prompt
stringlengths
94
42.6k
completion
stringlengths
6
120
api
stringlengths
14
68
import platform import numpy as np import pytest import megengine as mge import megengine.distributed as dist from megengine.distributed.helper import get_device_count_by_fork from megengine.quantization.observer import ( ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver, ) def test_observer(): with pytest.raises(TypeError): Observer("qint8") def test_min_max_observer(): x = np.random.rand(3, 3, 3, 3).astype("float32") np_min, np_max = x.min(), x.max() x = mge.tensor(x) m = MinMaxObserver() m(x) np.testing.assert_allclose(m.min_val.numpy(), np_min) np.testing.assert_allclose(m.max_val.numpy(), np_max) def test_exponential_moving_average_observer(): t = np.random.rand() x1 = np.random.rand(3, 3, 3, 3).astype("float32") x2 = np.random.rand(3, 3, 3, 3).astype("float32") expected_min = x1.min() * t + x2.min() * (1 - t) expected_max = x1.max() * t + x2.max() * (1 - t) m = ExponentialMovingAverageObserver(momentum=t) m(mge.tensor(x1, dtype=np.float32)) m(mge.tensor(x2, dtype=np.float32)) np.testing.assert_allclose(m.min_val.numpy(), expected_min) np.testing.assert_allclose(m.max_val.numpy(), expected_max) def test_passive_observer(): q_dict = {"scale": mge.tensor(1.0)} m = PassiveObserver(q_dict, "qint8") assert m.orig_scale == 1.0 assert m.scale == 1.0 m.scale = 2.0 assert m.scale == 2.0 assert m.get_qparams() == {"scale": mge.tensor(2.0)} @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.skipif(
get_device_count_by_fork("gpu")
megengine.distributed.helper.get_device_count_by_fork
import platform import numpy as np import pytest import megengine as mge import megengine.distributed as dist from megengine.distributed.helper import get_device_count_by_fork from megengine.quantization.observer import ( ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver, ) def test_observer(): with pytest.raises(TypeError): Observer("qint8") def test_min_max_observer(): x = np.random.rand(3, 3, 3, 3).astype("float32") np_min, np_max = x.min(), x.max() x = mge.tensor(x) m = MinMaxObserver() m(x) np.testing.assert_allclose(m.min_val.numpy(), np_min) np.testing.assert_allclose(m.max_val.numpy(), np_max) def test_exponential_moving_average_observer(): t = np.random.rand() x1 = np.random.rand(3, 3, 3, 3).astype("float32") x2 = np.random.rand(3, 3, 3, 3).astype("float32") expected_min = x1.min() * t + x2.min() * (1 - t) expected_max = x1.max() * t + x2.max() * (1 - t) m = ExponentialMovingAverageObserver(momentum=t) m(mge.tensor(x1, dtype=np.float32)) m(mge.tensor(x2, dtype=np.float32)) np.testing.assert_allclose(m.min_val.numpy(), expected_min) np.testing.assert_allclose(m.max_val.numpy(), expected_max) def test_passive_observer(): q_dict = {"scale": mge.tensor(1.0)} m = PassiveObserver(q_dict, "qint8") assert m.orig_scale == 1.0 assert m.scale == 1.0 m.scale = 2.0 assert m.scale == 2.0 assert m.get_qparams() == {"scale": mge.tensor(2.0)} @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.skipif(get_device_count_by_fork("gpu") < 2, reason="need more gpu device") @pytest.mark.isolated_distributed def test_sync_min_max_observer(): word_size = get_device_count_by_fork("gpu") x = np.random.rand(3 * word_size, 3, 3, 3).astype("float32") np_min, np_max = x.min(), x.max() @dist.launcher def worker(): rank = dist.get_rank() m = SyncMinMaxObserver() y = mge.tensor(x[rank * 3 : (rank + 1) * 3]) m(y) assert m.min_val == np_min and m.max_val == np_max worker() @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.skipif(get_device_count_by_fork("gpu") < 2, reason="need more gpu device") @pytest.mark.isolated_distributed def test_sync_exponential_moving_average_observer(): word_size = get_device_count_by_fork("gpu") t = np.random.rand() x1 = np.random.rand(3 * word_size, 3, 3, 3).astype("float32") x2 = np.random.rand(3 * word_size, 3, 3, 3).astype("float32") expected_min = x1.min() * t + x2.min() * (1 - t) expected_max = x1.max() * t + x2.max() * (1 - t) @dist.launcher def worker(): rank =
dist.get_rank()
megengine.distributed.get_rank
import platform import numpy as np import pytest import megengine as mge import megengine.distributed as dist from megengine.distributed.helper import get_device_count_by_fork from megengine.quantization.observer import ( ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver, ) def test_observer(): with pytest.raises(TypeError): Observer("qint8") def test_min_max_observer(): x = np.random.rand(3, 3, 3, 3).astype("float32") np_min, np_max = x.min(), x.max() x = mge.tensor(x) m = MinMaxObserver() m(x) np.testing.assert_allclose(m.min_val.numpy(), np_min) np.testing.assert_allclose(m.max_val.numpy(), np_max) def test_exponential_moving_average_observer(): t = np.random.rand() x1 = np.random.rand(3, 3, 3, 3).astype("float32") x2 = np.random.rand(3, 3, 3, 3).astype("float32") expected_min = x1.min() * t + x2.min() * (1 - t) expected_max = x1.max() * t + x2.max() * (1 - t) m = ExponentialMovingAverageObserver(momentum=t) m(mge.tensor(x1, dtype=np.float32)) m(mge.tensor(x2, dtype=np.float32)) np.testing.assert_allclose(m.min_val.numpy(), expected_min) np.testing.assert_allclose(m.max_val.numpy(), expected_max) def test_passive_observer(): q_dict = {"scale": mge.tensor(1.0)} m = PassiveObserver(q_dict, "qint8") assert m.orig_scale == 1.0 assert m.scale == 1.0 m.scale = 2.0 assert m.scale == 2.0 assert m.get_qparams() == {"scale": mge.tensor(2.0)} @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.skipif(get_device_count_by_fork("gpu") < 2, reason="need more gpu device") @pytest.mark.isolated_distributed def test_sync_min_max_observer(): word_size = get_device_count_by_fork("gpu") x = np.random.rand(3 * word_size, 3, 3, 3).astype("float32") np_min, np_max = x.min(), x.max() @dist.launcher def worker(): rank = dist.get_rank() m = SyncMinMaxObserver() y = mge.tensor(x[rank * 3 : (rank + 1) * 3]) m(y) assert m.min_val == np_min and m.max_val == np_max worker() @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.skipif(get_device_count_by_fork("gpu") < 2, reason="need more gpu device") @pytest.mark.isolated_distributed def test_sync_exponential_moving_average_observer(): word_size = get_device_count_by_fork("gpu") t = np.random.rand() x1 = np.random.rand(3 * word_size, 3, 3, 3).astype("float32") x2 = np.random.rand(3 * word_size, 3, 3, 3).astype("float32") expected_min = x1.min() * t + x2.min() * (1 - t) expected_max = x1.max() * t + x2.max() * (1 - t) @dist.launcher def worker(): rank = dist.get_rank() m =
SyncExponentialMovingAverageObserver(momentum=t)
megengine.quantization.observer.SyncExponentialMovingAverageObserver
import platform import numpy as np import pytest import megengine as mge import megengine.distributed as dist from megengine.distributed.helper import get_device_count_by_fork from megengine.quantization.observer import ( ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver, ) def test_observer(): with pytest.raises(TypeError): Observer("qint8") def test_min_max_observer(): x = np.random.rand(3, 3, 3, 3).astype("float32") np_min, np_max = x.min(), x.max() x = mge.tensor(x) m = MinMaxObserver() m(x) np.testing.assert_allclose(m.min_val.numpy(), np_min) np.testing.assert_allclose(m.max_val.numpy(), np_max) def test_exponential_moving_average_observer(): t = np.random.rand() x1 = np.random.rand(3, 3, 3, 3).astype("float32") x2 = np.random.rand(3, 3, 3, 3).astype("float32") expected_min = x1.min() * t + x2.min() * (1 - t) expected_max = x1.max() * t + x2.max() * (1 - t) m = ExponentialMovingAverageObserver(momentum=t) m(mge.tensor(x1, dtype=np.float32)) m(mge.tensor(x2, dtype=np.float32)) np.testing.assert_allclose(m.min_val.numpy(), expected_min) np.testing.assert_allclose(m.max_val.numpy(), expected_max) def test_passive_observer(): q_dict = {"scale": mge.tensor(1.0)} m = PassiveObserver(q_dict, "qint8") assert m.orig_scale == 1.0 assert m.scale == 1.0 m.scale = 2.0 assert m.scale == 2.0 assert m.get_qparams() == {"scale": mge.tensor(2.0)} @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.skipif(get_device_count_by_fork("gpu") < 2, reason="need more gpu device") @pytest.mark.isolated_distributed def test_sync_min_max_observer(): word_size = get_device_count_by_fork("gpu") x = np.random.rand(3 * word_size, 3, 3, 3).astype("float32") np_min, np_max = x.min(), x.max() @dist.launcher def worker(): rank = dist.get_rank() m = SyncMinMaxObserver() y = mge.tensor(x[rank * 3 : (rank + 1) * 3]) m(y) assert m.min_val == np_min and m.max_val == np_max worker() @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.skipif(
get_device_count_by_fork("gpu")
megengine.distributed.helper.get_device_count_by_fork
import platform import numpy as np import pytest import megengine as mge import megengine.distributed as dist from megengine.distributed.helper import get_device_count_by_fork from megengine.quantization.observer import ( ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver, ) def test_observer(): with pytest.raises(TypeError): Observer("qint8") def test_min_max_observer(): x = np.random.rand(3, 3, 3, 3).astype("float32") np_min, np_max = x.min(), x.max() x = mge.tensor(x) m = MinMaxObserver() m(x) np.testing.assert_allclose(m.min_val.numpy(), np_min) np.testing.assert_allclose(m.max_val.numpy(), np_max) def test_exponential_moving_average_observer(): t = np.random.rand() x1 = np.random.rand(3, 3, 3, 3).astype("float32") x2 = np.random.rand(3, 3, 3, 3).astype("float32") expected_min = x1.min() * t + x2.min() * (1 - t) expected_max = x1.max() * t + x2.max() * (1 - t) m = ExponentialMovingAverageObserver(momentum=t) m(mge.tensor(x1, dtype=np.float32)) m(mge.tensor(x2, dtype=np.float32)) np.testing.assert_allclose(m.min_val.numpy(), expected_min) np.testing.assert_allclose(m.max_val.numpy(), expected_max) def test_passive_observer(): q_dict = {"scale": mge.tensor(1.0)} m = PassiveObserver(q_dict, "qint8") assert m.orig_scale == 1.0 assert m.scale == 1.0 m.scale = 2.0 assert m.scale == 2.0 assert m.get_qparams() == {"scale":
mge.tensor(2.0)
megengine.tensor
import random from megengine.data.transform import RandomResizedCrop as mge_RRC from megengine.data.transform import Resize as mge_resize from ..registry import PIPELINES from edit.utils import interp_codes @PIPELINES.register_module() class Resize(object): """ Args: size (int|list|tuple): Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size) interpolation (int): Interpolation mode of resize. Default: cv2.INTER_LINEAR. """ def __init__(self, keys, size, interpolation='bilinear'): assert interpolation in interp_codes self.keys = keys self.size = size self.interpolation_str = interpolation self.resize =
mge_resize(output_size=self.size, interpolation=interp_codes[interpolation])
megengine.data.transform.Resize
