prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
from __future__ import absolute_import, division, print_function import os import sys from collections import Counter from typing import List, Text from urllib.request import urlretrieve import numpy as np import pandas as pd import tensorflow as tf from six import string_types from tqdm import tqdm from odin.utils.crypto import md5_checksum os.environ['CUDA_VISIBLE_DEVICES'] = '0' os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' tf.random.set_seed(1) np.random.seed(1) HEADER = [ 'hgnc_id', 'symbol', 'name', 'locus_group', 'locus_type', 'status', 'location', 'location_sortable', 'alias_symbol', 'alias_name', 'prev_symbol', 'prev_name', 'gene_family', 'gene_family_id', 'date_approved_reserved', 'date_symbol_changed', 'date_name_changed', 'date_modified', 'entrez_id', 'ensembl_gene_id', 'vega_id', 'ucsc_id', 'ena', 'refseq_accession', 'ccds_id', 'uniprot_ids', 'pubmed_id', 'mgd_id', 'rgd_id', 'lsdb', 'cosmic', 'omim_id', 'mirbase', 'homeodb', 'snornabase', 'bioparadigms_slc', 'orphanet', 'pseudogene.org', 'horde_id', 'merops', 'imgt', 'iuphar', 'kznf_gene_catalog', 'mamit-trnadb', 'cd', 'lncrnadb', 'enzyme_id', 'intermediate_filament_db', 'rna_central_ids', 'lncipedia', 'gtrnadb', 'agr' ] FILTERED_HEADER = [ 'ensembl_gene_id', 'name', 'symbol', 'alias_symbol', 'alias_name', 'locus_type', 'location', 'cd', 'uniprot_ids', 'enzyme_id' ] PROTEIN_CODING_TEMPLATE = r"ftp://ftp.ebi.ac.uk/pub/databases/genenames/hgnc/tsv/locus_groups/protein-coding_gene_chr_{chro}.txt" NON_CODING_TEMPLATE = r"ftp://ftp.ebi.ac.uk/pub/databases/genenames/hgnc/tsv/locus_groups/non-coding_RNA_chr_{chro}.txt" CHROMOSOMES = list(range(1, 22 + 1)) + ['X', 'Y', 'mitochondria'] def _download_file(chromosome, url, path) -> pd.DataFrame: name = os.path.basename(url) filename = os.path.join(path, name) if not os.path.exists(filename): prog = tqdm(desc=f"Download {name}", unit="kB") def progress(blocknum, bs, size): if prog.total is None: prog.total = size // 1024 prog.update(bs * blocknum // 1024 - prog.n) urlretrieve(url=url, filename=filename, reporthook=progress) prog.clear() prog.close() # read the tsv file data = [] with open(filename, 'r') as f: for line in f: line = [i.replace('"', '') for i in line[:-1].split("\t")] data.append(line) data = np.asarray(data) assert data.shape[1] == 52, \ f"Expect 52 columns, parsed data has shape:{data.shape}" assert np.all(data[0] == HEADER), f"Unknown header: {data[0]}" # convert to DataFrame data =
pd.DataFrame(data[1:], columns=data[0])
pandas.DataFrame
"""Example module in template package.""" import os import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import cross_validate, GridSearchCV from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor from sklearn.ensemble import GradientBoostingClassifier from sklearn.tree import DecisionTreeRegressor from sklearn.linear_model import SGDClassifier from sklearn import svm from imblearn.over_sampling import SMOTE from imblearn.under_sampling import RandomUnderSampler from imblearn.pipeline import Pipeline from geo import * __all__ = ['Tool'] class Tool(object): """Class to interact with a postcode database file.""" def __init__(self, postcode_file='', sample_labels='', household_file=''): """ Parameters ---------- postcode_file : str, optional Filename of a .csv file containing geographic location data for postcodes. sample_labels : str, optional Filename of a .csv file containing sample data on property values and flood risk labels. household_file : str, optional Filename of a .csv file containing information on households by postcode. """ if postcode_file == '': postcode_file = os.sep.join((os.path.dirname(__file__), 'resources', 'postcodes_unlabelled.csv')) if sample_labels == '': sample_labels = os.sep.join((os.path.dirname(__file__), 'resources', 'postcodes_sampled.csv')) if household_file == '': household_file = os.sep.join((os.path.dirname(__file__), 'resources', 'households_per_sector.csv')) self.label = pd.read_csv(sample_labels) self.postcodes = pd.read_csv(postcode_file) self.house_label = pd.read_csv(household_file) def get_easting_northing(self, postcodes): """Get a frame of OS eastings and northings from a collection of input postcodes. Parameters ---------- postcodes: sequence of strs Sequence of postcodes. Returns ------- pandas.DataFrame DataFrame containing only OSGB36 easthing and northing indexed by the input postcodes. Invalid postcodes (i.e. not in the input unlabelled postcodes file) return as NaN. """ if type(postcodes) is str: postcodes = [postcodes] postcode_df = self.postcodes postcode_df = postcode_df.fillna('np.nan') postcode_df_index = postcode_df.set_index('postcode') df = pd.DataFrame(columns=(['sector','easting', 'northing','localAuthority'])) for i in range(len(postcodes)): if postcodes[i] in postcode_df['postcode'].tolist(): df.loc[postcodes[i]] = postcode_df_index.loc[postcodes[i]] else: df.loc[postcodes[i]] = np.NaN del df['sector'] del df['localAuthority'] return df def get_lat_long(self, postcodes): """Get a frame containing GPS latitude and longitude information for a collection of of postcodes. Parameters ---------- postcodes: sequence of strs Sequence of postcodes. Returns ------- pandas.DataFrame DataFrame containing only WGS84 latitude and longitude pairs for the input postcodes. Invalid postcodes (i.e. not in the input unlabelled postcodes file) return as NAN. """ NE = self.get_easting_northing(postcodes) east = NE['easting'] north = NE['northing'] lat_long = [] for i in range(len(NE)): postcode = postcodes[i] if np.isnan(east[i]): lat = np.NaN long = np.NaN else: a = get_gps_lat_long_from_easting_northing([east[i]],[north[i]],rads=False) lat = int(a[0]) long = int(a[1]) lat_long.append([postcode,lat,long]) postcode_df = pd.DataFrame(lat_long, columns=('postcode','lat','lon')) postcode_df = postcode_df.set_index('postcode') return postcode_df def get_easting_northing_sample(self, postcodes): """Get a frame of OS eastings and northings from a collection of input postcodes. Parameters ---------- postcodes: sequence of strs Sequence of postcodes. Returns ------- pandas.DataFrame DataFrame containing only OSGB36 easthing and northing indexed by the input postcodes. Invalid postcodes (i.e. not in the input sampled postcodes file) return as NaN. """ if type(postcodes) is str: postcodes = [postcodes] postcode_df = self.label postcode_df = postcode_df.fillna('np.nan') postcode_df_index = postcode_df.set_index('postcode') df = pd.DataFrame(columns=(['sector','easting', 'northing','localAuthority','riskLabel','medianPrice'])) for i in range(len(postcodes)): if postcodes[i] in postcode_df['postcode'].tolist(): df.loc[postcodes[i]] = postcode_df_index.loc[postcodes[i]] else: df.loc[postcodes[i]] = np.NaN del df['sector'] del df['localAuthority'] del df['riskLabel'] del df['medianPrice'] return df def get_lat_long_sample(self, postcodes): """Get a frame containing GPS latitude and longitude information for a collection of of postcodes. Parameters ---------- postcodes: sequence of strs Sequence of postcodes. Returns ------- pandas.DataFrame DataFrame containing only WGS84 latitude and longitude pairs for the input postcodes. Invalid postcodes (i.e. not in the input sampled postcodes file) return as NAN. """ NE = self.get_easting_northing_sample(postcodes) east = NE['easting'] north = NE['northing'] lat_long = [] for i in range(len(NE)): postcode = postcodes[i] if np.isnan(east[i]): lat = np.NaN long = np.NaN else: a = get_gps_lat_long_from_easting_northing([east[i]],[north[i]],rads=False) lat = int(a[0]) long = int(a[1]) lat_long.append([postcode,lat,long]) postcode_df = pd.DataFrame(lat_long, columns=('postcode','lat','lon')) postcode_df = postcode_df.set_index('postcode') return postcode_df @staticmethod def get_flood_class_methods(): """ Get a dictionary of available flood probablity classification methods. Returns ------- dict Dictionary mapping classification method names (which have no inate meaning) on to an identifier to be passed to the get_flood_probability method. """ return {'random_forest': 0, "RF_balanced": 1, "SGD_Classifier": 2, "knn": 3, 'GBC': 4} def get_flood_class(self, postcodes, method=0): """ Generate series predicting flood probability classification for a collection of poscodes. Parameters ---------- postcodes : sequence of strs Sequence of postcodes. method : int (optional) optionally specify (via a value in self.get_flood_probability_methods) the classification method to be used. Returns ------- pandas.Series Series of flood risk classification labels indexed by postcodes. """ # print("asdas", self.label) X = self.label[["easting","northing"]] y = self.label['riskLabel'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 42) # Holdout northing_eastings = self.get_easting_northing(postcodes) # print(northing_eastings, 'asdsa') # northing_eastings = X.iloc[0:2] # print(self.get_flood_class_methods(), 'asd') if method == self.get_flood_class_methods()["random_forest"]: model = RandomForestClassifier(criterion = 'gini', max_features = 'log2', class_weight = {1: 10, 2: 10, 3: 10, 4: 1, 5: 15, 6: 15, 7: 10, 8: 150, 9: 300, 10: 300}) model.fit(X_train, y_train) if method == self.get_flood_class_methods()["RF_balanced"]: over = SMOTE(sampling_strategy='not majority', random_state=41) under = RandomUnderSampler(sampling_strategy={1:500}, random_state=43) steps = [('u', under)] #, ('o', over) pipeline = Pipeline(steps=steps) X_train, y_train = pipeline.fit_resample(X_train, y_train) model = RandomForestClassifier(criterion = 'gini', max_features = 'log2', class_weight = {1: 10, 2: 10, 3: 10, 4: 1, 5: 15, 6: 15, 7: 10, 8: 150, 9: 300, 10: 300}) model.fit(X_train, y_train) if method == self.get_flood_class_methods()["SGD_Classifier"]: model = SGDClassifier(loss='hinge', penalty='l1', alpha=1/20) model.fit(X_train, y_train) if method == self.get_flood_class_methods()["knn"]: model = KNeighborsClassifier(n_neighbors=20) model.fit(X_train, y_train) if method == self.get_flood_class_methods()["GBC"]: model = GradientBoostingClassifier(random_state=1) model.fit(X_train, y_train) y_new = model.predict(northing_eastings) return pd.Series(data=y_new, index=np.asarray(postcodes), name='riskLabel') @staticmethod def get_house_price_methods(): """ Get a dictionary of available flood house price regression methods. Returns ------- dict Dictionary mapping regression method names (which have no inate meaning) on to an identifier to be passed to the get_median_house_price_estimate method. """ return {'all_england_median': 0, 'another_1': 1, 'Decision_tree_regressor': 2} def get_median_house_price_estimate(self, postcodes, method=2): """ Generate series predicting median house price for a collection of poscodes. Parameters ---------- postcodes : sequence of strs Sequence of postcodes. method : int (optional) optionally specify (via a value in self.get_house_price_methods) the regression method to be used. Returns ------- pandas.Series Series of median house price estimates indexed by postcodes. """ df = self.label df['outwardDistrict'] = df['postcode'].apply(lambda x: x.split(' ')[0]) df['sec_num']=df['sector'].apply(lambda x: x.split(' ')[1][0]) if method == 0: return pd.Series(data=np.full(len(postcodes), 245000.0), index=np.asarray(postcodes), name='medianPrice') elif method == 1: # another one median_price = [] for code in postcodes: if code in df['postcode'].values: median_price.append(df[df['postcode']==code]['medianPrice'].values[0]) elif code.split(' ')[0]+' '+code.split(' ')[1][0] in df['sector'].values: sec = code.split(' ')[0]+' '+code.split(' ')[1][0] median_price.append(df[df['sector'] == sec]['medianPrice'].mean()) elif code.split(' ')[0] in df['outwardDistrict'].values: district = df[df['outwardDistrict'] == code.split(' ')[0]] X_test = code.split(' ')[1][0] KNN_model = KNeighborsRegressor(n_neighbors=1,weights='distance', n_jobs=-1) X = district[['sec_num']] y = district['medianPrice'] KNN_model.fit(X,y) y_pred = KNN_model.predict(pd.DataFrame([X_test], columns=['sec_num'])) median_price.append(y_pred[0]) else: median_price.append(np.nan) return pd.Series(data= median_price, index = postcodes, name='another_one') elif method == 2: # Decision tree regressor median_price = [] for code in postcodes: if code in df['postcode'].values: median_price.append(df[df['postcode']==code]['medianPrice'].values[0]) elif code.split(' ')[0]+' '+code.split(' ')[1][0] in df['sector'].values: sec = code.split(' ')[0]+' '+code.split(' ')[1][0] median_price.append(df[df['sector'] == sec]['medianPrice'].mean()) elif code.split(' ')[0] in df['outwardDistrict'].values: district = df[df['outwardDistrict'] == code.split(' ')[0]] X_test = code.split(' ')[1][0] # sector dtree = DecisionTreeRegressor(max_depth=5, min_samples_leaf=0.13, random_state=3) X = district[['sec_num']] y = district['medianPrice'] dtree.fit(X, y) y_pred = dtree.predict(
pd.DataFrame([X_test], columns=['sec_num'])
pandas.DataFrame
# coding: utf-8 # In[1]: import pandas as pd tweets = pd.read_csv("tweets.csv") tweets.head() # In[3]: def get_candidate(row): candidates = [] text = row["text"].lower() if "clinton" in text or "hillary" in text: candidates.append("clinton") if "trump" in text or "donald" in text: candidates.append("trump") if "sanders" in text or "bernie" in text: candidates.append("sanders") return ",".join(candidates) tweets["candidate"] = tweets.apply(get_candidate,axis=1) tweets.head() # In[14]: import matplotlib.pyplot as plt import numpy as np counts = tweets["candidate"].value_counts() plt.bar(range(len(counts)), counts) plt.show() # In[16]: #用户年龄统计 from datetime import datetime tweets["created"] =
pd.to_datetime(tweets["created"])
pandas.to_datetime
# -*- coding: utf-8 -*- """ Part of slugdetection package @author: <NAME> github: dapolak """ import numpy as np import pandas as pd from datetime import datetime, timedelta from slugdetection.Slug_Detection import Slug_Detection import unittest class Test_Slug_Detection(unittest.TestCase): """ Unitest class for the Slug Detection class """ def test_create_class(self, spark_data): """ Unit test for class creation Parameters ---------- spark_data : Spark data frame well data frame """ test_class = Slug_Detection(spark_data) assert hasattr(test_class, "well_df"), "Assert well_df attribute is created" assert len(test_class.well_df.head(1)) != 0, \ "well_df attribute not empty" # Pyspark has no clear empty attribute def test_jump(self, spark_data): """ Unit test for jump method Parameters ---------- spark_data : Spark data frame well data frame """ # Standard Data Engineering test_class = Slug_Detection(spark_data) test_class.timeframe(start="12-SEP-16 09:09", end="18-SEP-16 09:09") # known interval that has 3 section of data over 99% choke test_class.data_range(verbose=False) test_class.clean_choke(method="99") sd_df = test_class.df_toPandas() test_class.jump() assert 'count_id' in test_class.pd_df.columns, "Assert new count_id column was created" assert test_class.pd_df['count_id'].nunique() >= 3, \ "For this example, assert that there are three continuous sets of data" def test_clean_short_sub(self, spark_data): """ Unit test for clean_short_sub method Parameters ---------- spark_data : Spark data frame well data frame """ test_class = Slug_Detection(spark_data) test_class.timeframe(start="12-SEP-16 09:09", end="18-SEP-16 09:09") # known interval that has 3 section of data over 99% choke test_class.data_range(verbose=False) test_class.clean_choke(method="99") sd_df = test_class.df_toPandas() test_class.jump() a = len(test_class.pd_df) # Store length of pd_df data frame test_class.clean_short_sub(min_df_size=200) # Apply clean_short_sub method b = len(test_class.pd_df) # Store length of pd_df data frame assert a > b, "For this example, the post clean_short_sub pd_df attribute should be shorter" def test_sub_data(self, spark_data): """ Unit test for clean_short_sub method Parameters ---------- spark_data : Spark data frame well data frame """ # Standard Data Engineering test_class = Slug_Detection(spark_data) test_class.timeframe(start="12-SEP-16 09:09", end="18-SEP-16 09:09") # known interval that has 3 section of data over 99% choke test_class.data_range(verbose=False) test_class.clean_choke(method="99") sd_df = test_class.df_toPandas() test_class.sub_data(min_df_size=200) assert hasattr(test_class, "sub_df_dict"), "New attribute must have been created" a = test_class.pd_df["count_id"].nunique() assert a == len(test_class.sub_df_dict), "Number of unique count ids must be the same as number of data " \ "frames in sub_df_dict dictionary" a = test_class.sub_df_dict[0] # Get first element of the dictionary assert isinstance(a, pd.DataFrame), "sub_df_dict elements are pandas data frames" for f in test_class.features: assert f in a.columns, "data frame must contain all features" def test_slug_check(self, spark_data): """ Unit test for slug_check method Parameters ---------- spark_data : Spark data frame well data frame """ # Standard Data Engineering steps test_class = Slug_Detection(spark_data) test_class.timeframe(start="18-SEP-16 01:09", end="18-SEP-16 09:09") # example interval test_class.data_range(verbose=False) test_class.clean_choke(method="99") sd_df = test_class.df_toPandas() test_class.sub_data() ## Test 1 : Test that slug_check returns right value ## # Create fake dataframe datetime_format = '%d-%b-%y %H:%M' # datetime date format base = datetime.strptime("01-JAN-16 09:09", datetime_format) # Create datetime type timestamp date_list = [[base + timedelta(minutes=x)] for x in range(1000)] # Create list of timestamps x = np.linspace(0, 100 * np.pi, 1000) # Get evenly spaced x array whp_list = (np.sin(x) * 3) + 10 # Create sin wave array (slug-like) fake_df = pd.DataFrame(data=date_list, columns=["ts"], dtype=str) # Create data frame with timestamp fake_df["ts"] = pd.to_datetime(fake_df["ts"]) # Ensure timestamp are datetime type fake_df["WH_P"] = whp_list # Add sine wave as WHP data test_class.sub_df_dict = { 1: fake_df } # Override sub_df_dict attribute with fake data frame slug_idx = pd.Series(whp_list)[whp_list > 12.90].index.tolist() # Create list of slug peaks for fake slugs first = test_class.slug_check(slug_idx, 1) # Get results from slug_check method assert len(first) == 1, "First slug index list should only contain one value in this example" ## Test 2 : Test that slug_check returns right value ## # Create fake data frame datetime_format = '%d-%b-%y %H:%M' # datetime date format base = datetime.strptime("01-JAN-16 09:09", datetime_format) # Create datetime type timestamp date_list = [[base + timedelta(minutes=x)] for x in range(2300)] # Create list of timestamps x = np.linspace(0, 100 * np.pi, 1000) # Get evenly spaced x array whp_list = (np.sin(x) * 3) + 10 # Create sin wave array (slug-like) whp_list = np.append(whp_list, [10 for i in range(300)]) # Add flat flow to simulate normal flow whp_list = np.append(whp_list, (np.sin(x) * 3) + 10) # Add more slugs fake_df = pd.DataFrame(data=date_list, columns=["ts"], dtype=str) # Create data frame with timestamp fake_df["ts"] = pd.to_datetime(fake_df["ts"]) # Ensure timestamp are datetime type fake_df["WH_P"] = whp_list # Add fake whp data slug_idx = pd.Series(whp_list)[whp_list > 12.90].index.tolist() # Create list of slug peaks test_class.sub_df_dict = { 1: fake_df } # Override sub_df_dict attribute with fake data frame first = test_class.slug_check(slug_idx, 1) # Get results from slug_check method assert first, "First slug index list should not be empty" assert len(first) == 2, "First slug index list should only contain two value in this example" assert first[1] == 1305, "In this example, the second first slug of the data set occurs at minutes = 1305" def test_label_slugs(self, spark_data): """ Unit test for label_slugs method Parameters ---------- spark_data : Spark data frame well data frame """ # Standard Data Engineering steps test_class = Slug_Detection(spark_data) test_class.timeframe(start="18-SEP-16 01:09", end="30-SEP-16 09:09") # example interval test_class.data_range(verbose=False) test_class.clean_choke(method="99") sd_df = test_class.df_toPandas() try: f, s = test_class.label_slugs() print("Sub df dict attribute has not been created") raise ValueError except AssertionError: pass test_class.sub_data() # Create sub df dict # create fake data set datetime_format = '%d-%b-%y %H:%M' base = datetime.strptime("01-JAN-16 09:09", datetime_format) date_list = [[base + timedelta(minutes=x)] for x in range(1000)] # Creat time, one minute appart x = np.linspace(0, 100 * np.pi, 1000) whp_list = (np.sin(x) * 3) + 10 # create sin wave fake_df = pd.DataFrame(data=date_list, columns=["ts"], dtype=str) fake_df["ts"] = pd.to_datetime(fake_df["ts"]) fake_df["WH_P"] = whp_list # overide test_class.sub_df_dict = { 1: fake_df, 2: pd.DataFrame(data=[[0, 0], [0, 0]], columns=["ts", "WH_P"]) } # This should create f, s = test_class.label_slugs() assert s, "Assert slug index list is not empty" assert f, "Assert first slug index list not empty" assert len(s[0]) == 49, "In this example, there should be 50 slug peaks" assert len(s) == 2, "In this example, there should be one list of slug peaks" def test_format_data(self, spark_data): """ Unit test for format_data method Parameters ---------- spark_data : Spark data frame well data frame """ # Standard Data Engineering steps test_class = Slug_Detection(spark_data) test_class.timeframe(start="18-SEP-16 01:09", end="18-SEP-16 09:09") # example interval test_class.data_range(verbose=False) test_class.clean_choke(method="99") sd_df = test_class.df_toPandas() try: f, s = test_class.label_slugs() print("Sub df dict attribute has not been created") raise ValueError except AssertionError: pass test_class.sub_data() # Create sub df dict ## Example 1 ## # create fake data set datetime_format = '%d-%b-%y %H:%M' # datetime date format base = datetime.strptime("01-JAN-16 09:09", datetime_format) # Create datetime type timestamp date_list = [[base + timedelta(minutes=x)] for x in range(2600)] # Create list of timestamps x = np.linspace(0, 100 * np.pi, 1000) # Get evenly spaced x array whp_list = np.array([10 for i in range(300)]) # Create whp list with normal flow behaviour whp_list = np.append(whp_list, (np.sin(x) * 3) + 10) # Add sin wave array (slug-like) whp_list = np.append(whp_list, [10 for i in range(300)]) # Add flat flow to simulate normal flow whp_list = np.append(whp_list, (np.sin(x) * 3) + 10) # Add more slugs fake_df =
pd.DataFrame(data=date_list, columns=["ts"], dtype=str)
pandas.DataFrame
#Rule - To replace multiple spaces in the content of the text, voice and voice_only def multiple_spaces_in_txt(fle, fleName, target): import re import os import sys import json import openpyxl import pandas as pd from pandas import ExcelWriter from pandas import ExcelFile configFile = 'https://s3.us-east.cloud-object-storage.appdomain.cloud/sharad-saurav-bucket/Configuration.xlsx' rule="Multiple_Spaces_in_txt" config=pd.read_excel(configFile) newdf=config[config['RULE']==rule] to_check='' for index,row in newdf.iterrows(): to_check=row['TO_CHECK'] to_check=json.loads(to_check) files_to_apply=to_check['files_to_apply'] columns_to_apply=to_check['columns_to_apply'] if(files_to_apply=='ALL' or fleName in files_to_apply): data=[] regex = r"\s{2,}" def check_multiple_space(string): if(re.search(regex,string)): return True else: return False df = pd.read_excel(fle) df.index = range(2,df.shape[0]+2) for index,row in df.iterrows(): for column_name in columns_to_apply: column_value=row[column_name] if(
pd.notnull(row[column_name])
pandas.notnull
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 5 11:52:00 2020 @author: <NAME> Ewp Takes a little while to run. This code is a pretty average (poorly named variables and reuse of dat, and different names for the moorings). All of the values are calculated on the fly and printed. Not saved anywhere. Quite inefficient, but provided as is. Recommended to turn warnings off to save the data and put in text. Could have turned this into a function. Have refractored where possible but this script is provided as is. Requirements: processed/combined_dataset/month_data_exports.nc processed/flux/pco2grams.nc Produces: figs/Figure5a_ENSO_seasonality.png """ import numpy as np import pandas as pd import xarray as xr import matplotlib.pyplot as plt from carbon_math import * from matplotlib.dates import MonthLocator, DateFormatter from matplotlib.ticker import FuncFormatter xl0=0.0 yl0=0.18 xl1=0.0 yl1=0.18 xl2=-0.09 yl2=0 lanina=pd.read_csv('processed/indexes/la_nina_events.csv') cp_nino=pd.read_csv('processed/indexes/cp_events.csv') ep_nino=pd.read_csv('processed/indexes/ep_events.csv') fp='processed/combined_dataset/month_data_exports.nc' info=xr.open_mfdataset(fp).sel(Mooring=195).to_dataframe() #Process EP, CP and Nino events. nina=pd.DataFrame() ep=pd.DataFrame() cp=pd.DataFrame() for i in lanina.iterrows(): nina=nina.append(info[slice(i[1].start,i[1].end)]) for i in ep_nino.iterrows(): ep=ep.append(info[slice(i[1].start,i[1].end)]) for i in cp_nino.iterrows(): cp=cp.append(info[slice(i[1].start,i[1].end)]) nina_dates=nina.index ep_dates=ep.index[4:] cp_dates=cp.index # %% Load Useful files seamask=xr.open_dataset('processed/seamask.nc') #Because 2020 version doesn't have it. seamask= seamask.assign_coords(lon=(seamask.lon % 360)).roll(lon=(seamask.dims['lon']),roll_coords=False).sortby('lon') #landsch_fp='datasets/co2/landschutzer_co2/spco2_MPI_SOM-FFN_v2018.nc' landsch_fp='datasets/co2/landschutzer_co2/spco2_MPI-SOM_FFN_v2020.nc' landschutzer=xr.open_dataset(landsch_fp) landschutzer= landschutzer.assign_coords(lon=(landschutzer.lon % 360)).roll(lon=(landschutzer.dims['lon']),roll_coords=False).sortby('lon') #EPIC 1 line fix for the dateline problem. land_pac=landschutzer.sel(lon=slice(120,290),lat=slice(-20,20)) land_pac_all=landschutzer.sel(lon=slice(120,290),lat=slice(-20,20)) land_pac=land_pac.fgco2_smoothed atmco2=land_pac_all.atm_co2 dco2=land_pac_all.dco2 pco2=land_pac_all.spco2_smoothed kw=land_pac_all.kw f_ratios=xr.open_mfdataset('processed/flux/fratios.nc') ratio=f_ratios.laws2011a#laws2000#laws2000,laws2011a,laws2011b,henson2011 npp1=xr.open_dataset('processed/flux/avg_npp_rg_cafe.nc') avg_npp=(npp1.avg_npp/1000)*ratio land=moles_to_carbon(land_pac)/365 #LANDSCHUTZ land['time']=land.time.astype('datetime64[M]') diff=land-avg_npp diff1=diff.where((diff<0.1)|(diff<-0.1),np.nan) sst = xr.open_dataset('datasets/sst/sst.mnmean.nc') sst= sst.assign_coords(lon=(sst.lon % 360)).roll(lon=(sst.dims['lon']),roll_coords=False).sortby('lon') #EPIC 1 line fix for the dateline problem. sst=sst.sel(lon=slice(120,290),lat=slice(20,-20)).sst sst=sst.where(seamask.seamask==1) #startday=np.datetime64('2000-01-01') #endday=np.datetime64('2019-12-01') #wu=xr.open_dataset('datasets/uwnd.mon.mean.nc').sel(level=1000,lat=0,lon=slice(120,290),time=slice('1997-07-01','2020-01-01')).uwnd #wv=xr.open_dataset('datasets/vwnd.mon.mean.nc').sel(level=1000,lat=0,lon=slice(120,290),time=slice('1997-07-01','2020-01-01')).vwnd wu=xr.open_dataset('datasets/uwnd.10m.mon.mean.nc').sel(level=10,lat=slice(20,-20),lon=slice(120,290),time=slice('1997-07-01','2020-01-01')).uwnd wv=xr.open_dataset('datasets/vwnd.10m.mon.mean.nc').sel(level=10,lat=slice(20,-20),lon=slice(120,290),time=slice('1997-07-01','2020-01-01')).vwnd ws_ncep2=np.sqrt((wu**2)+(wv**2)) #CHeck line 164 depending if using NCEP2 or windspeed ws=xr.open_dataarray('datasets/CCMP_windspeed.nc') #wind=uw.sel(lat=) precip= xr.open_dataset('datasets/precip.mon.mean.enhanced.nc').sel(lat=slice(20,-20),lon=slice(120,290),time=slice('1997-07-01','2020-01-01')).precip newprod=avg_npp.sel(lat=slice(-15,15))#.interpolate_na(dim='time').sel(time=slice(startday,endday)) co2=land.sel(lat=slice(-15,15))#.interpolate_na(dim='time').sel(time=slice(startday,endday)) pco2=pco2.sel(lat=slice(-15,15))#.interpolate_na(dim='time').sel(time=slice(startday,endday)) pco2['time']=pco2.time.astype('datetime64[M]') kw['time']=kw.time.astype('datetime64[M]') dco2['time']=dco2.time.astype('datetime64[M]') #pco2=pco2_intrp kw1=kw.sel(lat=slice(-15,15))#.interpolate_na(dim='time').sel(time=slice(startday,endday)) sst=sst.sel(lat=slice(15,-15))#.interpolate_na(dim='time').sel(time=slice(startday,endday)) chl=xr.open_dataset('processed/flux/tpca.nc').tpca#'sw_month.nc') chl['time']=chl.time.astype('datetime64[M]') # %% #Test windspeed minlat=-2 maxlat=2 #enso=pd.read_csv('datasets/indexes/meiv2.csv',index_col='Year') enso=pd.read_csv('datasets/indexes/meiv2.csv',index_col=0,header=None) enso=enso.iloc[3:] #Just so Both EMI and MEI start in 1981-01-01 enso_flat=enso.stack() enso_dates=pd.date_range('1982','2020-07-01',freq='M')-
pd.offsets.MonthBegin(1)
pandas.offsets.MonthBegin
import plotly.graph_objs as go from plotly.colors import n_colors # to handle data retrieval import urllib3 from urllib3 import request # to handle certificate verification import certifi # to manage json data import json # for pandas dataframes import pandas as pd base_url = 'https://www.opendata.nhs.scot/api/3/action/datastore_search_sql?sql=' #Neighbourhoods nbh_id = '8906de12-f413-4b3f-95a0-11ed15e61773' #Daily Cases total daily_id = '287fc645-4352-4477-9c8c-55bc054b7e76' # Cases by local authority by_hb_id = '427f9a25-db22-4014-a3bc-893b68243055' # Hospital Onset hosp_id = '5acbccb1-e9d6-4ab2-a7ac-f3e4d378e7ec' def get_api(sql_query): base_url = 'https://www.opendata.nhs.scot/api/3/action/datastore_search_sql?sql=' # handle certificate verification and SSL warnings http = urllib3.PoolManager(cert_reqs='CERT_REQUIRED', ca_certs=certifi.where()) final_url = base_url + sql_query r = http.request('GET', final_url) # decode json data into a dict object data = json.loads(r.data.decode('utf-8')) df = pd.json_normalize(data['result']['records']) return df def latest_date(resource_id): date_df = get_api( f''' SELECT "Date" FROM "{resource_id}" ORDER BY "Date" DESC LIMIT 1 ''') latest_date = date_df.iloc[0,0] return latest_date def month_before(resource_id, n_days): date_df = get_api( f''' SELECT DISTINCT "Date" FROM "{resource_id}" ORDER BY "Date" DESC LIMIT {n_days} ''') _n_days = date_df.iloc[(n_days-1),0] return _n_days #Daily Cases over time def daily(): ''' returns most recent daily case numbers from the Scottish Goverment ''' sql_daily = f''' SELECT "Date", "DailyCases" FROM "{daily_id}" ORDER BY "Date" ASC ''' daily_df = get_api(sql_daily) daily_df.columns = ['DateStr', 'DailyCases'] daily_df['Date'] = daily_df['DateStr'].apply(lambda x: pd.to_datetime(str(x),\ format='%Y%m%d')) daily_df = daily_df.drop('DateStr', axis = 1) daily_df['AvgCases'] = daily_df['DailyCases'].rolling(14,\ win_type='triang', min_periods=1).mean() return daily_df #Top Neighbourhoods Daily def top_nbh_daily(): ''' Returns top 50 Neighbourhoods with new cases in Scotland according to Scottish Goverment Data ''' day = latest_date(nbh_id) sql_nbh = f''' SELECT "Date", "IntZoneName", "Positive7Day" FROM "{nbh_id}" WHERE "Date" = {day} ''' nbh_df = get_api(sql_nbh) nbh_df['Positive7Day'] = pd.to_numeric(nbh_df['Positive7Day']) nbh_df = nbh_df.sort_values(by=['Positive7Day'], ascending = False)\ .reset_index(drop = True) nbh_df.columns = ['DateStr', 'Neighbourhood', 'Weekly Positive'] nbh_df['Date'] = nbh_df['DateStr'].apply(lambda x: pd.to_datetime(str(x),\ format='%Y%m%d')) nbh_df = nbh_df.drop('DateStr', axis = 1) return nbh_df.iloc[:10,:] #Daily Cases by Local Authority def top_la_daily(): ''' Returns Local Authority new Covid case numbers ''' day = latest_date(by_hb_id) sql_hb = f''' SELECT "Date", "CAName", "DailyPositive" FROM "{by_hb_id}" WHERE "Date" = {day} ''' hb_df = get_api(sql_hb) hb_df['DailyPositive'] = pd.to_numeric(hb_df['DailyPositive']) hb_df = hb_df.sort_values(by=['DailyPositive'], ascending = False)\ .reset_index(drop = True) hb_df.columns = ['DateStr','Daily Positive', 'Local Authority'] hb_df['Date'] = hb_df['DateStr'].apply(lambda x: pd.to_datetime(str(x),\ format='%Y%m%d')) return hb_df.drop('DateStr', axis = 1) def snap_shot(n_days): ''' Returns a snap shot of case numbers in Local Authority over time ''' day = latest_date(by_hb_id) n_days = 5 _n_days = month_before(by_hb_id, n_days) sql_hb_m = f''' SELECT "Date", "CAName", "PositivePercentage" FROM "{by_hb_id}" WHERE "Date" BETWEEN {_n_days} AND {day} ORDER BY "Date" DESC ''' hb_m_df = get_api(sql_hb_m) hb_m_df['PositivePercentage'] = pd.to_numeric(hb_m_df['PositivePercentage']) hb_m_df.columns = ['DateStr', 'PositivePercentage', 'Local Authority'] hb_m_df['Date'] = hb_m_df['DateStr'].apply(lambda x: pd.to_datetime(str(x),\ format='%Y%m%d')) hb_m_df = hb_m_df.drop('DateStr', axis = 1) return hb_m_df #Creates Figures def return_figures(): """Creates four plotly visualizations Args: None Returns: list (dict): list containing the four plotly visualizations """ #New Covic cases over time for Scotland df_one = daily() df_one = df_one.set_index('Date').stack().reset_index() df_one.columns = ['Date', 'casetype', 'Cases'] df_one = df_one.iloc[-100:,:] graph_one = [] ct_list = df_one.casetype.unique().tolist() for ct in ct_list: x_val = df_one[df_one.casetype == ct]['Date'].tolist() y_val = df_one[df_one.casetype == ct]['Cases'].tolist() graph_one.append(go.Scatter( x = x_val, y = y_val, mode = 'lines', name = ct ), ) layout_one = dict(title = 'Daily COVID-19 Cases in Scotland', xaxis = dict(title = 'Date'), yaxis = dict(title = 'New Cases'), font=dict( color="black" ) ) #Top ten table of highest weekly covid Neighbourhoods df_two = top_nbh_daily() df_two = df_two.drop(['Date'], axis= 1) colors = n_colors('rgb(200, 0, 0)', 'rgb(255, 200, 200)', 10, colortype='rgb') df_two['c'] = colors graph_two = [] graph_two.append(go.Table( header=dict( values=["<b>Neighbourhood<b>", "<b>Weekly Positive<b>"], line_color='darkslategrey', fill_color='white', align='center', font=dict(color='black', size=12) ), cells=dict(values=[df_two['Neighbourhood'], df_two['Weekly Positive']], line_color=[df_two['c']], fill_color=[df_two['c']], align='left', font=dict(color='white', size=12) ) ) ) #New Daily Cases by Local Authority df_three = top_la_daily() df_three_s = df_three.sort_values(by = 'Daily Positive') graph_three = [] hb_list = df_three_s['Local Authority'].tolist() for hb in hb_list: x_val = df_three_s[df_three_s['Local Authority'] == hb]['Local Authority'].tolist() y_val = df_three_s[df_three_s['Local Authority'] == hb]['Daily Positive'].tolist() graph_three.append(go.Bar(y = x_val,x = y_val, name = hb,orientation='h')) layout_three = dict( title = 'Daily Cases', xaxis = dict( title = 'New Cases' ), yaxis = dict( autotick=False ), autosize=False, width=500, height=900, showlegend = False, color = "y_val", margin=dict( l=150,r=50,b=50,t=75,pad=4 ) ) top_five = df_three['Local Authority'].iloc[0:5].tolist() n_days = 10 df_four = snap_shot(n_days) graph_four = [] for hb in top_five: x_val = df_four[df_four['Local Authority'] == hb]['Date'].tolist() y_val = df_four[df_four['Local Authority'] == hb]['PositivePercentage'].tolist() graph_four.append(go.Scatter( x = x_val, y = y_val, mode = 'lines', name = hb, ) ) layout_four = dict(title = 'Percent of Tests Positive', xaxis = dict(title = 'Date'), yaxis = dict(title = 'Positive Test Percent(%)'), ) top_five_data = df_three.iloc[0:5,:] everyone = df_three.iloc[:,0].sum() top_5_tot = top_five_data.iloc[:,0].sum() other = everyone - top_5_tot other_date = top_five_data['Date'].iloc[0] other_data = {'Daily Positive':[other],'Local Authority':'Other', 'Date':other_date} other_pds = pd.DataFrame(data = other_data) top_five_data =
pd.concat([top_five_data, other_pds])
pandas.concat
######################################################################################88 import numpy as np from scipy import stats from sklearn.metrics import pairwise_distances import scipy from scipy.stats import hypergeom, mannwhitneyu, linregress, norm, ttest_ind #from scipy.sparse import issparse, csr_matrix import scipy.sparse as sps from statsmodels.stats.multitest import multipletests from collections import Counter, OrderedDict import scanpy as sc from . import preprocess from . import tcr_scoring from . import util from .tcrdist.all_genes import all_genes from .tags import * import sys import pandas as pd from sys import exit import time #debugging MIN_CONGA_SCORE = 1e-100 def _find_neighbor_neighbor_interactions( adata, nbrs_gex, nbrs_tcr, agroups, bgroups, pval_threshold, counts_correction=0, # if there are a lot of maits, for example; this is the number correct_overlaps_for_groups=True, scale_pvals_by_num_clones=True, verbose=False ): ''' This is a helper function used in graph-vs-graph analysis it runs the GEX KNN graph vs TCR KNN graph comparison Returns a pandas dataframe with results of all clones with nbr-nbr overlaps having pvalues <= pval_threshold AND a numpy array of the adjusted_pvals ''' preprocess.add_mait_info_to_adata_obs(adata) # for annotation of overlaps is_mait = adata.obs['is_invariant'] num_clones = len(nbrs_gex) pval_rescale = num_clones if scale_pvals_by_num_clones else 1.0 results = [] adjusted_pvalues = [pval_rescale]*num_clones # initialize to big value for ii in range(num_clones): is_ii_group = (agroups==agroups[ii]) | (bgroups==bgroups[ii]) assert is_ii_group[ii] actual_num_clones = num_clones - np.sum( is_ii_group ) - counts_correction ii_nbrs_gex = nbrs_gex[ii] # might be slice of array, or list entry if use_sym_nbrs ii_nbrs_tcr = nbrs_tcr[ii] ii_nbrs_gex_set = frozenset( ii_nbrs_gex) assert ii not in ii_nbrs_gex_set num_neighbors_gex = len(ii_nbrs_gex) num_neighbors_tcr = len(ii_nbrs_tcr) overlap = sum( 1 for x in ii_nbrs_tcr if x in ii_nbrs_gex_set ) expected_overlap = float( num_neighbors_gex*num_neighbors_tcr )/actual_num_clones if overlap and overlap > expected_overlap: nbr_pval = pval_rescale * hypergeom.sf( overlap-1, actual_num_clones, num_neighbors_gex, num_neighbors_tcr) else: nbr_pval = pval_rescale if verbose: print('nbr_overlap:', ii, overlap, nbr_pval) adjusted_pvalues[ii] = nbr_pval if nbr_pval > pval_threshold: continue ## NOTE double_nbrs = [ x for x in ii_nbrs_tcr if x in ii_nbrs_gex_set ] assert overlap == len(double_nbrs) if verbose: print('nbr_overlap_nbrs:', ii, overlap, nbr_pval, double_nbrs) overlap_corrected = overlap if correct_overlaps_for_groups: # this is heuristic overlap_corrected = min(len(set(agroups[double_nbrs])), len(set(bgroups[double_nbrs])) ) if overlap_corrected < overlap: delta = overlap-overlap_corrected nbr_pval = pval_rescale * hypergeom.sf( overlap_corrected-1, actual_num_clones, num_neighbors_gex-delta, num_neighbors_tcr-delta) adjusted_pvalues[ii] = nbr_pval # update if nbr_pval > pval_threshold: continue ## NOTE nbr_pval = max(nbr_pval, MIN_CONGA_SCORE) # no 0s results.append(dict(conga_score=nbr_pval, num_neighbors_gex=num_neighbors_gex, num_neighbors_tcr=num_neighbors_tcr, overlap=overlap, overlap_corrected=overlap_corrected, mait_fraction=np.sum(is_mait[double_nbrs])/overlap, clone_index=ii ))#double_nbrs ] ) adjusted_pvalues = np.maximum(np.array(adjusted_pvalues), MIN_CONGA_SCORE) return pd.DataFrame(results), adjusted_pvalues def _find_neighbor_cluster_interactions( adata, nbrs, clusters, # for example, or could be swapped: tcr/gex agroups, bgroups, pval_threshold, counts_correction=0, # if there are a lot of maits, for example; this is the number of them correct_overlaps_for_groups=True, scale_pvals_by_num_clones=True, ): ''' This is a helper function used in graph-vs-graph analysis It computes KNN graph vs cluster graph overlaps Returns a pandas dataframe with results of all clones with nbr-cluster overlaps having pvalues <= pval_threshold AND a numpy array of the adjusted_pvals ''' preprocess.add_mait_info_to_adata_obs(adata) # for annotation of overlaps is_mait = adata.obs['is_invariant'] num_clones = len(nbrs) pval_rescale = num_clones if scale_pvals_by_num_clones else 1.0 results = [] adjusted_pvalues = [pval_rescale]*num_clones # initialize to big pval for ii in range(num_clones): is_ii_group = (agroups==agroups[ii]) | (bgroups==bgroups[ii]) assert is_ii_group[ii] actual_num_clones = num_clones - np.sum(is_ii_group) - counts_correction ii_nbrs = nbrs[ii] ii_cluster = clusters[ii] ii_cluster_clustersize = (np.sum(clusters==ii_cluster) - np.sum((clusters==ii_cluster)&(is_ii_group))) num_neighbors = ii_nbrs.shape[0] overlap = np.sum( clusters[ii_nbrs] == ii_cluster ) expected = float(ii_cluster_clustersize*num_neighbors)/actual_num_clones if overlap and overlap>expected: nbr_pval = pval_rescale * hypergeom.sf( overlap-1, actual_num_clones, num_neighbors, ii_cluster_clustersize ) else: nbr_pval = pval_rescale adjusted_pvalues[ii] = nbr_pval if nbr_pval > pval_threshold: continue ## NOTE same_cluster_nbrs = ii_nbrs[ clusters[ii_nbrs] == ii_cluster ] assert len(same_cluster_nbrs)== overlap overlap_corrected = overlap if correct_overlaps_for_groups: overlap_corrected = min(len(set(agroups[same_cluster_nbrs])), len(set(bgroups[same_cluster_nbrs]))) if overlap_corrected < overlap: delta = overlap-overlap_corrected nbr_pval = pval_rescale * hypergeom.sf( overlap_corrected-1, actual_num_clones, num_neighbors-delta, ii_cluster_clustersize-delta ) adjusted_pvalues[ii] = nbr_pval if nbr_pval > pval_threshold: continue mait_fraction=np.sum(is_mait[same_cluster_nbrs])/overlap nbr_pval = max(nbr_pval, MIN_CONGA_SCORE) # no 0s results.append(dict(conga_score=nbr_pval, num_neighbors=num_neighbors, cluster_size=ii_cluster_clustersize, overlap=overlap, overlap_corrected=overlap_corrected, mait_fraction=mait_fraction, clone_index=ii ))#double_nbrs ] ) adjusted_pvalues = np.maximum(np.array(adjusted_pvalues), MIN_CONGA_SCORE) return pd.DataFrame(results), adjusted_pvalues def check_nbr_graphs_indegree_bias(all_nbrs): ''' this routine looks at bias in the number of neighbor edges going *into* each vertex (clonotype). By definition, each vertex will have the same number going out, but not necessarily the same number going in. This is especially true of the GEX graph. Generally there is less bias in the TCR graph. If both graphs were biased in the same direction (toward the same nodes), this could create spurious graph-vs-graph signal. So we look here at the correlation between the two biases. all_nbrs is a dict mapping from nbr_frac to (gex_nbrs, tcr_nbrs) setup by preprocess.calc_nbrs ''' for nbr_frac in all_nbrs: nbrs_gex, nbrs_tcr = all_nbrs[nbr_frac] num_clones = nbrs_gex.shape[0] # look at the in-degree distribution expected_indegree = nbrs_gex.shape[1] gex_counts = Counter(nbrs_gex.flatten()) gex_indegree_bias = np.array( [ gex_counts[x]/expected_indegree for x in range(num_clones) ] ) print(f'gex_indegree_bias: nbr_frac= {nbr_frac:.4f}', stats.describe(gex_indegree_bias)) tcr_counts = Counter(nbrs_tcr.flatten()) tcr_indegree_bias = np.array( [ tcr_counts[x]/expected_indegree for x in range(num_clones) ] ) print(f'tcr_indegree_bias: nbr_frac= {nbr_frac:.4f}', stats.describe(tcr_indegree_bias)) # any correlation? # if there is strong correlation, this could skew the # graph-vs-graph analysis print(f'indegree_bias_correlation: nbr_frac= {nbr_frac:.4f}', stats.linregress(gex_indegree_bias, tcr_indegree_bias)) def _make_csr_nbrs(nbrs): row = [] for i, inbrs in enumerate(nbrs): row.extend([i]*len(inbrs)) col = np.hstack(nbrs) assert len(row) == len(col) data = np.full((len(col),), 1) return sps.csr_matrix((data, (row, col)), shape=(len(nbrs), len(nbrs))) def _compute_nbr_overlap_slow(gex_nbrs, tcr_nbrs): overlap = 0 for g_nbrs, t_nbrs in zip(gex_nbrs, tcr_nbrs): g_nbrs_set = frozenset(g_nbrs) overlap += sum(x in g_nbrs_set for x in t_nbrs) return overlap def _compute_graph_overlap_stats( gex_nbrs, tcr_nbrs, num_random_repeats, verbose=False, swaptags=False, max_calculation_time=2000,# in seconds ): ''' Helper function for graph-graph overlap summary analysis see compute_graph_vs_graph_stats(...) function below ''' starttime = time.time() gtag,ttag = 'gex','tcr' if swaptags: gtag, ttag = ttag, gtag N = len(gex_nbrs) assert N == len(tcr_nbrs) ## if this will take too long, we may just estimate things gex_edges = sum(len(x) for x in gex_nbrs) tcr_edges = sum(len(x) for x in tcr_nbrs) expected_overlap = (sum(len(x)*len(y) for x,y in zip(gex_nbrs, tcr_nbrs))/ (N-1)) # compute the bias in the number of incoming edges in the gex graph expected_indegree = gex_edges/N gex_counts = Counter() for nbrs in gex_nbrs: gex_counts.update(nbrs) gex_indegree_bias = np.array([gex_counts[x]/expected_indegree for x in range(N)]) gex_indegree_bias_stats = stats.describe(gex_indegree_bias) if verbose: print('gex_indegree_bias:', gex_indegree_bias_stats) # compute the bias in the number of incoming edges in the tcr graph expected_indegree = tcr_edges/N tcr_counts = Counter() for nbrs in tcr_nbrs: tcr_counts.update(nbrs) tcr_indegree_bias = np.array([tcr_counts[x]/expected_indegree for x in range(N)]) tcr_indegree_bias_stats = stats.describe(tcr_indegree_bias) if verbose: print('tcr_indegree_bias:', tcr_indegree_bias_stats) indegree_correlation = linregress(gex_indegree_bias, tcr_indegree_bias) # this is a little silly: it's basically C*gex_edges * tcr_edges/nodes**2 # from smf.ols(f'log10_calculation_time ~ log10_nodes + log10_gex_edges + log10_tcr_edges' # Intercept -4.453273 # log10_nodes -1.914652 # log10_gex_edges 0.958948 # log10_tcr_edges 1.044386 # this was fitted with num_random_repeats = 100 estimated_log10_calculation_time = (-1.9147 * np.log10(N) +0.9589 * np.log10(gex_edges) +1.0444 * np.log10(tcr_edges) -4.4533) estimated_calculation_time = (10**estimated_log10_calculation_time* num_random_repeats/100.) if estimated_calculation_time <= max_calculation_time: M0 = _make_csr_nbrs(gex_nbrs) M1 = _make_csr_nbrs(tcr_nbrs).tocoo() M2 = M1.copy() overlaps = [] for r in range(num_random_repeats+1): if r: p = np.random.permutation(N) else: p = np.arange(N) M1.row = p[M2.row] M1.col = p[M2.col] overlap = M0.multiply(M1.tocsr()).sum() if verbose and r%10==0: print(f'{r:2d} {overlap:6d}') overlaps.append(overlap) o0 = overlaps[0] m,s = np.mean(overlaps[1:]), np.std(overlaps[1:]) zscore_source = 'shuffling' else: zscore_source = 'fitting' o0 = _compute_nbr_overlap_slow(gex_nbrs, tcr_nbrs) ## params for log10_s determined with ## statsmodels.formula.api.ols(f'log10_overlap_sdev ~ ## log10_expected_overlap + total_log10_indegree_variance,...) # Intercept -0.340085 # log10_expected_overlap 0.691433 # total_log10_indegree_variance 0.253497 total_log10_indegree_variance = ( np.log10(gex_indegree_bias_stats.variance)+ np.log10(tcr_indegree_bias_stats.variance)) log10_s_fitted = (0.691433 * np.log10(expected_overlap) +0.253497 * total_log10_indegree_variance -0.340085) s_fitted = 10**log10_s_fitted if zscore_source=='fitting': s = s_fitted m = expected_overlap z_fitted = (o0-m)/s z = z_fitted else: z = (o0-m)/s z_fitted = (o0-expected_overlap)/s_fitted total_seconds = time.time() - starttime return { 'overlap':o0, 'expected_overlap':expected_overlap, 'overlap_mean':m, 'overlap_sdev':s, 'overlap_zscore':z, 'overlap_zscore_fitted':z_fitted, 'overlap_zscore_source':zscore_source, 'nodes':N, 'calculation_time':total_seconds, 'calculation_time_fitted':10**estimated_log10_calculation_time, f'{gtag}_edges':gex_edges, f'{ttag}_edges':tcr_edges, f'{gtag}_indegree_variance':gex_indegree_bias_stats.variance, f'{gtag}_indegree_skewness':gex_indegree_bias_stats.skewness, f'{gtag}_indegree_kurtosis':gex_indegree_bias_stats.kurtosis, f'{ttag}_indegree_variance':tcr_indegree_bias_stats.variance, f'{ttag}_indegree_skewness':tcr_indegree_bias_stats.skewness, f'{ttag}_indegree_kurtosis':tcr_indegree_bias_stats.kurtosis, 'indegree_correlation_R':indegree_correlation.rvalue, 'indegree_correlation_P':indegree_correlation.pvalue, } # def _compute_graph_overlap_stats_old( # gex_nbrs_array, # tcr_nbrs, # num_random_repeats, # verbose = True # ): # ''' # I'm not sure about memory/compute efficiency here, for big datasets # ''' # N = len(gex_nbrs_array) # gex_nbrs = [frozenset(x) for x in gex_nbrs_array] # overlaps = [] # for r in range(num_random_repeats+1): # if r: # tcr_shuffle = np.random.permutation(N) # else: # tcr_shuffle = np.arange(N) # overlap = _compute_graph_overlap(gex_nbrs, tcr_nbrs, tcr_shuffle) # if verbose and r%10==0: # print(f'compute_graph_overlap_stats: rep {r:2d} {overlap:6d}') # overlaps.append(overlap) # o0 = overlaps[0] # m,s = np.mean(overlaps[1:]), np.std(overlaps[1:]) # z = (o0-m)/s # gex_edges = sum(len(x) for x in gex_nbrs) # tcr_edges = sum(len(x) for x in tcr_nbrs) # return { # 'overlap':o0, # 'mean':m, # 'sdev':s, # 'zscore':z, # 'nodes':N, # 'gex_edges':gex_edges, # 'tcr_edges':tcr_edges, # } def compute_graph_vs_graph_stats( adata, all_nbrs, num_random_repeats = 100, outfile_prefix = None, ): '''Here we are assessing overall graph-vs-graph correlation by looking at the shared edges between TCR and GEX neighbor graphs and comparing that observed number to the number we would expect if the graphs were completely uncorrelated. Our null model for uncorrelated graphs is to take the vertices of one graph and randomly renumber them (permute their labels). We compare the observed overlap to that expected under this null model by computing a Z-score, either by permuting one of the graph's vertices many times to get a mean and standard deviation of the overlap distribution, or, for large graphs where this is time consuming, by using a regression model for the standard deviation. This is different from graph-vs-graph analysis which looks at graph overlap on a node-by-node basis returns a pandas dataframe with the results, and also stores them in adata.uns['conga_results'][conga.tags.GRAPH_VS_GRAPH_STATS] ''' num_clones = adata.shape[0] agroups, bgroups = preprocess.setup_tcr_groups(adata) clusters_gex = np.array(adata.obs['clusters_gex']) clusters_tcr = np.array(adata.obs['clusters_tcr']) gex_cluster_nbrs = [] tcr_cluster_nbrs = [] for i in range(num_clones): ag, bg = agroups[i], bgroups[i] gc, tc = clusters_gex[i], clusters_tcr[i] gex_cluster_nbrs.append( np.nonzero((clusters_gex==gc)&(agroups!=ag)&(bgroups!=bg))[0]) tcr_cluster_nbrs.append( np.nonzero((clusters_tcr==tc)&(agroups!=ag)&(bgroups!=bg))[0]) dfl = [] for nbr_frac in all_nbrs: gex_nbrs, tcr_nbrs = all_nbrs[nbr_frac] stats = _compute_graph_overlap_stats( gex_nbrs, tcr_nbrs, num_random_repeats) stats['nbr_frac'] = nbr_frac stats['graph_overlap_type'] = 'gex_nbr_vs_tcr_nbr' dfl.append(stats) stats = _compute_graph_overlap_stats( gex_nbrs, tcr_cluster_nbrs, num_random_repeats) stats['nbr_frac'] = nbr_frac stats['graph_overlap_type'] = 'gex_nbr_vs_tcr_cluster' dfl.append(stats) stats = _compute_graph_overlap_stats( tcr_nbrs, gex_cluster_nbrs, num_random_repeats, swaptags=True) stats['nbr_frac'] = nbr_frac stats['graph_overlap_type'] = 'gex_cluster_vs_tcr_nbr' dfl.append(stats) results =
