Unnamed: 0
int64
0
56.9k
problem
stringlengths
16
7.44k
ground_truth
stringlengths
1
942
solved_percentage
float64
0
100
1,900
Find the largest real number $a$ such that \[\left\{ \begin{array}{l} x - 4y = 1 ax + 3y = 1 \end{array} \right. \] has an integer solution.
1
92.96875
1,901
Find the maximum number of different integers that can be selected from the set $ \{1,2,...,2013\}$ so that no two exist that their difference equals to $17$ .
1010
0
1,902
The radius $r$ of a circle with center at the origin is an odd integer. There is a point ( $p^m, q^n$ ) on the circle, with $p,q$ prime numbers and $m,n$ positive integers. Determine $r$ .
5
57.03125
1,903
Let $ABC$ be an isosceles right triangle with $\angle A=90^o$ . Point $D$ is the midpoint of the side $[AC]$ , and point $E \in [AC]$ is so that $EC = 2AE$ . Calculate $\angle AEB + \angle ADB$ .
135^\circ
61.71875
1,904
There is a $2n\times 2n$ rectangular grid and a chair in each cell of the grid. Now, there are $2n^2$ pairs of couple are going to take seats. Define the distance of a pair of couple to be the sum of column difference and row difference between them. For example, if a pair of couple seating at $(3,3)$ and $(2,5)$ respectively, then the distance between them is $|3-2|+|3-5|=3$ . Moreover, define the total distance to be the sum of the distance in each pair. Find the maximal total distance among all possibilities.
4n^3
3.90625
1,905
The area of the region in the $xy$ -plane satisfying the inequality \[\min_{1 \le n \le 10} \max\left(\frac{x^2+y^2}{4n^2}, \, 2 - \frac{x^2+y^2}{4n^2-4n+1}\right) \le 1\] is $k\pi$ , for some integer $k$ . Find $k$ . *Proposed by Michael Tang*
210
37.5
1,906
Let $f(x) = x-\tfrac1{x}$ , and defi ne $f^1(x) = f(x)$ and $f^n(x) = f(f^{n-1}(x))$ for $n\ge2$ . For each $n$ , there is a minimal degree $d_n$ such that there exist polynomials $p$ and $q$ with $f^n(x) = \tfrac{p(x)}{q(x)}$ and the degree of $q$ is equal to $d_n$ . Find $d_n$ .
d_n = 2^n - 1
0
1,907
A store offers packages of $12$ pens for $\$ 10 $ and packages of $ 20 $ pens for $ \ $15$ . Using only these two types of packages of pens, find the greatest number of pens $\$ 173$ can buy at this store. *Proposed by James Lin*
224
41.40625
1,908
Find all positive integers $n$ such that the inequality $$ \left( \sum\limits_{i=1}^n a_i^2\right) \left(\sum\limits_{i=1}^n a_i \right) -\sum\limits_{i=1}^n a_i^3 \geq 6 \prod\limits_{i=1}^n a_i $$ holds for any $n$ positive numbers $a_1, \dots, a_n$ .
n = 3
0
1,909
Let $b$ be a real number randomly sepected from the interval $[-17,17]$ . Then, $m$ and $n$ are two relatively prime positive integers such that $m/n$ is the probability that the equation \[x^4+25b^2=(4b^2-10b)x^2\] has $\textit{at least}$ two distinct real solutions. Find the value of $m+n$ .
63
96.875
1,910
Points $E$ and $F$ are chosen on sides $BC$ and $CD$ respectively of rhombus $ABCD$ such that $AB=AE=AF=EF$ , and $FC,DF,BE,EC>0$ . Compute the measure of $\angle ABC$ .
80^\circ
0
1,911
Let $\alpha\geq 1$ be a real number. Define the set $$ A(\alpha)=\{\lfloor \alpha\rfloor,\lfloor 2\alpha\rfloor, \lfloor 3\alpha\rfloor,\dots\} $$ Suppose that all the positive integers that **does not belong** to the $A(\alpha)$ are exactly the positive integers that have the same remainder $r$ in the division by $2021$ with $0\leq r<2021$ . Determine all the possible values of $\alpha$ .
