Search is not available for this dataset
tasksetId
int64
2.28k
8.97k
taskId
int64
984,092,652B
3,000,366,589B
workerId
int64
3
13.9k
answer
int64
0
2
completeTime
int64
1,655B
1,674B
capability
int64
50
126
truth
int64
0
2
6,980
1,012,658,482,844,795,300
64
2
1,661,917,345,953
69
1
6,980
1,012,658,482,844,795,300
150
1
1,661,871,234,755
69
1
6,980
1,012,658,482,844,795,300
263
0
1,661,855,450,281
69
1
6,980
1,012,658,482,844,795,300
315
2
1,661,847,824,530
69
1
6,980
1,012,658,482,844,795,300
372
1
1,661,910,298,621
69
1
6,980
1,012,658,482,844,795,300
408
1
1,661,861,633,503
69
1
6,980
1,012,658,482,844,795,300
456
1
1,661,847,149,279
69
1
6,980
1,012,658,482,844,795,300
489
1
1,661,852,937,156
69
1
6,980
1,012,658,482,844,795,300
693
0
1,661,867,348,907
69
1
6,980
1,012,658,482,970,624,400
263
0
1,661,856,452,756
69
1
6,980
1,012,658,482,970,624,400
315
1
1,661,849,651,964
69
1
6,980
1,012,658,482,970,624,400
408
1
1,661,861,961,814
69
1
6,980
1,012,658,482,970,624,400
456
1
1,661,847,309,488
69
1
6,980
1,012,658,482,970,624,400
693
1
1,661,867,560,479
69
1
6,980
1,012,658,483,033,539,000
64
1
1,661,917,435,164
69
1
6,980
1,012,658,483,033,539,000
150
1
1,661,871,072,437
69
1
6,980
1,012,658,483,033,539,000
263
1
1,661,855,997,177
69
1
6,980
1,012,658,483,033,539,000
315
2
1,661,849,548,013
69
1
6,980
1,012,658,483,033,539,000
372
2
1,661,910,245,713
69
1
6,980
1,012,658,483,033,539,000
408
2
1,661,861,461,454
69
1
6,980
1,012,658,483,033,539,000
422
1
1,661,873,302,063
69
1
6,980
1,012,658,483,033,539,000
456
0
1,661,847,260,777
69
1
6,980
1,012,658,483,033,539,000
693
1
1,661,867,442,981
69
1
6,980
1,012,658,483,088,064,900
263
0
1,661,855,741,524
69
0
6,980
1,012,658,483,088,064,900
315
1
1,661,848,405,519
69
0
6,980
1,012,658,483,088,064,900
422
0
1,661,851,582,429
69
0
6,980
1,012,658,483,088,064,900
456
0
1,661,847,170,095
69
0
6,980
1,012,658,483,088,064,900
489
0
1,661,852,798,305
69
0
6,980
1,012,658,483,176,144,900
263
1
1,661,856,897,737
69
1
6,980
1,012,658,483,176,144,900
315
2
1,661,849,307,186
69
1
6,980
1,012,658,483,176,144,900
422
1
1,661,851,538,745
69
1
6,980
1,012,658,483,176,144,900
456
1
1,661,847,317,019
69
1
6,980
1,012,658,483,176,144,900
489
1
1,661,852,939,862
69
1
6,980
1,012,658,483,255,837,000
64
2
1,661,917,392,153
69
2
6,980
1,012,658,483,255,837,000
150
2
1,661,871,174,498
69
2
6,980
1,012,658,483,255,837,000
263
0
1,661,856,552,570
69
2
6,980
1,012,658,483,255,837,000
315
2
1,661,849,846,787
69
2
6,980
1,012,658,483,255,837,000
372
0
1,661,910,349,970
69
2
6,980
1,012,658,483,255,837,000
408
1
1,661,861,889,467
69
2
6,980
1,012,658,483,255,837,000
440
2
1,661,850,331,417
69
2
6,980
1,012,658,483,255,837,000
456
1
1,661,847,182,016
69
2
6,980
1,012,658,483,255,837,000
693
1
1,661,866,971,197
69
2
6,980
1,012,658,483,285,197,200
315
1
1,661,848,962,936
69
1
6,980
1,012,658,483,285,197,200
440
1
1,661,850,169,180
69
1
6,980
1,012,658,483,285,197,200
456
1
1,661,847,220,582
69
1
6,980
1,012,658,483,327,140,200
263
1
1,661,855,171,283
69
1
6,980
1,012,658,483,327,140,200
456
1
1,661,847,520,835
69
1
6,980
1,012,658,483,327,140,200
489
1
1,661,852,942,941
69
1
6,980
