Unnamed: 0
int64
0
40.3k
problem
stringlengths
10
5.15k
ground_truth
stringlengths
1
1.22k
solved_percentage
float64
0
100
300
Let $a, a', b,$ and $b'$ be real numbers with $a$ and $a'$ nonzero. The solution to $ax+b=0$ is less than the solution to $a'x+b'=0$ if and only if
$\frac{b'}{a'}<\frac{b}{a}$
0
301
Points $A, B$ and $C$ on a circle of radius $r$ are situated so that $AB=AC, AB>r$, and the length of minor arc $BC$ is $r$. If angles are measured in radians, then $AB/BC=$
\frac{1}{2}\csc{\frac{1}{4}}
0
302
If $\frac{\frac{x}{4}}{2}=\frac{4}{\frac{x}{2}}$, then $x=$
\pm 8
0
303
How many positive even multiples of $3$ less than $2020$ are perfect squares?
7
79.6875
304
Points $P$ and $Q$ lie in a plane with $PQ=8$. How many locations for point $R$ in this plane are there such that the triangle with vertices $P$, $Q$, and $R$ is a right triangle with area $12$ square units?
8
33.59375
305
$\left(\frac{1}{4}\right)^{-\frac{1}{4}}=$
\sqrt{2}
90.625
306
Ray's car averages $40$ miles per gallon of gasoline, and Tom's car averages $10$ miles per gallon of gasoline. Ray and Tom each drive the same number of miles. What is the cars' combined rate of miles per gallon of gasoline?
16
92.1875
307
A supermarket has $128$ crates of apples. Each crate contains at least $120$ apples and at most $144$ apples. What is the largest integer $n$ such that there must be at least $n$ crates containing the same number of apples?
6
74.21875
308
Let $x$ and $y$ be two-digit positive integers with mean $60$. What is the maximum value of the ratio $\frac{x}{y}$?
\frac{33}{7}
55.46875
309
How many numbers between $1$ and $2005$ are integer multiples of $3$ or $4$ but not $12$?
1002
0
310
Let $f(n)$ be the number of ways to write $n$ as a sum of powers of $2$, where we keep track of the order of the summation. For example, $f(4)=6$ because $4$ can be written as $4$, $2+2$, $2+1+1$, $1+2+1$, $1+1+2$, and $1+1+1+1$. Find the smallest $n$ greater than $2013$ for which $f(n)$ is odd.
2016
0.78125
311
There are exactly $N$ distinct rational numbers $k$ such that $|k|<200$ and $5x^2+kx+12=0$ has at least one integer solution for $x$. What is $N$?
78
6.25
312
If $\sin{2x}\sin{3x}=\cos{2x}\cos{3x}$, then one value for $x$ is
18
0.78125
313
A number of linked rings, each $1$ cm thick, are hanging on a peg. The top ring has an outside diameter of $20$ cm. The outside diameter of each of the outer rings is $1$ cm less than that of the ring above it. The bottom ring has an outside diameter of $3$ cm. What is the distance, in cm, from the top of the top ring to the bottom of the bottom ring?
173
1.5625
314
Nine congruent spheres are packed inside a unit cube in such a way that one of them has its center at the center of the cube and each of the others is tangent to the center sphere and to three faces of the cube. What is the radius of each sphere?
\( \frac{2\sqrt{3}-3}{2} \)
0
315
Three-digit powers of $2$ and $5$ are used in this "cross-number" puzzle. What is the only possible digit for the outlined square? \[\begin{array}{lcl} \textbf{ACROSS} & & \textbf{DOWN} \\ \textbf{2}.~ 2^m & & \textbf{1}.~ 5^n \end{array}\]
6
7.03125
316
The parabolas $y=ax^2 - 2$ and $y=4 - bx^2$ intersect the coordinate axes in exactly four points, and these four points are the vertices of a kite of area $12$. What is $a+b$?
