Unnamed: 0
int64
0
40.3k
problem
stringlengths
10
5.15k
ground_truth
stringlengths
1
1.22k
solved_percentage
float64
0
100
24,800
Two noncongruent integer-sided isosceles triangles have the same perimeter and the same area. The ratio of the lengths of the bases of the two triangles is \(5:4\). Find the minimum possible value of their common perimeter.
524
0
24,801
Given the function $f(2x+1)=x^{2}-2x$, determine the value of $f(\sqrt{2})$.
\frac{5-4\sqrt{2}}{4}
0
24,802
8. Andrey likes all numbers that are not divisible by 3, and Tanya likes all numbers that do not contain digits that are divisible by 3. a) How many four-digit numbers are liked by both Andrey and Tanya? b) Find the total sum of the digits of all such four-digit numbers.
14580
0
24,803
How many distinct, positive factors does $1320$ have?
24
0
24,804
Alice and Bob each draw one number from 50 slips of paper numbered from $1$ to $50$ placed in a hat. Alice says, "I can't tell who has the larger number." Bob then says, "I am certain who has the larger number." Understanding Bob's certainty, Alice asks Bob if his number is prime. Bob answers, "Yes." Alice then says, "In that case, when I multiply your number by $100$ and add my number, the result is a perfect square. What could my number possibly be?" **A)** $24$ **B)** $61$ **C)** $56$ **D)** $89$
61
0.78125
24,805
Given the function $f(x)=\sin 2x$, its graph intersects with the line $2kx-2y-kπ=0 (k > 0)$ at exactly three common points. The x-coordinates of these points in ascending order are $x_{1}$, $x_{2}$, $x_{3}$. Calculate the value of $(x_{1}-x_{3})\tan (x_{2}-2x_{3})$.
-1
9.375
24,806
A rectangular piece of paper, PQRS, has PQ = 20 and QR = 15. The piece of paper is glued flat on the surface of a large cube so that Q and S are at vertices of the cube. The shortest distance from P to R, as measured through the cube, can be calculated using the 3D geometry of the cube.
18.4
0
24,807
Define the sequence $b_1, b_2, b_3, \ldots$ by $b_n = \sum\limits_{k=1}^n \cos{k}$, where $k$ represents radian measure. Find the index of the 100th term for which $b_n < 0$.
632
0
24,808
Let \( a_{1}, a_{2}, \cdots, a_{n} \) be an arithmetic sequence, and it is given that $$ \sum_{i=1}^{n}\left|a_{i}+j\right|=2028 \text{ for } j=0,1,2,3. $$ Find the maximum value of the number of terms \( n \).
52
1.5625
24,809
An infinite geometric series has a first term of \( 416 \) and a sum of \( 3120 \). What is its common ratio?
\frac{84}{97}
0
24,810
The famous German mathematician Dirichlet made significant achievements in the field of mathematics. He was the first person in the history of mathematics to pay attention to concepts and consciously "replace intuition with concepts." The function named after him, $D\left(x\right)=\left\{\begin{array}{l}{1, x \text{ is rational}}\\{0, x \text{ is irrational}}\end{array}\right.$, is called the Dirichlet function. Now, a function similar to the Dirichlet function is defined as $L\left(x\right)=\left\{\begin{array}{l}{x, x \text{ is rational}}\\{0, x \text{ is irrational}}\end{array}\right.$. There are four conclusions about the Dirichlet function and the $L$ function:<br/>$(1)D\left(1\right)=L\left(1\right)$;<br/>$(2)$ The function $L\left(x\right)$ is an even function;<br/>$(3)$ There exist four points $A$, $B$, $C$, $D$ on the graph of the $L$ function such that the quadrilateral $ABCD$ is a rhombus;<br/>$(4)$ There exist three points $A$, $B$, $C$ on the graph of the $L$ function such that $\triangle ABC$ is an equilateral triangle.<br/>The correct numbers of the conclusions are ____.
(1)(4)
0
24,811
Find $\left(\frac{2}{3}\right)^{6} \cdot \left(\frac{5}{6}\right)^{-4}$.
