Unnamed: 0
int64
0
40.3k
problem
stringlengths
10
5.15k
ground_truth
stringlengths
1
1.22k
solved_percentage
float64
0
100
32,000
Given an isosceles triangle with a vertex angle of 36°, the ratio of the base to the leg is equal to .
\frac{\sqrt{5}-1}{2}
69.53125
32,001
Given that 2 teachers and 4 students are to be divided into 2 groups, each consisting of 1 teacher and 2 students, calculate the total number of different arrangements for the social practice activities in two different locations, A and B.
12
4.6875
32,002
Determine the slope \(m\) of the asymptotes for the hyperbola given by the equation \[ \frac{y^2}{16} - \frac{x^2}{9} = 1. \]
\frac{4}{3}
5.46875
32,003
Given that the sum of the first $n$ terms of the sequence ${a_n}$ is $S_n=\frac{n^2+n}{2}+1$, find the sum of the first 99 terms of the sequence ${\frac{1}{a_n a_{n+1}}}$, denoted as $T_{99}$.
\frac{37}{50}
66.40625
32,004
An ancient civilization has a tribe of 12 members organized hierarchically. The tribe has one main chief, two supporting chiefs (Senior and Junior), and each supporting chief has three inferior officers. If the tribe has 12 members in total, in how many ways can the leadership structure of the tribe be formed under these restrictions?
2217600
11.71875
32,005
The function $\mathbf{y}=f(x)$ satisfies the following conditions: a) $f(4)=2$; b) $f(n+1)=\frac{1}{f(0)+f(1)}+\frac{1}{f(1)+f(2)}+\ldots+\frac{1}{f(n)+f(n+1)}, n \geq 0$. Find the value of $f(2022)$.
\sqrt{2022}
0
32,006
The diagram shows three rectangles and three straight lines. What is the value of \( p + q + r \)? A) 135 B) 180 C) 210 D) 225 E) 270
180
56.25
32,007
Determine the number of digits in the value of $2^{15} \times 5^{11}$.
12
0.78125
32,008
The sum of the largest number and the smallest number of a triple of positive integers $(x,y,z)$ is the power of the triple. Compute the sum of powers of all triples $(x,y,z)$ where $x,y,z \leq 9$.
7290
0
32,009
Given that $\overrightarrow{a}$ and $\overrightarrow{b}$ are unit vectors, if $|\overrightarrow{a}-2\overrightarrow{b}|=\sqrt{3}$, then the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ is ____.
\frac{1}{3}\pi
0
32,010
What is the sum of the six positive integer factors of 30, each multiplied by 2?
144
12.5
32,011
Given that an ellipse and a hyperbola share common foci $F_1$, $F_2$, and $P$ is one of their intersection points, $\angle F_1PF_2=60^\circ$, find the minimum value of $e_1^2+e_2^2$.
1+\frac{\sqrt{3}}{2}
9.375
32,012
What is the result when $1\frac{1}{3}$ is subtracted from $2\frac{5}{6}$?
\frac{3}{2}
20.3125
32,013
Given a circle described by the equation $x^{2}-2x+y^{2}-2y+1=0$, find the cosine value of the angle between the two tangent lines drawn from an external point $P(3,2)$.
\frac{3}{5}
40.625
32,014
How many different rectangles with sides parallel to the grid can be formed by connecting four of the dots in a $5\times 5$ square array of dots?
100
11.71875
32,015
Calculate $1010101_2 + 111000_2$ and write your answer in base $10$.
141
39.84375
32,016
The equation of the asymptotes of the hyperbola \\(x^{2}- \frac {y^{2}}{2}=1\\) is \_\_\_\_\_\_; the eccentricity equals \_\_\_\_\_\_.
