannot run the first leg, and Athlete B cannot run the fourth leg, how many different ways are there to form the team?
252
82.8125
24,292
The product of two whole numbers is 24. The smallest possible sum of these two numbers is:
10
93.75
24,293
Given the height of a cylinder is $1$, and the circumferences of its two bases are on the surface of the same sphere with a diameter of $2$, calculate the volume of the cylinder.
\dfrac{3\pi}{4}
65.625
24,294
How many distinct four-digit positive integers are there such that the product of their digits equals 18?
24
11.71875
24,295
The function \[f(x) = \left\{ \begin{aligned} x-3 & \quad \text{ if } x < 5 \\ \sqrt{x} & \quad \text{ if } x \ge 5 \end{aligned} \right.\]has an inverse $f^{-1}.$ Find the value of $f^{-1}(-6) + f^{-1}(-5) + \dots + f^{-1}(5) + f^{-1}(6).$
94
6.25
24,296
An ellipse satisfies the property that a light ray emitted from one focus of the ellipse, after reflecting off the ellipse, will pass through the other focus. Consider a horizontally placed elliptical billiards table that satisfies the equation $\frac{x^2}{16} + \frac{y^2}{9} = 1$. Let points A and B correspond to its two foci. If a stationary ball is placed at point A and then sent along a straight line, it bounces off the elliptical wall and returns to point A. Calculate the maximum possible distance the ball has traveled.
16
15.625
24,297
Given two circular pulleys with radii of 14 inches and 4 inches, and a distance of 24 inches between the points of contact of the belt with the pulleys, determine the distance between the centers of the pulleys in inches.
26
82.8125
24,298
There are $4$ cards, marked with $0$, $1$, $2$, $3$ respectively. If two cards are randomly drawn from these $4$ cards to form a two-digit number, what is the probability that this number is even?
\frac{5}{9}
33.59375
24,299
There are $4$ distinct codes used in an intelligence station, one of them applied in each week. No two codes used in two adjacent weeks are the same code. Knowing that code $A$ is used in the first week, find the probability that code $A$ is used in the seventh week.
61/243
19.53125