\frac{2021}{2020}
11.71875
1,912
Let $\mathcal{F}$ be the set of continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that $$ e^{f(x)}+f(x) \geq x+1, \: \forall x \in \mathbb{R} $$ For $f \in \mathcal{F},$ let $$ I(f)=\int_0^ef(x) dx $$ Determine $\min_{f \in \mathcal{F}}I(f).$ *Liviu Vlaicu*
\frac{3}{2}
0.78125
1,913
What is the smallest number that can be written as a sum of $2$ squares in $3$ ways?
325
89.0625
1,914
Let ABC be a right triangle with $\angle B = 90^{\circ}$ .Let E and F be respectively the midpoints of AB and AC.Suppose the incentre I of ABC lies on the circumcircle of triangle AEF,find the ratio BC/AB.
\frac{4}{3}
3.125
1,915
$56$ lines are drawn on a plane such that no three of them are concurrent. If the lines intersect at exactly $594$ points, what is the maximum number of them that could have the same slope?
44
23.4375
1,916
A polyhedron has faces that all either triangles or squares. No two square faces share an edge, and no two triangular faces share an edge. What is the ratio of the number of triangular faces to the number of square faces?
4:3
0
1,917
Let $S$ be the set of all integers $k$ , $1\leq k\leq n$ , such that $\gcd(k,n)=1$ . What is the arithmetic mean of the integers in $S$ ?
\frac{n}{2}
96.09375
1,918
Let $H$ be a rectangle with angle between two diagonal $\leq 45^{0}$ . Rotation $H$ around the its center with angle $0^{0}\leq x\leq 360^{0}$ we have rectangle $H_{x}$ . Find $x$ such that $[H\cap H_{x}]$ minimum, where $[S]$ is area of $S$ .
x = 45^\circ
0
1,919
Let $a$ , $b$ , $c$ be positive integers such that $abc + bc + c = 2014$ . Find the minimum possible value of $a + b + c$ .
40
46.09375
1,920
There are $n$ rooms in a sauna, each has unlimited capacity. No room may be attended by a female and a male simultaneously. Moreover, males want to share a room only with males that they don't know and females want to share a room only with females that they know. Find the biggest number $k$ such that any $k$ couples can visit the sauna at the same time, given that two males know each other if and only if their wives know each other.
n-1
0
1,921
Find the integer $n$ such that \[n + \left\lfloor\sqrt{n}\right\rfloor + \left\lfloor\sqrt{\sqrt{n}}\right\rfloor = 2017.\] Here, as usual, $\lfloor\cdot\rfloor$ denotes the floor function.
1967
92.1875
1,922
In a trapezoid $ABCD$ , the internal bisector of angle $A$ intersects the base $BC$ (or its extension) at the point $E$ . Inscribed in the triangle $ABE$ is a circle touching the side $AB$ at $M$ and side $BE$ at the point $P$ . Find the angle $DAE$ in degrees, if $AB:MP=2$ .
60^\circ
12.5
1,923
For all pairs $(m, n)$ of positive integers that have the same number $k$ of divisors we define the operation $\circ$ . Write all their divisors in an ascending order: $1=m_1<\ldots<m_k=m$ , $1=n_1<\ldots<n_k=n$ and set $$ m\circ n= m_1\cdot n_1+\ldots+m_k\cdot n_k. $$ Find all pairs of numbers $(m, n)$ , $m\geqslant n$ , such that $m\circ n=497$ .
(18, 20)
0
1,924
Juca has decided to call all positive integers with 8 digits as $sextalternados$ if it is a multiple of 30 and its consecutive digits have different parity. At the same time, Carlos decided to classify all $sextalternados$ that are multiples of 12 as $super sextalternados$ . a) Show that $super sextalternados$ numbers don't exist. b) Find the smallest $sextalternado$ number.