1.5
0
317
A radio program has a quiz consisting of $3$ multiple-choice questions, each with $3$ choices. A contestant wins if he or she gets $2$ or more of the questions right. The contestant answers randomly to each question. What is the probability of winning?
\frac{7}{27}
86.71875
318
How many squares whose sides are parallel to the axes and whose vertices have coordinates that are integers lie entirely within the region bounded by the line $y=\pi x$, the line $y=-0.1$ and the line $x=5.1?$
50
9.375
319
Quadrilateral $ABCD$ is inscribed in circle $O$ and has side lengths $AB=3, BC=2, CD=6$, and $DA=8$. Let $X$ and $Y$ be points on $\overline{BD}$ such that $\frac{DX}{BD} = \frac{1}{4}$ and $\frac{BY}{BD} = \frac{11}{36}$. Let $E$ be the intersection of line $AX$ and the line through $Y$ parallel to $\overline{AD}$. Let $F$ be the intersection of line $CX$ and the line through $E$ parallel to $\overline{AC}$. Let $G$ be the point on circle $O$ other than $C$ that lies on line $CX$. What is $XF\cdot XG$?
17
0.78125
320
-15 + 9 \times (6 \div 3) =
3
67.1875
321
How many ordered triples $(a, b, c)$ of non-zero real numbers have the property that each number is the product of the other two?
4
88.28125
322
Suppose $a$, $b$ and $c$ are positive integers with $a+b+c=2006$, and $a!b!c!=m\cdot 10^n$, where $m$ and $n$ are integers and $m$ is not divisible by $10$. What is the smallest possible value of $n$?
492
31.25
323
Alicia earns 20 dollars per hour, of which $1.45\%$ is deducted to pay local taxes. How many cents per hour of Alicia's wages are used to pay local taxes?
29
100
324
If $x=t^{\frac{1}{t-1}}$ and $y=t^{\frac{t}{t-1}},t>0,t \ne 1$, a relation between $x$ and $y$ is:
$y^x=x^y$
0
325
The figure below shows line $\ell$ with a regular, infinite, recurring pattern of squares and line segments. How many of the following four kinds of rigid motion transformations of the plane in which this figure is drawn, other than the identity transformation, will transform this figure into itself? some rotation around a point of line $\ell$ some translation in the direction parallel to line $\ell$ the reflection across line $\ell$ some reflection across a line perpendicular to line $\ell$
2
56.25
326
A driver travels for $2$ hours at $60$ miles per hour, during which her car gets $30$ miles per gallon of gasoline. She is paid $\$0.50$ per mile, and her only expense is gasoline at $\$2.00$ per gallon. What is her net rate of pay, in dollars per hour, after this expense?
26
78.125
327
Andy and Bethany have a rectangular array of numbers with $40$ rows and $75$ columns. Andy adds the numbers in each row. The average of his $40$ sums is $A$. Bethany adds the numbers in each column. The average of her $75$ sums is $B$. What is the value of $\frac{A}{B}$?
\frac{15}{8}
99.21875
328
Liliane has $50\%$ more soda than Jacqueline, and Alice has $25\%$ more soda than Jacqueline. What is the relationship between the amounts of soda that Liliane and Alice have?
$20\%$
0
329
If $\left(a + \frac{1}{a}\right)^2 = 3$, then $a^3 + \frac{1}{a^3}$ equals:
0
96.09375
330
What is the $100\text{th}$ number in the arithmetic sequence: $1,5,9,13,17,21,25,...$?
397
96.09375
331
The nine squares in the table shown are to be filled so that every row and every column contains each of the numbers $1,2,3$. Then $A+B=$ \begin{tabular}{|c|c|c|}\hline 1 & &\\ \hline & 2 & A\\ \hline & & B\\ \hline\end{tabular}
4
61.71875
332
The number $5^{867}$ is between $2^{2013}$ and $2^{2014}$. How many pairs of integers $(m,n)$ are there such that $1\leq m\leq 2012$ and $5^n<2^m<2^{m+2}<5^{n+1}$?
