|
|
|
|
|
"""Loading script for DiffusionDB."""
|
|
from typing import List, Dict
|
|
import json
|
|
import os
|
|
from huggingface_hub import hf_hub_url
|
|
import datasets
|
|
|
|
|
|
_CITATION = """\
|
|
@inproceedings{
|
|
xueyuan2023tflex,
|
|
title={TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph},
|
|
author={Lin Xueyuan and Haihong E and Chengjin Xu and Gengxian Zhou and Haoran Luo and Tianyi Hu and Fenglong Su and Ningyuan Li and Mingzhi Sun},
|
|
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
|
|
year={2023},
|
|
url={https://openreview.net/forum?id=oaGdsgB18L}
|
|
}\
|
|
"""
|
|
|
|
_DESCRIPTION = """\
|
|
TL;DR: The datasets for temporal knowledge graph reasoning task.
|
|
|
|
[[Github]](https://github.com/LinXueyuanStdio/TFLEX)
|
|
[[OpenReview]](https://openreview.net/forum?id=oaGdsgB18L)
|
|
[[arXiv]](https://arxiv.org/abs/2205.14307)
|
|
|
|
- Built over ICEWS and GDELT, which are widly used benchmarks in TKGC.
|
|
- First introduced in paper "TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph"
|
|
- Please refer to the original paper for more details.
|
|
"""
|
|
|
|
_HOMEPAGE = "https://github.com/LinXueyuanStdio/TFLEX"
|
|
|
|
_LICENSE = "[Apache License 2.0](https://github.com/LinXueyuanStdio/TFLEX/blob/main/LICENSE)"
|
|
|
|
query_name_to_args: Dict[str, List[str]] = {
|
|
|
|
"Pe": ["e1", "r1", "t1"],
|
|
"Pt": ["e1", "r1", "e2"],
|
|
|
|
"Pe2": ["e1", "r1", "t1", "r2", "t2"],
|
|
"Pe3": ["e1", "r1", "t1", "r2", "t2", "r3", "t3"],
|
|
|
|
"aPt": ["s", "r", "o"],
|
|
"bPt": ["s", "r", "o"],
|
|
"Pt_sPe": ["e1", "r1", "t1", "r2", "e2"],
|
|
"Pt_oPe": ["e1", "r1", "e2", "r2", "t1"],
|
|
"Pe_Pt": ["e1", "r1", "e2", "r2", "e3"],
|
|
"Pe_aPt": ["e1", "r1", "e2", "r2", "e3"],
|
|
"Pe_bPt": ["e1", "r1", "e2", "r2", "e3"],
|
|
"Pe_nPt": ["e1", "r1", "e2", "r2", "e3"],
|
|
"Pt_sPe_Pt": ["s1", "r1", "s2", "r2", "o1", "r3", "o2"],
|
|
"Pt_oPe_Pt": ["s1", "r1", "s2", "r2", "s3", "r3", "o1"],
|
|
|
|
"e2i": ["e1", "r1", "t1", "e2", "r2", "t2"],
|
|
"e3i": ["e1", "r1", "t1", "e2", "r2", "t2", "e3", "r3", "t3"],
|
|
"t2i": ["e1", "r1", "e2", "e3", "r2", "e4"],
|
|
"t3i": ["e1", "r1", "e2", "e3", "r2", "e4", "e5", "r3", "e6"],
|
|
|
|
"e2i_Pe": ["e1", "r1", "t1", "r2", "t2", "e2", "r3", "t3"],
|
|
"Pe_e2i": ["e1", "r1", "t1", "e2", "r2", "t2", "r3", "t3"],
|
|
"Pt_se2i": ["e1", "r1", "t1", "e2", "r2", "t2", "r3", "e3"],
|
|
"Pt_oe2i": ["e1", "r1", "e2", "r2", "t1", "e3", "r3", "t2"],
|
|
"t2i_Pe": ["e1", "r1", "t1", "r2", "e2", "e3", "r3", "e4"],
|
|
