File size: 8,907 Bytes
b0094bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os

import keras.layers
import librosa
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from jiwer import wer
from keras.src.applications.densenet import layers
from scipy.io import wavfile
import tensorflow as tf

data_path = r"D:\MyCode\Python\dataset\LJSpeech-1.1"
wave_path = data_path + "/wavs/"
metadata_path = data_path + '/metadata.csv'

metadata_df = pd.read_csv(metadata_path, sep="|", header=None, quoting=3)
metadata_df.columns = ["file_name", "transcription", "normalized_transcription"]
metadata_df = metadata_df[["file_name", "transcription", "normalized_transcription"]]
metadata_df = metadata_df.sample(frac=1).reset_index(drop=True)
print(metadata_df.head(10))

split = int(len(metadata_df) * 0.90)
df_train = metadata_df[:split]
df_test = metadata_df[split:]

frame_length = 256
frame_step = 160
fft_length = 384

batch_size = 32
epochs = 10

# preprocessing
characters = [x for x in "abcdefghijklmnopqrstuvwxyzăâêôơưđ'?! "]
char_to_num = keras.layers.StringLookup(vocabulary=characters, oov_token="")
num_to_char = keras.layers.StringLookup(vocabulary=char_to_num.get_vocabulary(), oov_token="", invert=True)


# def encode_single_sample(wav_file, label):
#     file = tf.io.read_file(wave_path, wav_file + ".wav")
#     audio, _ = tf.audio.decode_wav(file)
#     audio = tf.squeeze(audio, axis=-1)
#     audio = tf.cast(audio, tf.float32)
#
#     spectrogram = tf.signal.stft(audio, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length)
#     spectrogram = tf.abs(spectrogram)
#     spectrogram = tf.math.pow(spectrogram, 0.5)
#
#     mean = tf.math.reduce_mean(spectrogram, 1, keepdims=True)
#     stddevs = tf.math.reduce_std(spectrogram, 1, keepdims=True)
#     spectrogram = (spectrogram - mean) / (stddevs + 1e-10)
#
#     label = tf.strings.lower(label)
#     label = tf.strings.unicode_split(label, input_encoding='UTF-8')
#     label = char_to_num(label)
#     return spectrogram, label


def encode_single_sample(wav_file, label):
    # Tạo đường dẫn file âm thanh
    file_path = tf.strings.join([wave_path, wav_file, ".wav"], separator="")

    # Đọc file âm thanh
    file = tf.io.read_file(file_path)
    audio, _ = tf.audio.decode_wav(file)
    audio = tf.squeeze(audio, axis=-1)
    audio = tf.cast(audio, tf.float32)

    # Tính toán spectrogram
    spectrogram = tf.signal.stft(audio, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length)
    spectrogram = tf.abs(spectrogram)
    spectrogram = tf.math.pow(spectrogram, 0.5)

    # Chuẩn hóa
    mean = tf.math.reduce_mean(spectrogram, axis=1, keepdims=True)
    stddevs = tf.math.reduce_std(spectrogram, axis=1, keepdims=True)
    spectrogram = (spectrogram - mean) / (stddevs + 1e-10)

    # Thêm chiều cho "channels"
    spectrogram = tf.expand_dims(spectrogram, axis=-1)  # Giữ nguyên
    spectrogram = tf.expand_dims(spectrogram, axis=0)  # Thêm chiều batch

    # Xử lý nhãn
    label = tf.strings.lower(label)
    label = tf.strings.unicode_split(label, input_encoding='UTF-8')
    label = char_to_num(label)
    return spectrogram, label


train_dataset = tf.data.Dataset.from_tensor_slices((
    list(df_train["file_name"]),
    list(df_train["normalized_transcription"])
))

train_dataset = (
    train_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE)
    .padded_batch(batch_size)
    .prefetch(buffer_size=tf.data.AUTOTUNE)
)

# Tạo dataset cho validation
validation_dataset = tf.data.Dataset.from_tensor_slices((
    list(df_test["file_name"]),
    list(df_test["normalized_transcription"])
))

validation_dataset = (
    validation_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE)
    .padded_batch(batch_size)
    .prefetch(buffer_size=tf.data.AUTOTUNE)
)

for batch in train_dataset.take(1):
    spectrogram = batch[0][0].numpy()  # Lấy spectrogram từ batch

    # Kiểm tra kích thước
    if spectrogram.ndim == 4:  # Nếu là mảng 4D, loại bỏ chiều batch
        spectrogram = tf.squeeze(spectrogram, axis=0)

