prompt
stringlengths
94
42.6k
completion
stringlengths
6
120
api
stringlengths
14
68
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 infer(calculate_scale, valid_queue, args) # quantized model = quantize(model) # eval quantized model def eval_func(image, label): model.eval() logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if
dist.is_distributed()
megengine.distributed.is_distributed
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 infer(calculate_scale, valid_queue, args) # quantized model = quantize(model) # eval quantized model def eval_func(image, label): model.eval() logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 _, valid_acc, valid_acc5 = infer(eval_func, valid_queue, args) logger.info("TEST %f, %f", valid_acc, valid_acc5) # save quantized model mge.save( {"step": -1, "state_dict": model.state_dict()}, os.path.join(save_dir, "checkpoint-calibration.pkl"), ) logger.info( "save in {}".format(os.path.join(save_dir, "checkpoint-calibration.pkl")) ) def infer(model, data_queue, args): objs = AverageMeter("Loss") top1 = AverageMeter("Acc@1") top5 = AverageMeter("Acc@5") total_time = AverageMeter("Time") t = time.time() for step, (image, label) in enumerate(data_queue): n = image.shape[0] image =
mge.tensor(image, dtype="float32")
megengine.tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 infer(calculate_scale, valid_queue, args) # quantized model = quantize(model) # eval quantized model def eval_func(image, label): model.eval() logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 _, valid_acc, valid_acc5 = infer(eval_func, valid_queue, args) logger.info("TEST %f, %f", valid_acc, valid_acc5) # save quantized model mge.save( {"step": -1, "state_dict": model.state_dict()}, os.path.join(save_dir, "checkpoint-calibration.pkl"), ) logger.info( "save in {}".format(os.path.join(save_dir, "checkpoint-calibration.pkl")) ) def infer(model, data_queue, args): objs = AverageMeter("Loss") top1 = AverageMeter("Acc@1") top5 = AverageMeter("Acc@5") total_time = AverageMeter("Time") t = time.time() for step, (image, label) in enumerate(data_queue): n = image.shape[0] image = mge.tensor(image, dtype="float32") label =
mge.tensor(label, dtype="int32")
megengine.tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss =
dist.functional.all_reduce_sum(loss)
megengine.distributed.functional.all_reduce_sum
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) /
dist.get_world_size()
megengine.distributed.get_world_size
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 =
dist.functional.all_reduce_sum(acc1)
megengine.distributed.functional.all_reduce_sum
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) /
dist.get_world_size()
megengine.distributed.get_world_size
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 =
dist.functional.all_reduce_sum(acc5)
megengine.distributed.functional.all_reduce_sum
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) /
dist.get_world_size()
megengine.distributed.get_world_size
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 infer(calculate_scale, valid_queue, args) # quantized model = quantize(model) # eval quantized model def eval_func(image, label): model.eval() logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss =
dist.functional.all_reduce_sum(loss)
megengine.distributed.functional.all_reduce_sum
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 infer(calculate_scale, valid_queue, args) # quantized model = quantize(model) # eval quantized model def eval_func(image, label): model.eval() logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) /
dist.get_world_size()
megengine.distributed.get_world_size
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 infer(calculate_scale, valid_queue, args) # quantized model = quantize(model) # eval quantized model def eval_func(image, label): model.eval() logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 =
dist.functional.all_reduce_sum(acc1)
megengine.distributed.functional.all_reduce_sum
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 infer(calculate_scale, valid_queue, args) # quantized model = quantize(model) # eval quantized model def eval_func(image, label): model.eval() logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) /
dist.get_world_size()
megengine.distributed.get_world_size
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 infer(calculate_scale, valid_queue, args) # quantized model = quantize(model) # eval quantized model def eval_func(image, label): model.eval() logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 =
dist.functional.all_reduce_sum(acc5)
megengine.distributed.functional.all_reduce_sum
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 infer(calculate_scale, valid_queue, args) # quantized model = quantize(model) # eval quantized model def eval_func(image, label): model.eval() logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) /
dist.get_world_size()
megengine.distributed.get_world_size
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 infer(calculate_scale, valid_queue, args) # quantized model = quantize(model) # eval quantized model def eval_func(image, label): model.eval() logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 _, valid_acc, valid_acc5 = infer(eval_func, valid_queue, args) logger.info("TEST %f, %f", valid_acc, valid_acc5) # save quantized model mge.save( {"step": -1, "state_dict": model.state_dict()}, os.path.join(save_dir, "checkpoint-calibration.pkl"), ) logger.info( "save in {}".format(os.path.join(save_dir, "checkpoint-calibration.pkl")) ) def infer(model, data_queue, args): objs = AverageMeter("Loss") top1 = AverageMeter("Acc@1") top5 = AverageMeter("Acc@5") total_time = AverageMeter("Time") t = time.time() for step, (image, label) in enumerate(data_queue): n = image.shape[0] image = mge.tensor(image, dtype="float32") label = mge.tensor(label, dtype="int32") loss, acc1, acc5 = model(image, label) objs.update(loss.numpy()[0], n) top1.update(100 * acc1.numpy()[0], n) top5.update(100 * acc5.numpy()[0], n) total_time.update(time.time() - t) t = time.time() if step % args.report_freq == 0 and
dist.get_rank()
megengine.distributed.get_rank
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [
T.Resize(256)
megengine.data.transform.Resize
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256),
T.CenterCrop(224)
megengine.data.transform.CenterCrop
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224),
T.Normalize(mean=128)
megengine.data.transform.Normalize
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128),
T.ToMode("CHW")
megengine.data.transform.ToMode
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F import megengine.module as M import megengine.optimizer as optim class Net(M.Module): def __init__(self): super().__init__() self.conv1 =
M.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
megengine.module.Conv2d
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F import megengine.module as M import megengine.optimizer as optim class Net(M.Module): def __init__(self): super().__init__() self.conv1 = M.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 =
M.BatchNorm2d(64)
megengine.module.BatchNorm2d
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F import megengine.module as M import megengine.optimizer as optim class Net(M.Module): def __init__(self): super().__init__() self.conv1 = M.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = M.BatchNorm2d(64) self.avgpool =
M.AvgPool2d(kernel_size=5, stride=5, padding=0)
megengine.module.AvgPool2d
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F import megengine.module as M import megengine.optimizer as optim class Net(M.Module): def __init__(self): super().__init__() self.conv1 = M.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = M.BatchNorm2d(64) self.avgpool = M.AvgPool2d(kernel_size=5, stride=5, padding=0) self.fc =
M.Linear(64, 10)
megengine.module.Linear
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F import megengine.module as M import megengine.optimizer as optim class Net(M.Module): def __init__(self): super().__init__() self.conv1 = M.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = M.BatchNorm2d(64) self.avgpool = M.AvgPool2d(kernel_size=5, stride=5, padding=0) self.fc = M.Linear(64, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x =
F.relu(x)
megengine.functional.relu
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F import megengine.module as M import megengine.optimizer as optim class Net(M.Module): def __init__(self): super().__init__() self.conv1 = M.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = M.BatchNorm2d(64) self.avgpool = M.AvgPool2d(kernel_size=5, stride=5, padding=0) self.fc = M.Linear(64, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) x = self.avgpool(x) x =
F.avg_pool2d(x, 22)
megengine.functional.avg_pool2d
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F import megengine.module as M import megengine.optimizer as optim class Net(M.Module): def __init__(self): super().__init__() self.conv1 = M.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = M.BatchNorm2d(64) self.avgpool = M.AvgPool2d(kernel_size=5, stride=5, padding=0) self.fc = M.Linear(64, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) x = self.avgpool(x) x = F.avg_pool2d(x, 22) x =
F.flatten(x, 1)
megengine.functional.flatten
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F import megengine.module as M import megengine.optimizer as optim class Net(M.Module): def __init__(self): super().__init__() self.conv1 = M.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = M.BatchNorm2d(64) self.avgpool = M.AvgPool2d(kernel_size=5, stride=5, padding=0) self.fc = M.Linear(64, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) x = self.avgpool(x) x = F.avg_pool2d(x, 22) x = F.flatten(x, 1) x = self.fc(x) return x def save_grad_value(net): for param in net.parameters(): param.grad_backup = param.grad.numpy().copy() def test_clip_grad_norm(): net = Net() x = mge.tensor(np.random.randn(10, 3, 224, 224)) gm =
ad.GradManager()
megengine.autodiff.GradManager
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F import megengine.module as M import megengine.optimizer as optim class Net(M.Module): def __init__(self): super().__init__() self.conv1 = M.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = M.BatchNorm2d(64) self.avgpool = M.AvgPool2d(kernel_size=5, stride=5, padding=0) self.fc = M.Linear(64, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) x = self.avgpool(x) x = F.avg_pool2d(x, 22) x = F.flatten(x, 1) x = self.fc(x) return x def save_grad_value(net): for param in net.parameters(): param.grad_backup = param.grad.numpy().copy() def test_clip_grad_norm(): net = Net() x = mge.tensor(np.random.randn(10, 3, 224, 224)) gm = ad.GradManager().attach(net.parameters()) opt = optim.SGD(net.parameters(), 1e-3, momentum=0.9) with gm: loss = net(x).sum() gm.backward(loss) save_grad_value(net) max_norm = 1.0 original_norm = optim.clip_grad_norm(net.parameters(), max_norm=max_norm, ord=2) scale = max_norm / original_norm for param in net.parameters(): np.testing.assert_almost_equal(param.grad.numpy(), param.grad_backup * scale) opt.step().clear_grad() def test_clip_grad_value(): net = Net() x = np.random.randn(10, 3, 224, 224).astype("float32") gm =
ad.GradManager()
megengine.autodiff.GradManager
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F import megengine.module as M import megengine.optimizer as optim class Net(M.Module): def __init__(self): super().__init__() self.conv1 = M.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = M.BatchNorm2d(64) self.avgpool = M.AvgPool2d(kernel_size=5, stride=5, padding=0) self.fc = M.Linear(64, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) x = self.avgpool(x) x = F.avg_pool2d(x, 22) x = F.flatten(x, 1) x = self.fc(x) return x def save_grad_value(net): for param in net.parameters(): param.grad_backup = param.grad.numpy().copy() def test_clip_grad_norm(): net = Net() x = mge.tensor(np.random.randn(10, 3, 224, 224)) gm = ad.GradManager().attach(net.parameters()) opt = optim.SGD(net.parameters(), 1e-3, momentum=0.9) with gm: loss = net(x).sum() gm.backward(loss) save_grad_value(net) max_norm = 1.0 original_norm = optim.clip_grad_norm(net.parameters(), max_norm=max_norm, ord=2) scale = max_norm / original_norm for param in net.parameters(): np.testing.assert_almost_equal(param.grad.numpy(), param.grad_backup * scale) opt.step().clear_grad() def test_clip_grad_value(): net = Net() x = np.random.randn(10, 3, 224, 224).astype("float32") gm = ad.GradManager().attach(net.parameters()) opt = optim.SGD(net.parameters(), 1e-3, momentum=0.9) with gm: y = net(
mge.tensor(x)
megengine.tensor
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 =
M.Conv2d(1, 6, 5)
megengine.module.Conv2d
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 =
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 =
M.MaxPool2d(2, 2)
megengine.module.MaxPool2d
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 =
M.Conv2d(6, 16, 5)
megengine.module.Conv2d
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 =
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 =
M.MaxPool2d(2, 2)
megengine.module.MaxPool2d
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 =
M.Linear(16 * 5 * 5, 120)
megengine.module.Linear
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 =
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 =
M.Linear(120, 84)
megengine.module.Linear
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 =
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier =
M.Linear(84, 10)
megengine.module.Linear
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier = M.Linear(84, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) # F.flatten reshape the tensor x with (N, C, H, W) into shape of (N, C*H*W) # i.e., x = x.reshape(x.shape[0], -1) # x.shape: (256, 16, 5, 5) x =
F.flatten(x, 1)
megengine.functional.flatten
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier = M.Linear(84, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) # F.flatten reshape the tensor x with (N, C, H, W) into shape of (N, C*H*W) # i.e., x = x.reshape(x.shape[0], -1) # x.shape: (256, 16, 5, 5) x = F.flatten(x, 1) # x.shape: (256, 400) x = self.relu3(self.fc1(x)) x = self.relu4(self.fc2(x)) x = self.classifier(x) return x class LeNet224x224(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool self.conv1 =
M.Conv2d(1, 6, 5)
megengine.module.Conv2d
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier = M.Linear(84, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) # F.flatten reshape the tensor x with (N, C, H, W) into shape of (N, C*H*W) # i.e., x = x.reshape(x.shape[0], -1) # x.shape: (256, 16, 5, 5) x = F.flatten(x, 1) # x.shape: (256, 400) x = self.relu3(self.fc1(x)) x = self.relu4(self.fc2(x)) x = self.classifier(x) return x class LeNet224x224(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool self.conv1 = M.Conv2d(1, 6, 5) self.relu1 =
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier = M.Linear(84, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) # F.flatten reshape the tensor x with (N, C, H, W) into shape of (N, C*H*W) # i.e., x = x.reshape(x.shape[0], -1) # x.shape: (256, 16, 5, 5) x = F.flatten(x, 1) # x.shape: (256, 400) x = self.relu3(self.fc1(x)) x = self.relu4(self.fc2(x)) x = self.classifier(x) return x class LeNet224x224(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() self.pool1 =
M.MaxPool2d(2, 2)
megengine.module.MaxPool2d
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier = M.Linear(84, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) # F.flatten reshape the tensor x with (N, C, H, W) into shape of (N, C*H*W) # i.e., x = x.reshape(x.shape[0], -1) # x.shape: (256, 16, 5, 5) x = F.flatten(x, 1) # x.shape: (256, 400) x = self.relu3(self.fc1(x)) x = self.relu4(self.fc2(x)) x = self.classifier(x) return x class LeNet224x224(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() self.pool1 = M.MaxPool2d(2, 2) self.conv2 =
M.Conv2d(6, 16, 5)
megengine.module.Conv2d
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier = M.Linear(84, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) # F.flatten reshape the tensor x with (N, C, H, W) into shape of (N, C*H*W) # i.e., x = x.reshape(x.shape[0], -1) # x.shape: (256, 16, 5, 5) x = F.flatten(x, 1) # x.shape: (256, 400) x = self.relu3(self.fc1(x)) x = self.relu4(self.fc2(x)) x = self.classifier(x) return x class LeNet224x224(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 =