import random from megengine.data.transform import RandomResizedCrop as mge_RRC from megengine.data.transform import Resize as mge_resize from ..registry import PIPELINES from edit.utils import interp_codes @PIPELINES.register_module() class Resize(object): """ Args: size (int|list|tuple): Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size) interpolation (int): Interpolation mode of resize. Default: cv2.INTER_LINEAR. """ def __init__(self, keys, size, interpolation='bilinear'): assert interpolation in interp_codes self.keys = keys self.size = size self.interpolation_str = interpolation self.resize = mge_resize(output_size=self.size, interpolation=interp_codes[interpolation]) def __call__(self, results): """Call function. Args: results (dict): A dict containing the necessary information and data for augmentation. Returns: dict: A dict containing the processed data and information. """ for key in self.keys: if isinstance(results[key], list): results[key] = [ self.resize.apply(v) for v in results[key] ] else: results[key] = self.resize.apply(results[key]) return results def __repr__(self): interpolate_str = self.interpolation_str format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += ', interpolation={0})'.format(interpolate_str) return format_string @PIPELINES.register_module() class RandomResizedCrop(object): """ Crop the input data to random size and aspect ratio. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made. After applying crop transfrom, the input data will be resized to given size. Args: output_size (int|list|tuple): Target size of output image, with (height, width) shape. scale (list|tuple): Range of size of the origin size cropped. Default: (0.08, 1.0) ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33) interpolation: 'nearest': cv2.INTER_NEAREST, 'bilinear': cv2.INTER_LINEAR, 'bicubic': cv2.INTER_CUBIC, 'area': cv2.INTER_AREA, 'lanczos': cv2.INTER_LANCZOS4 """ def __init__(self, keys, output_size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation='bilinear', do_prob = 0.5): assert interpolation in interp_codes self.keys = keys self.size = output_size self.interpolation_str = interpolation self.scale = scale self.ratio = ratio self.rrc =
mge_RRC(output_size=output_size, scale_range=scale, ratio_range=ratio, interpolation=interp_codes[interpolation])
megengine.data.transform.RandomResizedCrop
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import bisect import datetime import math import os import pickle import time from typing import Optional import megengine as mge import megengine.distributed as dist import megengine.module as M from basecore.config import ConfigDict from basecore.engine import BaseHook, BaseTrainer from basecore.utils import ( Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime, ) from loguru import logger from tensorboardX import SummaryWriter from basecls.layers import compute_precise_bn_stats from basecls.models import sync_model from basecls.utils import default_logging, registers from .tester import ClsTester __all__ = [ "CheckpointHook", "EvalHook", "LoggerHook", "LRSchedulerHook", "PreciseBNHook", "ResumeHook", "TensorboardHook", ] def _create_checkpoint(trainer: BaseTrainer, save_dir: str) -> Checkpoint: """Create a checkpoint for save and resume""" model = trainer.model ema = trainer.ema ckpt_kws = {"ema": ema} if ema is not None else {} optim = trainer.solver.optimizer scaler = trainer.solver.grad_scaler progress = trainer.progress ckpt = Checkpoint( save_dir, model, tag_file=None, optimizer=optim, scaler=scaler, progress=progress, **ckpt_kws, ) return ckpt class CheckpointHook(BaseHook): """Hook for managing checkpoints during training. Effect during ``after_epoch`` and ``after_train`` procedure. Args: save_dir: checkpoint directory. save_every_n_epoch: interval for saving checkpoint. Default: ``1`` """ def __init__(self, save_dir: str = None, save_every_n_epoch: int = 1): super().__init__() ensure_dir(save_dir) self.save_dir = save_dir self.save_every_n_epoch = save_every_n_epoch def after_epoch(self): progress = self.trainer.progress ckpt = _create_checkpoint(self.trainer, self.save_dir) ckpt.save("latest.pkl") if progress.epoch % self.save_every_n_epoch == 0: progress_str = progress.progress_str_list() save_name = "_".join(progress_str[:-1]) + ".pkl" ckpt.save(save_name) logger.info(f"Save checkpoint {save_name} to {self.save_dir}") def after_train(self): # NOTE: usually final ema is not the best so we dont save it mge.save( {"state_dict": self.trainer.model.state_dict()}, os.path.join(self.save_dir, "dumped_model.pkl"), pickle_protocol=pickle.DEFAULT_PROTOCOL, ) class EvalHook(BaseHook): """Hook for evaluating during training. Effect during ``after_epoch`` and ``after_train`` procedure. Args: save_dir: checkpoint directory. eval_every_n_epoch: interval for evaluating. Default: ``1`` """ def __init__(self, save_dir: str = None, eval_every_n_epoch: int = 1): super().__init__() ensure_dir(save_dir) self.save_dir = save_dir self.eval_every_n_epoch = eval_every_n_epoch self.best_acc1 = 0 self.best_ema_acc1 = 0 def after_epoch(self): trainer = self.trainer cfg = trainer.cfg model = trainer.model ema = trainer.ema progress = trainer.progress if progress.epoch % self.eval_every_n_epoch == 0 and progress.epoch != progress.max_epoch: self.test(cfg, model, ema) def after_train(self): trainer = self.trainer cfg = trainer.cfg model = trainer.model ema = trainer.ema # TODO: actually useless maybe when precise_bn is on sync_model(model) if ema is not None: sync_model(ema) self.test(cfg, model, ema) def test(self, cfg: ConfigDict, model: M.Module, ema: Optional[M.Module] = None): dataloader = registers.dataloaders.get(cfg.data.name).build(cfg, False) # FIXME: need atomic user_pop, maybe in MegEngine 1.5? # tester = BaseTester(model, dataloader, AccEvaluator()) tester = ClsTester(cfg, model, dataloader) acc1, _ = tester.test() if acc1 > self.best_acc1: self.best_acc1 = acc1 if dist.get_rank() == 0: mge.save( {"state_dict": model.state_dict(), "acc1": self.best_acc1}, os.path.join(self.save_dir, "best_model.pkl"), pickle_protocol=pickle.DEFAULT_PROTOCOL, ) logger.info( f"Epoch: {self.trainer.progress.epoch}, Test Acc@1: {acc1:.3f}, " f"Best Test Acc@1: {self.best_acc1:.3f}" ) if ema is None: return tester_ema = ClsTester(cfg, ema, dataloader) ema_acc1, _ = tester_ema.test() if ema_acc1 > self.best_ema_acc1: self.best_ema_acc1 = ema_acc1 if dist.get_rank() == 0: mge.save( {"state_dict": ema.state_dict(), "acc1": self.best_ema_acc1}, os.path.join(self.save_dir, "best_ema_model.pkl"), pickle_protocol=pickle.DEFAULT_PROTOCOL, ) logger.info( f"Epoch: {self.trainer.progress.epoch}, EMA Acc@1: {ema_acc1:.3f}, " f"Best EMA Acc@1: {self.best_ema_acc1:.3f}" ) class LoggerHook(BaseHook): """Hook for logging during training. Effect during ``before_train``, ``after_train``, ``before_iter`` and ``after_iter`` procedure. Args: log_every_n_iter: interval for logging. Default: ``20`` """ def __init__(self, log_every_n_iter: int = 20): super().__init__() self.log_every_n_iter = log_every_n_iter self.meter = MeterBuffer(self.log_every_n_iter) def before_train(self): trainer = self.trainer progress = trainer.progress default_logging(trainer.cfg, trainer.model) logger.info(f"Starting training from epoch {progress.epoch}, iteration {progress.iter}") self.start_training_time = time.perf_counter() def after_train(self): total_training_time = time.perf_counter() - self.start_training_time total_time_str = str(datetime.timedelta(seconds=total_training_time)) logger.info( "Total training time: {} ({:.4f} s / iter)".format( total_time_str, self.meter["iters_time"].global_avg ) ) def before_iter(self): self.iter_start_time = time.perf_counter() def after_iter(self): single_iter_time = time.perf_counter() - self.iter_start_time delta_time = get_last_call_deltatime() if delta_time is None: delta_time = single_iter_time self.meter.update( { "iters_time": single_iter_time, # to get global average iter time "eta_iter_time": delta_time, # to get ETA time "extra_time": delta_time - single_iter_time, # to get extra time } ) trainer = self.trainer progress = trainer.progress epoch_id, iter_id = progress.epoch, progress.iter max_epoch, max_iter = progress.max_epoch, progress.max_iter if iter_id % self.log_every_n_iter == 0 or (iter_id == 1 and epoch_id == 1): log_str_list = [] # step info string log_str_list.append(str(progress)) # loss string log_str_list.append(self.get_loss_str(trainer.meter)) # stat string log_str_list.append(self.get_stat_str(trainer.meter)) # other training info like learning rate. log_str_list.append(self.get_train_info_str()) # memory useage. log_str_list.append(self.get_memory_str(trainer.meter)) # time string left_iters = max_iter - iter_id + (max_epoch - epoch_id) * max_iter time_str = self.get_time_str(left_iters) log_str_list.append(time_str) # filter empty strings log_str_list = [s for s in log_str_list if len(s) > 0] log_str = ", ".join(log_str_list) logger.info(log_str) # reset meters in trainer trainer.meter.reset() def get_loss_str(self, meter): """Get loss information during trainging process.""" loss_dict = meter.get_filtered_meter(filter_key="loss") loss_str = ", ".join( [f"{name}:{value.latest:.3f}({value.avg:.3f})" for name, value in loss_dict.items()] ) return loss_str def get_stat_str(self, meter): """Get stat information during trainging process.""" stat_dict = meter.get_filtered_meter(filter_key="stat") stat_str = ", ".join( [f"{name}:{value.latest:.3f}({value.avg:.3f})" for name, value in stat_dict.items()] ) return stat_str def get_memory_str(self, meter): """Get memory information during trainging process.""" def mem_in_Mb(mem_value): return math.ceil(mem_value / 1024 / 1024) mem_dict = meter.get_filtered_meter(filter_key="memory") mem_str = ", ".join( [ f"{name}:{mem_in_Mb(value.latest)}({mem_in_Mb(value.avg)})Mb" for name, value in mem_dict.items() ] ) return mem_str def get_train_info_str(self): """Get training process related information such as learning rate.""" # extra info to display, such as learning rate trainer = self.trainer lr = trainer.solver.optimizer.param_groups[0]["lr"] lr_str = f"lr:{lr:.3e}" loss_scale = trainer.solver.grad_scaler.scale_factor loss_scale_str = f", amp_loss_scale:{loss_scale:.1f}" if trainer.cfg.amp.enabled else "" return lr_str + loss_scale_str def get_time_str(self, left_iters: int) -> str: """Get time related information sucn as data_time, train_time, ETA and so on.""" # time string trainer = self.trainer time_dict = trainer.meter.get_filtered_meter(filter_key="time") train_time_str = ", ".join( [f"{name}:{value.avg:.3f}s" for name, value in time_dict.items()] ) train_time_str += ", extra_time:{:.3f}s, ".format(self.meter["extra_time"].avg) eta_seconds = self.meter["eta_iter_time"].global_avg * left_iters eta_string = "ETA:{}".format(datetime.timedelta(seconds=int(eta_seconds))) time_str = train_time_str + eta_string return time_str class LRSchedulerHook(BaseHook): """Hook for learning rate scheduling during training. Effect during ``before_epoch`` procedure. """ def before_epoch(self): trainer = self.trainer epoch_id = trainer.progress.epoch cfg = trainer.cfg.solver lr_factor = self.get_lr_factor(cfg, epoch_id) if epoch_id <= cfg.warmup_epochs: alpha = (epoch_id - 1) / cfg.warmup_epochs lr_factor *= cfg.warmup_factor * (1 - alpha) + alpha scaled_lr = self.total_lr * lr_factor for param_group in trainer.solver.optimizer.param_groups: param_group["lr"] = scaled_lr def get_lr_factor(self, cfg: ConfigDict, epoch_id: int) -> float: """Calculate learning rate factor. It supports ``"step"``, ``"linear"``, ``"cosine"``, ``"exp"``, and ``"rel_exp"`` schedule. Args: cfg: config for training. epoch_id: current epoch. Returns: Learning rate factor. """ if cfg.lr_schedule == "step": return cfg.lr_decay_factor ** bisect.bisect_left(cfg.lr_decay_steps, epoch_id) elif cfg.lr_schedule == "linear": alpha = 1 - (epoch_id - 1) / cfg.max_epoch return (1 - cfg.lr_min_factor) * alpha + cfg.lr_min_factor elif cfg.lr_schedule == "cosine": alpha = 0.5 * (1 + math.cos(math.pi * (epoch_id - 1) / cfg.max_epoch)) return (1 - cfg.lr_min_factor) * alpha + cfg.lr_min_factor elif cfg.lr_schedule == "exp": return cfg.lr_decay_factor ** (epoch_id - 1) elif cfg.lr_schedule == "rel_exp": if cfg.lr_min_factor <= 0: raise ValueError( "Exponential lr schedule requires lr_min_factor to be greater than 0" ) return cfg.lr_min_factor ** ((epoch_id - 1) / cfg.max_epoch) else: raise NotImplementedError(f"Learning rate schedule '{cfg.lr_schedule}' not supported") @cached_property def total_lr(self) -> float: """Total learning rate.""" cfg = self.trainer.cfg.solver total_lr = cfg.basic_lr *