    # Kiểm tra lại nếu là mảng 3D
    if spectrogram.ndim == 3:  # Nếu vẫn là mảng 3D, chuyển đổi về mảng 2D
        spectrogram = np.squeeze(spectrogram, axis=-1)  # Chuyển đổi về mảng 2D

    # Áp dụng np.trim_zeros cho từng hàng
    trimmed_spectrogram = [np.trim_zeros(x) for x in spectrogram.T]  # Chuyển vị và trim

    # Chuyển đổi về numpy array 2D nếu cần
    max_length = max(len(x) for x in trimmed_spectrogram)  # Tìm chiều dài tối đa
    trimmed_spectrogram = np.array([np.pad(x, (0, max_length - len(x)), mode='constant') for x in trimmed_spectrogram])


def CTCLoss(y_true, y_pred):
    batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64")
    input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64")
    label_length = tf.cast(tf.shape(y_true)[1], dtype="int64")

    input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64")
    label_length = label_length * tf.ones(shape=(batch_len, 1), dtype="int64")

    loss = keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length)
    return loss


def build_model(input_dim, output_dim, rnn_layer=5, rnn_units=128):
    input_spectrogram = layers.Input(shape=(None, input_dim), name="input")

    x = layers.Reshape((-1, input_dim, 1), name="expand_dim")(input_spectrogram)

    # Lớp Convolutional 1
    x = layers.Conv2D(filters=32, kernel_size=[11, 41], strides=[2, 2],
                      padding="same", use_bias=False, name="conv_1")(x)
    x = layers.BatchNormalization(name="bn_conv_1")(x)  # Đổi tên lớp này
    x = layers.ReLU(name="relu_1")(x)

    # Lớp Convolutional 2
    x = layers.Conv2D(filters=32, kernel_size=[11, 21], strides=[1, 2],
                      padding="same", use_bias=False, name="conv_2")(x)
    x = layers.BatchNormalization(name="bn_conv_2")(x)  # Đổi tên lớp này

    x = layers.ReLU(name="relu_2")(x)

    # Reshape để sử dụng với RNN
    x = layers.Reshape((-1, x.shape[-2] * x.shape[-1]))(x)

    for i in range(1, rnn_layer + 1):
        recurrent = layers.GRU(
            units=rnn_units,
            activation="tanh",
            recurrent_activation="sigmoid",
            use_bias=True,
            return_sequences=True,
            reset_after=True,
            name=f"gru_{i}",
        )
        # Các lớp Recurrent
        x = layers.Bidirectional(
            recurrent, name=f"bidirectional_{i}", merge_mode="concat",
        )(x)
        if i < rnn_layer:
            x = layers.Dropout(rate=0.5)(x)

    x = layers.Dense(units=rnn_units * 2, name="dense_1")(x)
    x = layers.ReLU(name="relu_3")(x)
    x = layers.Dropout(rate=0.5)(x)

    output = layers.Dense(units=output_dim + 1, activation="softmax")(x)
    model = keras.Model(input_spectrogram, output, name="DeepSpeech_2")
    otp = keras.optimizers.Adam(learning_rate=1e-4)
    model.compile(optimizer=otp, loss=CTCLoss)

    return model


model = build_model(
    input_dim=fft_length // 2 + 1,
    output_dim=char_to_num.vocab_size(),
    rnn_units=512,
)
model.summary()


def decode_batch_predictions(pred):
    input_len = np.ones(pred.shape[0]) * pred.shape[1]
    results = keras.backend.ctc_decode(pred, input_len=input_len, greedy=True)[0][0]
    output_texts = []
    for result in results:
        result = tf.strings.reduce_join(num_to_char(result)).numpy().decode('utf-8')
        output_texts.append(result)
    return output_texts


class CallbackEval(keras.callbacks.Callback):
    def __init__(self, dataset):
        super().__init__()
        self.dataset = dataset

    def on_epoch_end(self, epoch, logs=None):
        prediction = []
        targets = []
        for batch in self.dataset:
            X, y = batch
            batch_predictions = model.predict(X)
            batch_predictions = decode_batch_predictions(batch_predictions)
            prediction.extend(batch_predictions)
            for label in y:
                label = (tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8"))
                targets.append(label)
        wer_score = wer(targets, prediction)
        print(f"WER: {wer_score:.4f}")
        for i in np.random.randint(0, len(prediction), 2):
            print(f"Target: {targets[i]}")
            print(f"Prediction: {prediction[i]}")


validation_callback = CallbackEval(validation_dataset)
history = model.fit(
    train_dataset,
    validation_data=validation_dataset,
    epochs=epochs,
    callbacks=[validation_callback],
)
model.save(r'D:\MyCode\Python\pythonProject\SavedModed\model_stt.h5')