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier = M.Linear(84, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) # F.flatten reshape the tensor x with (N, C, H, W) into shape of (N, C*H*W) # i.e., x = x.reshape(x.shape[0], -1) # x.shape: (256, 16, 5, 5) x = F.flatten(x, 1) # x.shape: (256, 400) x = self.relu3(self.fc1(x)) x = self.relu4(self.fc2(x)) x = self.classifier(x) return x class LeNet224x224(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 =
M.MaxPool2d(2, 2)
megengine.module.MaxPool2d
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier = M.Linear(84, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) # F.flatten reshape the tensor x with (N, C, H, W) into shape of (N, C*H*W) # i.e., x = x.reshape(x.shape[0], -1) # x.shape: (256, 16, 5, 5) x = F.flatten(x, 1) # x.shape: (256, 400) x = self.relu3(self.fc1(x)) x = self.relu4(self.fc2(x)) x = self.classifier(x) return x class LeNet224x224(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 =
M.Linear(16 * 53 * 53, 120)
megengine.module.Linear
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier = M.Linear(84, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) # F.flatten reshape the tensor x with (N, C, H, W) into shape of (N, C*H*W) # i.e., x = x.reshape(x.shape[0], -1) # x.shape: (256, 16, 5, 5) x = F.flatten(x, 1) # x.shape: (256, 400) x = self.relu3(self.fc1(x)) x = self.relu4(self.fc2(x)) x = self.classifier(x) return x class LeNet224x224(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 53 * 53, 120) self.relu3 =
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier = M.Linear(84, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) # F.flatten reshape the tensor x with (N, C, H, W) into shape of (N, C*H*W) # i.e., x = x.reshape(x.shape[0], -1) # x.shape: (256, 16, 5, 5) x = F.flatten(x, 1) # x.shape: (256, 400) x = self.relu3(self.fc1(x)) x = self.relu4(self.fc2(x)) x = self.classifier(x) return x class LeNet224x224(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 53 * 53, 120) self.relu3 = M.ReLU() self.fc2 =
M.Linear(120, 84)
megengine.module.Linear
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier = M.Linear(84, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) # F.flatten reshape the tensor x with (N, C, H, W) into shape of (N, C*H*W) # i.e., x = x.reshape(x.shape[0], -1) # x.shape: (256, 16, 5, 5) x = F.flatten(x, 1) # x.shape: (256, 400) x = self.relu3(self.fc1(x)) x = self.relu4(self.fc2(x)) x = self.classifier(x) return x class LeNet224x224(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 53 * 53, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 =
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier = M.Linear(84, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) # F.flatten reshape the tensor x with (N, C, H, W) into shape of (N, C*H*W) # i.e., x = x.reshape(x.shape[0], -1) # x.shape: (256, 16, 5, 5) x = F.flatten(x, 1) # x.shape: (256, 400) x = self.relu3(self.fc1(x)) x = self.relu4(self.fc2(x)) x = self.classifier(x) return x class LeNet224x224(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 53 * 53, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier =
M.Linear(84, 10)
megengine.module.Linear
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier = M.Linear(84, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) # F.flatten reshape the tensor x with (N, C, H, W) into shape of (N, C*H*W) # i.e., x = x.reshape(x.shape[0], -1) # x.shape: (256, 16, 5, 5) x = F.flatten(x, 1) # x.shape: (256, 400) x = self.relu3(self.fc1(x)) x = self.relu4(self.fc2(x)) x = self.classifier(x) return x class LeNet224x224(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 53 * 53, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier = M.Linear(84, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) # F.flatten(x, 1) reshape the tensor x with (N, C, H, W) along # the 1st dimension into shape of (N, C*H*W), # i.e., x = x.reshape(x.shape[0], -1) # x.shape: (256, 16, 53, 53) x =
F.flatten(x, 1)
megengine.functional.flatten
import megengine as mge import megengine.functional as F from megengine.core import Tensor def softmax_loss(pred, label, ignore_label=-1): max_pred = F.zero_grad(pred.max(axis=1, keepdims=True)) pred -= max_pred log_prob = pred - F.log(F.exp(pred).sum(axis=1, keepdims=True)) mask = 1 - F.equal(label, ignore_label) vlabel = label * mask loss = -(F.indexing_one_hot(log_prob, vlabel, 1) * mask) return loss def smooth_l1_loss(pred, target, beta: float): abs_x =
F.abs(pred - target)
megengine.functional.abs
import megengine as mge import megengine.functional as F from megengine.core import Tensor def softmax_loss(pred, label, ignore_label=-1): max_pred = F.zero_grad(pred.max(axis=1, keepdims=True)) pred -= max_pred log_prob = pred - F.log(F.exp(pred).sum(axis=1, keepdims=True)) mask = 1 -
F.equal(label, ignore_label)
megengine.functional.equal
import megengine as mge import megengine.functional as F from megengine.core import Tensor def softmax_loss(pred, label, ignore_label=-1): max_pred = F.zero_grad(pred.max(axis=1, keepdims=True)) pred -= max_pred log_prob = pred - F.log(F.exp(pred).sum(axis=1, keepdims=True)) mask = 1 - F.equal(label, ignore_label) vlabel = label * mask loss = -(
F.indexing_one_hot(log_prob, vlabel, 1)
megengine.functional.indexing_one_hot
import megengine as mge import megengine.functional as F from megengine.core import Tensor def softmax_loss(pred, label, ignore_label=-1): max_pred = F.zero_grad(pred.max(axis=1, keepdims=True)) pred -= max_pred log_prob = pred - F.log(
F.exp(pred)
megengine.functional.exp
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine import tensor from megengine.core.autodiff.grad import Grad from megengine.core.tensor.function import Function from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.fake_quant import TQT_Function from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import QuantMode, fake_quant_tensor class numpy_TQT_Function: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_TQT(): f =
TQT_Function(-127, 127)
megengine.quantization.fake_quant.TQT_Function
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine import tensor from megengine.core.autodiff.grad import Grad from megengine.core.tensor.function import Function from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.fake_quant import TQT_Function from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import QuantMode, fake_quant_tensor class numpy_TQT_Function: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_TQT(): f = TQT_Function(-127, 127) nf = numpy_TQT_Function(-127, 127) def check_inp(a, b, c, a_np, b_np, c_np): np.testing.assert_allclose( f.forward(a, b).numpy(), nf.forward(a_np, b_np).astype("float32"), rtol=1e-6, atol=1e-6, ) c1, c2 = f.backward(c) c1_np, c2_np = nf.backward(c_np) np.testing.assert_allclose(c1.numpy(), c1_np.astype("float32"), rtol=1e-6) np.testing.assert_allclose(c2.numpy(), c2_np.astype("float32"), rtol=5e-5) a_np = np.random.random((4, 3)).astype("float32") b_np = np.random.random((1)).astype("float32") a =
tensor(a_np)
megengine.tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine import tensor from megengine.core.autodiff.grad import Grad from megengine.core.tensor.function import Function from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.fake_quant import TQT_Function from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import QuantMode, fake_quant_tensor class numpy_TQT_Function: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_TQT(): f = TQT_Function(-127, 127) nf = numpy_TQT_Function(-127, 127) def check_inp(a, b, c, a_np, b_np, c_np): np.testing.assert_allclose( f.forward(a, b).numpy(), nf.forward(a_np, b_np).astype("float32"), rtol=1e-6, atol=1e-6, ) c1, c2 = f.backward(c) c1_np, c2_np = nf.backward(c_np) np.testing.assert_allclose(c1.numpy(), c1_np.astype("float32"), rtol=1e-6) np.testing.assert_allclose(c2.numpy(), c2_np.astype("float32"), rtol=5e-5) a_np = np.random.random((4, 3)).astype("float32") b_np = np.random.random((1)).astype("float32") a = tensor(a_np) b =
tensor(b_np)
megengine.tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine import tensor from megengine.core.autodiff.grad import Grad from megengine.core.tensor.function import Function from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.fake_quant import TQT_Function from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import QuantMode, fake_quant_tensor class numpy_TQT_Function: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_TQT(): f = TQT_Function(-127, 127) nf = numpy_TQT_Function(-127, 127) def check_inp(a, b, c, a_np, b_np, c_np): np.testing.assert_allclose( f.forward(a, b).numpy(), nf.forward(a_np, b_np).astype("float32"), rtol=1e-6, atol=1e-6, ) c1, c2 = f.backward(c) c1_np, c2_np = nf.backward(c_np) np.testing.assert_allclose(c1.numpy(), c1_np.astype("float32"), rtol=1e-6) np.testing.assert_allclose(c2.numpy(), c2_np.astype("float32"), rtol=5e-5) a_np = np.random.random((4, 3)).astype("float32") b_np = np.random.random((1)).astype("float32") a = tensor(a_np) b = tensor(b_np) check_inp(a, b, b, a_np, b_np, b_np) def _save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback class Round(Function): def forward(self, x): return F.round(x) def backward(self, output_grads): return output_grads def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax): oup = Round()(inp / scale) + zero_point oup = F.minimum(F.maximum(oup, qmin), qmax) oup = (oup - zero_point) * scale return oup def test_fakequant(): qmin = -126 qmax = 129 def run(zero_point, scale): q_dict = {} q_dict["mode"] = QuantMode.ASYMMERTIC q_dict["scale"] = scale q_dict["zero_point"] = zero_point inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32)) inp = tensor(inp_data, dtype=np.float32) # test forward oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy() oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy() assert np.allclose(oup, oup_gt) assert oup.shape == oup_gt.shape # test backward x = tensor(inp_data, dtype=np.float32) grad = Grad().wrt(x, callback=_save_to(x)) y = fake_quant_tensor(x, qmin, qmax, q_dict) grad(y, tensor(F.ones_like(x))) x1 = tensor(inp_data, dtype=np.float32) grad = Grad().wrt(x1, callback=_save_to(x1)) y1 = fake_quant_tensor_gt(x1, scale, zero_point, qmin, qmax) grad(y1, tensor(F.ones_like(x1))) assert np.allclose(x.grad.numpy(), x1.grad.numpy()) assert make_shape_tuple(x.grad.shape) == make_shape_tuple(x1.grad.shape) zero_point =
tensor([1.0], dtype=np.float32)
megengine.tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine import tensor from megengine.core.autodiff.grad import Grad from megengine.core.tensor.function import Function from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.fake_quant import TQT_Function from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import QuantMode, fake_quant_tensor class numpy_TQT_Function: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_TQT(): f = TQT_Function(-127, 127) nf = numpy_TQT_Function(-127, 127) def check_inp(a, b, c, a_np, b_np, c_np): np.testing.assert_allclose( f.forward(a, b).numpy(), nf.forward(a_np, b_np).astype("float32"), rtol=1e-6, atol=1e-6, ) c1, c2 = f.backward(c) c1_np, c2_np = nf.backward(c_np) np.testing.assert_allclose(c1.numpy(), c1_np.astype("float32"), rtol=1e-6) np.testing.assert_allclose(c2.numpy(), c2_np.astype("float32"), rtol=5e-5) a_np = np.random.random((4, 3)).astype("float32") b_np = np.random.random((1)).astype("float32") a = tensor(a_np) b = tensor(b_np) check_inp(a, b, b, a_np, b_np, b_np) def _save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback class Round(Function): def forward(self, x): return F.round(x) def backward(self, output_grads): return output_grads def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax): oup = Round()(inp / scale) + zero_point oup = F.minimum(F.maximum(oup, qmin), qmax) oup = (oup - zero_point) * scale return oup def test_fakequant(): qmin = -126 qmax = 129 def run(zero_point, scale): q_dict = {} q_dict["mode"] = QuantMode.ASYMMERTIC q_dict["scale"] = scale q_dict["zero_point"] = zero_point inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32)) inp = tensor(inp_data, dtype=np.float32) # test forward oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy() oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy() assert np.allclose(oup, oup_gt) assert oup.shape == oup_gt.shape # test backward x = tensor(inp_data, dtype=np.float32) grad = Grad().wrt(x, callback=_save_to(x)) y = fake_quant_tensor(x, qmin, qmax, q_dict) grad(y, tensor(F.ones_like(x))) x1 = tensor(inp_data, dtype=np.float32) grad = Grad().wrt(x1, callback=_save_to(x1)) y1 = fake_quant_tensor_gt(x1, scale, zero_point, qmin, qmax) grad(y1, tensor(F.ones_like(x1))) assert np.allclose(x.grad.numpy(), x1.grad.numpy()) assert make_shape_tuple(x.grad.shape) == make_shape_tuple(x1.grad.shape) zero_point = tensor([1.0], dtype=np.float32) scale =
tensor([4.0], dtype=np.float32)
megengine.tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine import tensor from megengine.core.autodiff.grad import Grad from megengine.core.tensor.function import Function from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.fake_quant import TQT_Function from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import QuantMode, fake_quant_tensor class numpy_TQT_Function: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_TQT(): f = TQT_Function(-127, 127) nf = numpy_TQT_Function(-127, 127) def check_inp(a, b, c, a_np, b_np, c_np): np.testing.assert_allclose( f.forward(a, b).numpy(), nf.forward(a_np, b_np).astype("float32"), rtol=1e-6, atol=1e-6, ) c1, c2 = f.backward(c) c1_np, c2_np = nf.backward(c_np) np.testing.assert_allclose(c1.numpy(), c1_np.astype("float32"), rtol=1e-6) np.testing.assert_allclose(c2.numpy(), c2_np.astype("float32"), rtol=5e-5) a_np = np.random.random((4, 3)).astype("float32") b_np = np.random.random((1)).astype("float32") a = tensor(a_np) b = tensor(b_np) check_inp(a, b, b, a_np, b_np, b_np) def _save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback class Round(Function): def forward(self, x): return F.round(x) def backward(self, output_grads): return output_grads def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax): oup = Round()(inp / scale) + zero_point oup = F.minimum(F.maximum(oup, qmin), qmax) oup = (oup - zero_point) * scale return oup def test_fakequant(): qmin = -126 qmax = 129 def run(zero_point, scale): q_dict = {} q_dict["mode"] = QuantMode.ASYMMERTIC q_dict["scale"] = scale q_dict["zero_point"] = zero_point inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32)) inp =
tensor(inp_data, dtype=np.float32)
megengine.tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine import tensor from megengine.core.autodiff.grad import Grad from megengine.core.tensor.function import Function from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.fake_quant import TQT_Function from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import QuantMode, fake_quant_tensor class numpy_TQT_Function: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_TQT(): f = TQT_Function(-127, 127) nf = numpy_TQT_Function(-127, 127) def check_inp(a, b, c, a_np, b_np, c_np): np.testing.assert_allclose( f.forward(a, b).numpy(), nf.forward(a_np, b_np).astype("float32"), rtol=1e-6, atol=1e-6, ) c1, c2 = f.backward(c) c1_np, c2_np = nf.backward(c_np) np.testing.assert_allclose(c1.numpy(), c1_np.astype("float32"), rtol=1e-6) np.testing.assert_allclose(c2.numpy(), c2_np.astype("float32"), rtol=5e-5) a_np = np.random.random((4, 3)).astype("float32") b_np = np.random.random((1)).astype("float32") a = tensor(a_np) b = tensor(b_np) check_inp(a, b, b, a_np, b_np, b_np) def _save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback class Round(Function): def forward(self, x): return F.round(x) def backward(self, output_grads): return output_grads def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax): oup = Round()(inp / scale) + zero_point oup = F.minimum(F.maximum(oup, qmin), qmax) oup = (oup - zero_point) * scale return oup def test_fakequant(): qmin = -126 qmax = 129 def run(zero_point, scale): q_dict = {} q_dict["mode"] = QuantMode.ASYMMERTIC q_dict["scale"] = scale q_dict["zero_point"] = zero_point inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32)) inp = tensor(inp_data, dtype=np.float32) # test forward oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy() oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy() assert np.allclose(oup, oup_gt) assert oup.shape == oup_gt.shape # test backward x =
tensor(inp_data, dtype=np.float32)