dist.get_world_size()
megengine.distributed.get_world_size
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import bisect import datetime import math import os import pickle import time from typing import Optional import megengine as mge import megengine.distributed as dist import megengine.module as M from basecore.config import ConfigDict from basecore.engine import BaseHook, BaseTrainer from basecore.utils import ( Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime, ) from loguru import logger from tensorboardX import SummaryWriter from basecls.layers import compute_precise_bn_stats from basecls.models import sync_model from basecls.utils import default_logging, registers from .tester import ClsTester __all__ = [ "CheckpointHook", "EvalHook", "LoggerHook", "LRSchedulerHook", "PreciseBNHook", "ResumeHook", "TensorboardHook", ] def _create_checkpoint(trainer: BaseTrainer, save_dir: str) -> Checkpoint: """Create a checkpoint for save and resume""" model = trainer.model ema = trainer.ema ckpt_kws = {"ema": ema} if ema is not None else {} optim = trainer.solver.optimizer scaler = trainer.solver.grad_scaler progress = trainer.progress ckpt = Checkpoint( save_dir, model, tag_file=None, optimizer=optim, scaler=scaler, progress=progress, **ckpt_kws, ) return ckpt class CheckpointHook(BaseHook): """Hook for managing checkpoints during training. Effect during ``after_epoch`` and ``after_train`` procedure. Args: save_dir: checkpoint directory. save_every_n_epoch: interval for saving checkpoint. Default: ``1`` """ def __init__(self, save_dir: str = None, save_every_n_epoch: int = 1): super().__init__() ensure_dir(save_dir) self.save_dir = save_dir self.save_every_n_epoch = save_every_n_epoch def after_epoch(self): progress = self.trainer.progress ckpt = _create_checkpoint(self.trainer, self.save_dir) ckpt.save("latest.pkl") if progress.epoch % self.save_every_n_epoch == 0: progress_str = progress.progress_str_list() save_name = "_".join(progress_str[:-1]) + ".pkl" ckpt.save(save_name) logger.info(f"Save checkpoint {save_name} to {self.save_dir}") def after_train(self): # NOTE: usually final ema is not the best so we dont save it mge.save( {"state_dict": self.trainer.model.state_dict()}, os.path.join(self.save_dir, "dumped_model.pkl"), pickle_protocol=pickle.DEFAULT_PROTOCOL, ) class EvalHook(BaseHook): """Hook for evaluating during training. Effect during ``after_epoch`` and ``after_train`` procedure. Args: save_dir: checkpoint directory. eval_every_n_epoch: interval for evaluating. Default: ``1`` """ def __init__(self, save_dir: str = None, eval_every_n_epoch: int = 1): super().__init__() ensure_dir(save_dir) self.save_dir = save_dir self.eval_every_n_epoch = eval_every_n_epoch self.best_acc1 = 0 self.best_ema_acc1 = 0 def after_epoch(self): trainer = self.trainer cfg = trainer.cfg model = trainer.model ema = trainer.ema progress = trainer.progress if progress.epoch % self.eval_every_n_epoch == 0 and progress.epoch != progress.max_epoch: self.test(cfg, model, ema) def after_train(self): trainer = self.trainer cfg = trainer.cfg model = trainer.model ema = trainer.ema # TODO: actually useless maybe when precise_bn is on sync_model(model) if ema is not None: sync_model(ema) self.test(cfg, model, ema) def test(self, cfg: ConfigDict, model: M.Module, ema: Optional[M.Module] = None): dataloader = registers.dataloaders.get(cfg.data.name).build(cfg, False) # FIXME: need atomic user_pop, maybe in MegEngine 1.5? # tester = BaseTester(model, dataloader, AccEvaluator()) tester = ClsTester(cfg, model, dataloader) acc1, _ = tester.test() if acc1 > self.best_acc1: self.best_acc1 = acc1 if
dist.get_rank()
megengine.distributed.get_rank
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import bisect import datetime import math import os import pickle import time from typing import Optional import megengine as mge import megengine.distributed as dist import megengine.module as M from basecore.config import ConfigDict from basecore.engine import BaseHook, BaseTrainer from basecore.utils import ( Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime, ) from loguru import logger from tensorboardX import SummaryWriter from basecls.layers import compute_precise_bn_stats from basecls.models import sync_model from basecls.utils import default_logging, registers from .tester import ClsTester __all__ = [ "CheckpointHook", "EvalHook", "LoggerHook", "LRSchedulerHook", "PreciseBNHook", "ResumeHook", "TensorboardHook", ] def _create_checkpoint(trainer: BaseTrainer, save_dir: str) -> Checkpoint: """Create a checkpoint for save and resume""" model = trainer.model ema = trainer.ema ckpt_kws = {"ema": ema} if ema is not None else {} optim = trainer.solver.optimizer scaler = trainer.solver.grad_scaler progress = trainer.progress ckpt = Checkpoint( save_dir, model, tag_file=None, optimizer=optim, scaler=scaler, progress=progress, **ckpt_kws, ) return ckpt class CheckpointHook(BaseHook): """Hook for managing checkpoints during training. Effect during ``after_epoch`` and ``after_train`` procedure. Args: save_dir: checkpoint directory. save_every_n_epoch: interval for saving checkpoint. Default: ``1`` """ def __init__(self, save_dir: str = None, save_every_n_epoch: int = 1): super().__init__() ensure_dir(save_dir) self.save_dir = save_dir self.save_every_n_epoch = save_every_n_epoch def after_epoch(self): progress = self.trainer.progress ckpt = _create_checkpoint(self.trainer, self.save_dir) ckpt.save("latest.pkl") if progress.epoch % self.save_every_n_epoch == 0: progress_str = progress.progress_str_list() save_name = "_".join(progress_str[:-1]) + ".pkl" ckpt.save(save_name) logger.info(f"Save checkpoint {save_name} to {self.save_dir}") def after_train(self): # NOTE: usually final ema is not the best so we dont save it mge.save( {"state_dict": self.trainer.model.state_dict()}, os.path.join(self.save_dir, "dumped_model.pkl"), pickle_protocol=pickle.DEFAULT_PROTOCOL, ) class EvalHook(BaseHook): """Hook for evaluating during training. Effect during ``after_epoch`` and ``after_train`` procedure. Args: save_dir: checkpoint directory. eval_every_n_epoch: interval for evaluating. Default: ``1`` """ def __init__(self, save_dir: str = None, eval_every_n_epoch: int = 1): super().__init__() ensure_dir(save_dir) self.save_dir = save_dir self.eval_every_n_epoch = eval_every_n_epoch self.best_acc1 = 0 self.best_ema_acc1 = 0 def after_epoch(self): trainer = self.trainer cfg = trainer.cfg model = trainer.model ema = trainer.ema progress = trainer.progress if progress.epoch % self.eval_every_n_epoch == 0 and progress.epoch != progress.max_epoch: self.test(cfg, model, ema) def after_train(self): trainer = self.trainer cfg = trainer.cfg model = trainer.model ema = trainer.ema # TODO: actually useless maybe when precise_bn is on sync_model(model) if ema is not None: sync_model(ema) self.test(cfg, model, ema) def test(self, cfg: ConfigDict, model: M.Module, ema: Optional[M.Module] = None): dataloader = registers.dataloaders.get(cfg.data.name).build(cfg, False) # FIXME: need atomic user_pop, maybe in MegEngine 1.5? # tester = BaseTester(model, dataloader, AccEvaluator()) tester = ClsTester(cfg, model, dataloader) acc1, _ = tester.test() if acc1 > self.best_acc1: self.best_acc1 = acc1 if dist.get_rank() == 0: mge.save( {"state_dict": model.state_dict(), "acc1": self.best_acc1}, os.path.join(self.save_dir, "best_model.pkl"), pickle_protocol=pickle.DEFAULT_PROTOCOL, ) logger.info( f"Epoch: {self.trainer.progress.epoch}, Test Acc@1: {acc1:.3f}, " f"Best Test Acc@1: {self.best_acc1:.3f}" ) if ema is None: return tester_ema = ClsTester(cfg, ema, dataloader) ema_acc1, _ = tester_ema.test() if ema_acc1 > self.best_ema_acc1: self.best_ema_acc1 = ema_acc1 if
dist.get_rank()
megengine.distributed.get_rank
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts =
F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1)
megengine.functional.stack
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes =
F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1)
megengine.functional.concat
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result =
F.concat(res, 0)
megengine.functional.concat
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels =
F.expand_dims(labels, axis=2)
megengine.functional.expand_dims
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) bbox_subnet.append(M.ReLU()) self.cls_subnet =
M.Sequential(*cls_subnet)
megengine.module.Sequential
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) bbox_subnet.append(M.ReLU()) self.cls_subnet = M.Sequential(*cls_subnet) self.bbox_subnet =
M.Sequential(*bbox_subnet)
megengine.module.Sequential
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) bbox_subnet.append(M.ReLU()) self.cls_subnet = M.Sequential(*cls_subnet) self.bbox_subnet = M.Sequential(*bbox_subnet) # predictor self.cls_score = M.Conv2d( in_channels, config.num_cell_anchors * (config.num_classes-1) * 1, kernel_size=3, stride=1, padding=1) self.bbox_pred = M.Conv2d( in_channels, config.num_cell_anchors * 4 * 1, kernel_size=3, stride=1, padding=1) self.iou_pred = M.Conv2d( in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self.num_pred = M.Conv2d(in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self._init_weights() def _init_weights(self): # Initialization for modules in [self.cls_subnet, self.bbox_subnet, self.num_pred, self.cls_score, self.bbox_pred, self.iou_pred]: for layer in modules.modules(): if isinstance(layer, M.Conv2d): M.init.normal_(layer.weight, std=0.01) M.init.fill_(layer.bias, 0) prior_prob = 0.01 # Use prior in model initialization to improve stability bias_value = -(math.log((1 - prior_prob) / prior_prob))
M.init.fill_(self.cls_score.bias, bias_value)
megengine.module.init.fill_