pd.DataFrame(dfl)
pandas.DataFrame
# pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import nose import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, Timestamp, isnull, notnull, bdate_range, date_range, _np_version_under1p7) import pandas.core.common as com from pandas.compat import StringIO, lrange, range, zip, u, OrderedDict, long from pandas import compat, to_timedelta, tslib from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type as ct from pandas.util.testing import (assert_series_equal, assert_frame_equal, assert_almost_equal, ensure_clean) import pandas.util.testing as tm def _skip_if_numpy_not_friendly(): # not friendly for < 1.7 if _np_version_under1p7: raise nose.SkipTest("numpy < 1.7") class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): pass def test_numeric_conversions(self): _skip_if_numpy_not_friendly() self.assertEqual(ct(0), np.timedelta64(0,'ns')) self.assertEqual(ct(10), np.timedelta64(10,'ns')) self.assertEqual(ct(10,unit='ns'), np.timedelta64(10,'ns').astype('m8[ns]')) self.assertEqual(ct(10,unit='us'), np.timedelta64(10,'us').astype('m8[ns]')) self.assertEqual(ct(10,unit='ms'), np.timedelta64(10,'ms').astype('m8[ns]')) self.assertEqual(ct(10,unit='s'), np.timedelta64(10,'s').astype('m8[ns]')) self.assertEqual(ct(10,unit='d'), np.timedelta64(10,'D').astype('m8[ns]')) def test_timedelta_conversions(self): _skip_if_numpy_not_friendly() self.assertEqual(ct(timedelta(seconds=1)), np.timedelta64(1,'s').astype('m8[ns]')) self.assertEqual(ct(timedelta(microseconds=1)), np.timedelta64(1,'us').astype('m8[ns]')) self.assertEqual(ct(timedelta(days=1)), np.timedelta64(1,'D').astype('m8[ns]')) def test_short_format_converters(self): _skip_if_numpy_not_friendly() def conv(v): return v.astype('m8[ns]') self.assertEqual(ct('10'), np.timedelta64(10,'ns')) self.assertEqual(ct('10ns'), np.timedelta64(10,'ns')) self.assertEqual(ct('100'), np.timedelta64(100,'ns')) self.assertEqual(ct('100ns'), np.timedelta64(100,'ns')) self.assertEqual(ct('1000'), np.timedelta64(1000,'ns')) self.assertEqual(ct('1000ns'), np.timedelta64(1000,'ns')) self.assertEqual(ct('1000NS'), np.timedelta64(1000,'ns')) self.assertEqual(ct('10us'), np.timedelta64(10000,'ns')) self.assertEqual(ct('100us'), np.timedelta64(100000,'ns')) self.assertEqual(ct('1000us'), np.timedelta64(1000000,'ns')) self.assertEqual(ct('1000Us'), np.timedelta64(1000000,'ns')) self.assertEqual(ct('1000uS'), np.timedelta64(1000000,'ns')) self.assertEqual(ct('1ms'), np.timedelta64(1000000,'ns')) self.assertEqual(ct('10ms'), np.timedelta64(10000000,'ns')) self.assertEqual(ct('100ms'), np.timedelta64(100000000,'ns')) self.assertEqual(ct('1000ms'), np.timedelta64(1000000000,'ns')) self.assertEqual(ct('-1s'), -np.timedelta64(1000000000,'ns')) self.assertEqual(ct('1s'), np.timedelta64(1000000000,'ns')) self.assertEqual(ct('10s'), np.timedelta64(10000000000,'ns')) self.assertEqual(ct('100s'), np.timedelta64(100000000000,'ns')) self.assertEqual(ct('1000s'), np.timedelta64(1000000000000,'ns')) self.assertEqual(ct('1d'), conv(np.timedelta64(1,'D'))) self.assertEqual(ct('-1d'), -conv(np.timedelta64(1,'D'))) self.assertEqual(ct('1D'), conv(np.timedelta64(1,'D'))) self.assertEqual(ct('10D'), conv(np.timedelta64(10,'D'))) self.assertEqual(ct('100D'), conv(np.timedelta64(100,'D'))) self.assertEqual(ct('1000D'), conv(np.timedelta64(1000,'D'))) self.assertEqual(ct('10000D'), conv(np.timedelta64(10000,'D'))) # space self.assertEqual(ct(' 10000D '), conv(np.timedelta64(10000,'D'))) self.assertEqual(ct(' - 10000D '), -conv(np.timedelta64(10000,'D'))) # invalid self.assertRaises(ValueError, ct, '1foo') self.assertRaises(ValueError, ct, 'foo') def test_full_format_converters(self): _skip_if_numpy_not_friendly() def conv(v): return v.astype('m8[ns]') d1 = np.timedelta64(1,'D') self.assertEqual(ct('1days'), conv(d1)) self.assertEqual(ct('1days,'), conv(d1)) self.assertEqual(ct('- 1days,'), -conv(d1)) self.assertEqual(ct('00:00:01'), conv(np.timedelta64(1,'s'))) self.assertEqual(ct('06:00:01'), conv(np.timedelta64(6*3600+1,'s'))) self.assertEqual(ct('06:00:01.0'), conv(np.timedelta64(6*3600+1,'s'))) self.assertEqual(ct('06:00:01.01'), conv(np.timedelta64(1000*(6*3600+1)+10,'ms'))) self.assertEqual(ct('- 1days, 00:00:01'), -conv(d1+np.timedelta64(1,'s'))) self.assertEqual(ct('1days, 06:00:01'), conv(d1+np.timedelta64(6*3600+1,'s'))) self.assertEqual(ct('1days, 06:00:01.01'), conv(d1+np.timedelta64(1000*(6*3600+1)+10,'ms'))) # invalid self.assertRaises(ValueError, ct, '- 1days, 00') def test_nat_converters(self): _skip_if_numpy_not_friendly() self.assertEqual(to_timedelta('nat',box=False), tslib.iNaT) self.assertEqual(to_timedelta('nan',box=False), tslib.iNaT) def test_to_timedelta(self): _skip_if_numpy_not_friendly() def conv(v): return v.astype('m8[ns]') d1 = np.timedelta64(1,'D') self.assertEqual(to_timedelta('1 days 06:05:01.00003',box=False), conv(d1+np.timedelta64(6*3600+5*60+1,'s')+np.timedelta64(30,'us'))) self.assertEqual(to_timedelta('15.5us',box=False), conv(np.timedelta64(15500,'ns'))) # empty string result = to_timedelta('',box=False) self.assertEqual(result, tslib.iNaT) result = to_timedelta(['', '']) self.assert_(isnull(result).all()) # pass thru result = to_timedelta(np.array([np.timedelta64(1,'s')])) expected = np.array([np.timedelta64(1,'s')]) tm.assert_almost_equal(result,expected) # ints result = np.timedelta64(0,'ns') expected = to_timedelta(0,box=False) self.assertEqual(result, expected) # Series expected = Series([timedelta(days=1), timedelta(days=1, seconds=1)]) result = to_timedelta(Series(['1d','1days 00:00:01'])) tm.assert_series_equal(result, expected) # with units result = Series([ np.timedelta64(0,'ns'), np.timedelta64(10,'s').astype('m8[ns]') ],dtype='m8[ns]') expected = to_timedelta([0,10],unit='s') tm.assert_series_equal(result, expected) # single element conversion v = timedelta(seconds=1) result = to_timedelta(v,box=False) expected = np.timedelta64(timedelta(seconds=1)) self.assertEqual(result, expected) v = np.timedelta64(timedelta(seconds=1)) result = to_timedelta(v,box=False) expected = np.timedelta64(timedelta(seconds=1)) self.assertEqual(result, expected) def test_to_timedelta_via_apply(self): _skip_if_numpy_not_friendly() # GH 5458 expected = Series([np.timedelta64(1,'s')]) result = Series(['00:00:01']).apply(to_timedelta) tm.assert_series_equal(result, expected) result = Series([to_timedelta('00:00:01')]) tm.assert_series_equal(result, expected) def test_timedelta_ops(self): _skip_if_numpy_not_friendly() # GH4984 # make sure ops return timedeltas s = Series([Timestamp('20130101') + timedelta(seconds=i*i) for i in range(10) ]) td = s.diff() result = td.mean()[0] # TODO This should have returned a scalar to begin with. Hack for now. expected = to_timedelta(timedelta(seconds=9)) tm.assert_almost_equal(result, expected) result = td.quantile(.1) # This properly returned a scalar. expected = to_timedelta('00:00:02.6') tm.assert_almost_equal(result, expected) result = td.median()[0] # TODO This should have returned a scalar to begin with. Hack for now. expected = to_timedelta('00:00:08') tm.assert_almost_equal(result, expected) # GH 6462 # consistency in returned values for sum result = td.sum()[0] expected = to_timedelta('00:01:21') tm.assert_almost_equal(result, expected) def test_to_timedelta_on_missing_values(self): _skip_if_numpy_not_friendly() # GH5438 timedelta_NaT = np.timedelta64('NaT') actual = pd.to_timedelta(Series(['00:00:01', np.nan])) expected = Series([np.timedelta64(1000000000, 'ns'), timedelta_NaT], dtype='<m8[ns]') assert_series_equal(actual, expected) actual = pd.to_timedelta(Series(['00:00:01', pd.NaT])) assert_series_equal(actual, expected) actual = pd.to_timedelta(np.nan) self.assertEqual(actual, timedelta_NaT) actual = pd.to_timedelta(pd.NaT) self.assertEqual(actual, timedelta_NaT) def test_timedelta_ops_with_missing_values(self): _skip_if_numpy_not_friendly() # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) sn = pd.to_timedelta(Series([pd.NaT])) df1 = DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = DataFrame(['00:00:02']).apply(pd.to_timedelta) dfn = DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') NA = np.nan actual = scalar1 + scalar1 self.assertEqual(actual, scalar2) actual = scalar2 - scalar1 self.assertEqual(actual, scalar1) actual = s1 + s1 assert_series_equal(actual, s2) actual = s2 - s1 assert_series_equal(actual, s1) actual = s1 + scalar1 assert_series_equal(actual, s2) actual = s2 - scalar1 assert_series_equal(actual, s1) actual = s1 + timedelta_NaT assert_series_equal(actual, sn) actual = s1 - timedelta_NaT assert_series_equal(actual, sn) actual = s1 + NA assert_series_equal(actual, sn) actual = s1 - NA assert_series_equal(actual, sn) actual = s1 + pd.NaT # NaT is datetime, not timedelta assert_series_equal(actual, sn) actual = s2 - pd.NaT assert_series_equal(actual, sn) actual = s1 + df1 assert_frame_equal(actual, df2) actual = s2 - df1 assert_frame_equal(actual, df1) actual = df1 + s1 assert_frame_equal(actual, df2) actual = df2 - s1 assert_frame_equal(actual, df1) actual = df1 + df1 assert_frame_equal(actual, df2) actual = df2 - df1 assert_frame_equal(actual, df1) actual = df1 + scalar1
assert_frame_equal(actual, df2)
pandas.util.testing.assert_frame_equal
"""Utilities for parsing corpus tsv files into pandas DataFrames.""" import logging from glob import glob from pathlib import Path from typing import Dict, Iterable, Union import pandas as pd from tqdm import tqdm import harmonic_inference.utils.corpus_utils as cu from harmonic_inference.data.corpus_constants import ( CHORD_ONSET_BEAT, CONVERTERS, DTYPES, MEASURE_OFFSET, NOTE_ONSET_BEAT, ) def read_dump( file: str, index_col: Union[int, Iterable] = (0, 1), converters: Dict = None, dtypes: Dict = None, **kwargs, ) -> pd.DataFrame: """ Read a corpus tsv file into a pandas DataFrame. Parameters ---------- file : string The tsv file to parse. index_col : int or list(int) The index (or indices) of column(s) to use as the index. For files.tsv, use 0. converters : dict Converters which will be passed to the pandas read_csv function. These will overwrite/be added to the default list of CONVERTERS. dtypes : dict Dtypes which will be passed to the pandas read_csv function. These will overwrite/be added to the default list of DTYPES. Returns ------- df : pd.DataFrame The pandas DataFrame, parsed from the given tsv file. """ conv = CONVERTERS.copy() types = DTYPES.copy() if dtypes is not None: types.update(dtypes) if converters is not None: conv.update(converters) return pd.read_csv(file, sep="\t", index_col=index_col, dtype=types, converters=conv, **kwargs) def load_clean_corpus_dfs(dir_path: Union[str, Path], count: int = None): """ Return cleaned DataFrames from the corpus data in the given directory. The DataFrames will be read from files: 'files.tsv', 'measures.tsv', 'chords.tsv', and 'notes.df'. They will undergo the following cleaning procedure: 1. Remove repeats from measures. 2. Drop note and chords corresponding to removed measures. 3. Drop chords with numeral '@none' or pd.NAN. 4. Add offsets to notes. 5. Merge tied notes. 6. Add offsets to chords. Parameters ---------- dir_path : str or Path The path to a directory containing the files: 'files.tsv', 'measures.tsv', 'chords.tsv', and 'notes.df'. count : int If given, the number of pieces to read in. Else, read all of them. Returns ------- files_df : pd.DataFrame The files data frame. measures_df : pd.DataFrame The measures data frame with repeats removed. chords_df : pd.DataFrame The chords data frame, cleaned as described. notes_df : pd.DataFrame The notes data frame, cleaned as described. """ files_df = read_dump(Path(dir_path, "files.tsv"), index_col=0) measures_df = read_dump(Path(dir_path, "measures.tsv")) notes_df = read_dump(Path(dir_path, "notes.tsv")) try: chords_df = read_dump(Path(dir_path, "chords.tsv"), low_memory=False) except Exception: # Enable loading with no annotations chords_df = None if count is not None: files_df = files_df.iloc[:count] measures_df = measures_df.loc[files_df.index] notes_df = notes_df.loc[files_df.index] if chords_df is not None: chords_df = chords_df.loc[files_df.index] # Bugfix for Couperin piece "next" error files_df = files_df.loc[~(files_df["file_name"] == "c11n08_Rondeau.tsv")] measures_df = measures_df.loc[files_df.index] notes_df = notes_df.loc[files_df.index] if chords_df is not None: chords_df = chords_df.loc[chords_df.index.get_level_values(0).isin(files_df.index)] # End bugfix # Incomplete column renaming if "offset" in measures_df.columns: measures_df[MEASURE_OFFSET].fillna(measures_df["offset"], inplace=True) measures_df = measures_df.drop("offset", axis=1) if chords_df is not None: if "onset" in chords_df.columns: chords_df[CHORD_ONSET_BEAT].fillna(chords_df["onset"], inplace=True) chords_df = chords_df.drop("onset", axis=1) if "onset" in notes_df.columns: notes_df[NOTE_ONSET_BEAT].fillna(notes_df["onset"], inplace=True) notes_df = notes_df.drop("onset", axis=1) # Remove measure repeats if isinstance(measures_df.iloc[0].next, tuple): measures_df = cu.remove_repeats(measures_df) # Remove unmatched notes_df = cu.remove_unmatched(notes_df, measures_df) if chords_df is not None: chords_df = cu.remove_unmatched(chords_df, measures_df) chords_df = chords_df.drop( chords_df.loc[(chords_df.numeral == "@none") | chords_df.numeral.isnull()].index ) # Remove notes with invalid onset times note_measures = pd.merge( notes_df.reset_index(), measures_df.reset_index(), how="left", on=["file_id", "mc"], ) valid_onsets = (note_measures[MEASURE_OFFSET] <= note_measures[NOTE_ONSET_BEAT]) & ( note_measures[NOTE_ONSET_BEAT] < note_measures["act_dur"] + note_measures[MEASURE_OFFSET] ) if not valid_onsets.all(): with pd.option_context("display.max_rows", None, "display.max_columns", None): invalid_string = note_measures.loc[ ~valid_onsets, ["file_id", "note_id", "mc", NOTE_ONSET_BEAT, MEASURE_OFFSET, "act_dur"], ] logging.debug( f"{(~valid_onsets).sum()} notes have invalid onset times:\n{invalid_string}" ) notes_df = notes_df.loc[valid_onsets.values] # Remove chords with invalid onset times if chords_df is not None: chord_measures = pd.merge( chords_df.reset_index(), measures_df.reset_index(), how="left", on=["file_id", "mc"], ) valid_onsets = (chord_measures[MEASURE_OFFSET] <= chord_measures[CHORD_ONSET_BEAT]) & ( chord_measures[CHORD_ONSET_BEAT] < chord_measures["act_dur"] + chord_measures[MEASURE_OFFSET] ) if not valid_onsets.all(): with pd.option_context("display.max_rows", None, "display.max_columns", None): invalid_string = chord_measures.loc[ ~valid_onsets, ["file_id", "chord_id", "mc", CHORD_ONSET_BEAT, MEASURE_OFFSET, "act_dur"], ] logging.debug( f"{(~valid_onsets).sum()} chords have invalid onset times:\n{invalid_string}" ) chords_df = chords_df.loc[valid_onsets.values] # Add offsets if not all([column in notes_df.columns for column in ["offset_beat", "offset_mc"]]): notes_df = cu.add_note_offsets(notes_df, measures_df) # Merge ties notes_df = cu.merge_ties(notes_df) # Add chord metrical info if chords_df is not None: chords_df = cu.add_chord_metrical_data(chords_df, measures_df) # Remove chords with dur 0 if chords_df is not None: invalid_dur = chords_df["duration"] <= 0 if invalid_dur.any(): with
pd.option_context("display.max_rows", None, "display.max_columns", None)
pandas.option_context
import numpy as np import pandas as pd import datetime as datetime from scipy.signal import find_peaks, peak_prominences from scipy.interpolate import interp1d from scipy import signal from scipy.integrate import trapz ''' Feature Engineering of Wearable Sensors: Metrics computed: Mean Heart Rate Variability Median Heart Rate Variability Maximum Heart Rate Variability Minimum Heart Rate Variability SDNN (HRV) RMSSD (HRV) NNx (HRV) pNNx (HRV) HRV Frequency Domain Metrics: PowerVLF PowerLF PowerHF PowerTotal LF/HF PeakVLF PeakLF PeakHF FractionLF FractionHF EDA Peaks Activity Bouts Interday Summary: Interday Mean Interday Median Interday Maximum Interday Minimum Interday Quartile 1 Interday Quartile 3 Interday Standard Deviation Interday Coefficient of Variation Intraday Standard Deviation (mean, median, standard deviation) Intraday Coefficient of Variation (mean, median, standard deviation) Intraday Mean (mean, median, standard deviation) Daily Mean Intraday Summary: Intraday Mean Intraday Median Intraday Minimum Intraday Maximum Intraday Quartile 1 Intraday Quartile 3 TIR (Time in Range of default 1 SD) TOR (Time outside Range of default 1 SD) POR (Percent outside Range of default 1 SD) MASE (Mean Amplitude of Sensor Excursions, default 1 SD) Hours from Midnight (circadian rhythm feature) Minutes from Midnight (ciracadian rhythm feature) ''' def e4import(filepath, sensortype, Starttime='NaN', Endtime='NaN', window='5min'): #window is in seconds """ brings in an empatica compiled file **this is not raw empatica data** Args: filepath (String): path to file sensortype (Sting): Options: 'EDA', 'HR', 'ACC', 'TEMP', 'BVP' Starttime (String): (optional, default arg = 'NaN') format '%Y-%m-%d %H:%M:%S.%f', if you want to only look at data after a specific time Endtime (String): (optional, default arg = 'NaN') format '%Y-%m-%d %H:%M:%S.%f', if you want to only look at data before a specific time window (String): default '5min'; this is the window your data will be resampled on. Returns: (pd.DataFrame): dataframe of data with Time, Mean, Std columns """ if sensortype == 'ACC': data = pd.read_csv(filepath,header=None, names = ["Time", "x", "y", "z"]) data['Var'] = np.sqrt(data['x']**2 + data['y']**2 + data['z']**2) data = data.drop(columns=['x', 'y', 'z']) else: data = pd.read_csv(filepath, header=None, names=['Time', 'Var']) data['Time'] = pd.to_datetime(data['Time'], format='%Y-%m-%d %H:%M:%S.%f') if Starttime != 'NaN': VarData = data.loc[data.loc[:, 'Time'] >= Starttime, :] if Endttime != 'NaN': VarData = VarData.loc[VarData.loc[:, 'Time'] <= Endtime, :] else: VarData = data Data = pd.DataFrame() Data[[(sensortype + '_Mean')]] = VarData.resample(window, on='Time').mean() Data[[(sensortype + '_Std')]] = VarData.resample(window, on='Time').std() Data = Data.reset_index() print((sensortype + ' Import and Resample Complete')) return(Data) def HRV(time, IBI, ibimultiplier = 1000): """ computes Heart Rate Variability metrics Args: time (pandas.DataFrame column or pandas series): time column IBI (pandas.DataFrame column or pandas series): column with inter beat intervals ibimultiplier (IntegerType): defualt = 1000; transforms IBI to milliseconds. If data is already in ms, set as 1 Returns: maxHRV (FloatType): maximum HRV minHRV (FloatType): minimum HRV meanHRV (FloatType): mean HRV medianHRV(FloatType): median HRV """ time = time ibi = IBI*ibimultiplier maxHRV = round(max(ibi) * 10) / 10 minHRV = round(min(ibi) * 10) / 10 meanHRV = round(np.mean(ibi) * 10) / 10 medianHRV = round(np.median(ibi) * 10) / 10 return maxHRV, minHRV, meanHRV, medianHRV def SDNN(time, IBI, ibimultiplier=1000): """ computes Heart Rate Variability metric SDNN Args: time (pandas.DataFrame column or pandas series): time column IBI (pandas.DataFrame column or pandas series): column with inter beat intervals ibimultiplier (IntegerType): defualt = 1000; transforms IBI to milliseconds. If data is already in ms, set as 1 Returns: SDNN (FloatType): standard deviation of NN intervals """ time = time ibi = IBI*ibimultiplier SDNN = round(np.sqrt(np.var(ibi, ddof=1)) * 10) / 10 return SDNN def RMSSD(time, IBI, ibimultiplier=1000): """ computes Heart Rate Variability metric RMSSD Args: time (pandas.DataFrame column or pandas series): time column IBI (pandas.DataFrame column or pandas series): column with inter beat intervals ibimultiplier (IntegerType): defualt = 1000; transforms IBI to milliseconds. If data is already in ms, set as 1 Returns: RMSSD (FloatType): root mean square of successive differences """ time = time ibi = IBI*ibimultiplier differences = abs(np.diff(ibi)) rmssd = np.sqrt(np.sum(np.square(differences)) / len(differences)) return round(rmssd * 10) / 10 def NNx(time, IBI, ibimultiplier=1000, x=50): """ computes Heart Rate Variability metrics NNx and pNNx Args: time (pandas.DataFrame column or pandas series): time column IBI (pandas.DataFrame column or pandas series): column with inter beat intervals ibimultiplier (IntegerType): defualt = 1000; transforms IBI to milliseconds. If data is already in ms, set as 1 x (IntegerType): default = 50; set the number of times successive heartbeat intervals exceed 'x' ms Returns: NNx (FloatType): the number of times successive heartbeat intervals exceed x ms pNNx (FloatType): the proportion of NNx divided by the total number of NN (R-R) intervals. """ time = time ibi = IBI*ibimultiplier differences = abs(np.diff(ibi)) n = np.sum(differences > x) p = (n / len(differences)) * 100 return (round(n * 10) / 10), (round(p * 10) / 10) def FrequencyHRV(IBI, ibimultiplier=1000, fs=1): """ computes Heart Rate Variability frequency domain metrics Args: IBI (pandas.DataFrame column or pandas series): column with inter beat intervals ibimultiplier (IntegerType): defualt = 1000; transforms IBI to milliseconds. If data is already in ms, set as 1 fs (IntegerType): Optional sampling frequency for frequency interpolation (default=1) Returns: (dictionary): dictionary of frequency domain HRV metrics with keys: PowerVLF (FloatType): Power of the Very Low Frequency (VLF): 0-0.04Hz band PowerLF (FloatType): Power of the Low Frequency (LF): 0.04-0.15Hz band PowerHF (FloatType): Power of the High Frequency (HF): 0.15-0.4Hz band PowerTotal (FloatType):Total power over all frequency bands LF/HF (FloatType): Ratio of low and high power Peak VLF (FloatType): Peak of the Very Low Frequency (VLF): 0-0.04Hz band Peak LF (FloatType): Peak of the Low Frequency (LF): 0.04-0.15Hz band Peak HF (FloatType): Peak of the High Frequency (HF): 0.15-0.4Hz band FractionLF (FloatType): Fraction that is low frequency FractionHF (FloatType): Fraction that is high frequency """ ibi = IBI*ibimultiplier steps = 1 / fs # create interpolation function based on the rr-samples. x = np.cumsum(ibi) / 1000.0 f = interp1d(x, ibi, kind='cubic') # sample from interpolation function xx = np.arange(1, np.max(x), steps) ibi_interpolated = f(xx) fxx, pxx = signal.welch(x=ibi_interpolated, fs=fs) ''' Segement found frequencies in the bands - Very Low Frequency (VLF): 0-0.04Hz - Low Frequency (LF): 0.04-0.15Hz - High Frequency (HF): 0.15-0.4Hz ''' cond_vlf = (fxx >= 0) & (fxx < 0.04) cond_lf = (fxx >= 0.04) & (fxx < 0.15) cond_hf = (fxx >= 0.15) & (fxx < 0.4) # calculate power in each band by integrating the spectral density vlf = trapz(pxx[cond_vlf], fxx[cond_vlf]) lf = trapz(pxx[cond_lf], fxx[cond_lf]) hf = trapz(pxx[cond_hf], fxx[cond_hf]) # sum these up to get total power total_power = vlf + lf + hf # find which frequency has the most power in each band peak_vlf = fxx[cond_vlf][np.argmax(pxx[cond_vlf])] peak_lf = fxx[cond_lf][np.argmax(pxx[cond_lf])] peak_hf = fxx[cond_hf][np.argmax(pxx[cond_hf])] # fraction of lf and hf lf_nu = 100 * lf / (lf + hf) hf_nu = 100 * hf / (lf + hf) results = {} results['PowerVLF'] = round(vlf, 2) results['PowerLF'] = round(lf, 2) results['PowerHF'] = round(hf, 2) results['PowerTotal'] = round(total_power, 2) results['LF/HF'] = round(lf / hf, 2) results['PeakVLF'] = round(peak_vlf, 2) results['PeakLF'] = round(peak_lf, 2) results['PeakHF'] = round(peak_hf, 2) results['FractionLF'] = round(lf_nu, 2) results['FractionHF'] = round(hf_nu, 2) return results def PeaksEDA(eda, time): """ calculates peaks in the EDA signal Args: eda (pandas.DataFrame column or pandas series): eda column time (pandas.DataFrame column or pandas series): time column Returns: countpeaks (IntegerType): the number of peaks total peakdf (pandas.DataFrame): a pandas dataframe with time and peaks to easily integrate with your data workflow """ EDAy = eda.to_numpy() EDAx = time.to_numpy() peaks, _ = find_peaks(EDAy, height=0, distance=4, prominence=0.3) peaks_x = [] for i in peaks: px = time.iloc[i] peaks_x.append(px) peakdf = pd.DataFrame() peakdf['Time'] = peaks_x peakdf['Peak'] = ([1]*len(peaks_x)) countpeaks = len(peakdf) return countpeaks, peakdf def exercisepts(acc, hr, time): #acc and hr must be same length, acc must be magnitude """ calculates activity bouts using accelerometry and heart rate Args: acc (pandas.DataFrame column or pandas series): accelerometry column hr (pandas.DataFrame column or pandas series): heart rate column time (pandas.DataFrame column or pandas series): time column Returns: countbouts (IntegerType): the number of acitvity bouts total returndf (pandas.DataFrame): a pandas dataframe with time and activity bouts (designated as a '1') to easily integrate with your data workflow """ exercisepoints = [] for z in range(len(acc)): if acc[z] > np.mean(acc[0:z]): if hr[z] > np.mean(hr[0:z]): exercisepoints.append(1) else: exercisepoints.append(0) else: exercisepoints.append(0) returndf = pd.DataFrame() returndf['Time'] = time returndf['Activity Bouts'] = exercisepoints countbouts = len(exercisepoints) return countbouts, returndf def interdaycv(column): """ computes the interday coefficient of variation on pandas dataframe Sensor column Args: column (pandas.DataFrame column or pandas series): column that you want to calculate over Returns: cvx (IntegerType): interday coefficient of variation """ cvx = (np.std(column) / (np.nanmean(column)))*100 return cvx def interdaysd(column): """ computes the interday standard deviation of pandas dataframe Sensor column Args: column (pandas.DataFrame column or pandas series): column that you want to calculate over Returns: interdaysd (IntegerType): interday standard deviation """ interdaysd = np.std(column) return interdaysd def intradaycv(column, time, timeformat='%Y-%m-%d %H:%M:%S.%f'): """ computes the intradaycv, returns the mean, median, and sd of intraday cv Sensor column in pandas dataframe Args: column (pandas.DataFrame column or pandas series): column that you want to calculate over time (pandas.DataFrame): time column timeformat (String): default = '%Y-%m-%d %H:%M:%S.%f'; format of timestamp in time column Returns: intradaycv_mean (IntegerType): Mean, Median, and SD of intraday coefficient of variation intradaycv_median (IntegerType): Median of intraday coefficient of variation intradaycv_sd (IntegerType): SD of intraday coefficient of variation Requires: interdaycv() function """ intradaycv = [] df = pd.DataFrame() df['Column'] = column df['Time'] = pd.to_datetime(time, format=timeformat) df['Day'] = df['Time'].dt.date for i in pd.unique(df['Day']): intradaycv.append(interdaycv(df[df['Day']==i]['Column'])) intradaycv_mean = np.mean(intradaycv) intradaycv_median = np.median(intradaycv) intradaycv_sd = np.std(intradaycv) return intradaycv_mean, intradaycv_median, intradaycv_sd def intradaysd(column, time, timeformat='%Y-%m-%d %H:%M:%S.%f'): """ computes the intradaysd, returns the mean, median, and sd of intraday sd Sensor column in pandas dataframe Args: column (pandas.DataFrame column or pandas series): column that you want to calculate over time (pandas.DataFrame): time column timeformat (String): default = '%Y-%m-%d %H:%M:%S.%f'; format of timestamp in time column Returns: intradaysd_mean (IntegerType): Mean, Median, and SD of intraday standard deviation intradaysd_median (IntegerType): Median of intraday standard deviation intradaysd_sd (IntegerType): SD of intraday standard deviation """ intradaysd =[] df = pd.DataFrame() df['Column'] = column df['Time'] = pd.to_datetime(time, format=timeformat) df['Day'] = df['Time'].dt.date for i in pd.unique(df['Day']): intradaysd.append(np.std(df[df['Day']==i]['Column'])) intradaysd_mean = np.mean(intradaysd) intradaysd_median = np.median(intradaysd) intradaysd_sd = np.std(intradaysd) return intradaysd_mean, intradaysd_median, intradaysd_sd def intradaymean(column, time, timeformat='%Y-%m-%d %H:%M:%S.%f'): """ computes the intradaymean, returns the mean, median, and sd of the intraday mean of the Sensor data Args: column (pandas.DataFrame column or pandas series): column that you want to calculate over time (pandas.DataFrame): time column timeformat (String): default = '%Y-%m-%d %H:%M:%S.%f'; format of timestamp in time column Returns: intradaysd_mean (IntegerType): Mean, Median, and SD of intraday standard deviation of glucose intradaysd_median (IntegerType): Median of intraday standard deviation of glucose intradaysd_sd (IntegerType): SD of intraday standard deviation of glucose """ intradaymean =[] df = pd.DataFrame() df['Column'] = column df['Time'] = pd.to_datetime(time, format=timeformat) df['Day'] = df['Time'].dt.date for i in pd.unique(df['Day']): intradaymean.append(np.nanmean(df[df['Day']==i]['Column'])) intradaymean_mean = np.mean(intradaymean) intradaymean_median = np.median(intradaymean) intradaymean_sd = np.std(intradaymean) return intradaymean_mean, intradaymean_median, intradaymean_sd def dailymean(column, time, timeformat='%Y-%m-%d %H:%M:%S.%f'): """ computes the mean of each day Args: column (pandas.DataFrame column or pandas series): column that you want to calculate over time (pandas.DataFrame): time column timeformat (String): default = '%Y-%m-%d %H:%M:%S.%f'; format of timestamp in time column Returns: pandas.DataFrame with days and means as columns """ intradaymean =[] df = pd.DataFrame() df['Column'] = column df['Time'] = pd.to_datetime(time, format=timeformat) df['Day'] = df['Time'].dt.date for i in pd.unique(df['Day']): intradaymean.append(np.nanmean(df[df['Day']==i]['Column'])) dailymeandf = pd.DataFrame() dailymeandf['Day'] = pd.unique(df['Day']) dailymeandf['Mean'] = intradaymean return dailymeandf def dailysummary(column, time, timeformat='%Y-%m-%d %H:%M:%S.%f'): """ computes the summary of each day (mean, median, std, max, min, Q1G, Q3G) Args: column (pandas.DataFrame column or pandas series): column that you want to calculate over time (pandas.DataFrame): time column timeformat (String): default = '%Y-%m-%d %H:%M:%S.%f'; format of timestamp in time column Returns: pandas.DataFrame with days and summary metrics as columns """ intradaymean =[] intradaymedian =[] intradaysd =[] intradaymin =[] intradaymax =[] intradayQ1 =[] intradayQ3 =[] df = pd.DataFrame() df['Column'] = column df['Time'] = pd.to_datetime(time, format=timeformat) df['Day'] = df['Time'].dt.date for i in
pd.unique(df['Day'])
pandas.unique
"""! All functions providing plotting functionalities. """ import matplotlib.pylab as plt import matplotlib.dates as mdates import matplotlib.image as image import pandas as pd import re import argparse import datetime as dt import numpy as np from pandas.plotting import register_matplotlib_converters from datetime import datetime register_matplotlib_converters() plt.rcParams.update({'font.size': 22}) environment_sensor_pattern = re.compile(r"([0-9-]+)\s([0-9:.]+):\stemperature:\s([0-9.]+),\sgas:\s([0-9]+),\shumidity:\s([0-9.]+),\spressure:\s([0-9.]+),\saltitude:\s([0-9.]+)", re.MULTILINE) soil_moisture_pattern = re.compile(r"([0-9-]+)\s([0-9.:]+):\s\[([0-9]+),\s([0-9.]+),\s([0-9.]+)\]", re.MULTILINE) def plot_soil_moisture(dict, past24): """! Plots soil moisture data in simple line chart @param dict: Dicitonary containing timestamps and associated readings. """ lists = sorted(dict.items()) x, y = zip(*lists) fig, ax = plt.subplots() ax.plot(x, y, 'k', linewidth=2) fig.autofmt_xdate() hours6 = mdates.HourLocator(interval=6) hours3 = mdates.HourLocator(interval=3) # im = image.imread('./icons/Grow_Space_Logo.png') # fig.figimage(im, 300, 0, zorder=3, alpha=0.2) ax.xaxis.set_minor_locator(hours3) ax.tick_params(which='major', length=7, width=2, color='black') ax.tick_params(which='minor', length=4, width=2, color='black') ax.xaxis.set_major_locator(hours6) ax.xaxis.set_major_formatter(mdates.DateFormatter('%d - %H')) ax.grid() plt.xlabel("Day - Hour") plt.ylabel("Moisture Percentage (%)") plt.title("Soil Moisture % vs Time") DPI = fig.get_dpi() fig.set_size_inches(2400.0/float(DPI),1220.0/float(DPI)) if past24: datemin = np.datetime64(x[-1], 'h') - np.timedelta64(24, 'h') datemax = np.datetime64(x[-1], 'h') ax.set_xlim(datemin, datemax) plt.xlabel("Hour") plt.title("Soil Moisture % Past 24 Hrs") ax.xaxis.set_major_locator(hours3) ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M')) plt.savefig('Moisture_vs_Time_24H.png', dpi=500) plt.savefig('Moisture_vs_Time.png', dpi=500) # plt.show() def plot_temperature(dict, past24): """! Plots temperature data in simple line chart @param dict: Dicitonary containing timestamps and associated readings. """ lists = sorted(dict.items()) x, y = zip(*lists) fig, ax = plt.subplots() ax.plot(x, y, 'k', linewidth=2) fig.autofmt_xdate() hours6 = mdates.HourLocator(interval=6) hours3 = mdates.HourLocator(interval=3) # im = image.imread('./icons/Grow_Space_Logo.png') # fig.figimage(im, 650, 0, zorder=3, alpha=0.2) ax.xaxis.set_major_locator(hours6) ax.xaxis.set_minor_locator(hours3) ax.xaxis.set_major_formatter(mdates.DateFormatter('%d - %H')) ax.tick_params(which='major', length=7, width=2, color='black') ax.tick_params(which='minor', length=4, width=2, color='black') ax.grid() plt.title("Temperature Over Time") plt.xlabel("Time (Month-Day Hour)") plt.ylabel("Temperature (°C)") DPI = fig.get_dpi() fig.set_size_inches(2400.0/float(DPI),1220.0/float(DPI)) if past24: datemin = np.datetime64(x[-1], 'h') - np.timedelta64(24, 'h') datemax = np.datetime64(x[-1], 'h') ax.set_xlim(datemin, datemax) plt.xlabel("Hour") plt.title('Temperature Past 24 Hrs') ax.xaxis.set_major_locator(hours3) ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M')) plt.savefig('Temperature_vs_Time_24H.png', dpi=500) plt.savefig('Temperature_vs_Time.png', dpi=500) # plt.show() def boxplot_environment(df): """! Creates a boxplot of all the relevant environment sensor data. What is a boxplot? Text from https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.boxplot.html: The box extends from the Q1 to Q3 quartile values of the data, with a line at the median (Q2). The whiskers extend from the edges of box to show the range of the data. The position of the whiskers is set by default to 1.5 * IQR (IQR = Q3 - Q1) from the edges of the box. Outlier points are those past the end of the whiskers. @param df: dataframe object from which we generate a boxplot. """ df['VOC'] = df['VOC'].div(1000) # with plt.style.context("seaborn"): fig, ax = plt.subplots(1, 3) fig.suptitle('Environment Sensor Data') df.boxplot('Temperature', ax=ax[0]) df.boxplot('VOC', ax=ax[1], fontsize=12) df.boxplot('Humidity', ax=ax[2]) ax[0].set_ylabel("Temperature (°C)") ax[1].set_ylabel("VOC (kΩ)") ax[2].set_ylabel("Humidity (%)") plt.subplots_adjust(top=0.95) DPI = fig.get_dpi() fig.set_size_inches(2400.0/float(DPI),1220.0/float(DPI)) plt.savefig('Environment_Boxplot.png', dpi=500) # plt.show() def extract_data_from_log(data, pattern): """! Function for extracting data out of a log file using regex matching. Returns all regex match objects. @param data: Raw data from the log file. @param pattern: Regex pattern to use for matching. """ matches = list() for line in data: matches.append(re.match(pattern, line)) return matches def generate_plots(root="./logs/", soil_sensor_log="soil_moisture_sensor_1.txt", environment_sensor_log="environment_sensor.txt"): # Plot soil moisture data with open(root+soil_sensor_log, "r") as myfile: data = myfile.readlines() matches = extract_data_from_log(data, soil_moisture_pattern) data_dict = dict() for match in matches: # current_val = float(match.group(4)) # Raw voltage reading current_val = float(match.group(5)) # Percentage reading index_time = match.group(1) + " " + match.group(2) index_dt = dt.datetime.strptime(index_time, "%Y-%m-%d %H:%M:%S.%f") data_dict[index_dt] = current_val plot_soil_moisture(data_dict, True) plot_soil_moisture(data_dict, False) # Plot temperature data with open(root+environment_sensor_log, "r") as myfile: data = myfile.readlines() matches = extract_data_from_log(data, environment_sensor_pattern) data_dict = dict() temperature_dict = dict() data_dict['Temperature'] = {} data_dict['VOC'] = {} data_dict['Humidity'] = {} for match in matches: index_time = match.group(1) + " " + match.group(2) index_dt = dt.datetime.strptime(index_time, "%Y-%m-%d %H:%M:%S.%f") data_dict['Temperature'][index_dt] = float(match.group(3)) data_dict['VOC'][index_dt] = float(match.group(4)) data_dict['Humidity'][index_dt] = float(match.group(5)) plot_temperature(data_dict['Temperature'], True) plot_temperature(data_dict['Temperature'], False) # Plot environment sensor data df =
pd.DataFrame.from_dict(data_dict, orient='columns')
pandas.DataFrame.from_dict