megengine.tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine import tensor from megengine.core.autodiff.grad import Grad from megengine.core.tensor.function import Function from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.fake_quant import TQT_Function from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import QuantMode, fake_quant_tensor class numpy_TQT_Function: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_TQT(): f = TQT_Function(-127, 127) nf = numpy_TQT_Function(-127, 127) def check_inp(a, b, c, a_np, b_np, c_np): np.testing.assert_allclose( f.forward(a, b).numpy(), nf.forward(a_np, b_np).astype("float32"), rtol=1e-6, atol=1e-6, ) c1, c2 = f.backward(c) c1_np, c2_np = nf.backward(c_np) np.testing.assert_allclose(c1.numpy(), c1_np.astype("float32"), rtol=1e-6) np.testing.assert_allclose(c2.numpy(), c2_np.astype("float32"), rtol=5e-5) a_np = np.random.random((4, 3)).astype("float32") b_np = np.random.random((1)).astype("float32") a = tensor(a_np) b = tensor(b_np) check_inp(a, b, b, a_np, b_np, b_np) def _save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback class Round(Function): def forward(self, x): return F.round(x) def backward(self, output_grads): return output_grads def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax): oup = Round()(inp / scale) + zero_point oup = F.minimum(F.maximum(oup, qmin), qmax) oup = (oup - zero_point) * scale return oup def test_fakequant(): qmin = -126 qmax = 129 def run(zero_point, scale): q_dict = {} q_dict["mode"] = QuantMode.ASYMMERTIC q_dict["scale"] = scale q_dict["zero_point"] = zero_point inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32)) inp = tensor(inp_data, dtype=np.float32) # test forward oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy() oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy() assert np.allclose(oup, oup_gt) assert oup.shape == oup_gt.shape # test backward x = tensor(inp_data, dtype=np.float32) grad = Grad().wrt(x, callback=_save_to(x)) y =
fake_quant_tensor(x, qmin, qmax, q_dict)
megengine.quantization.utils.fake_quant_tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine import tensor from megengine.core.autodiff.grad import Grad from megengine.core.tensor.function import Function from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.fake_quant import TQT_Function from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import QuantMode, fake_quant_tensor class numpy_TQT_Function: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_TQT(): f = TQT_Function(-127, 127) nf = numpy_TQT_Function(-127, 127) def check_inp(a, b, c, a_np, b_np, c_np): np.testing.assert_allclose( f.forward(a, b).numpy(), nf.forward(a_np, b_np).astype("float32"), rtol=1e-6, atol=1e-6, ) c1, c2 = f.backward(c) c1_np, c2_np = nf.backward(c_np) np.testing.assert_allclose(c1.numpy(), c1_np.astype("float32"), rtol=1e-6) np.testing.assert_allclose(c2.numpy(), c2_np.astype("float32"), rtol=5e-5) a_np = np.random.random((4, 3)).astype("float32") b_np = np.random.random((1)).astype("float32") a = tensor(a_np) b = tensor(b_np) check_inp(a, b, b, a_np, b_np, b_np) def _save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback class Round(Function): def forward(self, x): return F.round(x) def backward(self, output_grads): return output_grads def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax): oup = Round()(inp / scale) + zero_point oup = F.minimum(F.maximum(oup, qmin), qmax) oup = (oup - zero_point) * scale return oup def test_fakequant(): qmin = -126 qmax = 129 def run(zero_point, scale): q_dict = {} q_dict["mode"] = QuantMode.ASYMMERTIC q_dict["scale"] = scale q_dict["zero_point"] = zero_point inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32)) inp = tensor(inp_data, dtype=np.float32) # test forward oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy() oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy() assert np.allclose(oup, oup_gt) assert oup.shape == oup_gt.shape # test backward x = tensor(inp_data, dtype=np.float32) grad = Grad().wrt(x, callback=_save_to(x)) y = fake_quant_tensor(x, qmin, qmax, q_dict) grad(y, tensor(F.ones_like(x))) x1 =
tensor(inp_data, dtype=np.float32)
megengine.tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine import tensor from megengine.core.autodiff.grad import Grad from megengine.core.tensor.function import Function from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.fake_quant import TQT_Function from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import QuantMode, fake_quant_tensor class numpy_TQT_Function: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_TQT(): f = TQT_Function(-127, 127) nf = numpy_TQT_Function(-127, 127) def check_inp(a, b, c, a_np, b_np, c_np): np.testing.assert_allclose( f.forward(a, b).numpy(), nf.forward(a_np, b_np).astype("float32"), rtol=1e-6, atol=1e-6, ) c1, c2 = f.backward(c) c1_np, c2_np = nf.backward(c_np) np.testing.assert_allclose(c1.numpy(), c1_np.astype("float32"), rtol=1e-6) np.testing.assert_allclose(c2.numpy(), c2_np.astype("float32"), rtol=5e-5) a_np = np.random.random((4, 3)).astype("float32") b_np = np.random.random((1)).astype("float32") a = tensor(a_np) b = tensor(b_np) check_inp(a, b, b, a_np, b_np, b_np) def _save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback class Round(Function): def forward(self, x): return F.round(x) def backward(self, output_grads): return output_grads def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax): oup = Round()(inp / scale) + zero_point oup = F.minimum(F.maximum(oup, qmin), qmax) oup = (oup - zero_point) * scale return oup def test_fakequant(): qmin = -126 qmax = 129 def run(zero_point, scale): q_dict = {} q_dict["mode"] = QuantMode.ASYMMERTIC q_dict["scale"] = scale q_dict["zero_point"] = zero_point inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32)) inp = tensor(inp_data, dtype=np.float32) # test forward oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy() oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy() assert np.allclose(oup, oup_gt) assert oup.shape == oup_gt.shape # test backward x = tensor(inp_data, dtype=np.float32) grad = Grad().wrt(x, callback=_save_to(x)) y = fake_quant_tensor(x, qmin, qmax, q_dict) grad(y, tensor(F.ones_like(x))) x1 = tensor(inp_data, dtype=np.float32) grad = Grad().wrt(x1, callback=_save_to(x1)) y1 = fake_quant_tensor_gt(x1, scale, zero_point, qmin, qmax) grad(y1, tensor(F.ones_like(x1))) assert np.allclose(x.grad.numpy(), x1.grad.numpy()) assert
make_shape_tuple(x.grad.shape)
megengine.core.tensor.utils.make_shape_tuple
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine import tensor from megengine.core.autodiff.grad import Grad from megengine.core.tensor.function import Function from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.fake_quant import TQT_Function from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import QuantMode, fake_quant_tensor class numpy_TQT_Function: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_TQT(): f = TQT_Function(-127, 127) nf = numpy_TQT_Function(-127, 127) def check_inp(a, b, c, a_np, b_np, c_np): np.testing.assert_allclose( f.forward(a, b).numpy(), nf.forward(a_np, b_np).astype("float32"), rtol=1e-6, atol=1e-6, ) c1, c2 = f.backward(c) c1_np, c2_np = nf.backward(c_np) np.testing.assert_allclose(c1.numpy(), c1_np.astype("float32"), rtol=1e-6) np.testing.assert_allclose(c2.numpy(), c2_np.astype("float32"), rtol=5e-5) a_np = np.random.random((4, 3)).astype("float32") b_np = np.random.random((1)).astype("float32") a = tensor(a_np) b = tensor(b_np) check_inp(a, b, b, a_np, b_np, b_np) def _save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback class Round(Function): def forward(self, x): return F.round(x) def backward(self, output_grads): return output_grads def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax): oup = Round()(inp / scale) + zero_point oup = F.minimum(F.maximum(oup, qmin), qmax) oup = (oup - zero_point) * scale return oup def test_fakequant(): qmin = -126 qmax = 129 def run(zero_point, scale): q_dict = {} q_dict["mode"] = QuantMode.ASYMMERTIC q_dict["scale"] = scale q_dict["zero_point"] = zero_point inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32)) inp = tensor(inp_data, dtype=np.float32) # test forward oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy() oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy() assert np.allclose(oup, oup_gt) assert oup.shape == oup_gt.shape # test backward x = tensor(inp_data, dtype=np.float32) grad = Grad().wrt(x, callback=_save_to(x)) y = fake_quant_tensor(x, qmin, qmax, q_dict) grad(y, tensor(F.ones_like(x))) x1 = tensor(inp_data, dtype=np.float32) grad = Grad().wrt(x1, callback=_save_to(x1)) y1 = fake_quant_tensor_gt(x1, scale, zero_point, qmin, qmax) grad(y1, tensor(F.ones_like(x1))) assert np.allclose(x.grad.numpy(), x1.grad.numpy()) assert make_shape_tuple(x.grad.shape) ==
make_shape_tuple(x1.grad.shape)
megengine.core.tensor.utils.make_shape_tuple
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine import tensor from megengine.core.autodiff.grad import Grad from megengine.core.tensor.function import Function from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.fake_quant import TQT_Function from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import QuantMode, fake_quant_tensor class numpy_TQT_Function: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_TQT(): f = TQT_Function(-127, 127) nf = numpy_TQT_Function(-127, 127) def check_inp(a, b, c, a_np, b_np, c_np): np.testing.assert_allclose( f.forward(a, b).numpy(), nf.forward(a_np, b_np).astype("float32"), rtol=1e-6, atol=1e-6, ) c1, c2 = f.backward(c) c1_np, c2_np = nf.backward(c_np) np.testing.assert_allclose(c1.numpy(), c1_np.astype("float32"), rtol=1e-6) np.testing.assert_allclose(c2.numpy(), c2_np.astype("float32"), rtol=5e-5) a_np = np.random.random((4, 3)).astype("float32") b_np = np.random.random((1)).astype("float32") a = tensor(a_np) b = tensor(b_np) check_inp(a, b, b, a_np, b_np, b_np) def _save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback class Round(Function): def forward(self, x): return F.round(x) def backward(self, output_grads): return output_grads def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax): oup = Round()(inp / scale) + zero_point oup = F.minimum(F.maximum(oup, qmin), qmax) oup = (oup - zero_point) * scale return oup def test_fakequant(): qmin = -126 qmax = 129 def run(zero_point, scale): q_dict = {} q_dict["mode"] = QuantMode.ASYMMERTIC q_dict["scale"] = scale q_dict["zero_point"] = zero_point inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32)) inp = tensor(inp_data, dtype=np.float32) # test forward oup =
fake_quant_tensor(inp, qmin, qmax, q_dict)
megengine.quantization.utils.fake_quant_tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine import tensor from megengine.core.autodiff.grad import Grad from megengine.core.tensor.function import Function from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.fake_quant import TQT_Function from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import QuantMode, fake_quant_tensor class numpy_TQT_Function: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_TQT(): f = TQT_Function(-127, 127) nf = numpy_TQT_Function(-127, 127) def check_inp(a, b, c, a_np, b_np, c_np): np.testing.assert_allclose( f.forward(a, b).numpy(), nf.forward(a_np, b_np).astype("float32"), rtol=1e-6, atol=1e-6, ) c1, c2 = f.backward(c) c1_np, c2_np = nf.backward(c_np) np.testing.assert_allclose(c1.numpy(), c1_np.astype("float32"), rtol=1e-6) np.testing.assert_allclose(c2.numpy(), c2_np.astype("float32"), rtol=5e-5) a_np = np.random.random((4, 3)).astype("float32") b_np = np.random.random((1)).astype("float32") a = tensor(a_np) b = tensor(b_np) check_inp(a, b, b, a_np, b_np, b_np) def _save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback class Round(Function): def forward(self, x): return F.round(x) def backward(self, output_grads): return output_grads def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax): oup = Round()(inp / scale) + zero_point oup = F.minimum(F.maximum(oup, qmin), qmax) oup = (oup - zero_point) * scale return oup def test_fakequant(): qmin = -126 qmax = 129 def run(zero_point, scale): q_dict = {} q_dict["mode"] = QuantMode.ASYMMERTIC q_dict["scale"] = scale q_dict["zero_point"] = zero_point inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32)) inp = tensor(inp_data, dtype=np.float32) # test forward oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy() oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy() assert np.allclose(oup, oup_gt) assert oup.shape == oup_gt.shape # test backward x = tensor(inp_data, dtype=np.float32) grad =
Grad()
megengine.core.autodiff.grad.Grad
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine import tensor from megengine.core.autodiff.grad import Grad from megengine.core.tensor.function import Function from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.fake_quant import TQT_Function from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import QuantMode, fake_quant_tensor class numpy_TQT_Function: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_TQT(): f = TQT_Function(-127, 127) nf = numpy_TQT_Function(-127, 127) def check_inp(a, b, c, a_np, b_np, c_np): np.testing.assert_allclose( f.forward(a, b).numpy(), nf.forward(a_np, b_np).astype("float32"), rtol=1e-6, atol=1e-6, ) c1, c2 = f.backward(c) c1_np, c2_np = nf.backward(c_np) np.testing.assert_allclose(c1.numpy(), c1_np.astype("float32"), rtol=1e-6) np.testing.assert_allclose(c2.numpy(), c2_np.astype("float32"), rtol=5e-5) a_np = np.random.random((4, 3)).astype("float32") b_np = np.random.random((1)).astype("float32") a = tensor(a_np) b = tensor(b_np) check_inp(a, b, b, a_np, b_np, b_np) def _save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback class Round(Function): def forward(self, x): return F.round(x) def backward(self, output_grads): return output_grads def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax): oup = Round()(inp / scale) + zero_point oup = F.minimum(F.maximum(oup, qmin), qmax) oup = (oup - zero_point) * scale return oup def test_fakequant(): qmin = -126 qmax = 129 def run(zero_point, scale): q_dict = {} q_dict["mode"] = QuantMode.ASYMMERTIC q_dict["scale"] = scale q_dict["zero_point"] = zero_point inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32)) inp = tensor(inp_data, dtype=np.float32) # test forward oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy() oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy() assert np.allclose(oup, oup_gt) assert oup.shape == oup_gt.shape # test backward x = tensor(inp_data, dtype=np.float32) grad = Grad().wrt(x, callback=_save_to(x)) y = fake_quant_tensor(x, qmin, qmax, q_dict) grad(y, tensor(F.ones_like(x))) x1 = tensor(inp_data, dtype=np.float32) grad =
Grad()
megengine.core.autodiff.grad.Grad
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F import megengine.module as M import models.backbones.resnet.model as resnet import layers class FreeAnchor(M.Module): """ Implement RetinaNet (https://arxiv.org/abs/1708.02002). """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=self.cfg.anchor_scales, anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=self.cfg.anchor_offset, ) self.box_coder = layers.BoxCoder(cfg.reg_mean, cfg.reg_std) self.in_features = cfg.in_features # ----------------------- build backbone ------------------------ # bottom_up = getattr(resnet, cfg.backbone)( norm=layers.get_norm(cfg.backbone_norm), pretrained=cfg.backbone_pretrained ) del bottom_up.fc # ----------------------- build FPN ----------------------------- # self.backbone = layers.FPN( bottom_up=bottom_up, in_features=cfg.fpn_in_features, out_channels=cfg.fpn_out_channels, norm=cfg.fpn_norm, top_block=layers.LastLevelP6P7( cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.fpn_top_in_feature ), strides=cfg.fpn_in_strides, channels=cfg.fpn_in_channels, ) backbone_shape = self.backbone.output_shape() feature_shapes = [backbone_shape[f] for f in self.in_features] # ----------------------- build FreeAnchor Head ----------------- # self.head = layers.BoxHead(cfg, feature_shapes) def preprocess_image(self, image): padded_image = layers.get_padded_tensor(image, 32, 0.0) normed_image = ( padded_image - np.array(self.cfg.img_mean, dtype="float32")[None, :, None, None] ) / np.array(self.cfg.img_std, dtype="float32")[None, :, None, None] return normed_image def forward(self, image, im_info, gt_boxes=None): image = self.preprocess_image(image) features = self.backbone(image) features = [features[f] for f in self.in_features] box_logits, box_offsets = self.head(features) box_logits_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, self.cfg.num_classes) for _ in box_logits ] box_offsets_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, 4) for _ in box_offsets ] anchors_list = self.anchor_generator(features) all_level_box_logits =
F.concat(box_logits_list, axis=1)
megengine.functional.concat
