Unnamed: 0
int64
0
40.3k
problem
stringlengths
10
5.15k
ground_truth
stringlengths
1
1.22k
solved_percentage
float64
0
100
26,100
Given that the sum of the binomial coefficients in the expansion of $(5x- \frac{1}{\sqrt{x}})^n$ is 64, determine the constant term in its expansion.
375
7.03125
26,101
Consider the two points \(A(4,1)\) and \(B(2,5)\). For each point \(C\) with positive integer coordinates, we define \(d_C\) to be the shortest distance needed to travel from \(A\) to \(C\) to \(B\) moving only horizontally and/or vertically. The positive integer \(N\) has the property that there are exactly 2023 points \(C(x, y)\) with \(x > 0\) and \(y > 0\) and \(d_C = N\). What is the value of \(N\)?
12
0
26,102
A light flashes in one of three different colors: red, green, and blue. Every $3$ seconds, it flashes green. Every $5$ seconds, it flashes red. Every $7$ seconds, it flashes blue. If it is supposed to flash in two colors at once, it flashes the more infrequent color. How many times has the light flashed green after $671$ seconds?
154
0
26,103
Given \( m = n^{4} + x \), where \( n \) is a natural number and \( x \) is a two-digit positive integer, what value of \( x \) will make \( m \) a composite number?
64
0
26,104
Let $a,$ $b,$ and $c$ be nonnegative numbers such that $a^2 + b^2 + c^2 = 1.$ Find the maximum value of \[3ab \sqrt{2} + 6bc.\]
4.5
0
26,105
In an isosceles triangle \(ABC\) (\(AB = BC\)), the angle bisectors \(AM\) and \(BK\) intersect at point \(O\). The areas of triangles \(BOM\) and \(COM\) are 25 and 30, respectively. Find the area of triangle \(ABC\).
110
39.84375
26,106
Determine the number of ways to arrange the letters of the word PERSEVERANCE.
9,979,200
0
26,107
In the convex quadrilateral \(ABCD\): \(AB = AC = AD = BD\) and \(\angle BAC = \angle CBD\). Find \(\angle ACD\).
60
22.65625
26,108
From the 2015 natural numbers between 1 and 2015, what is the maximum number of numbers that can be found such that their product multiplied by 240 is a perfect square?
134
0
26,109
A fair six-sided die with faces numbered 1, 2, 3, 4, 5, and 6 is rolled twice. Let $a$ and $b$ denote the outcomes of the first and second rolls, respectively. (1) Find the probability that the line $ax + by + 5 = 0$ is tangent to the circle $x^2 + y^2 = 1$. (2) Find the probability that the segments with lengths $a$, $b$, and $5$ form an isosceles triangle.
\frac{7}{18}
5.46875
26,110
A king traversed a $9 \times 9$ chessboard, visiting each square exactly once. The king's route is not a closed loop and may intersect itself. What is the maximum possible length of such a route if the length of a move diagonally is $\sqrt{2}$ and the length of a move vertically or horizontally is 1?
16 + 64 \sqrt{2}
0
26,111
In convex quadrilateral $ABCD$ , $\angle ADC = 90^\circ + \angle BAC$ . Given that $AB = BC = 17$ , and $CD = 16$ , what is the maximum possible area of the quadrilateral? *Proposed by Thomas Lam*
529/2
0
26,112
Arrange 1, 2, 3, a, b, c in a row such that letter 'a' is not at either end and among the three numbers, exactly two are adjacent. The probability is $\_\_\_\_\_\_$.
\frac{2}{5}
7.03125
26,113
Given the function $f(x) = x^3 - 3x^2 - 9x + 2$, (I) Determine the intervals of monotonicity for the function $f(x)$; (II) Find the minimum value of function $f(x)$ on the interval [-2, 2].
-20
70.3125
26,114
Define the sequence $ (a_p)_{p\ge0}$ as follows: $ a_p\equal{}\displaystyle\frac{\binom p0}{2\cdot 4}\minus{}\frac{\binom p1}{3\cdot5}\plus{}\frac{\binom p2}{4\cdot6}\minus{}\ldots\plus{}(\minus{}1)^p\cdot\frac{\binom pp}{(p\plus{}2)(p\plus{}4)}$ . Find $ \lim_{n\to\infty}(a_0\plus{}a_1\plus{}\ldots\plus{}a_n)$ .