279
24.21875
333
Evaluate $(x^x)^{(x^x)}$ at $x = 2$.
256
99.21875
334
Diana and Apollo each roll a standard die obtaining a number at random from $1$ to $6$. What is the probability that Diana's number is larger than Apollo's number?
\frac{5}{12}
73.4375
335
A fruit salad consists of blueberries, raspberries, grapes, and cherries. The fruit salad has a total of $280$ pieces of fruit. There are twice as many raspberries as blueberries, three times as many grapes as cherries, and four times as many cherries as raspberries. How many cherries are there in the fruit salad?
64
92.1875
336
What is the correct ordering of the three numbers $\frac{5}{19}$, $\frac{7}{21}$, and $\frac{9}{23}$, in increasing order?
\frac{5}{19} < \frac{7}{21} < \frac{9}{23}
21.09375
337
The numbers on the faces of this cube are consecutive whole numbers. The sum of the two numbers on each of the three pairs of opposite faces are equal. The sum of the six numbers on this cube is
81
0
338
Paula the painter had just enough paint for 30 identically sized rooms. Unfortunately, on the way to work, three cans of paint fell off her truck, so she had only enough paint for 25 rooms. How many cans of paint did she use for the 25 rooms?
15
72.65625
339
At Megapolis Hospital one year, multiple-birth statistics were as follows: Sets of twins, triplets, and quadruplets accounted for $1000$ of the babies born. There were four times as many sets of triplets as sets of quadruplets, and there was three times as many sets of twins as sets of triplets. How many of these $1000$ babies were in sets of quadruplets?
100
88.28125
340
A triangle with vertices $(6, 5)$, $(8, -3)$, and $(9, 1)$ is reflected about the line $x=8$ to create a second triangle. What is the area of the union of the two triangles?
\frac{32}{3}
0
341
$\frac{1000^2}{252^2-248^2}$ equals
500
90.625
342
Jamal wants to save 30 files onto disks, each with 1.44 MB space. 3 of the files take up 0.8 MB, 12 of the files take up 0.7 MB, and the rest take up 0.4 MB. It is not possible to split a file onto 2 different disks. What is the smallest number of disks needed to store all 30 files?
13
22.65625
343
How many three-digit numbers are not divisible by $5$, have digits that sum to less than $20$, and have the first digit equal to the third digit?
60
91.40625
344
A fair $6$ sided die is rolled twice. What is the probability that the first number that comes up is greater than or equal to the second number?
\frac{7}{12}
53.90625
345
If $r$ is the remainder when each of the numbers $1059$, $1417$, and $2312$ is divided by $d$, where $d$ is an integer greater than $1$, then $d-r$ equals
15
94.53125
346
A flagpole is originally $5$ meters tall. A hurricane snaps the flagpole at a point $x$ meters above the ground so that the upper part, still attached to the stump, touches the ground $1$ meter away from the base. What is $x$?
2.4
64.84375
347
Let $B$ be a right rectangular prism (box) with edges lengths $1,$ $3,$ and $4$, together with its interior. For real $r\geq0$, let $S(r)$ be the set of points in $3$-dimensional space that lie within a distance $r$ of some point in $B$. The volume of $S(r)$ can be expressed as $ar^{3} + br^{2} + cr +d$, where $a,$ $b,$ $c,$ and $d$ are positive real numbers. What is $\frac{bc}{ad}?$
19
10.9375
348
Adam, Benin, Chiang, Deshawn, Esther, and Fiona have internet accounts. Some, but not all, of them are internet friends with each other, and none of them has an internet friend outside this group. Each of them has the same number of internet friends. In how many different ways can this happen?
170
0
349
Inside square $ABCD$ with side $s$, quarter-circle arcs with radii $s$ and centers at $A$ and $B$ are drawn. These arcs intersect at a point $X$ inside the square. How far is $X$ from the side of $CD$?