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F import megengine.module as M import models.backbones.resnet.model as resnet import layers class FreeAnchor(M.Module): """ Implement RetinaNet (https://arxiv.org/abs/1708.02002). """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=self.cfg.anchor_scales, anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=self.cfg.anchor_offset, ) self.box_coder = layers.BoxCoder(cfg.reg_mean, cfg.reg_std) self.in_features = cfg.in_features # ----------------------- build backbone ------------------------ # bottom_up = getattr(resnet, cfg.backbone)( norm=layers.get_norm(cfg.backbone_norm), pretrained=cfg.backbone_pretrained ) del bottom_up.fc # ----------------------- build FPN ----------------------------- # self.backbone = layers.FPN( bottom_up=bottom_up, in_features=cfg.fpn_in_features, out_channels=cfg.fpn_out_channels, norm=cfg.fpn_norm, top_block=layers.LastLevelP6P7( cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.fpn_top_in_feature ), strides=cfg.fpn_in_strides, channels=cfg.fpn_in_channels, ) backbone_shape = self.backbone.output_shape() feature_shapes = [backbone_shape[f] for f in self.in_features] # ----------------------- build FreeAnchor Head ----------------- # self.head = layers.BoxHead(cfg, feature_shapes) def preprocess_image(self, image): padded_image = layers.get_padded_tensor(image, 32, 0.0) normed_image = ( padded_image - np.array(self.cfg.img_mean, dtype="float32")[None, :, None, None] ) / np.array(self.cfg.img_std, dtype="float32")[None, :, None, None] return normed_image def forward(self, image, im_info, gt_boxes=None): image = self.preprocess_image(image) features = self.backbone(image) features = [features[f] for f in self.in_features] box_logits, box_offsets = self.head(features) box_logits_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, self.cfg.num_classes) for _ in box_logits ] box_offsets_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, 4) for _ in box_offsets ] anchors_list = self.anchor_generator(features) all_level_box_logits = F.concat(box_logits_list, axis=1) all_level_box_offsets =
F.concat(box_offsets_list, axis=1)
megengine.functional.concat
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F import megengine.module as M import models.backbones.resnet.model as resnet import layers class FreeAnchor(M.Module): """ Implement RetinaNet (https://arxiv.org/abs/1708.02002). """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=self.cfg.anchor_scales, anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=self.cfg.anchor_offset, ) self.box_coder = layers.BoxCoder(cfg.reg_mean, cfg.reg_std) self.in_features = cfg.in_features # ----------------------- build backbone ------------------------ # bottom_up = getattr(resnet, cfg.backbone)( norm=layers.get_norm(cfg.backbone_norm), pretrained=cfg.backbone_pretrained ) del bottom_up.fc # ----------------------- build FPN ----------------------------- # self.backbone = layers.FPN( bottom_up=bottom_up, in_features=cfg.fpn_in_features, out_channels=cfg.fpn_out_channels, norm=cfg.fpn_norm, top_block=layers.LastLevelP6P7( cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.fpn_top_in_feature ), strides=cfg.fpn_in_strides, channels=cfg.fpn_in_channels, ) backbone_shape = self.backbone.output_shape() feature_shapes = [backbone_shape[f] for f in self.in_features] # ----------------------- build FreeAnchor Head ----------------- # self.head = layers.BoxHead(cfg, feature_shapes) def preprocess_image(self, image): padded_image = layers.get_padded_tensor(image, 32, 0.0) normed_image = ( padded_image - np.array(self.cfg.img_mean, dtype="float32")[None, :, None, None] ) / np.array(self.cfg.img_std, dtype="float32")[None, :, None, None] return normed_image def forward(self, image, im_info, gt_boxes=None): image = self.preprocess_image(image) features = self.backbone(image) features = [features[f] for f in self.in_features] box_logits, box_offsets = self.head(features) box_logits_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, self.cfg.num_classes) for _ in box_logits ] box_offsets_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, 4) for _ in box_offsets ] anchors_list = self.anchor_generator(features) all_level_box_logits = F.concat(box_logits_list, axis=1) all_level_box_offsets = F.concat(box_offsets_list, axis=1) all_level_anchors =
F.concat(anchors_list, axis=0)
megengine.functional.concat
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F import megengine.module as M import models.backbones.resnet.model as resnet import layers class FreeAnchor(M.Module): """ Implement RetinaNet (https://arxiv.org/abs/1708.02002). """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=self.cfg.anchor_scales, anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=self.cfg.anchor_offset, ) self.box_coder = layers.BoxCoder(cfg.reg_mean, cfg.reg_std) self.in_features = cfg.in_features # ----------------------- build backbone ------------------------ # bottom_up = getattr(resnet, cfg.backbone)( norm=layers.get_norm(cfg.backbone_norm), pretrained=cfg.backbone_pretrained ) del bottom_up.fc # ----------------------- build FPN ----------------------------- # self.backbone = layers.FPN( bottom_up=bottom_up, in_features=cfg.fpn_in_features, out_channels=cfg.fpn_out_channels, norm=cfg.fpn_norm, top_block=layers.LastLevelP6P7( cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.fpn_top_in_feature ), strides=cfg.fpn_in_strides, channels=cfg.fpn_in_channels, ) backbone_shape = self.backbone.output_shape() feature_shapes = [backbone_shape[f] for f in self.in_features] # ----------------------- build FreeAnchor Head ----------------- # self.head = layers.BoxHead(cfg, feature_shapes) def preprocess_image(self, image): padded_image = layers.get_padded_tensor(image, 32, 0.0) normed_image = ( padded_image - np.array(self.cfg.img_mean, dtype="float32")[None, :, None, None] ) / np.array(self.cfg.img_std, dtype="float32")[None, :, None, None] return normed_image def forward(self, image, im_info, gt_boxes=None): image = self.preprocess_image(image) features = self.backbone(image) features = [features[f] for f in self.in_features] box_logits, box_offsets = self.head(features) box_logits_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, self.cfg.num_classes) for _ in box_logits ] box_offsets_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, 4) for _ in box_offsets ] anchors_list = self.anchor_generator(features) all_level_box_logits = F.concat(box_logits_list, axis=1) all_level_box_offsets = F.concat(box_offsets_list, axis=1) all_level_anchors = F.concat(anchors_list, axis=0) if self.training: loss_dict = self.get_losses( all_level_anchors, all_level_box_logits, all_level_box_offsets, gt_boxes, im_info ) self.cfg.losses_keys = list(loss_dict.keys()) return loss_dict else: # currently not support multi-batch testing assert image.shape[0] == 1 pred_boxes = self.box_coder.decode( all_level_anchors, all_level_box_offsets[0] ) pred_boxes = pred_boxes.reshape(-1, 4) scale_w = im_info[0, 1] / im_info[0, 3] scale_h = im_info[0, 0] / im_info[0, 2] pred_boxes = pred_boxes / F.concat( [scale_w, scale_h, scale_w, scale_h], axis=0 ) clipped_boxes = layers.get_clipped_boxes( pred_boxes, im_info[0, 2:4] ).reshape(-1, 4) pred_score = F.sigmoid(all_level_box_logits)[0] return pred_score, clipped_boxes def get_losses(self, anchors, pred_logits, pred_offsets, gt_boxes, im_info): # pylint: disable=too-many-statements def positive_bag_loss(logits, axis=1): weight = 1.0 / (1.0 - logits) weight /= weight.sum(axis=axis, keepdims=True) bag_prob = (weight * logits).sum(axis=1) return -layers.safelog(bag_prob) def negative_bag_loss(logits, gamma): return (logits ** gamma) * (-layers.safelog(1.0 - logits)) pred_scores =
F.sigmoid(pred_logits)
megengine.functional.sigmoid
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F import megengine.module as M import models.backbones.resnet.model as resnet import layers class FreeAnchor(M.Module): """ Implement RetinaNet (https://arxiv.org/abs/1708.02002). """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=self.cfg.anchor_scales, anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=self.cfg.anchor_offset, ) self.box_coder = layers.BoxCoder(cfg.reg_mean, cfg.reg_std) self.in_features = cfg.in_features # ----------------------- build backbone ------------------------ # bottom_up = getattr(resnet, cfg.backbone)( norm=layers.get_norm(cfg.backbone_norm), pretrained=cfg.backbone_pretrained ) del bottom_up.fc # ----------------------- build FPN ----------------------------- # self.backbone = layers.FPN( bottom_up=bottom_up, in_features=cfg.fpn_in_features, out_channels=cfg.fpn_out_channels, norm=cfg.fpn_norm, top_block=layers.LastLevelP6P7( cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.fpn_top_in_feature ), strides=cfg.fpn_in_strides, channels=cfg.fpn_in_channels, ) backbone_shape = self.backbone.output_shape() feature_shapes = [backbone_shape[f] for f in self.in_features] # ----------------------- build FreeAnchor Head ----------------- # self.head = layers.BoxHead(cfg, feature_shapes) def preprocess_image(self, image): padded_image = layers.get_padded_tensor(image, 32, 0.0) normed_image = ( padded_image - np.array(self.cfg.img_mean, dtype="float32")[None, :, None, None] ) / np.array(self.cfg.img_std, dtype="float32")[None, :, None, None] return normed_image def forward(self, image, im_info, gt_boxes=None): image = self.preprocess_image(image) features = self.backbone(image) features = [features[f] for f in self.in_features] box_logits, box_offsets = self.head(features) box_logits_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, self.cfg.num_classes) for _ in box_logits ] box_offsets_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, 4) for _ in box_offsets ] anchors_list = self.anchor_generator(features) all_level_box_logits = F.concat(box_logits_list, axis=1) all_level_box_offsets = F.concat(box_offsets_list, axis=1) all_level_anchors = F.concat(anchors_list, axis=0) if self.training: loss_dict = self.get_losses( all_level_anchors, all_level_box_logits, all_level_box_offsets, gt_boxes, im_info ) self.cfg.losses_keys = list(loss_dict.keys()) return loss_dict else: # currently not support multi-batch testing assert image.shape[0] == 1 pred_boxes = self.box_coder.decode( all_level_anchors, all_level_box_offsets[0] ) pred_boxes = pred_boxes.reshape(-1, 4) scale_w = im_info[0, 1] / im_info[0, 3] scale_h = im_info[0, 0] / im_info[0, 2] pred_boxes = pred_boxes / F.concat( [scale_w, scale_h, scale_w, scale_h], axis=0 ) clipped_boxes = layers.get_clipped_boxes( pred_boxes, im_info[0, 2:4] ).reshape(-1, 4) pred_score = F.sigmoid(all_level_box_logits)[0] return pred_score, clipped_boxes def get_losses(self, anchors, pred_logits, pred_offsets, gt_boxes, im_info): # pylint: disable=too-many-statements def positive_bag_loss(logits, axis=1): weight = 1.0 / (1.0 - logits) weight /= weight.sum(axis=axis, keepdims=True) bag_prob = (weight * logits).sum(axis=1) return -layers.safelog(bag_prob) def negative_bag_loss(logits, gamma): return (logits ** gamma) * (-layers.safelog(1.0 - logits)) pred_scores = F.sigmoid(pred_logits) box_prob_list = [] positive_losses = [] clamp_eps = 1e-7 bucket_size = self.cfg.bucket_size for bid in range(im_info.shape[0]): boxes_info = gt_boxes[bid, : im_info[bid, 4].astype("int32")] # id 0 is used for background classes, so -1 first labels = boxes_info[:, 4].astype("int32") - 1 pred_box = self.box_coder.decode(anchors, pred_offsets[bid]).detach() overlaps = layers.get_iou(boxes_info[:, :4], pred_box).detach() thresh1 = self.cfg.box_iou_threshold thresh2 = F.clip( overlaps.max(axis=1, keepdims=True), lower=thresh1 + clamp_eps, upper=1.0 ) gt_pred_prob = F.clip( (overlaps - thresh1) / (thresh2 - thresh1), lower=0, upper=1.0) image_boxes_prob = F.zeros(pred_logits.shape[1:]).detach() # guarantee that nonzero_idx is not empty if gt_pred_prob.max() > clamp_eps: _, nonzero_idx = F.cond_take(gt_pred_prob != 0, gt_pred_prob) # since nonzeros is only 1 dim, use num_anchor to get real indices num_anchors = gt_pred_prob.shape[1] anchors_idx = nonzero_idx % num_anchors gt_idx = nonzero_idx // num_anchors image_boxes_prob[anchors_idx, labels[gt_idx]] = gt_pred_prob[gt_idx, anchors_idx] box_prob_list.append(image_boxes_prob) # construct bags for objects match_quality_matrix = layers.get_iou(boxes_info[:, :4], anchors).detach() num_gt = match_quality_matrix.shape[0] _, matched_idx = F.topk( match_quality_matrix, k=bucket_size, descending=True, no_sort=True, ) matched_idx = matched_idx.detach() matched_idx_flatten = matched_idx.reshape(-1) gather_idx = labels.reshape(-1, 1) gather_idx = F.broadcast_to(gather_idx, (num_gt, bucket_size)) gather_src = pred_scores[bid, matched_idx_flatten] gather_src = gather_src.reshape(num_gt, bucket_size, -1) matched_score = F.indexing_one_hot(gather_src, gather_idx, axis=2) topk_anchors = anchors[matched_idx_flatten] boxes_broad_cast = F.broadcast_to( F.expand_dims(boxes_info[:, :4], axis=1), (num_gt, bucket_size, 4) ).reshape(-1, 4) matched_offsets = self.box_coder.encode(topk_anchors, boxes_broad_cast) reg_loss = layers.smooth_l1_loss( pred_offsets[bid, matched_idx_flatten], matched_offsets, beta=self.cfg.smooth_l1_beta ).sum(axis=-1) * self.cfg.reg_loss_weight matched_reg_scores = F.exp(-reg_loss) positive_losses.append( positive_bag_loss( matched_score * matched_reg_scores.reshape(-1, bucket_size), axis=1 ) ) num_foreground = im_info[:, 4].sum() pos_loss = F.concat(positive_losses).sum() / F.maximum(num_foreground, 1) box_probs =
F.stack(box_prob_list, axis=0)
megengine.functional.stack
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F import megengine.module as M import models.backbones.resnet.model as resnet import layers class FreeAnchor(M.Module): """ Implement RetinaNet (https://arxiv.org/abs/1708.02002). """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=self.cfg.anchor_scales, anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=self.cfg.anchor_offset, ) self.box_coder = layers.BoxCoder(cfg.reg_mean, cfg.reg_std) self.in_features = cfg.in_features # ----------------------- build backbone ------------------------ # bottom_up = getattr(resnet, cfg.backbone)( norm=layers.get_norm(cfg.backbone_norm), pretrained=cfg.backbone_pretrained ) del bottom_up.fc # ----------------------- build FPN ----------------------------- # self.backbone = layers.FPN( bottom_up=bottom_up, in_features=cfg.fpn_in_features, out_channels=cfg.fpn_out_channels, norm=cfg.fpn_norm, top_block=layers.LastLevelP6P7( cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.fpn_top_in_feature ), strides=cfg.fpn_in_strides, channels=cfg.fpn_in_channels, ) backbone_shape = self.backbone.output_shape() feature_shapes = [backbone_shape[f] for f in self.in_features] # ----------------------- build FreeAnchor Head ----------------- # self.head = layers.BoxHead(cfg, feature_shapes) def preprocess_image(self, image): padded_image = layers.get_padded_tensor(image, 32, 0.0) normed_image = ( padded_image - np.array(self.cfg.img_mean, dtype="float32")[None, :, None, None] ) / np.array(self.cfg.img_std, dtype="float32")[None, :, None, None] return normed_image def forward(self, image, im_info, gt_boxes=None): image = self.preprocess_image(image) features = self.backbone(image) features = [features[f] for f in self.in_features] box_logits, box_offsets = self.head(features) box_logits_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, self.cfg.num_classes) for _ in box_logits ] box_offsets_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, 4) for _ in box_offsets ] anchors_list = self.anchor_generator(features) all_level_box_logits = F.concat(box_logits_list, axis=1) all_level_box_offsets = F.concat(box_offsets_list, axis=1) all_level_anchors = F.concat(anchors_list, axis=0) if self.training: loss_dict = self.get_losses( all_level_anchors, all_level_box_logits, all_level_box_offsets, gt_boxes, im_info ) self.cfg.losses_keys = list(loss_dict.keys()) return loss_dict else: # currently not support multi-batch testing assert image.shape[0] == 1 pred_boxes = self.box_coder.decode( all_level_anchors, all_level_box_offsets[0] ) pred_boxes = pred_boxes.reshape(-1, 4) scale_w = im_info[0, 1] / im_info[0, 3] scale_h = im_info[0, 0] / im_info[0, 2] pred_boxes = pred_boxes / F.concat( [scale_w, scale_h, scale_w, scale_h], axis=0 ) clipped_boxes = layers.get_clipped_boxes( pred_boxes, im_info[0, 2:4] ).reshape(-1, 4) pred_score = F.sigmoid(all_level_box_logits)[0] return pred_score, clipped_boxes def get_losses(self, anchors, pred_logits, pred_offsets, gt_boxes, im_info): # pylint: disable=too-many-statements def positive_bag_loss(logits, axis=1): weight = 1.0 / (1.0 - logits) weight /= weight.sum(axis=axis, keepdims=True) bag_prob = (weight * logits).sum(axis=1) return -layers.safelog(bag_prob) def negative_bag_loss(logits, gamma): return (logits ** gamma) * (-layers.safelog(1.0 - logits)) pred_scores = F.sigmoid(pred_logits) box_prob_list = [] positive_losses = [] clamp_eps = 1e-7 bucket_size = self.cfg.bucket_size for bid in range(im_info.shape[0]): boxes_info = gt_boxes[bid, : im_info[bid, 4].astype("int32")] # id 0 is used for background classes, so -1 first labels = boxes_info[:, 4].astype("int32") - 1 pred_box = self.box_coder.decode(anchors, pred_offsets[bid]).detach() overlaps = layers.get_iou(boxes_info[:, :4], pred_box).detach() thresh1 = self.cfg.box_iou_threshold thresh2 = F.clip( overlaps.max(axis=1, keepdims=True), lower=thresh1 + clamp_eps, upper=1.0 ) gt_pred_prob = F.clip( (overlaps - thresh1) / (thresh2 - thresh1), lower=0, upper=1.0) image_boxes_prob = F.zeros(pred_logits.shape[1:]).detach() # guarantee that nonzero_idx is not empty if gt_pred_prob.max() > clamp_eps: _, nonzero_idx = F.cond_take(gt_pred_prob != 0, gt_pred_prob) # since nonzeros is only 1 dim, use num_anchor to get real indices num_anchors = gt_pred_prob.shape[1] anchors_idx = nonzero_idx % num_anchors gt_idx = nonzero_idx // num_anchors image_boxes_prob[anchors_idx, labels[gt_idx]] = gt_pred_prob[gt_idx, anchors_idx] box_prob_list.append(image_boxes_prob) # construct bags for objects match_quality_matrix = layers.get_iou(boxes_info[:, :4], anchors).detach() num_gt = match_quality_matrix.shape[0] _, matched_idx = F.topk( match_quality_matrix, k=bucket_size, descending=True, no_sort=True, ) matched_idx = matched_idx.detach() matched_idx_flatten = matched_idx.reshape(-1) gather_idx = labels.reshape(-1, 1) gather_idx =
