File size: 10,864 Bytes
060bfcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
license: apache-2.0
task_categories:
- graph-ml
language:
- en
size_categories:
- 1M<n<10M
---
TL;DR: The datasets for the temporal knowledge graph reasoning task.
[[Github]](https://github.com/LinXueyuanStdio/TFLEX)
[[OpenReview]](https://openreview.net/forum?id=oaGdsgB18L)
[[arXiv]](https://arxiv.org/abs/2205.14307)
- Built over ICEWS and GDELT, which are widely used benchmarks in TKGC.
- First introduced in paper "TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph"
- Please refer to the original paper for more details.
See also: [[ICEWS14]](https://huggingface.co/datasets/linxy/ICEWS14) [[ICEWS05_15]](https://huggingface.co/datasets/linxy/ICEWS05_15)
## π¬ Usage
```python
>>> dataset = load_dataset("linxy/GDELT", "all")
>>> len(dataset["train"]) + len(dataset["validation"]) + len(dataset["test"])
1088769
>>> dataset["train"][0]
{'query_name': 'Pe_aPt',
'definition': 'def Pe_aPt(e1, r1, e2, r2, e3): return Pe(e1, r1, after(Pt(e2, r2, e3)))',
'query': [6291, 372, 5683, 283, 5264],
'answer': [1077],
'easy_answer': [],
'args': ['e1', 'r1', 'e2', 'r2', 'e3']}
>>> dataset["test"][0]
{'query_name': 'Pe',
'definition': 'def Pe(e1, r1, t1): return Pe(e1, r1, t1)',
'query': [1426, 115, 28],
'answer': [3697],
'easy_answer': [],
'args': ['e1', 'r1', 't1']}
```
'args' is the argument list of the query function, where name starting with 'e' is entity, and 'r' for relation, 't' for timestamp.
assert len(query) == len(args)
In order to decode query ids into text, we should use a vocabulary (i.e. entity2idx, relation2idx and timestamp2idx).
Therefore, we use the code below to load meta info which contains the vocabulary:
```python
>>> dataset = load_dataset("linxy/GDELT", "meta")
>>> meta_info = dataset_meta["train"][0]
>>> meta_info
{'dataset': 'ICEWS14',
'entity_count': 7128,
'relation_count': 230,
'timestamp_count': 365,
'valid_triples_count': 8941,
'test_triples_count': 8963,
'train_triples_count': 72826,
'triple_count': 90730,
'query_meta': {'query_name': [...], 'queries_count': [...], 'avg_answers_count': [...], ...},
'entity2idx': {'name': [...], 'id': [...]},
'relation2idx': {'name': [...], 'id': [...]},
'timestamp2idx': {'name': [...], 'id': [...]},
```
Since the ids in the vocabulary are already sorted, we directly decode to access the name text:
```python
>>> query
[1426, 115, 28]
>>> args
['e1', 'r1', 't1']
>>> for idx, arg_type in zip(query, args):
if arg_type.startswith('e') or arg_type.startswith('s') or arg_type.startswith('o'): # s, o, e1, e2, ...
print(idx, meta_info['entity2idx']['name'][idx])
elif arg_type.startswith('r'): # r, r1, r2, ...
print(idx, meta_info['relation2idx']['name'][idx])
elif arg_type.startswith('t'): # t, t1, t2, ...
print(idx, meta_info['timestamp2idx']['name'][idx])
```
Besides, we also provide query-type-specific subparts.
```python
>>> dataset = load_dataset("linxy/GDELT", "e2i")
>>> some_datasets = [load_dataset("linxy/GDELT", query_name) for query_name in meta_info['query_meta']['query_name']]
```
Help yourself!
