Datasets:
ltg
/

Modalities:
Tabular
Text
Formats:
parquet
Languages:
Norwegian
Libraries:
Datasets
pandas
License:
File size: 9,358 Bytes
fb0d8ee
ab7ebe9
fb0d8ee
3c4a57b
ab7ebe9
fb0d8ee
3c4a57b
ab7ebe9
3c4a57b
 
 
 
 
 
 
 
 
ab7ebe9
 
9b04ded
ab7ebe9
 
9b04ded
ab7ebe9
 
 
 
 
 
 
 
 
9b04ded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab7ebe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb9dbac
 
062aced
 
fb9dbac
9b04ded
 
 
062aced
 
 
 
 
fb9dbac
 
062aced
9b04ded
 
fb9dbac
 
 
 
9b04ded
fb9dbac
 
 
9b04ded
 
fb9dbac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b04ded
fb9dbac
9b04ded
 
 
 
 
 
 
 
 
 
 
fb9dbac
9b04ded
fb9dbac
d6cb6b9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
language:
- 'no'
license: cc
size_categories:
- 10K<n<100K
pretty_name: NoReC
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
dataset_info:
  language:
  - 'no'
  license: cc
  size_categories:
  - 10K<n<100K
  pretty_name: NoReC
  configs:
  - config_name: default
    data_files:
    - split: train
      path: data/train-*
    - split: validation
      path: data/validation-*
    - split: test
      path: data/test-*
  dataset_info:
    features:
    - name: id
      dtype: string
    - name: split
      dtype: string
    - name: rating
      dtype: int64
    - name: category
      dtype: string
    - name: day
      dtype: int64
    - name: month
      dtype: int64
    - name: year
      dtype: int64
    - name: excerpt
      dtype: string
    - name: language
      dtype: string
    - name: source
      dtype: string
    - name: authors
      dtype: string
    - name: title
      dtype: string
    - name: url
      dtype: string
    - name: text
      dtype: string
    splits:
    - name: train
      num_bytes: 94334212
      num_examples: 34749
    - name: validation
      num_bytes: 13597517
      num_examples: 4348
    - name: test
      num_bytes: 13787751
      num_examples: 4340
    download_size: 77286913
    dataset_size: 121719480
  homepage: https://github.com/ltgoslo/norec
  citation: |-
    @InProceedings{VelOvrBer18,
      author = {Erik Velldal and Lilja {\O}vrelid and 
                Eivind Alexander Bergem and  Cathrine Stadsnes and 
                Samia Touileb and Fredrik J{\o}rgensen},
      title = {{NoReC}: The {N}orwegian {R}eview {C}orpus},
      booktitle = {Proceedings of the 11th edition of the 
                   Language Resources and Evaluation Conference},
      year = {2018},
      address = {Miyazaki, Japan},
      pages = {4186--4191}
    }
    }
task_categories:
- text-classification
---
# NoReC: The Norwegian Review Corpus
This is the official repository for the Norwegian Review Corpus (NoReC, ver. 2.1), created for the purpose of training and evaluating models for document-level sentiment analysis. 
More than 43,000 full-text reviews have been collected from major Norwegian news sources and cover a range of different domains, including literature, movies, video games, restaurants, music and theater, in addition to product reviews across a range of categories. Each review is labeled with a manually assigned score of 1–6, as provided by the rating of the original author. The accompanying [paper](http://www.lrec-conf.org/proceedings/lrec2018/pdf/851.pdf) by Velldal et al. at LREC 2018 describes the initial (ver. 1) release of the data in more detail. 

## Dataset details
- **The columns are:**
`id, split, rating, category, day, month, year, excerpt, language, source, authors, title, url, text` where basic usage has `text` as the input and `rating` as the output.
- **Curated by:** NoReC was created as part of the [SANT](https://www.mn.uio.no/ifi/english/research/projects/sant/) project (Sentiment Analysis for Norwegian Text), coordinated by the [Language Technology Group](https://www.mn.uio.no/ifi/english/research/groups/ltg/) (LTG) at the University of Oslo, in collaboration with the Norwegian Broadcasting Corporation (NRK), Schibsted Media Group and Aller Media.
- **Funded by:** The [SANT](https://www.mn.uio.no/ifi/english/research/projects/sant/) project is funded by the [Research Council of Norway](https://www.forskningsradet.no/en/) (NFR grant number 270908).
- **Shared by:** The [SANT](https://www.mn.uio.no/ifi/english/research/projects/sant/) project (Sentiment Analysis for Norwegian Text) at the [Language Technology Group](https://www.mn.uio.no/ifi/english/research/groups/ltg/) (LTG) at the University of Oslo
- **Language(s) (NLP):** Norwegian Bokmål (nb) and Norwegian Nynorsk (nn))
- **License:** The data is distributed under a Creative Commons Attribution-NonCommercial licence (CC BY-NC 4.0), access the full license text here: https://creativecommons.org/licenses/by-nc/4.0/
The licence is motivated by the need to block the possibility of third parties redistributing the orignal reviews for commercial purposes. 
Note that **machine learned models**, extracted **lexicons**, **embeddings**, and similar resources that are created on the basis of NoReC are not considered to contain the original data and so **can be freely used also for commercial purposes** despite the non-commercial condition. 
- **Dataset Sources** This version of the corpus (v.2.1) comprises 43,436 review texts extracted from eight different news sources: Dagbladet, VG, Aftenposten, Bergens Tidende, Fædrelandsvennen, Stavanger Aftenblad, DinSide.no and P3.no.
- **Repository:** https://github.com/ltgoslo/norec
- **Paper :**  [The accompanying paper by Velldal et al. at LREC 2018](http://www.lrec-conf.org/proceedings/lrec2018/pdf/851.pdf) describes the (initial release of the) data in more detail.