1,012,658,483,461,358,000
64
1
1,661,917,197,382
69
1
6,980
1,012,658,483,461,358,000
150
1
1,661,870,876,568
69
1
6,980
1,012,658,483,461,358,000
263
1
1,661,858,648,087
69
1
6,980
1,012,658,483,461,358,000
372
1
1,661,910,200,609
69
1
6,980
1,012,658,483,461,358,000
408
1
1,661,861,515,034
69
1
6,980
1,012,658,483,461,358,000
422
2
1,661,873,000,622
69
1
6,980
1,012,658,483,461,358,000
456
0
1,661,847,489,012
69
1
6,980
1,012,658,483,461,358,000
489
1
1,661,852,856,101
69
1
6,980
1,012,658,483,461,358,000
693
0
1,661,867,251,965
69
1
6,980
1,012,658,483,507,495,300
64
0
1,661,917,559,622
69
0
6,980
1,012,658,483,507,495,300
150
2
1,661,871,017,132
69
0
6,980
1,012,658,483,507,495,300
372
1
1,661,910,086,914
69
0
6,980
1,012,658,483,507,495,300
375
2
1,661,931,296,969
69
0
6,980
1,012,658,483,507,495,300
408
0
1,661,861,925,157
69
0
6,980
1,012,658,483,507,495,300
456
0
1,661,847,549,519
69
0
6,980
1,012,658,483,507,495,300
489
1
1,661,852,816,295
69
0
6,980
1,012,658,483,507,495,300
558
0
1,661,921,489,992
69
0
6,980
1,012,658,483,507,495,300
693
1
1,661,867,420,939
69
0
6,980
1,012,658,483,570,409,900
150
0
1,661,871,157,320
69
0
6,980
1,012,658,483,570,409,900
263
0
1,661,857,178,698
69
0
6,980
1,012,658,483,570,409,900
372
0
1,661,910,330,933
69
0
6,980
1,012,658,483,570,409,900
408
1
1,661,861,361,794
69
0
6,980
1,012,658,483,570,409,900
456
1
1,661,847,377,178
69
0
6,980
1,012,658,483,570,409,900
489
0
1,661,852,933,597
69
0
6,980
1,012,658,483,570,409,900
693
0
1,661,867,181,012
69
0
6,980
1,012,658,483,641,712,600
64
1
1,661,917,081,905
69
1
6,980
1,012,658,483,641,712,600
150
2
1,661,870,942,368
69
1
6,980
1,012,658,483,641,712,600
263
1
1,661,857,519,538
69
1
6,980
1,012,658,483,641,712,600
372
0
1,661,910,420,110
69
1
6,980
1,012,658,483,641,712,600
408
0
1,661,861,860,934
69
1
6,980
1,012,658,483,641,712,600
456
1
1,661,847,455,115
69
1
6,980
1,012,658,483,641,712,600
489
2
1,661,852,897,584
69
1
6,980
1,012,658,483,641,712,600
558
0
1,661,921,539,523
69
1
6,980
1,012,658,483,641,712,600
693
0
1,661,866,931,306
69
1
6,980
1,012,658,483,679,461,800
150
1
1,661,871,040,797
69
1
6,980
1,012,658,483,679,461,800
456
1
1,661,847,393,561
69
1
6,980
1,012,658,483,679,461,800
489
1
1,661,853,040,502
69
1
6,980
1,012,658,483,792,708,000
263
0
1,661,858,443,115
69
0
6,980
1,012,658,483,792,708,000
440
0
1,661,850,107,722
69
0
6,980
1,012,658,483,792,708,000
456
0
1,661,847,439,398
69
0
6,980
1,012,658,483,847,233,900
64
0
1,661,917,498,835
69
0
6,980
1,012,658,483,847,233,900
150
0
1,661,919,102,429
69
0
6,980
1,012,658,483,847,233,900
263
1
1,661,857,412,809
69
0
6,980
1,012,658,483,847,233,900
372
0
1,661,910,390,573
69
0
6,980
1,012,658,483,847,233,900
422
1
1,661,871,344,357
69
0
6,980
1,012,658,483,847,233,900
440
0
1,661,850,243,657
69
0
6,980
1,012,658,483,847,233,900
456
0
1,661,847,362,921
69
0
6,980
1,012,658,483,956,285,400
64
0
1,661,917,137,609
69
0
6,980
1,012,658,483,956,285,400
150
1
1,661,871,351,302
69
0
6,980
1,012,658,483,956,285,400
263
0
1,661,858,542,514
69
0
6,980
1,012,658,483,956,285,400
372
0
1,661,910,557,928
69
0
6,980
1,012,658,483,956,285,400
375
0
1,661,931,490,337
69
0