\frac{82944}{456375}
0
24,812
Given vectors $a$ and $b$ that satisfy $(a+2b)\cdot(5a-4b)=0$, and $|a|=|b|=1$, find the angle $\theta$ between $a$ and $b$.
\dfrac{\pi}{3}
99.21875
24,813
In how many ways can 13 bishops be placed on an $8 \times 8$ chessboard such that: (i) a bishop is placed on the second square in the second row, (ii) at most one bishop is placed on each square, (iii) no bishop is placed on the same diagonal as another bishop, (iv) every diagonal contains a bishop? (For the purposes of this problem, consider all diagonals of the chessboard to be diagonals, not just the main diagonals).
1152
0
24,814
In a new configuration, six circles with a radius of 5 units intersect at a single point. What is the number of square units in the area of the shaded region? The region is formed similarly to the original problem where the intersections create smaller sector-like areas. Express your answer in terms of $\pi$.
75\pi - 25\sqrt{3}
0
24,815
Fill the numbers 1 to 6 into the six boxes in the image. The smallest result you can get is ______
342
0
24,816
Given that Bob was instructed to subtract 5 from a certain number and then divide the result by 7, but instead subtracted 7 and then divided by 5, yielding an answer of 47, determine what his answer would have been had he worked the problem correctly.
33
1.5625
24,817
Isosceles right triangle $PQR$ (with $\angle PQR = \angle PRQ = 45^\circ$ and hypotenuse $\overline{PQ}$) encloses a right triangle $ABC$ (hypotenuse $\overline{AB}$) as shown. Given $PC = 5$ and $BP = CQ = 4$, compute $AQ$.
\frac{5}{\sqrt{2}}
0
24,818
Define \[ d_k = k + \cfrac{1}{3k + \cfrac{1}{3k + \cfrac{1}{3k + \dotsb}}}. \] Calculate $\sum_{k = 1}^{10} (d_k^2 + 2)$.
405
0
24,819
Three cones are placed on a table on their bases, touching each other. The radii of their bases are 1, 12, and 12, and the apex angles of the cones are $-4 \operatorname{arctg} \frac{1}{3}$, $4 \operatorname{arctg} \frac{2}{3}$, and $4 \operatorname{arctg} \frac{2}{3}$ respectively (the apex angle of a cone is the angle between its generatrices in an axial section). A sphere is placed on the table, touching all the cones. Find the radius of the sphere.
40/21
0
24,820
How many of the 256 smallest positive integers written in base 8 use the digit 6 or 7 (or both)?
10
0
24,821
If \[x + \sqrt{x^2 - 4} + \frac{1}{x - \sqrt{x^2 - 4}} = 10,\] then find \[x^2 + \sqrt{x^4 - 4} + \frac{1}{x^2 + \sqrt{x^4 - 4}}.\]
\frac{841}{100}
0
24,822
Given the function $f(x)=\ln (ax+1)+ \frac {x^{3}}{3}-x^{2}-ax(a∈R)$, (1) Find the range of values for the real number $a$ such that $y=f(x)$ is an increasing function on $[4,+∞)$; (2) When $a\geqslant \frac {3 \sqrt {2}}{2}$, let $g(x)=\ln [x^{2}(ax+1)]+ \frac {x^{3}}{3}-3ax-f(x)(x > 0)$ and its two extreme points $x_{1}$, $x_{2}(x_{1} < x_{2})$ are exactly the zeros of $φ(x)=\ln x-cx^{2}-bx$, find the minimum value of $y=(x_{1}-x_{2})φ′( \frac {x_{1}+x_{2}}{2})$.
\ln 2- \frac {2}{3}
0
24,823
Inside a square of side length 1, four quarter-circle arcs are traced with the edges of the square serving as the radii. These arcs intersect pairwise at four distinct points, forming the vertices of a smaller square. This process is repeated for the smaller square, and continuously for each subsequent smaller square. What is the sum of the areas of all squares formed in this manner?
\frac{2}{1 - (2 - \sqrt{3})}
0
24,824
Suppose a number $m$ is randomly selected from the set $\{7, 9, 12, 18, 21\}$, and a number $n$ is randomly selected from $\{2005, 2006, 2007, \ldots, 2025\}$. Calculate the probability that the last digit of $m^n$ is $6$.