10101030
3.90625
1,925
Find the largest positive integer $n$ such that $n$ is divisible by all the positive integers less than $\sqrt[3]{n}$ .
420
94.53125
1,926
The function $f: N \to N_0$ is such that $f (2) = 0, f (3)> 0, f (6042) = 2014$ and $f (m + n)- f (m) - f (n) \in\{0,1\}$ for all $m,n \in N$ . Determine $f (2014)$ . $N_0=\{0,1,2,...\}$
671
69.53125
1,927
Find all $3$ -digit numbers $\overline{abc}$ ( $a,b \ne 0$ ) such that $\overline{bcd} \times  a = \overline{1a4d}$ for some integer $d$ from $1$ to $9$
627
96.09375
1,928
A square grid $100 \times 100$ is tiled in two ways - only with dominoes and only with squares $2 \times 2$ . What is the least number of dominoes that are entirely inside some square $2 \times 2$ ?
100
0
1,929
The side lengths $a,b,c$ of a triangle $ABC$ are positive integers. Let: \[T_{n}=(a+b+c)^{2n}-(a-b+c)^{2n}-(a+b-c)^{2n}+(a-b-c)^{2n}\] for any positive integer $n$ . If $\frac{T_{2}}{2T_{1}}=2023$ and $a>b>c$ , determine all possible perimeters of the triangle $ABC$ .
49
0
1,930
Find the integer $n \ge 48$ for which the number of trailing zeros in the decimal representation of $n!$ is exactly $n-48$ . *Proposed by Kevin Sun*
62
100
1,931
The product of $10$ integers is $1024$ . What is the greatest possible sum of these $10$ integers?
1033
1.5625
1,932
Let $n$ be a nonnegative integer less than $2023$ such that $2n^2 + 3n$ is a perfect square. What is the sum of all possible $n$ ? *Proposed by Giacomo Rizzo*
444
52.34375
1,933
Shenelle has some square tiles. Some of the tiles have side length $5\text{ cm}$ while the others have side length $3\text{ cm}$ . The total area that can be covered by the tiles is exactly $2014\text{ cm}^2$ . Find the least number of tiles that Shenelle can have.
94
78.90625
1,934
Find the mathematical expectation of the area of the projection of a cube with edge of length $1$ onto a plane with an isotropically distributed random direction of projection.
\frac{3}{2}
17.1875
1,935
Find $k$ where $2^k$ is the largest power of $2$ that divides the product \[2008\cdot 2009\cdot 2010\cdots 4014.\]
2007
99.21875
1,936
For a positive integer $n$ , let $\omega(n)$ denote the number of positive prime divisors of $n$ . Find the smallest positive tinteger $k$ such that $2^{\omega(n)}\leq k\sqrt[4]{n}\forall n\in\mathbb{N}$ .
5
32.03125
1,937
Each side of a triangle is extended in the same clockwise direction by the length of the given side as shown in the figure. How many times the area of the triangle, obtained by connecting the endpoints, is the area of the original triangle? ![Image](https://cdn.artofproblemsolving.com/attachments/1/c/a169d3ab99a894667caafee6dbf397632e57e0.png)
7
35.15625
1,938
Determine the smallest prime $p$ such that $2018!$ is divisible by $p^{3}$ , but not divisible by $p^{4}$ .
509
87.5
1,939
Find all monic polynomials $f$ with integer coefficients satisfying the following condition: there exists a positive integer $N$ such that $p$ divides $2(f(p)!)+1$ for every prime $p>N$ for which $f(p)$ is a positive integer. *Note: A monic polynomial has a leading coefficient equal to 1.* *(Greece - Panagiotis Lolas and Silouanos Brazitikos)*
f(x) = x - 3
2.34375
1,940
Let $ABC$ be a triangle with sides $51, 52, 53$ . Let $\Omega$ denote the incircle of $\bigtriangleup ABC$ . Draw tangents to $\Omega$ which are parallel to the sides of $ABC$ . Let $r_1, r_2, r_3$ be the inradii of the three corener triangles so formed, Find the largest integer that does not exceed $r_1 + r_2 + r_3$ .