\frac{1}{2} s(2-\sqrt{3})
0
350
Point $B$ is due east of point $A$. Point $C$ is due north of point $B$. The distance between points $A$ and $C$ is $10\sqrt 2$, and $\angle BAC = 45^\circ$. Point $D$ is $20$ meters due north of point $C$. The distance $AD$ is between which two integers?
31 \text{ and } 32
74.21875
351
Let $1$; $4$; $\ldots$ and $9$; $16$; $\ldots$ be two arithmetic progressions. The set $S$ is the union of the first $2004$ terms of each sequence. How many distinct numbers are in $S$?
3722
56.25
352
Consider the figure consisting of a square, its diagonals, and the segments joining the midpoints of opposite sides. The total number of triangles of any size in the figure is
16
22.65625
353
The first three terms of a geometric progression are $\sqrt{2}, \sqrt[3]{2}, \sqrt[6]{2}$. Find the fourth term.
1
71.875
354
The ratio of the areas of two concentric circles is $1: 3$. If the radius of the smaller is $r$, then the difference between the radii is best approximated by:
0.73r
8.59375
355
The sides of a regular polygon of $n$ sides, $n>4$, are extended to form a star. The number of degrees at each point of the star is:
\frac{(n-2)180}{n}
0
356
Each of the $100$ students in a certain summer camp can either sing, dance, or act. Some students have more than one talent, but no student has all three talents. There are $42$ students who cannot sing, $65$ students who cannot dance, and $29$ students who cannot act. How many students have two of these talents?
64
89.0625
357
Three generations of the Wen family are going to the movies, two from each generation. The two members of the youngest generation receive a $50$% discount as children. The two members of the oldest generation receive a $25\%$ discount as senior citizens. The two members of the middle generation receive no discount. Grandfather Wen, whose senior ticket costs $\$6.00$, is paying for everyone. How many dollars must he pay?
36
35.15625
358
How many ways are there to paint each of the integers $2, 3, \cdots , 9$ either red, green, or blue so that each number has a different color from each of its proper divisors?
432
66.40625
359
A store normally sells windows at $100 each. This week the store is offering one free window for each purchase of four. Dave needs seven windows and Doug needs eight windows. How many dollars will they save if they purchase the windows together rather than separately?
100
38.28125
360
One of the factors of $x^4+4$ is:
$x^2-2x+2$
0
361
How many ordered pairs $(m,n)$ of positive integers, with $m \ge n$, have the property that their squares differ by $96$?
4
84.375
362
Four students take an exam. Three of their scores are $70, 80,$ and $90$. If the average of their four scores is $70$, then what is the remaining score?
40
100
363
The number of positive integers less than $1000$ divisible by neither $5$ nor $7$ is:
686
95.3125
364
First $a$ is chosen at random from the set $\{1,2,3,\cdots,99,100\}$, and then $b$ is chosen at random from the same set. The probability that the integer $3^a+7^b$ has units digit $8$ is
\frac{3}{16}
43.75
365
The fraction halfway between $\frac{1}{5}$ and $\frac{1}{3}$ (on the number line) is
\frac{4}{15}
93.75
366
Given the equation $3x^2 - 4x + k = 0$ with real roots. The value of $k$ for which the product of the roots of the equation is a maximum is:
\frac{4}{3}
96.875
367
Hui is an avid reader. She bought a copy of the best seller Math is Beautiful. On the first day, Hui read $1/5$ of the pages plus $12$ more, and on the second day she read $1/4$ of the remaining pages plus $15$ pages. On the third day she read $1/3$ of the remaining pages plus $18$ pages. She then realized that there were only $62$ pages left to read, which she read the next day. How many pages are in this book?
240
77.34375
368
Let $D(n)$ denote the number of ways of writing the positive integer $n$ as a product \[n = f_1\cdot f_2\cdots f_k,\]where $k\ge1$, the $f_i$ are integers strictly greater than $1$, and the order in which the factors are listed matters (that is, two representations that differ only in the order of the factors are counted as distinct). For example, the number $6$ can be written as $6$, $2\cdot 3$, and $3\cdot2$, so $D(6) = 3$. What is $D(96)$?
