Datasets:
Tasks:
Text2Text Generation
Modalities:
Text
Languages:
code
Size:
1K - 10K
ArXiv:
Tags:
code-generation
License:
annotations_creators: | |
- expert-generated | |
language_creators: | |
- expert-generated | |
language: | |
- code | |
license: | |
- mit | |
multilinguality: | |
- monolingual | |
source_datasets: | |
- original | |
task_categories: | |
- text2text-generation | |
task_ids: [] | |
pretty_name: OpenAI HumanEval-Infilling | |
tags: | |
- code-generation | |
# HumanEval-Infilling | |
## Dataset Description | |
- **Repository:** https://github.com/openai/human-eval-infilling | |
- **Paper:** https://arxiv.org/pdf/2207.14255 | |
## Dataset Summary | |
[HumanEval-Infilling](https://github.com/openai/human-eval-infilling) is a benchmark for infilling tasks, derived from [HumanEval](https://huggingface.co/datasets/openai_humaneval) benchmark for the evaluation of code generation models. | |
## Dataset Structure | |
To load the dataset you need to specify a subset. By default `HumanEval-SingleLineInfilling` is loaded. | |
```python | |
from datasets import load_dataset | |
ds = load_dataset("humaneval_infilling", "HumanEval-RandomSpanInfilling") | |
DatasetDict({ | |
test: Dataset({ | |
features: ['task_id', 'entry_point', 'prompt', 'suffix', 'canonical_solution', 'test'], | |
num_rows: 1640 | |
}) | |
}) | |
``` | |
## Subsets | |
This dataset has 4 subsets: HumanEval-MultiLineInfilling, HumanEval-SingleLineInfilling, HumanEval-RandomSpanInfilling, HumanEval-RandomSpanInfillingLight. | |
The single-line, multi-line, random span infilling and its light version have 1033, 5815, 1640 and 164 tasks, respectively. | |
## Citation | |
``` | |
@article{bavarian2022efficient, | |
title={Efficient Training of Language Models to Fill in the Middle}, | |
author={Bavarian, Mohammad and Jun, Heewoo and Tezak, Nikolas and Schulman, John and McLeavey, Christine and Tworek, Jerry and Chen, Mark}, | |
journal={arXiv preprint arXiv:2207.14255}, | |
year={2022} | |
} | |
``` |