""" Created on 2019-12-20 @author: <NAME> - github.com/rpadrino - IMDEA Networks """ #imports from __future__ import division import math #from mod_read_crop_files import * #from mod_tracker import * #from mod_bin_classifier import * from mod_multiclass_classifier import * import os from os import listdir from os.path import isfile, join import shutil #for moving files import numpy as np import pandas as pd import argparse import sys ###### USE ######## # import: # from mod_central_classification import * # # Main function (examples): # centralClassification() # centralClassification('guess') # centralClassification('guess', './classification/', True) # centralClassification(input_path='./classification/') # # optional parameters # cameras_element: to provide the camera element to be processed: top, bottom. Default: guess # input_path: to provide where the local results (cameras) are. Default: ./classification/ # debug: use for debugging [False by default]. # config. and vars. input_classification_folder = "./classification/" # the folder will contain the local results and other files from the species classification per each camera in subfolders ###output_classification_folder = "./classification/output/" # the folder will contain the final results and other files for the species classification output_classification_folder = "output/" # the folder will contain the final results and other files for the species classification input_classification_csv_file = "camera_classification.csv" ## CSV content: ...... input_classification_path_to_crops_file = "path_crops_folder.txt" output_classification_best_file = "best_classification.txt" output_detection_best_file = "best_detection.txt" #output_classification_boundary_file = "boundary_targets.txt" #recalculate values - boundary areas boundary_area_left = int( ( 2048 * 10.5 ) / 70.5 ) #305pixels == 10.5degrees of overlapping boundary_area_right = 2048 - boundary_area_left working_in_folder_path = None working_out_folder_path = None ###### functions ######## def getTimestampFromFilename(strr): strr_sub = strr.split('frame')[0] if strr_sub.startswith('IMG_'): #just in case strr_sub = strr_sub[4:] if strr_sub.endswith('-'): #just in case strr_sub = strr_sub[:-1] if strr_sub.endswith('_'): #just in case strr_sub = strr_sub[:-1] return strr_sub def checkCamerasElementParameter(element): #change name cam_elements = { "top": True, "bottom": True, "guess": True, "all": False } return cam_elements.get(element, False) def getIPsubnetByCamerasElement(element): cam_elements = { "top": 20, "bottom": 40 } return cam_elements.get(element, -1) def getSpeciesNameByNumber(element): cam_elements = { 0: "albacore", 1: 'amberjack', 2: 'atl_mackerel', 3: 'dorado', 4: 'med_mackerel', 5: 'swordfish', 6: 'others' } return cam_elements.get(element, -1) #check def getCameraFolderName(element, ncam): subnet_name = getIPsubnetByCamerasElement(element) camera_folder = '' if subnet_name is not -1: #if subnet_name and (ncam > 0 and ncam < 7): if subnet_name and (ncam > 0 and ncam < 256): #./cameraXX.Y/ camera_folder = "camera%d.%d/" % ( subnet_name, ncam ) return camera_folder def getCameraNamesFolderList(cameras_element): folder_list = [] if checkCamerasElementParameter(cameras_element): for ii in range(1,7): #for the number of cameras in each level (cameras_element) camera_folder = getCameraFolderName( cameras_element, ii ) if camera_folder is not '': folder_list.append( camera_folder ) return folder_list def checkCamerasElement(cameras_element): #change name cameras_element_present = False for camera_folder in getCameraNamesFolderList(cameras_element): camera_folder_wpath = join( working_in_folder_path, camera_folder) if os.path.isdir( camera_folder_wpath ): if isfile( join( camera_folder_wpath, input_classification_csv_file) ): cameras_element_present = True break return cameras_element_present def getPathToCropsPerCameraFromFile(camera_name): path_crops_folder_file = join(working_in_folder_path, camera_name, input_classification_path_to_crops_file) path_crops_folder = open( path_crops_folder_file ).read().replace('\n','').replace('\r','') return path_crops_folder def getFilenameWithPath(strr, prefix): #call: df['acb'].apply( getFilenameWithPath, prefix='/path/to' ) return join(prefix, strr) def getNumberOfDifferentSpecies(df): #count different fishes #species_list_ids = df['artifact-multi-decision'].unique() df_speciesid_count = pd.DataFrame( columns=('species', 'count') ) if len(df): #for species_index in( species_list_ids ): for ii, species_index in enumerate( df['artifact-multi-decision'].unique() ): #sorted() <-- without enumeration df_specie = df[ df['artifact-multi-decision'] == species_index ] number_fishes_per_specie = df_specie['artifact-id'].nunique() df_speciesid_count.loc[ 0 if pd.isnull( df_speciesid_count.index.max() ) else df_speciesid_count.index.max() + 1 ] = [int(species_index)] + [int(number_fishes_per_specie)] return df_speciesid_count #df: 'species', 'count'. ex.: 2->24, 3->11,... def saveResults(df, folder_path, output_file): return df.to_csv( join( folder_path, output_file) , index=False, header=False) #,encoding='utf-8' def saveNumberOfFishesPerSpecies(df_list, folder_path): for index, row in df_list.iterrows(): ## the column 'species' in not accesible, but it is as indexes ##species_index = row['species'] species_index = index species_name = getSpeciesNameByNumber( species_index ) number_fishes = row['count'] output_file = None status = None try: #output_file = open( '%s/%s.txt' % (working_out_folder_path, species_name), 'w') ##join() output_file = open( '%s/%s.txt' % (folder_path, species_name), 'w') ##join() output_file.write('%d\r\n' % (int(number_fishes) ) ) output_file.close() if status is None and not status: status = True except IOError: status = False finally: if output_file is not None: output_file.close() #just in case return status def getArtifactInBoundaryBasic(df): artifacts_in_boundary = df[ ( df['x1'] <= boundary_area_left ) | ( df['x2'] >= boundary_area_right ) ] return artifact_in_boundary.reset_index(level=0, drop=True).copy() def getArtifactInBoundary(df): list_columns = np.array(['filename','x1','y1','x2','y2','artifact-multi-decision','ncam']) ##list_columns_final_order = np.array(['ncam','timestamp','x1','y1','x2','y2','species_name','artifact-multi-decision']) list_columns_final_order = np.array(['ncam','filename','x1','y1','x2','y2','species_name','artifact-multi-decision']) artifact_in_boundary = df[ ( df['x1'] <= boundary_area_left ) | ( df['x2'] >= boundary_area_right ) ] artifact_in_boundary = artifact_in_boundary[list_columns].reset_index(level=0, drop=True).copy() # add column with species names artifact_in_boundary['species_name'] = artifact_in_boundary['artifact-multi-decision'].apply( getSpeciesNameByNumber ) # add column with timestamp from filenames #artifact_in_boundary['timestamp'] = artifact_in_boundary['filename'].apply( getTimestampFromFilename ) #delete column "filename" - not needed #artifact_in_boundary.drop("filename", axis=1, inplace=True) return artifact_in_boundary[ list_columns_final_order ] def processCamerasElement(cameras_element): if checkCamerasElementParameter(cameras_element): df = pd.DataFrame() # columns=('filename', 'frame', 'x1', 'y1', 'x2', 'y2', 'detection-acc',) #filename, frame, x1, y1, x2, y2, detection-acc, bin-prob-neg, bin-prob-pos, multi-prob-1, multi-prob-2, multi-prob-3, multi-prob-4, multi-prob-5, multi-prob-6, artifact-bin-prob-pos, artifact-bin-prob-neg, artifact-bin-decision, artifact-multi-prob-1, artifact-multi-prob-2, artifact-multi-prob-3, artifact-multi-prob-4, artifact-multi-prob-5, artifact-multi-prob-6, artifact-multi-decision df_wFishesPerSpecie = pd.DataFrame() folder_counter = 0 for camera_folder in getCameraNamesFolderList(cameras_element): camera_folder_wpath = join( working_in_folder_path, camera_folder) ncam = camera_folder.split('.')[-1] ncam = int( ncam[:-1] ) #remove last '/' if os.path.isdir( camera_folder_wpath ): # ncam = camera_folder.split('.')[-1] # ncam = int( ncam[:-1] ) #remove last '/' if isfile( join( camera_folder_wpath, input_classification_csv_file) ): df_cam = pd.read_csv( join( camera_folder_wpath, input_classification_csv_file), header='infer' ) #df_cam['ncam'] = np.array([ ncam ] * len(df) ) df_cam['ncam'] = ncam ##df_cam.reset_index(level=0, drop=True, inplace=True) #not here, after concat ## df_wFishesPerSpecieAndCam = getNumberOfDifferentSpecies( df_cam ) #df: 'species', 'count'. ex.: 2->24, 3->11,.. if len(df_wFishesPerSpecieAndCam): df_wFishesPerSpecieAndCam['ncam'] = ncam df_wFishesPerSpecie = pd.concat([df_wFishesPerSpecie, df_wFishesPerSpecieAndCam], axis = 0) df_wFishesPerSpecie.reset_index(level=0, drop=True, inplace=True) #df: 'species', 'count'. ex.: 2->24, 3->11,..2->3, 3->.... if len(df): df = pd.concat([df, df_cam], axis = 0) df.reset_index(level=0, drop=True, inplace=True) else: df = df_cam.copy() del df_cam folder_counter += 1 else: print('CSV from camera %d not Found [%s].' % (ncam, cameras_element) ) ##ifp-end-csv-camera-exists else: print('CSV from camera %d not Found [%s].' % (ncam, cameras_element) ) ## if-end-isdir ## for-end-cameras-read-csv if len(df): #or ## len(df) ## folder_counter > 0 #NUMBER OF FISHES FROM ALL CAMERAS # group per species if len(df_wFishesPerSpecie): df_wFishesPerSpecieNoCam = df_wFishesPerSpecie.copy() df_wFishesPerSpecieNoCam.drop("ncam", axis=1, inplace=True) number_fishes_per_specie = df_wFishesPerSpecieNoCam.groupby(['species']).sum()[['count']] ## , as_index=False #problem: groupby('species') is removing 'count' column. #number_fishes_per_specie = df_wFishesPerSpecie.groupby('species').sum()[['count']] ## , as_index=False #df: 'species', 'count'. ex.: 2->24, 3->11,..2->3, 3->.... #save one file per species with the number. saving_result_per_species = saveNumberOfFishesPerSpecies( number_fishes_per_specie, working_out_folder_path ) ## df: 'species', 'count' (totals) else: print('Dataframe with number of fishes per species in empty. Nothing to save.') print('') # saveResults( pd.DataFrame() , working_out_folder_path, 'nodata_species.txt') #BEST DETECTION #function define in 'mod_multiclass_classifier.py' #df_bestDetection = getBestArtifact(df) #filename, acc, species df_bestDetection = getBestArtifactFromSegmentation(df) #filename, acc, species df_bestDetection['species-name'] = df_bestDetection['species'].apply( getSpeciesNameByNumber ) list_columns_final_order = np.array(['filename','acc','species-name','species']) #saving_result_best = saveResults( df_bestDetection[ list_columns_final_order ], working_out_folder_path, output_classification_best_file) saving_result_best = saveResults( df_bestDetection[ list_columns_final_order ], working_out_folder_path, output_detection_best_file) #copy best file filename_best_result = df_bestDetection.head(1)['filename'].to_numpy()[0] camera_best_result = df[ df['filename'] == filename_best_result ].head(1)['ncam'] camera_folder_best_result = getCameraFolderName( cameras_element, camera_best_result.to_numpy()[0] ) filename_best_result_wPath = join(working_in_folder_path ,camera_folder_best_result, filename_best_result) if isfile( filename_best_result_wPath): shutil.copy( filename_best_result_wPath , working_out_folder_path) else: print("It was not possible to find file for best results: %s" % (filename_best_result_wPath) ) print("") #BOUNDARY AREAS artifacts_in_boundary = getArtifactInBoundary( df ) #camera, timestamp, coords, species_name, species_index #save boundary results saving_boundary_result = "" ##VS None and += for ii, cam_index in enumerate( df['ncam'].unique() ): camera_name = getCameraFolderName(cameras_element, cam_index) #saving_boundary_result += artifacts_in_boundary_per_cam = artifacts_in_boundary[ artifacts_in_boundary['ncam'] == cam_index ].reset_index(level=0, drop=True).copy() path_for_filename = getPathToCropsPerCameraFromFile(camera_name) artifacts_in_boundary_per_cam['filename'] = artifacts_in_boundary_per_cam['filename'].apply( getFilenameWithPath, prefix=path_for_filename ) saveResults( artifacts_in_boundary_per_cam, working_out_folder_path , "%s_boundary.txt" % camera_name[:-1] ) #saveResults( artifacts_in_boundary[ artifacts_in_boundary['ncam'] == cam_index ], working_out_folder_path , "%s_boundary.txt" % camera_name[:-1] ) #FILE: cameraXX.Y_boundary.txt #FORMAT: camera, timestamp, coords, species, species_index (each detection one line) ## for-end statusCameraElement = True else: print('Input CSVs are empty. Nothing to process.') print('') saveResults(
pd.DataFrame()
pandas.DataFrame
from unittest.mock import patch import featuretools as ft import pandas as pd import pytest import woodwork as ww from featuretools.feature_base import IdentityFeature from pandas.testing import assert_frame_equal from woodwork.logical_types import ( Boolean, Categorical, Datetime, Double, Integer, ) from evalml.demos import load_diabetes from evalml.pipelines.components import DFSTransformer def test_index_errors(X_y_binary): with pytest.raises(TypeError, match="Index provided must be string"): DFSTransformer(index=0) with pytest.raises(TypeError, match="Index provided must be string"): DFSTransformer(index=None) def test_numeric_columns(X_y_multi): X, y = X_y_multi X_pd = pd.DataFrame(X) feature = DFSTransformer() feature.fit(X_pd, y) feature.transform(X_pd) @patch("evalml.pipelines.components.transformers.preprocessing.featuretools.dfs") @patch( "evalml.pipelines.components.transformers.preprocessing.featuretools.calculate_feature_matrix" ) def test_featuretools_index(mock_calculate_feature_matrix, mock_dfs, X_y_multi): X, y = X_y_multi X_pd = pd.DataFrame(X) X_new_index = X_pd.copy() index = [i for i in range(len(X))] new_index = [i * 2 for i in index] X_new_index["index"] = new_index mock_calculate_feature_matrix.return_value = pd.DataFrame({}) # check if _make_entity_set keeps the intended index feature = DFSTransformer() feature.fit(X_new_index) feature.transform(X_new_index) arg_es = mock_dfs.call_args[1]["entityset"].dataframes[0].index arg_tr = mock_calculate_feature_matrix.call_args[1]["entityset"].dataframes[0].index assert arg_es.to_list() == new_index assert arg_tr.to_list() == new_index # check if _make_entity_set fills in the proper index values feature.fit(X_pd) feature.transform(X_pd) arg_es = mock_dfs.call_args[1]["entityset"].dataframes[0].index arg_tr = mock_calculate_feature_matrix.call_args[1]["entityset"].dataframes[0].index assert arg_es.to_list() == index assert arg_tr.to_list() == index def test_transform(X_y_binary, X_y_multi, X_y_regression): datasets = locals() for dataset in datasets.values(): X, y = dataset X_pd = pd.DataFrame(X) X_pd.columns = X_pd.columns.astype(str) es = ft.EntitySet() es = es.add_dataframe( dataframe_name="X", dataframe=X_pd, index="index", make_index=True ) feature_matrix, features = ft.dfs(entityset=es, target_dataframe_name="X") feature = DFSTransformer() feature.fit(X) X_t = feature.transform(X) assert_frame_equal(feature_matrix, X_t) assert features == feature.features feature.fit(X, y) feature.transform(X) X_pd.ww.init() feature.fit(X_pd) feature.transform(X_pd) def test_transform_subset(X_y_binary, X_y_multi, X_y_regression): datasets = locals() for dataset in datasets.values(): X, y = dataset X_pd = pd.DataFrame(X) X_pd.columns = X_pd.columns.astype(str) X_fit = X_pd.iloc[: len(X) // 3] X_transform = X_pd.iloc[len(X) // 3 :] es = ft.EntitySet() es = es.add_dataframe( dataframe_name="X", dataframe=X_transform, index="index", make_index=True ) feature_matrix, features = ft.dfs(entityset=es, target_dataframe_name="X") feature = DFSTransformer() feature.fit(X_fit) X_t = feature.transform(X_transform) assert_frame_equal(feature_matrix, X_t) @pytest.mark.parametrize( "X_df", [ pd.DataFrame( pd.to_datetime(["20190902", "20200519", "20190607"], format="%Y%m%d") ), pd.DataFrame(pd.Series([1, 2, 3], dtype="Int64")), pd.DataFrame(pd.Series([1.0, 2.0, 3.0], dtype="float")), pd.DataFrame(
pd.Series(["a", "b", "a"], dtype="category")
pandas.Series
import argparse import ast import numpy as np import pandas as pd from data_preprocessing.data_creation import DataCreator from data_preprocessing.text_utils import TextUtils from md_data import create_annotations from utils.data_io import DataSaverLoader def create_dict_pl(questions_list, tokens_label): """When we create vocabulary with placeholders, no need to preprocess sentences since they have already been preprocessed""" tokens = [token for sentence in questions_list for token in sentence] tokens.extend(list(tokens_label)) words = sorted(list(set(tokens))) data_size, vocab_size = len(tokens), len(words) print("Initialize dataset with {} characters, {} unique.".format(data_size, vocab_size)) word_to_ix = {ch: i + 1 for i, ch in enumerate(words)} ix_to_word = {i + 1: ch for i, ch in enumerate(words)} word_to_ix["UNK"] = len(word_to_ix) + 1 ix_to_word[len(ix_to_word) + 1] = "UNK" return word_to_ix, ix_to_word def create_dict_pl_separately(tokens): """This method will be called twice, once for the tokens in questions and one for the tokens in predicate labels. Use this method if you do not want to share embeddings for questions and predicates""" words = sorted(list(set(tokens))) data_size, vocab_size = len(tokens), len(words) print("Initialize dataset with {} characters, {} unique.".format(data_size, vocab_size)) word_to_ix = {ch: i + 1 for i, ch in enumerate(words)} ix_to_word = {i + 1: ch for i, ch in enumerate(words)} word_to_ix["UNK"] = len(word_to_ix) + 1 ix_to_word[len(ix_to_word) + 1] = "UNK" return word_to_ix, ix_to_word def create_predicate_dictionaries(path): train = pd.read_csv(path + "annotated_fb_data_train.txt", sep="\t", usecols=[1], names=["relation"]) valid = pd.read_csv(path + "annotated_fb_data_valid.txt", sep="\t", usecols=[1], names=["relation"]) test = pd.read_csv(path + "annotated_fb_data_test.txt", sep="\t", usecols=[1], names=["relation"]) train_relations = train["relation"].to_list() valid_relations = valid["relation"].to_list() test_relations = test["relation"].to_list() train_relations.extend(valid_relations) train_relations.extend(test_relations) pred2ix, ix2pred, predicate_words, predicate_names = DataCreator.create_predicate_dict(train_relations) return pred2ix, ix2pred, predicate_words, predicate_names def create_vocab_dictionaries(args, placeholder=False, pred_w=None, pred_n=None, annotations=None, none_sbj=None, separately=False, keywords=None, indices=[]): """ :param args: args :param placeholder: placeholders exist or not :param pred_w: predicate words :param pred_n: predicate names :param annotations: annotations :param none_sbj: samples for which we do not have problematic mid :param separately: use different embeddings for questions and predicates :param keywords: use keywords or not :param indices: target domain indices :return: dictionaries word2ix, ix2word """ sbj_mid, predicate, obj_mid, question = DataCreator.get_spo_question(args.path_load_sq, "annotated_fb_data_train.txt") # init word2ix = None ix2word = None word2ix_predicates = None ix2word_predicates = None if (pred_w is None) and (not placeholder): # for the multi-class models word2ix, ix2word = DataCreator.create_dict(questions=question, eos=False, cut_frq=False, additional=keywords) elif (pred_w is not None) and (keywords is None) and (not placeholder): # for relatedness models without placeholders print("Pred_w: ", len(pred_w), " Placeholder: ", placeholder) tokens = [token for label_w in pred_w for token in label_w] word2ix, ix2word = DataCreator.create_dict(questions=question, eos=False, cut_frq=False, additional=tokens) elif (pred_w is not None) and (keywords is not None) and (not placeholder): # for relatedness models without placeholders # with word level predicate labels and keywords print("Pred_w: ", len(pred_w), " Placeholder:", placeholder, " Keywords:", len(keywords)) tokens = [token for label_w in pred_w for token in label_w] + keywords word2ix, ix2word = DataCreator.create_dict(questions=question, eos=False, cut_frq=False, additional=tokens) elif (pred_w is not None) and (keywords is not None) and placeholder: # for relatedness models with placeholders # with word level predicate labels and keywords print("Pred_w: ", len(pred_w), " Placeholder:", placeholder, " Keywords:", len(keywords)) question_words = [] for q in question: question_words.append([token for token in TextUtils.preprocess(q)]) question = replace_plchdr(np.delete(np.array(question_words), none_sbj, axis=0), annotations) # comment next line if there are no training indices to delete print("delete unseen domain questions") print(len(indices)) question = list(np.delete(np.array(question), indices, axis=0)) additional_predicate_txt = set([w for p_w in pred_w for w in p_w]).union(set(keywords)) word2ix, ix2word = create_dict_pl(question, additional_predicate_txt) elif (pred_w is not None) and placeholder: # for relatedness models with placeholders instead of subject entities in question question_words = [] for q in question: question_words.append([token for token in TextUtils.preprocess(q)]) question = replace_plchdr(np.delete(np.array(question_words), none_sbj, axis=0), annotations) additional_predicate_txt = set([w for p_w in pred_w for w in p_w]) if pred_n is None else set( [w for p_w in pred_w for w in p_w]).union(set([n for p_n in pred_n for n in p_n])) if separately: # create different vocabs for question and predicate labels word2ix, ix2word = create_dict_pl_separately([token for sentence in question for token in sentence]) word2ix_predicates, ix2word_predicates = create_dict_pl_separately(additional_predicate_txt) else: # same vocab for question and predicate labels # comment next line if there are no indices to delete print("delete unseen domain questions") print(len(indices)) question = list(np.delete(np.array(question), indices, axis=0)) word2ix, ix2word = create_dict_pl(question, additional_predicate_txt) print("Dictionary size: ", len(word2ix)) return word2ix, ix2word, word2ix_predicates, ix2word_predicates def remove_seq_duplicates(question): """ Removes consequent sbj placeholders""" i = 0 while i < len(question) - 1: if question[i] == question[i + 1] and question[i] == "sbj": del question[i] else: i = i + 1 return question def replace_plchdr(questions, annotations, name="train"): questions_placeholder = [] for i in range(len(questions)): tmp = questions[i] sbj_exists = np.where(np.array(annotations[i]) == 1)[0] if name == "test": if len(sbj_exists) > 0: q_new = [word if index not in sbj_exists else "sbj" for index, word in enumerate(tmp)] q_new = remove_seq_duplicates(q_new) questions_placeholder.append(q_new) else: questions_placeholder.append(tmp) else: tmp[sbj_exists[0]] = "sbj" if len(sbj_exists) > 1: tmp_ = np.delete(tmp, sbj_exists[1:]) questions_placeholder.append(tmp_) else: questions_placeholder.append(tmp) return questions_placeholder def create_data_pl(questions_list, word_to_ix): sentence_ids = [] for q in questions_list: sentence_ids.append([word_to_ix[token] if token in word_to_ix else word_to_ix["UNK"] for token in q]) return sentence_ids def create_data(path, word2ix, pred2ix): """ :param path: path for an annotated freebase data file :param word2ix: word to id :param pred2ix: predicate to id :return: subject mids, predicates, object mids, data(questions as word ids), targets(predicate ids), questions """ df_data = pd.read_csv(path, usecols=[0, 1, 2, 3, 4, 6]) sbj_mid = df_data["subject"].to_list() obj_mid = df_data["object"].to_list() predicate = df_data["relation"].to_list() annotations = df_data["annotation"].apply(ast.literal_eval).to_list() question = df_data["question_initial"].to_list() data, question = DataCreator.create_data(question, word2ix, eos=False) targets = DataCreator.create_targets(predicate, pred2ix) return sbj_mid, predicate, obj_mid, data, targets, question def create_data_placeholder(path, word2ix, pred2ix, name): """Takes as input the path for an annotated freebase data file, and returns subject mids, predicates, object mids, data(questions as word ids), targets(predicate ids), questions""" use_col = [0, 1, 2, 3, 4, 6, 7] if name == "test" else [0, 1, 2, 3, 4, 6] df_data = pd.read_csv(path, usecols=use_col) sbj_mid = df_data["subject"].to_list() obj_mid = df_data["object"].to_list() predicate = df_data["relation"].to_list() annotations = df_data["annotation"].apply(ast.literal_eval).to_list() if name != "test" else df_data[ "prediction"].apply(ast.literal_eval).to_list() question = df_data["question_initial"].to_list() question_words = [] for q in question: question_words.append([token for token in TextUtils.preprocess(q)]) question = replace_plchdr(np.array(question_words), annotations, name) data = create_data_pl(question, word2ix) targets = DataCreator.create_targets(predicate, pred2ix) return sbj_mid, predicate, obj_mid, data, targets, question def find_remove_domain_ids(domain, ix2pred): """ finds the relation types within the target domain """ ids = [] for key, value in ix2pred.items(): value_ = value.split("/")[0] if value_ in [domain]: ids.append(key) return ids def create_targets(predicates, pred_to_ix): train_targets = list() for p in predicates: train_targets.append(np.array(pred_to_ix[p.replace("\n", "").replace("www.freebase.com/", "")]).reshape(1)) return train_targets def preprocess_synthetic_questions(df, mid2entity, predicate_names): """ adds placeholders on the synthetic questions """ add_questions = [] additional_quest = [] for i in range(len(df)): reference = [df["y_label_post_proc"][i].replace("_END_", "").replace("_START_", "").split()] candidate = df["y_post_proc"][i].replace("_END_", "").replace("_START_", "").split() new_cand = [] if "_PLACEHOLDER_SUB_" not in candidate: tmp = mid2entity[df["sub"][i].replace("www.freebase.com/m/", "")] if len(tmp) != 0: annotations_padded, wrong_num_of_ent, wrong_num_of_ent_num = create_annotations([candidate], mid2entity[ df["sub"][i].replace("www.freebase.com/m/", "")], []) if 1 in annotations_padded[0]: inds = [index for index, x in enumerate(annotations_padded[0]) if x == 1] candidate = ["_PLACEHOLDER_SUB_" if index in inds else word for index, word in enumerate(candidate)] for word in candidate: if word == "_PLACEHOLDER_SUB_" and "sbj" not in new_cand: new_cand.append("sbj") elif word != "_PLACEHOLDER_SUB_": new_cand.append(word) new_cand = TextUtils.preprocess(" ".join(new_cand)) add_questions.extend(new_cand) additional_quest.append(new_cand) for pp in predicate_names: add_questions.extend(pp) return add_questions, additional_quest def check_args(args, parser): if args.use_synthetic_questions and (args.path_load_synthetic is None): parser.error("when --use_synthetic_questions, you must provide --path_load_synthetic") if args.use_keywords and (args.path_load_keywords is None): parser.error("when --use_keywords, you must provide --path_load_keywords") if args.use_relation_words_only and (args.use_keywords or args.use_synthetic_questions): parser.error("when --use_relation_words_only, --use_synthetic_questions | --use_keywords" "should not be given as arguments") def main(): """ path_load_sq: path of the original SimpleQuestions dataset path_load_md_data: path of the folder generated after running MD path_load_synthetic: path of the csv file generated by QG path_load_mid2ent: path of the folder in which mid2ent exists in path_load_keywords: path of the folder in which pred2key exists in (this file is created when extracting keywords) path_save: where to save the RP data target_domain: the target domain (e.g. book, film, astronomy etc) placeholders: placeholders in questions instead of subject names or questions in the original format use_relation_words_only: use only words from original questions not to be used with keywords or synthetic questions use_keywords: if keywords w.r.t relation will be provided use_synthetic_questions: if synthetic questions of the target domain will be provided """ parser = argparse.ArgumentParser() parser.add_argument("--path_load_sq", type=str, default=None, required=True) parser.add_argument("--path_load_md_data", type=str, default=None) parser.add_argument("--path_load_synthetic", type=str, default=None) parser.add_argument("--path_load_mid2ent", type=str, default=None, required=True) parser.add_argument("--path_load_keywords", type=str, default=None) parser.add_argument("--path_save", type=str, default=None, required=True) parser.add_argument("--target_domain", type=str, default=None) parser.add_argument("--placeholders", action="store_true") parser.add_argument("--use_relation_words_only", action="store_true") parser.add_argument("--use_keywords", action="store_true") parser.add_argument("--use_synthetic_questions", action="store_true") args = parser.parse_args() # check if args are provided correctly check_args(args, parser) save_path = args.path_save # load mid to entity dictionary mid2entity = DataSaverLoader.load_pickle(path=args.path_load_mid2ent, filename="mid2ent") # if args.placeholders: # # load train annotations only for the placeholder case (plc in questions) df_train = pd.read_csv(args.path_load_md_data + "/train/" + "/data.csv", usecols=[4]) train_annotations = df_train["annotation"].apply(ast.literal_eval).to_list() train_none_sbj = DataSaverLoader.load_pickle(path=args.path_load_md_data + "/train/", filename="none_sbj") # create predicate label to id, id to predicate dictionaries # and word level predicate labels and name level predicate labels list pred2ix, ix2pred, predicate_words, predicate_names = create_predicate_dictionaries(args.path_load_sq) if args.use_keywords: # load keywords so they can be included in the vocab predicate2keywords = DataSaverLoader.load_pickle(path=args.path_load_keywords, filename="pred2key") keywords_total = [] for keywords in predicate2keywords.values(): keywords_total.extend(keywords) # indices to delete, if there is no domain given it will remain empty indices = [] if args.target_domain is not None: # find the training samples of the target domain which appear in the initial training set # those samples need to be removed for the domain adaptation scenario, otherwise we have # information leakage train = pd.read_csv(args.path_load_sq + "annotated_fb_data_train.txt", sep="\t", usecols=[1], names=["relation"]) labels_train = create_targets(train["relation"].to_list(), pred2ix) # find the relations types of which are part of the target domain rem = find_remove_domain_ids(args.target_domain, ix2pred) for indx, v in enumerate(labels_train): if v[0] in rem: indices.append(indx) indices_to_delete = np.zeros(len(labels_train)) indices_to_delete[indices] = 1 indices_to_delete = np.delete(indices_to_delete, train_none_sbj, 0) indices = np.where(indices_to_delete == 1)[0] if args.use_synthetic_questions and args.placeholders: # the text of the target domain synthetic questions should be part of the final vocabulary path_noisy_q = args.path_load_synthetic new_q = pd.read_csv(path_noisy_q) add_questions, additional_quest = preprocess_synthetic_questions(new_q, mid2entity, predicate_names) elif args.use_synthetic_questions and not args.placeholders: path_noisy_q = args.path_load_synthetic new_q =
pd.read_csv(path_noisy_q)
pandas.read_csv
import numpy as np import pytest import pandas as pd from pandas import ( CategoricalDtype, CategoricalIndex, DataFrame, Index, IntervalIndex, MultiIndex, Series, Timestamp, ) import pandas._testing as tm class TestDataFrameSortIndex: def test_sort_index_and_reconstruction_doc_example(self): # doc example df = DataFrame( {"value": [1, 2, 3, 4]}, index=MultiIndex( levels=[["a", "b"], ["bb", "aa"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1]] ), ) assert df.index.is_lexsorted() assert not df.index.is_monotonic # sort it expected = DataFrame( {"value": [2, 1, 4, 3]}, index=MultiIndex( levels=[["a", "b"], ["aa", "bb"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1]] ), ) result = df.sort_index() assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) # reconstruct result = df.sort_index().copy() result.index = result.index._sort_levels_monotonic() assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) def test_sort_index_non_existent_label_multiindex(self): # GH#12261 df = DataFrame(0, columns=[], index=MultiIndex.from_product([[], []])) df.loc["b", "2"] = 1 df.loc["a", "3"] = 1 result = df.sort_index().index.is_monotonic assert result is True def test_sort_index_reorder_on_ops(self): # GH#15687 df = DataFrame( np.random.randn(8, 2), index=MultiIndex.from_product( [["a", "b"], ["big", "small"], ["red", "blu"]], names=["letter", "size", "color"], ), columns=["near", "far"], ) df = df.sort_index() def my_func(group): group.index = ["newz", "newa"] return group result = df.groupby(level=["letter", "size"]).apply(my_func).sort_index() expected = MultiIndex.from_product( [["a", "b"], ["big", "small"], ["newa", "newz"]], names=["letter", "size", None], ) tm.assert_index_equal(result.index, expected) def test_sort_index_nan_multiindex(self): # GH#14784 # incorrect sorting w.r.t. nans tuples = [[12, 13], [np.nan, np.nan], [np.nan, 3], [1, 2]] mi = MultiIndex.from_tuples(tuples) df = DataFrame(np.arange(16).reshape(4, 4), index=mi, columns=list("ABCD")) s = Series(np.arange(4), index=mi) df2 = DataFrame( { "date": pd.DatetimeIndex( [ "20121002", "20121007", "20130130", "20130202", "20130305", "20121002", "20121207", "20130130", "20130202", "20130305", "20130202", "20130305", ] ), "user_id": [1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 5, 5], "whole_cost": [ 1790, np.nan, 280, 259, np.nan, 623, 90, 312, np.nan, 301, 359, 801, ], "cost": [12, 15, 10, 24, 39, 1, 0, np.nan, 45, 34, 1, 12], } ).set_index(["date", "user_id"]) # sorting frame, default nan position is last result = df.sort_index() expected = df.iloc[[3, 0, 2, 1], :] tm.assert_frame_equal(result, expected) # sorting frame, nan position last result = df.sort_index(na_position="last") expected = df.iloc[[3, 0, 2, 1], :] tm.assert_frame_equal(result, expected) # sorting frame, nan position first result = df.sort_index(na_position="first") expected = df.iloc[[1, 2, 3, 0], :] tm.assert_frame_equal(result, expected) # sorting frame with removed rows result = df2.dropna().sort_index() expected = df2.sort_index().dropna() tm.assert_frame_equal(result, expected) # sorting series, default nan position is last result = s.sort_index() expected = s.iloc[[3, 0, 2, 1]] tm.assert_series_equal(result, expected) # sorting series, nan position last result = s.sort_index(na_position="last") expected = s.iloc[[3, 0, 2, 1]] tm.assert_series_equal(result, expected) # sorting series, nan position first result = s.sort_index(na_position="first") expected = s.iloc[[1, 2, 3, 0]] tm.assert_series_equal(result, expected) def test_sort_index_nan(self): # GH#3917 # Test DataFrame with nan label df = DataFrame( {"A": [1, 2, np.nan, 1, 6, 8, 4], "B": [9, np.nan, 5, 2, 5, 4, 5]}, index=[1, 2, 3, 4, 5, 6, np.nan], ) # NaN label, ascending=True, na_position='last' sorted_df = df.sort_index(kind="quicksort", ascending=True, na_position="last") expected = DataFrame( {"A": [1, 2, np.nan, 1, 6, 8, 4], "B": [9, np.nan, 5, 2, 5, 4, 5]}, index=[1, 2, 3, 4, 5, 6, np.nan], ) tm.assert_frame_equal(sorted_df, expected) # NaN label, ascending=True, na_position='first' sorted_df = df.sort_index(na_position="first") expected = DataFrame( {"A": [4, 1, 2, np.nan, 1, 6, 8], "B": [5, 9, np.nan, 5, 2, 5, 4]}, index=[np.nan, 1, 2, 3, 4, 5, 6], ) tm.assert_frame_equal(sorted_df, expected) # NaN label, ascending=False, na_position='last' sorted_df = df.sort_index(kind="quicksort", ascending=False) expected = DataFrame( {"A": [8, 6, 1, np.nan, 2, 1, 4], "B": [4, 5, 2, 5, np.nan, 9, 5]}, index=[6, 5, 4, 3, 2, 1, np.nan], ) tm.assert_frame_equal(sorted_df, expected) # NaN label, ascending=False, na_position='first' sorted_df = df.sort_index( kind="quicksort", ascending=False, na_position="first" ) expected = DataFrame( {"A": [4, 8, 6, 1, np.nan, 2, 1], "B": [5, 4, 5, 2, 5, np.nan, 9]}, index=[np.nan, 6, 5, 4, 3, 2, 1], ) tm.assert_frame_equal(sorted_df, expected) def test_sort_index_multi_index(self): # GH#25775, testing that sorting by index works with a multi-index. df = DataFrame( {"a": [3, 1, 2], "b": [0, 0, 0], "c": [0, 1, 2], "d": list("abc")} ) result = df.set_index(list("abc")).sort_index(level=list("ba")) expected = DataFrame( {"a": [1, 2, 3], "b": [0, 0, 0], "c": [1, 2, 0], "d": list("bca")} ) expected = expected.set_index(list("abc")) tm.assert_frame_equal(result, expected) def test_sort_index_inplace(self): frame = DataFrame( np.random.randn(4, 4), index=[1, 2, 3, 4], columns=["A", "B", "C", "D"] ) # axis=0 unordered = frame.loc[[3, 2, 4, 1]] a_id = id(unordered["A"]) df = unordered.copy() return_value = df.sort_index(inplace=True) assert return_value is None expected = frame tm.assert_frame_equal(df, expected) assert a_id != id(df["A"]) df = unordered.copy() return_value = df.sort_index(ascending=False, inplace=True) assert return_value is None expected = frame[::-1] tm.assert_frame_equal(df, expected) # axis=1 unordered = frame.loc[:, ["D", "B", "C", "A"]] df = unordered.copy() return_value = df.sort_index(axis=1, inplace=True) assert return_value is None expected = frame tm.assert_frame_equal(df, expected) df = unordered.copy() return_value = df.sort_index(axis=1, ascending=False, inplace=True) assert return_value is None expected = frame.iloc[:, ::-1] tm.assert_frame_equal(df, expected) def test_sort_index_different_sortorder(self): A = np.arange(20).repeat(5) B = np.tile(np.arange(5), 20) indexer = np.random.permutation(100) A = A.take(indexer) B = B.take(indexer) df = DataFrame({"A": A, "B": B, "C": np.random.randn(100)}) ex_indexer = np.lexsort((df.B.max() - df.B, df.A)) expected = df.take(ex_indexer) # test with multiindex, too idf = df.set_index(["A", "B"]) result = idf.sort_index(ascending=[1, 0]) expected = idf.take(ex_indexer) tm.assert_frame_equal(result, expected) # also, Series! result = idf["C"].sort_index(ascending=[1, 0]) tm.assert_series_equal(result, expected["C"]) def test_sort_index_level(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list("ABC")) df = DataFrame([[1, 2], [3, 4]], mi) result = df.sort_index(level="A", sort_remaining=False) expected = df tm.assert_frame_equal(result, expected) result = df.sort_index(level=["A", "B"], sort_remaining=False) expected = df tm.assert_frame_equal(result, expected) # Error thrown by sort_index when # first index is sorted last (GH#26053) result = df.sort_index(level=["C", "B", "A"]) expected = df.iloc[[1, 0]] tm.assert_frame_equal(result, expected) result = df.sort_index(level=["B", "C", "A"]) expected = df.iloc[[1, 0]] tm.assert_frame_equal(result, expected) result = df.sort_index(level=["C", "A"]) expected = df.iloc[[1, 0]] tm.assert_frame_equal(result, expected) def test_sort_index_categorical_index(self): df = DataFrame( { "A": np.arange(6, dtype="int64"), "B": Series(list("aabbca")).astype(CategoricalDtype(list("cab"))), } ).set_index("B") result = df.sort_index() expected = df.iloc[[4, 0, 1, 5, 2, 3]] tm.assert_frame_equal(result, expected) result = df.sort_index(ascending=False) expected = df.iloc[[2, 3, 0, 1, 5, 4]] tm.assert_frame_equal(result, expected) def test_sort_index(self): # GH#13496 frame = DataFrame( np.arange(16).reshape(4, 4), index=[1, 2, 3, 4], columns=["A", "B", "C", "D"], ) # axis=0 : sort rows by index labels unordered = frame.loc[[3, 2, 4, 1]] result = unordered.sort_index(axis=0) expected = frame tm.assert_frame_equal(result, expected) result = unordered.sort_index(ascending=False) expected = frame[::-1] tm.assert_frame_equal(result, expected) # axis=1 : sort columns by column names unordered = frame.iloc[:, [2, 1, 3, 0]] result = unordered.sort_index(axis=1) tm.assert_frame_equal(result, frame) result = unordered.sort_index(axis=1, ascending=False) expected = frame.iloc[:, ::-1] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("level", ["A", 0]) # GH#21052 def test_sort_index_multiindex(self, level): # GH#13496 # sort rows by specified level of multi-index mi = MultiIndex.from_tuples( [[2, 1, 3], [2, 1, 2], [1, 1, 1]], names=list("ABC") ) df = DataFrame([[1, 2], [3, 4], [5, 6]], index=mi) expected_mi = MultiIndex.from_tuples( [[1, 1, 1], [2, 1, 2], [2, 1, 3]], names=list("ABC") ) expected = DataFrame([[5, 6], [3, 4], [1, 2]], index=expected_mi) result = df.sort_index(level=level) tm.assert_frame_equal(result, expected) # sort_remaining=False expected_mi = MultiIndex.from_tuples( [[1, 1, 1], [2, 1, 3], [2, 1, 2]], names=list("ABC") ) expected = DataFrame([[5, 6], [1, 2], [3, 4]], index=expected_mi) result = df.sort_index(level=level, sort_remaining=False) tm.assert_frame_equal(result, expected) def test_sort_index_intervalindex(self): # this is a de-facto sort via unstack # confirming that we sort in the order of the bins y = Series(np.random.randn(100)) x1 = Series(np.sign(np.random.randn(100))) x2 = pd.cut(Series(np.random.randn(100)), bins=[-3, -0.5, 0, 0.5, 3]) model = pd.concat([y, x1, x2], axis=1, keys=["Y", "X1", "X2"]) result = model.groupby(["X1", "X2"], observed=True).mean().unstack() expected = IntervalIndex.from_tuples( [(-3.0, -0.5), (-0.5, 0.0), (0.0, 0.5), (0.5, 3.0)], closed="right" ) result = result.columns.levels[1].categories tm.assert_index_equal(result, expected) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize( "original_dict, sorted_dict, ascending, ignore_index, output_index", [ ({"A": [1, 2, 3]}, {"A": [2, 3, 1]}, False, True, [0, 1, 2]), ({"A": [1, 2, 3]}, {"A": [1, 3, 2]}, True, True, [0, 1, 2]), ({"A": [1, 2, 3]}, {"A": [2, 3, 1]}, False, False, [5, 3, 2]), ({"A": [1, 2, 3]}, {"A": [1, 3, 2]}, True, False, [2, 3, 5]), ], ) def test_sort_index_ignore_index( self, inplace, original_dict, sorted_dict, ascending, ignore_index, output_index ): # GH 30114 original_index = [2, 5, 3] df = DataFrame(original_dict, index=original_index) expected_df = DataFrame(sorted_dict, index=output_index) kwargs = { "ascending": ascending, "ignore_index": ignore_index, "inplace": inplace, } if inplace: result_df = df.copy() result_df.sort_index(**kwargs) else: result_df = df.sort_index(**kwargs) tm.assert_frame_equal(result_df, expected_df) tm.assert_frame_equal(df, DataFrame(original_dict, index=original_index)) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize( "original_dict, sorted_dict, ascending, ignore_index, output_index", [ ( {"M1": [1, 2], "M2": [3, 4]}, {"M1": [1, 2], "M2": [3, 4]}, True, True, [0, 1], ), ( {"M1": [1, 2], "M2": [3, 4]}, {"M1": [2, 1], "M2": [4, 3]}, False, True, [0, 1], ), ( {"M1": [1, 2], "M2": [3, 4]}, {"M1": [1, 2], "M2": [3, 4]}, True, False, MultiIndex.from_tuples([[2, 1], [3, 4]], names=list("AB")), ), ( {"M1": [1, 2], "M2": [3, 4]}, {"M1": [2, 1], "M2": [4, 3]}, False, False, MultiIndex.from_tuples([[3, 4], [2, 1]], names=list("AB")), ), ], ) def test_sort_index_ignore_index_multi_index( self, inplace, original_dict, sorted_dict, ascending, ignore_index, output_index ): # GH 30114, this is to test ignore_index on MulitIndex of index mi = MultiIndex.from_tuples([[2, 1], [3, 4]], names=list("AB")) df = DataFrame(original_dict, index=mi) expected_df = DataFrame(sorted_dict, index=output_index) kwargs = { "ascending": ascending, "ignore_index": ignore_index, "inplace": inplace, } if inplace: result_df = df.copy() result_df.sort_index(**kwargs) else: result_df = df.sort_index(**kwargs) tm.assert_frame_equal(result_df, expected_df) tm.assert_frame_equal(df, DataFrame(original_dict, index=mi)) def test_sort_index_categorical_multiindex(self): # GH#15058 df = DataFrame( { "a": range(6), "l1": pd.Categorical( ["a", "a", "b", "b", "c", "c"], categories=["c", "a", "b"], ordered=True, ), "l2": [0, 1, 0, 1, 0, 1], } ) result = df.set_index(["l1", "l2"]).sort_index() expected = DataFrame( [4, 5, 0, 1, 2, 3], columns=["a"], index=MultiIndex( levels=[ CategoricalIndex( ["c", "a", "b"], categories=["c", "a", "b"], ordered=True, name="l1", dtype="category", ), [0, 1], ], codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]], names=["l1", "l2"], ), ) tm.assert_frame_equal(result, expected) def test_sort_index_and_reconstruction(self): # GH#15622 # lexsortedness should be identical # across MultiIndex construction methods df = DataFrame([[1, 1], [2, 2]], index=list("ab")) expected = DataFrame( [[1, 1], [2, 2], [1, 1], [2, 2]], index=MultiIndex.from_tuples( [(0.5, "a"), (0.5, "b"), (0.8, "a"), (0.8, "b")] ), ) assert expected.index.is_lexsorted() result = DataFrame( [[1, 1], [2, 2], [1, 1], [2, 2]], index=MultiIndex.from_product([[0.5, 0.8], list("ab")]), ) result = result.sort_index() assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) result = DataFrame( [[1, 1], [2, 2], [1, 1], [2, 2]], index=MultiIndex( levels=[[0.5, 0.8], ["a", "b"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1]] ), ) result = result.sort_index() assert result.index.is_lexsorted() tm.assert_frame_equal(result, expected) concatted = pd.concat([df, df], keys=[0.8, 0.5]) result = concatted.sort_index() assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) # GH#14015 df = DataFrame( [[1, 2], [6, 7]], columns=MultiIndex.from_tuples( [(0, "20160811 12:00:00"), (0, "20160809 12:00:00")], names=["l1", "Date"], ), ) df.columns = df.columns.set_levels( pd.to_datetime(df.columns.levels[1]), level=1 ) assert not df.columns.is_lexsorted() assert not df.columns.is_monotonic result = df.sort_index(axis=1) assert result.columns.is_lexsorted() assert result.columns.is_monotonic result = df.sort_index(axis=1, level=1) assert result.columns.is_lexsorted() assert result.columns.is_monotonic # TODO: better name, de-duplicate with test_sort_index_level above def test_sort_index_level2(self): mi = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) frame = DataFrame( np.random.randn(10, 3), index=mi, columns=Index(["A", "B", "C"], name="exp"), ) df = frame.copy() df.index = np.arange(len(df)) # axis=1 # series a_sorted = frame["A"].sort_index(level=0) # preserve names assert a_sorted.index.names == frame.index.names # inplace rs = frame.copy() return_value = rs.sort_index(level=0, inplace=True) assert return_value is None tm.assert_frame_equal(rs, frame.sort_index(level=0)) def test_sort_index_level_large_cardinality(self): # GH#2684 (int64) index = MultiIndex.from_arrays([np.arange(4000)] * 3) df = DataFrame(np.random.randn(4000), index=index, dtype=np.int64) # it works! result = df.sort_index(level=0) assert result.index.lexsort_depth == 3 # GH#2684 (int32) index = MultiIndex.from_arrays([np.arange(4000)] * 3) df = DataFrame(np.random.randn(4000), index=index, dtype=np.int32) # it works! result = df.sort_index(level=0) assert (result.dtypes.values == df.dtypes.values).all() assert result.index.lexsort_depth == 3 def test_sort_index_level_by_name(self): mi = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) frame = DataFrame( np.random.randn(10, 3), index=mi, columns=Index(["A", "B", "C"], name="exp"), ) frame.index.names = ["first", "second"] result = frame.sort_index(level="second") expected = frame.sort_index(level=1) tm.assert_frame_equal(result, expected) def test_sort_index_level_mixed(self): mi = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) frame = DataFrame( np.random.randn(10, 3), index=mi, columns=Index(["A", "B", "C"], name="exp"), ) sorted_before = frame.sort_index(level=1) df = frame.copy() df["foo"] = "bar" sorted_after = df.sort_index(level=1) tm.assert_frame_equal(sorted_before, sorted_after.drop(["foo"], axis=1)) dft = frame.T sorted_before = dft.sort_index(level=1, axis=1) dft["foo", "three"] = "bar" sorted_after = dft.sort_index(level=1, axis=1) tm.assert_frame_equal( sorted_before.drop([("foo", "three")], axis=1), sorted_after.drop([("foo", "three")], axis=1), ) def test_sort_index_preserve_levels(self, multiindex_dataframe_random_data): frame = multiindex_dataframe_random_data result = frame.sort_index() assert result.index.names == frame.index.names @pytest.mark.parametrize( "gen,extra", [ ([1.0, 3.0, 2.0, 5.0], 4.0), ([1, 3, 2, 5], 4), ( [ Timestamp("20130101"), Timestamp("20130103"),