1/3
3.125
26,115
Given that $17^{-1} \equiv 31 \pmod{53}$, find $36^{-1} \pmod{53}$ as a residue modulo 53 (i.e., a value between 0 and 52 inclusive).
22
58.59375
26,116
The ferry "Yi Rong" travels at a speed of 40 kilometers per hour. On odd days, it travels downstream from point $A$ to point $B$, while on even days, it travels upstream from point $B$ to point $A$ (with the water current speed being 24 kilometers per hour). On one odd day, when the ferry reached the midpoint $C$, it lost power and drifted downstream to point $B$. The captain found that the total time taken that day was $\frac{43}{18}$ times the usual time for an odd day. On another even day, the ferry again lost power as it reached the midpoint $C$. While drifting, the repair crew spent 1 hour repairing the ferry, after which it resumed its journey to point $A$ at twice its original speed. The captain observed that the total time taken that day was exactly the same as the usual time for an even day. What is the distance between points $A$ and $B$ in kilometers?
192
11.71875
26,117
Let tetrahedron $ABCD$ have $AD=BC=30$, $AC=BD=40$, and $AB=CD=50$. For any point $X$ in space, suppose $g(X)=AX+BX+CX+DX$. Determine the least possible value of $g(X)$, expressed as $p\sqrt{q}$ where $p$ and $q$ are positive integers with $q$ not divisible by the square of any prime. Report the sum $p+q$.
101
19.53125
26,118
How many integers $-15 \leq n \leq 10$ satisfy $(n-1)(n+3)(n + 7) < 0$?
11
65.625
26,119
A square with an area of 40 is inscribed in a semicircle. If another square is inscribed in a full circle with the same radius, what is the area of this square?
80
28.125
26,120
Given Aniyah has a $5 \times 7$ index card and if she shortens the length of one side of this card by $2$ inches, the card would have an area of $21$ square inches, determine the area of the card in square inches if she shortens the length of the other side by $2$ inches.
25
69.53125
26,121
The standard enthalpy of formation (ΔH_f°) of a substance is equal to the heat effect of the formation reaction of 1 mole of the substance from simple substances in their standard states (at 1 atm pressure and a given temperature). Therefore, it is necessary to find the heat effect of the reaction: $$ \underset{\text {graphite}}{6 \mathrm{C}(\kappa)} + 3 \mathrm{H}_{2}(g) = \mathrm{C}_{6} \mathrm{H}_{6} (l) + \mathrm{Q}_{\text{formation}}\left(\mathrm{C}_{6} \mathrm{H}_{6}(l)\right) (4) $$ According to Hess's law, the heat effect of the reaction depends only on the types and states of the reactants and products and does not depend on the path of the transition. Hess's law allows dealing with thermochemical equations like algebraic expressions, i.e., based on it, by combining equations of reactions with known heat effects, one can calculate the unknown heat effect of the overall reaction. Thus, we obtain: $$ \mathrm{C}_{2}\mathrm{H}_{2}(g) = \underset{\text {graphite}}{2 \mathrm{C}(\kappa)} + \mathrm{H}_{2}(g) + 226.7 \text { kJ; } \quad -3 $$ $$ \begin{array}{lll} 3 \mathrm{C}_{2} \mathrm{H}_{2}(g) & = \mathrm{C}_{6} \mathrm{H}_{6}(l) + 631.1 \text { kJ;} & 1 \\ \mathrm{C}_{6} \mathrm{H}_{6}(l) & = \mathrm{C}_{6} \mathrm{H}_{6}(l) - 33.9 \text { kJ;} & 1 \end{array} $$ $$ \underset{\text {graphite}}{6 \mathrm{C}(\kappa)} + 3 \mathrm{H}_{2}(g) = \mathrm{C}_{6} \mathrm{H}_{6}(l) + \mathrm{Q}_{\text{formation}}\left(\mathrm{C}_{6} \mathrm{H}_{6}(l)\right); $$ $$ \mathrm{Q}_{\text{formation}}\left(\mathrm{C}_{6} \mathrm{H}_{6}(l)\right) = 226.7 \cdot (-3) + 631.1 - 33.9 = -82.9 \text{ kJ/mol}. $$
-82.9
56.25
26,122
Select 5 volunteers from 8 candidates, including A and B, to participate in community service activities from Monday to Friday, with one person arranged for each day, and each person participating only once. If at least one of A and B must participate, and when both A and B participate, their service dates cannot be adjacent, then the number of different arrangements is ______ (Answer in digits).