\sqrt {3}
0
32,017
The area of a triangle \(ABC\) is \(\displaystyle 40 \text{ cm}^2\). Points \(D, E\) and \(F\) are on sides \(AB, BC\) and \(CA\) respectively. If \(AD = 3 \text{ cm}, DB = 5 \text{ cm}\), and the area of triangle \(ABE\) is equal to the area of quadrilateral \(DBEF\), find the area of triangle \(AEC\) in \(\text{cm}^2\).
15
13.28125
32,018
In rectangle $PQRS$, $PQ=7$ and $QR =4$. Points $X$ and $Y$ are on $\overline{RS}$ so that $RX = 2$ and $SY=3$. Lines $PX$ and $QY$ intersect at $Z$. Find the area of $\triangle PQZ$.
19.6
0
32,019
Each of 8 balls is randomly and independently painted either black or white with equal probability. Calculate the probability that every ball is different in color from more than half of the other 7 balls.
\frac{35}{128}
37.5
32,020
Given that $a$, $b$, and $c$ are the sides opposite to angles $A$, $B$, and $C$ respectively in $\triangle ABC$, and $\sin A$, $\sin B$, and $\sin C$ form a geometric sequence. When $B$ takes the maximum value, the maximum value of $\sin A + \sin C$ is _____.
\sqrt{3}
67.96875
32,021
In a sequence $a_1, a_2, . . . , a_{1000}$ consisting of $1000$ distinct numbers a pair $(a_i, a_j )$ with $i < j$ is called *ascending* if $a_i < a_j$ and *descending* if $a_i > a_j$ . Determine the largest positive integer $k$ with the property that every sequence of $1000$ distinct numbers has at least $k$ non-overlapping ascending pairs or at least $k$ non-overlapping descending pairs.
333
0
32,022
Let $q(x)$ be a quadratic polynomial such that $[q(x)]^2 - x^2$ is divisible by $(x - 2)(x + 2)(x - 5)$. Find $q(10)$.
\frac{110}{7}
7.8125
32,023
Let \( n, m \) be positive integers. Define the sets \( A = \{1, 2, \ldots, n\} \) and \( B_{n}^{m} = \{ (a_1, a_2, \ldots, a_m) \mid a_i \in A, i = 1, 2, \ldots, m \} \) that satisfy: 1. \( |a_i - a_{i+1}| \neq n-1 \) for \( i = 1, 2, \ldots, m-1 \); 2. Among \( a_1, a_2, \ldots, a_m \) (with \( m \geq 3 \)), there are at least three different elements. Find the number of elements in \( B_{n}^{m} \) and \( B_{6}^{3} \).
104
62.5
32,024
In triangle $ABC$, where $AB = \sqrt{34}$ and $AC = 5$, the angle $B$ is $90^\circ$. Calculate $\tan A$.
\frac{3}{5}
67.1875
32,025
Given the function $f(x)=\sin^{2}x+\sqrt{3}\sin x\sin (x+\frac{\pi}{2})$. 1. Find the value of $f(\frac{\pi}{12})$; 2. Find the maximum and minimum values of the function $f(x)$ when $x\in[0,\frac{\pi}{2}]$.
\frac{3}{2}
0
32,026
There is a unique two-digit positive integer $t$ for which the last two digits of $13 \cdot t$ are $26$.
62
0
32,027
Given that the function $f(x)$ satisfies $f(x+y)=f(x)+f(y)$ for all real numbers $x, y \in \mathbb{R}$, and $f(x) < 0$ when $x > 0$, and $f(3)=-2$. 1. Determine the parity (odd or even) of the function. 2. Determine the monotonicity of the function on $\mathbb{R}$. 3. Find the maximum and minimum values of $f(x)$ on $[-12,12]$.
-8
82.8125
32,028
As shown in the diagram, four small plates \( A, B, C, D \) are arranged in a circular shape, with an unspecified number of candies placed on each plate. In each move, it is allowed to take all candies from 1, 3, or 4 plates, or from 2 adjacent plates. What is the maximum number of different possible amounts of candies that can be taken out? Please provide a reasoning.