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) bbox_subnet.append(M.ReLU()) self.cls_subnet = M.Sequential(*cls_subnet) self.bbox_subnet = M.Sequential(*bbox_subnet) # predictor self.cls_score = M.Conv2d( in_channels, config.num_cell_anchors * (config.num_classes-1) * 1, kernel_size=3, stride=1, padding=1) self.bbox_pred = M.Conv2d( in_channels, config.num_cell_anchors * 4 * 1, kernel_size=3, stride=1, padding=1) self.iou_pred = M.Conv2d( in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self.num_pred = M.Conv2d(in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self._init_weights() def _init_weights(self): # Initialization for modules in [self.cls_subnet, self.bbox_subnet, self.num_pred, self.cls_score, self.bbox_pred, self.iou_pred]: for layer in modules.modules(): if isinstance(layer, M.Conv2d): M.init.normal_(layer.weight, std=0.01) M.init.fill_(layer.bias, 0) prior_prob = 0.01 # Use prior in model initialization to improve stability bias_value = -(math.log((1 - prior_prob) / prior_prob)) M.init.fill_(self.cls_score.bias, bias_value) def forward(self, features): cls_prob_list, rpn_num_prob_list, pred_bbox_list, rpn_iou_prob_list = [], [], [], [] for feature in features: rpn_cls_conv = self.cls_subnet(feature) cls_score = self.cls_score(rpn_cls_conv) rpn_num_prob = self.num_pred(rpn_cls_conv) cls_prob = F.sigmoid(cls_score) rpn_box_conv = self.bbox_subnet(feature) offsets = self.bbox_pred(rpn_box_conv) rpn_iou_prob = self.iou_pred(rpn_box_conv) cls_prob_list.append(cls_prob) pred_bbox_list.append(offsets) rpn_iou_prob_list.append(rpn_iou_prob) rpn_num_prob_list.append(rpn_num_prob) assert cls_prob_list[0].ndim == 4 pred_cls_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in cls_prob_list] pred_reg_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, 4) for _ in pred_bbox_list] rpn_iou_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in rpn_iou_prob_list] rpn_num_prob_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in rpn_num_prob_list] return pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list class FPN(M.Module): """ This module implements Feature Pyramid Network. It creates pyramid features built on top of some input feature maps. """ def __init__(self, bottom_up): super(FPN, self).__init__() in_channels = [512, 1024, 2048] fpn_dim = 256 use_bias =True lateral_convs, output_convs = [], [] for idx, in_channels in enumerate(in_channels): lateral_conv = M.Conv2d( in_channels, fpn_dim, kernel_size=1, bias=use_bias) output_conv = M.Conv2d( fpn_dim, fpn_dim, kernel_size=3, stride=1, padding=1, bias=use_bias) M.init.msra_normal_(lateral_conv.weight, mode="fan_in") M.init.msra_normal_(output_conv.weight, mode="fan_in") if use_bias: M.init.fill_(lateral_conv.bias, 0) M.init.fill_(output_conv.bias, 0) lateral_convs.append(lateral_conv) output_convs.append(output_conv) self.p6 =
M.Conv2d(fpn_dim, fpn_dim, kernel_size=3, stride=2, padding=1, bias=use_bias)
megengine.module.Conv2d
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) bbox_subnet.append(M.ReLU()) self.cls_subnet = M.Sequential(*cls_subnet) self.bbox_subnet = M.Sequential(*bbox_subnet) # predictor self.cls_score = M.Conv2d( in_channels, config.num_cell_anchors * (config.num_classes-1) * 1, kernel_size=3, stride=1, padding=1) self.bbox_pred = M.Conv2d( in_channels, config.num_cell_anchors * 4 * 1, kernel_size=3, stride=1, padding=1) self.iou_pred = M.Conv2d( in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self.num_pred = M.Conv2d(in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self._init_weights() def _init_weights(self): # Initialization for modules in [self.cls_subnet, self.bbox_subnet, self.num_pred, self.cls_score, self.bbox_pred, self.iou_pred]: for layer in modules.modules(): if isinstance(layer, M.Conv2d): M.init.normal_(layer.weight, std=0.01) M.init.fill_(layer.bias, 0) prior_prob = 0.01 # Use prior in model initialization to improve stability bias_value = -(math.log((1 - prior_prob) / prior_prob)) M.init.fill_(self.cls_score.bias, bias_value) def forward(self, features): cls_prob_list, rpn_num_prob_list, pred_bbox_list, rpn_iou_prob_list = [], [], [], [] for feature in features: rpn_cls_conv = self.cls_subnet(feature) cls_score = self.cls_score(rpn_cls_conv) rpn_num_prob = self.num_pred(rpn_cls_conv) cls_prob = F.sigmoid(cls_score) rpn_box_conv = self.bbox_subnet(feature) offsets = self.bbox_pred(rpn_box_conv) rpn_iou_prob = self.iou_pred(rpn_box_conv) cls_prob_list.append(cls_prob) pred_bbox_list.append(offsets) rpn_iou_prob_list.append(rpn_iou_prob) rpn_num_prob_list.append(rpn_num_prob) assert cls_prob_list[0].ndim == 4 pred_cls_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in cls_prob_list] pred_reg_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, 4) for _ in pred_bbox_list] rpn_iou_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in rpn_iou_prob_list] rpn_num_prob_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in rpn_num_prob_list] return pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list class FPN(M.Module): """ This module implements Feature Pyramid Network. It creates pyramid features built on top of some input feature maps. """ def __init__(self, bottom_up): super(FPN, self).__init__() in_channels = [512, 1024, 2048] fpn_dim = 256 use_bias =True lateral_convs, output_convs = [], [] for idx, in_channels in enumerate(in_channels): lateral_conv = M.Conv2d( in_channels, fpn_dim, kernel_size=1, bias=use_bias) output_conv = M.Conv2d( fpn_dim, fpn_dim, kernel_size=3, stride=1, padding=1, bias=use_bias) M.init.msra_normal_(lateral_conv.weight, mode="fan_in") M.init.msra_normal_(output_conv.weight, mode="fan_in") if use_bias: M.init.fill_(lateral_conv.bias, 0) M.init.fill_(output_conv.bias, 0) lateral_convs.append(lateral_conv) output_convs.append(output_conv) self.p6 = M.Conv2d(fpn_dim, fpn_dim, kernel_size=3, stride=2, padding=1, bias=use_bias) self.p7 =
M.Conv2d(fpn_dim, fpn_dim, kernel_size=3, stride=2, padding=1, bias=use_bias)
megengine.module.Conv2d
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) bbox_subnet.append(M.ReLU()) self.cls_subnet = M.Sequential(*cls_subnet) self.bbox_subnet = M.Sequential(*bbox_subnet) # predictor self.cls_score = M.Conv2d( in_channels, config.num_cell_anchors * (config.num_classes-1) * 1, kernel_size=3, stride=1, padding=1) self.bbox_pred = M.Conv2d( in_channels, config.num_cell_anchors * 4 * 1, kernel_size=3, stride=1, padding=1) self.iou_pred = M.Conv2d( in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self.num_pred = M.Conv2d(in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self._init_weights() def _init_weights(self): # Initialization for modules in [self.cls_subnet, self.bbox_subnet, self.num_pred, self.cls_score, self.bbox_pred, self.iou_pred]: for layer in modules.modules(): if isinstance(layer, M.Conv2d): M.init.normal_(layer.weight, std=0.01) M.init.fill_(layer.bias, 0) prior_prob = 0.01 # Use prior in model initialization to improve stability bias_value = -(math.log((1 - prior_prob) / prior_prob)) M.init.fill_(self.cls_score.bias, bias_value) def forward(self, features): cls_prob_list, rpn_num_prob_list, pred_bbox_list, rpn_iou_prob_list = [], [], [], [] for feature in features: rpn_cls_conv = self.cls_subnet(feature) cls_score = self.cls_score(rpn_cls_conv) rpn_num_prob = self.num_pred(rpn_cls_conv) cls_prob = F.sigmoid(cls_score) rpn_box_conv = self.bbox_subnet(feature) offsets = self.bbox_pred(rpn_box_conv) rpn_iou_prob = self.iou_pred(rpn_box_conv) cls_prob_list.append(cls_prob) pred_bbox_list.append(offsets) rpn_iou_prob_list.append(rpn_iou_prob) rpn_num_prob_list.append(rpn_num_prob) assert cls_prob_list[0].ndim == 4 pred_cls_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in cls_prob_list] pred_reg_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, 4) for _ in pred_bbox_list] rpn_iou_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in rpn_iou_prob_list] rpn_num_prob_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in rpn_num_prob_list] return pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list class FPN(M.Module): """ This module implements Feature Pyramid Network. It creates pyramid features built on top of some input feature maps. """ def __init__(self, bottom_up): super(FPN, self).__init__() in_channels = [512, 1024, 2048] fpn_dim = 256 use_bias =True lateral_convs, output_convs = [], [] for idx, in_channels in enumerate(in_channels): lateral_conv = M.Conv2d( in_channels, fpn_dim, kernel_size=1, bias=use_bias) output_conv = M.Conv2d( fpn_dim, fpn_dim, kernel_size=3, stride=1, padding=1, bias=use_bias) M.init.msra_normal_(lateral_conv.weight, mode="fan_in") M.init.msra_normal_(output_conv.weight, mode="fan_in") if use_bias: M.init.fill_(lateral_conv.bias, 0) M.init.fill_(output_conv.bias, 0) lateral_convs.append(lateral_conv) output_convs.append(output_conv) self.p6 = M.Conv2d(fpn_dim, fpn_dim, kernel_size=3, stride=2, padding=1, bias=use_bias) self.p7 = M.Conv2d(fpn_dim, fpn_dim, kernel_size=3, stride=2, padding=1, bias=use_bias) self.relu =
M.ReLU()
megengine.module.ReLU
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors =
F.expand_dims(anchors, axis=0)
megengine.functional.expand_dims
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) +
F.expand_dims(shifts, axis=1)
megengine.functional.expand_dims
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final =
F.concat(rpn_cls_list, axis=1)
megengine.functional.concat
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final =
F.concat(rpn_bbox_list,axis=1)
megengine.functional.concat
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final =
F.concat(rpn_iou_list, axis=1)
megengine.functional.concat
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask =
F.expand_dims(ignore_mask, axis=0)
megengine.functional.expand_dims
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value =
F.nn.indexing_one_hot(overlaps, index, 1)
megengine.functional.nn.indexing_one_hot
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) bbox_subnet.append(M.ReLU()) self.cls_subnet = M.Sequential(*cls_subnet) self.bbox_subnet = M.Sequential(*bbox_subnet) # predictor self.cls_score = M.Conv2d( in_channels, config.num_cell_anchors * (config.num_classes-1) * 1, kernel_size=3, stride=1, padding=1) self.bbox_pred = M.Conv2d( in_channels, config.num_cell_anchors * 4 * 1, kernel_size=3, stride=1, padding=1) self.iou_pred = M.Conv2d( in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self.num_pred = M.Conv2d(in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self._init_weights() def _init_weights(self): # Initialization for modules in [self.cls_subnet, self.bbox_subnet, self.num_pred, self.cls_score, self.bbox_pred, self.iou_pred]: for layer in modules.modules(): if isinstance(layer, M.Conv2d): M.init.normal_(layer.weight, std=0.01) M.init.fill_(layer.bias, 0) prior_prob = 0.01 # Use prior in model initialization to improve stability bias_value = -(math.log((1 - prior_prob) / prior_prob)) M.init.fill_(self.cls_score.bias, bias_value) def forward(self, features): cls_prob_list, rpn_num_prob_list, pred_bbox_list, rpn_iou_prob_list = [], [], [], [] for feature in features: rpn_cls_conv = self.cls_subnet(feature) cls_score = self.cls_score(rpn_cls_conv) rpn_num_prob = self.num_pred(rpn_cls_conv) cls_prob =
F.sigmoid(cls_score)
megengine.functional.sigmoid