15
28.90625
1,941
Find the derivative of the solution of the equation $\ddot{x} = \dot{x}^2 + x^3$ with initial condition $x(0) = 0$ , $\dot{x}(0) = A$ with respect to $A$ for $A = 0$ .
t
47.65625
1,942
In a certain tournament bracket, a player must be defeated three times to be eliminated. If 512 contestants enter the tournament, what is the greatest number of games that could be played?
1535
5.46875
1,943
On $x-y$ plane, let $C: y=2006x^{3}-12070102x^{2}+\cdots.$ Find the area of the region surrounded by the tangent line of $C$ at $x=2006$ and the curve $C.$
\frac{1003}{6}
0.78125
1,944
Circles $\mathcal{P}$ and $\mathcal{Q}$ have radii $1$ and $4$ , respectively, and are externally tangent at point $A$ . Point $B$ is on $\mathcal{P}$ and point $C$ is on $\mathcal{Q}$ so that line $BC$ is a common external tangent of the two circles. A line $\ell$ through $A$ intersects $\mathcal{P}$ again at $D$ and intersects $\mathcal{Q}$ again at $E$ . Points $B$ and $C$ lie on the same side of $\ell$ , and the areas of $\triangle DBA$ and $\triangle ACE$ are equal. This common area is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m+n$ . [asy] import cse5; pathpen=black; pointpen=black; size(6cm); pair E = IP(L((-.2476,1.9689),(0.8,1.6),-3,5.5),CR((4,4),4)), D = (-.2476,1.9689); filldraw(D--(0.8,1.6)--(0,0)--cycle,gray(0.7)); filldraw(E--(0.8,1.6)--(4,0)--cycle,gray(0.7)); D(CR((0,1),1)); D(CR((4,4),4,150,390)); D(L(MP("D",D(D),N),MP("A",D((0.8,1.6)),NE),1,5.5)); D((-1.2,0)--MP("B",D((0,0)),S)--MP("C",D((4,0)),S)--(8,0)); D(MP("E",E,N)); [/asy]
129
0
1,945
Let $n$ be a positive integer, and let $S_n = \{1, 2, \ldots, n\}$ . For a permutation $\sigma$ of $S_n$ and an integer $a \in S_n$ , let $d(a)$ be the least positive integer $d$ for which \[\underbrace{\sigma(\sigma(\ldots \sigma(a) \ldots))}_{d \text{ applications of } \sigma} = a\](or $-1$ if no such integer exists). Compute the value of $n$ for which there exists a permutation $\sigma$ of $S_n$ satisfying the equations \[\begin{aligned} d(1) + d(2) + \ldots + d(n) &= 2017, \frac{1}{d(1)} + \frac{1}{d(2)} + \ldots + \frac{1}{d(n)} &= 2. \end{aligned}\] *Proposed by Michael Tang*
53
0
1,946
Let $f : [0, 1] \to \mathbb R$ be continuous and satisfy: \[ \begin{cases}bf(2x) = f(x), &\mbox{ if } 0 \leq x \leq 1/2, f(x) = b + (1 - b)f(2x - 1), &\mbox{ if } 1/2 \leq x \leq 1,\end{cases}\] where $b = \frac{1+c}{2+c}$ , $c > 0$ . Show that $0 < f(x)-x < c$ for every $x, 0 < x < 1.$
0 < f(x) - x < c
82.8125
1,947
Bianca has a rectangle whose length and width are distinct primes less than 100. Let $P$ be the perimeter of her rectangle, and let $A$ be the area of her rectangle. What is the least possible value of $\frac{P^2}{A}$ ?
\frac{82944}{5183}
4.6875
1,948
For positive integers $n,$ let $s(n)$ be the sum of the digits of $n.$ Over all four-digit positive integers $n,$ which value of $n$ maximizes the ratio $\frac{s(n)}{n}$ ? *Proposed by Michael Tang*
1099
83.59375
1,949
The positive numbers $a, b, c,d,e$ are such that the following identity hold for all real number $x$ : $(x + a)(x + b)(x + c) = x^3 + 3dx^2 + 3x + e^3$ . Find the smallest value of $d$ .