13
24.21875
32,029
If the real numbers x and y satisfy \((x-3)^{2}+4(y-1)^{2}=4\), find the maximum and minimum values of \(\frac{x+y-3}{x-y+1}\).
-1
10.9375
32,030
Given a sequence of positive terms $\{a_n\}$ with the sum of the first $n$ terms denoted as $S_n$, it satisfies the equation $2S_n = a_n^2 + a_n$ for all natural numbers $n$. Define a new sequence $\{c_n\}$ where $c_n = (-1)^n \frac{2a_n + 1}{2S_n}$. Find the sum of the first 2016 terms of the sequence $\{c_n\}$.
- \frac{2016}{2017}
55.46875
32,031
The function $f: \mathbb{R}\rightarrow \mathbb{R}$ is such that $f(x+1)=2f(x)$ for $\forall$ $x\in \mathbb{R}$ and $f(x)=x(x-1)$ for $\forall$ $x\in (0,1]$ . Find the greatest real number $m$ , for which the inequality $f(x)\geq -\frac{8}{9}$ is true for $\forall$ $x\in (-\infty , m]$ .
7/3
3.125
32,032
How many distinct diagonals of a convex nonagon (9-sided polygon) can be drawn such that none of the diagonals is parallel to any side of the polygon?
18
49.21875
32,033
Antoine, Benoît, Claude, Didier, Étienne, and Françoise go to the cinéma together to see a movie. The six of them want to sit in a single row of six seats. But Antoine, Benoît, and Claude are mortal enemies and refuse to sit next to either of the other two. How many different arrangements are possible?
144
30.46875
32,034
A triangle has sides of lengths 6 cm and 8 cm that create a 45-degree angle between them. Calculate the length of the third side.
5.67
0
32,035
In isosceles right-angled triangle $ABC$ , $CA = CB = 1$ . $P$ is an arbitrary point on the sides of $ABC$ . Find the maximum of $PA \cdot PB \cdot PC$ .
\frac{\sqrt{2}}{4}
43.75
32,036
Petya's bank account contains 500 dollars. The bank allows only two types of transactions: withdrawing 300 dollars or adding 198 dollars. What is the maximum amount Petya can withdraw from the account if he does not have any other money?
498
50
32,037
If the graph of the function $f(x)=\sin \omega x+\sin (\omega x- \frac {\pi}{2})$ ($\omega > 0$) is symmetric about the point $\left( \frac {\pi}{8},0\right)$, and there is a zero point within $\left(- \frac {\pi}{4},0\right)$, determine the minimum value of $\omega$.
10
8.59375
32,038
A rectangular sheet of paper is folded so that two diagonally opposite corners come together. If the crease formed is the same length as the longer side of the sheet, what is the ratio of the longer side of the sheet to the shorter side?
\sqrt{\frac{2}{\sqrt{5} - 1}}
0
32,039
Given vectors $\overrightarrow{a}=(2\sin \omega x,2\cos \omega x)$ and $\overrightarrow{b}=(\sqrt{3}\cos\omega x,-\cos\omega x)$, where the function $f(x)=\overrightarrow{a}\cdot\overrightarrow{b}$ has a minimum positive period of $6\pi$. Find the value of the real number $\omega$. Additionally, given $α,β∈[\frac{π}{6},\frac{2π}{3}]$, where $f(3α)=-\frac{3}{13}$ and $f(3β+3π)=-\frac{11}{5}$, find $\sin(\alpha -\beta)$.
-\frac{16}{65}
35.9375
32,040
Given that the probability that a ball is tossed into bin k is 3^(-k) for k = 1,2,3,..., find the probability that the blue ball is tossed into a higher-numbered bin than the yellow ball.
\frac{7}{16}
1.5625
32,041
What value should the real number $m$ take so that the point representing the complex number $z=(m^2-8m+15)+(m^2-5m-14)i$ in the complex plane (Ⅰ) lies in the fourth quadrant; (Ⅱ) lies on the line $y=x$.