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) bbox_subnet.append(M.ReLU()) self.cls_subnet = M.Sequential(*cls_subnet) self.bbox_subnet = M.Sequential(*bbox_subnet) # predictor self.cls_score = M.Conv2d( in_channels, config.num_cell_anchors * (config.num_classes-1) * 1, kernel_size=3, stride=1, padding=1) self.bbox_pred = M.Conv2d( in_channels, config.num_cell_anchors * 4 * 1, kernel_size=3, stride=1, padding=1) self.iou_pred = M.Conv2d( in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self.num_pred = M.Conv2d(in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self._init_weights() def _init_weights(self): # Initialization for modules in [self.cls_subnet, self.bbox_subnet, self.num_pred, self.cls_score, self.bbox_pred, self.iou_pred]: for layer in modules.modules(): if isinstance(layer, M.Conv2d): M.init.normal_(layer.weight, std=0.01) M.init.fill_(layer.bias, 0) prior_prob = 0.01 # Use prior in model initialization to improve stability bias_value = -(math.log((1 - prior_prob) / prior_prob)) M.init.fill_(self.cls_score.bias, bias_value) def forward(self, features): cls_prob_list, rpn_num_prob_list, pred_bbox_list, rpn_iou_prob_list = [], [], [], [] for feature in features: rpn_cls_conv = self.cls_subnet(feature) cls_score = self.cls_score(rpn_cls_conv) rpn_num_prob = self.num_pred(rpn_cls_conv) cls_prob = F.sigmoid(cls_score) rpn_box_conv = self.bbox_subnet(feature) offsets = self.bbox_pred(rpn_box_conv) rpn_iou_prob = self.iou_pred(rpn_box_conv) cls_prob_list.append(cls_prob) pred_bbox_list.append(offsets) rpn_iou_prob_list.append(rpn_iou_prob) rpn_num_prob_list.append(rpn_num_prob) assert cls_prob_list[0].ndim == 4 pred_cls_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in cls_prob_list] pred_reg_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, 4) for _ in pred_bbox_list] rpn_iou_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in rpn_iou_prob_list] rpn_num_prob_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in rpn_num_prob_list] return pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list class FPN(M.Module): """ This module implements Feature Pyramid Network. It creates pyramid features built on top of some input feature maps. """ def __init__(self, bottom_up): super(FPN, self).__init__() in_channels = [512, 1024, 2048] fpn_dim = 256 use_bias =True lateral_convs, output_convs = [], [] for idx, in_channels in enumerate(in_channels): lateral_conv = M.Conv2d( in_channels, fpn_dim, kernel_size=1, bias=use_bias) output_conv = M.Conv2d( fpn_dim, fpn_dim, kernel_size=3, stride=1, padding=1, bias=use_bias)
M.init.msra_normal_(lateral_conv.weight, mode="fan_in")
megengine.module.init.msra_normal_
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) bbox_subnet.append(M.ReLU()) self.cls_subnet = M.Sequential(*cls_subnet) self.bbox_subnet = M.Sequential(*bbox_subnet) # predictor self.cls_score = M.Conv2d( in_channels, config.num_cell_anchors * (config.num_classes-1) * 1, kernel_size=3, stride=1, padding=1) self.bbox_pred = M.Conv2d( in_channels, config.num_cell_anchors * 4 * 1, kernel_size=3, stride=1, padding=1) self.iou_pred = M.Conv2d( in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self.num_pred = M.Conv2d(in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self._init_weights() def _init_weights(self): # Initialization for modules in [self.cls_subnet, self.bbox_subnet, self.num_pred, self.cls_score, self.bbox_pred, self.iou_pred]: for layer in modules.modules(): if isinstance(layer, M.Conv2d): M.init.normal_(layer.weight, std=0.01) M.init.fill_(layer.bias, 0) prior_prob = 0.01 # Use prior in model initialization to improve stability bias_value = -(math.log((1 - prior_prob) / prior_prob)) M.init.fill_(self.cls_score.bias, bias_value) def forward(self, features): cls_prob_list, rpn_num_prob_list, pred_bbox_list, rpn_iou_prob_list = [], [], [], [] for feature in features: rpn_cls_conv = self.cls_subnet(feature) cls_score = self.cls_score(rpn_cls_conv) rpn_num_prob = self.num_pred(rpn_cls_conv) cls_prob = F.sigmoid(cls_score) rpn_box_conv = self.bbox_subnet(feature) offsets = self.bbox_pred(rpn_box_conv) rpn_iou_prob = self.iou_pred(rpn_box_conv) cls_prob_list.append(cls_prob) pred_bbox_list.append(offsets) rpn_iou_prob_list.append(rpn_iou_prob) rpn_num_prob_list.append(rpn_num_prob) assert cls_prob_list[0].ndim == 4 pred_cls_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in cls_prob_list] pred_reg_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, 4) for _ in pred_bbox_list] rpn_iou_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in rpn_iou_prob_list] rpn_num_prob_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in rpn_num_prob_list] return pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list class FPN(M.Module): """ This module implements Feature Pyramid Network. It creates pyramid features built on top of some input feature maps. """ def __init__(self, bottom_up): super(FPN, self).__init__() in_channels = [512, 1024, 2048] fpn_dim = 256 use_bias =True lateral_convs, output_convs = [], [] for idx, in_channels in enumerate(in_channels): lateral_conv = M.Conv2d( in_channels, fpn_dim, kernel_size=1, bias=use_bias) output_conv = M.Conv2d( fpn_dim, fpn_dim, kernel_size=3, stride=1, padding=1, bias=use_bias) M.init.msra_normal_(lateral_conv.weight, mode="fan_in")
M.init.msra_normal_(output_conv.weight, mode="fan_in")
megengine.module.init.msra_normal_
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors =
mge.tensor(np_anchors)
megengine.tensor
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean =
mge.tensor(mean)
megengine.tensor
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std =
mge.tensor(std)
megengine.tensor
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(
F.expand_dims(value, axis=1)
megengine.functional.expand_dims
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append(
M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
megengine.module.Conv2d
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(
M.ReLU()
megengine.module.ReLU
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(M.ReLU()) bbox_subnet.append(
M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
megengine.module.Conv2d
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) bbox_subnet.append(
M.ReLU()
megengine.module.ReLU
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) bbox_subnet.append(M.ReLU()) self.cls_subnet = M.Sequential(*cls_subnet) self.bbox_subnet = M.Sequential(*bbox_subnet) # predictor self.cls_score = M.Conv2d( in_channels, config.num_cell_anchors * (config.num_classes-1) * 1, kernel_size=3, stride=1, padding=1) self.bbox_pred = M.Conv2d( in_channels, config.num_cell_anchors * 4 * 1, kernel_size=3, stride=1, padding=1) self.iou_pred = M.Conv2d( in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self.num_pred = M.Conv2d(in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self._init_weights() def _init_weights(self): # Initialization for modules in [self.cls_subnet, self.bbox_subnet, self.num_pred, self.cls_score, self.bbox_pred, self.iou_pred]: for layer in modules.modules(): if isinstance(layer, M.Conv2d): M.init.normal_(layer.weight, std=0.01) M.init.fill_(layer.bias, 0) prior_prob = 0.01 # Use prior in model initialization to improve stability bias_value = -(math.log((1 - prior_prob) / prior_prob)) M.init.fill_(self.cls_score.bias, bias_value) def forward(self, features): cls_prob_list, rpn_num_prob_list, pred_bbox_list, rpn_iou_prob_list = [], [], [], [] for feature in features: rpn_cls_conv = self.cls_subnet(feature) cls_score = self.cls_score(rpn_cls_conv) rpn_num_prob = self.num_pred(rpn_cls_conv) cls_prob = F.sigmoid(cls_score) rpn_box_conv = self.bbox_subnet(feature) offsets = self.bbox_pred(rpn_box_conv) rpn_iou_prob = self.iou_pred(rpn_box_conv) cls_prob_list.append(cls_prob) pred_bbox_list.append(offsets) rpn_iou_prob_list.append(rpn_iou_prob) rpn_num_prob_list.append(rpn_num_prob) assert cls_prob_list[0].ndim == 4 pred_cls_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in cls_prob_list] pred_reg_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, 4) for _ in pred_bbox_list] rpn_iou_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in rpn_iou_prob_list] rpn_num_prob_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in rpn_num_prob_list] return pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list class FPN(M.Module): """ This module implements Feature Pyramid Network. It creates pyramid features built on top of some input feature maps. """ def __init__(self, bottom_up): super(FPN, self).__init__() in_channels = [512, 1024, 2048] fpn_dim = 256 use_bias =True lateral_convs, output_convs = [], [] for idx, in_channels in enumerate(in_channels): lateral_conv = M.Conv2d( in_channels, fpn_dim, kernel_size=1, bias=use_bias) output_conv = M.Conv2d( fpn_dim, fpn_dim, kernel_size=3, stride=1, padding=1, bias=use_bias) M.init.msra_normal_(lateral_conv.weight, mode="fan_in") M.init.msra_normal_(output_conv.weight, mode="fan_in") if use_bias:
M.init.fill_(lateral_conv.bias, 0)
megengine.module.init.fill_
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) bbox_subnet.append(M.ReLU()) self.cls_subnet = M.Sequential(*cls_subnet) self.bbox_subnet = M.Sequential(*bbox_subnet) # predictor self.cls_score = M.Conv2d( in_channels, config.num_cell_anchors * (config.num_classes-1) * 1, kernel_size=3, stride=1, padding=1) self.bbox_pred = M.Conv2d( in_channels, config.num_cell_anchors * 4 * 1, kernel_size=3, stride=1, padding=1) self.iou_pred = M.Conv2d( in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self.num_pred = M.Conv2d(in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self._init_weights() def _init_weights(self): # Initialization for modules in [self.cls_subnet, self.bbox_subnet, self.num_pred, self.cls_score, self.bbox_pred, self.iou_pred]: for layer in modules.modules(): if isinstance(layer, M.Conv2d): M.init.normal_(layer.weight, std=0.01) M.init.fill_(layer.bias, 0) prior_prob = 0.01 # Use prior in model initialization to improve stability bias_value = -(math.log((1 - prior_prob) / prior_prob)) M.init.fill_(self.cls_score.bias, bias_value) def forward(self, features): cls_prob_list, rpn_num_prob_list, pred_bbox_list, rpn_iou_prob_list = [], [], [], [] for feature in features: rpn_cls_conv = self.cls_subnet(feature) cls_score = self.cls_score(rpn_cls_conv) rpn_num_prob = self.num_pred(rpn_cls_conv) cls_prob = F.sigmoid(cls_score) rpn_box_conv = self.bbox_subnet(feature) offsets = self.bbox_pred(rpn_box_conv) rpn_iou_prob = self.iou_pred(rpn_box_conv) cls_prob_list.append(cls_prob) pred_bbox_list.append(offsets) rpn_iou_prob_list.append(rpn_iou_prob) rpn_num_prob_list.append(rpn_num_prob) assert cls_prob_list[0].ndim == 4 pred_cls_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in cls_prob_list] pred_reg_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, 4) for _ in pred_bbox_list] rpn_iou_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in rpn_iou_prob_list] rpn_num_prob_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in rpn_num_prob_list] return pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list class FPN(M.Module): """ This module implements Feature Pyramid Network. It creates pyramid features built on top of some input feature maps. """ def __init__(self, bottom_up): super(FPN, self).__init__() in_channels = [512, 1024, 2048] fpn_dim = 256 use_bias =True lateral_convs, output_convs = [], [] for idx, in_channels in enumerate(in_channels): lateral_conv = M.Conv2d( in_channels, fpn_dim, kernel_size=1, bias=use_bias) output_conv = M.Conv2d( fpn_dim, fpn_dim, kernel_size=3, stride=1, padding=1, bias=use_bias) M.init.msra_normal_(lateral_conv.weight, mode="fan_in") M.init.msra_normal_(output_conv.weight, mode="fan_in") if use_bias: M.init.fill_(lateral_conv.bias, 0)