112
82.8125
369
Each vertex of convex pentagon $ABCDE$ is to be assigned a color. There are $6$ colors to choose from, and the ends of each diagonal must have different colors. How many different colorings are possible?
3120
68.75
370
John scores 93 on this year's AHSME. Had the old scoring system still been in effect, he would score only 84 for the same answers. How many questions does he leave unanswered?
9
6.25
371
A picture $3$ feet across is hung in the center of a wall that is $19$ feet wide. How many feet from the end of the wall is the nearest edge of the picture?
8
91.40625
372
A ticket to a school play cost $x$ dollars, where $x$ is a whole number. A group of 9th graders buys tickets costing a total of $48, and a group of 10th graders buys tickets costing a total of $64. How many values for $x$ are possible?
5
80.46875
373
On circle $O$, points $C$ and $D$ are on the same side of diameter $\overline{AB}$, $\angle AOC = 30^\circ$, and $\angle DOB = 45^\circ$. What is the ratio of the area of the smaller sector $COD$ to the area of the circle?
\frac{7}{24}
50.78125
374
The plane is tiled by congruent squares and congruent pentagons as indicated. The percent of the plane that is enclosed by the pentagons is closest to [asy] unitsize(3mm); defaultpen(linewidth(0.8pt)); path p1=(0,0)--(3,0)--(3,3)--(0,3)--(0,0); path p2=(0,1)--(1,1)--(1,0); path p3=(2,0)--(2,1)--(3,1); path p4=(3,2)--(2,2)--(2,3); path p5=(1,3)--(1,2)--(0,2); path p6=(1,1)--(2,2); path p7=(2,1)--(1,2); path[] p=p1^^p2^^p3^^p4^^p5^^p6^^p7; for(int i=0; i<3; ++i) { for(int j=0; j<3; ++j) { draw(shift(3*i,3*j)*p); } } [/asy]
56
3.125
375
The base three representation of $x$ is $12112211122211112222$. The first digit (on the left) of the base nine representation of $x$ is
5
57.03125
376
The average cost of a long-distance call in the USA in $1985$ was $41$ cents per minute, and the average cost of a long-distance call in the USA in $2005$ was $7$ cents per minute. Find the approximate percent decrease in the cost per minute of a long- distance call.
80
0
377
At a twins and triplets convention, there were $9$ sets of twins and $6$ sets of triplets, all from different families. Each twin shook hands with all the twins except his/her siblings and with half the triplets. Each triplet shook hands with all the triplets except his/her siblings and with half the twins. How many handshakes took place?
441
87.5
378
Let $ABCD$ be a rectangle and let $\overline{DM}$ be a segment perpendicular to the plane of $ABCD$. Suppose that $\overline{DM}$ has integer length, and the lengths of $\overline{MA}, \overline{MC},$ and $\overline{MB}$ are consecutive odd positive integers (in this order). What is the volume of pyramid $MABCD?$
24\sqrt{5}
5.46875
379
The arithmetic mean of the nine numbers in the set $\{9, 99, 999, 9999, \ldots, 999999999\}$ is a $9$-digit number $M$, all of whose digits are distinct. The number $M$ doesn't contain the digit
0
89.0625
380
In the adjoining plane figure, sides $AF$ and $CD$ are parallel, as are sides $AB$ and $EF$, and sides $BC$ and $ED$. Each side has length $1$. Also, $\angle FAB = \angle BCD = 60^\circ$. The area of the figure is
\sqrt{3}
53.125
381
$\diamondsuit$ and $\Delta$ are whole numbers and $\diamondsuit \times \Delta =36$. The largest possible value of $\diamondsuit + \Delta$ is
37
95.3125
382
What is the difference between the sum of the first $2003$ even counting numbers and the sum of the first $2003$ odd counting numbers?
2003
98.4375
383
Three fair six-sided dice are rolled. What is the probability that the values shown on two of the dice sum to the value shown on the remaining die?