F.broadcast_to(gather_idx, (num_gt, bucket_size))
megengine.functional.broadcast_to
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F import megengine.module as M import models.backbones.resnet.model as resnet import layers class FreeAnchor(M.Module): """ Implement RetinaNet (https://arxiv.org/abs/1708.02002). """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=self.cfg.anchor_scales, anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=self.cfg.anchor_offset, ) self.box_coder = layers.BoxCoder(cfg.reg_mean, cfg.reg_std) self.in_features = cfg.in_features # ----------------------- build backbone ------------------------ # bottom_up = getattr(resnet, cfg.backbone)( norm=layers.get_norm(cfg.backbone_norm), pretrained=cfg.backbone_pretrained ) del bottom_up.fc # ----------------------- build FPN ----------------------------- # self.backbone = layers.FPN( bottom_up=bottom_up, in_features=cfg.fpn_in_features, out_channels=cfg.fpn_out_channels, norm=cfg.fpn_norm, top_block=layers.LastLevelP6P7( cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.fpn_top_in_feature ), strides=cfg.fpn_in_strides, channels=cfg.fpn_in_channels, ) backbone_shape = self.backbone.output_shape() feature_shapes = [backbone_shape[f] for f in self.in_features] # ----------------------- build FreeAnchor Head ----------------- # self.head = layers.BoxHead(cfg, feature_shapes) def preprocess_image(self, image): padded_image = layers.get_padded_tensor(image, 32, 0.0) normed_image = ( padded_image - np.array(self.cfg.img_mean, dtype="float32")[None, :, None, None] ) / np.array(self.cfg.img_std, dtype="float32")[None, :, None, None] return normed_image def forward(self, image, im_info, gt_boxes=None): image = self.preprocess_image(image) features = self.backbone(image) features = [features[f] for f in self.in_features] box_logits, box_offsets = self.head(features) box_logits_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, self.cfg.num_classes) for _ in box_logits ] box_offsets_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, 4) for _ in box_offsets ] anchors_list = self.anchor_generator(features) all_level_box_logits = F.concat(box_logits_list, axis=1) all_level_box_offsets = F.concat(box_offsets_list, axis=1) all_level_anchors = F.concat(anchors_list, axis=0) if self.training: loss_dict = self.get_losses( all_level_anchors, all_level_box_logits, all_level_box_offsets, gt_boxes, im_info ) self.cfg.losses_keys = list(loss_dict.keys()) return loss_dict else: # currently not support multi-batch testing assert image.shape[0] == 1 pred_boxes = self.box_coder.decode( all_level_anchors, all_level_box_offsets[0] ) pred_boxes = pred_boxes.reshape(-1, 4) scale_w = im_info[0, 1] / im_info[0, 3] scale_h = im_info[0, 0] / im_info[0, 2] pred_boxes = pred_boxes / F.concat( [scale_w, scale_h, scale_w, scale_h], axis=0 ) clipped_boxes = layers.get_clipped_boxes( pred_boxes, im_info[0, 2:4] ).reshape(-1, 4) pred_score = F.sigmoid(all_level_box_logits)[0] return pred_score, clipped_boxes def get_losses(self, anchors, pred_logits, pred_offsets, gt_boxes, im_info): # pylint: disable=too-many-statements def positive_bag_loss(logits, axis=1): weight = 1.0 / (1.0 - logits) weight /= weight.sum(axis=axis, keepdims=True) bag_prob = (weight * logits).sum(axis=1) return -layers.safelog(bag_prob) def negative_bag_loss(logits, gamma): return (logits ** gamma) * (-layers.safelog(1.0 - logits)) pred_scores = F.sigmoid(pred_logits) box_prob_list = [] positive_losses = [] clamp_eps = 1e-7 bucket_size = self.cfg.bucket_size for bid in range(im_info.shape[0]): boxes_info = gt_boxes[bid, : im_info[bid, 4].astype("int32")] # id 0 is used for background classes, so -1 first labels = boxes_info[:, 4].astype("int32") - 1 pred_box = self.box_coder.decode(anchors, pred_offsets[bid]).detach() overlaps = layers.get_iou(boxes_info[:, :4], pred_box).detach() thresh1 = self.cfg.box_iou_threshold thresh2 = F.clip( overlaps.max(axis=1, keepdims=True), lower=thresh1 + clamp_eps, upper=1.0 ) gt_pred_prob = F.clip( (overlaps - thresh1) / (thresh2 - thresh1), lower=0, upper=1.0) image_boxes_prob = F.zeros(pred_logits.shape[1:]).detach() # guarantee that nonzero_idx is not empty if gt_pred_prob.max() > clamp_eps: _, nonzero_idx = F.cond_take(gt_pred_prob != 0, gt_pred_prob) # since nonzeros is only 1 dim, use num_anchor to get real indices num_anchors = gt_pred_prob.shape[1] anchors_idx = nonzero_idx % num_anchors gt_idx = nonzero_idx // num_anchors image_boxes_prob[anchors_idx, labels[gt_idx]] = gt_pred_prob[gt_idx, anchors_idx] box_prob_list.append(image_boxes_prob) # construct bags for objects match_quality_matrix = layers.get_iou(boxes_info[:, :4], anchors).detach() num_gt = match_quality_matrix.shape[0] _, matched_idx = F.topk( match_quality_matrix, k=bucket_size, descending=True, no_sort=True, ) matched_idx = matched_idx.detach() matched_idx_flatten = matched_idx.reshape(-1) gather_idx = labels.reshape(-1, 1) gather_idx = F.broadcast_to(gather_idx, (num_gt, bucket_size)) gather_src = pred_scores[bid, matched_idx_flatten] gather_src = gather_src.reshape(num_gt, bucket_size, -1) matched_score =
F.indexing_one_hot(gather_src, gather_idx, axis=2)
megengine.functional.indexing_one_hot
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F import megengine.module as M import models.backbones.resnet.model as resnet import layers class FreeAnchor(M.Module): """ Implement RetinaNet (https://arxiv.org/abs/1708.02002). """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=self.cfg.anchor_scales, anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=self.cfg.anchor_offset, ) self.box_coder = layers.BoxCoder(cfg.reg_mean, cfg.reg_std) self.in_features = cfg.in_features # ----------------------- build backbone ------------------------ # bottom_up = getattr(resnet, cfg.backbone)( norm=layers.get_norm(cfg.backbone_norm), pretrained=cfg.backbone_pretrained ) del bottom_up.fc # ----------------------- build FPN ----------------------------- # self.backbone = layers.FPN( bottom_up=bottom_up, in_features=cfg.fpn_in_features, out_channels=cfg.fpn_out_channels, norm=cfg.fpn_norm, top_block=layers.LastLevelP6P7( cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.fpn_top_in_feature ), strides=cfg.fpn_in_strides, channels=cfg.fpn_in_channels, ) backbone_shape = self.backbone.output_shape() feature_shapes = [backbone_shape[f] for f in self.in_features] # ----------------------- build FreeAnchor Head ----------------- # self.head = layers.BoxHead(cfg, feature_shapes) def preprocess_image(self, image): padded_image = layers.get_padded_tensor(image, 32, 0.0) normed_image = ( padded_image - np.array(self.cfg.img_mean, dtype="float32")[None, :, None, None] ) / np.array(self.cfg.img_std, dtype="float32")[None, :, None, None] return normed_image def forward(self, image, im_info, gt_boxes=None): image = self.preprocess_image(image) features = self.backbone(image) features = [features[f] for f in self.in_features] box_logits, box_offsets = self.head(features) box_logits_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, self.cfg.num_classes) for _ in box_logits ] box_offsets_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, 4) for _ in box_offsets ] anchors_list = self.anchor_generator(features) all_level_box_logits = F.concat(box_logits_list, axis=1) all_level_box_offsets = F.concat(box_offsets_list, axis=1) all_level_anchors = F.concat(anchors_list, axis=0) if self.training: loss_dict = self.get_losses( all_level_anchors, all_level_box_logits, all_level_box_offsets, gt_boxes, im_info ) self.cfg.losses_keys = list(loss_dict.keys()) return loss_dict else: # currently not support multi-batch testing assert image.shape[0] == 1 pred_boxes = self.box_coder.decode( all_level_anchors, all_level_box_offsets[0] ) pred_boxes = pred_boxes.reshape(-1, 4) scale_w = im_info[0, 1] / im_info[0, 3] scale_h = im_info[0, 0] / im_info[0, 2] pred_boxes = pred_boxes / F.concat( [scale_w, scale_h, scale_w, scale_h], axis=0 ) clipped_boxes = layers.get_clipped_boxes( pred_boxes, im_info[0, 2:4] ).reshape(-1, 4) pred_score = F.sigmoid(all_level_box_logits)[0] return pred_score, clipped_boxes def get_losses(self, anchors, pred_logits, pred_offsets, gt_boxes, im_info): # pylint: disable=too-many-statements def positive_bag_loss(logits, axis=1): weight = 1.0 / (1.0 - logits) weight /= weight.sum(axis=axis, keepdims=True) bag_prob = (weight * logits).sum(axis=1) return -layers.safelog(bag_prob) def negative_bag_loss(logits, gamma): return (logits ** gamma) * (-layers.safelog(1.0 - logits)) pred_scores = F.sigmoid(pred_logits) box_prob_list = [] positive_losses = [] clamp_eps = 1e-7 bucket_size = self.cfg.bucket_size for bid in range(im_info.shape[0]): boxes_info = gt_boxes[bid, : im_info[bid, 4].astype("int32")] # id 0 is used for background classes, so -1 first labels = boxes_info[:, 4].astype("int32") - 1 pred_box = self.box_coder.decode(anchors, pred_offsets[bid]).detach() overlaps = layers.get_iou(boxes_info[:, :4], pred_box).detach() thresh1 = self.cfg.box_iou_threshold thresh2 = F.clip( overlaps.max(axis=1, keepdims=True), lower=thresh1 + clamp_eps, upper=1.0 ) gt_pred_prob = F.clip( (overlaps - thresh1) / (thresh2 - thresh1), lower=0, upper=1.0) image_boxes_prob = F.zeros(pred_logits.shape[1:]).detach() # guarantee that nonzero_idx is not empty if gt_pred_prob.max() > clamp_eps: _, nonzero_idx = F.cond_take(gt_pred_prob != 0, gt_pred_prob) # since nonzeros is only 1 dim, use num_anchor to get real indices num_anchors = gt_pred_prob.shape[1] anchors_idx = nonzero_idx % num_anchors gt_idx = nonzero_idx // num_anchors image_boxes_prob[anchors_idx, labels[gt_idx]] = gt_pred_prob[gt_idx, anchors_idx] box_prob_list.append(image_boxes_prob) # construct bags for objects match_quality_matrix = layers.get_iou(boxes_info[:, :4], anchors).detach() num_gt = match_quality_matrix.shape[0] _, matched_idx = F.topk( match_quality_matrix, k=bucket_size, descending=True, no_sort=True, ) matched_idx = matched_idx.detach() matched_idx_flatten = matched_idx.reshape(-1) gather_idx = labels.reshape(-1, 1) gather_idx = F.broadcast_to(gather_idx, (num_gt, bucket_size)) gather_src = pred_scores[bid, matched_idx_flatten] gather_src = gather_src.reshape(num_gt, bucket_size, -1) matched_score = F.indexing_one_hot(gather_src, gather_idx, axis=2) topk_anchors = anchors[matched_idx_flatten] boxes_broad_cast = F.broadcast_to( F.expand_dims(boxes_info[:, :4], axis=1), (num_gt, bucket_size, 4) ).reshape(-1, 4) matched_offsets = self.box_coder.encode(topk_anchors, boxes_broad_cast) reg_loss = layers.smooth_l1_loss( pred_offsets[bid, matched_idx_flatten], matched_offsets, beta=self.cfg.smooth_l1_beta ).sum(axis=-1) * self.cfg.reg_loss_weight matched_reg_scores =
F.exp(-reg_loss)
megengine.functional.exp
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F import megengine.module as M import models.backbones.resnet.model as resnet import layers class FreeAnchor(M.Module): """ Implement RetinaNet (https://arxiv.org/abs/1708.02002). """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=self.cfg.anchor_scales, anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=self.cfg.anchor_offset, ) self.box_coder = layers.BoxCoder(cfg.reg_mean, cfg.reg_std) self.in_features = cfg.in_features # ----------------------- build backbone ------------------------ # bottom_up = getattr(resnet, cfg.backbone)( norm=layers.get_norm(cfg.backbone_norm), pretrained=cfg.backbone_pretrained ) del bottom_up.fc # ----------------------- build FPN ----------------------------- # self.backbone = layers.FPN( bottom_up=bottom_up, in_features=cfg.fpn_in_features, out_channels=cfg.fpn_out_channels, norm=cfg.fpn_norm, top_block=layers.LastLevelP6P7( cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.fpn_top_in_feature ), strides=cfg.fpn_in_strides, channels=cfg.fpn_in_channels, ) backbone_shape = self.backbone.output_shape() feature_shapes = [backbone_shape[f] for f in self.in_features] # ----------------------- build FreeAnchor Head ----------------- # self.head = layers.BoxHead(cfg, feature_shapes) def preprocess_image(self, image): padded_image = layers.get_padded_tensor(image, 32, 0.0) normed_image = ( padded_image - np.array(self.cfg.img_mean, dtype="float32")[None, :, None, None] ) / np.array(self.cfg.img_std, dtype="float32")[None, :, None, None] return normed_image def forward(self, image, im_info, gt_boxes=None): image = self.preprocess_image(image) features = self.backbone(image) features = [features[f] for f in self.in_features] box_logits, box_offsets = self.head(features) box_logits_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, self.cfg.num_classes) for _ in box_logits ] box_offsets_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, 4) for _ in box_offsets ] anchors_list = self.anchor_generator(features) all_level_box_logits = F.concat(box_logits_list, axis=1) all_level_box_offsets = F.concat(box_offsets_list, axis=1) all_level_anchors = F.concat(anchors_list, axis=0) if self.training: loss_dict = self.get_losses( all_level_anchors, all_level_box_logits, all_level_box_offsets, gt_boxes, im_info ) self.cfg.losses_keys = list(loss_dict.keys()) return loss_dict else: # currently not support multi-batch testing assert image.shape[0] == 1 pred_boxes = self.box_coder.decode( all_level_anchors, all_level_box_offsets[0] ) pred_boxes = pred_boxes.reshape(-1, 4) scale_w = im_info[0, 1] / im_info[0, 3] scale_h = im_info[0, 0] / im_info[0, 2] pred_boxes = pred_boxes / F.concat( [scale_w, scale_h, scale_w, scale_h], axis=0 ) clipped_boxes = layers.get_clipped_boxes( pred_boxes, im_info[0, 2:4] ).reshape(-1, 4) pred_score = F.sigmoid(all_level_box_logits)[0] return pred_score, clipped_boxes def get_losses(self, anchors, pred_logits, pred_offsets, gt_boxes, im_info): # pylint: disable=too-many-statements def positive_bag_loss(logits, axis=1): weight = 1.0 / (1.0 - logits) weight /= weight.sum(axis=axis, keepdims=True) bag_prob = (weight * logits).sum(axis=1) return -layers.safelog(bag_prob) def negative_bag_loss(logits, gamma): return (logits ** gamma) * (-layers.safelog(1.0 - logits)) pred_scores = F.sigmoid(pred_logits) box_prob_list = [] positive_losses = [] clamp_eps = 1e-7 bucket_size = self.cfg.bucket_size for bid in range(im_info.shape[0]): boxes_info = gt_boxes[bid, : im_info[bid, 4].astype("int32")] # id 0 is used for background classes, so -1 first labels = boxes_info[:, 4].astype("int32") - 1 pred_box = self.box_coder.decode(anchors, pred_offsets[bid]).detach() overlaps = layers.get_iou(boxes_info[:, :4], pred_box).detach() thresh1 = self.cfg.box_iou_threshold thresh2 = F.clip( overlaps.max(axis=1, keepdims=True), lower=thresh1 + clamp_eps, upper=1.0 ) gt_pred_prob = F.clip( (overlaps - thresh1) / (thresh2 - thresh1), lower=0, upper=1.0) image_boxes_prob = F.zeros(pred_logits.shape[1:]).detach() # guarantee that nonzero_idx is not empty if gt_pred_prob.max() > clamp_eps: _, nonzero_idx = F.cond_take(gt_pred_prob != 0, gt_pred_prob) # since nonzeros is only 1 dim, use num_anchor to get real indices num_anchors = gt_pred_prob.shape[1] anchors_idx = nonzero_idx % num_anchors gt_idx = nonzero_idx // num_anchors image_boxes_prob[anchors_idx, labels[gt_idx]] = gt_pred_prob[gt_idx, anchors_idx] box_prob_list.append(image_boxes_prob) # construct bags for objects match_quality_matrix = layers.get_iou(boxes_info[:, :4], anchors).detach() num_gt = match_quality_matrix.shape[0] _, matched_idx = F.topk( match_quality_matrix, k=bucket_size, descending=True, no_sort=True, ) matched_idx = matched_idx.detach() matched_idx_flatten = matched_idx.reshape(-1) gather_idx = labels.reshape(-1, 1) gather_idx = F.broadcast_to(gather_idx, (num_gt, bucket_size)) gather_src = pred_scores[bid, matched_idx_flatten] gather_src = gather_src.reshape(num_gt, bucket_size, -1) matched_score = F.indexing_one_hot(gather_src, gather_idx, axis=2) topk_anchors = anchors[matched_idx_flatten] boxes_broad_cast = F.broadcast_to( F.expand_dims(boxes_info[:, :4], axis=1), (num_gt, bucket_size, 4) ).reshape(-1, 4) matched_offsets = self.box_coder.encode(topk_anchors, boxes_broad_cast) reg_loss = layers.smooth_l1_loss( pred_offsets[bid, matched_idx_flatten], matched_offsets, beta=self.cfg.smooth_l1_beta ).sum(axis=-1) * self.cfg.reg_loss_weight matched_reg_scores = F.exp(-reg_loss) positive_losses.append( positive_bag_loss( matched_score * matched_reg_scores.reshape(-1, bucket_size), axis=1 ) ) num_foreground = im_info[:, 4].sum() pos_loss = F.concat(positive_losses).sum() /