1
99.21875
1,950
Let $n$ be a positive integer. A sequence of $n$ positive integers (not necessarily distinct) is called **full** if it satisfies the following condition: for each positive integer $k\geq2$ , if the number $k$ appears in the sequence then so does the number $k-1$ , and moreover the first occurrence of $k-1$ comes before the last occurrence of $k$ . For each $n$ , how many full sequences are there ?
n!
26.5625
1,951
For any real number $t$ , let $\lfloor t \rfloor$ denote the largest integer $\le t$ . Suppose that $N$ is the greatest integer such that $$ \left \lfloor \sqrt{\left \lfloor \sqrt{\left \lfloor \sqrt{N} \right \rfloor}\right \rfloor}\right \rfloor = 4 $$ Find the sum of digits of $N$ .
24
53.90625
1,952
At a meeting of $ 12k$ people, each person exchanges greetings with exactly $ 3k\plus{}6$ others. For any two people, the number who exchange greetings with both is the same. How many people are at the meeting?
36
14.0625
1,953
Find the number of trailing zeros at the end of the base- $10$ representation of the integer $525^{25^2} \cdot 252^{52^5}$ .
1250
99.21875
1,954
In $ISI$ club each member is on two committees and any two committees have exactly one member in common . There are 5 committees . How many members does $ISI$ club have????
10
75.78125
1,955
Integers $1, 2, 3, ... ,n$ , where $n > 2$ , are written on a board. Two numbers $m, k$ such that $1 < m < n, 1 < k < n$ are removed and the average of the remaining numbers is found to be $17$ . What is the maximum sum of the two removed numbers?
51
71.875
1,956
Find the least possible cardinality of a set $A$ of natural numbers, the smallest and greatest of which are $1$ and $100$ , and having the property that every element of $A$ except for $1$ equals the sum of two elements of $A$ .
9
9.375
1,957
Let $a$ be a complex number, and set $\alpha$ , $\beta$ , and $\gamma$ to be the roots of the polynomial $x^3 - x^2 + ax - 1$ . Suppose \[(\alpha^3+1)(\beta^3+1)(\gamma^3+1) = 2018.\] Compute the product of all possible values of $a$ .
2009
2.34375
1,958
Express the number 1988 as the sum of some positive integers in such a way that the product of these positive integers is maximal.
2 \cdot 3^{662}
0
1,959
Find largest possible constant $M$ such that, for any sequence $a_n$ , $n=0,1,2,...$ of real numbers, that satisfies the conditions : i) $a_0=1$ , $a_1=3$ ii) $a_0+a_1+...+a_{n-1} \ge 3 a_n - a_{n+1}$ for any integer $n\ge 1$ to be true that $$ \frac{a_{n+1}}{a_n} >M $$ for any integer $n\ge 0$ .
M = 2
0
1,960
Let $P(x) = x^2 + ax + b$ be a quadratic polynomial. For how many pairs $(a, b)$ of positive integers where $a, b < 1000$ do the quadratics $P(x+1)$ and $P(x) + 1$ have at least one root in common?
30
10.15625
1,961
$n \ge 4$ real numbers are arranged in a circle. It turned out that for any four consecutive numbers $a, b, c, d$ , that lie on the circle in this order, holds $a+d = b+c$ . For which $n$ does it follow that all numbers on the circle are equal? *Proposed by Oleksiy Masalitin*
n
25
1,962
Let $a_1,a_2,...,a_9$ be nine real numbers, not necessarily distinct, with average $m$ . Let $A$ denote the number of triples $1 \le i < j < k \le 9$ for which $a_i + a_j + a_k \ge 3m$ . What is the minimum possible value of $A$ ? *Proposed by Ray Li*
28
9.375
1,963
I have $8$ unit cubes of different colors, which I want to glue together into a $2\times 2\times 2$ cube. How many distinct $2\times 2\times 2$ cubes can I make? Rotations of the same cube are not considered distinct, but reflections are.