5040
48.4375
26,123
Given that the function $f(x)$ is an even function on $(-\infty, +\infty)$, and $f(5+x) = f(5-x)$, if $f(x)$ only equals $0$ at $f(1)=0$ within the interval $[0,5]$, determine the number of zeros of $f(x)$ in the interval $[-2012, 2012]$.
806
53.125
26,124
In the 3rd grade, the boys wear blue swim caps, and the girls wear red swim caps. The male sports commissioner says, "I see 1 more blue swim cap than 4 times the number of red swim caps." The female sports commissioner says, "I see 24 more blue swim caps than red swim caps." Based on the sports commissioners' statements, calculate the total number of students in the 3rd grade.
37
2.34375
26,125
What is the maximum number of finite roots that the equation $$ \left|x - a_{1}\right| + \ldots + |x - a_{50}| = \left|x - b_{1}\right| + \ldots + |x - b_{50}| $$ can have, where $a_{1}, a_{2}, \ldots, a_{50}, b_{1}, b_{2}, \ldots, b_{50}$ are distinct numbers?
49
77.34375
26,126
Given \( x \) satisfies \(\log _{5 x} 2 x = \log _{625 x} 8 x\), find the value of \(\log _{2} x\).
\frac{\ln 5}{2 \ln 2 - 3 \ln 5}
0.78125
26,127
Eight students from a university are preparing to carpool for a trip. There are two students from each grade level—freshmen, sophomores, juniors, and seniors—divided into two cars, Car A and Car B, with each car seating four students. The seating arrangement of the four students in the same car is not considered. However, the twin sisters, who are freshmen, must ride in the same car. The number of ways for Car A to have exactly two students from the same grade is _______.
24
23.4375
26,128
$N$ students are seated at desks in an $m \times n$ array, where $m, n \ge 3$ . Each student shakes hands with the students who are adjacent horizontally, vertically or diagonally. If there are $1020 $ handshakes, what is $N$ ?
280
28.125
26,129
Define $\phi_n(x)$ to be the number of integers $y$ less than or equal to $n$ such that $\gcd(x,y)=1$ . Also, define $m=\text{lcm}(2016,6102)$ . Compute $$ \frac{\phi_{m^m}(2016)}{\phi_{m^m}(6102)}. $$
339/392
0.78125
26,130
If five pairwise coprime distinct integers \( a_{1}, a_{2}, \cdots, a_{5} \) are randomly selected from \( 1, 2, \cdots, n \) and there is always at least one prime number among them, find the maximum value of \( n \).
48
2.34375
26,131
Every day at noon, a scheduled ship departs from Moscow to Astrakhan and from Astrakhan to Moscow. The ship traveling from Moscow takes exactly four days to reach Astrakhan, then stays there for two days, and at noon two days after its arrival in Astrakhan, it departs back to Moscow. The ship traveling from Astrakhan takes exactly five days to reach Moscow and, after resting for two days in Moscow, departs back to Astrakhan. How many ships must be operational on the Moscow - Astrakhan - Moscow route under the described travel conditions?
13
34.375
26,132
A truck delivered 4 bags of cement. They are stacked in the truck. A worker can carry one bag at a time either from the truck to the gate or from the gate to the shed. The worker can carry the bags in any order, each time taking the top bag, carrying it to the respective destination, and placing it on top of the existing stack (if there are already bags there). If given a choice to carry a bag from the truck or from the gate, the worker randomly chooses each option with a probability of 0.5. Eventually, all the bags end up in the shed. a) (7th grade level, 1 point). What is the probability that the bags end up in the shed in the reverse order compared to how they were placed in the truck? b) (7th grade level, 1 point). What is the probability that the bag that was second from the bottom in the truck ends up as the bottom bag in the shed?
\frac{1}{8}
6.25
26,133
What are the last $2$ digits of the number $2018^{2018}$ when written in base $7$ ?
44
78.125
26,134
For how many integer values of $a$ does the equation $$x^2 + ax + 12a = 0$$ have integer solutions for $x$?
16
7.03125
26,135
Given a sequence $1$, $1$, $3$, $1$, $3$, $5$, $1$, $3$, $5$, $7$, $1$, $3$, $5$, $7$, $9$, $\ldots$, where the first term is $1$, the next two terms are $1$, $3$, and the next three terms are $1$, $3$, $5$, and so on. Let $S_{n}$ denote the sum of the first $n$ terms of this sequence. Find the smallest positive integer value of $n$ such that $S_{n} > 400$.