F.maximum(num_foreground, 1)
megengine.functional.maximum
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F import megengine.module as M import models.backbones.resnet.model as resnet import layers class FreeAnchor(M.Module): """ Implement RetinaNet (https://arxiv.org/abs/1708.02002). """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=self.cfg.anchor_scales, anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=self.cfg.anchor_offset, ) self.box_coder = layers.BoxCoder(cfg.reg_mean, cfg.reg_std) self.in_features = cfg.in_features # ----------------------- build backbone ------------------------ # bottom_up = getattr(resnet, cfg.backbone)( norm=layers.get_norm(cfg.backbone_norm), pretrained=cfg.backbone_pretrained ) del bottom_up.fc # ----------------------- build FPN ----------------------------- # self.backbone = layers.FPN( bottom_up=bottom_up, in_features=cfg.fpn_in_features, out_channels=cfg.fpn_out_channels, norm=cfg.fpn_norm, top_block=layers.LastLevelP6P7( cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.fpn_top_in_feature ), strides=cfg.fpn_in_strides, channels=cfg.fpn_in_channels, ) backbone_shape = self.backbone.output_shape() feature_shapes = [backbone_shape[f] for f in self.in_features] # ----------------------- build FreeAnchor Head ----------------- # self.head = layers.BoxHead(cfg, feature_shapes) def preprocess_image(self, image): padded_image = layers.get_padded_tensor(image, 32, 0.0) normed_image = ( padded_image - np.array(self.cfg.img_mean, dtype="float32")[None, :, None, None] ) / np.array(self.cfg.img_std, dtype="float32")[None, :, None, None] return normed_image def forward(self, image, im_info, gt_boxes=None): image = self.preprocess_image(image) features = self.backbone(image) features = [features[f] for f in self.in_features] box_logits, box_offsets = self.head(features) box_logits_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, self.cfg.num_classes) for _ in box_logits ] box_offsets_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, 4) for _ in box_offsets ] anchors_list = self.anchor_generator(features) all_level_box_logits = F.concat(box_logits_list, axis=1) all_level_box_offsets = F.concat(box_offsets_list, axis=1) all_level_anchors = F.concat(anchors_list, axis=0) if self.training: loss_dict = self.get_losses( all_level_anchors, all_level_box_logits, all_level_box_offsets, gt_boxes, im_info ) self.cfg.losses_keys = list(loss_dict.keys()) return loss_dict else: # currently not support multi-batch testing assert image.shape[0] == 1 pred_boxes = self.box_coder.decode( all_level_anchors, all_level_box_offsets[0] ) pred_boxes = pred_boxes.reshape(-1, 4) scale_w = im_info[0, 1] / im_info[0, 3] scale_h = im_info[0, 0] / im_info[0, 2] pred_boxes = pred_boxes / F.concat( [scale_w, scale_h, scale_w, scale_h], axis=0 ) clipped_boxes = layers.get_clipped_boxes( pred_boxes, im_info[0, 2:4] ).reshape(-1, 4) pred_score = F.sigmoid(all_level_box_logits)[0] return pred_score, clipped_boxes def get_losses(self, anchors, pred_logits, pred_offsets, gt_boxes, im_info): # pylint: disable=too-many-statements def positive_bag_loss(logits, axis=1): weight = 1.0 / (1.0 - logits) weight /= weight.sum(axis=axis, keepdims=True) bag_prob = (weight * logits).sum(axis=1) return -layers.safelog(bag_prob) def negative_bag_loss(logits, gamma): return (logits ** gamma) * (-layers.safelog(1.0 - logits)) pred_scores = F.sigmoid(pred_logits) box_prob_list = [] positive_losses = [] clamp_eps = 1e-7 bucket_size = self.cfg.bucket_size for bid in range(im_info.shape[0]): boxes_info = gt_boxes[bid, : im_info[bid, 4].astype("int32")] # id 0 is used for background classes, so -1 first labels = boxes_info[:, 4].astype("int32") - 1 pred_box = self.box_coder.decode(anchors, pred_offsets[bid]).detach() overlaps = layers.get_iou(boxes_info[:, :4], pred_box).detach() thresh1 = self.cfg.box_iou_threshold thresh2 = F.clip( overlaps.max(axis=1, keepdims=True), lower=thresh1 + clamp_eps, upper=1.0 ) gt_pred_prob = F.clip( (overlaps - thresh1) / (thresh2 - thresh1), lower=0, upper=1.0) image_boxes_prob = F.zeros(pred_logits.shape[1:]).detach() # guarantee that nonzero_idx is not empty if gt_pred_prob.max() > clamp_eps: _, nonzero_idx = F.cond_take(gt_pred_prob != 0, gt_pred_prob) # since nonzeros is only 1 dim, use num_anchor to get real indices num_anchors = gt_pred_prob.shape[1] anchors_idx = nonzero_idx % num_anchors gt_idx = nonzero_idx // num_anchors image_boxes_prob[anchors_idx, labels[gt_idx]] = gt_pred_prob[gt_idx, anchors_idx] box_prob_list.append(image_boxes_prob) # construct bags for objects match_quality_matrix = layers.get_iou(boxes_info[:, :4], anchors).detach() num_gt = match_quality_matrix.shape[0] _, matched_idx = F.topk( match_quality_matrix, k=bucket_size, descending=True, no_sort=True, ) matched_idx = matched_idx.detach() matched_idx_flatten = matched_idx.reshape(-1) gather_idx = labels.reshape(-1, 1) gather_idx = F.broadcast_to(gather_idx, (num_gt, bucket_size)) gather_src = pred_scores[bid, matched_idx_flatten] gather_src = gather_src.reshape(num_gt, bucket_size, -1) matched_score = F.indexing_one_hot(gather_src, gather_idx, axis=2) topk_anchors = anchors[matched_idx_flatten] boxes_broad_cast = F.broadcast_to( F.expand_dims(boxes_info[:, :4], axis=1), (num_gt, bucket_size, 4) ).reshape(-1, 4) matched_offsets = self.box_coder.encode(topk_anchors, boxes_broad_cast) reg_loss = layers.smooth_l1_loss( pred_offsets[bid, matched_idx_flatten], matched_offsets, beta=self.cfg.smooth_l1_beta ).sum(axis=-1) * self.cfg.reg_loss_weight matched_reg_scores = F.exp(-reg_loss) positive_losses.append( positive_bag_loss( matched_score * matched_reg_scores.reshape(-1, bucket_size), axis=1 ) ) num_foreground = im_info[:, 4].sum() pos_loss = F.concat(positive_losses).sum() / F.maximum(num_foreground, 1) box_probs = F.stack(box_prob_list, axis=0) neg_loss = negative_bag_loss( pred_scores * (1 - box_probs), self.cfg.focal_loss_gamma ).sum() /
F.maximum(num_foreground * bucket_size, 1)
megengine.functional.maximum
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F import megengine.module as M import models.backbones.resnet.model as resnet import layers class FreeAnchor(M.Module): """ Implement RetinaNet (https://arxiv.org/abs/1708.02002). """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=self.cfg.anchor_scales, anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=self.cfg.anchor_offset, ) self.box_coder = layers.BoxCoder(cfg.reg_mean, cfg.reg_std) self.in_features = cfg.in_features # ----------------------- build backbone ------------------------ # bottom_up = getattr(resnet, cfg.backbone)( norm=layers.get_norm(cfg.backbone_norm), pretrained=cfg.backbone_pretrained ) del bottom_up.fc # ----------------------- build FPN ----------------------------- # self.backbone = layers.FPN( bottom_up=bottom_up, in_features=cfg.fpn_in_features, out_channels=cfg.fpn_out_channels, norm=cfg.fpn_norm, top_block=layers.LastLevelP6P7( cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.fpn_top_in_feature ), strides=cfg.fpn_in_strides, channels=cfg.fpn_in_channels, ) backbone_shape = self.backbone.output_shape() feature_shapes = [backbone_shape[f] for f in self.in_features] # ----------------------- build FreeAnchor Head ----------------- # self.head = layers.BoxHead(cfg, feature_shapes) def preprocess_image(self, image): padded_image = layers.get_padded_tensor(image, 32, 0.0) normed_image = ( padded_image - np.array(self.cfg.img_mean, dtype="float32")[None, :, None, None] ) / np.array(self.cfg.img_std, dtype="float32")[None, :, None, None] return normed_image def forward(self, image, im_info, gt_boxes=None): image = self.preprocess_image(image) features = self.backbone(image) features = [features[f] for f in self.in_features] box_logits, box_offsets = self.head(features) box_logits_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, self.cfg.num_classes) for _ in box_logits ] box_offsets_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, 4) for _ in box_offsets ] anchors_list = self.anchor_generator(features) all_level_box_logits = F.concat(box_logits_list, axis=1) all_level_box_offsets = F.concat(box_offsets_list, axis=1) all_level_anchors = F.concat(anchors_list, axis=0) if self.training: loss_dict = self.get_losses( all_level_anchors, all_level_box_logits, all_level_box_offsets, gt_boxes, im_info ) self.cfg.losses_keys = list(loss_dict.keys()) return loss_dict else: # currently not support multi-batch testing assert image.shape[0] == 1 pred_boxes = self.box_coder.decode( all_level_anchors, all_level_box_offsets[0] ) pred_boxes = pred_boxes.reshape(-1, 4) scale_w = im_info[0, 1] / im_info[0, 3] scale_h = im_info[0, 0] / im_info[0, 2] pred_boxes = pred_boxes / F.concat( [scale_w, scale_h, scale_w, scale_h], axis=0 ) clipped_boxes = layers.get_clipped_boxes( pred_boxes, im_info[0, 2:4] ).reshape(-1, 4) pred_score =
F.sigmoid(all_level_box_logits)
megengine.functional.sigmoid
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F import megengine.module as M import models.backbones.resnet.model as resnet import layers class FreeAnchor(M.Module): """ Implement RetinaNet (https://arxiv.org/abs/1708.02002). """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=self.cfg.anchor_scales, anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=self.cfg.anchor_offset, ) self.box_coder = layers.BoxCoder(cfg.reg_mean, cfg.reg_std) self.in_features = cfg.in_features # ----------------------- build backbone ------------------------ # bottom_up = getattr(resnet, cfg.backbone)( norm=layers.get_norm(cfg.backbone_norm), pretrained=cfg.backbone_pretrained ) del bottom_up.fc # ----------------------- build FPN ----------------------------- # self.backbone = layers.FPN( bottom_up=bottom_up, in_features=cfg.fpn_in_features, out_channels=cfg.fpn_out_channels, norm=cfg.fpn_norm, top_block=layers.LastLevelP6P7( cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.fpn_top_in_feature ), strides=cfg.fpn_in_strides, channels=cfg.fpn_in_channels, ) backbone_shape = self.backbone.output_shape() feature_shapes = [backbone_shape[f] for f in self.in_features] # ----------------------- build FreeAnchor Head ----------------- # self.head = layers.BoxHead(cfg, feature_shapes) def preprocess_image(self, image): padded_image = layers.get_padded_tensor(image, 32, 0.0) normed_image = ( padded_image - np.array(self.cfg.img_mean, dtype="float32")[None, :, None, None] ) / np.array(self.cfg.img_std, dtype="float32")[None, :, None, None] return normed_image def forward(self, image, im_info, gt_boxes=None): image = self.preprocess_image(image) features = self.backbone(image) features = [features[f] for f in self.in_features] box_logits, box_offsets = self.head(features) box_logits_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, self.cfg.num_classes) for _ in box_logits ] box_offsets_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, 4) for _ in box_offsets ] anchors_list = self.anchor_generator(features) all_level_box_logits = F.concat(box_logits_list, axis=1) all_level_box_offsets = F.concat(box_offsets_list, axis=1) all_level_anchors = F.concat(anchors_list, axis=0) if self.training: loss_dict = self.get_losses( all_level_anchors, all_level_box_logits, all_level_box_offsets, gt_boxes, im_info ) self.cfg.losses_keys = list(loss_dict.keys()) return loss_dict else: # currently not support multi-batch testing assert image.shape[0] == 1 pred_boxes = self.box_coder.decode( all_level_anchors, all_level_box_offsets[0] ) pred_boxes = pred_boxes.reshape(-1, 4) scale_w = im_info[0, 1] / im_info[0, 3] scale_h = im_info[0, 0] / im_info[0, 2] pred_boxes = pred_boxes / F.concat( [scale_w, scale_h, scale_w, scale_h], axis=0 ) clipped_boxes = layers.get_clipped_boxes( pred_boxes, im_info[0, 2:4] ).reshape(-1, 4) pred_score = F.sigmoid(all_level_box_logits)[0] return pred_score, clipped_boxes def get_losses(self, anchors, pred_logits, pred_offsets, gt_boxes, im_info): # pylint: disable=too-many-statements def positive_bag_loss(logits, axis=1): weight = 1.0 / (1.0 - logits) weight /= weight.sum(axis=axis, keepdims=True) bag_prob = (weight * logits).sum(axis=1) return -layers.safelog(bag_prob) def negative_bag_loss(logits, gamma): return (logits ** gamma) * (-layers.safelog(1.0 - logits)) pred_scores = F.sigmoid(pred_logits) box_prob_list = [] positive_losses = [] clamp_eps = 1e-7 bucket_size = self.cfg.bucket_size for bid in range(im_info.shape[0]): boxes_info = gt_boxes[bid, : im_info[bid, 4].astype("int32")] # id 0 is used for background classes, so -1 first labels = boxes_info[:, 4].astype("int32") - 1 pred_box = self.box_coder.decode(anchors, pred_offsets[bid]).detach() overlaps = layers.get_iou(boxes_info[:, :4], pred_box).detach() thresh1 = self.cfg.box_iou_threshold thresh2 = F.clip( overlaps.max(axis=1, keepdims=True), lower=thresh1 + clamp_eps, upper=1.0 ) gt_pred_prob = F.clip( (overlaps - thresh1) / (thresh2 - thresh1), lower=0, upper=1.0) image_boxes_prob = F.zeros(pred_logits.shape[1:]).detach() # guarantee that nonzero_idx is not empty if gt_pred_prob.max() > clamp_eps: _, nonzero_idx =
F.cond_take(gt_pred_prob != 0, gt_pred_prob)
megengine.functional.cond_take
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F import megengine.module as M import models.backbones.resnet.model as resnet import layers class FreeAnchor(M.Module): """ Implement RetinaNet (https://arxiv.org/abs/1708.02002). """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=self.cfg.anchor_scales, anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=self.cfg.anchor_offset, ) self.box_coder = layers.BoxCoder(cfg.reg_mean, cfg.reg_std) self.in_features = cfg.in_features # ----------------------- build backbone ------------------------ # bottom_up = getattr(resnet, cfg.backbone)( norm=layers.get_norm(cfg.backbone_norm), pretrained=cfg.backbone_pretrained ) del bottom_up.fc # ----------------------- build FPN ----------------------------- # self.backbone = layers.FPN( bottom_up=bottom_up, in_features=cfg.fpn_in_features, out_channels=cfg.fpn_out_channels, norm=cfg.fpn_norm, top_block=layers.LastLevelP6P7( cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.fpn_top_in_feature ), strides=cfg.fpn_in_strides, channels=cfg.fpn_in_channels, ) backbone_shape = self.backbone.output_shape() feature_shapes = [backbone_shape[f] for f in self.in_features] # ----------------------- build FreeAnchor Head ----------------- # self.head = layers.BoxHead(cfg, feature_shapes) def preprocess_image(self, image): padded_image = layers.get_padded_tensor(image, 32, 0.0) normed_image = ( padded_image - np.array(self.cfg.img_mean, dtype="float32")[None, :, None, None] ) / np.array(self.cfg.img_std, dtype="float32")[None, :, None, None] return normed_image def forward(self, image, im_info, gt_boxes=None): image = self.preprocess_image(image) features = self.backbone(image) features = [features[f] for f in self.in_features] box_logits, box_offsets = self.head(features) box_logits_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, self.cfg.num_classes) for _ in box_logits ] box_offsets_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, 4) for _ in box_offsets ] anchors_list = self.anchor_generator(features) all_level_box_logits = F.concat(box_logits_list, axis=1) all_level_box_offsets = F.concat(box_offsets_list, axis=1) all_level_anchors = F.concat(anchors_list, axis=0) if self.training: loss_dict = self.get_losses( all_level_anchors, all_level_box_logits, all_level_box_offsets, gt_boxes, im_info ) self.cfg.losses_keys = list(loss_dict.keys()) return loss_dict else: # currently not support multi-batch testing assert image.shape[0] == 1 pred_boxes = self.box_coder.decode( all_level_anchors, all_level_box_offsets[0] ) pred_boxes = pred_boxes.reshape(-1, 4) scale_w = im_info[0, 1] / im_info[0, 3] scale_h = im_info[0, 0] / im_info[0, 2] pred_boxes = pred_boxes / F.concat( [scale_w, scale_h, scale_w, scale_h], axis=0 ) clipped_boxes = layers.get_clipped_boxes( pred_boxes, im_info[0, 2:4] ).reshape(-1, 4) pred_score = F.sigmoid(all_level_box_logits)[0] return pred_score, clipped_boxes def get_losses(self, anchors, pred_logits, pred_offsets, gt_boxes, im_info): # pylint: disable=too-many-statements def positive_bag_loss(logits, axis=1): weight = 1.0 / (1.0 - logits) weight /= weight.sum(axis=axis, keepdims=True) bag_prob = (weight * logits).sum(axis=1) return -layers.safelog(bag_prob) def negative_bag_loss(logits, gamma): return (logits ** gamma) * (-layers.safelog(1.0 - logits)) pred_scores = F.sigmoid(pred_logits) box_prob_list = [] positive_losses = [] clamp_eps = 1e-7 bucket_size = self.cfg.bucket_size for bid in range(im_info.shape[0]): boxes_info = gt_boxes[bid, : im_info[bid, 4].astype("int32")] # id 0 is used for background classes, so -1 first labels = boxes_info[:, 4].astype("int32") - 1 pred_box = self.box_coder.decode(anchors, pred_offsets[bid]).detach() overlaps = layers.get_iou(boxes_info[:, :4], pred_box).detach() thresh1 = self.cfg.box_iou_threshold thresh2 = F.clip( overlaps.max(axis=1, keepdims=True), lower=thresh1 + clamp_eps, upper=1.0 ) gt_pred_prob = F.clip( (overlaps - thresh1) / (thresh2 - thresh1), lower=0, upper=1.0) image_boxes_prob =