1680
72.65625
1,964
Determine the maximal value of $k$ such that the inequality $$ \left(k +\frac{a}{b}\right) \left(k + \frac{b}{c}\right)\left(k + \frac{c}{a}\right) \le \left( \frac{a}{b}+ \frac{b}{c}+ \frac{c}{a}\right) \left( \frac{b}{a}+ \frac{c}{b}+ \frac{a}{c}\right) $$ holds for all positive reals $a, b, c$ .
\sqrt[3]{9} - 1
92.1875
1,965
Let $a$ and $b$ be the two possible values of $\tan\theta$ given that \[\sin\theta + \cos\theta = \dfrac{193}{137}.\] If $a+b=m/n$ , where $m$ and $n$ are relatively prime positive integers, compute $m+n$ .
28009
68.75
1,966
Given $a,x\in\mathbb{R}$ and $x\geq 0$ , $a\geq 0$ . Also $\sin(\sqrt{x+a})=\sin(\sqrt{x})$ . What can you say about $a$ ??? Justify your answer.
a = 0
0
1,967
Show that there exists an infinite arithmetic progression of natural numbers such that the first term is $16$ and the number of positive divisors of each term is divisible by $5$ . Of all such sequences, find the one with the smallest possible common difference.
32
59.375
1,968
Points $E$ and $F$ lie inside rectangle $ABCD$ with $AE=DE=BF=CF=EF$ . If $AB=11$ and $BC=8$ , find the area of the quadrilateral $AEFB$ .
32
2.34375
1,969
In how many ways can six marbles be placed in the squares of a $6$ -by- $6$ grid such that no two marbles lie in the same row or column?
720
100
1,970
Let $n$ be an odd integer greater than $11$ ; $k\in \mathbb{N}$ , $k \geq 6$ , $n=2k-1$ . We define \[d(x,y) = \left | \{ i\in \{1,2,\dots, n \} \bigm | x_i \neq y_i \} \right |\] for $T=\{ (x_1, x_2, \dots, x_n) \bigm | x_i \in \{0,1\}, i=1,2,\dots, n \}$ and $x=(x_1,x_2,\dots, x_n), y=(y_1, y_2, \dots, y_n) \in T$ . Show that $n=23$ if $T$ has a subset $S$ satisfying [list=i] [*] $|S|=2^k$ [*]For each $x \in T$ , there exists exacly one $y\in S$ such that $d(x,y)\leq 3$ [/list]
n = 23
0
1,971
Determine the least integer $n$ such that for any set of $n$ lines in the 2D plane, there exists either a subset of $1001$ lines that are all parallel, or a subset of $1001$ lines that are pairwise nonparallel. *Proposed by Samuel Wang* <details><summary>Solution</summary>*Solution.* $\boxed{1000001}$ Since being parallel is a transitive property, we note that in order for this to not exist, there must exist at most $1001$ groups of lines, all pairwise intersecting, with each group containing at most $1001$ lines. Thus, $n = 1000^2 + 1 = \boxed{1000001}$ .</details>
1000001
92.96875
1,972
An equilateral triangle of side $n$ is divided into equilateral triangles of side $1$ . Find the greatest possible number of unit segments with endpoints at vertices of the small triangles that can be chosen so that no three of them are sides of a single triangle.
n(n+1)
12.5
1,973
The numbers $\frac{1}{1}, \frac{1}{2}, \cdots , \frac{1}{2012}$ are written on the blackboard. Aïcha chooses any two numbers from the blackboard, say $x$ and $y$ , erases them and she writes instead the number $x + y + xy$ . She continues to do this until only one number is left on the board. What are the possible values of the final number?
2012
96.875
1,974
$p$ is a prime number that is greater than $2$ . Let $\{ a_{n}\}$ be a sequence such that $ na_{n+1}= (n+1) a_{n}-\left( \frac{p}{2}\right)^{4}$ . Show that if $a_{1}=5$ , the $16 \mid a_{81}$ .