\frac{29}{3}
57.8125
32,042
How many ordered pairs of integers $(a, b)$ satisfy all of the following inequalities? \[ \begin{aligned} a^2 + b^2 &< 25 \\ a^2 + b^2 &< 8a + 4 \\ a^2 + b^2 &< 8b + 4 \end{aligned} \]
14
0.78125
32,043
Given \( A, B, C, D \in\{1, 2, \cdots, 6\} \), and each is distinct from the others. If the curves \( y = Ax^{2} + B \) and \( y = Cx^{2} + D \) intersect, then there are \(\quad\) different ways to choose \( A, B, C, D \) (the intersection of the curves is independent of the order of \( A, B, C, D \); for example, \( A=3, B=2, C=4, D=1 \) and \( A=4, B=1, C=3, D=2 \) are considered the same).
90
3.90625
32,044
Point \( M \) divides the side \( BC \) of parallelogram \( ABCD \) in the ratio \( BM : MC = 3 \). Line \( AM \) intersects the diagonal \( BD \) at point \( K \). Find the area of the quadrilateral \( CMKD \) if the area of parallelogram \( ABCD \) is 1.
19/56
13.28125
32,045
Given that the parabola $y=x^2-5x+2$ is symmetric about the point $(3,2)$ with $y=ax^2+bx+c$, find the value of $3a+3c+b$.
-8
33.59375
32,046
How many non- empty subsets $S$ of $\{1,2,3,\ldots ,15\}$ have the following two properties? $(1)$ No two consecutive integers belong to $S$. $(2)$ If $S$ contains $k$ elements, then $S$ contains no number less than $k$.
405
17.1875
32,047
Rectangle ABCD has dimensions AB=CD=4 and BC=AD=8. The rectangle is rotated 90° clockwise about corner D, then rotated 90° clockwise about the corner C's new position after the first rotation. What is the length of the path traveled by point A? A) $8\sqrt{5}\pi$ B) $4\sqrt{5}\pi$ C) $2\sqrt{2}\pi$ D) $4\sqrt{2}\pi$
4\sqrt{5}\pi
37.5
32,048
Given the function $g(x)=x-1$, and the function $f(x)$ satisfies $f(x+1)=-2f(x)-1$. When $x \in (0,1]$, $f(x)=x^{2}-x$. For any $x_1 \in (1,2]$ and $x_2 \in R$, determine the minimum value of $(x_1-x_2)^2+(f(x_1)-g(x_2))^2$.
\frac{49}{128}
14.0625
32,049
In the calculations shown, each letter stands for a digit. They are used to make some two-digit numbers. The two numbers on the left have a total of 79. What is the total of the four numbers on the right?
158
11.71875
32,050
In acute triangle $\triangle ABC$, the sides opposite angles $A$, $B$, and $C$ are denoted as $a$, $b$, and $c$ respectively. It is given that $a-4\cos C=c\cos B$. $(1)$ Find the value of $b$; $(2)$ If $a^{2}+b^{2}+c^{2}=2\sqrt{3}ab\sin C$, find the area of $\triangle ABC$.
4\sqrt{3}
40.625
32,051
Point \((x,y)\) is randomly picked from the rectangular region with vertices at \((0,0), (3014,0), (3014,3015)\), and \((0,3015)\). What is the probability that \(x > 8y\)? Express your answer as a common fraction.
\frac{7535}{120600}
0
32,052
Given the sequence $\left\{a_{n}\right\}$ with its sum of the first $n$ terms $S_{n}$ satisfying $2 S_{n}-n a_{n}=n$ for $n \in \mathbf{N}^{*}$, and $a_{2}=3$: 1. Find the general term formula for the sequence $\left\{a_{n}\right\}$. 2. Let $b_{n}=\frac{1}{a_{n} \sqrt{a_{n+1}}+a_{n+1} \sqrt{a_{n}}}$ and $T_{n}$ be the sum of the first $n$ terms of the sequence $\left\{b_{n}\right\}$. Determine the smallest positive integer $n$ such that $T_{n}>\frac{9}{20}$.