M.init.fill_(output_conv.bias, 0)
megengine.module.init.fill_
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x =
F.linspace(0, width-1, width)
megengine.functional.linspace
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y =
F.linspace(0, height -1, height)
megengine.functional.linspace
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(
F.expand_dims(all_anchors, 1)
megengine.functional.expand_dims
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) bbox_subnet.append(M.ReLU()) self.cls_subnet = M.Sequential(*cls_subnet) self.bbox_subnet = M.Sequential(*bbox_subnet) # predictor self.cls_score = M.Conv2d( in_channels, config.num_cell_anchors * (config.num_classes-1) * 1, kernel_size=3, stride=1, padding=1) self.bbox_pred = M.Conv2d( in_channels, config.num_cell_anchors * 4 * 1, kernel_size=3, stride=1, padding=1) self.iou_pred = M.Conv2d( in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self.num_pred = M.Conv2d(in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self._init_weights() def _init_weights(self): # Initialization for modules in [self.cls_subnet, self.bbox_subnet, self.num_pred, self.cls_score, self.bbox_pred, self.iou_pred]: for layer in modules.modules(): if isinstance(layer, M.Conv2d):
M.init.normal_(layer.weight, std=0.01)
megengine.module.init.normal_
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) bbox_subnet.append(M.ReLU()) self.cls_subnet = M.Sequential(*cls_subnet) self.bbox_subnet = M.Sequential(*bbox_subnet) # predictor self.cls_score = M.Conv2d( in_channels, config.num_cell_anchors * (config.num_classes-1) * 1, kernel_size=3, stride=1, padding=1) self.bbox_pred = M.Conv2d( in_channels, config.num_cell_anchors * 4 * 1, kernel_size=3, stride=1, padding=1) self.iou_pred = M.Conv2d( in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self.num_pred = M.Conv2d(in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self._init_weights() def _init_weights(self): # Initialization for modules in [self.cls_subnet, self.bbox_subnet, self.num_pred, self.cls_score, self.bbox_pred, self.iou_pred]: for layer in modules.modules(): if isinstance(layer, M.Conv2d): M.init.normal_(layer.weight, std=0.01)
M.init.fill_(layer.bias, 0)
megengine.module.init.fill_
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(
F.expand_dims(all_anchors, 1)
megengine.functional.expand_dims
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 -
F.equal(gtboxes[:, 4], config.anchor_ignore_label)
megengine.functional.equal
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*
F.ones([a.shape[0], 1])
megengine.functional.ones
import os import time import numpy as np import megengine.distributed as dist import megengine as mge import megengine.functional as F from megengine.autodiff import GradManager from edit.core.hook.evaluation import psnr, ssim from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image from ..base import BaseModel from ..builder import build_backbone, build_loss from ..registry import MODELS from tqdm import tqdm def get_bilinear(image): B,T,C,h,w = image.shape image = image.reshape(-1, C,h,w) return F.nn.interpolate(image, scale_factor=4).reshape(B,T,C,4*h, 4*w) def train_generator_batch(image, label, *, gm, netG, netloss): B,T,_,h,w = image.shape biup = get_bilinear(image) netG.train() with gm: forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref = F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0) flow = netG.flownet(now_frame, ref) hidden = netG(hidden, flow, now_frame) forward_hiddens.append(hidden[0:B, ...]) backward_hiddens.append(hidden[B:2*B, ...]) for i in range(T): res.append(netG.do_upsample(forward_hiddens[i], backward_hiddens[T-i-1])) res = F.stack(res, axis = 1) # [B,T,3,H,W] loss = netloss(res+biup, label) gm.backward(loss) if dist.is_distributed(): loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() return loss def test_generator_batch(image, *, netG): # image: [1,100,3,180,320] B,T,_,h,w = image.shape biup = get_bilinear(image) netG.eval() forward_hiddens = [] backward_hiddens = [] res = [] hidden =
F.zeros((2*B, netG.hidden_channels, h, w))
megengine.functional.zeros
import os import time import numpy as np import megengine.distributed as dist import megengine as mge import megengine.functional as F from megengine.autodiff import GradManager from edit.core.hook.evaluation import psnr, ssim from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image from ..base import BaseModel from ..builder import build_backbone, build_loss from ..registry import MODELS from tqdm import tqdm def get_bilinear(image): B,T,C,h,w = image.shape image = image.reshape(-1, C,h,w) return F.nn.interpolate(image, scale_factor=4).reshape(B,T,C,4*h, 4*w) def train_generator_batch(image, label, *, gm, netG, netloss): B,T,_,h,w = image.shape biup = get_bilinear(image) netG.train() with gm: forward_hiddens = [] backward_hiddens = [] res = [] hidden =
F.zeros((2*B, netG.hidden_channels, h, w))
megengine.functional.zeros
import os import time import numpy as np import megengine.distributed as dist import megengine as mge import megengine.functional as F from megengine.autodiff import GradManager from edit.core.hook.evaluation import psnr, ssim from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image from ..base import BaseModel from ..builder import build_backbone, build_loss from ..registry import MODELS from tqdm import tqdm def get_bilinear(image): B,T,C,h,w = image.shape image = image.reshape(-1, C,h,w) return F.nn.interpolate(image, scale_factor=4).reshape(B,T,C,4*h, 4*w) def train_generator_batch(image, label, *, gm, netG, netloss): B,T,_,h,w = image.shape biup = get_bilinear(image) netG.train() with gm: forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref = F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0) flow = netG.flownet(now_frame, ref) hidden = netG(hidden, flow, now_frame) forward_hiddens.append(hidden[0:B, ...]) backward_hiddens.append(hidden[B:2*B, ...]) for i in range(T): res.append(netG.do_upsample(forward_hiddens[i], backward_hiddens[T-i-1])) res = F.stack(res, axis = 1) # [B,T,3,H,W] loss = netloss(res+biup, label) gm.backward(loss) if
dist.is_distributed()
megengine.distributed.is_distributed
import os import time import numpy as np import megengine.distributed as dist import megengine as mge import megengine.functional as F from megengine.autodiff import GradManager from edit.core.hook.evaluation import psnr, ssim from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image from ..base import BaseModel from ..builder import build_backbone, build_loss from ..registry import MODELS from tqdm import tqdm def get_bilinear(image): B,T,C,h,w = image.shape image = image.reshape(-1, C,h,w) return F.nn.interpolate(image, scale_factor=4).reshape(B,T,C,4*h, 4*w) def train_generator_batch(image, label, *, gm, netG, netloss): B,T,_,h,w = image.shape biup = get_bilinear(image) netG.train() with gm: forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref = F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0) flow = netG.flownet(now_frame, ref) hidden = netG(hidden, flow, now_frame) forward_hiddens.append(hidden[0:B, ...]) backward_hiddens.append(hidden[B:2*B, ...]) for i in range(T): res.append(netG.do_upsample(forward_hiddens[i], backward_hiddens[T-i-1])) res = F.stack(res, axis = 1) # [B,T,3,H,W] loss = netloss(res+biup, label) gm.backward(loss) if dist.is_distributed(): loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() return loss def test_generator_batch(image, *, netG): # image: [1,100,3,180,320] B,T,_,h,w = image.shape biup = get_bilinear(image) netG.eval() forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame =
F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0)
megengine.functional.concat
import os import time import numpy as np import megengine.distributed as dist import megengine as mge import megengine.functional as F from megengine.autodiff import GradManager from edit.core.hook.evaluation import psnr, ssim from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image from ..base import BaseModel from ..builder import build_backbone, build_loss from ..registry import MODELS from tqdm import tqdm def get_bilinear(image): B,T,C,h,w = image.shape image = image.reshape(-1, C,h,w) return F.nn.interpolate(image, scale_factor=4).reshape(B,T,C,4*h, 4*w) def train_generator_batch(image, label, *, gm, netG, netloss): B,T,_,h,w = image.shape biup = get_bilinear(image) netG.train() with gm: forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref = F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0) flow = netG.flownet(now_frame, ref) hidden = netG(hidden, flow, now_frame) forward_hiddens.append(hidden[0:B, ...]) backward_hiddens.append(hidden[B:2*B, ...]) for i in range(T): res.append(netG.do_upsample(forward_hiddens[i], backward_hiddens[T-i-1])) res = F.stack(res, axis = 1) # [B,T,3,H,W] loss = netloss(res+biup, label) gm.backward(loss) if dist.is_distributed(): loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() return loss def test_generator_batch(image, *, netG): # image: [1,100,3,180,320] B,T,_,h,w = image.shape biup = get_bilinear(image) netG.eval() forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref = F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0) flow = netG.flownet(now_frame, ref) hidden = netG(hidden, flow, now_frame) forward_hiddens.append(hidden[0:B, ...]) backward_hiddens.append(hidden[B:2*B, ...]) for i in range(T): res.append(netG.do_upsample(forward_hiddens[i], backward_hiddens[T-i-1])) res = F.stack(res, axis = 1) # [B,T,3,H,W] return res + biup epoch_dict = {} def adjust_learning_rate(optimizer, epoch): if epoch>=8 and epoch % 1 == 0 and epoch_dict.get(epoch, None) is None: epoch_dict[epoch] = True for param_group in optimizer.param_groups: param_group["lr"] = param_group["lr"] * 0.8 print("adjust lr! , now lr: {}".format(param_group["lr"])) # TODO 可以再写一个父类,抽象一些公共方法,当大于1个模型时,代码重复了,如getimdid和test step @MODELS.register_module() class BidirectionalRestorer(BaseModel): allowed_metrics = {'PSNR': psnr, 'SSIM': ssim} def __init__(self, generator, pixel_loss, train_cfg=None, eval_cfg=None, pretrained=None, Fidelity_loss=None): super(BidirectionalRestorer, self).__init__() self.train_cfg = train_cfg self.eval_cfg = eval_cfg # generator self.generator = build_backbone(generator) # loss self.pixel_loss = build_loss(pixel_loss) if Fidelity_loss: self.Fidelity_loss = build_loss(Fidelity_loss) else: self.Fidelity_loss = None # load pretrained self.init_weights(pretrained) def init_weights(self, pretrained=None): self.generator.init_weights(pretrained) def train_step(self, batchdata, now_epoch, now_iter): LR_tensor =
