File size: 2,239 Bytes
6a26845 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
from __future__ import annotations
import json
from typing import Any, Generator
import datasets
_CITATION = ""
_DESCRIPTION = "These are datasets including the benchmark 'ja-vicuna-qa-benchmark.'"
_HOMEPAGE = "https://raw.githubusercontent.com/ku-nlp/ja-vicuna-qa-benchmark/main/data/jp_bench/question.jsonl"
_LICENSE = "This work is license under Apache-2.0 license"
_URL = "https://raw.githubusercontent.com/ku-nlp/ja-vicuna-qa-benchmark/main/data/jp_bench/question.jsonl"
_VERSION = "1.1.0"
class JaVicunaQaBenchmarkConfig(datasets.BuilderConfig):
def __init__(
self,
name: str = "default",
version: datasets.Version | str | None = datasets.Version(_VERSION),
data_dir: str | None = None,
data_files: datasets.data_files.DataFilesDict | None = None,
description: str | None = _DESCRIPTION,
) -> None:
super().__init__(
name=name,
version=version,
data_dir=data_dir,
data_files=data_files,
description=description,
)
class JaVicunaQaBenchmark(datasets.GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = JaVicunaQaBenchmarkConfig
def _info(self) -> datasets.DatasetInfo:
return datasets.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=datasets.Features(
{
"question_id": datasets.Value("int64"),
"category": datasets.Value("string"),
"turns": [datasets.Value("string")],
}
),
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> list[datasets.SplitGenerator]:
dataset_file = dl_manager.download_and_extract(_URL)
with open(dataset_file, "r", encoding="utf-8") as f:
data = [json.loads(line) for line in f]
return [
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"data": data}
),
]
def _generate_examples(self, data: list[dict[str, Any]]) -> Generator:
for i, d in enumerate(data):
yield i, d
|