"Pe_t2i": ["e1", "r1", "e2", "r2", "e3", "e4", "r3", "e5"],
|
|
"Pe_at2i": ["e1", "r1", "e2", "r2", "e3", "e4", "r3", "e5"],
|
|
"Pe_bt2i": ["e1", "r1", "e2", "r2", "e3", "e4", "r3", "e5"],
|
|
"Pe_nt2i": ["e1", "r1", "e2", "r2", "e3", "e4", "r3", "e5"],
|
|
"between": ["e1", "r1", "e2", "e3", "r2", "e4"],
|
|
|
|
"e2i_N": ["e1", "r1", "t1", "e2", "r2", "t2"],
|
|
"e3i_N": ["e1", "r1", "t1", "e2", "r2", "t2", "e3", "r3", "t3"],
|
|
"Pe_e2i_Pe_NPe": ["e1", "r1", "t1", "e2", "r2", "t2", "r3", "t3"],
|
|
"e2i_NPe": ["e1", "r1", "t1", "r2", "t2", "e2", "r3", "t3"],
|
|
"e2i_PeN": ["e1", "r1", "t1", "r2", "t2", "e2", "r3", "t3"],
|
|
|
|
"t2i_N": ["e1", "r1", "e2", "e3", "r2", "e4"],
|
|
"t3i_N": ["e1", "r1", "e2", "e3", "r2", "e4", "e5", "r3", "e6"],
|
|
"Pe_t2i_PtPe_NPt": ["e1", "r1", "e2", "r2", "t2", "r3", "e3", "e4", "r4", "e5"],
|
|
"t2i_NPt": ["e1", "r1", "t1", "r2", "e2", "e3", "r3", "e4"],
|
|
"t2i_PtN": ["e1", "r1", "t1", "r2", "e2", "e3", "r3", "e4"],
|
|
|
|
"e2u": ["e1", "r1", "t1", "e2", "r2", "t2"],
|
|
"Pe_e2u": ["e1", "r1", "t1", "e2", "r2", "t2", "r3", "t3"],
|
|
"t2u": ["e1", "r1", "e2", "e3", "r2", "e4"],
|
|
"Pe_t2u": ["e1", "r1", "e2", "r2", "e3", "e4", "r3", "e5"],
|
|
}
|
|
query_structures: Dict[str, str] = {
|
|
|
|
"Pe": "def Pe(e1, r1, t1): return Pe(e1, r1, t1)",
|
|
"Pt": "def Pt(e1, r1, e2): return Pt(e1, r1, e2)",
|
|
|
|
"Pe2": "def Pe2(e1, r1, t1, r2, t2): return Pe(Pe(e1, r1, t1), r2, t2)",
|
|
"Pe3": "def Pe3(e1, r1, t1, r2, t2, r3, t3): return Pe(Pe(Pe(e1, r1, t1), r2, t2), r3, t3)",
|
|
|
|
"aPt": "def aPt(s, r, o): return after(Pt(s, r, o))",
|
|
"bPt": "def bPt(s, r, o): return before(Pt(s, r, o))",
|
|
"Pt_lPe": "def Pt_lPe(e1, r1, t1, r2, e2): return Pt(Pe(e1, r1, t1), r2, e2)",
|
|
"Pt_rPe": "def Pt_rPe(e1, r1, e2, r2, t1): return Pt(e1, r1, Pe(e2, r2, t1))",
|
|
"Pt_sPe": "def Pt_sPe(e1, r1, t1, r2, e2): return Pt(Pe(e1, r1, t1), r2, e2)",
|
|
"Pt_oPe": "def Pt_oPe(e1, r1, e2, r2, t1): return Pt(e1, r1, Pe(e2, r2, t1))",
|
|
"Pe_Pt": "def Pe_Pt(e1, r1, e2, r2, e3): return Pe(e1, r1, Pt(e2, r2, e3))",
|
|
"Pe_aPt": "def Pe_aPt(e1, r1, e2, r2, e3): return Pe(e1, r1, after(Pt(e2, r2, e3)))",
|
|
"Pe_bPt": "def Pe_bPt(e1, r1, e2, r2, e3): return Pe(e1, r1, before(Pt(e2, r2, e3)))",
|
|
"Pe_nPt": "def Pe_nPt(e1, r1, e2, r2, e3): return Pe(e1, r1, next(Pt(e2, r2, e3)))",
|
|
"Pt_sPe_Pt": "def Pt_sPe_Pt(s1, r1, s2, r2, o1, r3, o2): return Pt(Pe(s1, r1, Pt(s2, r2, o1)), r3, o2)",
|
|
"Pt_oPe_Pt": "def Pt_oPe_Pt(s1, r1, s2, r2, s3, r3, o1): return Pt(s1, r1, Pe(s2, r2, Pt(s3, r3, o1)))",
|
|
|