Timestamp("20130102")
pandas.Timestamp
import pandas as pd import numpy as np import unittest class TestSeriesSub(unittest.TestCase): """ Test the Pandas.Series.sub function sub() will subtract the elements of the corresponding indices from the Series it's called on and the Series passed as'other' argument. This tests focuses only on the parameters 'others',and the Series it's called on. The other parameters are not set and tested with their default values. """ def setUp(self): # regular subtraction self.series1a = pd.Series([4,1,2,3]) self.series1b = pd.Series([6,9,4,8]) self.series1c = pd.Series([-2,-8,-2,-5]) # subtraction with NaN self.series2a = pd.Series([1,np.nan,2,3]) self.series2b =
pd.Series([4,np.nan,np.nan,6])
pandas.Series
import asyncio import json import logging import math import os import sys from argparse import ArgumentParser from concurrent.futures import CancelledError from csv import DictWriter from datetime import date from io import StringIO from itertools import chain from pathlib import Path from urllib.parse import urlencode import aiofiles import aiohttp import pandas as pd import numpy as np from geopy.distance import vincenty DTYPE = dict(cnpj=np.str, cnpj_cpf=np.str) LOG_FORMAT = '[%(levelname)s] %(asctime)s: %(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=LOG_FORMAT) class GooglePlacesURL: BASE_URL = 'https://maps.googleapis.com/maps/api/place/' def __init__(self, key): self.key = key def url(self, endpoint, query=None, format='json'): """ :param endpoint: (str) Google Places API endpoint name (e.g. details) :param query: (tuple) tuples with key/values pairs for the URL query :param format: (str) output format (default is `json`) :return: (str) URL to do an authenticated Google Places request """ key = ('key', self.key) query = tuple(chain(query, (key,))) if query else (key) parts = ( self.BASE_URL, endpoint, '/{}?'.format(format), urlencode(query) ) return ''.join(parts) def details(self, place): """ :param place: (int or str) ID of the place in Google Place :return: (str) URL to do a place details Google Places search """ query = (('placeid', place),) return self.url('details', query) def nearby(self, keyword, location): """ :param keywork: (str) category to search places :return: (str) URL to do a nearby Google Places search """ query = ( ('location', location), ('keyword', keyword), ('rankby', 'distance'), ) return self.url('nearbysearch', query) class SexPlacesNearBy: KEYWORDS = ('acompanhantes', 'adult entertainment club', 'adult entertainment store', 'gay sauna', 'massagem', 'modeling agency', 'motel', 'night club', 'sex club', 'sex shop', 'strip club', 'swinger clubs') def __init__(self, company, key=None): """ :param company: (dict) Company with name, cnpj, latitude and longitude :param key: (str) Google Places API key """ self.url = GooglePlacesURL(key or config('GOOGLE_API_KEY')) self.company = company self.latitude = self.company['latitude'] self.longitude = self.company['longitude'] self.places = [] self.closest = None @property def company_name(self): return self.company.get('trade_name') or self.company.get('name') @property def valid(self): try: coords = map(float, (self.latitude, self.longitude)) except ValueError: return False if any(map(math.isnan, coords)): return False return True async def get_closest(self): """ Start the requests to store a place per self.KEYWORD in self.places. Then gets the closest place found, queries for its details and returns a dict with the details for that place. """ if not self.valid: msg = 'No geolocation information for company: {} ({})' logging.info(msg.format(self.company_name, self.company['cnpj'])) return None tasks = [self.load_place(k) for k in self.KEYWORDS] await asyncio.gather(*tasks) ordered = sorted(self.places, key=lambda x: x['distance']) for place in ordered: place = await self.load_details(place) name = place.get('name', '').lower() if place.get('keyword') == 'motel' and 'hotel' in name: pass # google returns hotels when looking for a motel else: prefix = '💋 ' if place.get('distance') < 5 else '' msg = '{}Found something interesting {:.2f}m away from {}…' args = (prefix, place.get('distance'), self.company_name) logging.info(msg.format(*args)) self.closest = place return place async def load_place(self, keyword, print_status=False): """ Given a keyword it loads the place returned by the API to self.places. """ if print_status: msg = 'Looking for a {} near {} ({})…' args = (keyword, self.company_name, self.company.get('cnpj')) logging.info(msg.format(*args)) location = '{},{}'.format(self.latitude, self.longitude) url = self.url.nearby(keyword, location) try: response = await aiohttp.request('GET', url) except aiohttp.TimeoutError: logging.info('Timeout raised for {}'.format(url)) else: content = await response.text() place = self.parse(keyword, content) if place and isinstance(place.get('distance'), float): self.places.append(place) def parse(self, keyword, content): """ Return a dictionary with information of the nearest sex place around a given company. :param keyword: (str) keyword used by the request :param content: (str) content of the response to the request :return: (dict) with * name : The name of nearest sex place * latitude : The latitude of nearest sex place * longitude : The longitude of nearest sex place * distance : Distance (in meters) between the company and the nearest sex place * address : The address of the nearest sex place * phone : The phone of the nearest sex place * id : The Google Place ID of the nearest sex place * keyword : term that matched the sex place in Google Place Search Google responses: * `OK` indicates that no errors occurred; the place was successfully detected and at least one result was returned. * `UNKNOWN_ERROR` indicates a server-side error; trying again may be successful. * `ZERO_RESULTS` indicates that the reference was valid but no longer refers to a valid result. This may occur if the establishment is no longer in business. * `OVER_QUERY_LIMIT` indicates that you are over your quota. * `REQUEST_DENIED` indicates that your request was denied, generally because of lack of an invalid key parameter. * `INVALID_REQUEST` generally indicates that the query (reference) is missing. * `NOT_FOUND` indicates that the referenced location was not found in the Places database.<Paste> Source: https://developers.googlefetchplaces/web-service/details """ response = json.loads(content) status = response.get('status') if status != 'OK': if status in ('OVER_QUERY_LIMIT', 'REQUEST_DENIED'): shutdown() # reached API limit or API key is missing/wrong if status != 'ZERO_RESULTS': error = response.get('error', '') msg = 'Google Places API Status: {} {}'.format(status, error) logging.info(msg.strip()) return None place, *_ = response.get('results', [{}]) location = place.get('geometry', {}).get('location', {}) latitude = float(location.get('lat')) longitude = float(location.get('lng')) company_location = (self.latitude, self.longitude) place_location = (latitude, longitude) distance = vincenty(company_location, place_location) return { 'id': place.get('place_id'), 'keyword': keyword, 'latitude': latitude, 'longitude': longitude, 'distance': distance.meters, 'cnpj': self.company.get('cnpj'), 'company_name': self.company.get('name'), 'company_trade_name': self.company.get('trade_name') } async def load_details(self, place): """ :param place: dictionary with id key. :return: dictionary updated with name, address and phone. """ place_id = place.get('id') if not place_id: return place # request place details try: response = await aiohttp.request('GET', self.url.details(place_id)) except aiohttp.TimeoutError: logging.info('Timeout raised for {}'.format(url)) return place else: content = await response.text() # parse place details try: details = json.loads(content) except ValueError: return place else: if not details: return place result = details.get('result', {}) place.update(dict( name=result.get('name', ''), address=result.get('formatted_address', ''), phone=result.get('formatted_phone_number', '') )) return place async def write_to_csv(path, place=None, **kwargs): """ Receives a given place (dict) and writes it in the CSV format into path. CSV headers are defined in `fields`. The named argument `headers` (bool) determines if the functions write the CSV header or not. """ headers = kwargs.get('headers', False) if not place and not headers: return fields = ( 'id', 'keyword', 'latitude', 'longitude', 'distance', 'name', 'address', 'phone', 'cnpj', 'company_name', 'company_trade_name' ) with StringIO() as obj: writer = DictWriter(obj, fieldnames=fields, extrasaction='ignore') if headers: writer.writeheader() if place: writer.writerow(place) async with aiofiles.open(path, mode='a') as fh: await fh.write(obj.getvalue()) async def fetch_place(company, output, semaphore): """ Gets a company (dict), finds the closest place nearby and write the result to a CSV file. """ with (await semaphore): places = SexPlacesNearBy(company) await places.get_closest() if places.closest: await write_to_csv(output, places.closest) async def main_coro(companies, output, max_requests): """ :param companies: (Pandas DataFrame) :param output: (str) Path to the CSV output :param max_requests: (int) max parallel requests """ # write CSV headers if is_new_dataset(output) and not companies.empty: await write_to_csv(output, headers=True) semaphore = asyncio.Semaphore(max_requests // 13) # 13 reqs per company tasks = [] logging.info("Let's get started!") # write CSV data for company_row in companies.itertuples(index=True): company = dict(company_row._asdict()) # _asdict() returns OrderedDict tasks.append(fetch_place(company, output, semaphore)) await asyncio.wait(tasks) def find_newest_file(pattern='*.*', source_dir='.'): """ Assuming that the files will be in the form of: yyyy-mm-dd-type-of-file.xz we can try to find the newest file based on the date. """ files = sorted(Path(source_dir).glob(pattern)) if not files: return None file = files.pop() if not file: return None return str(file) def load_newest_dataset(pattern, usecols, na_value=''): filepath = find_newest_file(pattern) if not filepath: return None logging.info('Loading {}'.format(filepath)) dataset = pd.read_csv( filepath, dtype=DTYPE, low_memory=False, usecols=usecols ) dataset = dataset.fillna(value=na_value) return dataset def get_companies(companies_path, **kwargs): """ Compares YYYY-MM-DD-companies.xz with the newest YYYY-MM-DD-sex-place-distances.xz and returns a DataFrame with only the rows matching the search criteria, excluding already fetched companies. Keyword arguments are expected: term (int), value (float) and city (str) """ filters = tuple(map(kwargs.get, ('term', 'value', 'city'))) if not all(filters): raise TypeError('get_companies expects term, value and city as kwargs') term, value, city = filters # load companies cols = ('cnpj', 'trade_name', 'name', 'latitude', 'longitude', 'city') companies = load_newest_dataset(companies_path, cols) companies['cnpj'] = companies['cnpj'].str.replace(r'\D', '') # load & fiter reimbursements cols = ('total_net_value', 'cnpj_cpf', 'term') reimbursements = load_newest_dataset('data/*-reimbursements.xz', cols) query = '(term == {}) & (total_net_value >= {})'.format(term, value) reimbursements = reimbursements.query(query) # load & filter companies on = dict(left_on='cnpj', right_on='cnpj_cpf') companies = pd.merge(companies, reimbursements, **on) del(reimbursements) companies.drop_duplicates('cnpj', inplace=True) query = 'city.str.upper() == "{}"'.format(city.upper()) companies = companies.query(query) # clean up companies del(companies['cnpj_cpf']) del(companies['term']) del(companies['total_net_value']) del(companies['city']) # load sexplaces & filter remaining companies cols = ('cnpj', ) sex_places = load_newest_dataset('data/*-sex-place-distances.xz', cols) if sex_places is None or sex_places.empty: return companies return companies[~companies.cnpj.isin(sex_places.cnpj)] def is_new_dataset(output): sex_places = find_newest_file('*sex-place-distances.xz', 'data') if not sex_places: return True # convert previous database from xz to csv
pd.read_csv(sex_places, dtype=DTYPE)
pandas.read_csv
from __future__ import annotations import copy import itertools from typing import ( TYPE_CHECKING, Sequence, cast, ) import numpy as np from pandas._libs import ( NaT, internals as libinternals, ) from pandas._libs.missing import NA from pandas._typing import ( ArrayLike, DtypeObj, Manager, Shape, ) from pandas.util._decorators import cache_readonly from pandas.core.dtypes.cast import ( ensure_dtype_can_hold_na, find_common_type, ) from pandas.core.dtypes.common import ( is_1d_only_ea_dtype, is_1d_only_ea_obj, is_datetime64tz_dtype, is_dtype_equal, needs_i8_conversion, ) from pandas.core.dtypes.concat import ( cast_to_common_type, concat_compat, ) from pandas.core.dtypes.dtypes import ExtensionDtype from pandas.core.dtypes.missing import ( is_valid_na_for_dtype, isna_all, ) import pandas.core.algorithms as algos from pandas.core.arrays import ( DatetimeArray, ExtensionArray, ) from pandas.core.arrays.sparse import SparseDtype from pandas.core.construction import ensure_wrapped_if_datetimelike from pandas.core.internals.array_manager import ( ArrayManager, NullArrayProxy, ) from pandas.core.internals.blocks import ( ensure_block_shape, new_block, ) from pandas.core.internals.managers import BlockManager if TYPE_CHECKING: from pandas import Index def _concatenate_array_managers( mgrs_indexers, axes: list[Index], concat_axis: int, copy: bool ) -> Manager: """ Concatenate array managers into one. Parameters ---------- mgrs_indexers : list of (ArrayManager, {axis: indexer,...}) tuples axes : list of Index concat_axis : int copy : bool Returns ------- ArrayManager """ # reindex all arrays mgrs = [] for mgr, indexers in mgrs_indexers: for ax, indexer in indexers.items(): mgr = mgr.reindex_indexer( axes[ax], indexer, axis=ax, allow_dups=True, use_na_proxy=True ) mgrs.append(mgr) if concat_axis == 1: # concatting along the rows -> concat the reindexed arrays # TODO(ArrayManager) doesn't yet preserve the correct dtype arrays = [ concat_arrays([mgrs[i].arrays[j] for i in range(len(mgrs))]) for j in range(len(mgrs[0].arrays)) ] else: # concatting along the columns -> combine reindexed arrays in a single manager assert concat_axis == 0 arrays = list(itertools.chain.from_iterable([mgr.arrays for mgr in mgrs])) if copy: arrays = [x.copy() for x in arrays] new_mgr = ArrayManager(arrays, [axes[1], axes[0]], verify_integrity=False) return new_mgr def concat_arrays(to_concat: list) -> ArrayLike: """ Alternative for concat_compat but specialized for use in the ArrayManager. Differences: only deals with 1D arrays (no axis keyword), assumes ensure_wrapped_if_datetimelike and does not skip empty arrays to determine the dtype. In addition ensures that all NullArrayProxies get replaced with actual arrays. Parameters ---------- to_concat : list of arrays Returns ------- np.ndarray or ExtensionArray """ # ignore the all-NA proxies to determine the resulting dtype to_concat_no_proxy = [x for x in to_concat if not isinstance(x, NullArrayProxy)] dtypes = {x.dtype for x in to_concat_no_proxy} single_dtype = len(dtypes) == 1 if single_dtype: target_dtype = to_concat_no_proxy[0].dtype elif all(x.kind in ["i", "u", "b"] and isinstance(x, np.dtype) for x in dtypes): # GH#42092 target_dtype = np.find_common_type(list(dtypes), []) else: target_dtype = find_common_type([arr.dtype for arr in to_concat_no_proxy]) if target_dtype.kind in ["m", "M"]: # for datetimelike use DatetimeArray/TimedeltaArray concatenation # don't use arr.astype(target_dtype, copy=False), because that doesn't # work for DatetimeArray/TimedeltaArray (returns ndarray) to_concat = [ arr.to_array(target_dtype) if isinstance(arr, NullArrayProxy) else arr for arr in to_concat ] return type(to_concat_no_proxy[0])._concat_same_type(to_concat, axis=0) to_concat = [ arr.to_array(target_dtype) if isinstance(arr, NullArrayProxy) else cast_to_common_type(arr, target_dtype) for arr in to_concat ] if isinstance(to_concat[0], ExtensionArray): cls = type(to_concat[0]) return cls._concat_same_type(to_concat) result = np.concatenate(to_concat) # TODO decide on exact behaviour (we shouldn't do this only for empty result) # see https://github.com/pandas-dev/pandas/issues/39817 if len(result) == 0: # all empties -> check for bool to not coerce to float kinds = {obj.dtype.kind for obj in to_concat_no_proxy} if len(kinds) != 1: if "b" in kinds: result = result.astype(object) return result def concatenate_managers( mgrs_indexers, axes: list[Index], concat_axis: int, copy: bool ) -> Manager: """ Concatenate block managers into one. Parameters ---------- mgrs_indexers : list of (BlockManager, {axis: indexer,...}) tuples axes : list of Index concat_axis : int copy : bool Returns ------- BlockManager """ # TODO(ArrayManager) this assumes that all managers are of the same type if isinstance(mgrs_indexers[0][0], ArrayManager): return _concatenate_array_managers(mgrs_indexers, axes, concat_axis, copy) concat_plans = [ _get_mgr_concatenation_plan(mgr, indexers) for mgr, indexers in mgrs_indexers ] concat_plan = _combine_concat_plans(concat_plans, concat_axis) blocks = [] for placement, join_units in concat_plan: unit = join_units[0] blk = unit.block if len(join_units) == 1 and not join_units[0].indexers: values = blk.values if copy: values = values.copy() else: values = values.view() fastpath = True elif _is_uniform_join_units(join_units): vals = [ju.block.values for ju in join_units] if not blk.is_extension: # _is_uniform_join_units ensures a single dtype, so # we can use np.concatenate, which is more performant # than concat_compat values = np.concatenate(vals, axis=blk.ndim - 1) else: # TODO(EA2D): special-casing not needed with 2D EAs values = concat_compat(vals, axis=1) values = ensure_block_shape(values, blk.ndim) values =
ensure_wrapped_if_datetimelike(values)
pandas.core.construction.ensure_wrapped_if_datetimelike
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import gc import stacknet_funcs as funcs from math import ceil import numpy as np from os import chdir folder = "F:/Nerdy Stuff/Kaggle/Talking data/data/" sparse_array_path = 'F:/Nerdy Stuff/Kaggle/Talking data/sparse matricies/' predictors = [] run = "test" dtypes = { 'ip' : 'uint32', 'app' : 'uint16', 'device' : 'uint8', 'os' : 'uint16', 'channel' : 'uint16', 'is_attributed' : 'uint8', 'click_id' : 'uint32', } if run == "train": file = folder + "train.csv" cols = ['ip', 'app', 'device', 'os', 'channel', 'click_time', 'is_attributed'] print('loading %s data...' % (run)) base_df = pd.read_csv(file, parse_dates=['click_time'], low_memory=True,dtype=dtypes, usecols=cols) if run == "test": print('loading %s data...' % (run)) file = folder + "test.csv" cols = ['ip', 'app', 'device', 'os', 'channel', 'click_time'] base_df = pd.read_csv(file, parse_dates=['click_time'], dtype=dtypes, usecols=cols) rows = base_df.shape[0] iters = 100 iter_rows = ceil(rows/iters) X_ttl = np.empty((0, 31)) y_ttl = np.empty((0, )) start_point = 0 for i in list(range(start_point, iters)): print("Cut # %i" % (i)) if i == 0: start = i * iter_rows end = (i + 1) * iter_rows print("start row = %s and end row = %s" % (start, end)) df = base_df.iloc[start:end, :].copy() else: start = i * iter_rows + 1 end = (i + 1) * iter_rows print("start row = %s and end row = %s" % (start, end)) df = base_df.iloc[start:end, :].copy() df['hour'] = pd.to_datetime(df.click_time).dt.hour.astype('int8') df['day'] =
pd.to_datetime(df.click_time)
pandas.to_datetime
import os, sys import pandas as pd import argparse sys.path.insert(0, os.path.abspath("../../")) from constants import COL_HEADERS_TEST from common import * def get_score_at_percentile(f, p): data = pd.read_csv(f) data = data[data['percentile'] == p] score = data.iloc[0]['score'] print("data at p: \n", data) print("score: ", score) return score # get the scores below a threshold # then get the windows associated with these scores def get_windows_below_thresh(f, thresh): data =
pd.read_csv(f)
pandas.read_csv
import pandas as pd c1 = pd.read_csv('machine/Calling/Sensors_1.csv') c2 = pd.read_csv('machine/Calling/Sensors_2.csv') c3 = pd.read_csv('machine/Calling/Sensors_3.csv') c4 = pd.read_csv('machine/Calling/Sensors_4.csv') c5 = pd.read_csv('machine/Calling/Sensors_5.csv') c6 = pd.read_csv('machine/Calling/Sensors_6.csv') c7 = pd.read_csv('machine/Calling/Sensors_7.csv') c8 = pd.read_csv('machine/Calling/Sensors_8.csv') c9 = pd.read_csv('machine/Calling/Sensors_9.csv') c10 = pd.read_csv('machine/Calling/Sensors_10.csv') calling = pd.concat([c1,c2,c3,c4,c5,c6,c7,c8,c9,c10], axis = 0) t1 = pd.read_csv('machine/Texting/Sensors_1.csv') t2 = pd.read_csv('machine/Texting/Sensors_2.csv') t3 = pd.read_csv('machine/Texting/Sensors_3.csv') t4 = pd.read_csv('machine/Texting/Sensors_4.csv') t5 = pd.read_csv('machine/Texting/Sensors_5.csv') t6 = pd.read_csv('machine/Texting/Sensors_6.csv') t7 = pd.read_csv('machine/Texting/Sensors_7.csv') t8 = pd.read_csv('machine/Texting/Sensors_8.csv') t9 = pd.read_csv('machine/Texting/Sensors_9.csv') t10 = pd.read_csv('machine/Texting/Sensors_10.csv') texting = pd.concat([t1,t2,t3,t4,t5,t6,t7,t8,t9,t10], axis = 0) s1 = pd.read_csv('machine/Swinging/Sensors_1.csv') s2 = pd.read_csv('machine/Swinging/Sensors_2.csv') s3 = pd.read_csv('machine/Swinging/Sensors_3.csv') s4 =
pd.read_csv('machine/Swinging/Sensors_4.csv')
pandas.read_csv
"""Utilities for working with MTF data.""" import operator from scipy.interpolate import griddata, RegularGridInterpolator as RGI from .mathops import engine as e from .util import share_fig_ax from .io import read_trioptics_mtf_vs_field, read_trioptics_mtfvfvf class MTFvFvF(object): """Abstract object representing a cube of MTF vs Field vs Focus data. Attributes ---------- azimuth : `str` Azimuth associated with the data data : `numpy.ndarray` 3D array of data in shape (focus, field, freq) field : `numpy.ndarray` array of fields associated with the field axis of data focus : `numpy.ndarray` array of focus associated with the focus axis of data freq : `numpy.ndarray` array of frequencies associated with the frequency axis of data """ def __init__(self, data, focus, field, freq, azimuth): """Create a new MTFvFvF object. Parameters ---------- data : `numpy.ndarray` 3D array in the shape (focus,field,freq) focus : `iterable` 1D set of the column units, in microns field : `iterable` 1D set of the row units, in any units freq : `iterable` 1D set of the z axis units, in cy/mm azimuth : `string` or `float` azimuth this data cube is associated with """ self.data = data self.focus = focus self.field = field self.freq = freq self.azimuth = azimuth def plot2d(self, freq, symmetric=False, contours=True, interp_method='lanczos', fig=None, ax=None): """Create a 2D plot of the cube, an "MTF vs Field vs Focus" plot. Parameters ---------- freq : `float` frequency to plot, will be rounded to the closest value present in the self.freq iterable symmetric : `bool` make the plot symmetric by mirroring it about the x-axis origin contours : `bool` plot contours interp_method : `string` interpolation method used for the plot fig : `matplotlib.figure.Figure`, optional: Figure to plot inside ax : `matplotlib.axes.Axis`, optional: Axis to plot inside Returns ------- fig : `matplotlib.figure.Figure` figure containing the plot axis : `matplotlib.axes.Axis` axis containing the plot """ ext_x = [self.field[0], self.field[-1]] ext_y = [self.focus[0], self.focus[-1]] freq_idx = e.searchsorted(self.freq, freq) # if the plot is symmetric, mirror the data if symmetric is True: dat = e.concatenate((self.data[:, ::-1, freq_idx], self.data[:, :, freq_idx]), axis=1) ext_x[0] = ext_x[1] * -1 else: dat = self.data[:, :, freq_idx] ext = [ext_x[0], ext_x[1], ext_y[0], ext_y[1]] fig, ax = share_fig_ax(fig, ax) im = ax.imshow(dat, extent=ext, origin='lower', cmap='inferno', clim=(0, 1), interpolation=interp_method, aspect='auto') if contours is True: contours = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] cs = ax.contour(dat, contours, colors='0.15', linewidths=0.75, extent=ext) ax.clabel(cs, fmt='%1.1f', rightside_up=True) fig.colorbar(im, label=f'MTF @ {freq} cy/mm', ax=ax, fraction=0.046) ax.set(xlim=(ext_x[0], ext_x[1]), xlabel='Image Height [mm]', ylim=(ext_y[0], ext_y[1]), ylabel=r'Focus [$\mu$m]') return fig, ax def plot_thrufocus_singlefield(self, field, freqs=(10, 20, 30, 40, 50), _range=100, fig=None, ax=None): """Create a plot of Thru-Focus MTF for a single field point. Parameters ---------- field : `float` which field point to plot, in same units as self.field freqs : `iterable` frequencies to plot, will be rounded to the closest values present in the self.freq iterable _range : `float` +/- focus range to plot, symmetric fig : `matplotlib.figure.Figure`, optional Figure to plot inside ax : `matplotlib.axes.Axis` Axis to plot inside Returns ------- fig : `matplotlib.figure.Figure`, optional figure containing the plot axis : `matplotlib.axes.Axis` axis containing the plot """ field_idx = e.searchsorted(self.field, field) freq_idxs = [e.searchsorted(self.freq, f) for f in freqs] range_idxs = [e.searchsorted(self.focus, r) for r in (-_range, _range)] xaxis_pts = self.focus[range_idxs[0]:range_idxs[1]] mtf_arrays = [] for idx, freq in zip(freq_idxs, freqs): data = self.data[range_idxs[0]:range_idxs[1], field_idx, idx] mtf_arrays.append(data) fig, ax = share_fig_ax(fig, ax) for data, freq in zip(mtf_arrays, freqs): ax.plot(xaxis_pts, data, label=freq) ax.legend(title=r'$\nu$ [cy/mm]') ax.set(xlim=(xaxis_pts[0], xaxis_pts[-1]), xlabel=r'Focus [$\mu m$]', ylim=(0, 1), ylabel='MTF [Rel. 1.0]') return fig, ax def trace_focus(self, algorithm='avg'): """Find the focus position in each field. This is, in effect, the "field curvature" for this azimuth. Parameters ---------- algorithm : `str` algorithm to use to trace focus, currently only supports '0.5', see notes for a description of this technique Returns ------- field : `numpy.ndarray` array of field values, mm focus : `numpy.ndarray` array of focus values, microns Notes ----- Algorithm '0.5' uses the frequency that has its peak closest to 0.5 on-axis to estimate the focus coresponding to the minimum RMS WFE condition. This is based on the following assumptions: - Any combination of third, fifth, and seventh order spherical aberration will produce a focus shift that depends on frequency, and this dependence can be well fit by an equation of the form y(x) = ax^2 + bx + c. If this is true, then the frequency which peaks at 0.5 will be near the vertex of the quadratic, which converges to the min RMS WFE condition. - Coma, while it enhances depth of field, does not shift the focus peak. - Astigmatism and field curvature are the dominant cause of any shift in best focus with field. - Chromatic aberrations do not influence the thru-focus MTF peak in a way that varies with field. Raises ------ ValueError if an unsupported algorithm is entered """ if algorithm == '0.5': # locate the frequency index on axis idx_axis = e.searchsorted(self.field, 0) idx_freq = abs(self.data[:, idx_axis, :].max(axis=0) - 0.5).argmin(axis=0) focus_idx = self.data[:, e.arange(self.data.shape[1]), idx_freq].argmax(axis=0) return self.field, self.focus[focus_idx], elif algorithm.lower() in ('avg', 'average'): if self.freq[0] == 0: # if the zero frequency is included, exclude it from our calculations avg_idxs = self.data.argmax(axis=0)[:, 1:].mean(axis=1) else: avg_idxs = self.data.argmax(axis=0).mean(axis=1) # account for fractional indexes focus_out = avg_idxs.copy() for i, idx in enumerate(avg_idxs): li, ri = int(e.floor(idx)), int(e.ceil(idx)) lf, rf = self.focus[li], self.focus[ri] diff = rf - lf part = idx % 1 focus_out[i] = lf + diff * part return self.field, focus_out else: raise ValueError('0.5 is only algorithm supported') def __arithmatic_bus__(self, other, op): """Core checking and return logic for arithmatic operations.""" if type(other) == type(self): # both MTFvFvFs, check alignment of data same_x = e.allclose(self.field, other.field) same_y = e.allclose(self.focus, other.focus) same_freq = e.allclose(self.freq, other.freq) if not same_x and same_y and same_freq: raise ValueError('x or y coordinates or frequencies mismatch between MTFvFvFs') else: target = other.data elif type(other) in {int, float}: target = other else: raise ValueError('MTFvFvFs can only be added to each other') op = getattr(operator, op) data = op(self.data, target) return MTFvFvF(data, self.focus, self.field, self.freq, self.azimuth) def __add__(self, other): """Add something to an MTFvFvF.""" return self.__arithmatic_bus__(other, 'add') def __sub__(self, other): """Subtract something from an MTFvFvF.""" return self.__arithmatic_bus__(other, 'sub') def __mul__(self, other): """Multiply an MTFvFvF by something.""" return self.__arithmatic_bus__(other, 'mul') def __truediv__(self, other): """Divide an MTFvFvF by something.""" return self.__arithmatic_bus__(other, 'truediv') def __imul__(self, other): """Multiply an MTFvFvF by something in-place.""" if type(other) not in {int, float}: raise ValueError('can only mul by ints and floats') self.data *= other return self def __itruediv__(self, other): """Divide an MTFvFvF by something in-place.""" if type(other) not in {int, float}: raise ValueError('can only div by ints and floats') self.data /= other return self @staticmethod def from_dataframe(df): """Return a pair of MTFvFvF objects for the tangential and one for the sagittal MTF. Parameters ---------- df : `pandas.DataFrame` a dataframe with columns Focus, Field, Freq, Azimuth, MTF Returns ------- t_cube : `MTFvFvF` tangential MTFvFvF s_cube : `MTFvFvF` sagittal MTFvFvF """ # copy the dataframe for manipulation df = df.copy() df.Fields = df.Field.round(4) df.Focus = df.Focus.round(6) sorted_df = df.sort_values(by=['Focus', 'Field', 'Freq']) T = sorted_df[sorted_df.Azimuth == 'Tan'] S = sorted_df[sorted_df.Azimuth == 'Sag'] focus = e.unique(df.Focus.values) fields = e.unique(df.Fields.values) freqs = e.unique(df.Freq.values) d1, d2, d3 = len(focus), len(fields), len(freqs) t_mat = T.MTF.values.reshape((d1, d2, d3)) s_mat = S.MTF.values.reshape((d1, d2, d3)) t_cube = MTFvFvF(data=t_mat, focus=focus, field=fields, freq=freqs, azimuth='Tan') s_cube = MTFvFvF(data=s_mat, focus=focus, field=fields, freq=freqs, azimuth='Sag') return t_cube, s_cube @staticmethod def from_trioptics_file(file_path): """Create a new MTFvFvF object from a trioptics file. Parameters ---------- file_path : path_like path to a file Returns ------- `MTFvFvF` new MTFvFvF object """ return MTFvFvF(**read_trioptics_mtfvfvf(file_path)) def mtf_ts_extractor(mtf, freqs): """Extract the T and S MTF from a PSF object. Parameters ---------- mtf : `MTF` MTF object freqs : iterable set of frequencies to extract Returns ------- tan : `numpy.ndarray` array of tangential MTF values sag : `numpy.ndarray` array of sagittal MTF values """ tan = mtf.exact_tan(freqs) sag = mtf.exact_sag(freqs) return tan, sag def mtf_ts_to_dataframe(tan, sag, freqs, field=0, focus=0): """Create a Pandas dataframe from tangential and sagittal MTF data. Parameters ---------- tan : `numpy.ndarray` vector of tangential MTF data sag : `numpy.ndarray` vector of sagittal MTF data freqs : iterable vector of spatial frequencies for the data field : `float` relative field associated with the data focus : `float` focus offset (um) associated with the data Returns ------- pandas dataframe. """ import pandas as pd rows = [] for f, t, s in zip(freqs, tan, sag): base_dict = { 'Field': field, 'Focus': focus, 'Freq': f, } rows.append({**base_dict, **{ 'Azimuth': 'Tan', 'MTF': t, }}) rows.append({**base_dict, **{ 'Azimuth': 'Sag', 'MTF': s, }}) return
pd.DataFrame(data=rows)
pandas.DataFrame
import pytest import inspect try: import pandas as pd import test_aide.pandas as ph has_pandas = True except ModuleNotFoundError: has_pandas = False @pytest.mark.skipif(not has_pandas, reason="pandas not installed") def test_arguments(): """Test arguments for arguments of test_aide.pandas._check_dfs_passed.""" expected_arguments = ["df_1", "df_2"] arg_spec = inspect.getfullargspec(ph._check_dfs_passed) arguments = arg_spec.args assert len(expected_arguments) == len( arguments ), f"Incorrect number of arguments -\n Expected: {len(expected_arguments)}\n Actual: {len(arguments)}" assert ( expected_arguments == arguments ), f"Incorrect arguments -\n Expected: {expected_arguments}\n Actual: {arguments}" default_values = arg_spec.defaults assert ( default_values is None ), f"Unexpected default values -\n Expected: None\n Actual: {default_values}" @pytest.mark.skipif(not has_pandas, reason="pandas not installed") def test_exceptions_raised(): """Test that the expected exceptions are raised by test_aide.pandas._check_dfs_passed.""" with pytest.raises( TypeError, match=r"expecting first positional arg to be a pd.DataFrame.*" ): ph._check_dfs_passed(1, pd.DataFrame()) with pytest.raises( TypeError, match=r"expecting second positional arg to be a pd.DataFrame.*" ): ph._check_dfs_passed(
pd.DataFrame()
pandas.DataFrame
import click import os import numpy as np import pandas as pd from scipy import sparse from panopticon.dna import segmentation_to_copy_ratio_dict from panopticon.utilities import get_valid_gene_info # import loompy after the main packages, because sometimes it breaks packages that are imported further: import loompy def scrna_wizard_main(): """ """ filepath = click.prompt("Location of .loom file", type=click.Path('wb')) filename = click.prompt("Name of .loom file") if not filename.endswith('.loom'): filename += '.loom' matrixpath = click.prompt("Data/counts matrix (sparse npz or dense txt)", type=click.File('rb')) if matrixpath.name.endswith('.npz'): matrix = sparse.load_npz(matrixpath) elif (matrixpath.name.endswith('.csv')) or (matrixpath.name.endswith( '.tsv')) or (matrixpath.name.endswith('.txt')): hasheader = click.prompt('Does that file have a header?', type=click.Choice(['n', 'y']), default='n') if (matrixpath.name.endswith('.csv')): sep = ',' else: sep = '\t' if hasheader == 'n': matrix = pd.read_table(matrixpath, header=None, sep=sep) elif hasheader == 'y': matrix =
pd.read_table(matrixpath, sep=sep)
pandas.read_table
#This script is to do kinetic classification. #Make sure that you have setup your PYTHONPATH environment #variable as described in the github repository. from zipfile import ZIP_FILECOUNT_LIMIT from isort import file from SBMLKinetics import kinetics_classification import sys import numpy as np import os from sympy import * from libsbml import * # access functions in SBML import time import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import matplotlib # Column names SBMLID = "SBMLid" CLASSIFICATIONS = 'Classifications' REACTION = 'Reaction' KINETICLAW = 'kinetic law' PERCENTAGE = 'Percentage' class KineticAnalyzer: """ Load Dataset of SBML files. Args: dataSet: str-"biomodels", "curated", "metabolic", "signalling", "homo_sapiens", "non_homo", "cellular_organisms", "Mus_musculus", "Mammalia", "Saccharomyces_cerevisiae"; path: str-path to the file, with a format of ``D:\\path\\to``; model_indices: range-(initial_model_indx, final_model_indx) """ def __init__(self, path = os.path.dirname(os.path.abspath(__file__)), dataSet = "biomodels", model_indices = range(0,1000)): #In addition to dataSetName, allow users to inmport a zip of sbml files from a path initial_model_indx = min(model_indices) final_model_indx = max(model_indices) if type(dataSet) == str and dataSet in ["biomodels", "curated", "metabolic", "signalling", "homo_sapiens", "non_homo", "cellular_organisms", "Mus_musculus", "Mammalia", "Saccharomyces_cerevisiae"]: zip_filename = dataSet + '.zip' try: self.tuple = kinetics_classification._dataSetStatistics(zip_filename = zip_filename, initial_model_indx = initial_model_indx, final_model_indx = final_model_indx) except Exception as err: raise Exception (err) elif '.zip' in dataSet: try: self.tuple = kinetics_classification._dataSetStatistics(data_dir = path, zip_filename = dataSet, initial_model_indx = initial_model_indx, final_model_indx = final_model_indx) except Exception as err: raise Exception (err) else: raise Exception("Not a valid dataset input.") def getKineticLawDistribution(self, path = "", fileName = ""): """ Get the kinetic law distribution (and save the dataframe into an excel file). Args: path: str-path to the file, with a format like ``D:/path/to/`` (or ``D:\\\path\\\ to\\\``) fileName: str-file name with which the excel file save to, "" (do not save to excel file). Returns: df_gen_stat_final: dataFrame-kinetic law distribution. The column names are: "Classifications", "Percentage", "Percentage standard error", "Percentage per model", "Percentage per model standard error". In the column of "Classifications", there are "ZERO", "UNDR", "UNMO", "BIDR", "BIMO", "MM", "MMCAT", "HILL", "FR" and "NA" in detail. "ZERO" means "Zeroth order", "UNDR" means "Uni-directional mass action", "UNMO" means "Uni-term with moderator", "BIDR" means "Bi-directional mass action", "BIMO" means "Bi- terms with moderator", "MM" means "Michaelis-Menten kinetics", "MMCAT" means "Michaelis- Menten kinetics", "HILL" means "Hill equations", "FR" means kinetics in the format of fraction other than MM, MMCAT and HILL, "NA" means not classified kinetics. """ (_, df_gen_stat, _, _, _, _, _) = self.tuple df_gen_stat_final = df_gen_stat[["Classifications", "Percentage", "Percentage per model", \ "Percentage per model standard error"]] try: df_gen_stat_final.insert(2, "Percentage standard error", 0) except: pass if fileName != "": # Create a Pandas Excel writer using XlsxWriter as the engine. path_fileName = path + fileName writer = pd.ExcelWriter(path_fileName, engine='xlsxwriter') df_gen_stat_final.to_excel(writer, sheet_name='general_statistics') # Close the Pandas Excel writer and output the Excel file. writer.save() return df_gen_stat_final def TopFrequentKineticLawType(self): """ Return the most frequent kinetic law type on average in the loaded SBML dataset . Returns: kinetics_type_list: list pf kinetics_type. kinetics_type: str-kinetic law type. """ (_, df_gen_stat, _, _, _, _, _) = self.tuple df_gen_stat_plot = df_gen_stat[["Classifications", "Percentage", "Percentage per model", \ "Percentage per model standard error"]] df_temp = df_gen_stat_plot # try: # kinetics_type_list = [] # max_idx = df_temp['Percentage'].idxmax() # kinetics_type = df_temp['Classifications'][max_idx] # kinetics_type_list.append(kinetics_type) # except: max_value = df_temp['Percentage'].max() idx_list = df_temp.index[df_temp['Percentage'] == max_value].tolist() kinetics_type_list =[] for i in range(len(idx_list)): kinetics_type_list.append(df_temp.iloc[idx_list[i]]["Classifications"]) return kinetics_type_list def plotKineticLawDistribution(self, fileName = 'KineticLawDistribution.pdf'): """ Plot the kinetic law distribution as save it as a pdf file. Args: fileName: str-file name with which the pdf file save to. """ (_, df_gen_stat, _, _, _, _, _) = self.tuple df_gen_stat_plot = df_gen_stat[["Classifications", "Percentage", "Percentage per model", \ "Percentage per model standard error"]] try: df_gen_stat_plot.insert(2, "Percentage standard error", 0) except: pass yerr = df_gen_stat_plot[["Percentage standard error", \ "Percentage per model standard error"]].to_numpy().T ax = df_gen_stat_plot.plot(kind="bar",x="Classifications", y=["Percentage","Percentage per model"],\ yerr=yerr, fontsize = 8) ax.set_ylim(0.,1.) ax.get_yaxis().set_major_formatter( matplotlib.ticker.FuncFormatter(lambda y, p: str("{:.2%}".format(y)))) for p in ax.patches: ax.annotate(str("{:.2%}".format(p.get_height())), (p.get_x() * 1.005, p.get_height() * 1.005), fontsize = 4) #plt.show() fig = ax.get_figure() fig.savefig(fileName) def getKineticLawDistributionPerMassTransfer(self, rct_num, prd_num, path = "", fileName = ""): """ Get the kinetic law distribution for the certein mass transfer (and save the dataframe into an excel file). Args: rct_num: int-0, 1, 2, 3 (representing > 2). prd_num: int-0, 1, 2, 3 (representing > 2). path: str-path to the file, with a format like ``D:/path/to/`` (or ``D:\\\path\\\ to\\\``) fileName: str-file name with which the excel file save to, "" (do not save to excel file). Returns: df_gen_stat_PR_final: dataFrame-the kinetic law distribution for a certain mass trasfer. The column names are: "Classifications", "Percentage", "Percentage standard error", "Percentage per model", "Percentage per model standard error". In the column of "Classifications", there are "ZERO", "UNDR", "UNMO", "BIDR", "BIMO", "MM", "MMCAT", "HILL", "FR" and "NA" in detail. "ZERO" means "Zeroth order", "UNDR" means "Uni-directional mass action", "UNMO" means "Uni-term with moderator", "BIDR" means "Bi-directional mass action", "BIMO" means "Bi- terms with moderator", "MM" means "Michaelis-Menten kinetics", "MMCAT" means "Michaelis- Menten kinetics", "HILL" means "Hill equations", "FR" means kinetics in the format of fraction other than MM, MMCAT and HILL, "NA" means not classified kinetics. """ (_, df_gen_stat, _, df_gen_stat_PR, _, _, _) = self.tuple df_gen_stat_plot = df_gen_stat[["Classifications", "Percentage", "Percentage per model", \ "Percentage per model standard error"]] try: df_gen_stat_plot.insert(2, "Percentage standard error", 0) except: pass try: df_gen_stat_PR.insert(2, "Percentage standard error", 0) except: pass df_gen_stat_PR_plot = {} types = len(df_gen_stat_plot) if prd_num in [0,1,2,3] and rct_num in [0,1,2,3]: i = prd_num*4 + rct_num df_gen_stat_PR_plot[i] = pd.DataFrame(columns = df_gen_stat_PR.columns.tolist()) df_temp = df_gen_stat_PR[types*i:types*(i+1)] df_gen_stat_PR_plot[i] = pd.concat([df_gen_stat_PR_plot[i],df_temp], ignore_index=True) if fileName != "": # Create a Pandas Excel writer using XlsxWriter as the engine. path_fileName = path + fileName writer = pd.ExcelWriter(path_fileName, engine='xlsxwriter') df_gen_stat_PR_plot[i].to_excel(writer, sheet_name='general_statistics_PR') # Close the Pandas Excel writer and output the Excel file. writer.save() df_gen_stat_PR_final = df_gen_stat_PR_plot[i] return df_gen_stat_PR_final else: raise Exception("Not a valid reactant or product number.") def TopFrequentKineticLawTypePerMassTransfer(self, rct_num, prd_num): """ Return the most frequent kinetic law type on average for a certain mass transfer in the loaded SBML dataset . Args: rct_num: int-0, 1, 2, 3 (representing > 2). prd_num: int-0, 1, 2, 3 (representing > 2). Returns: kinetics_type_list: list pf kinetics_type. kinetics_type: str-kinetic law type. """ (_, df_gen_stat, _, df_gen_stat_PR, _, _, _) = self.tuple df_gen_stat_plot = df_gen_stat[["Classifications", "Percentage", "Percentage per model", \ "Percentage per model standard error"]] try: df_gen_stat_plot.insert(2, "Percentage standard error", 0) except: pass try: df_gen_stat_PR.insert(2, "Percentage standard error", 0) except: pass df_gen_stat_PR_plot = {} types = len(df_gen_stat_plot) if prd_num in [0,1,2,3] and rct_num in [0,1,2,3]: i = prd_num*4 + rct_num df_gen_stat_PR_plot[i] = pd.DataFrame(columns = df_gen_stat_PR.columns.tolist()) df_temp = df_gen_stat_PR[types*i:types*(i+1)] df_gen_stat_PR_plot[i] = pd.concat([df_gen_stat_PR_plot[i],df_temp], ignore_index=True) df_temp = df_gen_stat_PR_plot[i] # try: # kinetics_type_list = [] # max_idx = df_temp['Percentage'].idxmax() # kinetics_type = df_temp['Classifications'][max_idx] # kinetics_type_list.append(kinetics_type) # except: max_value = df_temp['Percentage'].max() idx_list = df_temp.index[df_temp['Percentage'] == max_value].tolist() kinetics_type_list =[] for i in range(len(idx_list)): kinetics_type_list.append(df_temp.iloc[idx_list[i]]["Classifications"]) return kinetics_type_list else: raise Exception("Not a valid reactant or product number.") def plotKineticLawDistributionPerMassTransfer(self, rct_num, prd_num, fileName = "KineticLawDistributionPerMassTransfer.pdf"): """ Plot the kinetic law distribution for the certain mass transfer. Args: rct_num: int - 0, 1, 2, 3 (representing > 2) prd_num: int - 0, 1, 2, 3 (representing > 2) fileName: str-file name with which the pdf file save to. """ (_, df_gen_stat, _, df_gen_stat_PR, _, \ df_table_PR, df_table_PR_per_model) = self.tuple #generate the PR two tables try: df_table_PR_plot = df_table_PR.div(df_table_PR.sum().sum()) df_table_PR_per_model_plot = df_table_PR_per_model.div(df_table_PR_per_model.sum().sum()) except Exception as e: raise Exception(e) df_gen_stat_plot = df_gen_stat[["Classifications", "Percentage", "Percentage per model", \ "Percentage per model standard error"]] try: df_gen_stat_plot.insert(2, "Percentage standard error", 0) except: pass try: df_gen_stat_PR.insert(2, "Percentage standard error", 0) except: pass df_gen_stat_PR_plot = {} types = len(df_gen_stat_plot) if prd_num in [0,1,2,3] and rct_num in [0,1,2,3]: i = prd_num*4 + rct_num df_gen_stat_PR_plot[i] = pd.DataFrame(columns = df_gen_stat_PR.columns.tolist()) df_temp = df_gen_stat_PR[types*i:types*(i+1)] df_gen_stat_PR_plot[i] = pd.concat([df_gen_stat_PR_plot[i],df_temp], ignore_index=True) yerr = df_gen_stat_PR_plot[i][["Percentage standard error", \ "Percentage per model standard error"]].to_numpy().T ax = df_gen_stat_PR_plot[i].plot(kind="bar",x="Classifications", y=["Percentage","Percentage per model"],\ yerr=yerr, legend = None, fontsize = 8) ax.set_ylim(0.,1.) ax.get_yaxis().set_major_formatter( matplotlib.ticker.FuncFormatter(lambda y, p: str("{:.2%}".format(y)))) for p in ax.patches: ax.annotate(str("{:.2%}".format(p.get_height())), (p.get_x() * 1.005, p.get_height() * 1.005), fontsize = 4) #plt.show() ax.get_yaxis().set_major_formatter( matplotlib.ticker.FuncFormatter(lambda y, p: str("{:.2%}".format(y)))) ax.annotate('%s'%"{:.2%}".format(df_table_PR_plot.iat[i//4, i%4]), xy=(0, .9), color = 'dodgerblue') if i//4 == 3 and i % 4 != 3: ax.annotate('P > %d, R = %d'%(2, i%4), xy=(3, .9)) elif i//4 != 3 and i % 4 == 3: ax.annotate('P = %d, R > %d'%(i//4, 2), xy=(3, .9)) elif i//4 == 3 and i % 4 == 3: ax.annotate('P > %d, R > %d'%(2, 2), xy=(3, .9)) else: ax.annotate('P = %d, R = %d'%(i//4, i%4), xy=(3, .9)) ax.annotate('%s'%"{:.2%}".format(df_table_PR_per_model_plot.iat[i//4, i%4]), xy=(7., .9), color = 'darkorange') fig = ax.get_figure() handles, labels = fig.axes[-1].get_legend_handles_labels() fig.legend(handles, labels, loc='upper center') fig.savefig(fileName) else: raise Exception("Not a valid reactant or product number.") def plotKineticLawDistributionVsMassTransfer(self, fileName = 'KineticLawDistributionVsMassTransfer.pdf'): """ Plot the kinetic law distribution vs each type of mass transfer. Args: fileName: str-file name with which the pdf file save to. """ (_, df_gen_stat, _, df_gen_stat_PR, _, \ df_table_PR, df_table_PR_per_model) = self.tuple #generate the PR two tables try: df_table_PR_plot = df_table_PR.div(df_table_PR.sum().sum()) df_table_PR_per_model_plot = df_table_PR_per_model.div(df_table_PR_per_model.sum().sum()) except Exception as e: raise Exception(e) df_gen_stat_plot = df_gen_stat[["Classifications", "Percentage", "Percentage per model", \ "Percentage per model standard error"]] try: df_gen_stat_plot.insert(2, "Percentage standard error", 0) except: pass try: df_gen_stat_PR.insert(2, "Percentage standard error", 0) except: pass df_gen_stat_PR_plot = {} types = len(df_gen_stat_plot) fig = plt.figure(figsize = (16,16)) axes = fig.subplots(nrows=4, ncols=4) for i in range(16): df_gen_stat_PR_plot[i] = pd.DataFrame(columns = df_gen_stat_PR.columns.tolist()) df_temp = df_gen_stat_PR[types*i:types*(i+1)] df_gen_stat_PR_plot[i] =