59
0.78125
26,136
Evaluate the expression: \[4(1+4(1+4(1+4(1+4(1+4(1+4(1+4(1))))))))\]
87380
0.78125
26,137
Given that $\alpha$ is an obtuse angle and $\beta$ is also an obtuse angle with $\cos\alpha = -\frac{2\sqrt{5}}{5}$ and $\sin\beta = \frac{\sqrt{10}}{10}$, find the value of $\alpha + \beta$.
\frac{7\pi}{4}
13.28125
26,138
Using toothpicks of equal length, a rectangular grid is constructed. The grid measures 25 toothpicks in height and 15 toothpicks in width. Additionally, there is an internal horizontal partition at every fifth horizontal line starting from the bottom. Calculate the total number of toothpicks used.
850
6.25
26,139
In $\triangle ABC$, the sides opposite to angles $A$, $B$, and $C$ are denoted as $a$, $b$, and $c$ respectively, and it is given that $\sqrt{3}b\cos A=a\cos B$. $(1)$ Find the angle $A$; $(2)$ If $a= \sqrt{2}$ and $\frac{c}{a}= \frac{\sin A}{\sin B}$, find the perimeter of $\triangle ABC$.
3 \sqrt{2}
41.40625
26,140
Among the three-digit numbers formed by the digits 0, 1, 2, 3, 4, 5 without repetition, there are a total of     numbers whose digits sum up to 9 (answer in digits).
16
84.375
26,141
Determine the value of \[1002 + \frac{1}{3} \left( 1001 + \frac{1}{3} \left( 1000 + \dots + \frac{1}{3} \left( 3 + \frac{1}{3} \cdot 2 \right) \right) \dotsb \right).\]
1502.25
4.6875
26,142
How many pairs of positive integers have greatest common divisor 5! and least common multiple 50! ?
16384
12.5
26,143
Let the sum of the first $n$ terms of an arithmetic sequence $\{a_n\}$ be $S_n$, and it satisfies $S_{2016} > 0$, $S_{2017} < 0$. For any positive integer $n$, we have $|a_n| \geqslant |a_k|$. Determine the value of $k$.
1009
39.0625
26,144
Given the function $f(x) = x^2 - (2t + 1)x + t \ln x$ where $t \in \mathbb{R}$, (1) If $t = 1$, find the extreme values of $f(x)$. (2) Let $g(x) = (1 - t)x$, and suppose there exists an $x_0 \in [1, e]$ such that $f(x_0) \geq g(x_0)$ holds. Find the maximum value of the real number $t$.
\frac{e(e - 2)}{e - 1}
0
26,145
Let $x, y, z$ be real numbers such that: \begin{align*} y+z & = 16, \\ z+x & = 18, \\ x+y & = 20. \end{align*} Find $\sqrt{xyz(x+y+z)}$.
9\sqrt{77}
0.78125
26,146
A circle \( K \) goes through the vertices \( A \) and \( C \) of triangle \( ABC \). The center of circle \( K \) lies on the circumcircle of triangle \( ABC \). Circle \( K \) intersects side \( AB \) at point \( M \). Find the angle \( BAC \) if \( AM : AB = 2 : 7 \) and \( \angle B = \arcsin \frac{4}{5} \).
45
0
26,147
A building has seven rooms numbered 1 through 7 on one floor, with various doors connecting these rooms. The doors can be either one-way or two-way. Additionally, there is a two-way door between room 1 and the outside, and there is a treasure in room 7. Design the arrangement of rooms and doors such that: (a) It is possible to enter room 1, reach the treasure in room 7, and return outside. (b) The minimum number of steps required to achieve this (each step involving walking through a door) is as large as possible.
14
16.40625
26,148
In a Cartesian coordinate system, the parametric equation for curve $C_1$ is $$ \left\{ \begin{aligned} x &= 2\cos\alpha, \\ y &= \sqrt{2}\sin\alpha \end{aligned} \right. $$ with $\alpha$ as the parameter. Using the origin as the pole, the positive half of the $x$-axis as the polar axis, and the same unit length as the Cartesian coordinate system, establish a polar coordinate system. The polar equation for curve $C_2$ is $\rho = \cos\theta$. (1) Find the general equation for curve $C_1$ and the Cartesian coordinate equation for curve $C_2$; (2) If $P$ and $Q$ are any points on the curves $C_1$ and $C_2$, respectively, find the minimum value of $|PQ|$.