mge.tensor(batchdata['lq'], dtype="float32")
megengine.tensor
import os import time import numpy as np import megengine.distributed as dist import megengine as mge import megengine.functional as F from megengine.autodiff import GradManager from edit.core.hook.evaluation import psnr, ssim from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image from ..base import BaseModel from ..builder import build_backbone, build_loss from ..registry import MODELS from tqdm import tqdm def get_bilinear(image): B,T,C,h,w = image.shape image = image.reshape(-1, C,h,w) return F.nn.interpolate(image, scale_factor=4).reshape(B,T,C,4*h, 4*w) def train_generator_batch(image, label, *, gm, netG, netloss): B,T,_,h,w = image.shape biup = get_bilinear(image) netG.train() with gm: forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref = F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0) flow = netG.flownet(now_frame, ref) hidden = netG(hidden, flow, now_frame) forward_hiddens.append(hidden[0:B, ...]) backward_hiddens.append(hidden[B:2*B, ...]) for i in range(T): res.append(netG.do_upsample(forward_hiddens[i], backward_hiddens[T-i-1])) res = F.stack(res, axis = 1) # [B,T,3,H,W] loss = netloss(res+biup, label) gm.backward(loss) if dist.is_distributed(): loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() return loss def test_generator_batch(image, *, netG): # image: [1,100,3,180,320] B,T,_,h,w = image.shape biup = get_bilinear(image) netG.eval() forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref = F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0) flow = netG.flownet(now_frame, ref) hidden = netG(hidden, flow, now_frame) forward_hiddens.append(hidden[0:B, ...]) backward_hiddens.append(hidden[B:2*B, ...]) for i in range(T): res.append(netG.do_upsample(forward_hiddens[i], backward_hiddens[T-i-1])) res = F.stack(res, axis = 1) # [B,T,3,H,W] return res + biup epoch_dict = {} def adjust_learning_rate(optimizer, epoch): if epoch>=8 and epoch % 1 == 0 and epoch_dict.get(epoch, None) is None: epoch_dict[epoch] = True for param_group in optimizer.param_groups: param_group["lr"] = param_group["lr"] * 0.8 print("adjust lr! , now lr: {}".format(param_group["lr"])) # TODO 可以再写一个父类,抽象一些公共方法,当大于1个模型时,代码重复了,如getimdid和test step @MODELS.register_module() class BidirectionalRestorer(BaseModel): allowed_metrics = {'PSNR': psnr, 'SSIM': ssim} def __init__(self, generator, pixel_loss, train_cfg=None, eval_cfg=None, pretrained=None, Fidelity_loss=None): super(BidirectionalRestorer, self).__init__() self.train_cfg = train_cfg self.eval_cfg = eval_cfg # generator self.generator = build_backbone(generator) # loss self.pixel_loss = build_loss(pixel_loss) if Fidelity_loss: self.Fidelity_loss = build_loss(Fidelity_loss) else: self.Fidelity_loss = None # load pretrained self.init_weights(pretrained) def init_weights(self, pretrained=None): self.generator.init_weights(pretrained) def train_step(self, batchdata, now_epoch, now_iter): LR_tensor = mge.tensor(batchdata['lq'], dtype="float32") HR_tensor =
mge.tensor(batchdata['gt'], dtype="float32")
megengine.tensor
import os import time import numpy as np import megengine.distributed as dist import megengine as mge import megengine.functional as F from megengine.autodiff import GradManager from edit.core.hook.evaluation import psnr, ssim from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image from ..base import BaseModel from ..builder import build_backbone, build_loss from ..registry import MODELS from tqdm import tqdm def get_bilinear(image): B,T,C,h,w = image.shape image = image.reshape(-1, C,h,w) return
F.nn.interpolate(image, scale_factor=4)
megengine.functional.nn.interpolate
import os import time import numpy as np import megengine.distributed as dist import megengine as mge import megengine.functional as F from megengine.autodiff import GradManager from edit.core.hook.evaluation import psnr, ssim from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image from ..base import BaseModel from ..builder import build_backbone, build_loss from ..registry import MODELS from tqdm import tqdm def get_bilinear(image): B,T,C,h,w = image.shape image = image.reshape(-1, C,h,w) return F.nn.interpolate(image, scale_factor=4).reshape(B,T,C,4*h, 4*w) def train_generator_batch(image, label, *, gm, netG, netloss): B,T,_,h,w = image.shape biup = get_bilinear(image) netG.train() with gm: forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame =
F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0)
megengine.functional.concat
import os import time import numpy as np import megengine.distributed as dist import megengine as mge import megengine.functional as F from megengine.autodiff import GradManager from edit.core.hook.evaluation import psnr, ssim from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image from ..base import BaseModel from ..builder import build_backbone, build_loss from ..registry import MODELS from tqdm import tqdm def get_bilinear(image): B,T,C,h,w = image.shape image = image.reshape(-1, C,h,w) return F.nn.interpolate(image, scale_factor=4).reshape(B,T,C,4*h, 4*w) def train_generator_batch(image, label, *, gm, netG, netloss): B,T,_,h,w = image.shape biup = get_bilinear(image) netG.train() with gm: forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref = F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0) flow = netG.flownet(now_frame, ref) hidden = netG(hidden, flow, now_frame) forward_hiddens.append(hidden[0:B, ...]) backward_hiddens.append(hidden[B:2*B, ...]) for i in range(T): res.append(netG.do_upsample(forward_hiddens[i], backward_hiddens[T-i-1])) res = F.stack(res, axis = 1) # [B,T,3,H,W] loss = netloss(res+biup, label) gm.backward(loss) if dist.is_distributed(): loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() return loss def test_generator_batch(image, *, netG): # image: [1,100,3,180,320] B,T,_,h,w = image.shape biup = get_bilinear(image) netG.eval() forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref =
F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0)
megengine.functional.concat
import os import time import numpy as np import megengine.distributed as dist import megengine as mge import megengine.functional as F from megengine.autodiff import GradManager from edit.core.hook.evaluation import psnr, ssim from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image from ..base import BaseModel from ..builder import build_backbone, build_loss from ..registry import MODELS from tqdm import tqdm def get_bilinear(image): B,T,C,h,w = image.shape image = image.reshape(-1, C,h,w) return F.nn.interpolate(image, scale_factor=4).reshape(B,T,C,4*h, 4*w) def train_generator_batch(image, label, *, gm, netG, netloss): B,T,_,h,w = image.shape biup = get_bilinear(image) netG.train() with gm: forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref =
F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0)
megengine.functional.concat
import os import time import numpy as np import megengine.distributed as dist import megengine as mge import megengine.functional as F from megengine.autodiff import GradManager from edit.core.hook.evaluation import psnr, ssim from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image from ..base import BaseModel from ..builder import build_backbone, build_loss from ..registry import MODELS from tqdm import tqdm def get_bilinear(image): B,T,C,h,w = image.shape image = image.reshape(-1, C,h,w) return F.nn.interpolate(image, scale_factor=4).reshape(B,T,C,4*h, 4*w) def train_generator_batch(image, label, *, gm, netG, netloss): B,T,_,h,w = image.shape biup = get_bilinear(image) netG.train() with gm: forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref = F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0) flow = netG.flownet(now_frame, ref) hidden = netG(hidden, flow, now_frame) forward_hiddens.append(hidden[0:B, ...]) backward_hiddens.append(hidden[B:2*B, ...]) for i in range(T): res.append(netG.do_upsample(forward_hiddens[i], backward_hiddens[T-i-1])) res = F.stack(res, axis = 1) # [B,T,3,H,W] loss = netloss(res+biup, label) gm.backward(loss) if dist.is_distributed(): loss =
dist.functional.all_reduce_sum(loss)
megengine.distributed.functional.all_reduce_sum
import os import time import numpy as np import megengine.distributed as dist import megengine as mge import megengine.functional as F from megengine.autodiff import GradManager from edit.core.hook.evaluation import psnr, ssim from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image from ..base import BaseModel from ..builder import build_backbone, build_loss from ..registry import MODELS from tqdm import tqdm def get_bilinear(image): B,T,C,h,w = image.shape image = image.reshape(-1, C,h,w) return F.nn.interpolate(image, scale_factor=4).reshape(B,T,C,4*h, 4*w) def train_generator_batch(image, label, *, gm, netG, netloss): B,T,_,h,w = image.shape biup = get_bilinear(image) netG.train() with gm: forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref = F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0) flow = netG.flownet(now_frame, ref) hidden = netG(hidden, flow, now_frame) forward_hiddens.append(hidden[0:B, ...]) backward_hiddens.append(hidden[B:2*B, ...]) for i in range(T): res.append(netG.do_upsample(forward_hiddens[i], backward_hiddens[T-i-1])) res = F.stack(res, axis = 1) # [B,T,3,H,W] loss = netloss(res+biup, label) gm.backward(loss) if dist.is_distributed(): loss = dist.functional.all_reduce_sum(loss) /
dist.get_world_size()
megengine.distributed.get_world_size