pd.concat([df_gen_stat_PR_plot[i],df_temp], ignore_index=True)
pandas.concat
""" tests class collects all the methods that are test specific they need to be single thread and MP compatible test structure is always: - self.initialize_test() - self.prepare_test() - res = self.run_test() - self.collect_res(res) - self.save_full_output() - self.save_ind_output() - self.save_output() - self.write_report() - self.end_test() For non MP use, there are helper functions that take care of iterating over the items: - self.initialize_test() - self.prepare_test() - res = self.run_test_helper() - self.collect_res(res) - self.save_full_output_helper() - self.save_ind_output_helper() - self.save_output() - self.write_report() - self.end_test() todo: - check all run with tracking for appropriate reload setting Version 0.3 Update 30.07.18/sk """ import os import pandas as pd import numpy as np import numpy.random as rand from tb.basetest import Test from tb.tb_backend.run import Run from tb.tb_backend.savingpipe import Plass import re import scipy.optimize as opt import itertools from ast import literal_eval from tb.tb_backend.report import Report import pickle from configparser import ConfigParser class Sensitivity(Test): """ usage: from tb.tests import Sensitivity from tb.tb_backend.savingpipe import Plass folder = r'C:\code\testingbattery\FOLDER' test = Sensitivity(folder,'MODELNAME.py',0.1) test.initialize_test() test.prepare_test() res = test.run_test_helper() test.collect_res(res) # add the saving pipe stuff """ def __init__(self, folder, file_name, sensitivity_percentage): super(Sensitivity, self).__init__(folder, file_name, 'sensitivity') self.err_list = [] self.MP = True self.sp = sensitivity_percentage self.class_name = 'Sensitivity' # this needs to be integrated into the test definition in the battery and the builder self.equimode = False self.cf = ConfigParser() # config folder doesn't change, so it's put here to it's on one line self.cf.read(os.path.join(os.path.split(folder)[0], '_config', 'tb_config.ini')) # this should go to saving pipe self.nmb_heatmaps = self.cf['saving pipe settings'].getint('nmb_heatmaps', fallback=4) def set_equimode(self, equimode=False): """ Deprecated 27.07.18/sk Not in use 27.07.18/sk :param equimode: :return: """ # this really needs to be tested # this should not be necessary anmyore 02.07.18/sk self.equimode = equimode def set_base_params(self): """ Setting of base parameters for the base run :return: """ if self.equimode: self.base_params = self.const['equi'] else: self.base_params = self.const['value'] self.base_builtin = self.builtin['value'] def prepare_test(self): """ Prepares the sensitivity runs and adds them to the run list :return: """ # creates one run for positive and one for negative sensitivity sp_lst = [self.sp * 1, self.sp * -1] for sp in sp_lst: # positive and negative sensitivity get a full df each self.model.create_full_df(self.base.run, sp) for i, row in self.const.iterrows(): name = '%s_%s' % (row['Real Name'], sp) w_params = self.base_params.copy() w_params.iloc[i] *= (1 + sp) # Run has inputs name,full_ID,exo_names=None,params=None,return_columns=None self.run_lst.append(Run(name, sp, self.exo_names, w_params, self.endo_names, '%s=%s' % (row['Real Name'], w_params.iloc[i]))) def collect_res(self, res): """ collects the results from the test execution and prepares them for further use sens has additional sensitivity calcs for each run :param res: result list from run execution """ for i, run in enumerate(self.run_lst): err_lst = res[i][2] if not res[i][1].empty: # this should be eliminated in a revision, results should come in as a list of run objects 250718/sk run.run = res[i][1].astype('float64', copy=False) # run.chk_run() tests if there are np.nan in the first line, # which means the run couldn't be executed properly and shouldn't be added # those runs should technically not even show up (some do, some don't) # topic to discuss with PySD 180722/sk if run.chk_run(): self.model.add_run(run.run, run.name, run.full_id) run.treat_run(self.base.run) else: # we remove negative stock and flow errors here because those runs are not supposed # to have run in the first place # negative stock and flow errors in this case arise from np.inf in some variables # caused by division by 0 # while they technically should be fine, it's just confusing for anyone to have an error # other than the division by 0 err_lst = [x for x in res[i][2] if x[1] not in ['Negative Flow', 'Negative Stock']] # print is just for testing print(i) self.model.err_lst.extend(err_lst) # opening pipes all over the place might be not the best idea, one pipe for all saving might be better pipe = Plass(self) for key, full_df in self.model.full_df_dict.items(): pipe.save_csv(full_df, 'full_df', key) def save_ind_output_mp(self, run): """ :param run: """ pipe = Plass(self) pipe.create_plot(run.run, 'run', run.name) pipe.create_plot(run.norm, 'norm', run.name) pipe.create_plot(run.sens, 'exo_sens', run.name) if self.testing_mode: pipe.save_csv(run.run, 'run', run.name) pipe.save_csv(run.norm, 'norm', run.name) pipe.save_csv(run.sens, 'exo_sens', run.name) def save_full_output_mp(self, key): """ Overwrite because for sens we need endo run and endo sens graphs and models :param key: key for the full_df :return: """ full_df = pd.read_csv(os.path.join(self.folder_dict[self.test], 'full_df_%s.csv' % key), index_col=0, header=[0, 1], dtype=np.float64) self.iterate_endo_plots(key, full_df) pipe = Plass(self) # this shouldn't be necessary anymore 26.07.18/sk # full_df = full_df.astype(float) pipe.create_heatmap(key, full_df, self.nmb_heatmaps) if self.testing_mode: try: pipe.create_anim_heatmap(key, full_df) # define the exception thrown here except: pass # probably need two iterations, one for endo sens and one for endo run, exos are not handled in a model pipe.create_model(key, full_df, 'endo_run') pipe.create_model(key, full_df, 'endo_sens') # this should not be necessary anymore 30.07.18/sk #if self.full_df_output: # pipe.save_csv(full_df, 'full_df', key) def save_endo_plots(self, endo_run, unit, name): """ :param endo_run: :param unit: :param name: """ # type name now includes the prefix, if necessary pipe = Plass(self) type_name = 'endo_run' pipe.create_sens_plot(endo_run, unit, name, type_name) if self.testing_mode: pipe.save_csv(endo_run, type_name, name) # this transpose shouldn't be necessary, but division by first column doesn't seem to work endo_run = endo_run.transpose() endo_sens = (endo_run - endo_run.iloc[0]) / endo_run.iloc[0] endo_sens = endo_sens.transpose() type_name = 'endo_sens' pipe.create_sens_plot(endo_sens, unit, name, type_name) if self.testing_mode: pipe.save_csv(endo_sens, type_name, name) def write_report(self): """ Writing the report, inputs come from pickle files For sensitivity we need the intervals pickle (for the heatmaps) as well as the endo_its and exo_its for multiple graphs of the same variable """ rep = Report(self.folder, self.file) const_lst = self.const['Real Name'].tolist() # we have to pickle this because with MP, the passing of arguments is faulty f_path = os.path.join(self.folder_dict[self.test], 'intervals.pickle') pickle_in = open(f_path, 'rb') intervals = pickle.load(pickle_in) pickle_in.close() os.remove(f_path) # endo its are the iterations for endogenous graphs f_path = os.path.join(self.folder_dict[self.test], 'endo_its.pickle') pickle_in = open(f_path, 'rb') endo_its = pickle.load(pickle_in) pickle_in.close() os.remove(f_path) # exo its are the iterations for exogenous graphs f_path = os.path.join(self.folder_dict[self.test], 'exo_its.pickle') pickle_in = open(f_path, 'rb') exo_its = pickle.load(pickle_in) pickle_in.close() os.remove(f_path) # report tuple includes section title, constant list, sensitivity percentage, intervals for the heatmap, # exogenous and endogenous iterations, link to test source folder rep_tpl = (self.class_name, const_lst, self.sp, intervals, exo_its, endo_its, self.folder_dict[self.test].replace(self.folder_dict['source'], '').lstrip('\\')) rep.write_sens(rep_tpl) rep.save_report() class MonteCarlo(Test): """ Monte Carlo is a subclass of test and runs the MC testing """ def __init__(self, folder, file_name, sensitivity_percentage, runs): super(MonteCarlo, self).__init__(folder, file_name, 'montecarlo') self.err_list = [] self.MP = True self.sp = sensitivity_percentage self.nmb_runs = runs self.class_name = 'MonteCarlo' def prepare_test(self): """ Prepares the runs and adds them to the run list Creates 100 random uniform runs for each parameter """ for i, row in self.const.iterrows(): self.model.create_full_df(self.base.run, row['Real Name']) if self.base_params.iloc[i] != 0: input_set = rand.uniform((1 - self.sp) * self.base_params.iloc[i], (1 + self.sp) * self.base_params.iloc[i], self.nmb_runs) else: input_set = np.full(1, 0) for j in np.nditer(input_set): name = '%s_%s' % (row['Real Name'], j) w_params = self.base_params.copy() w_params.iloc[i] = j # Run has inputs name,full_ID,exo_names=None,params=None,return_columns=None self.run_lst.append(Run(name, row['Real Name'], self.exo_names, w_params, self.endo_names, '%s=%s' % (row['Real Name'], w_params.iloc[i]), reload=True)) w_params = self.base_params.copy() w_params.iloc[i] *= (1 - self.sp) self.run_lst.append(Run('floor', row['Real Name'], self.exo_names, w_params, self.endo_names, '%s=%s' % (row['Real Name'], w_params.iloc[i]), reload=True)) w_params = self.base_params.copy() w_params.iloc[i] *= (1 + self.sp) self.run_lst.append(Run('ceiling', row['Real Name'], self.exo_names, w_params, self.endo_names, '%s=%s' % (row['Real Name'], w_params.iloc[i]), reload=True)) def save_full_output_mp(self, key): """ :param key: """ full_df = pd.read_csv(os.path.join(self.folder_dict[self.test], 'full_df_%s.csv' % key), index_col=0, header=[0, 1], dtype=np.float64) pipe = Plass(self) full_df = full_df.astype(float) self.iterate_endo_plots(key, full_df) if self.full_df_output: pipe.save_csv(full_df, 'full_df', key) pipe.create_model(key, full_df, self.test) def save_endo_plots(self, endo_run, unit, name): """ :param endo_run: :param unit: :param name: """ pipe = Plass(self) # type name now includes the prefix, if necessary type_name = self.test pipe.create_mc_plot(endo_run, unit, name, type_name) def write_report(self): """ Writes the report for the MC test doesn't need any pickled information """ rep = Report(self.folder, self.file) const_lst = self.const['Real Name'].tolist() # report tuple includes section title, constant list, MC percentage, link to test source rep_tpl = (self.class_name, const_lst, self.sp, self.folder_dict[self.test].replace(self.folder_dict['source'], '').lstrip('\\')) rep.write_mc(rep_tpl) rep.save_report() class Equilibrium(Test): """ Saving of plots is generic (from Test class) """ def __init__(self, folder, file_name, equi_method, increment_percentage, incremental=True): super(Equilibrium, self).__init__(folder, file_name, 'equilibrium') self.err_list = [] self.MP = False self.sp = increment_percentage self.set_inc = incremental self.equi_method = equi_method self.class_name = 'Equilibrium' # sum df is summarizing the equi conditions found self.sum_df = None self.equi_set = {} self.equi_excl = [] self.cf = ConfigParser() # config folder doesn't change, so it's put here to it's on one line self.cf.read(os.path.join(os.path.split(folder)[0], '_config', 'tb_config.ini')) self.equi_precision = self.cf['test parameters'].getfloat('equi_precision', fallback=0.01) self.cf.read(os.path.join(os.path.split(folder)[0], '_config', 'settings.ini')) self.equi_res = self.cf['tests'].getfloat('equi_res', fallback=0.1) self.equi_iter = self.cf['tests'].getfloat('equi_iter', fallback=0) self.equi_maxiter = self.cf['tests'].getint('equi_maxiter', fallback=20) def initialize_test(self, equimode=False): """ :param equimode: """ self.initialize_base() self.read_equi_file() self.op_flows() def read_equi_file(self): """ Equi file is the file where the user inputs concerning the equilibrium test are stored """ equi_file = '%s_equi.csv' % self.out_name equi_doc = pd.read_csv(os.path.join(self.folder_dict['doc'], equi_file), index_col=0) for i, row in equi_doc.iterrows(): self.equi_set[row['Py Name']] = (row['fix value'], row['global minimum'], row['global maximum']) # if the value is fixed, its name is added to the excluded list if not np.isnan(row['fix value']): self.equi_excl.append(row['Py Name']) # equilbrium function def equilibrium(self, param_lst): """ :param param_lst: :return: """ name = '' run = Run(name, self.test, self.exo_names, param_lst, self.endo_names) args = run, self.flow_names, self.stock_names, self.test_name _, res, errors = self.model.run_with_tracking(args) equi = self.calc_equi(res) # runtime errors are tracked in the model class self.model.err_lst.extend(errors) return equi def collect_equi(self, name, equi_df, ts, index_lst): """ recursively groups all equilibria conditions for the stocks and the model :param name: name of source, equi or base :param equi_df: dataframe of the run :param ts: timestep of the model :param index_lst: list with indices where there is an equilibrium condition :return: """ cut_off = None ending_ts = None # while there are time steps in the index list, we continue if index_lst: initial_ts = index_lst[0] # if the length of the list is just 1 element, we have to capture that otherwise we get a max recursion # depth error if len(index_lst) > 1: # here we search forward until we find a time step that is after a gap for i, index in enumerate(index_lst): if i > 0: if index_lst[i] - index_lst[i - 1] != ts: ending_ts = index_lst[i - 1] cut_off = i break if ending_ts is None: ending_ts = index_lst[-1] index_lst = [] else: ending_ts = initial_ts index_lst = [] # here we prepare the next iteration of the index list, if it's empty, it will stay empty index_lst = index_lst[cut_off:] st_lst = equi_df[self.stock_names].loc[initial_ts].tolist() sum_dict = {'name': name, 'start': initial_ts, 'end': ending_ts} for i, value in enumerate(self.stock_names): sum_dict[value] = st_lst[i] self.sum_df = self.sum_df.append(sum_dict, ignore_index=True) return self.collect_equi(name, equi_df, ts, index_lst) else: return def src_equi(self, run, name): """ :param run: dataframe to search equilibrium conditions in :param name: name of the run """ # we start off by adding the stocks to the equi_df because we need them for the initial conditions equi_df = run[self.stock_names] # equi_df = pd.concat([equi_df,run[self.flow_names]],axis=1) # iterates through the first level of the list with the flow expressions # tot res will be a pd.Series tot_res = 0 for i, expr in enumerate(self.flow_expr_lst): st_res = 0 st_name = self.stock_names[i] # iterates through the different elements in the flow expressions for j, el in enumerate(expr): if el not in ['+', '-', '']: if expr[j - 1] == '-': st_res -= run[el] else: st_res += run[el] st_res.name = 'sum_%s' % st_name # the threshold for equilibria is set at 0.01 st_res[st_res.abs() < self.equi_precision] = 0 equi_df = pd.concat([equi_df, st_res], axis=1) tot_res += st_res.abs() tot_res.name = 'model' equi_df = pd.concat([equi_df, tot_res], axis=1) self.save_csv('equi_df_%s' % name, equi_df, self.test) index_lst = equi_df.loc[equi_df['model'] == 0].index.tolist() ts = self.builtin['value'][2] self.collect_equi(name, equi_df, ts, index_lst) if name == 'base': # this creates the df for the time line for the report self.base_equi_df = equi_df self.base_equi_df.drop(self.stock_names, axis=1, inplace=True) self.base_equi_df[self.base_equi_df != 0] = np.nan self.base_equi_df[self.base_equi_df == 0] = 1 def calc_equi(self, res): """ calculates the equilbrium result for initialization first calculates the sum of the flows for each stock then calculates the sum of absolute sums this sum needs to be 0 for an equilibrium to exist :param res: OptimizeResult object from scipy.optimize.minimize :return: sum of absolute sums """ tot_res = 0 # iterates through level 1 of list of lists for expr in self.flow_expr_lst: st_res = 0 # iterates through level 2 of the list of lists for i, el in enumerate(expr): # empty string needs to be in selection because if the first flow is negative, it will add an # empty string element to the expr (which is a list of strings) if el not in ['+', '-', '']: out = res[el] if expr[i - 1] == '-': out = -out # calculates the stock result st_res += out tot_res += sum(abs(st_res)) return tot_res def op_flows(self): """ extracts the flows for the equilibrium calculation flow expressions are stored with the associated stocks in the stocks dataframe, thus having operations and names in the expression :return: list of lists with the flow expressions split up """ self.flow_expr_lst = [] for i, row in self.stocks.iterrows(): flow_expr = row['flow expr'] # split on + and - (only operations allowed in stocks) and keep the operator in the list flow_expr = re.split(r'([+-])', flow_expr) # strip all expressions to make sure that there are no errors due to spaces still in the thing flow_expr = [s.strip() for s in flow_expr] self.flow_expr_lst.append(flow_expr) def create_init_bounds(self): """ # this has to go to equilbrium test incremental=True indicates that equilibria closer to the base run are searched, is more time intensive than incremental = false creates the initial bounds for the equilibrium function even with incremental = False equilibria can still found incrementally as even with very large max_equi bounds, there is the possibility that incrementally the bounds are increased, but it's unlikelier :return: list of tuples with the bounds for each exogenous variable in the model """ self.bound_lst = [] for i, name in enumerate(self.exo_names): if name in self.equi_excl: self.base_params.iloc[i] = self.equi_set[name][0] if self.set_inc: for i, value in self.base_params.iteritems(): # if values are 0 at t0 they need to be manually set to an arbitrary bounds, otherwise they won't change # not sure how to set them effectively if self.exo_names[i] in self.equi_excl: self.bound_lst.append((self.equi_set[self.exo_names[i]][0], self.equi_set[self.exo_names[i]][0])) else: if value == 0: self.bound_lst.append((0, 1)) else: bounds = (value * (1 - self.sp), value * (1 + self.sp)) self.bound_lst.append(bounds) def build_bounds(self): """ # this has to go to equilbrium test updates the bounds for each iteration of the solver method one increases the bounds based on the initial parameter value from the base run method two increases the bounds based on the result of the equilibrium function :return: updated bounds list, parameters for next iteration """ if self.equi_method == 1: for i, var in enumerate(self.res_eq.x): if self.exo_names[i] not in self.equi_excl: lb, ub = self.bound_lst[i] # again we need to check if the initial is 0, then changed it to the result for bounds calculation if self.base_params.loc[i] == 0: # if initial parameter is zero, parameter is handled as if method 2 # even though method 1 is selected # except that the applied space here is dependent on iter_cnt value = var else: value = self.base_params.loc[i] if lb == var: lb = value * (1 - self.iter_cnt * self.sp) elif ub == var: ub = value * (1 + self.iter_cnt * self.sp) if lb < self.equi_set[self.exo_names[i]][1]: lb = self.equi_set[self.exo_names[i]][1] if ub > self.equi_set[self.exo_names[i]][2]: ub = self.equi_set[self.exo_names[i]][2] self.bound_lst[i] = (lb, ub) self.equi_params = self.res_eq.x elif self.equi_method == 2: for i, var in enumerate(self.res_eq.x): if self.exo_names[i] not in self.equi_excl: lb = var * (1 - self.sp) ub = var * (1 + self.sp) self.bound_lst[i] = (lb, ub) self.equi_params = self.res_eq.x else: pass def write_equi_to_doc(self, equi_dict): # this has to go to the equilibrium test """ saves the equilbrium result to the doc file the equidict used here has all exogenous variables and for each either a number value, NE (No Equilbrium) , or BE (Bad Equlibrium) :param equi_dict: dictionary from the equilibrium test output, used to create the equi runs :return: saved .csv """ for key, val in equi_dict.items(): self.doc.loc[self.doc['Py Name'] == key, 'equi'] = val return self.save_csv('%s_doc' % self.out_name, self.doc, 'doc') def create_run_with_result(self, result): """ creates a run with the results of some function, does not need to pass exo names because exo names are global in here :param result: list or series with parameter settings :return: df with the resulting run (endogenous variables) """ run = Run('res_eq', 'equi', self.exo_names, result, self.endo_names) res = self.model.run(params=run.input_dict, return_columns=run.return_columns) run.run = res return run def check_equilibrium(self): """ # this needs to go to equilibrium test this function checks the result of the equilibrium function and adjusts it if not all conditions for a good equilibrium are met if the sum for the equilibrium is 0, but the sum of all flows is 0, then an equilibrium was found, but it is just by setting all parameters to 0, thus making it impossible to use for other tests, thus the values are changed to BE, bad equilibrium if the result of the equilibrium function is larger than 0.1, then no equilibrium could be found, thus changing the values to NE, no equilibrium it is possible that no equilibrium is found because the while loop of the equilibrium function exists due to improvement being 0 even tough an equilibrium might be possible, but I don't know how to fix that :return: the updated dictionary with equi values (or NE, BE) """ equi_dict = dict(zip(self.exo_names, self.res_eq.x)) self.eq_res = 'GE' if self.eq_run.run[self.flow_names].iloc[0].sum(axis=0) == 0: for key, val in equi_dict.items(): equi_dict[key] = 'BE' self.eq_res = 'BE' if self.res_eq.fun > 0.1: for key, val in equi_dict.items(): equi_dict[key] = 'NE' self.eq_res = 'NE' return equi_dict def prepare_test(self): """ For the equilibrium test there is no need for a run list as they are not passed through MP """ if self.set_inc: self.create_init_bounds() self.res_lst = [] self.equi_params = self.base_params self.iter_cnt = 1 def run_test(self): """ run test is the alternative for run with MP and collect res Equilibrium is currently the only test using it """ # first optimizer run is executed to estalish a starting point # if not incremental, no bounds are necessary if self.set_inc: self.res_eq = opt.minimize(self.equilibrium, self.equi_params, bounds=self.bound_lst) else: self.res_eq = opt.minimize(self.equilibrium, self.equi_params) # results are gathered to document the initial search self.eq_run = self.create_run_with_result(self.res_eq.x) self.eq_run.calc_fit(self.base.run) self.res_lst.append((self.res_eq.fun, self.eq_run.fit, self.res_eq.x)) # self improv is set to 1 to make sure it continues self.improv = 1 while self.res_eq.fun > self.equi_res and self.improv > self.equi_iter: self.iter_cnt += 1 # just a bit of reporting that things aren't hanging print('start', self.iter_cnt) if self.set_inc: # updating the bounds self.build_bounds() self.res_eq = opt.minimize(self.equilibrium, self.equi_params, bounds=self.bound_lst) else: self.res_eq = opt.minimize(self.equilibrium, self.equi_params) # gathering the results again self.eq_run = self.create_run_with_result(self.res_eq.x) self.eq_run.calc_fit(self.base.run) self.res_lst.append((self.res_eq.fun, self.eq_run.fit, self.res_eq.x)) # calculates the difference between the last two iterations to set to equilibrium, # is -2 and -1 because the index in the list is one behind the count self.improv = self.res_lst[self.iter_cnt - 2][0] - self.res_lst[self.iter_cnt - 1][0] # if equilibrium is not found after 20 iterations, we should move on if self.iter_cnt == self.equi_maxiter: break self.model.create_full_df(self.base.run, self.test) self.model.add_run(self.eq_run.run, 'equilibrium run', self.test) # creating the full df to avoid issues with large dfs in MP (which is not the case here) pipe = Plass(self) for key, full_df in self.model.full_df_dict.items(): pipe.save_csv(full_df, 'full_df', key) def save_output(self): """ Saving the output from the equilibrium test """ # this is all the output that doens't got through MP self.save_lst_csv(self.res_lst, 'equi_sum_%s' % self.out_name, 'equi', columns=['equilibrium result', 'error to base', 'parameters'], append=False) # this is for the search of equilibrium conditions in the base and equi run self.sum_df = pd.DataFrame(columns=['name', 'start', 'end'].extend(self.stock_names)) self.src_equi(self.base.run, 'base') self.src_equi(self.eq_run.run, 'equi') # sum df could be empty if no equilibrium condition has been found if not self.sum_df.empty: order = ['name', 'start', 'end'] order.extend(self.stock_names) self.sum_df = self.sum_df[order] self.sum_df.to_csv(os.path.join(self.folder_dict[self.test], 'equi_sum.csv')) exo_r_dict = self.check_equilibrium() # testing feature to compare the found equilibria between models equi_rep = [[self.res_eq.fun, self.eq_run.fit, self.res_eq.x, self.iter_cnt]] equi_db = pd.DataFrame(equi_rep) with open(os.path.join(self.folder, 'equidoc.csv'), 'a') as f: equi_db.to_csv(f, header=False) self.write_equi_to_doc(exo_r_dict) pipe = Plass(self) # since equi is not going through MP, the model creation is called here a bit differently pipe.create_model('equi', self.model.full_df_dict['equi'], self.test) pipe.create_timeline(self.base_equi_df, 'equi_base') def write_report(self): """ writing the report for the equilibrium test """ rep = Report(self.folder, self.file) # we don't need the its here, but we need to get rid of the pickle file f_path = os.path.join(self.folder_dict[self.test], 'endo_its.pickle') os.remove(f_path) equi_doc = self.doc.loc[self.doc['equi'].notnull()] # report tuple includes section title, equilibrium result, equilibrium settings, # list with equilibrium conditions, link to test source rep_tpl = (self.class_name, self.eq_res, equi_doc, self.sum_df, self.folder_dict[self.test].replace(self.folder_dict['source'], '').lstrip('\\')) rep.write_equi(rep_tpl) rep.save_report() class TimeStep(Test): """ Timestep test for the testing battery """ def __init__(self, folder, file_name): super(TimeStep, self).__init__(folder, file_name, 'timestep') self.err_list = [] self.MP = True self.cf = ConfigParser() # config folder doesn't change, so it's put here to it's on one line self.cf.read(os.path.join(os.path.split(folder)[0], '_config', 'settings.ini')) self.start_ts = self.cf['tests'].getfloat('ts_start', fallback=1) self.step_ts = self.cf['tests'].getfloat('ts_iter', fallback=0.5) self.step_cnt = self.cf['tests'].getint('ts_maxiter', fallback=10) self.ts_threshold = self.cf['tests'].getfloat('ts_threshold', fallback=0.015) self.class_name = 'TimeStep' def prepare_test(self): """ prepares the runs for this test """ rts = np.arange(self.base_builtin.iloc[1], self.base_builtin.iloc[0] + 1, 1) base_full = self.model.run(return_timestamps=rts, reload=True) col_lst = list(base_full) for col in col_lst: if base_full[col].all() == 0: base_full[col] = np.nan # endos that are always zero could be added to the report at some point 17.07.18/sk self.base.add_run(base_full[self.endo_names]) self.model.create_full_df(self.base.run, 'timestep') for i in range(self.step_cnt): ts = self.start_ts * self.step_ts ** i name = 'timestep_%s' % ts # Run has inputs name,full_ID,exo_names=None,params=None,return_columns=None self.run_lst.append(Run(name, 'timestep', [self.builtin_names.iloc[-1]], [ts], self.endo_names, 'TimeStep=%s' % ts, rts, reload=True)) def save_output(self): """ saving the output for the time step test """ # this is all the output that doens't got through MP res_lst = [] # tracklist is just for testing purposes trck_lst = [] comp_df = self.model.full_df_dict['timestep'] comp_df = comp_df.loc(axis=1)[:, self.stock_names] base_name = 'base_%s' % self.base_builtin.iloc[-1] res_lst.append((base_name, 1)) for i in range(1, self.step_cnt): ts = self.start_ts * self.step_ts ** i sm_name = 'timestep_%s' % ts lg_name = 'timestep_%s' % (ts * 2) sens_df = comp_df.loc(axis=1)[[sm_name, lg_name], :] sens_df = sens_df.copy() # dropna should be deleted 17.07.18/sk # sens_df.dropna(inplace=True) if (sens_df.isnull().sum(axis=1) == 0).all(): # absolute value is taken because we only care about the distance to the upper run sens_df = abs( (sens_df.loc(axis=1)[sm_name] - sens_df.loc(axis=1)[lg_name]) / sens_df.loc(axis=1)[lg_name]) est = sens_df.mean(axis=0).mean(axis=0) else: est = 1 res_lst.append((lg_name, est)) for i, step in enumerate(res_lst[1:]): name, est = step if est <= self.ts_threshold: ts = name.split('_')[-1] trck_lst.append((self.out_name, self.base_builtin.iloc[-1], ts, est)) self.ts_rep = (self.out_name, self.base_builtin.iloc[-1], ts, est) self.save_lst_csv(trck_lst, 'ts_tracking', 'source', ['Model Name', 'Actual TS', 'Optimal TS', 'Opt Result'], append=True) break # the last element is i=8 because we don't use the first time step for iteration elif i == 8: # if it doesn't find the optimal timestep, we report a 'NF' for not found trck_lst.append((self.out_name, self.base_builtin.iloc[-1], 'NF', est)) self.ts_rep = (self.out_name, self.base_builtin.iloc[-1], 'NF', est) self.save_lst_csv(trck_lst, 'ts_tracking', 'source', ['Model Name', 'Actual TS', 'Optimal TS', 'Opt Result'], append=True) break self.save_lst_csv(res_lst, 'result', self.test, ['Timestep', 'Result'], append=False) def write_report(self): """ write the report for the time step test """ rep = Report(self.folder, self.file) # we have to pickle this because with MP, the passing of arguments is faulty # the endo_its is not needed here, but still needs to be removed f_path = os.path.join(self.folder_dict[self.test], 'endo_its.pickle') os.remove(f_path) rep_tpl = ( self.class_name, self.ts_rep, self.folder_dict[self.test].replace(self.folder_dict['source'], '').lstrip('\\')) rep.write_tstep(rep_tpl) rep.save_report() class Switches(Test): """ testing the different switch settings in all the combinations """ def __init__(self, folder, file_name): super(Switches, self).__init__(folder, file_name, 'switches') self.err_list = [] self.MP = True self.class_name = 'Switches' self.condensed = False def create_switch_settings(self): """ # this needs to go to the switches test creates the df with switch settings condensed only returns the switch settings where all are turned on or turned off :return: """ self.switch_lst = [] for i, row in self.switches.iterrows(): self.switch_lst.append(row['Py Name']) self.nmb_switch = len(self.switch_lst) if self.nmb_switch > 0: set_switch = [np.reshape(np.array(i), (1, self.nmb_switch)) for i in itertools.product([0, 1], repeat=self.nmb_switch)] self.switch_df = pd.DataFrame(data=np.reshape(set_switch, (2 ** self.nmb_switch, self.nmb_switch)), columns=self.switch_lst) if self.condensed: self.switch_df = self.switch_df.loc[self.switch_df.sum(axis=1).isin([0, self.nmb_switch])] else: self.switch_df = pd.DataFrame() self.save_csv('switch_settings', self.switch_df, self.test) def prepare_test(self): """ prepare the switcehs test """ self.create_switch_settings() self.model.create_full_df(self.base.run, 'full') self.model.create_full_df(self.base.run, 'sum') for i, row in self.switch_df.iterrows(): name = 'switch_run_%s' % i self.run_lst.append(Run(name, 'full', row.index, row.values, self.endo_names)) if row.sum() == 1: self.run_lst.append(Run(name, 'sum', row.index, row.values, self.endo_names)) # maybe the endo plots don't need to be quite so numerous here... maybe just the stocks def write_report(self): """ write the report for the switches test """ rep = Report(self.folder, self.file) # we have to pickle this because with MP, the passing of arguments is faulty f_path = os.path.join(self.folder_dict[self.test], 'endo_its.pickle') pickle_in = open(f_path, 'rb') endo_its = pickle.load(pickle_in) pickle_in.close() os.remove(f_path) rep_tpl = (self.class_name, self.switch_df, endo_its, self.folder_dict[self.test].replace(self.folder_dict['source'], '').lstrip('\\')) rep.write_swit(rep_tpl) rep.save_report() class Distance(Test): """ the distance test of the tb currently somewhat faulty and only available in testing mode also has no setting in the config file """ def __init__(self, folder, file_name): super(Distance, self).__init__(folder, file_name, 'distance') self.err_list = [] self.MP = False self.class_name = 'Distance' # needs to be verified # need all functions that contain a stock self.stocklike_functions = ['DELAY1', 'DELAY1I', 'DELAY3', 'DELAY3I', 'DELAY N', 'SMOOTH', 'SMOOTHI', 'SMOOTH3', 'SMOOTH3I', 'SMOOTH N'] self.cf = ConfigParser() # config folder doesn't change, so it's put here to it's on one line self.cf.read(os.path.join(os.path.split(folder)[0], '_config', 'settings.ini')) self.dist_maxiter = self.cf['tests'].getint('dist_maxiter', fallback=20) def create_emtpy_matrix(self): """ create an NxN matrix full with np.nan :return: df, empty matrix """ dm = np.empty((len(self.var_lst), len(self.var_lst))) dm[:] = np.nan self.dist_matrix = pd.DataFrame(dm) self.dist_matrix.columns = self.var_lst self.dist_matrix['name'] = self.var_lst self.dist_matrix.set_index('name', inplace=True) def make_loopdoc(self): """ :return: """ loop_doc = self.doc.copy() for i, row in loop_doc.iterrows(): row = row.copy() els = row['elements'] els = [x for x in els if not self.constant(x)] if 'table_expr' in els: els = [] loop_doc.at[i, 'elements'] = els return loop_doc def loop_tree(self, in_lst): """ :param in_lst: :return: """ loop_doc = self.make_loopdoc() new_level = [] i = 0 for lst in in_lst[i]: # then we add the elements from the stocks as the first level for var in lst: n_lst = loop_doc.loc[loop_doc['Real Name'] == var]['elements'].iloc[0] r_lst = loop_doc.loc[loop_doc['Real Name'] == var]['init elements'].iloc[0] f_lst = [x for x in n_lst if x not in r_lst] new_level.append(f_lst) in_lst.append(new_level) while True: # then we iterate through the lists making a new list for each level of the # length of the sum of elements of the previous level i += 1 new_level = [] for lst in in_lst[i]: if type(lst) == list: for var in lst: if var not in self.stock_names: if not self.constant(var): n_lst = loop_doc.loc[loop_doc['Real Name'] == var]['elements'].iloc[0] if n_lst: new_level.append(n_lst) else: new_level.append(np.nan) else: new_level.append(np.nan) else: new_level.append(np.nan) else: # for every loop that is already finished, there needs to be a nan added to keep the length correct new_level.append(np.nan) try: # when all loops have finished, we break the while loop if np.isnan(new_level).all(): return in_lst, i except: pass # this is just avoid infinite loops, not sure what the threshold should be 19.06.18/sk if i == self.dist_maxiter: return in_lst, i # each new level is added, the last level with all nan is not added in_lst.append(new_level) loop_df = pd.DataFrame(in_lst) loop_df.to_csv(os.path.join(self.folder_dict[self.test], 'level%s.csv' % i)) def loop_explore(self, in_lst, src_lst, level, max_level): """ :param in_lst: :param src_lst: :param level: :param max_level: :return: """ out_lst = [] if level <= max_level: for j, lst in enumerate(src_lst[level]): if type(lst) == list: for var in lst: t_lst = in_lst[j].copy() t_lst.append(var) out_lst.append(t_lst) else: t_lst = in_lst[j].copy() t_lst.append(np.nan) out_lst.append(t_lst) level += 1 return self.loop_explore(out_lst, src_lst, level, max_level) else: return in_lst @staticmethod def make_loopdict(in_lst): """ :param in_lst: :return: """ loop_dict = {} for lst in in_lst: if lst[0] != lst[-1]: key = lst[0] if key in loop_dict: loop_dict[key].append(lst) else: loop_dict[key] = [lst] return loop_dict def loop_combine(self, in_lst, loop_lst, loop_dict, iteration=0): """ :param in_lst: :param loop_lst: :param loop_dict: :param iteration: :return: """ out_lst = [] t_lst = [] for lst in in_lst: # first we move the loops that are loops already to the loop list if lst[0] == lst[-1]: loop_lst.append(lst) # then we move the loop elements that are not yet loops to a temporary list # also we build the dict with the different starting points (stocklike vars) else: t_lst.append(lst) if t_lst: stock_lst = list(loop_dict.keys()) visited_lst = [stock_lst[0]] for stock in stock_lst[1:]: for lst in t_lst: if lst[-1] not in visited_lst: # this is to avoid infinite loops where the first loop element can only be completed # by a loop of two other stocks if lst.count(lst[-1]) < 2: for el in loop_dict[lst[-1]]: b_lst = lst.copy() b_lst.extend(el[1:]) out_lst.append(b_lst) visited_lst.append(stock) iteration += 1 print(iteration) return self.loop_combine(out_lst, loop_lst, loop_dict, iteration) else: return loop_lst @staticmethod def clean_looplst(in_lst, stock_lst): """ :param in_lst: :param stock_lst: :return: """ out_lst = [] for lst in in_lst: # cleaning out the np.nan from the list to arrive at the loop building blocks lst = [x for x in lst if not
pd.isnull(x)
pandas.isnull
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019-04-16 16:46 # @Author : erwin import pandas as pd from common.util_function import * data_dict_series = { '1490707920': 10, '1490708040': 20, '1490708200': None, '1490708100': 20, } pds =
pd.Series(data_dict_series, name='test')
pandas.Series