## Uses

The dataset is intended for document-level sentiment analysis, to learn to predict the `rating` from the `text`. The field `category` can be considered the "domain" of each text. By filtering in and out `category` values, one may inspect cross-domain performance of a model. The other fields contain metadata preserved from the original version of the dataset, and may be used for further filtering and analyses.


## Source Data
This _2nd release, v.2.1_ of the corpus comprises 43,436 review texts extracted from eight different news sources: Dagbladet (db), VG (vg), Aftenposten (ap), Bergens Tidende (bt), Fædrelandsvennen (fvn), Stavanger Aftenblad (sa), DinSide.no (dinside) and P3.no (p3).  

In terms of publishing date the reviews mainly cover the time span 2003–2019, although it also includes a handful of reviews dating back as far as 1998.


# Some statistics
## Distribution over year and publication source
All splits combined

|   year |   ap |   bt |   db        |   dinside |   fvn |   p3 |   sa |   vg |   Total |
|-------:|-----:|-----:|------------:|----------:|------:|-----:|-----:|-----:|--------:|
|  2003* |    0 |    4 |           0 |       143 |     0 |   25 |    0 |  286 |     458 |
|   2004 |    0 |   44 |           0 |       142 |     0 |   12 |   19 |  984 |    1201 |
|   2005 |    0 |    0 |           0 |       179 |     0 |    6 |  224 |  909 |    1318 |
|   2006 |    0 |    0 |           0 |       240 |     0 |   11 |  294 |  778 |    1323 |
|   2007 |    0 |    0 |           0 |       139 |     0 |  127 |  400 |  725 |    1391 |
|   2008 |    0 |    0 |           0 |       119 |     0 |  216 |  369 |  739 |    1443 |
|   2009 |    0 |   52 |         377 |       163 |    27 |  428 |  259 |  815 |    2121 |
|   2010 |    0 |  100 |         642 |       260 |   156 |  571 |  309 |  769 |    2807 |
|   2011 |    1 |   51 |         592 |       284 |   146 |  652 |  362 |  900 |    2988 |
|   2012 |    2 |  150 |         613 |       257 |   332 |  611 |  561 |  763 |    3289 |
|   2013 |    4 |  160 |         527 |       216 |   213 |  619 |  433 | 1058 |    3230 |
|   2014 |   39 |  291 |         501 |       236 |   357 |  546 |  387 | 1191 |    3548 |
|   2015 |  249 |  235 |         728 |       245 |   456 |  499 |  620 |  849 |    3881 |
|   2016 |  309 |  340 |         809 |       177 |   321 |  439 |  682 |  715 |    3792 |
|   2017 |  649 |  491 |         921 |       248 |   692 |  567 |  822 |  687 |    5077 |
|   2018 |  605 |  470 |         885 |       194 |   466 |  339 |  860 |  492 |    4311 |
|   2019 |  260 |  167 |          95 |        30 |   160 |   36 |  346 |  165 |    1259 |

`2003*`: Including the 31 documents 1998-2002

## Distribution over split and rating 

| split   |   1 |    2 |    3 |     4 |     5 |    6 |   Total |
|:--------|----:|-----:|-----:|------:|------:|-----:|--------:|
| dev     |  51 |  225 |  707 |  1409 |  1678 |  278 |    4348 |
| test    |  27 |  242 |  706 |  1385 |  1714 |  266 |    4340 |
| train   | 379 | 2287 | 6004 | 11304 | 12614 | 2161 |   34749 |

## Distribution over split and category
| split   |   games |   literature |   misc |   music |   products |   restaurants |   screen |   sports |   stage |   Total |
|:--------|--------:|-------------:|-------:|--------:|-----------:|--------------:|---------:|---------:|--------:|--------:|
| dev     |     179 |          539 |     28 |    1445 |        347 |            94 |     1569 |       15 |     132 |    4348 |
| test    |     180 |          547 |     24 |    1444 |        345 |            98 |     1579 |       16 |     107 |    4340 |
| train   |    1453 |         4337 |    156 |   11777 |       2771 |           745 |    12536 |      118 |     856 |   34749 |




## Citation

```
@InProceedings{VelOvrBer18,
  author = {Erik Velldal and Lilja {\O}vrelid and Eivind Alexander Bergem and  Cathrine Stadsnes and Samia Touileb and Fredrik J{\o}rgensen},
  title = {{NoReC}: The {N}orwegian {R}eview {C}orpus},
  booktitle = {Proceedings of the 11th edition of the 
               Language Resources and Evaluation Conference},
  year = {2018},
  address = {Miyazaki, Japan},
  pages = {4186--4191}
}
```

## Dataset Card Authors

Vladislav Mikhailov and Erik Velldal

## Dataset Card Contact

[email protected] and [email protected]