\frac{\sqrt{7} - 1}{2}
13.28125
26,149
What code will be produced for this message in the new encoding where the letter А is replaced by 21, the letter Б by 122, and the letter В by 1?
211221121
0.78125
26,150
From the numbers 1, 2, 3, 4, 5, two numbers are randomly selected to be the base and the true number (antilogarithm) of a logarithm, respectively. The total number of different logarithmic values that can be obtained is ___.
13
0.78125
26,151
In a regular tetrahedron ABCD with an edge length of 2, G is the centroid of triangle BCD, and M is the midpoint of line segment AG. The surface area of the circumscribed sphere of the tetrahedron M-BCD is __________.
6\pi
60.9375
26,152
A person flips $2010$ coins at a time. He gains one penny every time he flips a prime number of heads, but must stop once he flips a non-prime number. If his expected amount of money gained in dollars is $\frac{a}{b}$ , where $a$ and $b$ are relatively prime, compute $\lceil\log_{2}(100a+b)\rceil$ . *Proposed by Lewis Chen*
2017
5.46875
26,153
What is the circumference of the region defined by the equation $x^2+y^2 - 10 = 3y - 6x + 3$?
\pi \sqrt{73}
0.78125
26,154
There are two circles: one centered at point \(A\) with a radius of 5, and another centered at point \(B\) with a radius of 15. Their common internal tangent touches the circles at points \(C\) and \(D\) respectively. The lines \(AB\) and \(CD\) intersect at point \(E\). Find \(CD\) if \(BE = 39\).
48
12.5
26,155
The letter T is formed by placing a $2\:\text{inch} \times 6\:\text{inch}$ rectangle vertically and a $2\:\text{inch} \times 4\:\text{inch}$ rectangle horizontally across the top center of the vertical rectangle. What is the perimeter of the T, in inches?
24
24.21875
26,156
Alli rolls a standard 8-sided die twice. What is the probability of rolling integers that differ by 3 on her first two rolls? Express your answer as a common fraction.
\dfrac{1}{8}
3.90625
26,157
A rectangular yard contains two flower beds in the shape of congruent isosceles right triangles. The remainder of the yard has a trapezoidal shape. The parallel sides of the trapezoid have lengths $18$ and $30$ meters. What fraction of the yard is occupied by the flower beds? A) $\frac{1}{6}$ B) $\frac{1}{5}$ C) $\frac{1}{4}$ D) $\frac{1}{3}$ E) $\frac{1}{2}$
\frac{1}{5}
42.96875
26,158
Let \( c_{n}=11 \ldots 1 \) be a number in which the decimal representation contains \( n \) ones. Then \( c_{n+1}=10 \cdot c_{n}+1 \). Therefore: \[ c_{n+1}^{2}=100 \cdot c_{n}^{2} + 22 \ldots 2 \cdot 10 + 1 \] For example, \( c_{2}^{2}=11^{2}=(10 \cdot 1+1)^{2}=100+2 \cdot 10+1=121 \), \( c_{3}^{2} = 111^{2} = 100 \cdot 11^{2} + 220 + 1 = 12100 + 220 + 1 = 12321 \), \( c_{4}^{2} = 1111^{2} = 100 \cdot 111^{2} + 2220 + 1 = 1232100 + 2220 + 1 = 1234321 \), etc. We observe that in all listed numbers \( c_{2}^{2}, c_{3}^{2}, c_{4}^{2} \), the digit with respect to which these numbers are symmetric (2 in the case of \( c_{2}^{2}, 3 \) in the case of \( c_{3}^{2}, 4 \) in the case of \( c_{4}^{2} \)) coincides with the number of ones in the number that was squared. The given number \( c=123456787654321 \) is also symmetric with respect to the digit 8, which suggests that it might be the square of the number \( c_{8} = 11111111 \). This can be verified by performing multiplication by columns or using the recursive relation.
11111111
80.46875
26,159
Given an ellipse $C: \frac{y^{2}}{a^{2}}+ \frac{x^{2}}{b^{2}}=1(a > b > 0)$ with an eccentricity of $\frac{\sqrt{2}}{2}$ and the sum of the distances from a point on the ellipse to the two foci is $2\sqrt{2}$. A line $l$ with slope $k(k\neq 0)$ passes through the upper focus of the ellipse and intersects the ellipse at points $P$ and $Q$. The perpendicular bisector of segment $PQ$ intersects the $y$-axis at point $M(0,m)$. (1) Find the standard equation of the ellipse; (2) Find the range of values for $m$; (3) Express the area $S$ of triangle $\Delta MPQ$ in terms of $m$, and find the maximum value of the area $S$.