<details>
<summary>π π Dataset statistics: queries_count</summary>
| query | ICEWS14| | | ICEWS05_15| | | GDELT | | |
| :---- | :---- | :---- | :--- | :---- | :---- | :--- | :---- | :---- | :--- |
| | train | valid | test | train | valid | test | train | valid | test |
| Pe | 66783 | 8837 | 8848 | 344042 | 45829 | 45644 | 1115102 | 273842 | 273432 |
| Pe2 | 72826 | 3482 | 4037 | 368962 | 10000 | 10000 | 2215309 | 10000 | 10000 |
| Pe3 | 72826 | 3492 | 4083 | 368962 | 10000 | 10000 | 2215309 | 10000 | 10000 |
| e2i | 72826 | 3305 | 3655 | 368962 | 10000 | 10000 | 2215309 | 10000 | 10000 |
| e3i | 72826 | 2966 | 3023 | 368962 | 10000 | 10000 | 2215309 | 10000 | 10000 |
| Pt | 42690 | 7331 | 7419 | 142771 | 28795 | 28752 | 687326 | 199780 | 199419 |
| aPt | 13234 | 4411 | 4411 | 68262 | 10000 | 10000 | 221530 | 10000 | 10000 |
| bPt | 13234 | 4411 | 4411 | 68262 | 10000 | 10000 | 221530 | 10000 | 10000 |
| Pe_Pt | 7282 | 3385 | 3638 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| Pt_sPe_Pt | 13234 | 5541 | 6293 | 68262 | 10000 | 10000 | 221530 | 10000 | 10000 |
| Pt_oPe_Pt | 13234 | 5480 | 6242 | 68262 | 10000 | 10000 | 221530 | 10000 | 10000 |
| t2i | 72826 | 5112 | 6631 | 368962 | 10000 | 10000 | 2215309 | 10000 | 10000 |
| t3i | 72826 | 3094 | 3296 | 368962 | 10000 | 10000 | 2215309 | 10000 | 10000 |
| e2i_N | 7282 | 2949 | 2975 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| e3i_N | 7282 | 2913 | 2914 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| Pe_e2i_Pe_NPe | 7282 | 2968 | 3012 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| e2i_PeN | 7282 | 2971 | 3031 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| e2i_NPe | 7282 | 3061 | 3192 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| t2i_N | 7282 | 3135 | 3328 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| t3i_N | 7282 | 2924 | 2944 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| Pe_t2i_PtPe_NPt | 7282 | 3031 | 3127 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| t2i_PtN | 7282 | 3300 | 3609 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| t2i_NPt | 7282 | 4873 | 5464 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| e2u | - | 2913 | 2913 | - | 10000 | 10000 | - | 10000 | 10000 |
| Pe_e2u | - | 2913 | 2913 | - | 10000 | 10000 | - | 10000 | 10000 |
| t2u | - | 2913 | 2913 | - | 10000 | 10000 | - | 10000 | 10000 |
| Pe_t2u | - | 2913 | 2913 | - | 10000 | 10000 | - | 10000 | 10000 |
| t2i_Pe | - | 2913 | 2913 | - | 10000 | 10000 | - | 10000 | 10000 |
| Pe_t2i | - | 2913 | 2913 | - | 10000 | 10000 | - | 10000 | 10000 |
| e2i_Pe | - | 2913 | 2913 | - | 10000 | 10000 | - | 10000 | 10000 |
| Pe_e2i | - | 2913 | 2913 | - | 10000 | 10000 | - | 10000 | 10000 |
| between | 7282 | 2913 | 2913 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| Pe_aPt | 7282 | 4134 | 4733 | 68262 | 10000 | 10000 | 221530 | 10000 | 10000 |
| Pe_bPt | 7282 | 3970 | 4565 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| Pt_sPe | 7282 | 4976 | 5608 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| Pt_oPe | 7282 | 3321 | 3621 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| Pt_se2i | 7282 | 3226 | 3466 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| Pt_oe2i | 7282 | 3236 | 3485 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| Pe_at2i | 7282 | 4607 | 5338 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
| Pe_bt2i | 7282 | 4583 | 5386 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
</details>
<details>
<summary>π π Dataset statistics: avg_answers_count</summary>
| query | ICEWS14| | | ICEWS05_15| | | GDELT | | |
| :---- | :---- | :---- | :--- | :---- | :---- | :--- | :---- | :---- | :--- |
| | train | valid | test | train | valid | test | train | valid | test |