|
"e2i": "def e2i(e1, r1, t1, e2, r2, t2): return And(Pe(e1, r1, t1), Pe(e2, r2, t2))",
|
|
"e3i": "def e3i(e1, r1, t1, e2, r2, t2, e3, r3, t3): return And3(Pe(e1, r1, t1), Pe(e2, r2, t2), Pe(e3, r3, t3))",
|
|
"t2i": "def t2i(e1, r1, e2, e3, r2, e4): return TimeAnd(Pt(e1, r1, e2), Pt(e3, r2, e4))",
|
|
"t3i": "def t3i(e1, r1, e2, e3, r2, e4, e5, r3, e6): return TimeAnd3(Pt(e1, r1, e2), Pt(e3, r2, e4), Pt(e5, r3, e6))",
|
|
|
|
"e2i_Pe": "def e2i_Pe(e1, r1, t1, r2, t2, e2, r3, t3): return And(Pe(Pe(e1, r1, t1), r2, t2), Pe(e2, r3, t3))",
|
|
"Pe_e2i": "def Pe_e2i(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(e2i(e1, r1, t1, e2, r2, t2), r3, t3)",
|
|
"Pt_le2i": "def Pt_le2i(e1, r1, t1, e2, r2, t2, r3, e3): return Pt(e2i(e1, r1, t1, e2, r2, t2), r3, e3)",
|
|
"Pt_re2i": "def Pt_re2i(e1, r1, e2, r2, t1, e3, r3, t2): return Pt(e1, r1, e2i(e2, r2, t1, e3, r3, t2))",
|
|
"Pt_se2i": "def Pt_se2i(e1, r1, t1, e2, r2, t2, r3, e3): return Pt(e2i(e1, r1, t1, e2, r2, t2), r3, e3)",
|
|
"Pt_oe2i": "def Pt_oe2i(e1, r1, e2, r2, t1, e3, r3, t2): return Pt(e1, r1, e2i(e2, r2, t1, e3, r3, t2))",
|
|
"t2i_Pe": "def t2i_Pe(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(Pt(Pe(e1, r1, t1), r2, e2), Pt(e3, r3, e4))",
|
|
"Pe_t2i": "def Pe_t2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, t2i(e2, r2, e3, e4, r3, e5))",
|
|
"Pe_at2i": "def Pe_at2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, after(t2i(e2, r2, e3, e4, r3, e5)))",
|
|
"Pe_bt2i": "def Pe_bt2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, before(t2i(e2, r2, e3, e4, r3, e5)))",
|
|
"Pe_nt2i": "def Pe_nt2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, next(t2i(e2, r2, e3, e4, r3, e5)))",
|
|
"between": "def between(e1, r1, e2, e3, r2, e4): return TimeAnd(after(Pt(e1, r1, e2)), before(Pt(e3, r2, e4)))",
|
|
|
|
"e2i_N": "def e2i_N(e1, r1, t1, e2, r2, t2): return And(Pe(e1, r1, t1), Not(Pe(e2, r2, t2)))",
|
|
"e3i_N": "def e3i_N(e1, r1, t1, e2, r2, t2, e3, r3, t3): return And3(Pe(e1, r1, t1), Pe(e2, r2, t2), Not(Pe(e3, r3, t3)))",
|
|
"Pe_e2i_Pe_NPe": "def Pe_e2i_Pe_NPe(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(And(Pe(e1, r1, t1), Not(Pe(e2, r2, t2))), r3, t3)",
|
|
"e2i_PeN": "def e2i_PeN(e1, r1, t1, r2, t2, e2, r3, t3): return And(Pe(Pe(e1, r1, t1), r2, t2), Not(Pe(e2, r3, t3)))",
|
|
"e2i_NPe": "def e2i_NPe(e1, r1, t1, r2, t2, e2, r3, t3): return And(Not(Pe(Pe(e1, r1, t1), r2, t2)), Pe(e2, r3, t3))",
|
|
|
|
"t2i_N": "def t2i_N(e1, r1, e2, e3, r2, e4): return TimeAnd(Pt(e1, r1, e2), TimeNot(Pt(e3, r2, e4)))",