import os import time import numpy as np import megengine.distributed as dist import megengine as mge import megengine.functional as F from megengine.autodiff import GradManager from edit.core.hook.evaluation import psnr, ssim from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image from ..base import BaseModel from ..builder import build_backbone, build_loss from ..registry import MODELS from tqdm import tqdm def get_bilinear(image): B,T,C,h,w = image.shape image = image.reshape(-1, C,h,w) return F.nn.interpolate(image, scale_factor=4).reshape(B,T,C,4*h, 4*w) def train_generator_batch(image, label, *, gm, netG, netloss): B,T,_,h,w = image.shape biup = get_bilinear(image) netG.train() with gm: forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref = F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0) flow = netG.flownet(now_frame, ref) hidden = netG(hidden, flow, now_frame) forward_hiddens.append(hidden[0:B, ...]) backward_hiddens.append(hidden[B:2*B, ...]) for i in range(T): res.append(netG.do_upsample(forward_hiddens[i], backward_hiddens[T-i-1])) res = F.stack(res, axis = 1) # [B,T,3,H,W] loss = netloss(res+biup, label) gm.backward(loss) if dist.is_distributed(): loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() return loss def test_generator_batch(image, *, netG): # image: [1,100,3,180,320] B,T,_,h,w = image.shape biup = get_bilinear(image) netG.eval() forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref = F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0) flow = netG.flownet(now_frame, ref) hidden = netG(hidden, flow, now_frame) forward_hiddens.append(hidden[0:B, ...]) backward_hiddens.append(hidden[B:2*B, ...]) for i in range(T): res.append(netG.do_upsample(forward_hiddens[i], backward_hiddens[T-i-1])) res = F.stack(res, axis = 1) # [B,T,3,H,W] return res + biup epoch_dict = {} def adjust_learning_rate(optimizer, epoch): if epoch>=8 and epoch % 1 == 0 and epoch_dict.get(epoch, None) is None: epoch_dict[epoch] = True for param_group in optimizer.param_groups: param_group["lr"] = param_group["lr"] * 0.8 print("adjust lr! , now lr: {}".format(param_group["lr"])) # TODO 可以再写一个父类,抽象一些公共方法,当大于1个模型时,代码重复了,如getimdid和test step @MODELS.register_module() class BidirectionalRestorer(BaseModel): allowed_metrics = {'PSNR': psnr, 'SSIM': ssim} def __init__(self, generator, pixel_loss, train_cfg=None, eval_cfg=None, pretrained=None, Fidelity_loss=None): super(BidirectionalRestorer, self).__init__() self.train_cfg = train_cfg self.eval_cfg = eval_cfg # generator self.generator = build_backbone(generator) # loss self.pixel_loss = build_loss(pixel_loss) if Fidelity_loss: self.Fidelity_loss = build_loss(Fidelity_loss) else: self.Fidelity_loss = None # load pretrained self.init_weights(pretrained) def init_weights(self, pretrained=None): self.generator.init_weights(pretrained) def train_step(self, batchdata, now_epoch, now_iter): LR_tensor = mge.tensor(batchdata['lq'], dtype="float32") HR_tensor = mge.tensor(batchdata['gt'], dtype="float32") loss = train_generator_batch(LR_tensor, HR_tensor, gm=self.gms['generator'], netG=self.generator, netloss=self.pixel_loss) adjust_learning_rate(self.optimizers['generator'], now_epoch) self.optimizers['generator'].step() self.optimizers['generator'].clear_grad() return loss def get_img_id(self, key): shift = self.eval_cfg.get('save_shift', 0) assert isinstance(key, str) L = key.split("/") return int(L[-1][:-4]), str(int(L[-2]) - shift).zfill(3) # id, clip def test_step(self, batchdata, **kwargs): """ possible kwargs: save_image save_path ensemble """ lq = batchdata['lq'] # [B,3,h,w] gt = batchdata.get('gt', None) # if not None: [B,3,4*h,4*w] assert len(batchdata['lq_path']) == 1 # 每个sample所带的lq_path列表长度仅为1, 即自己 lq_paths = batchdata['lq_path'][0] # length 为batch长度 now_start_id, clip = self.get_img_id(lq_paths[0]) now_end_id, _ = self.get_img_id(lq_paths[-1]) assert clip == _ if now_start_id==0: print("first frame: {}".format(lq_paths[0])) self.LR_list = [] self.HR_list = [] # pad lq B ,_ ,origin_H, origin_W = lq.shape lq = img_multi_padding(lq, padding_multi=self.eval_cfg.multi_pad, pad_method = "edge") # edge constant self.LR_list.append(lq) # [1,3,h,w] if gt is not None: for i in range(B): self.HR_list.append(gt[i:i+1, ...]) if now_end_id == 99: print("start to forward all frames....") if self.eval_cfg.gap == 1: # do ensemble (8 times) ensemble_res = [] self.LR_list = np.concatenate(self.LR_list, axis=0) # [100, 3,h,w] for item in tqdm(range(8)): # do not have flip inp = mge.tensor(ensemble_forward(self.LR_list, Type=item), dtype="float32") oup = test_generator_batch(
F.expand_dims(inp, axis=0)
megengine.functional.expand_dims
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp =
F.mean(x, [2, 3], True)
megengine.functional.mean
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp =
F.nn.interpolate(gp, (x.shape[2], x.shape[3]))
megengine.functional.nn.interpolate
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out =
F.concat([conv1, conv31, conv32, conv33, gp], axis=1)
megengine.functional.concat
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout =
M.Dropout(0.5)
megengine.module.Dropout
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential( M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.5), M.Conv2d(256, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.1), ) self.conv_out =
M.Conv2d(256, self.num_classes, 1, 1, padding=0)
megengine.module.Conv2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential( M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.5), M.Conv2d(256, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.1), ) self.conv_out = M.Conv2d(256, self.num_classes, 1, 1, padding=0) for m in self.modules(): if isinstance(m, M.Conv2d): M.init.msra_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, M.BatchNorm2d): M.init.ones_(m.weight) M.init.zeros_(m.bias) self.backbone = getattr(resnet, cfg.backbone)( replace_stride_with_dilation=[False, False, True], pretrained=cfg.backbone_pretrained, ) del self.backbone.fc def forward(self, x): layers = self.backbone.extract_features(x) up0 = self.aspp(layers["res5"]) up0 = self.dropout(up0) up0 =
F.nn.interpolate(up0, scale_factor=self.sub_output_stride)
megengine.functional.nn.interpolate
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential( M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.5), M.Conv2d(256, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.1), ) self.conv_out = M.Conv2d(256, self.num_classes, 1, 1, padding=0) for m in self.modules(): if isinstance(m, M.Conv2d): M.init.msra_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, M.BatchNorm2d): M.init.ones_(m.weight) M.init.zeros_(m.bias) self.backbone = getattr(resnet, cfg.backbone)( replace_stride_with_dilation=[False, False, True], pretrained=cfg.backbone_pretrained, ) del self.backbone.fc def forward(self, x): layers = self.backbone.extract_features(x) up0 = self.aspp(layers["res5"]) up0 = self.dropout(up0) up0 = F.nn.interpolate(up0, scale_factor=self.sub_output_stride) up1 = self.upstage1(layers["res2"]) up1 =
F.concat([up0, up1], 1)
megengine.functional.concat
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential( M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.5), M.Conv2d(256, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.1), ) self.conv_out = M.Conv2d(256, self.num_classes, 1, 1, padding=0) for m in self.modules(): if isinstance(m, M.Conv2d): M.init.msra_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, M.BatchNorm2d): M.init.ones_(m.weight) M.init.zeros_(m.bias) self.backbone = getattr(resnet, cfg.backbone)( replace_stride_with_dilation=[False, False, True], pretrained=cfg.backbone_pretrained, ) del self.backbone.fc def forward(self, x): layers = self.backbone.extract_features(x) up0 = self.aspp(layers["res5"]) up0 = self.dropout(up0) up0 = F.nn.interpolate(up0, scale_factor=self.sub_output_stride) up1 = self.upstage1(layers["res2"]) up1 = F.concat([up0, up1], 1) up2 = self.upstage2(up1) out = self.conv_out(up2) out =
F.nn.interpolate(out, scale_factor=4)
megengine.functional.nn.interpolate
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ),
M.BatchNorm2d(out_channels)
megengine.module.BatchNorm2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels),
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ),
M.BatchNorm2d(out_channels)
megengine.module.BatchNorm2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels),
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ),
M.BatchNorm2d(out_channels)
megengine.module.BatchNorm2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels),
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ),
M.BatchNorm2d(out_channels)
megengine.module.BatchNorm2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels),
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential(
M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False)
megengine.module.Conv2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False),
M.BatchNorm2d(out_channels)
megengine.module.BatchNorm2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels),
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential(
M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False)
megengine.module.Conv2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False),
M.BatchNorm2d(out_channels)
megengine.module.BatchNorm2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels),
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential(
M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False)
megengine.module.Conv2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False),
M.BatchNorm2d(48)
megengine.module.BatchNorm2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48),
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential(
M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False)
megengine.module.Conv2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential( M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False),
M.BatchNorm2d(256)
megengine.module.BatchNorm2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential( M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256),
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential( M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(),
M.Dropout(0.5)
megengine.module.Dropout
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential( M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.5),
M.Conv2d(256, 256, 3, 1, padding=1, bias=False)
megengine.module.Conv2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential( M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.5), M.Conv2d(256, 256, 3, 1, padding=1, bias=False),
M.BatchNorm2d(256)
megengine.module.BatchNorm2d
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential( M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.5), M.Conv2d(256, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256),
M.ReLU()
megengine.module.ReLU
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential( M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.5), M.Conv2d(256, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(),
M.Dropout(0.1)
megengine.module.Dropout
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential( M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.5), M.Conv2d(256, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.1), ) self.conv_out = M.Conv2d(256, self.num_classes, 1, 1, padding=0) for m in self.modules(): if isinstance(m, M.Conv2d):
M.init.msra_normal_(m.weight, mode="fan_out", nonlinearity="relu")
megengine.module.init.msra_normal_
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential( M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.5), M.Conv2d(256, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.1), ) self.conv_out = M.Conv2d(256, self.num_classes, 1, 1, padding=0) for m in self.modules(): if isinstance(m, M.Conv2d): M.init.msra_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, M.BatchNorm2d):
M.init.ones_(m.weight)
megengine.module.init.ones_
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential( M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.5), M.Conv2d(256, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.1), ) self.conv_out = M.Conv2d(256, self.num_classes, 1, 1, padding=0) for m in self.modules(): if isinstance(m, M.Conv2d): M.init.msra_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, M.BatchNorm2d): M.init.ones_(m.weight)
M.init.zeros_(m.bias)
megengine.module.init.zeros_
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw =
F.minimum(dw, max_delta)
megengine.functional.minimum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh =
F.minimum(dh, max_delta)
megengine.functional.minimum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw =
F.log(gt_width / bbox_width)
megengine.functional.log