16 \mid a_{81}
42.96875
1,975
A sequence $a_1, a_2, a_3, \ldots$ of positive integers satisfies $a_1 > 5$ and $a_{n+1} = 5 + 6 + \cdots + a_n$ for all positive integers $n$ . Determine all prime numbers $p$ such that, regardless of the value of $a_1$ , this sequence must contain a multiple of $p$ .
p = 2
0
1,976
The student population at one high school consists of freshmen, sophomores, juniors, and seniors. There are 25 percent more freshmen than juniors, 10 percent fewer sophomores than freshmen, and 20 percent of the students are seniors. If there are 144 sophomores, how many students attend the school?
540
53.125
1,977
Let $BE$ and $CF$ be altitudes in triangle $ABC$ . If $AE = 24$ , $EC = 60$ , and $BF = 31$ , determine $AF$ .
32
1.5625
1,978
Suppose the side lengths of triangle $ABC$ are the roots of polynomial $x^3 - 27x^2 + 222x - 540$ . What is the product of its inradius and circumradius?
10
47.65625
1,979
Let $S$ be the locus of all points $(x,y)$ in the first quadrant such that $\dfrac{x}{t}+\dfrac{y}{1-t}=1$ for some $t$ with $0<t<1$ . Find the area of $S$ .
\frac{1}{6}
0
1,980
$22$ football players took part in the football training. They were divided into teams of equal size for each game ( $11:11$ ). It is known that each football player played with each other at least once in opposing teams. What is the smallest possible number of games they played during the training.
5
3.125
1,981
Given the sequence $1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1,...,$ find $n$ such that the sum of the first $n$ terms is $2008$ or $2009$ .
1026
32.03125
1,982
Two tangents $AT$ and $BT$ touch a circle at $A$ and $B$ , respectively, and meet perpendicularly at $T$ . $Q$ is on $AT$ , $S$ is on $BT$ , and $R$ is on the circle, so that $QRST$ is a rectangle with $QT = 8$ and $ST = 9$ . Determine the radius of the circle.
29
2.34375
1,983
Let $n$ be a positive integer and let $d_{1},d_{2},,\ldots ,d_{k}$ be its divisors, such that $1=d_{1}<d_{2}<\ldots <d_{k}=n$ . Find all values of $n$ for which $k\geq 4$ and $n=d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+d_{4}^{2}$ .
130
100
1,984
A triangle $\triangle ABC$ satisfies $AB = 13$ , $BC = 14$ , and $AC = 15$ . Inside $\triangle ABC$ are three points $X$ , $Y$ , and $Z$ such that: - $Y$ is the centroid of $\triangle ABX$ - $Z$ is the centroid of $\triangle BCY$ - $X$ is the centroid of $\triangle CAZ$ What is the area of $\triangle XYZ$ ? *Proposed by Adam Bertelli*
\frac{84}{13}
1.5625
1,985
Consider an $8\times 8$ grid of squares. A rook is placed in the lower left corner, and every minute it moves to a square in the same row or column with equal probability (the rook must move; i.e. it cannot stay in the same square). What is the expected number of minutes until the rook reaches the upper right corner?
70
0.78125
1,986
The positive integers $ a$ and $ b$ are such that the numbers $ 15a \plus{} 16b$ and $ 16a \minus{} 15b$ are both squares of positive integers. What is the least possible value that can be taken on by the smaller of these two squares?
481^2
0
1,987
Let $X$ be a set with $n\ge 2$ elements. Define $\mathcal{P}(X)$ to be the set of all subsets of $X$ . Find the number of functions $f:\mathcal{P}(X)\mapsto \mathcal{P}(X)$ such that $$ |f(A)\cap f(B)|=|A\cap B| $$ whenever $A$ and $B$ are two distinct subsets of $X$ . *(Sergiu Novac)*
n!
56.25
1,988
A positive integer is *bold* iff it has $8$ positive divisors that sum up to $3240$ . For example, $2006$ is bold because its $8$ positive divisors, $1$ , $2$ , $17$ , $34$ , $59$ , $118$ , $1003$ and $2006$ , sum up to $3240$ . Find the smallest positive bold number.