|
|
"t3i_N": "def t3i_N(e1, r1, e2, e3, r2, e4, e5, r3, e6): return TimeAnd3(Pt(e1, r1, e2), Pt(e3, r2, e4), TimeNot(Pt(e5, r3, e6)))",
|
|
"Pe_t2i_PtPe_NPt": "def Pe_t2i_PtPe_NPt(e1, r1, e2, r2, t2, r3, e3, e4, r4, e5): return Pe(e1, r1, TimeAnd(Pt(Pe(e2, r2, t2), r3, e3), TimeNot(Pt(e4, r4, e5))))",
|
|
"t2i_PtN": "def t2i_PtN(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(Pt(Pe(e1, r1, t1), r2, e2), TimeNot(Pt(e3, r3, e4)))",
|
|
"t2i_NPt": "def t2i_NPt(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(TimeNot(Pt(Pe(e1, r1, t1), r2, e2)), Pt(e3, r3, e4))",
|
|
|
|
"e2u": "def e2u(e1, r1, t1, e2, r2, t2): return Or(Pe(e1, r1, t1), Pe(e2, r2, t2))",
|
|
"Pe_e2u": "def Pe_e2u(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Or(Pe(e1, r1, t1), Pe(e2, r2, t2)), r3, t3)",
|
|
"t2u": "def t2u(e1, r1, e2, e3, r2, e4): return TimeOr(Pt(e1, r1, e2), Pt(e3, r2, e4))",
|
|
"Pe_t2u": "def Pe_t2u(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, TimeOr(Pt(e2, r2, e3), Pt(e4, r3, e5)))",
|
|
|
|
"e2u_DM": "def e2u_DM(e1, r1, t1, e2, r2, t2): return Not(And(Not(Pe(e1, r1, t1)), Not(Pe(e2, r2, t2))))",
|
|
"Pe_e2u_DM": "def Pe_e2u_DM(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Not(And(Not(Pe(e1, r1, t1)), Not(Pe(e2, r2, t2)))), r3, t3)",
|
|
"t2u_DM": "def t2u_DM(e1, r1, e2, e3, r2, e4): return TimeNot(TimeAnd(TimeNot(Pt(e1, r1, e2)), TimeNot(Pt(e3, r2, e4))))",
|
|
"Pe_t2u_DM": "def Pe_t2u_DM(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, TimeNot(TimeAnd(TimeNot(Pt(e2, r2, e3)), TimeNot(Pt(e4, r3, e5)))))",
|
|
|
|
"e2u_DNF": "def e2u_DNF(e1, r1, t1, e2, r2, t2): return Pe(e1, r1, t1), Pe(e2, r2, t2)",
|
|
"Pe_e2u_DNF": "def Pe_e2u_DNF(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Pe(e1, r1, t1), r3, t3), Pe(Pe(e2, r2, t2), r3, t3)",
|
|
"t2u_DNF": "def t2u_DNF(e1, r1, e2, e3, r2, e4): return Pt(e1, r1, e2), Pt(e3, r2, e4)",
|
|
"Pe_t2u_DNF": "def Pe_t2u_DNF(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, Pt(e2, r2, e3)), Pe(e1, r1, Pt(e4, r3, e5))",
|
|
}
|
|
union_query_structures: List[str] = [
|
|
"e2u",
|
|
"Pe_e2u",
|
|
"t2u",
|
|
"Pe_t2u",
|
|
]
|
|
train_query_structures: List[str] = [
|
|
|
|
"Pe",
|
|
"Pe2",
|
|
"Pe3",
|
|
"e2i",
|
|
"e3i",
|
|
"e2i_NPe",
|
|
"e2i_PeN",
|
|
"Pe_e2i_Pe_NPe",
|
|
"e2i_N",
|
|
"e3i_N",
|
|
|
|
"Pt",
|
|
"Pt_lPe",
|
|
"Pt_rPe",
|
|
"Pe_Pt",
|
|
"Pe_aPt",
|
|
"Pe_bPt",
|
|
"Pe_nPt",
|
|
"t2i",
|
|
"t3i",
|
|
"Pt_le2i",
|
|
"Pt_re2i",
|
|
"Pe_t2i",
|
|
"Pe_at2i",
|
|
"Pe_bt2i",
|
|
"Pe_nt2i",
|
|
"between",
|
|
"t2i_NPt",
|