|Pe | 1.09 | 1.01 | 1.01 | 1.07 | 1.01 | 1.01 | 2.07 | 1.21 | 1.21|
|Pe2 | 1.03 | 2.19 | 2.23 | 1.02 | 2.15 | 2.19 | 2.61 | 6.51 | 6.13|
|Pe3 | 1.04 | 2.25 | 2.29 | 1.02 | 2.18 | 2.21 | 5.11 | 10.86 | 10.70|
|e2i | 1.02 | 2.76 | 2.84 | 1.01 | 2.36 | 2.52 | 1.05 | 2.30 | 2.32|
|e3i | 1.00 | 1.57 | 1.59 | 1.00 | 1.26 | 1.26 | 1.00 | 1.20 | 1.35|
|Pt | 1.71 | 1.22 | 1.21 | 2.58 | 1.61 | 1.60 | 3.36 | 1.66 | 1.66|
|aPt | 177.99 | 176.09 | 175.89 | 2022.16 | 2003.85 | 1998.71 | 156.48 | 155.38 | 153.41|
|bPt | 181.20 | 179.88 | 179.26 | 1929.98 | 1923.75 | 1919.83 | 160.38 | 159.29 | 157.42|
|Pe_Pt | 1.58 | 7.90 | 8.62 | 2.84 | 18.11 | 20.63 | 26.56 | 42.54 | 41.33|
|Pt_sPe_Pt | 1.79 | 7.26 | 7.47 | 2.49 | 13.51 | 10.86 | 4.92 | 14.13 | 12.80|
|Pt_oPe_Pt | 1.75 | 7.27 | 7.48 | 2.55 | 13.01 | 14.34 | 4.62 | 14.47 | 12.90|
|t2i | 1.19 | 6.29 | 6.38 | 3.07 | 29.45 | 25.61 | 1.97 | 8.98 | 7.76|
|t3i | 1.01 | 2.88 | 3.14 | 1.08 | 10.03 | 10.22 | 1.06 | 3.79 | 3.52|
|e2i_N | 1.02 | 2.10 | 2.14 | 1.01 | 2.05 | 2.08 | 2.04 | 4.66 | 4.58|
|e3i_N | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.02 | 1.19 | 1.37|
|Pe_e2i_Pe_NPe | 1.04 | 2.21 | 2.25 | 1.02 | 2.16 | 2.19 | 3.67 | 8.54 | 8.12|
|e2i_PeN | 1.04 | 2.22 | 2.26 | 1.02 | 2.17 | 2.21 | 3.67 | 8.66 | 8.36|
|e2i_NPe | 1.18 | 3.03 | 3.11 | 1.12 | 2.87 | 2.99 | 4.00 | 8.15 | 7.81|
|t2i_N | 1.15 | 3.31 | 3.44 | 1.21 | 4.06 | 4.20 | 2.91 | 8.78 | 7.56|
|t3i_N | 1.00 | 1.02 | 1.03 | 1.01 | 1.02 | 1.02 | 1.15 | 3.19 | 3.20|
|Pe_t2i_PtPe_NPt | 1.08 | 2.59 | 2.70 | 1.08 | 2.47 | 2.62 | 4.10 | 12.02 | 11.37|
|t2i_PtN | 1.41 | 5.22 | 5.47 | 1.70 | 8.10 | 8.11 | 4.56 | 12.56 | 11.32|
|t2i_NPt | 8.14 | 25.96 | 26.23 | 66.99 | 154.01 | 147.34 | 17.58 | 35.60 | 32.22|
|e2u | 0.00 | 3.12 | 3.17 | 0.00 | 2.38 | 2.40 | 0.00 | 5.04 | 5.41|
|Pe_e2u | 0.00 | 2.38 | 2.44 | 0.00 | 1.24 | 1.25 | 0.00 | 9.39 | 10.78|
|t2u | 0.00 | 4.35 | 4.53 | 0.00 | 5.57 | 5.92 | 0.00 | 9.70 | 10.51|
|Pe_t2u | 0.00 | 2.72 | 2.83 | 0.00 | 1.24 | 1.28 | 0.00 | 9.90 | 11.27|
|t2i_Pe | 0.00 | 1.03 | 1.03 | 0.00 | 1.01 | 1.02 | 0.00 | 1.34 | 1.44|
|Pe_t2i | 0.00 | 1.14 | 1.16 | 0.00 | 1.07 | 1.08 | 0.00 | 2.01 | 2.20|
|e2i_Pe | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.07 | 1.10|
|Pe_e2i | 0.00 | 2.18 | 2.24 | 0.00 | 1.32 | 1.33 | 0.00 | 5.08 | 5.49|
|between | 122.61 | 120.94 | 120.27 | 1407.87 | 1410.39 | 1404.76 | 214.16 | 210.99 | 207.85|
|Pe_aPt | 4.67 | 16.73 | 16.50 | 18.68 | 43.80 | 46.23 | 49.31 | 66.21 | 68.88|
|Pe_bPt | 4.53 | 17.07 | 16.80 | 18.70 | 45.81 | 48.23 | 67.67 | 84.79 | 83.00|
|Pt_sPe | 8.65 | 28.86 | 29.22 | 71.51 | 162.36 | 155.46 | 27.55 | 45.83 | 43.73|
|Pt_oPe | 1.41 | 5.23 | 5.46 | 1.68 | 8.36 | 8.21 | 3.84 | 11.31 | 10.06|
|Pt_se2i | 1.31 | 5.72 | 6.19 | 1.37 | 9.00 | 9.30 | 2.76 | 8.72 | 7.66|
|Pt_oe2i | 1.32 | 6.51 | 7.00 | 1.44 | 10.49 | 10.89 | 2.55 | 8.17 | 7.27|
|Pe_at2i | 7.26 | 22.63 | 21.98 | 30.40 | 60.03 | 53.18 | 88.77 | 101.60 | 101.88|
|Pe_bt2i | 7.27 | 21.92 | 21.23 | 30.31 | 61.59 | 64.98 | 88.80 | 100.64 | 100.67|
</details>
<br/>
## βοΈ Contact
- Lin Xueyuan: [email protected]
## π€ Citation
Please condiser citing this paper if you use the ```code``` or ```data``` from our work. Thanks a lot :)
(`Xueyuan et al., 2023` preferred, instead of `Lin et al., 2023`)
```bibtex
@inproceedings{
xueyuan2023tflex,
title={TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph},
author={Lin Xueyuan and Haihong E and Chengjin Xu and Gengxian Zhou and Haoran Luo and Tianyi Hu and Fenglong Su and Ningyuan Li and Mingzhi Sun},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
year={2023},
url={https://openreview.net/forum?id=oaGdsgB18L}
}
```
---
TFLEX is released under the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0) license.
<p align="right">(<a href="#top">back to top</a>)</p>
|