\frac{3\sqrt{6}}{16}
2.34375
26,160
The polar coordinate equation of curve C is given by C: ρ² = $\frac{12}{5 - \cos(2\theta)}$, and the parametric equations of line l are given by $\begin{cases} x = 1 + \frac{\sqrt{2}}{2}t \\ y = \frac{\sqrt{2}}{2}t \end{cases}$ (where t is the parameter). 1. Write the rectangular coordinate equation of C and the standard equation of l. 2. Line l intersects curve C at two points A and B. Let point M be (0, -1). Calculate the value of $\frac{|MA| + |MB|}{|MA| \cdot |MB|}$.
\frac{4\sqrt{3}}{3}
4.6875
26,161
How many of the natural numbers from 1 to 800, inclusive, contain the digit 7 at least once?
62
0
26,162
Given an ellipse $\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1 (a > b > 0)$ with its left and right foci being $F_1$ and $F_2$ respectively, and its eccentricity $e = \dfrac{\sqrt{2}}{2}$, the length of the minor axis is $2$. $(1)$ Find the equation of the ellipse; $(2)$ Point $A$ is a moving point on the ellipse (not the endpoints of the major axis), the extension line of $AF_2$ intersects the ellipse at point $B$, and the extension line of $AO$ intersects the ellipse at point $C$. Find the maximum value of the area of $\triangle ABC$.
\sqrt{2}
19.53125
26,163
How many positive odd integers greater than 1 and less than $200$ are square-free?
79
0
26,164
If four coins are tossed at the same time, what is the probability of getting exactly three heads and one tail? Follow this by rolling a six-sided die. What is the probability that the die shows a number greater than 4?
\frac{1}{12}
95.3125
26,165
What is the radius of the smallest circle inside which every planar closed polygonal line with a perimeter of 1 can be enclosed?
\frac{1}{4}
3.90625
26,166
Half of the yellow flowers are tulips, one third of the blue flowers are daisies, and seven tenths of the flowers are yellow. Find the percentage of flowers that are daisies.
45\%
3.125
26,167
Petya invented four distinct natural numbers and wrote down all their pairwise sums on the board. Below those, he wrote all their sums taken three at a time. It turned out that the sum of the two largest pairwise sums and the two smallest sums from those taken three at a time (a total of four sums) is 2017. Find the largest possible value of the sum of the four numbers that Petya invented.
1006
3.125
26,168
What is the greatest possible sum of the digits in the base-nine representation of a positive integer less than $3000$?
24
2.34375
26,169
There is a settlement $C$ (a point) located at the intersection of roads $A$ and $B$ (straight lines). Sasha walks along road $A$ towards $C$, taking 45 steps per minute with a step length of 60 cm. At the start, Sasha is 290 m away from $C$. Dania walks along road $B$ towards $C$ at a rate of 55 steps per minute with a step length of 65 cm, and at the start of their movement, Dania is 310 m away from $C$. Each person continues walking along their road without stopping after passing point $C$. We record the moments in time when both Dania and Sasha have taken whole numbers of steps. Find the minimum possible distance between them (along the roads) at such moments in time. Determine the number of steps each of them has taken by the time this minimum distance is achieved.
57
0
26,170
Given that $a$ is a positive real number and $b$ is an integer between $1$ and $201$, inclusive, find the number of ordered pairs $(a,b)$ such that $(\log_b a)^{2023}=\log_b(a^{2023})$.
603
53.125
26,171
Given a triangle with integral sides and an isosceles perimeter of 11, calculate the area of the triangle.
\frac{5\sqrt{2.75}}{2}
0
26,172
There are 5 students taking a test, and each student's score ($a, b, c, d, e$) is an integer between 0 and 100 inclusive. It is known that $a \leq b \leq c \leq d \leq e$. If the average score of the 5 students is $p$, then the median score $c$ is at least $\qquad$ .
40
18.75
26,173
At a dog show, each dog was assigned a sequential number from 1 to 24. Due to health reasons, one of the dogs was unable to participate in the competition. It turns out that among the remaining 23 dogs, one has a number equal to the arithmetic mean of the remaining dogs' numbers. What was the number assigned to the dog that could not participate in the show? If there are multiple solutions, list these numbers in ascending order without spaces.