F.zeros(pred_logits.shape[1:])
megengine.functional.zeros
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F import megengine.module as M import models.backbones.resnet.model as resnet import layers class FreeAnchor(M.Module): """ Implement RetinaNet (https://arxiv.org/abs/1708.02002). """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=self.cfg.anchor_scales, anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=self.cfg.anchor_offset, ) self.box_coder = layers.BoxCoder(cfg.reg_mean, cfg.reg_std) self.in_features = cfg.in_features # ----------------------- build backbone ------------------------ # bottom_up = getattr(resnet, cfg.backbone)( norm=layers.get_norm(cfg.backbone_norm), pretrained=cfg.backbone_pretrained ) del bottom_up.fc # ----------------------- build FPN ----------------------------- # self.backbone = layers.FPN( bottom_up=bottom_up, in_features=cfg.fpn_in_features, out_channels=cfg.fpn_out_channels, norm=cfg.fpn_norm, top_block=layers.LastLevelP6P7( cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.fpn_top_in_feature ), strides=cfg.fpn_in_strides, channels=cfg.fpn_in_channels, ) backbone_shape = self.backbone.output_shape() feature_shapes = [backbone_shape[f] for f in self.in_features] # ----------------------- build FreeAnchor Head ----------------- # self.head = layers.BoxHead(cfg, feature_shapes) def preprocess_image(self, image): padded_image = layers.get_padded_tensor(image, 32, 0.0) normed_image = ( padded_image - np.array(self.cfg.img_mean, dtype="float32")[None, :, None, None] ) / np.array(self.cfg.img_std, dtype="float32")[None, :, None, None] return normed_image def forward(self, image, im_info, gt_boxes=None): image = self.preprocess_image(image) features = self.backbone(image) features = [features[f] for f in self.in_features] box_logits, box_offsets = self.head(features) box_logits_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, self.cfg.num_classes) for _ in box_logits ] box_offsets_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, 4) for _ in box_offsets ] anchors_list = self.anchor_generator(features) all_level_box_logits = F.concat(box_logits_list, axis=1) all_level_box_offsets = F.concat(box_offsets_list, axis=1) all_level_anchors = F.concat(anchors_list, axis=0) if self.training: loss_dict = self.get_losses( all_level_anchors, all_level_box_logits, all_level_box_offsets, gt_boxes, im_info ) self.cfg.losses_keys = list(loss_dict.keys()) return loss_dict else: # currently not support multi-batch testing assert image.shape[0] == 1 pred_boxes = self.box_coder.decode( all_level_anchors, all_level_box_offsets[0] ) pred_boxes = pred_boxes.reshape(-1, 4) scale_w = im_info[0, 1] / im_info[0, 3] scale_h = im_info[0, 0] / im_info[0, 2] pred_boxes = pred_boxes / F.concat( [scale_w, scale_h, scale_w, scale_h], axis=0 ) clipped_boxes = layers.get_clipped_boxes( pred_boxes, im_info[0, 2:4] ).reshape(-1, 4) pred_score = F.sigmoid(all_level_box_logits)[0] return pred_score, clipped_boxes def get_losses(self, anchors, pred_logits, pred_offsets, gt_boxes, im_info): # pylint: disable=too-many-statements def positive_bag_loss(logits, axis=1): weight = 1.0 / (1.0 - logits) weight /= weight.sum(axis=axis, keepdims=True) bag_prob = (weight * logits).sum(axis=1) return -layers.safelog(bag_prob) def negative_bag_loss(logits, gamma): return (logits ** gamma) * (-layers.safelog(1.0 - logits)) pred_scores = F.sigmoid(pred_logits) box_prob_list = [] positive_losses = [] clamp_eps = 1e-7 bucket_size = self.cfg.bucket_size for bid in range(im_info.shape[0]): boxes_info = gt_boxes[bid, : im_info[bid, 4].astype("int32")] # id 0 is used for background classes, so -1 first labels = boxes_info[:, 4].astype("int32") - 1 pred_box = self.box_coder.decode(anchors, pred_offsets[bid]).detach() overlaps = layers.get_iou(boxes_info[:, :4], pred_box).detach() thresh1 = self.cfg.box_iou_threshold thresh2 = F.clip( overlaps.max(axis=1, keepdims=True), lower=thresh1 + clamp_eps, upper=1.0 ) gt_pred_prob = F.clip( (overlaps - thresh1) / (thresh2 - thresh1), lower=0, upper=1.0) image_boxes_prob = F.zeros(pred_logits.shape[1:]).detach() # guarantee that nonzero_idx is not empty if gt_pred_prob.max() > clamp_eps: _, nonzero_idx = F.cond_take(gt_pred_prob != 0, gt_pred_prob) # since nonzeros is only 1 dim, use num_anchor to get real indices num_anchors = gt_pred_prob.shape[1] anchors_idx = nonzero_idx % num_anchors gt_idx = nonzero_idx // num_anchors image_boxes_prob[anchors_idx, labels[gt_idx]] = gt_pred_prob[gt_idx, anchors_idx] box_prob_list.append(image_boxes_prob) # construct bags for objects match_quality_matrix = layers.get_iou(boxes_info[:, :4], anchors).detach() num_gt = match_quality_matrix.shape[0] _, matched_idx = F.topk( match_quality_matrix, k=bucket_size, descending=True, no_sort=True, ) matched_idx = matched_idx.detach() matched_idx_flatten = matched_idx.reshape(-1) gather_idx = labels.reshape(-1, 1) gather_idx = F.broadcast_to(gather_idx, (num_gt, bucket_size)) gather_src = pred_scores[bid, matched_idx_flatten] gather_src = gather_src.reshape(num_gt, bucket_size, -1) matched_score = F.indexing_one_hot(gather_src, gather_idx, axis=2) topk_anchors = anchors[matched_idx_flatten] boxes_broad_cast = F.broadcast_to( F.expand_dims(boxes_info[:, :4], axis=1), (num_gt, bucket_size, 4) ).reshape(-1, 4) matched_offsets = self.box_coder.encode(topk_anchors, boxes_broad_cast) reg_loss = layers.smooth_l1_loss( pred_offsets[bid, matched_idx_flatten], matched_offsets, beta=self.cfg.smooth_l1_beta ).sum(axis=-1) * self.cfg.reg_loss_weight matched_reg_scores = F.exp(-reg_loss) positive_losses.append( positive_bag_loss( matched_score * matched_reg_scores.reshape(-1, bucket_size), axis=1 ) ) num_foreground = im_info[:, 4].sum() pos_loss =
F.concat(positive_losses)
megengine.functional.concat
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F import megengine.module as M import models.backbones.resnet.model as resnet import layers class FreeAnchor(M.Module): """ Implement RetinaNet (https://arxiv.org/abs/1708.02002). """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=self.cfg.anchor_scales, anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=self.cfg.anchor_offset, ) self.box_coder = layers.BoxCoder(cfg.reg_mean, cfg.reg_std) self.in_features = cfg.in_features # ----------------------- build backbone ------------------------ # bottom_up = getattr(resnet, cfg.backbone)( norm=layers.get_norm(cfg.backbone_norm), pretrained=cfg.backbone_pretrained ) del bottom_up.fc # ----------------------- build FPN ----------------------------- # self.backbone = layers.FPN( bottom_up=bottom_up, in_features=cfg.fpn_in_features, out_channels=cfg.fpn_out_channels, norm=cfg.fpn_norm, top_block=layers.LastLevelP6P7( cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.fpn_top_in_feature ), strides=cfg.fpn_in_strides, channels=cfg.fpn_in_channels, ) backbone_shape = self.backbone.output_shape() feature_shapes = [backbone_shape[f] for f in self.in_features] # ----------------------- build FreeAnchor Head ----------------- # self.head = layers.BoxHead(cfg, feature_shapes) def preprocess_image(self, image): padded_image = layers.get_padded_tensor(image, 32, 0.0) normed_image = ( padded_image - np.array(self.cfg.img_mean, dtype="float32")[None, :, None, None] ) / np.array(self.cfg.img_std, dtype="float32")[None, :, None, None] return normed_image def forward(self, image, im_info, gt_boxes=None): image = self.preprocess_image(image) features = self.backbone(image) features = [features[f] for f in self.in_features] box_logits, box_offsets = self.head(features) box_logits_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, self.cfg.num_classes) for _ in box_logits ] box_offsets_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, 4) for _ in box_offsets ] anchors_list = self.anchor_generator(features) all_level_box_logits = F.concat(box_logits_list, axis=1) all_level_box_offsets = F.concat(box_offsets_list, axis=1) all_level_anchors = F.concat(anchors_list, axis=0) if self.training: loss_dict = self.get_losses( all_level_anchors, all_level_box_logits, all_level_box_offsets, gt_boxes, im_info ) self.cfg.losses_keys = list(loss_dict.keys()) return loss_dict else: # currently not support multi-batch testing assert image.shape[0] == 1 pred_boxes = self.box_coder.decode( all_level_anchors, all_level_box_offsets[0] ) pred_boxes = pred_boxes.reshape(-1, 4) scale_w = im_info[0, 1] / im_info[0, 3] scale_h = im_info[0, 0] / im_info[0, 2] pred_boxes = pred_boxes / F.concat( [scale_w, scale_h, scale_w, scale_h], axis=0 ) clipped_boxes = layers.get_clipped_boxes( pred_boxes, im_info[0, 2:4] ).reshape(-1, 4) pred_score = F.sigmoid(all_level_box_logits)[0] return pred_score, clipped_boxes def get_losses(self, anchors, pred_logits, pred_offsets, gt_boxes, im_info): # pylint: disable=too-many-statements def positive_bag_loss(logits, axis=1): weight = 1.0 / (1.0 - logits) weight /= weight.sum(axis=axis, keepdims=True) bag_prob = (weight * logits).sum(axis=1) return -layers.safelog(bag_prob) def negative_bag_loss(logits, gamma): return (logits ** gamma) * (-layers.safelog(1.0 - logits)) pred_scores = F.sigmoid(pred_logits) box_prob_list = [] positive_losses = [] clamp_eps = 1e-7 bucket_size = self.cfg.bucket_size for bid in range(im_info.shape[0]): boxes_info = gt_boxes[bid, : im_info[bid, 4].astype("int32")] # id 0 is used for background classes, so -1 first labels = boxes_info[:, 4].astype("int32") - 1 pred_box = self.box_coder.decode(anchors, pred_offsets[bid]).detach() overlaps = layers.get_iou(boxes_info[:, :4], pred_box).detach() thresh1 = self.cfg.box_iou_threshold thresh2 = F.clip( overlaps.max(axis=1, keepdims=True), lower=thresh1 + clamp_eps, upper=1.0 ) gt_pred_prob = F.clip( (overlaps - thresh1) / (thresh2 - thresh1), lower=0, upper=1.0) image_boxes_prob = F.zeros(pred_logits.shape[1:]).detach() # guarantee that nonzero_idx is not empty if gt_pred_prob.max() > clamp_eps: _, nonzero_idx = F.cond_take(gt_pred_prob != 0, gt_pred_prob) # since nonzeros is only 1 dim, use num_anchor to get real indices num_anchors = gt_pred_prob.shape[1] anchors_idx = nonzero_idx % num_anchors gt_idx = nonzero_idx // num_anchors image_boxes_prob[anchors_idx, labels[gt_idx]] = gt_pred_prob[gt_idx, anchors_idx] box_prob_list.append(image_boxes_prob) # construct bags for objects match_quality_matrix = layers.get_iou(boxes_info[:, :4], anchors).detach() num_gt = match_quality_matrix.shape[0] _, matched_idx = F.topk( match_quality_matrix, k=bucket_size, descending=True, no_sort=True, ) matched_idx = matched_idx.detach() matched_idx_flatten = matched_idx.reshape(-1) gather_idx = labels.reshape(-1, 1) gather_idx = F.broadcast_to(gather_idx, (num_gt, bucket_size)) gather_src = pred_scores[bid, matched_idx_flatten] gather_src = gather_src.reshape(num_gt, bucket_size, -1) matched_score = F.indexing_one_hot(gather_src, gather_idx, axis=2) topk_anchors = anchors[matched_idx_flatten] boxes_broad_cast = F.broadcast_to(
F.expand_dims(boxes_info[:, :4], axis=1)
megengine.functional.expand_dims
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.hub as hub import megengine.module as M import official.vision.classification.resnet.model as resnet import numpy as np class DeconvLayers(M.Module): def __init__(self, nf1, nf2s, kernels, num_layers, bias=True, norm=M.BatchNorm2d): super(DeconvLayers, self).__init__() _body = [] for i in range(num_layers): kernel = kernels[i] padding = ( kernel // 3 ) # padding=0 when kernel=2 and padding=1 when kernel=4 or kernel=3 _body += [ M.ConvTranspose2d(nf1, nf2s[i], kernel, 2, padding, bias=bias), norm(nf2s[i]), M.ReLU(), ] nf1 = nf2s[i] self.body = M.Sequential(*_body) def forward(self, x): return self.body(x) class SimpleBaseline(M.Module): def __init__(self, backbone, cfg): super(SimpleBaseline, self).__init__() norm = M.BatchNorm2d self.backbone = getattr(resnet, backbone)( norm=norm, pretrained=cfg.backbone_pretrained ) del self.backbone.fc self.cfg = cfg self.deconv_layers = DeconvLayers( cfg.initial_deconv_channels, cfg.deconv_channels, cfg.deconv_kernel_sizes, cfg.num_deconv_layers, cfg.deconv_with_bias, norm, ) self.last_layer = M.Conv2d(cfg.deconv_channels[-1], cfg.keypoint_num, 3, 1, 1) self._initialize_weights() self.inputs = { "image": mge.tensor(dtype="float32"), "heatmap": mge.tensor(dtype="float32"), "heat_valid": mge.tensor(dtype="float32"), } def calc_loss(self): out = self.forward(self.inputs["image"]) valid = self.inputs["heat_valid"][:, :, None, None] label = self.inputs["heatmap"][:, -1] loss = F.square_loss(out * valid, label * valid) return loss def predict(self): return self.forward(self.inputs["image"]) def _initialize_weights(self): for k, m in self.deconv_layers.named_modules(): if isinstance(m, M.ConvTranspose2d): M.init.normal_(m.weight, std=0.001) if self.cfg.deconv_with_bias: M.init.zeros_(m.bias) if isinstance(m, M.BatchNorm2d): M.init.ones_(m.weight) M.init.zeros_(m.bias) M.init.normal_(self.last_layer.weight, std=0.001) M.init.zeros_(self.last_layer.bias) def forward(self, x): f = self.backbone.extract_features(x)["res5"] f = self.deconv_layers(f) pred = self.last_layer(f) return pred class SimpleBaseline_Config: initial_deconv_channels = 2048 num_deconv_layers = 3 deconv_channels = [256, 256, 256] deconv_kernel_sizes = [4, 4, 4] deconv_with_bias = False keypoint_num = 17 backbone_pretrained = True cfg = SimpleBaseline_Config() @
hub.pretrained( "https://data.megengine.org.cn/models/weights/simplebaseline50_256x192_0_255_71_2.pkl" )
megengine.hub.pretrained
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.hub as hub import megengine.module as M import official.vision.classification.resnet.model as resnet import numpy as np class DeconvLayers(M.Module): def __init__(self, nf1, nf2s, kernels, num_layers, bias=True, norm=M.BatchNorm2d): super(DeconvLayers, self).__init__() _body = [] for i in range(num_layers): kernel = kernels[i] padding = ( kernel // 3 ) # padding=0 when kernel=2 and padding=1 when kernel=4 or kernel=3 _body += [ M.ConvTranspose2d(nf1, nf2s[i], kernel, 2, padding, bias=bias), norm(nf2s[i]), M.ReLU(), ] nf1 = nf2s[i] self.body = M.Sequential(*_body) def forward(self, x): return self.body(x) class SimpleBaseline(M.Module): def __init__(self, backbone, cfg): super(SimpleBaseline, self).__init__() norm = M.BatchNorm2d self.backbone = getattr(resnet, backbone)( norm=norm, pretrained=cfg.backbone_pretrained ) del self.backbone.fc self.cfg = cfg self.deconv_layers = DeconvLayers( cfg.initial_deconv_channels, cfg.deconv_channels, cfg.deconv_kernel_sizes, cfg.num_deconv_layers, cfg.deconv_with_bias, norm, ) self.last_layer = M.Conv2d(cfg.deconv_channels[-1], cfg.keypoint_num, 3, 1, 1) self._initialize_weights() self.inputs = { "image": mge.tensor(dtype="float32"), "heatmap": mge.tensor(dtype="float32"), "heat_valid": mge.tensor(dtype="float32"), } def calc_loss(self): out = self.forward(self.inputs["image"]) valid = self.inputs["heat_valid"][:, :, None, None] label = self.inputs["heatmap"][:, -1] loss = F.square_loss(out * valid, label * valid) return loss def predict(self): return self.forward(self.inputs["image"]) def _initialize_weights(self): for k, m in self.deconv_layers.named_modules(): if isinstance(m, M.ConvTranspose2d): M.init.normal_(m.weight, std=0.001) if self.cfg.deconv_with_bias: M.init.zeros_(m.bias) if isinstance(m, M.BatchNorm2d): M.init.ones_(m.weight) M.init.zeros_(m.bias) M.init.normal_(self.last_layer.weight, std=0.001) M.init.zeros_(self.last_layer.bias) def forward(self, x): f = self.backbone.extract_features(x)["res5"] f = self.deconv_layers(f) pred = self.last_layer(f) return pred class SimpleBaseline_Config: initial_deconv_channels = 2048 num_deconv_layers = 3 deconv_channels = [256, 256, 256] deconv_kernel_sizes = [4, 4, 4] deconv_with_bias = False keypoint_num = 17 backbone_pretrained = True cfg = SimpleBaseline_Config() @hub.pretrained( "https://data.megengine.org.cn/models/weights/simplebaseline50_256x192_0_255_71_2.pkl" ) def simplebaseline_res50(**kwargs): model = SimpleBaseline(backbone="resnet50", cfg=cfg, **kwargs) return model @