#!/usr/bin/env python # -*-coding:utf-8 -*- ''' @File : Stress_detection_script.py @Time : 2022/03/17 09:45:59 @Author : <NAME> @Contact : <EMAIL> ''' import os import logging import plotly.express as px import numpy as np import pandas as pd import zipfile import fnmatch import flirt.reader.empatica import matplotlib.pyplot as plt from tqdm import tqdm from datetime import datetime, timedelta import cvxopt as cv from neurokit2 import eda_phasic from matplotlib.font_manager import FontProperties import matplotlib.dates as mdates # rootPath = r"./" # pattern = '*.zip' rootPath = input("Enter Folder Path : ") pattern = input("Enter File Name : ") for root, dirs, files in os.walk(rootPath): for filename in fnmatch.filter(files, pattern): print(os.path.join(root, filename)) zipfile.ZipFile(os.path.join(root, filename)).extractall( os.path.join(root, os.path.splitext(filename)[0])) dir = os.path.splitext(pattern)[0] # os.listdir(dir) class process: def moving_avarage_smoothing(X, k, description_str): S = np.zeros(X.shape[0]) for t in tqdm(range(X.shape[0]), desc=description_str): if t < k: S[t] = np.mean(X[:t+1]) else: S[t] = np.sum(X[t-k:t])/k return S def deviation_above_mean(unit, mean_unit, std_unit): ''' Function takes 3 arguments unit : number of Standard deviations above the mean mean_unit : mean value of each signal std_unit : standard deviation of each signal ''' if unit == 0: return (mean_unit) else: return (mean_unit + (unit*std_unit)) def Starting_timeStamp(column, time_frames, deviation_metric): ''' Function takes signal, its timestamps and threshold for calculating the starting time when the signal crosses the throshold value ''' starting_time_index = [] for i in range(len(column)-1): #iterating till the end of the array if column[i] < deviation_metric and column[i+1] > deviation_metric: # checking if the n+1 element is greater than nth element to conclude if the signal is increasing starting_time_index.append(time_frames[i]) #appending the timestamp's index to the declared empty array return starting_time_index def Ending_timeStamp(column, time_frames, deviation_metric): ''' Function takes signal, its timestamps and threshold for calculating the starting time when the signal crosses the throshold value ''' time_index = [] for i in range(len(column)-1): if column[i] > deviation_metric and column[i+1] < deviation_metric: # checking if the n+1 element is lesser than nth element to conclude if the signal is decreasing time_index.append(time_frames[i]) if column[len(column) - 1] > deviation_metric: # checking for hanging ends, where the signal stops abruptly time_index.insert( len(time_index), time_frames[len(time_frames) - 1]) # inserting the timestamp's index to the last index of the array else: pass return time_index def Extract_HRV_Information(): global hrv_features # declaring global to get access them for combined plot function global hrv_events_df # declaring global to get access them for combined plot function ibi = pd.read_csv(rootPath+'/'+dir+'\IBI.csv') mean_ibi = ibi[' IBI'].mean() average_heart_rate = 60/mean_ibi print('mean ibi is :', mean_ibi) print('mean heart rate :', average_heart_rate.round()) ibis = flirt.reader.empatica.read_ibi_file_into_df( rootPath+'/'+dir + '\IBI.csv') hrv_features = flirt.get_hrv_features( ibis['ibi'], 128, 1, ["td", "fd"], 0.2) hrv_features = hrv_features.dropna(how='any', axis=0) hrv_features.reset_index(inplace=True) hrv_features['datetime'] = hrv_features['datetime'].dt.tz_convert('US/Eastern') hrv_features['datetime'] = pd.to_datetime(hrv_features['datetime']) hrv_features['datetime'] = hrv_features['datetime'].apply(lambda x: datetime.replace(x, tzinfo=None)) # smoothing the curve print('\n', '******************** Smoothing The Curve ********************', '\n') MAG_K500 = process.moving_avarage_smoothing( hrv_features['hrv_rmssd'], 500, "Processing HRV Data") hrv_features['MAG_K500'] = MAG_K500 # hrv_features.to_csv("./Metadata/"+ dir+"_HRV.csv") # hrv_features.to_csv(os.path.join('./Metadata'+dir+'_HRV.csv')) mean_rmssd = hrv_features['hrv_rmssd'].mean() std_rmssd = hrv_features['hrv_rmssd'].std() # getting the starting and ending time of of the signal starting_timestamp = process.Starting_timeStamp(hrv_features['MAG_K500'], hrv_features['datetime'], process.deviation_above_mean(1, mean_rmssd, std_rmssd)) ending_timestamp = process.Ending_timeStamp(hrv_features['MAG_K500'], hrv_features['datetime'], process.deviation_above_mean(1, mean_rmssd, std_rmssd)) # in the below if case i am assuming that there was no events that crossed the threshold if len(starting_timestamp) < 1: fig, ax1 = plt.subplots(figsize=(30, 10)) ax1.plot(hrv_features['datetime'], hrv_features['MAG_K500'], color='red') # fig.savefig('./Plots/HRV_figure.png') else: #check if the len of starting timestamps and ending timestamps are equal if not popping the last element of the ending timestamp if starting_timestamp > ending_timestamp: ending_timestamp.pop(0) else: pass difference = [] # empty array to see how long the event lasts in seconds time_delta_minutes = [] desired_time_index = [] zip_object = zip(ending_timestamp, starting_timestamp) for list1_i, list2_i in zip_object: # append each difference to list difference.append(list1_i-list2_i) #subtracting ending timestamp - starting timestamp to get difference in seconds for i in difference: time_delta_minutes.append(i.total_seconds()/60) # converting the second's difference to minuted time_delta_minutes for i in range(len(time_delta_minutes)): if time_delta_minutes[i] > 5.00: #checking if the each episode is more then 5 minutes desired_time_index.append(i) starting_timestamp_df = pd.DataFrame(starting_timestamp) ending_timestamp_df = pd.DataFrame(ending_timestamp) frames = (starting_timestamp_df, ending_timestamp_df) hrv_events_df = pd.concat(frames, axis=1) hrv_events_df.columns = ['Starting Timestamp', 'Ending Timestamp'] hrv_events_df['Starting Timestamp'] = hrv_events_df['Starting Timestamp'].dt.strftime("%Y-%m-%d %H:%M:%S") #converting it to Y:M:D H:M:S to ignore nanoseconds in timestamp dataframe hrv_events_df['Ending Timestamp'] = hrv_events_df['Ending Timestamp'].dt.strftime("%Y-%m-%d %H:%M:%S") hrv_events_df = hrv_events_df.loc[desired_time_index, :] # selecting only the timestamps which crosses the time threshold limit fig, ax = plt.subplots(figsize=(20, 6)) ax.plot(hrv_features['datetime'], hrv_features['MAG_K500'], color='red') for d in hrv_events_df.index: ax.axvspan(hrv_events_df['Starting Timestamp'][d], hrv_events_df['Ending Timestamp'] [d], facecolor="g", edgecolor="none", alpha=0.5) ax.relim() ax.autoscale_view() # fig.savefig('./Plots/HRV_figure.png') return hrv_features, hrv_events_df def Extract_ACC_Infromation(): global acc_df global acc_events_df acc_df = pd.read_csv(rootPath+'/'+dir + '/ACC.csv') acc_df = flirt.reader.empatica.read_acc_file_into_df( rootPath+'/'+dir + '/ACC.csv') acc_df['Magnitude'] = np.sqrt( acc_df['acc_x']**2 + acc_df['acc_y']**2 + acc_df['acc_z']**2) print("Magnitude Mean : ", acc_df['Magnitude'].mean()) acc_df.reset_index(inplace=True) acc_df['datetime'] = acc_df['datetime'].dt.tz_convert('US/Eastern') acc_df['datetime'] = pd.to_datetime(acc_df['datetime']) acc_df['datetime'] = acc_df['datetime'].apply(lambda x: datetime.replace(x, tzinfo=None)) print('\n', '******************** Smoothing The ACC Curve ********************', '\n') MAG_K500 = process.moving_avarage_smoothing( acc_df['Magnitude'], 15000, "Processing ACC Data") acc_df['MAG_K500'] = MAG_K500 # acc_df.to_csv("./Metadata/"+ dir+"_ACC.csv") mean_acc_magnitude = acc_df['Magnitude'].mean() std_acc_magnitude = acc_df['Magnitude'].std() print("Average Magnitude of the Acc Data : ", mean_acc_magnitude) starting_timestamp = process.Starting_timeStamp(acc_df['MAG_K500'], acc_df['datetime'], process.deviation_above_mean(0.20, mean_acc_magnitude, std_acc_magnitude)) ending_timestamp = process.Ending_timeStamp(acc_df['MAG_K500'], acc_df['datetime'], process.deviation_above_mean(0.20, mean_acc_magnitude, std_acc_magnitude)) if len(starting_timestamp) < 1: fig, ax2 = plt.subplots(figsize=(30, 10)) ax2.plot(acc_df['datetime'], acc_df['MAG_K500'], color='red') fig.savefig('./Plots/ACC_figure.png') else: if starting_timestamp > ending_timestamp: ending_timestamp.pop(0) difference = [] # initialization of result list time_delta_minutes = [] desired_time_index = [] zip_object = zip(ending_timestamp, starting_timestamp) for list1_i, list2_i in zip_object: # append each difference to list difference.append(list1_i-list2_i) for i in difference: time_delta_minutes.append(i.total_seconds()/60) for i in range(len(time_delta_minutes)): if time_delta_minutes[i] > 2.00: desired_time_index.append(i) starting_timestamp_df = pd.DataFrame(starting_timestamp) ending_timestamp_df = pd.DataFrame(ending_timestamp) frames = (starting_timestamp_df, ending_timestamp_df) acc_events_df = pd.concat(frames, axis=1) acc_events_df.columns = ['Starting Timestamp', 'Ending Timestamp'] acc_events_df['Starting Timestamp'] = acc_events_df['Starting Timestamp'].dt.strftime("%Y-%m-%d %H:%M:%S") acc_events_df['Ending Timestamp'] = acc_events_df['Ending Timestamp'].dt.strftime("%Y-%m-%d %H:%M:%S") acc_events_df = acc_events_df.loc[desired_time_index, :] # acc_events_df.to_csv(rootPath+"timestamp_" +dir+ "_ACC.csv") fig, ax2 = plt.subplots(figsize=(30, 10)) ax2.plot(acc_df['datetime'], acc_df['MAG_K500'], color='red') for d in acc_events_df.index: ax2.axvspan(acc_events_df['Starting Timestamp'][d], acc_events_df['Ending Timestamp'] [d], facecolor="g", edgecolor="none", alpha=0.5) ax2.relim() ax2.autoscale_view() fig.savefig('./Plots/ACC_figure.png') def Extract_GSR_Phasic_Information(): global eda_df global eda_phasic_df global eda_phasic_events_df eda_df = pd.read_csv(rootPath+'/'+dir+'/EDA.csv') eda_df = flirt.reader.empatica.read_eda_file_into_df( rootPath+'/' + dir + '/EDA.csv') eda_df.reset_index(inplace=True) eda_df['datetime'] = eda_df['datetime'].dt.tz_convert('US/Eastern') eda_df['datetime'] = pd.to_datetime(eda_df['datetime']) eda_df['datetime'] = eda_df['datetime'].apply(lambda x: datetime.replace(x, tzinfo=None)) eda = np.array(eda_df['eda']) Phasic_Tonic_DF = eda_phasic(eda, 4, method='cvxEDA') eda_df['tonic'] = Phasic_Tonic_DF['EDA_Tonic'] eda_df['phasic'] = Phasic_Tonic_DF['EDA_Phasic'] eda_phasic_df = eda_df.copy() print('\n', '******************** Smoothing The EDA Phasic Curve ********************', '\n') MAG_K500 = process.moving_avarage_smoothing( eda_phasic_df['phasic'], 2000, "Processing EDA Phasic Data") eda_phasic_df['MAG_K500'] = MAG_K500 # hrv_features.to_csv('hrv_features.csv') mean_eda_phasic = eda_phasic_df['phasic'].mean() std_eda_phasic = eda_phasic_df['phasic'].std() starting_timestamp = process.Starting_timeStamp(eda_phasic_df['MAG_K500'], eda_phasic_df['datetime'], process.deviation_above_mean(1, mean_eda_phasic, std_eda_phasic)) ending_timestamp = process.Ending_timeStamp(eda_phasic_df['MAG_K500'], eda_phasic_df['datetime'], process.deviation_above_mean(1, mean_eda_phasic, std_eda_phasic)) if len(starting_timestamp) < 1: fig, ax2 = plt.subplots(figsize=(30, 10)) ax2.plot(eda_phasic_df['datetime'], eda_phasic_df['MAG_K500'], color='red') fig.savefig('./Plots/EDA_Phasic_figure.png') else: if starting_timestamp > ending_timestamp: ending_timestamp.pop(0) difference = [] # initialization of result list time_delta_minutes = [] desired_time_index = [] zip_object = zip(ending_timestamp, starting_timestamp) for list1_i, list2_i in zip_object: # append each difference to list difference.append(list1_i-list2_i) for i in difference: time_delta_minutes.append(i.total_seconds()/60) for i in range(len(time_delta_minutes)): if time_delta_minutes[i] > 2.00: desired_time_index.append(i) starting_timestamp_df = pd.DataFrame(starting_timestamp) ending_timestamp_df = pd.DataFrame(ending_timestamp) frames = (starting_timestamp_df, ending_timestamp_df) eda_phasic_events_df = pd.concat(frames, axis=1) eda_phasic_events_df.columns = [ 'Starting Timestamp', 'Ending Timestamp'] eda_phasic_events_df['Starting Timestamp'] = eda_phasic_events_df['Starting Timestamp'].dt.strftime("%Y-%m-%d %H:%M:%S") eda_phasic_events_df['Ending Timestamp'] = eda_phasic_events_df['Ending Timestamp'].dt.strftime("%Y-%m-%d %H:%M:%S") eda_phasic_events_df = eda_phasic_events_df.loc[desired_time_index, :] # eda_phasic_events_df.to_csv(rootPath+"timestamp_" + dir + "_EDA.csv") fig, ax3 = plt.subplots(figsize=(30, 10)) ax3.plot(eda_phasic_df['datetime'], eda_phasic_df['MAG_K500'], color='red') for d in eda_phasic_events_df.index: ax3.axvspan(eda_phasic_events_df['Starting Timestamp'][d], eda_phasic_events_df['Ending Timestamp'][d], facecolor="g", edgecolor="none", alpha=0.5) ax3.relim() ax3.autoscale_view() fig.savefig('./Plots/EDA_Phasic_figure.png') return eda_df def Extract_GSR_Tonic_Information(): global eda_tonic_df global eda_tonic_events_df eda_df = pd.read_csv(rootPath+'/'+dir+'/EDA.csv') eda_df = flirt.reader.empatica.read_eda_file_into_df( rootPath+'/' + dir + '/EDA.csv') eda_df.reset_index(inplace=True) eda_df['datetime'] = eda_df['datetime'].dt.tz_convert('US/Eastern') eda_df['datetime'] = pd.to_datetime(eda_df['datetime']) eda_df['datetime'] = eda_df['datetime'].apply(lambda x: datetime.replace(x, tzinfo=None)) eda = np.array(eda_df['eda']) Phasic_Tonic_DF = eda_phasic(eda, 4, method='cvxEDA') eda_df['tonic'] = Phasic_Tonic_DF['EDA_Tonic'] eda_df['phasic'] = Phasic_Tonic_DF['EDA_Phasic'] eda_tonic_df = eda_df.copy() print('\n', '******************** Smoothing The EDA Tonic Curve ********************', '\n') MAG_K500 = process.moving_avarage_smoothing( eda_tonic_df['tonic'], 2000, "Processing EDA Tonic Data") eda_tonic_df['MAG_K500'] = MAG_K500 # hrv_features.to_csv('hrv_features.csv') mean_eda_tonic = eda_tonic_df['tonic'].mean() std_eda_tonic = eda_tonic_df['tonic'].std() starting_timestamp = process.Starting_timeStamp(eda_tonic_df['MAG_K500'], eda_tonic_df['datetime'], process.deviation_above_mean(1, mean_eda_tonic, std_eda_tonic)) ending_timestamp = process.Ending_timeStamp(eda_tonic_df['MAG_K500'], eda_tonic_df['datetime'], process.deviation_above_mean(1, mean_eda_tonic, std_eda_tonic)) if len(starting_timestamp) < 1: fig, ax2 = plt.subplots(figsize=(30, 10)) ax2.plot(eda_tonic_df['datetime'], eda_tonic_df['MAG_K500'], color='red') fig.savefig('./Plots/EDA_Phasic_figure.png') else: print("entering final else block") if starting_timestamp > ending_timestamp: ending_timestamp.pop(0) difference = [] # initialization of result list time_delta_minutes = [] desired_time_index = [] zip_object = zip(ending_timestamp, starting_timestamp) for list1_i, list2_i in zip_object: # append each difference to list difference.append(list1_i-list2_i) for i in difference: time_delta_minutes.append(i.total_seconds()/60) for i in range(len(time_delta_minutes)): if time_delta_minutes[i] > 2.00: desired_time_index.append(i) starting_timestamp_df = pd.DataFrame(starting_timestamp) ending_timestamp_df = pd.DataFrame(ending_timestamp) frames = (starting_timestamp_df, ending_timestamp_df) eda_tonic_events_df = pd.concat(frames, axis=1) eda_tonic_events_df.columns = [ 'Starting Timestamp', 'Ending Timestamp'] eda_tonic_events_df['Starting Timestamp'] = eda_tonic_events_df['Starting Timestamp'].dt.strftime("%Y-%m-%d %H:%M:%S") eda_tonic_events_df['Ending Timestamp'] = eda_tonic_events_df['Ending Timestamp'].dt.strftime("%Y-%m-%d %H:%M:%S") eda_tonic_events_df = eda_tonic_events_df.loc[desired_time_index, :] # eda_tonic_events_df.to_csv(rootPath+"timestamp_" +dir+ "_EDA.csv") fig, ax4 = plt.subplots(figsize=(30, 10)) ax4.plot(eda_tonic_df['datetime'], eda_tonic_df['MAG_K500'], color='red') for d in eda_tonic_events_df.index: ax4.axvspan(eda_tonic_events_df['Starting Timestamp'][d], eda_tonic_events_df['Ending Timestamp'][d], facecolor="g", edgecolor="none", alpha=0.5) ax4.relim() ax4.autoscale_view() fig.savefig('./Plots/EDA_tonic_figure.png') def Extract_Heart_Rate_Features(): global hr_df global hr_events_df hr_df = flirt.reader.empatica.read_hr_file_into_df( rootPath+'/'+dir+'/HR.csv') hr_df.reset_index(inplace=True) hr_df['datetime'] = hr_df['datetime'].dt.tz_convert('US/Eastern') hr_df['datetime'] = pd.to_datetime(hr_df['datetime']) hr_df['datetime'] = hr_df['datetime'].apply(lambda x: datetime.replace(x, tzinfo=None)) print('\n', '******************** Smoothing The Heart Rate Curve ********************', '\n') MAG_K500 = process.moving_avarage_smoothing( hr_df['hr'], 500, "Processing Heart Rate Data") hr_df['MAG_K500'] = MAG_K500 # hrv_features.to_csv('hrv_features.csv') hr_avg = hr_df['MAG_K500'].mean() hr_std = hr_df['MAG_K500'].std() starting_timestamp = process.Starting_timeStamp( hr_df['MAG_K500'], hr_df['datetime'], process.deviation_above_mean(1, hr_avg, hr_std)) ending_timestamp = process.Ending_timeStamp( hr_df['MAG_K500'], hr_df['datetime'], process.deviation_above_mean(1, hr_avg, hr_std)) if len(starting_timestamp) < 1: fig, ax2 = plt.subplots(figsize=(30, 10)) ax2.plot(hr_df['datetime'], hr_df['MAG_K500'], color='red') fig.savefig('./Plots/Heart_rate_figure.png') else: if starting_timestamp > ending_timestamp: ending_timestamp.pop(0) difference = [] # initialization of result list time_delta_minutes = [] desired_time_index = [] zip_object = zip(ending_timestamp, starting_timestamp) for list1_i, list2_i in zip_object: # append each difference to list difference.append(list1_i-list2_i) for i in difference: time_delta_minutes.append(i.total_seconds()/60) for i in range(len(time_delta_minutes)): if time_delta_minutes[i] > 2.00: desired_time_index.append(i) starting_timestamp_df = pd.DataFrame(starting_timestamp) ending_timestamp_df = pd.DataFrame(ending_timestamp) frames = (starting_timestamp_df, ending_timestamp_df) hr_events_df = pd.concat(frames, axis=1) hr_events_df.columns = ['Starting Timestamp', 'Ending Timestamp'] hr_events_df['Starting Timestamp'] = hr_events_df['Starting Timestamp'].dt.strftime("%Y-%m-%d %H:%M:%S") hr_events_df['Ending Timestamp'] = hr_events_df['Ending Timestamp'].dt.strftime("%Y-%m-%d %H:%M:%S") hr_events_df = hr_events_df.loc[desired_time_index, :] # hr_events_df.to_csv(rootPath+"timestamp_" +dir+ "_EDA.csv") fig, ax4 = plt.subplots(figsize=(30, 10)) ax4.plot(hr_df['datetime'], hr_df['MAG_K500'], color='red') for d in hr_events_df.index: ax4.axvspan(hr_events_df['Starting Timestamp'][d], hr_events_df['Ending Timestamp'] [d], facecolor="g", edgecolor="none", alpha=0.5) ax4.relim() ax4.autoscale_view() fig.savefig('./Plots/Heart_Rate_figure.png') def handle_overlapping_timestamps(): global concatnated_frame, merged_smaller_events, merged_smaller_events_2 #making copies of the dataframes to avoid any erros hrv_events_df_copy = hrv_events_df.copy() hr_events_df_copy = hr_events_df.copy() acc_events_df_copy = acc_events_df.copy() eda_phasic_events_df_copy = eda_phasic_events_df.copy() eda_tonic_events_df_copy = eda_tonic_events_df.copy() # concatnating all the individual signal's episode into a single dataframe concatnated_frame = pd.concat([hrv_events_df_copy, hr_events_df_copy, acc_events_df_copy, eda_phasic_events_df_copy, eda_tonic_events_df_copy]) concatnated_frame = pd.DataFrame(concatnated_frame) #converting the timestamp format to unix format concatnated_frame["Starting Timestamp"] = concatnated_frame["Starting Timestamp"].apply(lambda x: pd.Timestamp(x).timestamp()) concatnated_frame["Ending Timestamp"] = concatnated_frame["Ending Timestamp"].apply(lambda x: pd.Timestamp(x).timestamp()) concatnated_frame = concatnated_frame.sort_values(by=['Starting Timestamp', 'Ending Timestamp']).reset_index(drop = True) concatnated_frame['Starting Timestamp'] = concatnated_frame["Starting Timestamp"].apply(lambda x: pd.to_datetime(x, unit='s')) concatnated_frame['Ending Timestamp'] = concatnated_frame['Ending Timestamp'].apply(lambda x: pd.to_datetime(x, unit='s')) concatnated_frame = concatnated_frame.reset_index(drop = True) print('###################### Handling Overlapping Events ######################') # running for loop one time clubs 2 times joins 1 overlapping event, so running len/2 times to join all possible overlapping events # didnt use a while because the flag condition was confusing for i in range(int(len(concatnated_frame)/2)): for i in tqdm(range(len(concatnated_frame)-1)): try: delta_a = concatnated_frame['Ending Timestamp'][i] - concatnated_frame['Starting Timestamp'][i] delta_b = concatnated_frame['Ending Timestamp'][i+1] - concatnated_frame['Starting Timestamp'][i+1] c1 = min(concatnated_frame['Starting Timestamp'][i], concatnated_frame['Starting Timestamp'][i+1]) c2 = max(concatnated_frame['Ending Timestamp'][i], concatnated_frame['Ending Timestamp'][i+1]) Dc = c2-c1 if ((delta_a+delta_b)>Dc): concatnated_frame['Starting Timestamp'][i] = c1 concatnated_frame['Ending Timestamp'][i] = c2 concatnated_frame = concatnated_frame.drop(concatnated_frame.index[i+1]).reset_index(drop=True) except KeyError as error: logging.info("index overflow handling exception") print('###################### Handling smaller Events ######################') concatnated_frame['Starting Timestamp'] = concatnated_frame["Starting Timestamp"].apply(lambda x: pd.to_datetime(x, unit='s')) concatnated_frame['Ending Timestamp'] = concatnated_frame['Ending Timestamp'].apply(lambda x: pd.to_datetime(x, unit='s')) # running for loop one time clubs 2 times joins 1 overlapping event, so running len/2 times to join all possible overlapping events # didnt use a while because the flag condition was confusing for i in tqdm(range(int(len(concatnated_frame)/2))): for i in range(len(concatnated_frame)-1): try: #checking if the successive episodes occur with in less than 10 minutes and joining it. if (concatnated_frame['Starting Timestamp'][i+1] - concatnated_frame['Ending Timestamp'][i] < timedelta(minutes = 10)): concatnated_frame['Ending Timestamp'][i] = concatnated_frame['Ending Timestamp'][i+1] concatnated_frame = concatnated_frame.drop(concatnated_frame.index[i+1]).reset_index(drop=True) merged_smaller_events = concatnated_frame.copy() except KeyError as error: logging.info('ignore index overflow error') merged_smaller_events_2 = merged_smaller_events.copy() merged_smaller_events['Starting Timestamp'] = merged_smaller_events['Starting Timestamp'].dt.strftime("%m/%d/%Y, %I:%M:%S %p") merged_smaller_events['Ending Timestamp'] = merged_smaller_events['Ending Timestamp'].dt.strftime("%m/%d/%Y, %I:%M:%S %p") merged_smaller_events.index = merged_smaller_events.index + 1 return merged_smaller_events, merged_smaller_events_2 def stack_plot_results(): ''' for the EMA data, I am manually indexing the rows and checking condition for each column. ''' ema_df = pd.read_csv('./EMA_Survey/ema.csv') ema_df = ema_df.iloc[2: , :] ema_df.reset_index(inplace=True) forenoon_ema_df = ema_df.iloc[[0], :] afternoon_ema_df = ema_df.iloc[[1], :] forenoon_data = [] forenoon_data.append('Start Time = ' + str((pd.to_datetime(forenoon_ema_df['StartDate']).dt.strftime("%m/%d/%Y, %I:%M:%S %p").values))) forenoon_data.append('End Time = ' + str((
pd.to_datetime(forenoon_ema_df['EndDate'])
pandas.to_datetime
# Required imports import os import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import matplotlib as mpl import pylab import scipy import random import datetime import re import time from math import sqrt import matplotlib.dates as mdates from matplotlib.dates import date2num, num2date get_ipython().run_line_magic('matplotlib', 'inline') from sklearn import preprocessing pd.set_option('display.max_columns', None) # to view all columns from scipy.optimize import curve_fit from supersmoother import SuperSmoother from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.pipeline import make_pipeline from sklearn.gaussian_process.kernels import Matern, WhiteKernel from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression, Ridge, Lasso, RidgeCV, LassoCV from sklearn.model_selection import GridSearchCV from sklearn.metrics import mean_squared_error import scipy.stats as stats import warnings warnings.filterwarnings("ignore") from pyproj import Proj, Transformer from ipyleaflet import (Map, basemaps, WidgetControl, GeoJSON, LayersControl, Icon, Marker,FullScreenControl, CircleMarker, Popup, AwesomeIcon) from ipywidgets import HTML plt.rcParams["font.family"] = "Times New Roman" class functions: def __init__(self, data): self.setData(data) self.__jointData = [None, 0] # DATA VALIDATION def __isValid_Data(self, data): if(str(type(data)).lower().find('dataframe') == -1): return (False, 'Make sure the data is a pandas DataFrame.\n') if(not self.__hasColumns_Data(data)): return (False, 'Make sure that ALL of the columns specified in the REQUIREMENTS are present.\n') else: return (True, None) def __isValid_Construction_Data(self, data): if(str(type(data)).lower().find('dataframe') == -1): return (False, 'Make sure the data is a pandas DataFrame.\n') if(not self.__hasColumns_Construction_Data(data)): return (False, 'Make sure that ALL of the columns specified in the REQUIREMENTS are present.\n') else: return (True, None) # COLUMN VALIDATION def __hasColumns_Data(self, data): find = ['COLLECTION_DATE','STATION_ID','ANALYTE_NAME','RESULT','RESULT_UNITS'] cols = list(data.columns) cols = [x.upper() for x in cols] hasCols = all(item in cols for item in find) return hasCols def __hasColumns_Construction_Data(self, data): find = ['STATION_ID', 'AQUIFER', 'WELL_USE', 'LATITUDE', 'LONGITUDE', 'GROUND_ELEVATION', 'TOTAL_DEPTH'] cols = list(data.columns) cols = [x.upper() for x in cols] hasCols = all(item in cols for item in find) return hasCols # SETTING DATA def setData(self, data, verbose=True): validation = self.__isValid_Data(data) if(validation[0]): # Make all columns all caps cols_upper = [x.upper() for x in list(data.columns)] data.columns = cols_upper self.data = data if(verbose): print('Successfully imported the data!\n') self.__set_units() else: print('ERROR: {}'.format(validation[1])) return self.REQUIREMENTS_DATA() def setConstructionData(self, construction_data, verbose=True): validation = self.__isValid_Construction_Data(construction_data) if(validation[0]): # Make all columns all caps cols_upper = [x.upper() for x in list(construction_data.columns)] construction_data.columns = cols_upper self.construction_data = construction_data.set_index(['STATION_ID']) if(verbose): print('Successfully imported the construction data!\n') else: print('ERROR: {}'.format(validation[1])) return self.REQUIREMENTS_CONSTRUCTION_DATA() def jointData_is_set(self, lag): if(str(type(self.__jointData[0])).lower().find('dataframe') == -1): return False else: if(self.__jointData[1]==lag): return True else: return False def set_jointData(self, data, lag): self.__jointData[0] = data self.__jointData[1] = lag # GETTING DATA def getData(self): return self.data def get_Construction_Data(self): return self.construction_data # MESSAGES FOR INVALID DATA def REQUIREMENTS_DATA(self): print('PYLENM DATA REQUIREMENTS:\nThe imported data needs to meet ALL of the following conditions to have a successful import:') print(' 1) Data should be a pandas dataframe.') print(" 2) Data must have these column names: \n ['COLLECTION_DATE','STATION_ID','ANALYTE_NAME','RESULT','RESULT_UNITS']") def REQUIREMENTS_CONSTRUCTION_DATA(self): print('PYLENM CONSTRUCTION REQUIREMENTS:\nThe imported construction data needs to meet ALL of the following conditions to have a successful import:') print(' 1) Data should be a pandas dataframe.') print(" 2) Data must have these column names: \n ['station_id', 'aquifer', 'well_use', 'latitude', 'longitude', 'ground_elevation', 'total_depth']") # Helper function for plot_correlation # Sorts analytes in a specific order: 'TRITIUM', 'URANIUM-238','IODINE-129','SPECIFIC CONDUCTANCE', 'PH', 'DEPTH_TO_WATER' def __custom_analyte_sort(self, analytes): my_order = 'TURISPDABCEFGHJKLMNOQVWXYZ-_abcdefghijklmnopqrstuvwxyz135790 2468' return sorted(analytes, key=lambda word: [my_order.index(c) for c in word]) def __plotUpperHalf(self, *args, **kwargs): corr_r = args[0].corr(args[1], 'pearson') corr_text = f"{corr_r:2.2f}" ax = plt.gca() ax.set_axis_off() marker_size = abs(corr_r) * 10000 ax.scatter([.5], [.5], marker_size, [corr_r], alpha=0.6, cmap="coolwarm", vmin=-1, vmax=1, transform=ax.transAxes) font_size = abs(corr_r) * 40 + 5 ax.annotate(corr_text, [.5, .48,], xycoords="axes fraction", # [.5, .48,] ha='center', va='center', fontsize=font_size, fontweight='bold') # Description: # Removes all columns except 'COLLECTION_DATE', 'STATION_ID', 'ANALYTE_NAME', 'RESULT', and 'RESULT_UNITS'. # If the user specifies additional columns in addition to the ones listed above, those columns will be kept. # The function returns a dataframe and has an optional parameter to be able to save the dataframe to a csv file. # Parameters: # data (dataframe): data to simplify # inplace (bool): save data to current working dataset # columns (list of strings): list of any additional columns on top of ['COLLECTION_DATE', 'STATION_ID', 'ANALYTE_NAME', 'RESULT', and 'RESULT_UNITS'] to be kept in the dataframe. # save_csv (bool): flag to determine whether or not to save the dataframe to a csv file. # file_name (string): name of the csv file you want to save # save_dir (string): name of the directory you want to save the csv file to def simplify_data(self, data=None, inplace=False, columns=None, save_csv=False, file_name= 'data_simplified', save_dir='data/'): if(str(type(data)).lower().find('dataframe') == -1): data = self.data else: data = data if(columns==None): sel_cols = ['COLLECTION_DATE','STATION_ID','ANALYTE_NAME','RESULT','RESULT_UNITS'] else: hasColumns = all(item in list(data.columns) for item in columns) if(hasColumns): sel_cols = ['COLLECTION_DATE','STATION_ID','ANALYTE_NAME','RESULT','RESULT_UNITS'] + columns else: print('ERROR: specified column(s) do not exist in the data') return None data = data[sel_cols] data.COLLECTION_DATE = pd.to_datetime(data.COLLECTION_DATE) data = data.sort_values(by="COLLECTION_DATE") dup = data[data.duplicated(['COLLECTION_DATE', 'STATION_ID','ANALYTE_NAME', 'RESULT'])] data = data.drop(dup.index) data = data.reset_index().drop('index', axis=1) if(save_csv): if not os.path.exists(save_dir): os.makedirs(save_dir) data.to_csv(save_dir + file_name + '.csv') print('Successfully saved "' + file_name +'.csv" in ' + save_dir) if(inplace): self.setData(data, verbose=False) return data # Description: # Returns the Maximum Concentration Limit value for the specified analyte. # Example: 'TRITIUM' returns 1.3 # Parameters: # analyte_name (string): name of the analyte to be processed def get_MCL(self, analyte_name): mcl_dictionary = {'TRITIUM': 1.3, 'URANIUM-238': 1.31, 'NITRATE-NITRITE AS NITROGEN': 1, 'TECHNETIUM-99': 2.95, 'IODINE-129': 0, 'STRONTIUM-90': 0.9 } return mcl_dictionary[analyte_name] def __set_units(self): analytes = list(np.unique(self.data[['ANALYTE_NAME']])) mask1 = ~self.data[['ANALYTE_NAME','RESULT_UNITS']].duplicated() res = self.data[['ANALYTE_NAME','RESULT_UNITS']][mask1] mask2 = ~self.data[['ANALYTE_NAME']].duplicated() res = res[mask2] unit_dictionary = pd.Series(res.RESULT_UNITS.values,index=res.ANALYTE_NAME).to_dict() self.unit_dictionary = unit_dictionary # Description: # Returns the unit of the analyte you specify. # Example: 'DEPTH_TO_WATER' returns 'ft' # Parameters: # analyte_name (string): name of the analyte to be processed def get_unit(self, analyte_name): return self.unit_dictionary[analyte_name] # Description: # Filters construction data based on one column. You only specify ONE column to filter by, but can selected MANY values for the entry. # Parameters: # data (dataframe): dataframe to filter # col (string): column to filter. Example: col='STATION_ID' # equals (list of strings): values to filter col by. Examples: equals=['FAI001A', 'FAI001B'] def filter_by_column(self, data=None, col=None, equals=[]): if(data is None): return 'ERROR: DataFrame was not provided to this function.' else: if(str(type(data)).lower().find('dataframe') == -1): return 'ERROR: Data provided is not a pandas DataFrame.' else: data = data # DATA VALIDATION if(col==None): return 'ERROR: Specify a column name to filter by.' data_cols = list(data.columns) if((col in data_cols)==False): # Make sure column name exists return 'Error: Column name "{}" does not exist'.format(col) if(equals==[]): return 'ERROR: Specify a value that "{}" should equal to'.format(col) data_val = list(data[col]) for value in equals: if((value in data_val)==False): return 'ERROR: No value equal to "{}" in "{}".'.format(value, col) # QUERY final_data = pd.DataFrame() for value in equals: current_data = data[data[col]==value] final_data = pd.concat([final_data, current_data]) return final_data # Description: # Returns a list of the well names filtered by the unit(s) specified. # Parameters: # units (list of strings): Letter of the well to be filtered (e.g. [‘A’] or [‘A’, ‘D’]) def filter_wells(self, units): data = self.data if(units==None): units= ['A', 'B', 'C', 'D'] def getUnits(): wells = list(np.unique(data.STATION_ID)) wells = pd.DataFrame(wells, columns=['STATION_ID']) for index, row in wells.iterrows(): mo = re.match('.+([0-9])[^0-9]*$', row.STATION_ID) last_index = mo.start(1) wells.at[index, 'unit'] = row.STATION_ID[last_index+1:] u = wells.unit.iloc[index] if(len(u)==0): # if has no letter, use D wells.at[index, 'unit'] = 'D' if(len(u)>1): # if has more than 1 letter, remove the extra letter if(u.find('R')>0): wells.at[index, 'unit'] = u[:-1] else: wells.at[index, 'unit'] = u[1:] u = wells.unit.iloc[index] if(u=='A' or u=='B' or u=='C' or u=='D'): pass else: wells.at[index, 'unit'] = 'D' return wells df = getUnits() res = df.loc[df.unit.isin(units)] return list(res.STATION_ID) # Description: # Removes outliers from a dataframe based on the z_scores and returns the new dataframe. # Parameters: # data (dataframe): data for the outliers to removed from # z_threshold (float): z_score threshold to eliminate. def remove_outliers(self, data, z_threshold=4): z = np.abs(stats.zscore(data)) row_loc = np.unique(np.where(z > z_threshold)[0]) data = data.drop(data.index[row_loc]) return data # Description: # Returns a csv file saved to save_dir with details pertaining to the specified analyte. # Details include the well names, the date ranges and the number of unique samples. # Parameters: # analyte_name (string): name of the analyte to be processed # save_dir (string): name of the directory you want to save the csv file to def get_analyte_details(self, analyte_name, filter=False, col=None, equals=[], save_to_file = False, save_dir='analyte_details'): data = self.data data = data[data.ANALYTE_NAME == analyte_name].reset_index().drop('index', axis=1) data = data[~data.RESULT.isna()] data = data.drop(['ANALYTE_NAME', 'RESULT', 'RESULT_UNITS'], axis=1) data.COLLECTION_DATE = pd.to_datetime(data.COLLECTION_DATE) if(filter): filter_res = self.filter_by_column(data=self.construction_data, col=col, equals=equals) if('ERROR:' in str(filter_res)): return filter_res query_wells = list(data.STATION_ID.unique()) filter_wells = list(filter_res.index.unique()) intersect_wells = list(set(query_wells) & set(filter_wells)) if(len(intersect_wells)<=0): return 'ERROR: No results for this query with the specifed filter parameters.' data = data[data['STATION_ID'].isin(intersect_wells)] info = [] wells = np.unique(data.STATION_ID.values) for well in wells: current = data[data.STATION_ID == well] startDate = current.COLLECTION_DATE.min().date() endDate = current.COLLECTION_DATE.max().date() numSamples = current.duplicated().value_counts()[0] info.append({'Well Name': well, 'Start Date': startDate, 'End Date': endDate, 'Date Range (days)': endDate-startDate , 'Unique samples': numSamples}) details = pd.DataFrame(info) details.index = details['Well Name'] details = details.drop('Well Name', axis=1) details = details.sort_values(by=['Start Date', 'End Date']) details['Date Range (days)'] = (details['Date Range (days)']/ np.timedelta64(1, 'D')).astype(int) if(save_to_file): if not os.path.exists(save_dir): os.makedirs(save_dir) details.to_csv(save_dir + '/' + analyte_name + '_details.csv') return details # Description: # Returns a dataframe with a summary of the data for certain analytes. # Summary includes the date ranges and the number of unique samples and other statistics for the analyte results. # Parameters: # analytes (list of strings): list of analyte names to be processed. If left empty, a list of all the analytes in the data will be used. # sort_by (string): {‘date’, ‘samples’, ‘wells’} sorts the data by either the dates by entering: ‘date’, the samples by entering: ‘samples’, or by unique well locations by entering ‘wells’. # ascending (bool): flag to sort in ascending order. def get_data_summary(self, analytes=None, sort_by='date', ascending=False, filter=False, col=None, equals=[]): data = self.data if(analytes == None): analytes = data.ANALYTE_NAME.unique() data = data.loc[data.ANALYTE_NAME.isin(analytes)].drop(['RESULT_UNITS'], axis=1) data = data[~data.duplicated()] # remove duplicates data.COLLECTION_DATE = pd.to_datetime(data.COLLECTION_DATE) data = data[~data.RESULT.isna()] if(filter): filter_res = self.filter_by_column(data=self.construction_data, col=col, equals=equals) if('ERROR:' in str(filter_res)): return filter_res query_wells = list(data.STATION_ID.unique()) filter_wells = list(filter_res.index.unique()) intersect_wells = list(set(query_wells) & set(filter_wells)) if(len(intersect_wells)<=0): return 'ERROR: No results for this query with the specifed filter parameters.' data = data[data['STATION_ID'].isin(intersect_wells)] info = [] for analyte_name in analytes: query = data[data.ANALYTE_NAME == analyte_name] startDate = min(query.COLLECTION_DATE) endDate = max(query.COLLECTION_DATE) numSamples = query.shape[0] wellCount = len(query.STATION_ID.unique()) stats = query.RESULT.describe().drop('count', axis=0) stats = pd.DataFrame(stats).T stats_col = [x for x in stats.columns] result = {'Analyte Name': analyte_name, 'Start Date': startDate, 'End Date': endDate, 'Date Range (days)':endDate-startDate, '# unique wells': wellCount,'# samples': numSamples, 'Unit': self.get_unit(analyte_name) } for num in range(len(stats_col)): result[stats_col[num]] = stats.iloc[0][num] info.append(result) details = pd.DataFrame(info) details.index = details['Analyte Name'] details = details.drop('Analyte Name', axis=1) if(sort_by.lower() == 'date'): details = details.sort_values(by=['Start Date', 'End Date', 'Date Range (days)'], ascending=ascending) elif(sort_by.lower() == 'samples'): details = details.sort_values(by=['# samples'], ascending=ascending) elif(sort_by.lower() == 'wells'): details = details.sort_values(by=['# unique wells'], ascending=ascending) return details # Description: # Displays the analyte names available at given well locations. # Parameters: # well_name (string): name of the well. If left empty, all wells are returned. # filter (bool): flag to indicate filtering # col (string): column to filter results # equals (list of strings): value to match column name. Multiple values are accepted. def get_well_analytes(self, well_name=None, filter=False, col=None, equals=[]): data = self.data bb = "\033[1m" be = "\033[0m" if(filter): filter_res = self.filter_by_column(data=self.construction_data, col=col, equals=equals) if('ERROR:' in str(filter_res)): return filter_res query_wells = list(data.STATION_ID.unique()) filter_wells = list(filter_res.index.unique()) intersect_wells = list(set(query_wells) & set(filter_wells)) if(len(intersect_wells)<=0): return 'ERROR: No results for this query with the specifed filter parameters.' data = data[data['STATION_ID'].isin(intersect_wells)] if(well_name==None): wells = list(data.STATION_ID.unique()) else: wells = [well_name] for well in wells: print("{}{}{}".format(bb,str(well), be)) analytes = sorted(list(data[data.STATION_ID==well].ANALYTE_NAME.unique())) print(str(analytes) +'\n') # Description: # Filters data by passing the data and specifying the well_name and analyte_name # Parameters: # well_name (string): name of the well to be processed # analyte_name (string): name of the analyte to be processed def query_data(self, well_name, analyte_name): data = self.data query = data[data.STATION_ID == well_name] query = query[query.ANALYTE_NAME == analyte_name] if(query.shape[0] == 0): return 0 else: return query # Description: # Plot concentrations over time of a specified well and analyte with a smoothed curve on interpolated data points. # Parameters: # well_name (string): name of the well to be processed # analyte_name (string): name of the analyte to be processed # log_transform (bool): choose whether or not the data should be transformed to log base 10 values # alpha (int): value between 0 and 10 for line smoothing # year_interval (int): plot by how many years to appear in the axis e.g.(1 = every year, 5 = every 5 years, ...) # plot_inline (bool): choose whether or not to show plot inline # save_dir (string): name of the directory you want to save the plot to def plot_data(self, well_name, analyte_name, log_transform=True, alpha=0, plot_inline=True, year_interval=2, x_label='Years', y_label='', save_dir='plot_data', filter=False, col=None, equals=[]): # Gets appropriate data (well_name and analyte_name) query = self.query_data(well_name, analyte_name) query = self.simplify_data(data=query) if(type(query)==int and query == 0): return 'No results found for {} and {}'.format(well_name, analyte_name) else: if(filter): filter_res = self.filter_by_column(data=self.construction_data, col=col, equals=equals) if('ERROR:' in str(filter_res)): return filter_res query_wells = list(query.STATION_ID.unique()) filter_wells = list(filter_res.index.unique()) intersect_wells = list(set(query_wells) & set(filter_wells)) if(len(intersect_wells)<=0): return 'ERROR: No results for this query with the specifed filter parameters.' query = query[query['STATION_ID'].isin(intersect_wells)] x_data = query.COLLECTION_DATE x_data = pd.to_datetime(x_data) y_data = query.RESULT if(log_transform): y_data = np.log10(y_data) # Remove any NaN as a result of the log transformation nans = ~np.isnan(y_data) x_data = x_data[nans] y_data = y_data[nans] x_RR = x_data.astype(int).to_numpy() # Remove any duplicate dates unique = ~pd.Series(x_data).duplicated() x_data = x_data[unique] y_data = y_data[unique] unique = ~pd.Series(y_data).duplicated() x_data = x_data[unique] y_data = y_data[unique] x_RR = x_data.astype(int).to_numpy() nu = x_data.shape[0] result = None while result is None: if(nu < 5): return 'ERROR: Could not plot {}, {}'.format(well_name, analyte_name) break nu = nu - 1 x_data = x_data[:nu] x_RR = x_RR[:nu] y_data = y_data[:nu] try: # fit the supersmoother model model = SuperSmoother(alpha=alpha) model.fit(x_RR, y_data) y_pred = model.predict(x_RR) r = model.cv_residuals() out = abs(r) > 2.2*np.std(r) out_x = x_data[out] out_y = y_data[out] plt.figure(figsize=(8,8)) ax = plt.axes() years = mdates.YearLocator(year_interval) # every year months = mdates.MonthLocator() # every month yearsFmt = mdates.DateFormatter('%Y') for label in ax.get_xticklabels(): label.set_rotation(30) label.set_horizontalalignment('center') ax = plt.gca() ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(yearsFmt) ax.autoscale_view() unit = query.RESULT_UNITS.values[0] ax.set_title(well_name + ' - ' + analyte_name, fontweight='bold') ttl = ax.title ttl.set_position([.5, 1.05]) if(y_label==''): if(log_transform): ax.set_ylabel('log-Concentration (' + unit + ')') else: ax.set_ylabel('Concentration (' + unit + ')') else: ax.set_ylabel(y_label) ax.set_xlabel(x_label) small_fontSize = 15 large_fontSize = 20 plt.rc('axes', titlesize=large_fontSize) plt.rc('axes', labelsize=large_fontSize) plt.rc('legend', fontsize=small_fontSize) plt.rc('xtick', labelsize=small_fontSize) plt.rc('ytick', labelsize=small_fontSize) ax.plot(x_data, y_data, ls='', marker='o', ms=5, color='black', alpha=1) ax.plot(x_data, y_pred, ls='-', marker='', ms=5, color='black', alpha=0.5, label="Super Smoother") ax.plot(out_x , out_y, ls='', marker='o', ms=5, color='red', alpha=1, label="Outliers") ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left', borderaxespad=0.) props = dict(boxstyle='round', facecolor='grey', alpha=0.15) ax.text(1.05, 0.85, 'Samples: {}'.format(nu), transform=ax.transAxes, fontsize=small_fontSize, fontweight='bold', verticalalignment='top', bbox=props) if not os.path.exists(save_dir): os.makedirs(save_dir) plt.savefig(save_dir + '/' + well_name + '-' + analyte_name +'.png', bbox_inches="tight") if(plot_inline): plt.show() plt.clf() plt.cla() plt.close() result = 1 except: pass # Description: # Plot concentrations over time for every well and analyte with a smoothed curve on interpolated data points. # Parameters: # log_transform (bool): choose whether or not the data should be transformed to log base 10 values # alpha (int): value between 0 and 10 for line smoothing # year_interval (int): plot by how many years to appear in the axis e.g.(1 = every year, 5 = every 5 years, ...) # plot_inline (bool): choose whether or not to show plot inline # save_dir (string): name of the directory you want to save the plot to def plot_all_data(self, log_transform=True, alpha=0, year_interval=2, plot_inline=True, save_dir='plot_data'): analytes = ['TRITIUM','URANIUM-238','IODINE-129','SPECIFIC CONDUCTANCE', 'PH', 'DEPTH_TO_WATER'] wells = np.array(data.STATION_ID.values) wells = np.unique(wells) success = 0 errors = 0 for well in wells: for analyte in analytes: plot = self.plot_data(well, analyte, log_transform=log_transform, alpha=alpha, year_interval=year_interval, plot_inline=plot_inline, save_dir=save_dir) if 'ERROR:' in str(plot): errors = errors + 1 else: success = success + 1 print("Success: ", success) print("Errors: ", errors) # Description: # Plots a heatmap of the correlations of the important analytes over time for a specified well. # Parameters: # well_name (string): name of the well to be processed # show_symmetry (bool): choose whether or not the heatmap should show the same information twice over the diagonal # color (bool): choose whether or not the plot should be in color or in greyscale # save_dir (string): name of the directory you want to save the plot to def plot_correlation_heatmap(self, well_name, show_symmetry=True, color=True, save_dir='plot_correlation_heatmap'): data = self.data query = data[data.STATION_ID == well_name] a = list(np.unique(query.ANALYTE_NAME.values)) b = ['TRITIUM','IODINE-129','SPECIFIC CONDUCTANCE', 'PH','URANIUM-238', 'DEPTH_TO_WATER'] analytes = self.__custom_analyte_sort(list(set(a) and set(b))) query = query.loc[query.ANALYTE_NAME.isin(analytes)] analytes = self.__custom_analyte_sort(np.unique(query.ANALYTE_NAME.values)) x = query[['COLLECTION_DATE', 'ANALYTE_NAME']] unique = ~x.duplicated() query = query[unique] piv = query.reset_index().pivot(index='COLLECTION_DATE',columns='ANALYTE_NAME', values='RESULT') piv = piv[analytes] totalSamples = piv.shape[0] piv = piv.dropna() samples = piv.shape[0] if(samples < 5): return 'ERROR: {} does not have enough samples to plot.'