\frac{5}{24}
32.03125
384
In the base ten number system the number $526$ means $5 \times 10^2+2 \times 10 + 6$. In the Land of Mathesis, however, numbers are written in the base $r$. Jones purchases an automobile there for $440$ monetary units (abbreviated m.u). He gives the salesman a $1000$ m.u bill, and receives, in change, $340$ m.u. The base $r$ is:
8
92.1875
385
A large rectangle is partitioned into four rectangles by two segments parallel to its sides. The areas of three of the resulting rectangles are shown. What is the area of the fourth rectangle?
15
0.78125
386
The "Middle School Eight" basketball conference has $8$ teams. Every season, each team plays every other conference team twice (home and away), and each team also plays $4$ games against non-conference opponents. What is the total number of games in a season involving the "Middle School Eight" teams?
88
78.125
387
If $|x-\log y|=x+\log y$ where $x$ and $\log y$ are real, then
x(y-1)=0
0
388
If $x_{k+1} = x_k + \frac{1}{2}$ for $k=1, 2, \dots, n-1$ and $x_1=1$, find $x_1 + x_2 + \dots + x_n$.
\frac{n^2+3n}{4}
42.96875
389
Define $x\otimes y=x^3-y$. What is $h\otimes (h\otimes h)$?
h
86.71875
390
The keystone arch is an ancient architectural feature. It is composed of congruent isosceles trapezoids fitted together along the non-parallel sides, as shown. The bottom sides of the two end trapezoids are horizontal. In an arch made with $9$ trapezoids, let $x$ be the angle measure in degrees of the larger interior angle of the trapezoid. What is $x$? [asy] unitsize(4mm); defaultpen(linewidth(.8pt)); int i; real r=5, R=6; path t=r*dir(0)--r*dir(20)--R*dir(20)--R*dir(0); for(i=0; i<9; ++i) { draw(rotate(20*i)*t); } draw((-r,0)--(R+1,0)); draw((-R,0)--(-R-1,0)); [/asy]
100
1.5625
391
Laura added two three-digit positive integers. All six digits in these numbers are different. Laura's sum is a three-digit number $S$. What is the smallest possible value for the sum of the digits of $S$?
4
95.3125
392
Indicate in which one of the following equations $y$ is neither directly nor inversely proportional to $x$:
$3x + y = 10$
0
393
Suppose there is a special key on a calculator that replaces the number $x$ currently displayed with the number given by the formula $1/(1-x)$. For example, if the calculator is displaying 2 and the special key is pressed, then the calculator will display -1 since $1/(1-2)=-1$. Now suppose that the calculator is displaying 5. After the special key is pressed 100 times in a row, the calculator will display
-0.25
0.78125
394
The two spinners shown are spun once and each lands on one of the numbered sectors. What is the probability that the sum of the numbers in the two sectors is prime?
\frac{7}{9}
0
395
$\frac{2}{10}+\frac{4}{100}+\frac{6}{1000}=$
.246
75.78125
396
Circles with centers $A$, $B$, and $C$ each have radius $r$, where $1 < r < 2$. The distance between each pair of centers is $2$. If $B'$ is the point of intersection of circle $A$ and circle $C$ which is outside circle $B$, and if $C'$ is the point of intersection of circle $A$ and circle $B$ which is outside circle $C$, then length $B'C'$ equals
1+\sqrt{3(r^2-1)}
0
397
For some positive integer $k$, the repeating base-$k$ representation of the (base-ten) fraction $\frac{7}{51}$ is $0.\overline{23}_k = 0.232323..._k$. What is $k$?
16
94.53125
398
A positive number is mistakenly divided by $6$ instead of being multiplied by $6.$ Based on the correct answer, the error thus committed, to the nearest percent, is
97
84.375
399
The domain of the function $f(x)=\log_{\frac{1}{2}}(\log_4(\log_{\frac{1}{4}}(\log_{16}(\log_{\frac{1}{16}}x))))$ is an interval of length $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$?
271
24.21875