|
"t2i_PtN",
|
|
"Pe_t2i_PtPe_NPt",
|
|
"t2i_N",
|
|
"t3i_N",
|
|
]
|
|
test_query_structures: List[str] = train_query_structures + [
|
|
|
|
"e2i_Pe",
|
|
"Pe_e2i",
|
|
"e2u",
|
|
"Pe_e2u",
|
|
|
|
"t2i_Pe",
|
|
"Pe_t2i",
|
|
"t2u",
|
|
"Pe_t2u",
|
|
|
|
"e2u_DM",
|
|
"Pe_e2u_DM",
|
|
"t2u_DM",
|
|
"Pe_t2u_DM",
|
|
]
|
|
|
|
|
|
_AUTHOR = "linxy"
|
|
_DATASET = "GDELT"
|
|
_URLS = {
|
|
name: hf_hub_url(f"{_AUTHOR}/{_DATASET}", filename=f"zips/{name}.zip", repo_type="dataset")
|
|
for name in ["all"] + list(query_name_to_args.keys())
|
|
} | {
|
|
"meta": hf_hub_url(f"{_AUTHOR}/{_DATASET}", filename="meta.json", repo_type="dataset")
|
|
}
|
|
|
|
|
|
class GDELTDataset(datasets.GeneratorBasedBuilder):
|
|
VERSION = datasets.Version("1.0.0")
|
|
|
|
STANDARD_BUILDER_CONFIGS = [
|
|
datasets.BuilderConfig(
|
|
name=query_name,
|
|
version=datasets.Version("1.0.0"),
|
|
description=query_structures[query_name],
|
|
)
|
|
for query_name in list(query_name_to_args.keys())
|
|
]
|
|
BUILDER_CONFIGS = [
|
|
datasets.BuilderConfig(
|
|
name="meta",
|
|
version=VERSION,
|
|
description=f"The meta of data, including entity/relation/timestamp count, entity2idx, relation2idx, timestamp2idx, etc.",
|
|
),
|
|
datasets.BuilderConfig(
|
|
name="all",
|
|
version=VERSION,
|
|
description=f"All types of queries. Train: {train_query_structures}, Valid | Test: {test_query_structures}",
|
|
),
|
|
] + STANDARD_BUILDER_CONFIGS
|
|
|
|
DEFAULT_CONFIG_NAME = "all"
|
|
|
|
def _info(self):
|
|
if self.config.name == "meta":
|
|
features = datasets.Features(
|
|
{
|
|
"dataset": datasets.Value("string"),
|
|
"entity_count": datasets.Value("int32"),
|
|
"relation_count": datasets.Value("int32"),
|
|
"timestamp_count": datasets.Value("int32"),
|
|
"valid_triples_count": datasets.Value("int32"),
|
|
"test_triples_count": datasets.Value("int32"),
|
|
"train_triples_count": datasets.Value("int32"),
|
|
"triple_count": datasets.Value("int32"),
|
|
"query_meta": datasets.Sequence(
|
|
feature={
|
|
"query_name": datasets.Value("string"),
|
|
"queries_count": datasets.Value("int32"),
|
|
"avg_answers_count": datasets.Value("float"),
|
|
"train": {
|
|
"queries_count": datasets.Value("int32"),
|
|
"avg_answers_count": datasets.Value("float"),
|
|
},
|
|
"valid": {
|
|
"queries_count": datasets.Value("int32"),
|
|
"avg_answers_count": datasets.Value("float"),
|
|
},
|
|
"test": {
|
|
"queries_count": datasets.Value("int32"),
|
|
"avg_answers_count": datasets.Value("float"),
|
|
},
|
|
}
|
|
),
|
|
"entity2idx": datasets.Sequence(
|
|