\frac{8}{105}
0.78125
24,825
Find the largest positive integer $n>10$ such that the residue of $n$ when divided by each perfect square between $2$ and $\dfrac n2$ is an odd number.
505
90.625
24,826
A youth radio station, to attract listeners' attention, gives away gifts and grand prizes among them. Gifts are given away hourly over sixteen hours (one gift per hour), and grand prizes are given away during four evening hours (one grand prize per hour). The probability that listeners win a prize is 0.3, and a grand prize is 0.02. Find the probability that over 30 days: a) Listeners will win three grand prizes; b) Listeners will win between 130 to 160 prizes.
0.862
0.78125
24,827
Given a triangle \( ABC \) with sides \( AB=13 \), \( BC=20 \), and \( AC=21 \). Point \( K \) is on side \( AB \), point \( L \) is on side \( AC \), and point \( N \) is on side \( BC \). It is known that \( AK=4 \), \( CN=1 \), and \( CL=\frac{20}{21} \). A line through point \( K \) parallel to \( NL \) intersects side \( AC \) at point \( M \). Find the area of the quadrilateral \( NLMK \).
41
0
24,828
If there are 150 seats in a row, calculate the fewest number of seats that must be occupied so the next person to be seated must sit next to someone.
37
0
24,829
Given that the total number of units produced by the workshops A, B, C, and D is 2800, and workshops A and C together contributed 60 units to the sample, determine the total number of units produced by workshops B and D.
1600
8.59375
24,830
In triangle ABC, let the lengths of the sides opposite to angles A, B, and C be a, b, and c respectively, and b = 3, c = 1, A = 2B. Find the value of a.
\sqrt{19}
0
24,831
Find the minimum value of \[3x^2 + 3xy + y^2 - 3x + 3y + 9\] over all real numbers $x$ and $y.$
\frac{45}{8}
0
24,832
An eight-sided die is rolled seven times. Find the probability of rolling at least a seven at least six times.
\frac{11}{2048}
0
24,833
Given the digits $5,$ $6,$ $7,$ and $8,$ used exactly once to form four-digit integers, list these integers from least to greatest. For numbers starting with $7$ or $8,$ reverse the order of the last two digits. What is the $20^{\text{th}}$ integer in the list?
7865
3.90625
24,834
Given $a=1$, $b=2$, $C=\frac{2π}{3}$ in triangle $\triangle ABC$, calculate the value of $c$.
\sqrt{9}
0
24,835
A pedestrian crossing signal at an intersection alternates between red and green lights, with the red light lasting for $30$ seconds. The probability that Little Ming, upon arriving at the intersection and encountering a red light, will have to wait at least $10$ seconds before the green light appears is _______.
\frac{5}{6}
0
24,836
If $x+y=10$ and $xy=12$, what is the value of $x^3-y^3$?
176\sqrt{13}
38.28125
24,837
If we write $\sqrt{8} + \frac{1}{\sqrt{8}} + \sqrt{9} + \frac{1}{\sqrt{9}}$ in the form $\dfrac{a\sqrt{8} + b\sqrt{9}}{c}$ such that $a$, $b$, and $c$ are positive integers and $c$ is as small as possible, then what is $a+b+c$?
31
0
24,838
A 6x6x6 cube is formed by assembling 216 unit cubes. Ten unit squares are painted on each of the six faces of the cube, leaving some rows and columns unpainted. Specifically, two non-adjacent columns and two non-adjacent rows on each face are left unpainted. How many of the 216 unit cubes have no paint on them?
168
0
24,839
In an organization, there are five leaders and a number of regular members. Each year, the leaders are expelled, followed by each regular member recruiting three new members to become regular members. After this, five new leaders are elected from outside the organization. Initially, the organisation had twenty people total. How many total people will be in the organization six years from now?
10895
0
24,840
Using the vertices of a single rectangular solid (cuboid), how many different pyramids can be formed?
106
0
24,841
Given the vertices of a regular 100-sided polygon \( A_{1}, A_{2}, A_{3}, \ldots, A_{100} \), in how many ways can three vertices be selected such that they form an obtuse triangle?