50
21.09375
32,053
In triangle \(ABC\), side \(AB\) is 21, the bisector \(BD\) is \(8 \sqrt{7}\), and \(DC\) is 8. Find the perimeter of the triangle \(ABC\).
60
7.8125
32,054
We define \( a @ b = a \times (a + 1) \times \ldots \times (a + b - 1) \). Given \( x @ y @ 2 = 420 \), then \( y @ x = \) ?
20
7.03125
32,055
Let $p,$ $q,$ $r,$ $s$ be distinct real numbers such that the roots of $x^2 - 12px - 13q = 0$ are $r$ and $s,$ and the roots of $x^2 - 12rx - 13s = 0$ are $p$ and $q.$ Find the value of $p + q + r + s.$
1716
0.78125
32,056
A bag contains 20 candies: 4 chocolate, 6 mint, and 10 butterscotch. What is the minimum number of candies that must be removed to be certain that at least two candies of each flavor have been eaten?
18
63.28125
32,057
Let $D$ be the circle with equation $x^2 - 4y - 4 = -y^2 + 6x + 16$. Find the center $(c,d)$ and the radius $s$ of $D$, and compute $c+d+s$.
5 + \sqrt{33}
96.875
32,058
Michael borrows $2000$ dollars from Jane, who charges an interest of $6\%$ per month (which compounds monthly). What is the least integer number of months after which Michael will owe more than three times as much as he borrowed?
19
7.03125
32,059
In Papa Carlo's room, there is a clock on each wall, and they all show incorrect times: the first clock is off by 2 minutes, the second by 3 minutes, the third by 4 minutes, and the fourth by 5 minutes. One day, Papa Carlo decided to find out the exact time before leaving the house, and he saw the following times on the clocks: 14:54, 14:57, 15:02, and 15:03. Help Papa Carlo determine the exact time.
14:58
11.71875
32,060
Let $a,$ $b,$ and $c$ be nonzero real numbers such that $a + b + c = 3$. Simplify: \[ \frac{1}{b^2 + c^2 - 3a^2} + \frac{1}{a^2 + c^2 - 3b^2} + \frac{1}{a^2 + b^2 - 3c^2}. \]
-3
19.53125
32,061
A quadrilateral connecting the midpoints of the sides of trapezoid $\mathrm{ABCD}$ is a rhombus. Find its area if the height of the trapezoid $\mathrm{BH}=5 \mathrm{c}$, the smaller base $\mathrm{BC}=6 \mathrm{~cm}$, and the angle $\mathrm{ABC}$ is $120^{\circ}$.
15
1.5625
32,062
A $7 \times 7$ board is either empty or contains an invisible $2 \times 2$ ship placed "by the cells." You are allowed to place detectors in some cells of the board and then activate them all at once. An activated detector signals if its cell is occupied by the ship. What is the minimum number of detectors needed to guarantee identifying whether there is a ship on the board, and if so, which cells it occupies?
16
17.96875
32,063
There are 5 female students and 2 male students in a class. Find the number of different distribution schemes in which they can be divided into two groups, with each group having both female and male students.
60
7.8125
32,064
Let $Q$ be a point chosen uniformly at random in the interior of the unit square with vertices at $(0,0), (1,0), (1,1)$, and $(0,1)$. The probability that the slope of the line determined by $Q$ and the point $\left(\frac{1}{2}, \frac{1}{4} \right)$ is greater than or equal to $1$ can be written as $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.
41
22.65625
32,065
A circle passing through the vertex \( P \) of triangle \( PQR \) touches side \( QR \) at point \( F \) and intersects sides \( PQ \) and \( PR \) at points \( M \) and \( N \), respectively, different from vertex \( P \). Find the ratio \( QF : FR \) if it is known that the length of side \( PQ \) is 1.5 times the length of side \( PR \), and the ratio \( QM : RN = 1 : 6 \).