1614
15.625
1,989
There are $9$ cards with the numbers $1, 2, 3, 4, 5, 6, 7, 8$ and $9$ . What is the largest number of these cards can be decomposed in a certain order in a row, so that in any two adjacent cards, one of the numbers is divided by the other?
8
70.3125
1,990
Let the complex number $z = \cos\tfrac{1}{1000} + i \sin\tfrac{1}{1000}.$ Find the smallest positive integer $n$ so that $z^n$ has an imaginary part which exceeds $\tfrac{1}{2}.$
524
100
1,991
Determine all integers $a$ for which the equation \[x^{2}+axy+y^{2}=1\] has infinitely many distinct integer solutions $x, \;y$ .
a = 2
0
1,992
If $x > 10$ , what is the greatest possible value of the expression \[ {( \log x )}^{\log \log \log x} - {(\log \log x)}^{\log \log x} ? \] All the logarithms are base 10.
0
39.84375
1,993
Define the determinant $D_1$ = $|1|$ , the determinant $D_2$ = $|1 1|$ $|1 3|$ , and the determinant $D_3=$ |1 1 1| |1 3 3| |1 3 5| . In general, for positive integer n, let the determinant $D_n$ have 1s in every position of its first row and first column, 3s in the remaining positions of the second row and second column, 5s in the remaining positions of the third row and third column, and so forth. Find the least n so that $D_n$ $\geq$ 2015.
12
57.8125
1,994
Let $C_1$ be a circle with centre $O$ , and let $AB$ be a chord of the circle that is not a diameter. $M$ is the midpoint of $AB$ . Consider a point $T$ on the circle $C_2$ with diameter $OM$ . The tangent to $C_2$ at the point $T$ intersects $C_1$ at two points. Let $P$ be one of these points. Show that $PA^2+PB^2=4PT^2$ .
PA^2 + PB^2 = 4PT^2
76.5625
1,995
We define the polynomial $$ P (x) = 2014x^{2013} + 2013x^{2012} +... + 4x^3 + 3x^2 + 2x. $$ Find the largest prime divisor of $P (2)$ .
61
2.34375
1,996
Let $A,B,C$ be nodes of the lattice $Z\times Z$ such that inside the triangle $ABC$ lies a unique node $P$ of the lattice. Denote $E = AP \cap BC$ . Determine max $\frac{AP}{PE}$ , over all such configurations.
5
0
1,997
For positive integers $n$ , let $S_n$ be the set of integers $x$ such that $n$ distinct lines, no three concurrent, can divide a plane into $x$ regions (for example, $S_2=\{3,4\}$ , because the plane is divided into 3 regions if the two lines are parallel, and 4 regions otherwise). What is the minimum $i$ such that $S_i$ contains at least 4 elements?
4
64.0625
1,998
Consider the sum $$ S =\sum^{2021}_{j=1} \left|\sin \frac{2\pi j}{2021}\right|. $$ The value of $S$ can be written as $\tan \left( \frac{c\pi}{d} \right)$ for some relatively prime positive integers $c, d$ , satisfying $2c < d$ . Find the value of $c + d$ .
3031
36.71875
1,999
Let $P(X,Y)=X^2+2aXY+Y^2$ be a real polynomial where $|a|\geq 1$ . For a given positive integer $n$ , $n\geq 2$ consider the system of equations: \[ P(x_1,x_2) = P(x_2,x_3) = \ldots = P(x_{n-1},x_n) = P(x_n,x_1) = 0 . \] We call two solutions $(x_1,x_2,\ldots,x_n)$ and $(y_1,y_2,\ldots,y_n)$ of the system to be equivalent if there exists a real number $\lambda \neq 0$ , $x_1=\lambda y_1$ , $\ldots$ , $x_n= \lambda y_n$ . How many nonequivalent solutions does the system have? *Mircea Becheanu*
1
19.53125