117600
35.15625
24,842
Compute the expressions \[ C = 3 \times 4 + 5 \times 6 + 7 \times 8 + \cdots + 43 \times 44 + 45 \] and \[ D = 3 + 4 \times 5 + 6 \times 7 + \cdots + 42 \times 43 + 44 \times 45 \] and find the positive difference between integers $C$ and $D$.
882
0.78125
24,843
For finite sets $A$ and $B$ , call a function $f: A \rightarrow B$ an \emph{antibijection} if there does not exist a set $S \subseteq A \cap B$ such that $S$ has at least two elements and, for all $s \in S$ , there exists exactly one element $s'$ of $S$ such that $f(s')=s$ . Let $N$ be the number of antibijections from $\{1,2,3, \ldots 2018 \}$ to $\{1,2,3, \ldots 2019 \}$ . Suppose $N$ is written as the product of a collection of (not necessarily distinct) prime numbers. Compute the sum of the members of this collection. (For example, if it were true that $N=12=2\times 2\times 3$ , then the answer would be $2+2+3=7$ .) *Proposed by Ankit Bisain*
1363641
0
24,844
What is the area of the quadrilateral formed by the points of intersection of the circle \(x^2 + y^2 = 16\) and the ellipse \((x-3)^2 + 4y^2 = 36\).
14
0
24,845
Using a $4 \times 4$ grid where points are spaced equally at 1 unit apart both horizontally and vertically, how many rectangles are there whose four vertices are points on this grid?
101
0
24,846
Nina and Tadashi play the following game. Initially, a triple $(a, b, c)$ of nonnegative integers with $a+b+c=2021$ is written on a blackboard. Nina and Tadashi then take moves in turn, with Nina first. A player making a move chooses a positive integer $k$ and one of the three entries on the board; then the player increases the chosen entry by $k$ and decreases the other two entries by $k$ . A player loses if, on their turn, some entry on the board becomes negative. Find the number of initial triples $(a, b, c)$ for which Tadashi has a winning strategy.
6561
0
24,847
Rectangular prism P Q R S W T U V has a square base P Q R S. Point X is on the face T U V W so that P X = 12, Q X = 10, and R X = 8. Determine the maximum possible area of rectangle P Q U T.
67.82
0
24,848
Given that the ratio of bananas to yogurt to honey is 3:2:1, and that Linda has 10 bananas, 9 cups of yogurt, and 4 tablespoons of honey, determine the maximum number of servings of smoothies Linda can make.
13
0
24,849
John is planning to fence a rectangular garden such that the area is at least 150 sq. ft. The length of the garden should be 20 ft longer than its width. Additionally, the total perimeter of the garden must not exceed 70 ft. What should the width, in feet, be?
-10 + 5\sqrt{10}
4.6875
24,850
Determine the volume of the right rectangular parallelepiped whose edges are formed by the distances from the orthocenter to the vertices of a triangle, where the radius of the circumcircle $r = 2.35$ and the angles are: $\alpha = 63^{\circ} 18^{\prime} 13^{\prime \prime}, \beta = 51^{\circ} 42^{\prime} 19^{\prime \prime}$.
12.2
0
24,851
Given that $\frac{x}{2} = y^2$ and $\frac{x}{5} = 3y$, solve for $x$.
112.5
7.03125
24,852
Let \( n \) be a two-digit number such that the square of the sum of the digits of \( n \) is equal to the sum of the digits of \( n^2 \). Find the sum of all possible values of \( n \).
139
0
24,853
For any positive integers \( m \) and \( n \), define \( r(m, n) \) as the remainder of \( m \div n \) (for example, \( r(8,3) \) represents the remainder of \( 8 \div 3 \), so \( r(8,3)=2 \)). What is the smallest positive integer solution satisfying the equation \( r(m, 1) + r(m, 2) + r(m, 3) + \cdots + r(m, 10) = 4 \)?
120
96.09375
24,854
In triangle \(ABC\), angle \(B\) is \(120^\circ\), and \(AB = 2BC\). The perpendicular bisector of side \(AB\) intersects \(AC\) at point \(D\). Find the ratio \(AD:DC\).