1/2
6.25
32,066
Let $q(x)$ be a quadratic polynomial such that $[q(x)]^2 - x^2$ is divisible by $(x - 2)(x + 2)(x - 5)$. Find $q(10)$.
\frac{250}{7}
0
32,067
Schools A and B are having a sports competition with three events. In each event, the winner gets 10 points and the loser gets 0 points, with no draws. The school with the higher total score after the three events wins the championship. It is known that the probabilities of school A winning in the three events are 0.5, 0.4, and 0.8, respectively, and the results of each event are independent.<br/>$(1)$ Find the probability of school A winning the championship;<br/>$(2)$ Let $X$ represent the total score of school B, find the distribution table and expectation of $X$.
13
10.9375
32,068
Given the equation about $x$, $(x-2)(x^2-4x+m)=0$ has three real roots. (1) Find the range of values for $m$. (2) If these three real roots can exactly be the lengths of the sides of a triangle, find the range of values for $m$. (3) If the triangle formed by these three real roots is an isosceles triangle, find the value of $m$ and the area of the triangle.
\sqrt{3}
63.28125
32,069
** Let \( P \) be a point on the parabola \( y = x^2 - 6x + 15 \), and let \( Q \) be a point on the line \( y = 2x - 7 \). Find the shortest possible distance \( PQ \). **
\frac{6 \sqrt{5}}{5}
6.25
32,070
The regular tetrahedron, octahedron, and icosahedron have equal surface areas. How are their edges related?
2 \sqrt{10} : \sqrt{10} : 2
0
32,071
Let $D$ be the circle with equation $x^2 - 8x + y^2 + 10y = -14$. A translation of the coordinate system moves the center of $D$ to $(1, -2)$. Determine $a+b+r$ after the translation, where $(a,b)$ is the center and $r$ is the radius of the translated circle.
-1 + \sqrt{27}
0
32,072
Given a tetrahedron \(A B C D\), where \(B D = D C = C B = \sqrt{2}\), \(A C = \sqrt{3}\), and \(A B = A D = 1\), find the cosine of the angle between line \(B M\) and line \(A C\), where \(M\) is the midpoint of \(C D\).
\frac{\sqrt{2}}{3}
1.5625
32,073
Given the ellipse Q: $$\frac{x^{2}}{a^{2}} + y^{2} = 1 \quad (a > 1),$$ where $F_{1}$ and $F_{2}$ are its left and right foci, respectively. A circle with the line segment $F_{1}F_{2}$ as its diameter intersects the ellipse Q at exactly two points. (1) Find the equation of ellipse Q; (2) Suppose a line $l$ passing through point $F_{1}$ and not perpendicular to the coordinate axes intersects the ellipse at points A and B. The perpendicular bisector of segment AB intersects the x-axis at point P. The range of the x-coordinate of point P is $[-\frac{1}{4}, 0)$. Find the minimum value of $|AB|$.
\frac{3\sqrt{2}}{2}
15.625
32,074
Consider a terminal with fifteen gates arranged in a straight line with exactly $90$ feet between adjacent gates. A passenger's departure gate is assigned at random. Later, the gate is changed to another randomly chosen gate. Calculate the probability that the passenger walks $360$ feet or less to the new gate. Express the probability as a simplified fraction $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers, and find $m+n$.
31
2.34375
32,075
In the geometric sequence ${a_n}$ where $q=2$, if the sum of the series $a_2 + a_5 + \dots + a_{98} = 22$, calculate the sum of the first 99 terms of the sequence $S_{99}$.
77
51.5625
32,076
Jack Sparrow needed to distribute 150 piastres into 10 purses. After putting some amount of piastres in the first purse, he placed more in each subsequent purse than in the previous one. As a result, the number of piastres in the first purse was not less than half the number of piastres in the last purse. How many piastres are in the 6th purse?