124
0
26,174
Given the function f(x) = a^x (a > 0, a ≠ 1). (I) If $f(1) + f(-1) = \frac{5}{2}$, find the value of f(2) + f(-2). (II) If the difference between the maximum and minimum values of the function f(x) on [-1, 1] is $\frac{8}{3}$, find the value of the real number a.
\frac{1}{3}
25
26,175
Consider the region \(B\) in the complex plane consisting of all points \(z\) such that both \(\frac{z}{50}\) and \(\frac{50}{\overline{z}}\) have real and imaginary parts between 0 and 1, inclusive. Find the area of \(B\).
2500 - 312.5 \pi
4.6875
26,176
How many unique numbers can you get by multiplying two or more distinct members of the set $\{1,2,3,5,7\}$ together?
11
0.78125
26,177
A sequence of integers has a mode of 32, a mean of 22, a smallest number of 10, and a median of \( m \). If \( m \) is replaced by \( m+10 \), the new sequence has a mean of 24 and a median of \( m+10 \). If \( m \) is replaced by \( m-8 \), the new sequence has a median of \( m-4 \). What is the value of \( m \)?
20
2.34375
26,178
Three lines are drawn parallel to the sides of a triangle through a point inside it, dividing the triangle into six parts: three triangles and three quadrilaterals. The areas of all three inner triangles are equal. Determine the range within which the ratio of the area of each inner triangle to the area of the original triangle can lie.
1/9
2.34375
26,179
Given the function $f\left(x\right)=x^{3}+ax^{2}+bx+2$ has an extremum of $7$ at $x=-1$.<br/>$(1)$ Find the intervals where $f\left(x\right)$ is monotonic;<br/>$(2)$ Find the extremum of $f\left(x\right)$ on $\left[-2,4\right]$.
-25
35.15625
26,180
Compute \[ \sin^6 0^\circ + \sin^6 1^\circ + \sin^6 2^\circ + \dots + \sin^6 90^\circ. \]
\frac{229}{8}
20.3125
26,181
Given an geometric sequence \\(\{a_n\}\) with a common ratio less than \\(1\\), the sum of the first \\(n\\) terms is \\(S_n\\), and \\(a_1 = \frac{1}{2}\\), \\(7a_2 = 2S_3\\). \\((1)\\) Find the general formula for the sequence \\(\{a_n\}\). \\((2)\\) Let \\(b_n = \log_2(1-S_{n+1})\\). If \\(\frac{1}{{b_1}{b_3}} + \frac{1}{{b_3}{b_5}} + \ldots + \frac{1}{{b_{2n-1}}{b_{2n+1}}} = \frac{5}{21}\\), find \\(n\\).
10
4.6875
26,182
Given the function $f(x) = |2x+1| + |3x-2|$, and the solution set of the inequality $f(x) \leq 5$ is $\left\{x \mid -\frac{4a}{5} \leq x \leq \frac{3a}{5}\right\}$, where $a, b \in \mathbb{R}$. 1. Find the values of $a$ and $b$; 2. For any real number $x$, the inequality $|x-a| + |x+b| \geq m^2 - 3m$ holds, find the maximum value of the real number $m$.
\frac{3 + \sqrt{21}}{2}
8.59375
26,183
The maximum value of the real number $k$ for which the inequality $\sqrt{x-3}+\sqrt{6-x} \geqslant k$ has a solution with respect to $x$ is:
$\sqrt{6}$
0
26,184
A sequence of natural numbers $\left\{x_{n}\right\}$ is constructed according to the following rules: $$ x_{1}=a, x_{2}=b, x_{n+2}=x_{n}+x_{n+1}, \text{ for } n \geq 1. $$ It is known that some term in the sequence is 1000. What is the smallest possible value of $a+b$?
10
81.25
26,185
In $\triangle ABC$, $a$, $b$, $c$ are the sides opposite to angles $A$, $B$, $C$ respectively. Given $a^{2}-c^{2}=b^{2}- \frac {8bc}{5}$, $a=6$, $\sin B= \frac {4}{5}$. (I) Find the value of $\sin A$; (II) Find the area of $\triangle ABC$.
\frac {168}{25}
2.34375
26,186
Positive integers \(a\), \(b\), \(c\), and \(d\) satisfy \(a > b > c > d\), \(a + b + c + d = 2200\), and \(a^2 - b^2 + c^2 - d^2 = 2200\). Find the number of possible values of \(a\).