3/2
0
24,855
The equation $y = -16t^2 + 34t + 25$ describes the height (in feet) of a ball thrown upwards at $34$ feet per second from $25$ feet above the ground. Determine the time (in seconds) when the ball will hit the ground.
\frac{25}{8}
0
24,856
In the isosceles triangle \( ABC \) (\( AB = BC \)), medians \( AD \) and \( EC \) intersect at point \( O \). The ratio of the radius of the circle inscribed in triangle \( AOC \) to the radius of the circle inscribed in quadrilateral \( ODBE \) is \(\frac{2}{3}\). Find the ratio \(\frac{AC}{BC}\).
20/17
0
24,857
An ellipse \( \frac{x^2}{9} + \frac{y^2}{16} = 1 \) has chords passing through the point \( C = (2, 2) \). If \( t \) is defined as \[ t = \frac{1}{AC} + \frac{1}{BC} \] where \( AC \) and \( BC \) are distances from \( A \) and \( B \) (endpoints of the chords) to \( C \). Find the constant \( t \).
\frac{4\sqrt{5}}{5}
0
24,858
Let $T$ be a positive integer whose only digits are 0s and 1s. If $X = T \div 18$ and $X$ is an integer, what is the smallest possible value of $X$?
6172839500
0
24,859
At time $0$ , an ant is at $(1,0)$ and a spider is at $(-1,0)$ . The ant starts walking counterclockwise around the unit circle, and the spider starts creeping to the right along the $x$ -axis. It so happens that the ant's horizontal speed is always half the spider's. What will the shortest distance ever between the ant and the spider be?
\frac{\sqrt{14}}{4}
1.5625
24,860
Given an ellipse \( C: \frac{x^{2}}{2}+y^{2}=1 \) with left and right foci \( F_{1}, F_{2} \) respectively, let \( P \) be a point on the ellipse \( C \) in the first quadrant. The extended lines \( P F_{1}, P F_{2} \) intersect the ellipse \( C \) at points \( Q_{1}, Q_{2} \) respectively. Find the maximum value of the difference of areas of triangles \( \triangle P F_{1} Q_{2} \) and \( \triangle P F_{2} Q_{1} \).
\frac{2\sqrt{2}}{3}
2.34375
24,861
A square is inscribed in the ellipse whose equation is $x^2 + 3y^2 = 3$. One vertex of the square is at $(0, 1)$, and one diagonal of the square lies along the y-axis. Determine the square of the length of each side of the square.
\frac{5}{3} - 2\sqrt{\frac{2}{3}}
0
24,862
Consider a parallelogram where each vertex has integer coordinates and is located at $(0,0)$, $(4,5)$, $(11,5)$, and $(7,0)$. Calculate the sum of the perimeter and the area of this parallelogram.
9\sqrt{41}
0
24,863
1. There are 5 different books, and we need to choose 3 books to give to 3 students, one book per student. There are a total of     different ways to do this. 2. There are 5 different books, and we want to buy 3 books to give to 3 students, one book per student. There are a total of     different ways to do this.
125
0.78125
24,864
Given that the cosine value of the vertex angle of an isosceles triangle equals $\dfrac{4}{5}$, calculate the sine value of the base angle of this triangle.
\dfrac{2\sqrt{3}}{5}
0
24,865
Given the inequality $x\ln x - kx > 3$, which holds true for any $x > 1$, determine the maximum value of the integer $k$.
-3
46.875
24,866
The slopes of lines $l_1$ and $l_2$ are the two roots of the equation $6x^2+x-1=0$, respectively. The angle between lines $l_1$ and $l_2$ is __________.
\frac{\pi}{4}
53.125
24,867
Find the square root of $\dfrac{9!}{210}$.
216\sqrt{3}
0
24,868
Given the equations $3x + 2y = 6$ and $2x + 3y = 7$, find $14x^2 + 25xy + 14y^2$.
85
2.34375
24,869
Initially, a prime number is displayed on the computer screen. Every second, the number on the screen is replaced with a number obtained by adding the last digit of the previous number, increased by 1. After how much time, at the latest, will a composite number appear on the screen?
