DSBench / data_modeling /evaluation /playground-series-s3e19_eval.py
liqiang888's picture
Upload 738 files
fe8d248 verified
raw
history blame
1.11 kB
import os.path
import numpy as np
import pandas as pd
import argparse
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_squared_log_error
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import roc_auc_score
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, required=True)
parser.add_argument('--name', type=str, required=True)
parser.add_argument('--answer_file', type=str, required=True)
parser.add_argument('--predict_file', type=str, required=True)
parser.add_argument('--value', type=str, default="Machine failure")
args = parser.parse_args()
answers = pd.read_csv( args.answer_file)
predictions = pd.read_csv( args.predict_file)
# 提取预测值和实际标签
predicted_values = predictions['num_sold'].values
actual_values = answers['num_sold'].values # 修改列名为answers
smape = np.mean(2 * np.abs(predicted_values - actual_values) / (np.abs(actual_values) + np.abs(predicted_values)))
performance = smape
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
f.write(str(performance))