548
2.34375
26,187
(1) The definite integral $\int_{-1}^{1}(x^{2}+\sin x)dx=$ ______. (2) There are 2 red balls, 1 white ball, and 1 blue ball in a box. The probability of drawing two balls with at least one red ball is ______. (3) Given the function $f(x)=\begin{cases}1-\log_{a}(x+2), & x\geqslant 0 \\ g(x), & x < 0\end{cases}$ is an odd function, then the root of the equation $g(x)=2$ is ______. (4) Given the ellipse $M: \frac{x^{2}}{a^{2}}+ \frac{y^{2}}{b^{2}}=1(0 < b < a < \sqrt{2}b)$, its foci are $F_{1}$ and $F_{2}$ respectively. Circle $N$ has $F_{2}$ as its center, and its minor axis length as the diameter. A tangent line to circle $N$ passing through point $F_{1}$ touches it at points $A$ and $B$. If the area of quadrilateral $F_{1}AF_{2}B$ is $S= \frac{2}{3}a^{2}$, then the eccentricity of ellipse $M$ is ______.
\frac{\sqrt{3}}{3}
7.8125
26,188
Two people, A and B, visit the "2011 Xi'an World Horticultural Expo" together. They agree to independently choose 4 attractions from numbered attractions 1 to 6 to visit, spending 1 hour at each attraction. Calculate the probability that they will be at the same attraction during their last hour.
\dfrac{1}{6}
23.4375
26,189
A rectangular prism has dimensions of 1 by 1 by 2. Calculate the sum of the areas of all triangles whose vertices are also vertices of this rectangular prism, and express the sum in the form $m + \sqrt{n} + \sqrt{p}$, where $m, n,$ and $p$ are integers. Find $m + n + p$.
40
0.78125
26,190
If the maximum value of the function $f(x)=a^{x} (a > 0, a \neq 1)$ on $[-2,1]$ is $4$, and the minimum value is $m$, what is the value of $m$?
\frac{1}{2}
39.0625
26,191
Given the line $l$: $x=my+1$ passes through the right focus $F$ of the ellipse $C$: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 (a > b > 0)$, the focus of the parabola $x^{2}=4\sqrt{3}y$ is the upper vertex of the ellipse $C$, and the line $l$ intersects the ellipse $C$ at points $A$ and $B$. 1. Find the equation of the ellipse $C$. 2. If the line $l$ intersects the $y$-axis at point $M$, and $\overrightarrow{MA}=\lambda_{1}\overrightarrow{AF}, \overrightarrow{MB}=\lambda_{2}\overrightarrow{BF}$, is the value of $\lambda_{1}+\lambda_{2}$ a constant as $m$ varies? If so, find this constant. If not, explain why.
-\frac{8}{3}
63.28125
26,192
What is the maximum number of checkers that can be placed on an $8 \times 8$ board so that each one is being attacked?
32
85.15625
26,193
For how many values of $k$ is $18^{18}$ the least common multiple of the positive integers $6^9$, $9^9$, and $k$?
19
3.90625
26,194
Let the three-digit number \( n = abc \). If \( a, b, \) and \( c \) as the lengths of the sides can form an isosceles (including equilateral) triangle, then how many such three-digit numbers \( n \) are there?
165
95.3125
26,195
How many ordered pairs $(s, d)$ of positive integers with $4 \leq s \leq d \leq 2019$ are there such that when $s$ silver balls and $d$ diamond balls are randomly arranged in a row, the probability that the balls on each end have the same color is $\frac{1}{2}$ ?
60
11.71875
26,196
In $\triangle ABC$, $\angle ACB=60^{\circ}$, $BC > 1$, and $AC=AB+\frac{1}{2}$. When the perimeter of $\triangle ABC$ is at its minimum, the length of $BC$ is $\_\_\_\_\_\_\_\_\_\_$.
1 + \frac{\sqrt{2}}{2}
0
26,197
In the numbers from $1$ to $2002$, the number of positive integers that contain exactly one digit $0$ is:
414
0
26,198
Solve the equations:<br/>$(1)2x\left(x-1\right)=1$;<br/>$(2)x^{2}+8x+7=0$.
-1
0
26,199
Let \( f: \mathbb{N} \rightarrow \mathbb{N} \) be a function that satisfies \[ f(1) = 2, \] \[ f(2) = 1, \] \[ f(3n) = 3f(n), \] \[ f(3n + 1) = 3f(n) + 2, \] \[ f(3n + 2) = 3f(n) + 1. \] Find how many integers \( n \leq 2014 \) satisfy \( f(n) = 2n \).
127
93.75