996
0
24,870
In a regular quadrilateral frustum with lateral edges \(A A_{1}, B B_{1}, C C_{1}, D D_{1}\), the side length of the upper base \(A_{1} B_{1} C_{1} D_{1}\) is 1, and the side length of the lower base is 7. A plane passing through the edge \(B_{1} C_{1}\) perpendicular to the plane \(A D_{1} C\) divides the frustum into two equal-volume parts. Find the volume of the frustum.
\frac{38\sqrt{5}}{5}
0
24,871
In America, temperature is measured in degrees Fahrenheit. This is a linear scale where the freezing point of water is $32^{\circ} \mathrm{F}$ and the boiling point is $212^{\circ} \mathrm{F}$. Someone provides the temperature rounded to whole degrees Fahrenheit, which we then convert to Celsius and afterwards round to whole degrees. What is the maximum possible deviation of the obtained value from the original temperature in Celsius degrees?
13/18
0
24,872
Given a circle and $2006$ points lying on this circle. Albatross colors these $2006$ points in $17$ colors. After that, Frankinfueter joins some of the points by chords such that the endpoints of each chord have the same color and two different chords have no common points (not even a common endpoint). Hereby, Frankinfueter intends to draw as many chords as possible, while Albatross is trying to hinder him as much as he can. What is the maximal number of chords Frankinfueter will always be able to draw?
117
1.5625
24,873
Given that $x$ is the geometric mean of $4$ and $16$, find the value of $x$.
-8
0
24,874
A circle inscribed in triangle \( ABC \) divides median \( BM \) into three equal parts. Find the ratio \( BC: CA: AB \).
5:10:13
0
24,875
The sum of all roots of the equation $2x^2-3x-5=0$ and the equation $x^2-6x+2=0$ is equal to $\boxed{\text{blank}}$, and the product of all roots is equal to $\boxed{\text{blank}}$.
7\frac{1}{2}
0
24,876
Let \( A = (-4, 0) \), \( B = (-1, 2) \), \( C = (1, 2) \), and \( D = (4, 0) \). Suppose that point \( P \) satisfies \[ PA + PD = 10 \quad \text{and} \quad PB + PC = 10. \] Find the \( y \)-coordinate of \( P \), when simplified, which can be expressed in the form \( \frac{-a + b \sqrt{c}}{d} \), where \( a, b, c, d \) are positive integers. Find \( a + b + c + d \).
35
0.78125
24,877
Given that circle $C$ passes through the point $(0,2)$ with a radius of $2$, if there exist two points on circle $C$ that are symmetric with respect to the line $2x-ky-k=0$, find the maximum value of $k$.
\frac{4\sqrt{5}}{5}
9.375
24,878
Find the maximum number $E$ such that the following holds: there is an edge-colored graph with 60 vertices and $E$ edges, with each edge colored either red or blue, such that in that coloring, there is no monochromatic cycles of length 3 and no monochromatic cycles of length 5.
1350
3.125
24,879
Two out of three independently operating components of a computing device have failed. Find the probability that the first and second components have failed, given that the failure probabilities of the first, second, and third components are 0.2, 0.4, and 0.3, respectively.
0.3
0.78125
24,880
The four zeros of the polynomial $x^4 + jx^2 + kx + 256$ are distinct real numbers in arithmetic progression. Compute the value of $j$.
-40
0
24,881
Antal and Béla start from home on their motorcycles heading towards Cegléd. After traveling one-fifth of the way, Antal for some reason turns back. As a result, he accelerates and manages to increase his speed by one quarter. He immediately sets off again from home. Béla, continuing alone, decreases his speed by one quarter. They travel the final section of the journey together at $48$ km/h and arrive 10 minutes later than planned. What can we calculate from all this?
40
0.78125
24,882
With the same amount of a monoatomic ideal gas, two cyclic processes $1-2-3-4-1$ and $1-3-4-1$ are carried out. Find the ratio of their efficiencies.