.format(well_name) else: scaler = StandardScaler() pivScaled = scaler.fit_transform(piv) pivScaled = pd.DataFrame(pivScaled, columns=piv.columns) pivScaled.index = piv.index corr_matrix = pivScaled.corr() if(show_symmetry): mask = None else: mask = np.triu(corr_matrix) if(color): cmap = 'RdBu' else: cmap = 'binary' fig, ax = plt.subplots(figsize=(8,6)) ax.set_title(well_name + '_correlation', fontweight='bold') ttl = ax.title ttl.set_position([.5, 1.05]) props = dict(boxstyle='round', facecolor='grey', alpha=0.15) ax.text(1.3, 1.05, 'Start date: {}\nEnd date: {}\n\nSamples: {} of {}'.format(piv.index[0], piv.index[-1], samples, totalSamples), transform=ax.transAxes, fontsize=15, fontweight='bold', verticalalignment='bottom', bbox=props) ax = sns.heatmap(corr_matrix, ax=ax, mask=mask, vmin=-1, vmax=1, xticklabels=corr_matrix.columns, yticklabels=corr_matrix.columns, cmap=cmap, annot=True, linewidths=1, cbar_kws={'orientation': 'vertical'}) if not os.path.exists(save_dir): os.makedirs(save_dir) fig.savefig(save_dir + '/' + well_name + '_correlation.png', bbox_inches="tight") # Description: # Plots a heatmap of the correlations of the important analytes over time for each well in the dataset. # Parameters: # show_symmetry (bool): choose whether or not the heatmap should show the same information twice over the diagonal # color (bool): choose whether or not the plot should be in color or in greyscale # save_dir (string): name of the directory you want to save the plot to def plot_all_correlation_heatmap(self, show_symmetry=True, color=True, save_dir='plot_correlation_heatmap'): data = self.data wells = np.array(data.STATION_ID.values) wells = np.unique(wells) for well in wells: self.plot_correlation_heatmap(well_name=well, show_symmetry=show_symmetry, color=color, save_dir=save_dir) # Description: # Resamples the data based on the frequency specified and interpolates the values of the analytes. # Parameters: # well_name (string): name of the well to be processed # analytes (list of strings): list of analyte names to use # frequency (string): {‘D’, ‘W’, ‘M’, ‘Y’} frequency to interpolate. # See https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html for valid frequency inputs. (e.g. ‘W’ = every week, ‘D ’= every day, ‘2W’ = every 2 weeks) def interpolate_well_data(self, well_name, analytes, frequency='2W'): data = self.data inter_series = {} query = data[data.STATION_ID == well_name] for analyte in analytes: series = query[query.ANALYTE_NAME == analyte] series = (series[['COLLECTION_DATE', 'RESULT']]) series.COLLECTION_DATE = pd.to_datetime(series.COLLECTION_DATE) series.index = series.COLLECTION_DATE original_dates = series.index series = series.drop('COLLECTION_DATE', axis=1) series = series.rename({'RESULT': analyte}, axis=1) upsampled = series.resample(frequency).mean() interpolated = upsampled.interpolate(method='linear', order=2) inter_series[analyte] = interpolated join = inter_series[analytes[0]] join = join.drop(analytes[0], axis=1) for analyte in analytes: join = join.join(inter_series[analyte]) join = join.dropna() return join # Description: # Plots the correlations with the physical plots as well as the correlations of the important analytes over time for a specified well. # Parameters: # well_name (string): name of the well to be processed # analytes (list of strings): list of analyte names to use # remove_outliers (bool): choose whether or to remove the outliers. # z_threshold (float): z_score threshold to eliminate outliers # interpolate (bool): choose whether or to interpolate the data # frequency (string): {‘D’, ‘W’, ‘M’, ‘Y’} frequency to interpolate. See https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html for valid frequency inputs. (e.g. ‘W’ = every week, ‘D ’= every day, ‘2W’ = every 2 weeks) # save_dir (string): name of the directory you want to save the plot to def plot_corr_by_well(self, well_name, analytes, remove_outliers=True, z_threshold=4, interpolate=False, frequency='2W', save_dir='plot_correlation', log_transform=False, fontsize=20, returnData=False, remove=[]): data = self.data query = data[data.STATION_ID == well_name] a = list(np.unique(query.ANALYTE_NAME.values))# get all analytes from dataset for value in analytes: if((value in a)==False): return 'ERROR: No analyte named "{}" in data.'.format(value) analytes = sorted(analytes) query = query.loc[query.ANALYTE_NAME.isin(analytes)] x = query[['COLLECTION_DATE', 'ANALYTE_NAME']] unique = ~x.duplicated() query = query[unique] piv = query.reset_index().pivot(index='COLLECTION_DATE',columns='ANALYTE_NAME', values='RESULT') piv = piv[analytes] piv.index = pd.to_datetime(piv.index) totalSamples = piv.shape[0] piv = piv.dropna() if(interpolate): piv = self.interpolate_well_data(well_name, analytes, frequency=frequency) file_extension = '_interpolated_' + frequency title = well_name + '_correlation - interpolated every ' + frequency else: file_extension = '_correlation' title = well_name + '_correlation' samples = piv.shape[0] if(samples < 5): if(interpolate): return 'ERROR: {} does not have enough samples to plot.\n Try a different interpolation frequency'.format(well_name) return 'ERROR: {} does not have enough samples to plot.'.format(well_name) else: # scaler = StandardScaler() # pivScaled = scaler.fit_transform(piv) # pivScaled = pd.DataFrame(pivScaled, columns=piv.columns) # pivScaled.index = piv.index # piv = pivScaled if(log_transform): piv[piv <= 0] = 0.00000001 piv = np.log10(piv) # Remove outliers if(remove_outliers): piv = self.remove_outliers(piv, z_threshold=z_threshold) samples = piv.shape[0] idx = piv.index.date dates = [dates.strftime('%Y-%m-%d') for dates in idx] remaining = [i for i in dates if i not in remove] piv = piv.loc[remaining] sns.set_style("white", {"axes.facecolor": "0.95"}) g = sns.PairGrid(piv, aspect=1.2, diag_sharey=False, despine=False) g.fig.suptitle(title, fontweight='bold', y=1.08, fontsize=25) g.map_lower(sns.regplot, lowess=True, ci=False, line_kws={'color': 'red', 'lw': 3}, scatter_kws={'color': 'black', 's': 20}) g.map_diag(sns.distplot, kde_kws={'color': 'black', 'lw': 3}, hist_kws={'histtype': 'bar', 'lw': 2, 'edgecolor': 'k', 'facecolor':'grey'}) g.map_upper(self.__plotUpperHalf) for ax in g.axes.flat: ax.tick_params("y", labelrotation=0, labelsize=fontsize) ax.set_xticklabels(ax.get_xticklabels(), rotation=45, fontsize=fontsize) ax.set_xlabel(ax.get_xlabel(), fontsize=fontsize, fontweight='bold') #HERE ax.set_ylabel(ax.get_ylabel(), fontsize=fontsize,fontweight='bold') g.fig.subplots_adjust(wspace=0.3, hspace=0.3) ax = plt.gca() props = dict(boxstyle='round', facecolor='grey', alpha=0.15) ax.text(1.3, 6.2, 'Start date: {}\nEnd date: {}\n\nOriginal samples: {}\nSamples used: {}'.format(piv.index[0].date(), piv.index[-1].date(), totalSamples, samples), transform=ax.transAxes, fontsize=20, fontweight='bold', verticalalignment='bottom', bbox=props) # Add titles to the diagonal axes/subplots for ax, col in zip(np.diag(g.axes), piv.columns): ax.set_title(col, y=0.82, fontsize=15) if not os.path.exists(save_dir): os.makedirs(save_dir) g.fig.savefig(save_dir + '/' + well_name + file_extension + '.png', bbox_inches="tight") if(returnData): return piv # Description: # Plots the correlations with the physical plots as well as the important analytes over time for each well in the dataset. # Parameters: # analytes (list of strings): list of analyte names to use # remove_outliers (bool): choose whether or to remove the outliers. # z_threshold (float): z_score threshold to eliminate outliers # interpolate (bool): choose whether or to interpolate the data # frequency (string): {‘D’, ‘W’, ‘M’, ‘Y’} frequency to interpolate. See https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html for valid frequency inputs. (e.g. ‘W’ = every week, ‘D ’= every day, ‘2W’ = every 2 weeks) # save_dir (string): name of the directory you want to save the plot to def plot_all_corr_by_well(self, analytes, remove_outliers=True, z_threshold=4, interpolate=False, frequency='2W', save_dir='plot_correlation', log_transform=False, fontsize=20): data = self.data wells = np.array(data.STATION_ID.values) wells = np.unique(wells) for well in wells: self.plot_corr_by_well(well_name=well, analytes=analytes,remove_outliers=remove_outliers, z_threshold=z_threshold, interpolate=interpolate, frequency=frequency, save_dir=save_dir, log_transform=log_transform, fontsize=fontsize) # Description: # Plots the correlations with the physical plots as well as the correlations of the important analytes for ALL the wells on a specified date or range of dates if a lag greater than 0 is specifed. # Parameters: # date (string): date to be analyzed # analytes (list of strings): list of analyte names to use # lag (int): number of days to look ahead and behind the specified date (+/-) # min_samples (int): minimum number of samples the result should contain in order to execute. # save_dir (string): name of the directory you want to save the plot to def plot_corr_by_date_range(self, date, analytes, lag=0, min_samples=10, save_dir='plot_corr_by_date', log_transform=False, fontsize=20, returnData=False): if(lag==0): data = self.data data = self.simplify_data(data=data) query = data[data.COLLECTION_DATE == date] a = list(np.unique(query.ANALYTE_NAME.values))# get all analytes from dataset for value in analytes: if((value in a)==False): return 'ERROR: No analyte named "{}" in data.'.format(value) analytes = sorted(analytes) query = query.loc[query.ANALYTE_NAME.isin(analytes)] if(query.shape[0] == 0): return 'ERROR: {} has no data for all of the analytes.'.format(date) samples = query[['COLLECTION_DATE', 'STATION_ID', 'ANALYTE_NAME']].duplicated().value_counts()[0] if(samples < min_samples): return 'ERROR: {} does not have at least {} samples.'.format(date, min_samples) else: piv = query.reset_index().pivot_table(index = 'STATION_ID', columns='ANALYTE_NAME', values='RESULT',aggfunc=np.mean) # return piv else: # If the data has already been calculated with the lag specified, retrieve it if(self.jointData_is_set(lag=lag)==True): data = self.__jointData[0] # Otherwise, calculate it else: data = self.getJointData(analytes, lag=lag) self.set_jointData(data=data, lag=lag) # get new range based on the lag and create the pivor table to be able to do the correlation dateStart, dateEnd = self.__getLagDate(date, lagDays=lag) dateRange_key = str(dateStart.date()) + " - " + str(dateEnd.date()) piv = pd.DataFrame(data.loc[dateRange_key]).unstack().T piv.index = piv.index.droplevel() piv = pd.DataFrame(piv).dropna(axis=0, how='all') num_NaNs = int(piv.isnull().sum().sum()) samples = (piv.shape[0]*piv.shape[1])-num_NaNs for col in piv.columns: piv[col] = piv[col].astype('float64', errors = 'raise') if(lag>0): date = dateRange_key # return piv title = date + '_correlation' # scaler = StandardScaler() # pivScaled = scaler.fit_transform(piv) # pivScaled = pd.DataFrame(pivScaled, columns=piv.columns) # pivScaled.index = piv.index # piv = pivScaled if(log_transform): piv[piv <= 0] = 0.00000001 piv = np.log10(piv) sns.set_style("white", {"axes.facecolor": "0.95"}) g = sns.PairGrid(piv, aspect=1.2, diag_sharey=False, despine=False) g.fig.suptitle(title, fontweight='bold', y=1.08, fontsize=25) g.map_lower(sns.regplot, lowess=True, ci=False, line_kws={'color': 'red', 'lw': 3}, scatter_kws={'color': 'black', 's': 20}) g.map_diag(sns.distplot, kde_kws={'color': 'black', 'lw': 3}, hist_kws={'histtype': 'bar', 'lw': 2, 'edgecolor': 'k', 'facecolor':'grey'}) g.map_upper(self.__plotUpperHalf) for ax in g.axes.flat: ax.tick_params("y", labelrotation=0, labelsize=fontsize) ax.set_xticklabels(ax.get_xticklabels(), rotation=45, fontsize=fontsize) ax.set_xlabel(ax.get_xlabel(), fontsize=fontsize, fontweight='bold') #HERE ax.set_ylabel(ax.get_ylabel(), fontsize=fontsize,fontweight='bold') g.fig.subplots_adjust(wspace=0.3, hspace=0.3) ax = plt.gca() props = dict(boxstyle='round', facecolor='grey', alpha=0.15) ax.text(1.3, 3, 'Date: {}\n\nWells: {}\nSamples used: {}'.format(date, piv.shape[0] ,samples), transform=ax.transAxes, fontsize=20, fontweight='bold', verticalalignment='bottom', bbox=props) # Add titles to the diagonal axes/subplots for ax, col in zip(np.diag(g.axes), piv.columns): ax.set_title(col, y=0.82, fontsize=15) if not os.path.exists(save_dir): os.makedirs(save_dir) g.fig.savefig(save_dir + '/' + date + '.png', bbox_inches="tight") if(returnData): return piv # Description: # Plots the correlations with the physical plots as well as the correlations of the important analytes for ALL the wells in specified year. # Parameters: # year (int): year to be analyzed # analytes (list of strings): list of analyte names to use # remove_outliers (bool): choose whether or to remove the outliers. # z_threshold (float): z_score threshold to eliminate outliers # min_samples (int): minimum number of samples the result should contain in order to execute. # save_dir (string): name of the directory you want to save the plot to def plot_corr_by_year(self, year, analytes, remove_outliers=True, z_threshold=4, min_samples=10, save_dir='plot_corr_by_year', log_transform=False, fontsize=20, returnData=False): data = self.data query = data query = self.simplify_data(data=query) query.COLLECTION_DATE = pd.to_datetime(query.COLLECTION_DATE) query = query[query.COLLECTION_DATE.dt.year == year] a = list(np.unique(query.ANALYTE_NAME.values))# get all analytes from dataset for value in analytes: if((value in a)==False): return 'ERROR: No analyte named "{}" in data.'.format(value) analytes = sorted(analytes) query = query.loc[query.ANALYTE_NAME.isin(analytes)] if(query.shape[0] == 0): return 'ERROR: {} has no data for the 6 analytes.'.format(year) samples = query[['COLLECTION_DATE', 'STATION_ID', 'ANALYTE_NAME']].duplicated().value_counts()[0] if(samples < min_samples): return 'ERROR: {} does not have at least {} samples.'.format(date, min_samples) else: piv = query.reset_index().pivot_table(index = 'STATION_ID', columns='ANALYTE_NAME', values='RESULT',aggfunc=np.mean) # return piv # Remove outliers if(remove_outliers): piv = self.remove_outliers(piv, z_threshold=z_threshold) samples = piv.shape[0] * piv.shape[1] title = str(year) + '_correlation' # scaler = StandardScaler() # pivScaled = scaler.fit_transform(piv) # pivScaled = pd.DataFrame(pivScaled, columns=piv.columns) # pivScaled.index = piv.index # piv = pivScaled if(log_transform): piv[piv <= 0] = 0.00000001 piv = np.log10(piv) sns.set_style("white", {"axes.facecolor": "0.95"}) g = sns.PairGrid(piv, aspect=1.2, diag_sharey=False, despine=False) g.fig.suptitle(title, fontweight='bold', y=1.08, fontsize=25) g.map_lower(sns.regplot, lowess=True, ci=False, line_kws={'color': 'red', 'lw': 3}, scatter_kws={'color': 'black', 's': 20}) g.map_diag(sns.distplot, kde_kws={'color': 'black', 'lw': 3}, hist_kws={'histtype': 'bar', 'lw': 2, 'edgecolor': 'k', 'facecolor':'grey'}) g.map_upper(self.__plotUpperHalf) for ax in g.axes.flat: ax.tick_params("y", labelrotation=0, labelsize=fontsize) ax.set_xticklabels(ax.get_xticklabels(), rotation=45, fontsize=fontsize) ax.set_xlabel(ax.get_xlabel(), fontsize=fontsize, fontweight='bold') #HERE ax.set_ylabel(ax.get_ylabel(), fontsize=fontsize,fontweight='bold') g.fig.subplots_adjust(wspace=0.3, hspace=0.3) ax = plt.gca() props = dict(boxstyle='round', facecolor='grey', alpha=0.15) ax.text(1.3, 3, 'Date: {}\n\nSamples used: {}'.format(year, samples), transform=ax.transAxes, fontsize=20, fontweight='bold', verticalalignment='bottom', bbox=props) # Add titles to the diagonal axes/subplots for ax, col in zip(np.diag(g.axes), piv.columns): ax.set_title(col, y=0.82, fontsize=15) if not os.path.exists(save_dir): os.makedirs(save_dir) g.fig.savefig(save_dir + '/' + str(year) + '.png', bbox_inches="tight") if(returnData): return piv # Description: # Plots the linear regression line of data given the analyte_name and well_name. The plot includes the prediction where the line of best fit intersects with the Maximum Concentration Limit (MCL). # Parameters: # well_name (string): name of the well to be processed # analyte_name (string): name of the analyte to be processed # year_interval (int): plot by how many years to appear in the axis e.g.(1 = every year, 5 = every 5 years, ...) # save_dir (string): name of the directory you want to save the plot to def plot_MCL(self, well_name, analyte_name, year_interval=5, save_dir='plot_MCL'): data = self.data # finds the intersection point of 2 lines given the slopes and y-intercepts def line_intersect(m1, b1, m2, b2): if m1 == m2: print ('The lines are parallel') return None x = (b2 - b1) / (m1 - m2) y = m1 * x + b1 return x,y # Gets appropriate data (well_name and analyte_name) query = self.query_data(well_name, analyte_name) if(type(query)==int and query == 0): return 'No results found for {} and {}'.format(well_name, analyte_name) else: test = query.groupby(['COLLECTION_DATE']).mean() test.index = pd.to_datetime(test.index) x = date2num(test.index) y = np.log10(test.RESULT) ylabel = 'log-Concentration (' + self.get_unit(analyte_name) + ')' y = y.rename(ylabel) p, cov = np.polyfit(x, y, 1, cov=True) # parameters and covariance from of the fit of 1-D polynom. m_unc = np.sqrt(cov[0][0]) b_unc = np.sqrt(cov[1][1]) f = np.poly1d(p) try: MCL = self.get_MCL(analyte_name) m1, b1 = f # line of best fit m2, b2 = 0, MCL # MCL constant intersection = line_intersect(m1, b1, m2, b2) ## Get confidence interval intersection points with MCL data = list(zip(x,y)) n = len(data) list_slopes = [] list_intercepts = [] random.seed(50) for _ in range(80): sampled_data = [ random.choice(data) for _ in range(n) ] x_s, y_s = zip(*sampled_data) x_s = np.array(x_s) y_s = np.array(y_s) m_s, b_s, r, p, err = scipy.stats.linregress(x_s,y_s) ymodel = m_s*x_s + b_s list_slopes.append(m_s) list_intercepts.append(b_s) max_index = list_slopes.index(max(list_slopes)) min_index = list_slopes.index(min(list_slopes)) intersection_left = line_intersect(list_slopes[min_index], list_intercepts[min_index], m2, b2) intersection_right = line_intersect(list_slopes[max_index], list_intercepts[max_index], m2, b2) ## fig, ax = plt.subplots(figsize=(10, 6)) ax.set_title(well_name + ' - ' + analyte_name, fontweight='bold') ttl = ax.title ttl.set_position([.5, 1.05]) years = mdates.YearLocator(year_interval) # every year months = mdates.MonthLocator() # every month yearsFmt = mdates.DateFormatter('%Y') ax.xaxis.set_major_locator(years) ax = plt.gca() ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(yearsFmt) ax.autoscale_view() ax.grid(True, alpha=0.4) small_fontSize = 15 large_fontSize = 20 plt.rc('axes', titlesize=large_fontSize) plt.rc('axes', labelsize=large_fontSize) plt.rc('legend', fontsize=small_fontSize) plt.rc('xtick', labelsize=small_fontSize) plt.rc('ytick', labelsize=small_fontSize) ax.set_xlabel('Years') ax.set_ylabel('log-Concentration (' + self.get_unit(analyte_name) + ')') if(intersection[0] < min(x)): temp = intersection_left intersection_left = intersection_right intersection_right = temp ax.set_ylim([0, max(y)+1]) ax.set_xlim([intersection_left[0]-1000, max(x)+1000]) elif(intersection[0] < max(x) and intersection[0] > min(x)): ax.set_ylim([0, max(y)+1]) ax.set_xlim(min(x)-1000, max(x)+1000) else: ax.set_ylim([0, max(y)+1]) ax.set_xlim([min(x)-1000, intersection_right[0]+1000]) ax = sns.regplot(x, y, logx=True, truncate=False, seed=42, n_boot=1000, ci=95) # Line of best fit ax.plot(x, y, ls='', marker='o', ms=5, color='black', alpha=1) # Data ax.axhline(y=MCL, color='r', linestyle='--') # MCL ax.plot(intersection[0], intersection[1], color='blue', marker='o', ms=10) ax.plot(intersection_left[0], intersection_left[1], color='green', marker='o', ms=5) ax.plot(intersection_right[0], intersection_right[1], color='green', marker='o', ms=5) predict = num2date(intersection[0]).date() l_predict = num2date(intersection_left[0]).date() u_predict = num2date(intersection_right[0]).date() ax.annotate(predict, (intersection[0], intersection[1]), xytext=(intersection[0], intersection[1]+1), bbox=dict(boxstyle="round", alpha=0.1),ha='center', arrowprops=dict(arrowstyle="->", color='blue'), fontsize=small_fontSize, fontweight='bold') props = dict(boxstyle='round', facecolor='grey', alpha=0.15) ax.text(1.1, 0.5, 'Lower confidence: {}\n Prediction: {}\nUpper confidence: {}'.format(l_predict, predict, u_predict), transform=ax.transAxes, fontsize=small_fontSize, fontweight='bold', verticalalignment='bottom', bbox=props) if not os.path.exists(save_dir): os.makedirs(save_dir) plt.savefig(save_dir + '/' + well_name + '-' + analyte_name +'.png', bbox_inches="tight") except: print('ERROR: Something went wrong') return None # Description: # Gernates a PCA biplot (PCA score plot + loading plot) of the data given a date in the dataset. The data is also clustered into n_clusters. # Parameters: # date (string): date to be analyzed # analytes (list of strings): list of analyte names to use # lag (int): number of days to look ahead and behind the specified date (+/-) # n_clusters (int): number of clusters to split the data into. # filter (bool): Flag to indicate well filtering. # col (string): column name from the construction dataset that you want to filter by # equals (list of strings): value(s) to filter by in column col # return_clusters (bool): Flag to return the cluster data to be used for spatial plotting. # min_samples (int): minimum number of samples the result should contain in order to execute. # show_labels (bool): choose whether or not to show the name of the wells. # save_dir (string): name of the directory you want to save the plot to def plot_PCA_by_date(self, date, analytes, lag=0, n_clusters=4, return_clusters=False, min_samples=3, show_labels=True, save_dir='plot_PCA_by_date', filter=False, col=None, equals=[]): if(lag==0): data = self.data data = self.simplify_data(data=data) query = data[data.COLLECTION_DATE == date] if(filter): filter_res = self.filter_by_column(data=self.construction_data, col=col, equals=equals) if('ERROR:' in str(filter_res)): return filter_res query_wells = list(query.STATION_ID.unique()) filter_wells = list(filter_res.index.unique()) intersect_wells = list(set(query_wells) & set(filter_wells)) if(len(intersect_wells)<=0): return 'ERROR: No results for this query with the specifed filter parameters.' query = query[query['STATION_ID'].isin(intersect_wells)] a = list(np.unique(query.ANALYTE_NAME.values))# get all analytes from dataset for value in analytes: if((value in a)==False): return 'ERROR: No analyte named "{}" in data.'.format(value) analytes = sorted(analytes) query = query.loc[query.ANALYTE_NAME.isin(analytes)] if(query.shape[0] == 0): return 'ERROR: {} has no data for the 6 analytes.'.format(date) samples = query[['COLLECTION_DATE', 'STATION_ID', 'ANALYTE_NAME']].duplicated().value_counts()[0] if(samples < min_samples): return 'ERROR: {} does not have at least {} samples.'.format(date, min_samples) # if(len(np.unique(query.ANALYTE_NAME.values)) < 6): # return 'ERROR: {} has less than the 6 analytes we want to analyze.'.format(date) else: # analytes = self.__custom_analyte_sort(np.unique(query.ANALYTE_NAME.values)) analytes = sorted(analytes) piv = query.reset_index().pivot_table(index = 'STATION_ID', columns='ANALYTE_NAME', values='RESULT',aggfunc=np.mean) # return piv else: # If the data has already been calculated with the lag specified, retrieve it if(self.jointData_is_set(lag=lag)==True): data = self.__jointData[0] # Otherwise, calculate it else: data = self.getJointData(analytes, lag=lag) self.set_jointData(data=data, lag=lag) # get new range based on the lag and create the pivor table to be able to do the correlation dateStart, dateEnd = self.__getLagDate(date, lagDays=lag) dateRange_key = str(dateStart.date()) + " - " + str(dateEnd.date()) piv = pd.DataFrame(data.loc[dateRange_key]).unstack().T piv.index = piv.index.droplevel() piv = pd.DataFrame(piv).dropna(axis=0, how='all') num_NaNs = int(piv.isnull().sum().sum()) samples = (piv.shape[0]*piv.shape[1])-num_NaNs for col in piv.columns: piv[col] = piv[col].astype('float64', errors = 'raise') if(lag>0): date = dateRange_key # return piv main_data = piv.dropna() scaler = StandardScaler() X = scaler.fit_transform(main_data) pca = PCA(n_components=2) x_new = pca.fit_transform(X) pca_points = pd.DataFrame(x_new, columns=["x1", "x2"]) k_Means = KMeans(n_clusters=n_clusters, random_state=42) model = k_Means.fit(pca_points[['x1', 'x2']]) predict = model.predict(pca_points[['x1', 'x2']]) # attach predicted cluster to original points pca_points['predicted'] = model.labels_ # Create a dataframe for cluster_centers (centroids) centroids = pd.DataFrame(model.cluster_centers_, columns=["x1", "x2"]) colors = ['red', 'blue', 'orange', 'purple', 'green', 'beige', 'pink', 'black', 'cadetblue', 'lightgreen'] pca_points['color'] = pca_points['predicted'].map(lambda p: colors[p]) fig, ax = plt.subplots(figsize=(10,10)) ax = plt.axes() small_fontSize = 15 large_fontSize = 20 plt.rc('axes', titlesize=large_fontSize) plt.rc('axes', labelsize=large_fontSize) plt.rc('legend', fontsize=small_fontSize) plt.rc('xtick', labelsize=small_fontSize) plt.rc('ytick', labelsize=small_fontSize) def myplot(score,coeff,labels=None,c='r', centroids=None): xs = score.iloc[:,0] ys = score.iloc[:,1] n = coeff.shape[0] scalex = 1.0/(xs.max() - xs.min()) scaley = 1.0/(ys.max() - ys.min()) scatt_X = xs * scalex scatt_Y = ys * scaley scatter = plt.scatter(scatt_X, scatt_Y, alpha=0.8, label='Wells', c=c) centers = plt.scatter(centroids.iloc[:,0]* scalex, centroids.iloc[:,1]* scaley, c = colors[0:n_clusters], marker='X', s=550) for i in range(n): arrow = plt.arrow(0, 0, coeff[i,0], coeff[i,1], color = 'r', alpha = 0.9, head_width=0.05, head_length=0.05, label='Loadings') if labels is None: plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, "Var"+str(i+1), color = 'g', ha = 'center', va = 'center') else: plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, labels[i], color = 'g', ha = 'center', va = 'bottom') if(show_labels): for x_pos, y_pos, label in zip(scatt_X, scatt_Y, main_data.index): ax.annotate(label, # The label for this point xy=(x_pos, y_pos), # Position of the corresponding point xytext=(7, 0), # Offset text by 7 points to the right textcoords='offset points', # tell it to use offset points ha='left', # Horizontally aligned to the left va='center', # Vertical alignment is centered color='black', alpha=0.8) plt.legend( [scatter, centers, arrow], ['Wells', 'Well centroids','Loadings']) samples = x_new.shape[0]*piv.shape[1] props = dict(boxstyle='round', facecolor='grey', alpha=0.15) ax.text(1.1, 0.5, 'Date: {}\n\nSamples: {}\nWells: {}'.format(date, samples, x_new.shape[0]), transform=ax.transAxes, fontsize=20, fontweight='bold', verticalalignment='bottom', bbox=props) plt.xlim(-1,1) plt.ylim(-1,1) plt.xlabel("PC{}".format(1)) plt.ylabel("PC{}".format(2)) ax.set_title('PCA Biplot - ' + date, fontweight='bold') plt.grid(alpha=0.5) #Call the function. Use only the 2 PCs. myplot(pca_points,np.transpose(pca.components_[0:2, :]), labels=piv.columns, c=pca_points['color'], centroids=centroids) plt.show() if not os.path.exists(save_dir): os.makedirs(save_dir) fig.savefig(save_dir + '/' + 'PCA Biplot - '+ date +'.png', bbox_inches="tight") if(return_clusters): stations = list(main_data.index) color_wells = list(pca_points.color) def merge(list1, list2): merged_list = [(list1[i], list2[i]) for i in range(0, len(list1))] return merged_list color_df = pd.DataFrame(merge(stations, color_wells), columns=['STATION_ID', 'color']) if(self.get_Construction_Data==None): print('You need to set the GPS data first using the getConstructionData function.') return None else: gps_color = pd.merge(self.get_Construction_Data(), color_df, on=['STATION_ID']) return gps_color # Description: # Gernates a PCA biplot (PCA score plot + loading plot) of the data given a year in the dataset. The data is also clustered into n_clusters. # Parameters: # year (int): year to be analyzed # analytes (list of strings): list of analyte names to use # lag (int): number of days to look ahead and behind the specified date (+/-) # n_clusters (int): number of clusters to split the data into. # filter (bool): Flag to indicate well filtering. # col (string): column name from the construction dataset that you want to filter by # equals (list of strings): value(s) to filter by in column col # return_clusters (bool): Flag to return the cluster data to be used for spatial plotting. # min_samples (int): minimum number of samples the result should contain in order to execute. # show_labels (bool): choose whether or not to show the name of the wells. # save_dir (string): name of the directory you want to save the plot to def plot_PCA_by_year(self, year, analytes, n_clusters=4, return_clusters=False, min_samples=10, show_labels=True, save_dir='plot_PCA_by_year', filter=False, col=None, equals=[]): data = self.data query = self.simplify_data(data=data) query.COLLECTION_DATE = pd.to_datetime(query.COLLECTION_DATE) query = query[query.COLLECTION_DATE.dt.year == year] if(filter): filter_res = self.filter_by_column(data=self.construction_data, col=col, equals=equals) if('ERROR:' in str(filter_res)): return filter_res query_wells = list(query.STATION_ID.unique()) filter_wells = list(filter_res.index.unique()) intersect_wells = list(set(query_wells) & set(filter_wells)) if(len(intersect_wells)<=0): return 'ERROR: No results for this query with the specifed filter parameters.' query = query[query['STATION_ID'].isin(intersect_wells)] a = list(np.unique(query.ANALYTE_NAME.values))# get all analytes from dataset for value in analytes: if((value in a)==False): return 'ERROR: No analyte named "{}" in data.'.format(value) analytes = sorted(analytes) query = query.loc[query.ANALYTE_NAME.isin(analytes)] if(query.shape[0] == 0): return 'ERROR: {} has no data for the 6 analytes.'.format(year) samples = query[['COLLECTION_DATE', 'STATION_ID', 'ANALYTE_NAME']].duplicated().value_counts()[0] if(samples < min_samples): return 'ERROR: {} does not have at least {} samples.'.format(year, min_samples) # if(len(np.unique(query.ANALYTE_NAME.values)) < 6): # return 'ERROR: {} has less than the 6 analytes we want to analyze.'.format(year) else: # analytes = self.__custom_analyte_sort(np.unique(query.ANALYTE_NAME.values)) analytes = sorted(analytes) piv = query.reset_index().pivot_table(index = 'STATION_ID', columns='ANALYTE_NAME', values='RESULT',aggfunc=np.mean) main_data = piv.dropna() # # FILTERING CODE # if(filter): # res_wells = self.filter_wells(filter_well_by) # main_data = main_data.loc[main_data.index.isin(res_wells)] scaler = StandardScaler() X = scaler.fit_transform(main_data) pca = PCA(n_components=2) x_new = pca.fit_transform(X) pca_points = pd.DataFrame(x_new, columns=["x1", "x2"]) k_Means = KMeans(n_clusters=n_clusters, random_state=42) model = k_Means.fit(pca_points[['x1', 'x2']]) predict = model.predict(pca_points[['x1', 'x2']]) # attach predicted cluster to original points pca_points['predicted'] = model.labels_ # Create a dataframe for cluster_centers (centroids) centroids = pd.DataFrame(model.cluster_centers_, columns=["x1", "x2"]) colors = ['red', 'blue', 'orange', 'purple', 'green', 'beige', 'pink', 'black', 'cadetblue', 'lightgreen'] pca_points['color'] = pca_points['predicted'].map(lambda p: colors[p]) fig, ax = plt.subplots(figsize=(15,15)) ax = plt.axes() small_fontSize = 15 large_fontSize = 20 plt.rc('axes', titlesize=large_fontSize) plt.rc('axes', labelsize=large_fontSize) plt.rc('legend', fontsize=small_fontSize) plt.rc('xtick', labelsize=small_fontSize) plt.rc('ytick', labelsize=small_fontSize) def myplot(score,coeff,labels=None,c='r', centroids=None): xs = score[:,0] ys = score[:,1] n = coeff.shape[0] scalex = 1.0/(xs.max() - xs.min()) scaley = 1.0/(ys.max() - ys.min()) scatt_X = xs * scalex scatt_Y = ys * scaley scatter = plt.scatter(scatt_X, scatt_Y, alpha=0.8, label='Wells', c=c) centers = plt.scatter(centroids.iloc[:,0]* scalex, centroids.iloc[:,1]* scaley, c = colors[0:n_clusters], marker='X', s=550) for i in range(n): arrow = plt.arrow(0, 0, coeff[i,0], coeff[i,1], color = 'r', alpha = 0.9, head_width=0.05, head_length=0.05) if labels is None: plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, "Var"+str(i+1), color = 'g', ha = 'center', va = 'center') else: plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, labels[i], color = 'g', ha = 'center', va = 'bottom') if(show_labels): for x_pos, y_pos, label in zip(scatt_X, scatt_Y, main_data.index): ax.annotate(label, # The label for this point xy=(x_pos, y_pos), # Position of the corresponding point xytext=(7, 0), # Offset text by 7 points to the right textcoords='offset points', # tell it to use offset points ha='left', # Horizontally aligned to the left va='center', color='black', alpha=0.8) # Vertical alignment is centered plt.legend( [scatter, centers, arrow], ['Wells', 'Well centroids','Loadings']) samples = x_new.shape[0]*piv.shape[1] props = dict(boxstyle='round', facecolor='grey', alpha=0.15) ax.text(1.1, 0.5, 'Date: {}\n\nSamples: {}\nWells: {}'.format(year,samples, x_new.shape[0]), transform=ax.transAxes, fontsize=20, fontweight='bold', verticalalignment='bottom', bbox=props) plt.xlim(-1,1) plt.ylim(-1,1) plt.xlabel("PC{}".format(1)) plt.ylabel("PC{}".format(2)) ax.set_title('PCA Biplot - ' + str(year), fontweight='bold') plt.grid(alpha=0.5) #Call the function. Use only the 2 PCs. myplot(x_new[:,0:2],np.transpose(pca.components_[0:2, :]), labels=piv.columns, c=pca_points['color'], centroids=centroids) plt.show() if not os.path.exists(save_dir): os.makedirs(save_dir) fig.savefig(save_dir + '/' + 'PCA Biplot - '+ str(year) +'.png', bbox_inches="tight") if(return_clusters): stations = list(main_data.index) color_wells = list(pca_points.color) def merge(list1, list2): merged_list = [(list1[i], list2[i]) for i in range(0, len(list1))] return merged_list color_df = pd.DataFrame(merge(stations, color_wells), columns=['STATION_ID', 'color']) if(self.get_Construction_Data==None): print('You need to set the GPS data first using the setConstructionData function.') return None else: gps_color = pd.merge(self.get_Construction_Data(), color_df, on=['STATION_ID']) return gps_color # Description: # Gernates a PCA biplot (PCA score plot + loading plot) of the data given a well_name in the dataset. Only uses the 6 important analytes. # Parameters: # well_name (string): name of the well to be processed # interpolate (bool): choose whether or to interpolate the data # frequency (string): {‘D’, ‘W’, ‘M’, ‘Y’} frequency to interpolate. See https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html for valid frequency inputs. (e.g. ‘W’ = every week, ‘D ’= every day, ‘2W’ = every 2 weeks) # min_samples (int): minimum number of samples the result should contain in order to execute. # show_labels (bool): choose whether or not to show the name of the wells. # save_dir (string): name of the directory you want to save the plot to def plot_PCA_by_well(self, well_name, analytes, interpolate=False, frequency='2W', min_samples=10, show_labels=True, save_dir='plot_PCA_by_well'): data = self.data query = data[data.STATION_ID == well_name] a = list(np.unique(query.ANALYTE_NAME.values))# get all analytes from dataset for value in analytes: if((value in a)==False): return 'ERROR: No analyte named "{}" in data.'.format(value) analytes = sorted(analytes) query = query.loc[query.ANALYTE_NAME.isin(analytes)] x = query[['COLLECTION_DATE', 'ANALYTE_NAME']] unique = ~x.duplicated() query = query[unique] piv = query.reset_index().pivot(index='COLLECTION_DATE',columns='ANALYTE_NAME', values='RESULT') piv = piv[analytes] piv.index = pd.to_datetime(piv.index) totalSamples = piv.stack().shape[0] piv = piv.dropna() if(interpolate): piv = self.interpolate_well_data(well_name, analytes, frequency=frequency) title = 'PCA Biplot - ' + well_name + ' - interpolated every ' + frequency else: title = 'PCA Biplot - ' + well_name if(query.shape[0] == 0): return 'ERROR: {} has no data for the 6 analytes.'.format(date) samples = query[['COLLECTION_DATE', 'STATION_ID', 'ANALYTE_NAME']].duplicated().value_counts()[0] if(samples < min_samples): return 'ERROR: {} does not have at least {} samples.'.format(date, min_samples) # if(len(np.unique(query.ANALYTE_NAME.values)) < 6): # return 'ERROR: {} has less than the 6 analytes we want to analyze.'.format(well_name) else: scaler = StandardScaler() X = scaler.fit_transform(piv.dropna()) pca = PCA(n_components=2) x_new = pca.fit_transform(X) fig, ax = plt.subplots(figsize=(15,15)) ax = plt.axes() small_fontSize = 15 large_fontSize = 20 plt.rc('axes', titlesize=large_fontSize) plt.rc('axes', labelsize=large_fontSize) plt.rc('legend', fontsize=small_fontSize) plt.rc('xtick', labelsize=small_fontSize) plt.rc('ytick', labelsize=small_fontSize) def myplot(score,coeff,labels=None): xs = score[:,0] ys = score[:,1] n = coeff.shape[0] scalex = 1.0/(xs.max() - xs.min()) scaley = 1.0/(ys.max() - ys.min()) scatt_X = xs * scalex scatt_Y = ys * scaley scatter = plt.scatter(scatt_X, scatt_Y, alpha=0.8, label='Date samples') for i in range(n): arrow = plt.arrow(0, 0, coeff[i,0], coeff[i,1], color = 'r', alpha = 0.9, head_width=0.05, head_length=0.05, label='Loadings') if labels is None: plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, "Var"+str(i+1), color = 'g', ha = 'center', va = 'center') else: plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, labels[i], color = 'g', ha = 'center', va = 'bottom') if(show_labels): for x_pos, y_pos, label in zip(scatt_X, scatt_Y, piv.dropna().index.date): ax.annotate(label, # The label for this point xy=(x_pos, y_pos), # Position of the corresponding point xytext=(7, 0), # Offset text by 7 points to the right textcoords='offset points', # tell it to use offset points ha='left', # Horizontally aligned to the left va='center', # Vertical alignment is centered color='black', alpha=0.8) plt.legend( [scatter, arrow], ['Date samples', 'Loadings']) samples = x_new.shape[0]*piv.shape[1] props = dict(boxstyle='round', facecolor='grey', alpha=0.15) ax.text(1.1, 0.5, 'Start date: {}\nEnd date: {}\n\nOriginal samples: {}\nSamples used: {}\nDate samples: {}' .format(piv.index[0].date(), piv.index[-1].date(), totalSamples, samples, x_new.shape[0]), transform=ax.transAxes, fontsize=20, fontweight='bold', verticalalignment='bottom', bbox=props) plt.xlim(-1,1) plt.ylim(-1,1) plt.xlabel("PC{}".format(1)) plt.ylabel("PC{}".format(2)) ax.set_title(title, fontweight='bold') plt.grid(alpha=0.5) #Call the function. Use only the 2 PCs. myplot(x_new[:,0:2],np.transpose(pca.components_[0:2, :]), labels=piv.columns) plt.show() if not os.path.exists(save_dir): os.makedirs(save_dir) fig.savefig(save_dir + '/' + title +'.png', bbox_inches="tight") # Description: # Plots the well locations on an interactive map given coordinates. # Parameters: # gps_data (dataframe): Data frame with the following column names: station_id, latitude, longitude, color. If the color column is not passed, the default color will be blue. # center (list with 2 floats): latitude and longitude coordinates to center the map view. # zoom (int): value to determine the initial scale of the map def plot_coordinates_to_map(self, gps_data, center=[33.271459, -81.675873], zoom=14): center = center zoom = 14 m = Map(basemap=basemaps.Esri.WorldImagery, center=center, zoom=zoom) m.add_control(FullScreenControl()) for (index,row) in gps_data.iterrows(): if('color' in gps_data.columns): icon = AwesomeIcon( name='tint', marker_color=row.loc['color'], icon_color='black', spin=False ) else: icon = AwesomeIcon( name='tint', marker_color='blue', icon_color='black', spin=False ) loc = [row.loc['LATITUDE'],row.loc['LONGITUDE']] station = HTML(value=row.loc['STATION_ID']) marker = Marker(location=loc, icon=icon, draggable=False, ) m.add_layer(marker) popup = Popup(child=station, max_height=1) marker.popup = popup return m # Description: # Resamples analyte data based on the frequency specified and interpolates the values in between. NaN values are replaced with the average value per well. # Parameters: # analyte (string): analyte name for interpolation of all present wells. # frequency (string): {‘D’, ‘W’, ‘M’, ‘Y’} frequency to interpolate. See https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html for valid frequency inputs. (e.g. ‘W’ = every week, ‘D ’= every day, ‘2W’ = every 2 weeks) # rm_outliers (bool): flag to remove outliers in the data # z_threshold (int): z_score threshold to eliminate outliers def interpolate_wells_by_analyte(self, analyte, frequency='2W', rm_outliers=True, z_threshold=3): data = self.data df_t, dates = self.transform_time_series( analytes=[analyte], resample=frequency, rm_outliers=True, z_threshold=z_threshold) res_interp = self.get_individual_analyte_df(data=df_t, dates=dates, analyte=analyte) res_interp = res_interp.dropna(axis=1, how='all') return res_interp # IN THE WORKS def transform_time_series(self, analytes=[], resample='2W', rm_outliers=False, z_threshold=4): data = self.data def transform_time_series_by_analyte(data, analyte_name): wells_analyte = np.unique(data[data.ANALYTE_NAME == analyte_name].STATION_ID) condensed = data[data.ANALYTE_NAME == analyte_name].groupby(['STATION_ID','COLLECTION_DATE']).mean() analyte_df_resample = pd.DataFrame(index=wells_analyte, columns=t) analyte_df_resample.sort_index(inplace=True) for well in wells_analyte: for date in condensed.loc[well].index: analyte_df_resample.at[well, date] = condensed.loc[well,date].RESULT analyte_df_resample = analyte_df_resample.astype('float').T analyte_df_resample = analyte_df_resample.interpolate(method='linear') return analyte_df_resample all_dates = np.unique(data.COLLECTION_DATE) # Create array of equally spaced dates start = pd.Timestamp(all_dates.min()) end = pd.Timestamp(all_dates.max()) delta = end - start t = np.linspace(start.value, end.value, delta.days) t =
pd.to_datetime(t)
pandas.to_datetime