15
15.625
32,077
The sequence of natural numbers $1, 5, 6, 25, 26, 30, 31,...$ is made up of powers of $5$ with natural exponents or sums of powers of $5$ with different natural exponents, written in ascending order. Determine the term of the string written in position $167$ .
81281
29.6875
32,078
Point \((x,y)\) is randomly picked from the rectangular region with vertices at \((0,0), (3000,0), (3000,3001),\) and \((0,3001)\). What is the probability that \(x > 3y\)? Express your answer as a common fraction.
\frac{1500}{9003}
0
32,079
In triangle $XYZ$, the medians $\overline{XT}$ and $\overline{YS}$ are perpendicular. If $XT = 15$ and $YS = 20$, find the length of side $XZ$.
\frac{50}{3}
10.9375
32,080
Given a function $f(x)$ that satisfies: (1) For any positive real number $x$, it always holds that $f(2x) = 2f(x)$; (2) When $x \in (1, 2)$, $f(x) = 2 - x$. If $f(a) = f(2020)$, determine the smallest positive real number $a$.
36
14.84375
32,081
Find the value of the expression $$ f\left( \frac{1}{2000} \right)+f\left( \frac{2}{2000} \right)+...+ f\left( \frac{1999}{2000} \right)+f\left( \frac{2000}{2000} \right)+f\left( \frac{2000}{1999} \right)+...+f\left( \frac{2000}{1} \right) $$ assuming $f(x) =\frac{x^2}{1 + x^2}$ .
1999.5
1.5625
32,082
A train has five carriages, each containing at least one passenger. Two passengers are said to be 'neighbours' if either they are in the same carriage or they are in adjacent carriages. Each passenger has exactly five or exactly ten neighbours. How many passengers are there on the train?
17
4.6875
32,083
For the set $\{1, 2, 3, \ldots, 8\}$ and each of its non-empty subsets, a unique alternating sum is defined as follows: arrange the numbers in the subset in decreasing order and then, beginning with the largest, alternately add and subtract successive numbers. Calculate the sum of all such alternating sums for $n=8$.
1024
75.78125
32,084
Given point P(2, 1) is on the parabola $C_1: x^2 = 2py$ ($p > 0$), and the line $l$ passes through point Q(0, 2) and intersects the parabola $C_1$ at points A and B. (1) Find the equation of the parabola $C_1$ and the equation for the trajectory $C_2$ of the midpoint M of chord AB; (2) If lines $l_1$ and $l_2$ are tangent to $C_1$ and $C_2$ respectively, and $l_1$ is parallel to $l_2$, find the shortest distance from $l_1$ to $l_2$.
\sqrt{3}
13.28125
32,085
The sum of the first $n$ terms of the sequence $\{a_n\}$ is $S_n=n^2+n+1$, and $b_n=(-1)^n(a_n-2)$ $(n\in\mathbb{N}^*)$, then the sum of the first $50$ terms of the sequence $\{b_n\}$ is $\_\_\_\_\_\_\_$.
49
38.28125
32,086
The Sequence $\{a_{n}\}_{n \geqslant 0}$ is defined by $a_{0}=1, a_{1}=-4$ and $a_{n+2}=-4a_{n+1}-7a_{n}$ , for $n \geqslant 0$ . Find the number of positive integer divisors of $a^2_{50}-a_{49}a_{51}$ .
51
10.9375
32,087
To determine the minimum time required for the concentration of the drug in the air to drop below 0.25 milligrams per cubic meter, solve the equation y = 0.25 for t using the function y=\begin{cases} 10t & (0 \leqslant t \leqslant 0.1), \\ {\left( \frac{1}{16} \right)}^{t- \frac{1}{10}} & (t > 0.1) \end{cases}.
0.6
14.0625
32,088
Given the function $f(x)=\frac{cos2x+a}{sinx}$, if $|f(x)|\leqslant 3$ holds for any $x\in \left(0,\pi \right)$, then the set of possible values for $a$ is ______.