18/13
0
24,883
In an isosceles right triangle $ABC$, with $AB = AC$, a circle is inscribed touching $AB$ at point $D$, $AC$ at point $E$, and $BC$ at point $F$. If line $DF$ is extended to meet $AC$ at point $G$ and $\angle BAC = 90^\circ$, and the length of segment $DF$ equals $6$ cm, calculate the length of $AG$. A) $3\sqrt{2}$ cm B) $4\sqrt{2}$ cm C) $6\sqrt{2}$ cm D) $5\sqrt{2}$ cm
3\sqrt{2}
7.03125
24,884
What is the 7th term of an arithmetic sequence of 15 terms where the first term is 3 and the last term is 72?
33
0
24,885
It takes 42 seconds for a clock to strike 7 times. How many seconds does it take for it to strike 10 times?
60
0
24,886
There is a graph with 30 vertices. If any of 26 of its vertices with their outgoiing edges are deleted, then the remained graph is a connected graph with 4 vertices. What is the smallest number of the edges in the initial graph with 30 vertices?
405
0.78125
24,887
In the given $5 \times 5$ grid, there are 6 letters. Divide the grid along the lines to form 6 small rectangles (including squares) of different areas, so that each rectangle contains exactly one letter, and each letter is located in a corner square of its respective rectangle. If each of these six letters is equal to the area of the rectangle it is in, what is the five-digit number $\overline{\mathrm{ABCDE}}$?
34216
0
24,888
A furniture store received a batch of office chairs that were identical except for their colors: 15 chairs were black and 18 were brown. The chairs were in demand and were being bought in a random order. At some point, a customer on the store's website discovered that only two chairs were left for sale. What is the probability that these two remaining chairs are of the same color?
0.489
0
24,889
Given the number \[e^{11\pi i/40} + e^{21\pi i/40} + e^{31 \pi i/40} + e^{41\pi i /40} + e^{51 \pi i /40},\] express it in the form $r e^{i \theta}$, where $0 \le \theta < 2\pi$. Find $\theta$.
\frac{11\pi}{20}
3.125
24,890
Calculate the roundness of 1,728,000.
19
0
24,891
A triangle has vertices $A=(4,3)$, $B=(-4,-1)$, and $C=(9,-7)$. Calculate the equation of the bisector of $\angle A$ in the form $3x - by + c = 0$. Determine the value of $b+c$.
-6
0
24,892
What is the sum of all positive integers $\nu$ for which $\mathop{\text{lcm}}[\nu, 18] = 72$?
60
0
24,893
A cube with side length $2$ is inscribed in a sphere. A second cube, with faces parallel to the first, is inscribed between the sphere and one face of the first cube. What is the length of a side of the smaller cube?
\frac{2}{3}
0.78125
24,894
Each vertex of this parallelogram has integer coordinates. The perimeter of the parallelogram is \( p \) units, and the area is \( a \) square units. If the parallelogram is defined by vertices \((2, 3)\), \((7, 3)\), \((x, y)\), and \((x-5, y)\), where \(x\) and \(y\) are integers, find the value of \(p + a\).
38
1.5625
24,895
If $\frac{x^2}{2^2} + \frac{y^2}{\sqrt{2}^2} = 1$, what is the largest possible value of $|x| + |y|$?
2\sqrt{3}
1.5625
24,896
Let $T$ be a subset of $\{1,2,3,\ldots,2021\}$ such that no two members of $T$ differ by $5$ or $8$. What is the largest number of elements $T$ can have?
918
0
24,897
On side \(BC\) of square \(ABCD\), point \(E\) is chosen such that it divides the segment into \(BE = 2\) and \(EC = 3\). The circumscribed circle of triangle \(ABE\) intersects the diagonal \(BD\) a second time at point \(G\). Find the area of triangle \(AGE\).
43.25
0
24,898
Given that \( P \) is the vertex of a right circular cone with an isosceles right triangle as its axial cross-section, \( PA \) is a generatrix of the cone, and \( B \) is a point on the base of the cone. Find the maximum value of \(\frac{PA + AB}{PB}\).
\sqrt{4 + 2\sqrt{2}}
0
24,899
Compute the value of \[M = 50^2 + 48^2 - 46^2 + 44^2 + 42^2 - 40^2 + \cdots + 4^2 + 2^2 - 0^2,\] where the additions and subtractions alternate in triplets.
2600
0