hub.pretrained( "https://data.megengine.org.cn/models/weights/simplebaseline101_256x192_0_255_72_2.pkl" )
megengine.hub.pretrained
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.hub as hub import megengine.module as M import official.vision.classification.resnet.model as resnet import numpy as np class DeconvLayers(M.Module): def __init__(self, nf1, nf2s, kernels, num_layers, bias=True, norm=M.BatchNorm2d): super(DeconvLayers, self).__init__() _body = [] for i in range(num_layers): kernel = kernels[i] padding = ( kernel // 3 ) # padding=0 when kernel=2 and padding=1 when kernel=4 or kernel=3 _body += [ M.ConvTranspose2d(nf1, nf2s[i], kernel, 2, padding, bias=bias), norm(nf2s[i]), M.ReLU(), ] nf1 = nf2s[i] self.body = M.Sequential(*_body) def forward(self, x): return self.body(x) class SimpleBaseline(M.Module): def __init__(self, backbone, cfg): super(SimpleBaseline, self).__init__() norm = M.BatchNorm2d self.backbone = getattr(resnet, backbone)( norm=norm, pretrained=cfg.backbone_pretrained ) del self.backbone.fc self.cfg = cfg self.deconv_layers = DeconvLayers( cfg.initial_deconv_channels, cfg.deconv_channels, cfg.deconv_kernel_sizes, cfg.num_deconv_layers, cfg.deconv_with_bias, norm, ) self.last_layer = M.Conv2d(cfg.deconv_channels[-1], cfg.keypoint_num, 3, 1, 1) self._initialize_weights() self.inputs = { "image": mge.tensor(dtype="float32"), "heatmap": mge.tensor(dtype="float32"), "heat_valid": mge.tensor(dtype="float32"), } def calc_loss(self): out = self.forward(self.inputs["image"]) valid = self.inputs["heat_valid"][:, :, None, None] label = self.inputs["heatmap"][:, -1] loss = F.square_loss(out * valid, label * valid) return loss def predict(self): return self.forward(self.inputs["image"]) def _initialize_weights(self): for k, m in self.deconv_layers.named_modules(): if isinstance(m, M.ConvTranspose2d): M.init.normal_(m.weight, std=0.001) if self.cfg.deconv_with_bias: M.init.zeros_(m.bias) if isinstance(m, M.BatchNorm2d): M.init.ones_(m.weight) M.init.zeros_(m.bias) M.init.normal_(self.last_layer.weight, std=0.001) M.init.zeros_(self.last_layer.bias) def forward(self, x): f = self.backbone.extract_features(x)["res5"] f = self.deconv_layers(f) pred = self.last_layer(f) return pred class SimpleBaseline_Config: initial_deconv_channels = 2048 num_deconv_layers = 3 deconv_channels = [256, 256, 256] deconv_kernel_sizes = [4, 4, 4] deconv_with_bias = False keypoint_num = 17 backbone_pretrained = True cfg = SimpleBaseline_Config() @hub.pretrained( "https://data.megengine.org.cn/models/weights/simplebaseline50_256x192_0_255_71_2.pkl" ) def simplebaseline_res50(**kwargs): model = SimpleBaseline(backbone="resnet50", cfg=cfg, **kwargs) return model @hub.pretrained( "https://data.megengine.org.cn/models/weights/simplebaseline101_256x192_0_255_72_2.pkl" ) def simplebaseline_res101(**kwargs): model = SimpleBaseline(backbone="resnet101", cfg=cfg, **kwargs) return model @
hub.pretrained( "https://data.megengine.org.cn/models/weights/simplebaseline152_256x192_0_255_72_4.pkl" )
megengine.hub.pretrained
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.hub as hub import megengine.module as M import official.vision.classification.resnet.model as resnet import numpy as np class DeconvLayers(M.Module): def __init__(self, nf1, nf2s, kernels, num_layers, bias=True, norm=M.BatchNorm2d): super(DeconvLayers, self).__init__() _body = [] for i in range(num_layers): kernel = kernels[i] padding = ( kernel // 3 ) # padding=0 when kernel=2 and padding=1 when kernel=4 or kernel=3 _body += [ M.ConvTranspose2d(nf1, nf2s[i], kernel, 2, padding, bias=bias), norm(nf2s[i]), M.ReLU(), ] nf1 = nf2s[i] self.body =
M.Sequential(*_body)
megengine.module.Sequential
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.hub as hub import megengine.module as M import official.vision.classification.resnet.model as resnet import numpy as np class DeconvLayers(M.Module): def __init__(self, nf1, nf2s, kernels, num_layers, bias=True, norm=M.BatchNorm2d): super(DeconvLayers, self).__init__() _body = [] for i in range(num_layers): kernel = kernels[i] padding = ( kernel // 3 ) # padding=0 when kernel=2 and padding=1 when kernel=4 or kernel=3 _body += [ M.ConvTranspose2d(nf1, nf2s[i], kernel, 2, padding, bias=bias), norm(nf2s[i]), M.ReLU(), ] nf1 = nf2s[i] self.body = M.Sequential(*_body) def forward(self, x): return self.body(x) class SimpleBaseline(M.Module): def __init__(self, backbone, cfg): super(SimpleBaseline, self).__init__() norm = M.BatchNorm2d self.backbone = getattr(resnet, backbone)( norm=norm, pretrained=cfg.backbone_pretrained ) del self.backbone.fc self.cfg = cfg self.deconv_layers = DeconvLayers( cfg.initial_deconv_channels, cfg.deconv_channels, cfg.deconv_kernel_sizes, cfg.num_deconv_layers, cfg.deconv_with_bias, norm, ) self.last_layer =
M.Conv2d(cfg.deconv_channels[-1], cfg.keypoint_num, 3, 1, 1)
megengine.module.Conv2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.hub as hub import megengine.module as M import official.vision.classification.resnet.model as resnet import numpy as np class DeconvLayers(M.Module): def __init__(self, nf1, nf2s, kernels, num_layers, bias=True, norm=M.BatchNorm2d): super(DeconvLayers, self).__init__() _body = [] for i in range(num_layers): kernel = kernels[i] padding = ( kernel // 3 ) # padding=0 when kernel=2 and padding=1 when kernel=4 or kernel=3 _body += [ M.ConvTranspose2d(nf1, nf2s[i], kernel, 2, padding, bias=bias), norm(nf2s[i]), M.ReLU(), ] nf1 = nf2s[i] self.body = M.Sequential(*_body) def forward(self, x): return self.body(x) class SimpleBaseline(M.Module): def __init__(self, backbone, cfg): super(SimpleBaseline, self).__init__() norm = M.BatchNorm2d self.backbone = getattr(resnet, backbone)( norm=norm, pretrained=cfg.backbone_pretrained ) del self.backbone.fc self.cfg = cfg self.deconv_layers = DeconvLayers( cfg.initial_deconv_channels, cfg.deconv_channels, cfg.deconv_kernel_sizes, cfg.num_deconv_layers, cfg.deconv_with_bias, norm, ) self.last_layer = M.Conv2d(cfg.deconv_channels[-1], cfg.keypoint_num, 3, 1, 1) self._initialize_weights() self.inputs = { "image": mge.tensor(dtype="float32"), "heatmap": mge.tensor(dtype="float32"), "heat_valid": mge.tensor(dtype="float32"), } def calc_loss(self): out = self.forward(self.inputs["image"]) valid = self.inputs["heat_valid"][:, :, None, None] label = self.inputs["heatmap"][:, -1] loss =
F.square_loss(out * valid, label * valid)
megengine.functional.square_loss
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.hub as hub import megengine.module as M import official.vision.classification.resnet.model as resnet import numpy as np class DeconvLayers(M.Module): def __init__(self, nf1, nf2s, kernels, num_layers, bias=True, norm=M.BatchNorm2d): super(DeconvLayers, self).__init__() _body = [] for i in range(num_layers): kernel = kernels[i] padding = ( kernel // 3 ) # padding=0 when kernel=2 and padding=1 when kernel=4 or kernel=3 _body += [ M.ConvTranspose2d(nf1, nf2s[i], kernel, 2, padding, bias=bias), norm(nf2s[i]), M.ReLU(), ] nf1 = nf2s[i] self.body = M.Sequential(*_body) def forward(self, x): return self.body(x) class SimpleBaseline(M.Module): def __init__(self, backbone, cfg): super(SimpleBaseline, self).__init__() norm = M.BatchNorm2d self.backbone = getattr(resnet, backbone)( norm=norm, pretrained=cfg.backbone_pretrained ) del self.backbone.fc self.cfg = cfg self.deconv_layers = DeconvLayers( cfg.initial_deconv_channels, cfg.deconv_channels, cfg.deconv_kernel_sizes, cfg.num_deconv_layers, cfg.deconv_with_bias, norm, ) self.last_layer = M.Conv2d(cfg.deconv_channels[-1], cfg.keypoint_num, 3, 1, 1) self._initialize_weights() self.inputs = { "image": mge.tensor(dtype="float32"), "heatmap": mge.tensor(dtype="float32"), "heat_valid": mge.tensor(dtype="float32"), } def calc_loss(self): out = self.forward(self.inputs["image"]) valid = self.inputs["heat_valid"][:, :, None, None] label = self.inputs["heatmap"][:, -1] loss = F.square_loss(out * valid, label * valid) return loss def predict(self): return self.forward(self.inputs["image"]) def _initialize_weights(self): for k, m in self.deconv_layers.named_modules(): if isinstance(m, M.ConvTranspose2d): M.init.normal_(m.weight, std=0.001) if self.cfg.deconv_with_bias: M.init.zeros_(m.bias) if isinstance(m, M.BatchNorm2d): M.init.ones_(m.weight) M.init.zeros_(m.bias)
M.init.normal_(self.last_layer.weight, std=0.001)
megengine.module.init.normal_
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.hub as hub import megengine.module as M import official.vision.classification.resnet.model as resnet import numpy as np class DeconvLayers(M.Module): def __init__(self, nf1, nf2s, kernels, num_layers, bias=True, norm=M.BatchNorm2d): super(DeconvLayers, self).__init__() _body = [] for i in range(num_layers): kernel = kernels[i] padding = ( kernel // 3 ) # padding=0 when kernel=2 and padding=1 when kernel=4 or kernel=3 _body += [ M.ConvTranspose2d(nf1, nf2s[i], kernel, 2, padding, bias=bias), norm(nf2s[i]), M.ReLU(), ] nf1 = nf2s[i] self.body = M.Sequential(*_body) def forward(self, x): return self.body(x) class SimpleBaseline(M.Module): def __init__(self, backbone, cfg): super(SimpleBaseline, self).__init__() norm = M.BatchNorm2d self.backbone = getattr(resnet, backbone)( norm=norm, pretrained=cfg.backbone_pretrained ) del self.backbone.fc self.cfg = cfg self.deconv_layers = DeconvLayers( cfg.initial_deconv_channels, cfg.deconv_channels, cfg.deconv_kernel_sizes, cfg.num_deconv_layers, cfg.deconv_with_bias, norm, ) self.last_layer = M.Conv2d(cfg.deconv_channels[-1], cfg.keypoint_num, 3, 1, 1) self._initialize_weights() self.inputs = { "image": mge.tensor(dtype="float32"), "heatmap": mge.tensor(dtype="float32"), "heat_valid": mge.tensor(dtype="float32"), } def calc_loss(self): out = self.forward(self.inputs["image"]) valid = self.inputs["heat_valid"][:, :, None, None] label = self.inputs["heatmap"][:, -1] loss = F.square_loss(out * valid, label * valid) return loss def predict(self): return self.forward(self.inputs["image"]) def _initialize_weights(self): for k, m in self.deconv_layers.named_modules(): if isinstance(m, M.ConvTranspose2d): M.init.normal_(m.weight, std=0.001) if self.cfg.deconv_with_bias: M.init.zeros_(m.bias) if isinstance(m, M.BatchNorm2d): M.init.ones_(m.weight) M.init.zeros_(m.bias) M.init.normal_(self.last_layer.weight, std=0.001)
M.init.zeros_(self.last_layer.bias)
megengine.module.init.zeros_
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.hub as hub import megengine.module as M import official.vision.classification.resnet.model as resnet import numpy as np class DeconvLayers(M.Module): def __init__(self, nf1, nf2s, kernels, num_layers, bias=True, norm=M.BatchNorm2d): super(DeconvLayers, self).__init__() _body = [] for i in range(num_layers): kernel = kernels[i] padding = ( kernel // 3 ) # padding=0 when kernel=2 and padding=1 when kernel=4 or kernel=3 _body += [ M.ConvTranspose2d(nf1, nf2s[i], kernel, 2, padding, bias=bias), norm(nf2s[i]), M.ReLU(), ] nf1 = nf2s[i] self.body = M.Sequential(*_body) def forward(self, x): return self.body(x) class SimpleBaseline(M.Module): def __init__(self, backbone, cfg): super(SimpleBaseline, self).__init__() norm = M.BatchNorm2d self.backbone = getattr(resnet, backbone)( norm=norm, pretrained=cfg.backbone_pretrained ) del self.backbone.fc self.cfg = cfg self.deconv_layers = DeconvLayers( cfg.initial_deconv_channels, cfg.deconv_channels, cfg.deconv_kernel_sizes, cfg.num_deconv_layers, cfg.deconv_with_bias, norm, ) self.last_layer = M.Conv2d(cfg.deconv_channels[-1], cfg.keypoint_num, 3, 1, 1) self._initialize_weights() self.inputs = { "image":
mge.tensor(dtype="float32")
megengine.tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.hub as hub import megengine.module as M import official.vision.classification.resnet.model as resnet import numpy as np class DeconvLayers(M.Module): def __init__(self, nf1, nf2s, kernels, num_layers, bias=True, norm=M.BatchNorm2d): super(DeconvLayers, self).__init__() _body = [] for i in range(num_layers): kernel = kernels[i] padding = ( kernel // 3 ) # padding=0 when kernel=2 and padding=1 when kernel=4 or kernel=3 _body += [ M.ConvTranspose2d(nf1, nf2s[i], kernel, 2, padding, bias=bias), norm(nf2s[i]), M.ReLU(), ] nf1 = nf2s[i] self.body = M.Sequential(*_body) def forward(self, x): return self.body(x) class SimpleBaseline(M.Module): def __init__(self, backbone, cfg): super(SimpleBaseline, self).__init__() norm = M.BatchNorm2d self.backbone = getattr(resnet, backbone)( norm=norm, pretrained=cfg.backbone_pretrained ) del self.backbone.fc self.cfg = cfg self.deconv_layers = DeconvLayers( cfg.initial_deconv_channels, cfg.deconv_channels, cfg.deconv_kernel_sizes, cfg.num_deconv_layers, cfg.deconv_with_bias, norm, ) self.last_layer = M.Conv2d(cfg.deconv_channels[-1], cfg.keypoint_num, 3, 1, 1) self._initialize_weights() self.inputs = { "image": mge.tensor(dtype="float32"), "heatmap":
mge.tensor(dtype="float32")
megengine.tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.hub as hub import megengine.module as M import official.vision.classification.resnet.model as resnet import numpy as np class DeconvLayers(M.Module): def __init__(self, nf1, nf2s, kernels, num_layers, bias=True, norm=M.BatchNorm2d): super(DeconvLayers, self).__init__() _body = [] for i in range(num_layers): kernel = kernels[i] padding = ( kernel // 3 ) # padding=0 when kernel=2 and padding=1 when kernel=4 or kernel=3 _body += [ M.ConvTranspose2d(nf1, nf2s[i], kernel, 2, padding, bias=bias), norm(nf2s[i]), M.ReLU(), ] nf1 = nf2s[i] self.body = M.Sequential(*_body) def forward(self, x): return self.body(x) class SimpleBaseline(M.Module): def __init__(self, backbone, cfg): super(SimpleBaseline, self).__init__() norm = M.BatchNorm2d self.backbone = getattr(resnet, backbone)( norm=norm, pretrained=cfg.backbone_pretrained ) del self.backbone.fc self.cfg = cfg self.deconv_layers = DeconvLayers( cfg.initial_deconv_channels, cfg.deconv_channels, cfg.deconv_kernel_sizes, cfg.num_deconv_layers, cfg.deconv_with_bias, norm, ) self.last_layer = M.Conv2d(cfg.deconv_channels[-1], cfg.keypoint_num, 3, 1, 1) self._initialize_weights() self.inputs = { "image": mge.tensor(dtype="float32"), "heatmap": mge.tensor(dtype="float32"), "heat_valid":
mge.tensor(dtype="float32")
megengine.tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.hub as hub import megengine.module as M import official.vision.classification.resnet.model as resnet import numpy as np class DeconvLayers(M.Module): def __init__(self, nf1, nf2s, kernels, num_layers, bias=True, norm=M.BatchNorm2d): super(DeconvLayers, self).__init__() _body = [] for i in range(num_layers): kernel = kernels[i] padding = ( kernel // 3 ) # padding=0 when kernel=2 and padding=1 when kernel=4 or kernel=3 _body += [
M.ConvTranspose2d(nf1, nf2s[i], kernel, 2, padding, bias=bias)
megengine.module.ConvTranspose2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.hub as hub import megengine.module as M import official.vision.classification.resnet.model as resnet import numpy as np class DeconvLayers(M.Module): def __init__(self, nf1, nf2s, kernels, num_layers, bias=True, norm=M.BatchNorm2d): super(DeconvLayers, self).__init__() _body = [] for i in range(num_layers): kernel = kernels[i] padding = ( kernel // 3 ) # padding=0 when kernel=2 and padding=1 when kernel=4 or kernel=3 _body += [ M.ConvTranspose2d(nf1, nf2s[i], kernel, 2, padding, bias=bias), norm(nf2s[i]),
M.ReLU()
megengine.module.ReLU