πŸ§‘β€πŸ€β€πŸ§‘ NetEaseCrowd: A Dataset for Long-term and Online Crowdsourcing Truth Inference

View it in GitHub

Introduction

We introduce NetEaseCrowd, a large-scale crowdsourcing annotation dataset based on a mature Chinese data crowdsourcing platform of NetEase Inc.. NetEaseCrowd dataset contains about 2,400 workers, 1,000,000 tasks, and 6,000,000 annotations between them, where the annotations are collected in about 6 months. In this dataset, we provide ground truths for all the tasks and record timestamps for all the annotations.

Task

NetEaseCrowd dataset is built based on a gesture comparison task. Each task contains three choices, where two are similar gestures and the other one is not. Annotators are required to pick out the different one.

Comparison with existing datasets

Compared with the existing crowdsourcing datasets, our NetEaseCrowd dataset has the following characteristics:

Characteristic Existing datasets NetEaseCrowd dataset
Scalability Relatively small sizes in #workers/tasks/annotations Lage-scale data collection with 6 millions of annotations
Timestamps Short-term data with no timestamps recorded Complete timestamps recorded during a 6-month timespan
Task Type Single type of tasks Various task types with different required capabilities

Dataset Statistics

The basic statistics of NetEaseCrowd dataset and other previous datasets are as follows:

Dataset #Worker #Task #Groundtruth #Anno Avg(#Anno/worker) Avg(#Anno/task) Timestamp Task type
NetEaseCrowd 2,413 999,799 999,799 6,016,319 2,493.3 6.0 βœ”οΈŽ Multiple
Adult 825 11,040 333 92,721 112.4 8.4 ✘ Single
Birds 39 108 108 4,212 108.0 39.0 ✘ Single
Dog 109 807 807 8,070 74.0 10.0 ✘ Single
CF 461 300 300 1,720 3.7 5.7 ✘ Single
CF_amt 110 300 300 6030 54.8 20.1 ✘ Single
Emotion 38 700 565 7,000 184.2 10.0 ✘ Single
Smile 64 2,134 159 30,319 473.7 14.2 ✘ Single
Face 27 584 584 5,242 194.1 9.0 ✘ Single
Fact 57 42,624 576 216,725 3802.2 5.1 ✘ Single
MS 44 700 700 2,945 66.9 4.2 ✘ Single
product 176 8,315 8,315 24,945 141.7 3.0 ✘ Single
RTE 164 800 800 8,000 48.8 10.0 ✘ Single
Sentiment 1,960 98,980 1,000 569,375 290.5 5.8 ✘ Single
SP 203 4,999 4,999 27,746 136.7 5.6 ✘ Single
SP_amt 143 500 500 10,000 69.9 20.0 ✘ Single
Trec 762 19,033 2,275 88,385 116.0 4.6 ✘ Single
Tweet 85 1,000 1,000 20,000 235.3 20.0 ✘ Single
Web 177 2,665 2,653 15,567 87.9 5.8 ✘ Single
ZenCrowd_us 74 2,040 2,040 12,190 164.7 6.0 ✘ Single
ZenCrowd_in 25 2,040 2,040 11,205 448.2 5.5 ✘ Single
ZenCrowd_all 78 2,040 2,040 21,855 280.2 10.7 ✘ Single

Data Content and Format

Obtain the data

Two ways to access the dataset:

  • Directly download overall NetEaseCrowd in Hugging Face [Recommended]

  • Under the data/ folder, the NetEaseCrowd dataset is provided in partitions in the csv file format. Each partition is named as NetEaseCrowd_part_x.csv. Concat them to get the entire NetEaseCrowd dataset.