feature={
|
|
"name": datasets.Value("string"),
|
|
"id": datasets.Value("int32"),
|
|
}
|
|
),
|
|
"relation2idx": datasets.Sequence(
|
|
feature={
|
|
"name": datasets.Value("string"),
|
|
"id": datasets.Value("int32"),
|
|
}
|
|
),
|
|
"timestamp2idx": datasets.Sequence(
|
|
feature={
|
|
"name": datasets.Value("string"),
|
|
"id": datasets.Value("int32"),
|
|
}
|
|
),
|
|
}
|
|
)
|
|
else:
|
|
features = datasets.Features(
|
|
{
|
|
"query_name": datasets.Value("string"),
|
|
"definition": datasets.Value("string"),
|
|
"query": datasets.Sequence(feature=datasets.Value("int32")),
|
|
"answer": datasets.Sequence(feature=datasets.Value("int32")),
|
|
"easy_answer": datasets.Sequence(feature=datasets.Value("int32")),
|
|
"args": datasets.Sequence(feature=datasets.Value("string")),
|
|
}
|
|
)
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=features,
|
|
homepage=_HOMEPAGE,
|
|
license=_LICENSE,
|
|
citation=_CITATION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager: datasets.download.DownloadManager):
|
|
|
|
|
|
|
|
url = _URLS[self.config.name]
|
|
if self.config.name == "meta":
|
|
data_file = dl_manager.download(_URLS["meta"])
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
|
|
gen_kwargs={
|
|
"filepath": data_file,
|
|
"split": "meta",
|
|
},
|
|
)
|
|
]
|
|
data_dir = dl_manager.download_and_extract(url)
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
|
|
gen_kwargs={
|
|
"filepath": os.path.join(data_dir, "train.jsonl"),
|
|
"split": "train",
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.VALIDATION,
|
|
|
|
gen_kwargs={
|
|
"filepath": os.path.join(data_dir, "valid.jsonl"),
|
|
"split": "valid",
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TEST,
|
|
|
|
gen_kwargs={
|
|
"filepath": os.path.join(data_dir, "test.jsonl"),
|
|
"split": "test",
|
|
},
|
|
),
|
|
]
|
|
|
|
def _generate_examples(self, filepath, split):
|
|
|
|
|
|
|
|
if not os.path.exists(filepath):
|
|
return
|
|
if split == "meta":
|
|
with open(filepath, "r", encoding="utf-8") as f:
|
|
data = json.load(f)
|
|
yield 0, data
|
|
return
|
|
with open(filepath, "r", encoding="utf-8") as f:
|
|
for key, row in enumerate(f):
|
|
data = json.loads(row)
|
|
query_name = data["query_name"]
|
|
easy_answer = data["easy_answer"] if "easy_answer" in data else []
|
|
yield key, {
|
|
"query_name": query_name,
|
|
"query": data["query"],
|
|
"answer": data["answer"],
|
|
"easy_answer": easy_answer,
|
|
"args": query_name_to_args[query_name],
|
|
"definition": query_structures[query_name],
|
|
}
|
|
|