\{-1\}
0
32,089
How many different rectangles with sides parallel to the grid can be formed by connecting four of the dots in a $5\times 5$ square array of dots?
225
91.40625
32,090
Given $f(x)=9^{x}-2×3^{x}+4$, where $x\in\[-1,2\]$: 1. Let $t=3^{x}$, with $x\in\[-1,2\}$, find the maximum and minimum values of $t$. 2. Find the maximum and minimum values of $f(x)$.
67
22.65625
32,091
Find the period of the repetend of the fraction $\frac{39}{1428}$ by using *binary* numbers, i.e. its binary decimal representation. (Note: When a proper fraction is expressed as a decimal number (of any base), either the decimal number terminates after finite steps, or it is of the form $0.b_1b_2\cdots b_sa_1a_2\cdots a_ka_1a_2\cdots a_ka_1a_2 \cdots a_k \cdots$ . Here the repeated sequence $a_1a_2\cdots a_k$ is called the *repetend* of the fraction, and the smallest length of the repetend, $k$ , is called the *period* of the decimal number.)
24
3.125
32,092
The diagram shows a solid with six triangular faces and five vertices. Andrew wants to write an integer at each of the vertices so that the sum of the numbers at the three vertices of each face is the same. He has already written the numbers 1 and 5 as shown. What is the sum of the other three numbers he will write?
11
10.15625
32,093
Construct a circle with center \( S \) and radius \( 3 \text{ cm} \). Construct two mutually perpendicular diameters \( AC \) and \( BD \) of this circle. Construct isosceles triangles \( ABK, BCL, CDM, DAN \) such that: - The base of each triangle is a side of the quadrilateral \( ABCD \). - The base of each triangle is equal to the height on this side. - No triangle overlaps the quadrilateral \( ABCD \). From the given data, calculate the area of the polygon \( AKBLCDMN \).
108
9.375
32,094
Alexio has 120 cards numbered from 1 to 120, inclusive, and places them in a box. He then randomly picks a card. What is the probability that the number on the card is a multiple of 2, 4, or 6? Express your answer as a common fraction.
\frac{1}{2}
30.46875
32,095
Given a right triangle \(ABC\), point \(D\) is located on the extension of hypotenuse \(BC\) such that line \(AD\) is tangent to the circumcircle \(\omega\) of triangle \(ABC\). Line \(AC\) intersects the circumcircle of triangle \(ABD\) at point \(E\). It turns out that the angle bisector of \(\angle ADE\) is tangent to circle \(\omega\). What is the ratio in which point \(C\) divides segment \(AE\)?
1:2
25.78125
32,096
If $\mathbf{a}$, $\mathbf{b}$, $\mathbf{c}$, and $\mathbf{d}$ are unit vectors, then find the largest possible value of \[ \|\mathbf{a} - \mathbf{b}\|^2 + \|\mathbf{a} - \mathbf{c}\|^2 + \|\mathbf{a} - \mathbf{d}\|^2 + \|\mathbf{b} - \mathbf{c}\|^2 + \|\mathbf{b} - \mathbf{d}\|^2 + \|\mathbf{c} - \mathbf{d}\|^2. \]
16
21.875
32,097
Rectangle $EFGH$ has area $4032$. An ellipse with area $4032\pi$ passes through points $E$ and $G$ and has foci at $F$ and $H$. Determine the perimeter of the rectangle $EFGH$.
8\sqrt{2016}
0
32,098
How many whole numbers between 1 and 2000 do not contain the digit 7?
1457
0
32,099
A certain orange orchard has a total of 120 acres, consisting of both flat and hilly land. To estimate the average yield per acre, a stratified sampling method is used to survey a total of 10 acres. If the number of hilly acres sampled is 2 times plus 1 acre more than the flat acres sampled, then the number of acres of flat and hilly land in this orange orchard are respectively \_\_\_\_\_\_\_\_ and \_\_\_\_\_\_\_\_.
84
68.75