Dataset format

In the dataset, each line of record represents an interaction between a worker and a task, with the following columns:

  • taskId: The unique id of the annotated task.
  • tasksetId: The unique id of the task set. Each task set contains unspecified number of tasks. Each task belongs to exactly one task set.
  • workerId: The unique id of the worker.
  • answer: The annotation given by the worker, which is an enumeric number starting from 0.
  • completeTime: The integer timestamp recording the completion time of the annotation.
  • truth: The groundtruth of the annotated task, which, in consistency with answer, is also an enumeric number starting from 0.
  • capability: The unique id of the capability required by the annotated taskset. Each taskset belongs to exactly one capability.

For the privacy concerns, all sensitive content like as -Ids, has been anonymized.

Data sample

tasksetId taskId workerId answer completeTime truth capability
6980 1012658482844795232 64 2 1661917345953 1 69
6980 1012658482844795232 150 1 1661871234755 1 69
6980 1012658482844795232 263 0 1661855450281 1 69

In the example above, there are three annotations, all from the same taskset 6980 and the same task 1012658482844795232. Three annotators, with ids 64, 150, and 263, provide annotations of 2, 1, and 0, respectively. They do the task at different time. The truth label for this task is 1, and the capability id of the task is 69.

Baseline Models

We test several existing truth inference methods in our dataset, and detailed analysis with more experimental setups can be found in our paper.

Method Accuracy F1-score
MV 0.92695 0.92692
DS 0.95178 0.94817
MACE 0.95991 0.94957
Wawa 0.94814 0.94445
ZeroBasedSkill 0.94898 0.94585
GLAD 0.95064 0.95058
EBCC 0.91071 0.90996
ZC 0.95305 0.95301
TiReMGE 0.92713 0.92706
LAA 0.94173 0.94169
BiLA 0.88036 0.87896

Test with the dataset directly from crowd-kit

The NetEaseCrowd dataset has been integrated into the crowd-kit (with pull request here), you can use it directly in your code with the following code(with crowd-kit version > 1.2.1):

from crowdkit.aggregation import DawidSkene
from crowdkit.datasets import load_dataset

df, gt = load_dataset('netease_crowd')

ds = DawidSkene(10)
result = ds.fit_predict(df)

print(len(result))
# 999799

Other public datasets

We provide a curated list for other public datasets towards truth inference task.

Dataset Name Resource
adult Quality management on amazon mechanical turk. [paper][data]
sentiment
fact
Workshops Held at the First AAAI Conference on Human Computation and Crowdsourcing: A Report. [paper][data]
MS
zencrowd_all
zencrowd_us
zencrowd_in
sp
sp_amt
cf
cf_amt
The active crowd toolkit: An open-source tool for benchmarking active learning algorithms for crowdsourcing research. [paper][data]
Product
tweet
dog
face
duck
relevance
smile
Truth inference in crowdsourcing: Is the problem solved? [paper][data]
Note that tweet dataset is called sentiment in this source. It is different from the sentiment dataset in CrowdScale2013.
bird
rte
web
trec
Spectral methods meet em: A provably optimal algorithm for crowdsourcing. [paper][data]

Citation

If you use this project in your research or work, please cite it using the following BibTeX entry:

@misc{wang2024dataset,
      title={A Dataset for the Validation of Truth Inference Algorithms Suitable for Online Deployment}, 
      author={Fei Wang and Haoyu Liu and Haoyang Bi and Xiangzhuang Shen and Renyu Zhu and Runze Wu and Minmin Lin and Tangjie Lv and Changjie Fan and Qi Liu and Zhenya Huang and Enhong Chen},
      year={2024},
      eprint={2403.08826},
      archivePrefix={arXiv},
      primaryClass={cs.HC}
}

License

The NetEaseCrowd dataset is licensed under CC-BY-SA-4.0.

Downloads last month
53