from __future__ import annotations import abc import inspect from typing import ( TYPE_CHECKING, Any, Dict, Hashable, Iterator, List, cast, ) import warnings import numpy as np from pandas._config import option_context from pandas._libs import lib from pandas._typing import ( AggFuncType, AggFuncTypeBase, AggFuncTypeDict, AggObjType, Axis, FrameOrSeriesUnion, ) from pandas.util._decorators import cache_readonly from pandas.core.dtypes.cast import is_nested_object from pandas.core.dtypes.common import ( is_dict_like, is_extension_array_dtype, is_list_like, is_sequence, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCNDFrame, ABCSeries, ) from pandas.core.algorithms import safe_sort from pandas.core.base import ( DataError, SelectionMixin, SpecificationError, ) import pandas.core.common as com from pandas.core.construction import ( array as pd_array, create_series_with_explicit_dtype, ) if TYPE_CHECKING: from pandas import ( DataFrame, Index, Series, ) from pandas.core.groupby import ( DataFrameGroupBy, SeriesGroupBy, ) from pandas.core.resample import Resampler from pandas.core.window.rolling import BaseWindow ResType = Dict[int, Any] def frame_apply( obj: DataFrame, func: AggFuncType, axis: Axis = 0, raw: bool = False, result_type: str | None = None, args=None, kwargs=None, ) -> FrameApply: """ construct and return a row or column based frame apply object """ axis = obj._get_axis_number(axis) klass: type[FrameApply] if axis == 0: klass = FrameRowApply elif axis == 1: klass = FrameColumnApply return klass( obj, func, raw=raw, result_type=result_type, args=args, kwargs=kwargs, ) class Apply(metaclass=abc.ABCMeta): axis: int def __init__( self, obj: AggObjType, func, raw: bool, result_type: str | None, args, kwargs, ): self.obj = obj self.raw = raw self.args = args or () self.kwargs = kwargs or {} if result_type not in [None, "reduce", "broadcast", "expand"]: raise ValueError( "invalid value for result_type, must be one " "of {None, 'reduce', 'broadcast', 'expand'}" ) self.result_type = result_type # curry if needed if ( (kwargs or args) and not isinstance(func, (np.ufunc, str)) and not is_list_like(func) ): def f(x): return func(x, *args, **kwargs) else: f = func self.orig_f: AggFuncType = func self.f: AggFuncType = f @property def index(self) -> Index: return self.obj.index @property def agg_axis(self) -> Index: return self.obj._get_agg_axis(self.axis) @abc.abstractmethod def apply(self) -> FrameOrSeriesUnion: pass def agg(self) -> FrameOrSeriesUnion | None: """ Provide an implementation for the aggregators. Returns ------- Result of aggregation, or None if agg cannot be performed by this method. """ obj = self.obj arg = self.f args = self.args kwargs = self.kwargs result = self.maybe_apply_str() if result is not None: return result if is_dict_like(arg): return self.agg_dict_like() elif is_list_like(arg): # we require a list, but not a 'str' return self.agg_list_like() if callable(arg): f = com.get_cython_func(arg) if f and not args and not kwargs: return getattr(obj, f)() # caller can react return None def transform(self) -> FrameOrSeriesUnion: """ Transform a DataFrame or Series. Returns ------- DataFrame or Series Result of applying ``func`` along the given axis of the Series or DataFrame. Raises ------ ValueError If the transform function fails or does not transform. """ obj = self.obj func = self.orig_f axis = self.axis args = self.args kwargs = self.kwargs is_series = obj.ndim == 1 if obj._get_axis_number(axis) == 1: assert not is_series return obj.T.transform(func, 0, *args, **kwargs).T if is_list_like(func) and not is_dict_like(func): func = cast(List[AggFuncTypeBase], func) # Convert func equivalent dict if is_series: func = {com.get_callable_name(v) or v: v for v in func} else: func = {col: func for col in obj} if is_dict_like(func): func = cast(AggFuncTypeDict, func) return self.transform_dict_like(func) # func is either str or callable func = cast(AggFuncTypeBase, func) try: result = self.transform_str_or_callable(func) except TypeError: raise except Exception as err: raise ValueError("Transform function failed") from err # Functions that transform may return empty Series/DataFrame # when the dtype is not appropriate if ( isinstance(result, (ABCSeries, ABCDataFrame)) and result.empty and not obj.empty ): raise ValueError("Transform function failed") if not isinstance(result, (ABCSeries, ABCDataFrame)) or not result.index.equals( obj.index ): raise ValueError("Function did not transform") return result def transform_dict_like(self, func): """ Compute transform in the case of a dict-like func """ from pandas.core.reshape.concat import concat obj = self.obj args = self.args kwargs = self.kwargs # transform is currently only for Series/DataFrame assert isinstance(obj, ABCNDFrame) if len(func) == 0: raise ValueError("No transform functions were provided") func = self.normalize_dictlike_arg("transform", obj, func) results: dict[Hashable, FrameOrSeriesUnion] = {} failed_names = [] all_type_errors = True for name, how in func.items(): colg = obj._gotitem(name, ndim=1) try: results[name] = colg.transform(how, 0, *args, **kwargs) except Exception as err: if str(err) in { "Function did not transform", "No transform functions were provided", }: raise err elif not isinstance(err, TypeError): all_type_errors = False failed_names.append(name) # combine results if not results: klass = TypeError if all_type_errors else ValueError raise klass("Transform function failed") if len(failed_names) > 0: warnings.warn( f"{failed_names} did not transform successfully and did not raise " f"a TypeError. If any error is raised except for TypeError, " f"this will raise in a future version of pandas. " f"Drop these columns/ops to avoid this warning.", FutureWarning, stacklevel=4, ) return concat(results, axis=1) def transform_str_or_callable(self, func) -> FrameOrSeriesUnion: """ Compute transform in the case of a string or callable func """ obj = self.obj args = self.args kwargs = self.kwargs if isinstance(func, str): return self._try_aggregate_string_function(obj, func, *args, **kwargs) if not args and not kwargs: f = com.get_cython_func(func) if f: return getattr(obj, f)() # Two possible ways to use a UDF - apply or call directly try: return obj.apply(func, args=args, **kwargs) except Exception: return func(obj, *args, **kwargs) def agg_list_like(self) -> FrameOrSeriesUnion: """ Compute aggregation in the case of a list-like argument. Returns ------- Result of aggregation. """ from pandas.core.reshape.concat import concat obj = self.obj arg = cast(List[AggFuncTypeBase], self.f) if not isinstance(obj, SelectionMixin): # i.e. obj is Series or DataFrame selected_obj = obj elif obj._selected_obj.ndim == 1: selected_obj = obj._selected_obj else: selected_obj = obj._obj_with_exclusions results = [] keys = [] # degenerate case if selected_obj.ndim == 1: for a in arg: colg = obj._gotitem(selected_obj.name, ndim=1, subset=selected_obj) try: new_res = colg.aggregate(a) except TypeError: pass else: results.append(new_res) # make sure we find a good name name = com.get_callable_name(a) or a keys.append(name) # multiples else: for index, col in enumerate(selected_obj): colg = obj._gotitem(col, ndim=1, subset=selected_obj.iloc[:, index]) try: new_res = colg.aggregate(arg) except (TypeError, DataError): pass except ValueError as err: # cannot aggregate if "Must produce aggregated value" in str(err): # raised directly in _aggregate_named pass elif "no results" in str(err): # raised directly in _aggregate_multiple_funcs pass else: raise else: results.append(new_res) keys.append(col) # if we are empty if not len(results): raise ValueError("no results") try: return concat(results, keys=keys, axis=1, sort=False) except TypeError as err: # we are concatting non-NDFrame objects, # e.g. a list of scalars from pandas import Series result = Series(results, index=keys, name=obj.name) if is_nested_object(result): raise ValueError( "cannot combine transform and aggregation operations" ) from err return result def agg_dict_like(self) -> FrameOrSeriesUnion: """ Compute aggregation in the case of a dict-like argument. Returns ------- Result of aggregation. """ from pandas.core.reshape.concat import concat obj = self.obj arg = cast(AggFuncTypeDict, self.f) if not isinstance(obj, SelectionMixin): # i.e. obj is Series or DataFrame selected_obj = obj selection = None else: selected_obj = obj._selected_obj selection = obj._selection arg = self.normalize_dictlike_arg("agg", selected_obj, arg) if selected_obj.ndim == 1: # key only used for output colg = obj._gotitem(selection, ndim=1) results = {key: colg.agg(how) for key, how in arg.items()} else: # key used for column selection and output results = { key: obj._gotitem(key, ndim=1).agg(how) for key, how in arg.items() } # set the final keys keys = list(arg.keys()) # Avoid making two isinstance calls in all and any below is_ndframe = [isinstance(r, ABCNDFrame) for r in results.values()] # combine results if all(is_ndframe): keys_to_use = [k for k in keys if not results[k].empty] # Have to check, if at least one DataFrame is not empty. keys_to_use = keys_to_use if keys_to_use != [] else keys axis = 0 if isinstance(obj, ABCSeries) else 1 result = concat({k: results[k] for k in keys_to_use}, axis=axis) elif any(is_ndframe): # There is a mix of NDFrames and scalars raise ValueError( "cannot perform both aggregation " "and transformation operations " "simultaneously" ) else: from pandas import Series # we have a dict of scalars # GH 36212 use name only if obj is a series if obj.ndim == 1: obj = cast("Series", obj) name = obj.name else: name = None result = Series(results, name=name) return result def maybe_apply_str(self) -> FrameOrSeriesUnion | None: """ Compute apply in case of a string. Returns ------- result: Series, DataFrame, or None Result when self.f is a string, None otherwise. """ f = self.f if not isinstance(f, str): return None obj = self.obj # TODO: GH 39993 - Avoid special-casing by replacing with lambda if f == "size" and isinstance(obj, ABCDataFrame): # Special-cased because DataFrame.size returns a single scalar value = obj.shape[self.axis] return obj._constructor_sliced(value, index=self.agg_axis, name="size") # Support for `frame.transform('method')` # Some methods (shift, etc.) require the axis argument, others # don't, so inspect and insert if necessary. func = getattr(obj, f, None) if callable(func): sig = inspect.getfullargspec(func) if "axis" in sig.args: self.kwargs["axis"] = self.axis elif self.axis != 0: raise ValueError(f"Operation {f} does not support axis=1") return self._try_aggregate_string_function(obj, f, *self.args, **self.kwargs) def maybe_apply_multiple(self) -> FrameOrSeriesUnion | None: """ Compute apply in case of a list-like or dict-like. Returns ------- result: Series, DataFrame, or None Result when self.f is a list-like or dict-like, None otherwise. """ # Note: dict-likes are list-like if not is_list_like(self.f): return None return self.obj.aggregate(self.f, self.axis, *self.args, **self.kwargs) def normalize_dictlike_arg( self, how: str, obj: FrameOrSeriesUnion, func: AggFuncTypeDict ) -> AggFuncTypeDict: """ Handler for dict-like argument. Ensures that necessary columns exist if obj is a DataFrame, and that a nested renamer is not passed. Also normalizes to all lists when values consists of a mix of list and non-lists. """ assert how in ("apply", "agg", "transform") # Can't use func.values(); wouldn't work for a Series if ( how == "agg" and isinstance(obj, ABCSeries) and any(is_list_like(v) for _, v in func.items()) ) or (any(is_dict_like(v) for _, v in func.items())): # GH 15931 - deprecation of renaming keys raise SpecificationError("nested renamer is not supported") if obj.ndim != 1: # Check for missing columns on a frame cols = set(func.keys()) - set(obj.columns) if len(cols) > 0: cols_sorted = list(safe_sort(list(cols))) raise KeyError(f"Column(s) {cols_sorted} do not exist") is_aggregator = lambda x: isinstance(x, (list, tuple, dict)) # if we have a dict of any non-scalars # eg. {'A' : ['mean']}, normalize all to # be list-likes # Cannot use func.values() because arg may be a Series if any(is_aggregator(x) for _, x in func.items()): new_func: AggFuncTypeDict = {} for k, v in func.items(): if not is_aggregator(v): # mypy can't realize v is not a list here new_func[k] = [v] # type:ignore[list-item] else: new_func[k] = v func = new_func return func def _try_aggregate_string_function(self, obj, arg: str, *args, **kwargs): """ if arg is a string, then try to operate on it: - try to find a function (or attribute) on ourselves - try to find a numpy function - raise """ assert isinstance(arg, str) f = getattr(obj, arg, None) if f is not None: if callable(f): return f(*args, **kwargs) # people may try to aggregate on a non-callable attribute # but don't let them think they can pass args to it assert len(args) == 0 assert len([kwarg for kwarg in kwargs if kwarg not in ["axis"]]) == 0 return f f = getattr(np, arg, None) if f is not None and hasattr(obj, "__array__"): # in particular exclude Window return f(obj, *args, **kwargs) raise AttributeError( f"'{arg}' is not a valid function for '{type(obj).__name__}' object" ) class FrameApply(Apply): obj: DataFrame # --------------------------------------------------------------- # Abstract Methods @property @abc.abstractmethod def result_index(self) -> Index: pass @property @abc.abstractmethod def result_columns(self) -> Index: pass @property @abc.abstractmethod def series_generator(self) -> Iterator[Series]: pass @abc.abstractmethod def wrap_results_for_axis( self, results: ResType, res_index: Index ) -> FrameOrSeriesUnion: pass # --------------------------------------------------------------- @property def res_columns(self) -> Index: return self.result_columns @property def columns(self) -> Index: return self.obj.columns @cache_readonly def values(self): return self.obj.values @cache_readonly def dtypes(self) -> Series: return self.obj.dtypes def apply(self) -> FrameOrSeriesUnion: """ compute the results """ # dispatch to agg result = self.maybe_apply_multiple() if result is not None: return result # all empty if len(self.columns) == 0 and len(self.index) == 0: return self.apply_empty_result() # string dispatch result = self.maybe_apply_str() if result is not None: return result # ufunc elif isinstance(self.f, np.ufunc): with np.errstate(all="ignore"): results = self.obj._mgr.apply("apply", func=self.f) # _constructor will retain self.index and self.columns return self.obj._constructor(data=results) # broadcasting if self.result_type == "broadcast": return self.apply_broadcast(self.obj) # one axis empty elif not all(self.obj.shape): return self.apply_empty_result() # raw elif self.raw: return self.apply_raw() return self.apply_standard() def agg(self): obj = self.obj axis = self.axis if axis == 1: result = FrameRowApply( obj.T, self.orig_f, self.raw, self.result_type, self.args, self.kwargs, ).agg() result = result.T if result is not None else result else: result = super().agg() if result is None: result = obj.apply(self.orig_f, axis, args=self.args, **self.kwargs) return result def apply_empty_result(self): """ we have an empty result; at least 1 axis is 0 we will try to apply the function to an empty series in order to see if this is a reduction function """ assert callable(self.f) # we are not asked to reduce or infer reduction # so just return a copy of the existing object if self.result_type not in ["reduce", None]: return self.obj.copy() # we may need to infer should_reduce = self.result_type == "reduce" from pandas import Series if not should_reduce: try: r = self.f(
Series([], dtype=np.float64)
pandas.Series
# Preprocessing import os, matplotlib if 'DISPLAY' not in os.environ: matplotlib.use('Pdf') import matplotlib.pyplot as plt import pandas as pd pd.set_option('display.max_rows', 50) import numpy as np import xgboost as xgb import xgbfir import pdb import time np.random.seed(1337) def client_anaylsis(): """ The idea here is to unify the client ID of several different customers to more broad categories. """ # clean duplicate spaces in client names client_df = pd.read_csv("../data/cliente_tabla.csv.zip", compression="zip") client_df["NombreCliente"] = client_df["NombreCliente"].str.lower() client_df["NombreCliente"] = client_df["NombreCliente"].apply(lambda x: " ".join(x.split())) client_df = client_df.drop_duplicates(subset="Cliente_ID") special_list = ["^(yepas)\s.*", "^(oxxo)\s.*", "^(bodega\scomercial)\s.*", "^(bodega\saurrera)\s.*", "^(bodega)\s.*", "^(woolwort|woolworth)\s.*", "^(zona\sexpress)\s.*", "^(zacatecana)\s.*", "^(yza)\s.*", "^(yanet)\s.*", "^(yak)\s.*", "^(wings)\s.*", "^(wendy)\s.*", "^(walmart\ssuper)\s?.*", "^(waldos)\s.*", "^(wal\smart)\s.*", "^(vulcanizadora)\s.*", "^(viveres\sy\sservicios)\s.*", "^(vips)\s.*", "^(vinos\sy\slicores)\s.*", "^(tienda\ssuper\sprecio)\s.*", "^(vinos\sy\sabarrotes)\s.*", "^(vinateria)\s.*", "^(video\sjuegos)\s.*", "^(universidad)\s.*", "^(tiendas\stres\sb)\s.*", "^(toks)\s.*","^(tkt\ssix)\s.*", "^(torteria)\s.*", "^(tortas)\s.*", "^(super\sbara)\s.*", "^(tiendas\sde\ssuper\sprecio)\s.*", "^(ultramarinos)\s.*", "^(tortilleria)\s.*", "^(tienda\sde\sservicio)\s.*", "^(super\sx)\s.*", "^(super\swillys)\s.*", "^(super\ssanchez)\s.*", "^(super\sneto)\s.*", "^(super\skompras)\s.*", "^(super\skiosco)\s.*", "^(super\sfarmacia)\s.*", "^(super\scarnes)\s.*", "^(super\scarniceria)\s.*", "^(soriana)\s.*", "^(super\scenter)\s.*", "^(solo\sun\sprecio)\s.*", "^(super\scity)\s.*", "^(super\sg)\s.*", "^(super\smercado)\s.*", "^(sdn)\s.*", "^(sams\sclub)\s.*", "^(papeleria)\s.*", "^(multicinemas)\s.*", "^(mz)\s.*", "^(motel)\s.*", "^(minisuper)\s.*", "^(mini\stienda)\s.*", "^(mini\ssuper)\s.*", "^(mini\smarket)\s.*", "^(mini\sabarrotes)\s.*", "^(mi\sbodega)\s.*", "^(merza|merzapack)\s.*", "^(mercado\ssoriana)\s.*", "^(mega\scomercial)\s.*", "^(mc\sdonalds)\s.*", "^(mb)\s[^ex].*", "^(maquina\sfma)\s.*", "^(ley\sexpress)\s.*", "^(lavamatica)\s.*", "^(kiosko)\s.*", "^(kesos\sy\skosas)\s.*", "^(issste)\s.*", "^(hot\sdogs\sy\shamburguesas|)\s.*", "^(hamburguesas\sy\shot\sdogs)\s.*", "(hot\sdog)", "^(hospital)\s.*", "^(hiper\ssoriana)\s.*", "^(super\sahorros)\s.*", "^(super\sabarrotes)\s.*", "^(hambuerguesas|hamburguesas|hamburgesas)\s.*", "^(gran\sbodega)\s.*", "^(gran\sd)\s.*", "^(go\smart)\s.*", "^(gasolinera)\s.*", "^(fundacion)\s.*", "^(fruteria)\s.*", "^(frutas\sy\sverduras)\s.*", "^(frutas\sy\slegumbres)\s.*", "^(frutas\sy\sabarrotes)\s.*", "^(fma)\s.*", "^(fiesta\sinn)\s.*", "^(ferreteria)\s.*", "^(farmacon)\s.*", "^(farmacias)\s.*", "^(farmacia\syza)\s.*", "^(farmacia\smoderna)\s.*", "^(farmacia\slopez)\s.*", "^(farmacia\sissste)\s.*", "^(farmacia\sisseg)\s.*", "^(farmacia\sguadalajara)\s.*", "^(farmacia\sesquivar)\s.*", "^(farmacia\scalderon)\s.*", "^(farmacia\sbenavides)\s.*", "^(farmacia\sabc)\s.*", "^(farmacia)\s.*", "^(farm\sguadalajara)\s.*", "^(facultad\sde)\s.*", "^(f\sgdl)\s.*", "^(expendio)\s.*", "^(expendio\sde\span)\s.*", "^(expendio\sde\shuevo)\s.*", "^(expendio\sbimbo)\s.*", "^(expendedoras\sautomaticas)\s.*", "^(estic)\s.*", "^(estancia\sinfantil)\s.*", "^(estacionamiento)\s.*", "^(estanquillo)\s.*", "^(estacion\sde\sservicio)\s.*", "^(establecimientos?)\s.*", "^(escuela\suniversidad|esc\suniversidad)\s.*", "^(escuela\stelesecundaria|esc\stelesecundaria)\s.*", "^(escuela\stecnica|esc\stecnica)\s.*", "^(escuela\ssuperior|esc\ssuperior)\s.*", "^(escuela\ssecundaria\stecnica|esc\ssecundaria\stecnica)\s.*", "^(escuela\ssecundaria\sgeneral|esc\ssecundaria\sgeneral)\s.*", "^(escuela\ssecundaria\sfederal|esc\ssecundaria\sfederal)\s.*", "^(escuela\ssecundaria|esc\ssecundaria)\s.*", "^(escuela\sprimaria|esc\sprimaria)\s.*", "^(escuela\spreparatoria|esc\spreparatoria)\s.*", "^(escuela\snormal|esc\snormal)\s.*", "^(escuela\sinstituto|esc\sinstituto)\s.*", "^(esc\sprepa|esc\sprep)\s.*", "^(escuela\scolegio|esc\scolegio)\s.*", "^(escuela|esc)\s.*", "^(dunosusa)\s.*", "^(ferreteria)\s.*", "^(dulces)\s.*", "^(dulceria)\s.*", "^(dulce)\s.*", "^(distribuidora)\s.*", "^(diconsa)\s.*", "^(deposito)\s.*", "^(del\srio)\s.*", "^(cyber)\s.*", "^(cremeria)\s.*", "^(cosina\seconomica)\s.*", "^(copy).*", "^(consumo|consumos)\s.*","^(conalep)\s.*", "^(comercializadora)\s.*", "^(comercial\ssuper\salianza)\s.*", "^(comercial\smexicana)\s.*", "^(comedor)\s.*", "^(colegio\sde\sbachilleres)\s.*", "^(colegio)\s.*", "^(coffe).*", "^(cocteleria|cockteleria)\s.*", "^(cocina\seconomica)\s.*", "^(cocina)\s.*", "^(cobaev)\s.*", "^(cobaes)\s.*", "^(cobaeh)\s.*", "^(cobach)\s.*", "^(club\sde\sgolf)\s.*", "^(club\scampestre)\s.*", "^(city\sclub)\s.*", "^(circulo\sk)\s.*", "^(cinepolis)\s.*", "^(cinemex)\s.*", "^(cinemas)\s.*", "^(cinemark)\s.*", "^(ciber)\s.*", "^(church|churchs)\s.*", "^(chilis)\s.*", "^(chiles\sy\ssemillas)\s.*", "^(chiles\ssecos)\s.*", "^(chedraui)\s.*", "^(cetis)\s.*", "^(cervefrio)\s.*", "^(cervefiesta)\s.*", "^(cerveceria)\s.*", "^(cervecentro)\s.*", "^(centro\sescolar)\s.*", "^(centro\seducativo)\s.*", "^(centro\sde\sestudios)\s.*", "^(centro\scomercial)\s.*", "^(central\sde\sautobuses)\s.*", "^(cecytem)\s.*", "^(cecytec)\s.*", "^(cecyte)\s.*", "^(cbtis)\s.*", "^(cbta)\s.*", "^(cbt)\s.*", "^(caseta\stelefonica)\s.*", "^(caseta)\s.*", "^(casa\sley)\s.*", "^(casa\shernandez)\s.*", "^(cartonero\scentral)\s.*", "^(carniceria)\s.*", "^(carne\smart)\s.*", "^(calimax)\s.*", "^(cajero)\s.*", "^(cafeteria)\s.*", "^(cafe)\s.*", "^(burritos)\s.*", "^(burguer\sking|burger\sking)\s.*", "^(bip)\s.*", "^(bimbo\sexpendio)\s.*", "^(burguer|burger)\s.*", "^(ba.os)\s.*", "^(bae)\s.*", "^(bachilleres)\s.*", "^(bachillerato)\s.*", "^(autosercivio|auto\sservicio)\s.*", "^(autolavado|auto\slavado)\s.*", "^(autobuses\sla\spiedad|autobuses\sde\sla\piedad)\s.*", "^(arrachera)\s.*", "^(alsuper\sstore)\s.*", "^(alsuper)\s.*", "^(academia)\s.*", "^(abts)\s.*", "^(abarrotera\slagunitas)\s.*", "^(abarrotera)\s.*", "^(abarrotes\sy\svinos)\s.*", "^(abarrotes\sy\sverduras)\s.*", "^(abarrotes\sy\ssemillas)\s.*", "^(abarrotes\sy\spapeleria)\s.*", "^(abarrotes\sy\snovedades)\s.*", "^(abarrotes\sy\sfruteria)\s.*", "^(abarrotes\sy\sdeposito)\s.*", "^(abarrotes\sy\scremeria)\s.*", "^(abarrotes\sy\scarniceria)\s.*", "^(abarrotes\svinos\sy\slicores)\s.*", "^(abarrote|abarrotes|abarotes|abarr|aba|ab)\s.*", "^(7\seleven)\s.*", "^(7\s24)\s.*"] client_df["NombreCliente2"] = client_df["NombreCliente"] for var in special_list: client_df[var] = client_df["NombreCliente"].str.extract(var, expand=False).str.upper() replace = client_df.loc[~client_df[var].isnull(), var] client_df.loc[~client_df[var].isnull(),"NombreCliente2"] = replace client_df.drop(var, axis=1, inplace=True) client_df.drop("NombreCliente", axis=1, inplace=True) client_df.to_csv("../data/cliente_tabla2.csv.gz", compression="gzip", index=False) def client_anaylsis2(): """ The idea here is to unify the client ID of several different customers to more broad categories in another different way """ client_df =
pd.read_csv("../data/cliente_tabla.csv.zip", compression="zip")
pandas.read_csv
# pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tools for pre-processing the data into individual, standardized formats.""" import collections import datetime import itertools import os import pathlib import re from typing import Callable, Dict, Set, Tuple from absl import logging from dm_c19_modelling.england_data import constants import pandas as pd import yaml _PATH_FILENAME_REGEXES = "filename_regexes.yaml" _COLUMNS = constants.Columns _DATE_FORMAT = "%Y-%m-%d" def _order_columns(df: pd.DataFrame) -> pd.DataFrame: """Orders the columns of the dataframe as: date, region, observations.""" df.insert(0, _COLUMNS.DATE.value, df.pop(_COLUMNS.DATE.value)) reg_columns = [] obs_columns = [] for col in df.columns[1:]: if col.startswith(constants.REGION_PREFIX): reg_columns.append(col) elif col.startswith(constants.OBSERVATION_PREFIX): obs_columns.append(col) else: raise ValueError(f"Unknown column: '{col}'") columns = [_COLUMNS.DATE.value] + reg_columns + obs_columns return df[columns] def _raw_data_formatter_daily_deaths(filepath: str) -> pd.DataFrame: """Loads and formats daily deaths data.""" sheet_name = "Tab4 Deaths by trust" header = 15 df = pd.read_excel(filepath, sheet_name=sheet_name, header=header) # Drop rows and columns which are all nans. df.dropna(axis=0, how="all", inplace=True) df.dropna(axis=1, how="all", inplace=True) # Drop unneeded columns and rows. drop_columns = ["Total", "Awaiting verification"] up_to_mar_1_index = "Up to 01-Mar-20" if sum(i for i in df[up_to_mar_1_index] if isinstance(i, int)) == 0.0: drop_columns.append(up_to_mar_1_index) df.drop(columns=drop_columns, inplace=True) df = df[df["Code"] != "-"] # Melt the death counts by date into "Date" and "Death Count" columns. df = df.melt( id_vars=["NHS England Region", "Code", "Name"], var_name="Date", value_name="Death Count") # Rename the columns to their standard names. df.rename( columns={ "Date": _COLUMNS.DATE.value, "Death Count": _COLUMNS.OBS_DEATHS.value, "Code": _COLUMNS.REG_TRUST_CODE.value, "Name": _COLUMNS.REG_TRUST_NAME.value, "NHS England Region": _COLUMNS.REG_NHSER_NAME.value, }, inplace=True) _order_columns(df) df[_COLUMNS.DATE.value] = df[_COLUMNS.DATE.value].map( lambda x: x.strftime(_DATE_FORMAT)) # Sort and clean up the indices before returning the final dataframe. df.sort_values([ _COLUMNS.DATE.value, _COLUMNS.REG_TRUST_NAME.value, _COLUMNS.REG_TRUST_CODE.value, ], inplace=True) df.reset_index(drop=True, inplace=True) if df.isna().any().any(): raise ValueError("Formatted data 'daily_deaths' contains nans") return df def _raw_data_formatter_daily_cases(filepath: str) -> pd.DataFrame: """Loads and formats daily cases data.""" df =
pd.read_csv(filepath)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # In[ ]: ##### Author : <NAME> ##### github link : https://github.com/amirshnll/Abalone ##### dataset link : http://archive.ics.uci.edu/ml/datasets/Abalone ##### email : <EMAIL> # In[5]: import sklearn import numpy as np import pandas as pd import seaborn as sns; sns.set() import matplotlib.pyplot as plt from sklearn.naive_bayes import GaussianNB from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix # In[6]: #read file df =
pd.read_csv("D:\\abalone.txt", header=None)
pandas.read_csv
import pyodbc from datetime import datetime, timedelta import numpy as np import pandas as pd import math class DataManager: def __init__(self): self.now = datetime.now() self.conn = self.conn = pyodbc.connect('DRIVER={SQL Server};' 'SERVER=ZIRSYSPRO;' 'DATABASE=MAINTDATA;' 'Trusted_Connection=yes') self.prod_lists = self.sql_data_lists('prs457_good_count_jnl', *self.current_shift()) self.defect_lists = self.sql_data_lists('prs457_defect_code_jnl', *self.current_shift()) # Production constants. self.nameplate = 23 # seconds per cycle, ideal/nominal. self.break_time = 1 # hour per shift self.hours_per_shift = 8 def current_shift(self): self.now = datetime.now() hour = self.now.hour assert 0 <= hour <= 23, "hour out of range for current_shift method." if 7 <= hour <= 14: start_time = self.now.replace(hour=7, minute=0, second=0) end_time = self.now.replace(hour=14, minute=59, second=59) elif 15 <= hour <= 22: start_time = self.now.replace(hour=15, minute=0, second=0) end_time = self.now.replace(hour=22, minute=59, second=59) elif hour == 23: tomorrow = self.now + timedelta(days=1) start_time = self.now.replace(hour=23, minute=0, second=0) end_time = tomorrow.replace(hour=6, minute=59, second=59) elif 0 <= hour <= 6: yesterday = self.now - timedelta(days=-1) start_time = yesterday.replace(hour=23, minute=0, second=0) end_time = self.now.replace(hour=6, minute=59, second=59) return start_time, end_time def sql_data_lists(self, table, start_time, end_time): cursor = self.conn.cursor() cursor.execute("SELECT * FROM {0} " "WHERE (submit_datetime > '{1}' " "AND submit_datetime < '{2}')" .format(table, start_time.strftime('%Y-%m-%d %H:%M:%S'), end_time.strftime('%Y-%m-%d %H:%M:%S'))) data = cursor.fetchall() array = np.array(data) column_lists = array.transpose().tolist() try: column_lists.pop(0) except IndexError: pass return column_lists def data_reset(self): self.prod_lists = self.sql_data_lists('prs457_good_count_jnl', *self.current_shift()) self.defect_lists = self.sql_data_lists('prs457_defect_code_jnl', *self.current_shift()) @staticmethod def set_list_of_lists(length, list_of_lists): empty_lol = [] for idx in range(length): empty_lol.append([]) if (len(list_of_lists) != len(empty_lol) or type(list_of_lists) != type(empty_lol)): return empty_lol else: for item in list_of_lists: assert type(item) == list, \ "list of lists contains non-list item." return list_of_lists @property def prod_rate(self): return self._prod_rate @prod_rate.setter def prod_rate(self, rate): if rate <= 23.5: self._prod_rate = 23.5 else: self._prod_rate = rate return self._prod_rate @property def prod_lists(self): return self._prod_lists @prod_lists.setter def prod_lists(self, list_of_lists): self._prod_lists = self.set_list_of_lists(8, list_of_lists) @property def defect_lists(self): return self._defect_lists @defect_lists.setter def defect_lists(self, list_of_lists): self._defect_lists = self.set_list_of_lists(7, list_of_lists) def prod_append(self, prod_list): assert len(prod_list) == 6, "prod_list is wrong size for this method." for value in prod_list: assert 0 <= value <= 1, "list values are not 0 or 1, as expected" good_cursor = self.conn.cursor() good_submit = list(prod_list) good_submit.extend([sum(prod_list), self.now]) good_cursor.execute("INSERT INTO prs457_good_count_jnl(station_one, " "station_two, station_three, station_four, " "station_five, station_six, total_good, " "submit_datetime) " "VALUES (?, ?, ?, ?, ?, ?, ?, ?)", *good_submit) good_cursor.commit() good_cursor.close() index = 0 for data_list in self._prod_lists: data_list.append(good_submit[index]) index += 1 def defect_append(self, defect_list): assert len(defect_list) == 6, \ "prod_list is wrong size for this method." for value in defect_list: assert 0 <= value <= 16, \ "defect value is outside of expected range." defect_cursor = self.conn.cursor() defect_submit = list(defect_list) defect_submit.append(self.now) defect_cursor.execute("INSERT INTO prs457_defect_code_jnl(station_one, " "station_two, station_three, station_four, " "station_five, station_six, submit_datetime) " "VALUES (?, ?, ?, ?, ?, ?, ?)", *defect_submit) defect_cursor.commit() defect_cursor.close() index = 0 for data_list in self._defect_lists: data_list.append(defect_submit[index]) index += 1 def top_three_defect(self, station): assert 1 <= station <= 6, "Station does not exist." defect_data = self.defect_lists[station-1] defect_count =
pd.Series(defect_data)
pandas.Series
# %% [markdown] # ## import os import time import colorcet as cc import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.transforms as transforms import numpy as np import pandas as pd import seaborn as sns from scipy.linalg import orthogonal_procrustes from scipy.optimize import linear_sum_assignment from sklearn.metrics import adjusted_rand_score from tqdm import tqdm from graspy.cluster import GaussianCluster from graspy.embed import AdjacencySpectralEmbed from graspy.models import DCSBMEstimator, RDPGEstimator, SBMEstimator from graspy.plot import heatmap, pairplot from graspy.simulations import rdpg from graspy.utils import binarize, pass_to_ranks from src.data import load_metagraph from src.graph import preprocess from src.hierarchy import signal_flow from src.io import savefig from src.visualization import ( CLASS_COLOR_DICT, barplot_text, gridmap, matrixplot, stacked_barplot, ) FNAME = os.path.basename(__file__)[:-3] print(FNAME) rc_dict = { "axes.spines.right": False, "axes.spines.top": False, "axes.formatter.limits": (-3, 3), "figure.figsize": (6, 3), "figure.dpi": 100, } for key, val in rc_dict.items(): mpl.rcParams[key] = val context = sns.plotting_context(context="talk", font_scale=1, rc=rc_dict) sns.set_context(context) def stashfig(name, **kws): savefig(name, foldername=FNAME, save_on=True, **kws) def get_paired_inds(meta): # pair_meta = meta[meta["Pair"] != -1].copy() pair_meta = meta[meta["Pair"].isin(meta.index)] pair_group_size = pair_meta.groupby("Pair ID").size() remove_pairs = pair_group_size[pair_group_size == 1].index pair_meta = pair_meta[~pair_meta["Pair ID"].isin(remove_pairs)] assert pair_meta.groupby("Pair ID").size().min() == 2 pair_meta.sort_values(["Pair ID", "hemisphere"], inplace=True) lp_inds = pair_meta[pair_meta["hemisphere"] == "L"]["inds"] rp_inds = pair_meta[pair_meta["hemisphere"] == "R"]["inds"] assert ( meta.iloc[lp_inds]["Pair ID"].values == meta.iloc[rp_inds]["Pair ID"].values ).all() return lp_inds, rp_inds def compute_pairedness(partition, left_pair_inds, right_pair_inds, plot=False): uni_labels, inv = np.unique(partition, return_inverse=True) train_int_mat = np.zeros((len(uni_labels), len(uni_labels))) for i, ul in enumerate(uni_labels): c1_mask = inv == i for j, ul in enumerate(uni_labels): c2_mask = inv == j # number of times a thing in cluster 1 has a pair also in cluster 2 pairs_in_other = np.logical_and( c1_mask[left_pair_inds], c2_mask[right_pair_inds] ).sum() train_int_mat[i, j] = pairs_in_other row_ind, col_ind = linear_sum_assignment(train_int_mat, maximize=True) train_pairedness = np.trace(train_int_mat[np.ix_(row_ind, col_ind)]) / np.sum( train_int_mat ) # TODO double check that this is right if plot: fig, axs = plt.subplots(1, 2, figsize=(20, 10)) sns.heatmap( train_int_mat, square=True, ax=axs[0], cbar=False, cmap="RdBu_r", center=0 ) int_df = pd.DataFrame(data=train_int_mat, index=uni_labels, columns=uni_labels) int_df = int_df.reindex(index=uni_labels[row_ind]) int_df = int_df.reindex(columns=uni_labels[col_ind]) sns.heatmap(int_df, square=True, ax=axs[1], cbar=False, cmap="RdBu_r", center=0) return train_pairedness, row_ind, col_ind def compute_pairedness_bipartite(left_labels, right_labels): left_uni_labels, left_inv = np.unique(left_labels, return_inverse=True) right_uni_labels, right_inv = np.unique(right_labels, return_inverse=True) train_int_mat = np.zeros((len(left_uni_labels), len(right_uni_labels))) for i, ul in enumerate(left_uni_labels): c1_mask = left_inv == i for j, ul in enumerate(right_uni_labels): c2_mask = right_inv == j # number of times a thing in cluster 1 has a pair also in cluster 2 pairs_in_other = np.logical_and(c1_mask, c2_mask).sum() train_int_mat[i, j] = pairs_in_other row_ind, col_ind = linear_sum_assignment(train_int_mat, maximize=True) train_pairedness = np.trace(train_int_mat[np.ix_(row_ind, col_ind)]) / np.sum( train_int_mat ) # TODO double check that this is right return train_pairedness, row_ind, col_ind def crossval_cluster( embed, left_inds, right_inds, R, min_clusters=2, max_clusters=15, n_init=25, left_pair_inds=None, right_pair_inds=None, ): left_embed = embed[left_inds] right_embed = embed[right_inds] print("Running left/right clustering with cross-validation\n") currtime = time.time() rows = [] for k in tqdm(range(min_clusters, max_clusters)): # train left, test right # TODO add option for AutoGMM as well, might as well check left_gc = GaussianCluster(min_components=k, max_components=k, n_init=n_init) left_gc.fit(left_embed) model = left_gc.model_ train_left_bic = model.bic(left_embed) train_left_lik = model.score(left_embed) test_left_bic = model.bic(right_embed @ R.T) test_left_lik = model.score(right_embed @ R.T) # train right, test left right_gc = GaussianCluster(min_components=k, max_components=k, n_init=n_init) right_gc.fit(right_embed) model = right_gc.model_ train_right_bic = model.bic(right_embed) train_right_lik = model.score(right_embed) test_right_bic = model.bic(left_embed @ R) test_right_lik = model.score(left_embed @ R) left_row = { "k": k, "contra_bic": -test_left_bic, "contra_lik": test_left_lik, "ipsi_bic": -train_left_bic, "ipsi_lik": train_left_lik, "cluster": left_gc, "train": "left", "n_components": n_components, } right_row = { "k": k, "contra_bic": -test_right_bic, "contra_lik": test_right_lik, "ipsi_bic": -train_right_bic, "ipsi_lik": train_right_lik, "cluster": right_gc, "train": "right", "n_components": n_components, } # pairedness computation, if available if left_pair_inds is not None and right_pair_inds is not None: # TODO double check this is right pred_left = left_gc.predict(embed[left_pair_inds]) pred_right = right_gc.predict(embed[right_pair_inds]) pness, _, _ = compute_pairedness_bipartite(pred_left, pred_right) left_row["pairedness"] = pness right_row["pairedness"] = pness ari = adjusted_rand_score(pred_left, pred_right) left_row["ARI"] = ari right_row["ARI"] = ari rows.append(left_row) rows.append(right_row) results = pd.DataFrame(rows) print(f"{time.time() - currtime} elapsed") return results def plot_crossval_cluster(results): fig, axs = plt.subplots(3, 1, figsize=(10, 10), sharex=True) ax = axs[0] sns.lineplot(data=results, x="k", y="contra_lik", hue="train", ax=ax, legend=False) ax.lines[0].set_linestyle("--") ax.lines[1].set_linestyle("--") sns.lineplot(data=results, x="k", y="ipsi_lik", hue="train", ax=ax, legend=False) ax.set_ylabel("Log likelihood") ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(nbins=3, min_n_ticks=3)) ax = axs[1] sns.lineplot(data=results, x="k", y="contra_bic", hue="train", ax=ax, legend="full") ax.lines[0].set_linestyle("--") ax.lines[1].set_linestyle("--") sns.lineplot(data=results, x="k", y="ipsi_bic", hue="train", ax=ax, legend="full") ax.set_ylabel("-BIC") ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(nbins=3, min_n_ticks=3)) leg = ax.legend() leg.set_title("Train side") leg.texts[0].set_text("Test contra") leg.set_bbox_to_anchor((1, 1.8)) lines = leg.get_lines() lines[0].set_linestyle("--") lines[1].set_linestyle("--") lines[2].set_linestyle("--") leg.texts[3].set_text("Test ipsi") ax = axs[2] sns.lineplot( data=results, x="k", y="pairedness", ax=ax, legend="full", color="purple", label="Pairedness", ) sns.lineplot( data=results, x="k", y="ARI", ax=ax, legend="full", color="green", label="ARI" ) ax.set_ylabel("Pair score") leg = ax.legend().remove() ax.legend(bbox_to_anchor=(1, 1), loc="upper left") # leg.loc = 2 # leg.set_bbox_to_anchor((1, 1)) # ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(nbins=3, min_n_ticks=3)) # trans = transforms.blended_transform_factory(ax.transAxes, ax.transAxes) # ax.text(0.8, 0.8, "Pairedness", color="purple", transform=trans) # ax.text(0.8, 0.6, "ARI", color="green", transform=trans) return fig, axs def make_ellipses(gmm, ax, i, j, colors, alpha=0.5, equal=False, **kws): inds = [j, i] for n, color in enumerate(colors): if gmm.covariance_type == "full": covariances = gmm.covariances_[n][np.ix_(inds, inds)] elif gmm.covariance_type == "tied": covariances = gmm.covariances_[np.ix_(inds, inds)] elif gmm.covariance_type == "diag": covariances = np.diag(gmm.covariances_[n][inds]) elif gmm.covariance_type == "spherical": covariances = np.eye(gmm.means_.shape[1]) * gmm.covariances_[n] v, w = np.linalg.eigh(covariances) u = w[0] / np.linalg.norm(w[0]) angle = np.arctan2(u[1], u[0]) angle = 180 * angle / np.pi # convert to degrees v = 2.0 * np.sqrt(2.0) * np.sqrt(v) ell = mpl.patches.Ellipse( gmm.means_[n, inds], v[0], v[1], 180 + angle, color=color, **kws ) ell.set_clip_box(ax.bbox) ell.set_alpha(alpha) ax.add_artist(ell) if equal: ax.set_aspect("equal", "datalim") def plot_cluster_pairs( X, left_inds, right_inds, left_model, right_model, labels, left_colors=None, right_colors=None, equal=True, ): k = left_model.n_components n_dims = X.shape[1] if left_colors is None and right_colors is None: tab20 = sns.color_palette("tab20", n_colors=2 * k, desat=0.7) left_colors = tab20[::2] right_colors = tab20[1::2] colors = left_colors + right_colors fig, axs = plt.subplots( n_dims, n_dims, sharex=False, sharey=False, figsize=(20, 20) ) data =
pd.DataFrame(data=X)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 26 15:39:02 2018 @author: joyce """ import pandas as pd import numpy as np from numpy.matlib import repmat from stats import get_stockdata_from_sql,get_tradedate,Corr,Delta,Rank,Cross_max,\ Cross_min,Delay,Sum,Mean,STD,TsRank,TsMax,TsMin,DecayLinear,Count,SMA,Cov,DTM,DBM,\ Highday,Lowday,HD,LD,RegBeta,RegResi,SUMIF,get_indexdata_from_sql,timer,get_fama class stAlpha(object): def __init__(self,begin,end): self.begin = begin self.end = end self.close = get_stockdata_from_sql(1,self.begin,self.end,'Close') self.open = get_stockdata_from_sql(1,self.begin,self.end,'Open') self.high = get_stockdata_from_sql(1,self.begin,self.end,'High') self.low = get_stockdata_from_sql(1,self.begin,self.end,'Low') self.volume = get_stockdata_from_sql(1,self.begin,self.end,'Vol') self.amt = get_stockdata_from_sql(1,self.begin,self.end,'Amount') self.vwap = get_stockdata_from_sql(1,self.begin,self.end,'Vwap') self.ret = get_stockdata_from_sql(1,begin,end,'Pctchg') self.close_index = get_indexdata_from_sql(1,begin,end,'close','000001.SH') self.open_index = get_indexdata_from_sql(1,begin,end,'open','000001.SH') # self.mkt = get_fama_from_sql() @timer def alpha1(self): volume = self.volume ln_volume = np.log(volume) ln_volume_delta = Delta(ln_volume,1) close = self.close Open = self.open price_temp = pd.concat([close,Open],axis = 1,join = 'outer') price_temp['ret'] = (price_temp['Close'] - price_temp['Open'])/price_temp['Open'] del price_temp['Close'],price_temp['Open'] r_ln_volume_delta = Rank(ln_volume_delta) r_ret = Rank(price_temp) rank = pd.concat([r_ln_volume_delta,r_ret],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,6) alpha = corr alpha.columns = ['alpha1'] return alpha @timer def alpha2(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') temp['alpha'] = (2 * temp['Close'] - temp['Low'] - temp['High']) \ / (temp['High'] - temp['Low']) del temp['Close'],temp['Low'],temp['High'] alpha = -1 * Delta(temp,1) alpha.columns = ['alpha2'] return alpha @timer def alpha3(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') close_delay = Delay(pd.DataFrame(temp['Close']),1) close_delay.columns = ['close_delay'] temp = pd.concat([temp,close_delay],axis = 1,join = 'inner') temp['min'] = Cross_max(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['Low'])) temp['max'] = Cross_min(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['High'])) temp['alpha_temp'] = 0 temp['alpha_temp'][temp['Close'] > temp['close_delay']] = temp['Close'] - temp['min'] temp['alpha_temp'][temp['Close'] < temp['close_delay']] = temp['Close'] - temp['max'] alpha = Sum(pd.DataFrame(temp['alpha_temp']),6) alpha.columns = ['alpha3'] return alpha @timer def alpha4(self): close = self.close volume = self.volume close_mean_2 = Mean(close,2) close_mean_8 = Mean(close,8) close_std = STD(close,8) volume_mean_20 = Mean(volume,20) data = pd.concat([close_mean_2,close_mean_8,close_std,volume_mean_20,volume],axis = 1,join = 'inner') data.columns = ['close_mean_2','close_mean_8','close_std','volume_mean_20','volume'] data['alpha'] = -1 data['alpha'][data['close_mean_2'] < data['close_mean_8'] - data['close_std']] = 1 data['alpha'][data['volume']/data['volume_mean_20'] >= 1] = 1 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha4'] return alpha @timer def alpha5(self): volume = self.volume high = self.high r1 = TsRank(volume,5) r2 = TsRank(high,5) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(corr,5) alpha.columns = ['alpha5'] return alpha @timer def alpha6(self): Open = self.open high = self.high df = pd.concat([Open,high],axis = 1,join = 'inner') df['price'] = df['Open'] * 0.85 + df['High'] * 0.15 df_delta = Delta(pd.DataFrame(df['price']),1) alpha = Rank(np.sign(df_delta)) alpha.columns = ['alpha6'] return alpha @timer def alpha7(self): close = self.close vwap = self.vwap volume = self.volume volume_delta = Delta(volume,3) data = pd.concat([close,vwap],axis = 1,join = 'inner') data['diff'] = data['Vwap'] - data['Close'] r1 = Rank(TsMax(pd.DataFrame(data['diff']),3)) r2 = Rank(TsMin(pd.DataFrame(data['diff']),3)) r3 = Rank(volume_delta) rank = pd.concat([r1,r2,r3],axis = 1,join = 'inner') rank.columns = ['r1','r2','r3'] alpha = (rank['r1'] + rank['r2'])* rank['r3'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha7'] return alpha @timer def alpha8(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') data_price = (data['High'] + data['Low'])/2 * 0.2 + data['Vwap'] * 0.2 data_price_delta = Delta(pd.DataFrame(data_price),4) * -1 alpha = Rank(data_price_delta) alpha.columns = ['alpha8'] return alpha @timer def alpha9(self): high = self.high low = self.low volume = self.volume data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['price']= (data['High'] + data['Low'])/2 data['price_delay'] = Delay(pd.DataFrame(data['price']),1) alpha_temp = (data['price'] - data['price_delay']) * (data['High'] - data['Low'])/data['Vol'] alpha_temp_unstack = alpha_temp.unstack(level = 'ID') alpha = alpha_temp_unstack.ewm(span = 7, ignore_na = True, min_periods = 7).mean() alpha_final = alpha.stack() alpha = pd.DataFrame(alpha_final) alpha.columns = ['alpha9'] return alpha @timer def alpha10(self): ret = self.ret close = self.close ret_std = STD(pd.DataFrame(ret),20) ret_std.columns = ['ret_std'] data = pd.concat([ret,close,ret_std],axis = 1, join = 'inner') temp1 = pd.DataFrame(data['ret_std'][data['Pctchg'] < 0]) temp2 = pd.DataFrame(data['Close'][data['Pctchg'] >= 0]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0,join = 'outer') temp_order = pd.concat([data,temp],axis = 1) temp_square = pd.DataFrame(np.power(temp_order['temp'],2)) alpha_temp = TsMax(temp_square,5) alpha = Rank(alpha_temp) alpha.columns = ['alpha10'] return alpha @timer def alpha11(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume],axis = 1,join = 'inner') data_temp = (data['Close'] - data['Low']) -(data['High'] - data['Close'])\ /(data['High'] - data['Low']) * data['Vol'] alpha = Sum(pd.DataFrame(data_temp),6) alpha.columns = ['alpha11'] return alpha @timer def alpha12(self): Open = self.open vwap = self.vwap close = self.close data = pd.concat([Open,vwap,close],axis = 1, join = 'inner') data['p1'] = data['Open'] - Mean(data['Open'],10) data['p2'] = data['Close'] - data['Vwap'] r1 = Rank(pd.DataFrame(data['p1'])) r2 = Rank(pd.DataFrame(np.abs(data['p2']))) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] alpha = rank['r1'] - rank['r2'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha12'] return alpha @timer def alpha13(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') alpha = (data['High'] + data['Low'])/2 - data['Vwap'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha13'] return alpha @timer def alpha14(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close'] - data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha14'] return alpha @timer def alpha15(self): Open = self.open close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([Open,close_delay],axis = 1,join = 'inner') alpha = data['Open']/data['close_delay'] - 1 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha15'] return alpha @timer def alpha16(self): vwap = self.vwap volume = self.volume data = pd.concat([vwap,volume],axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vol'])) r2 = Rank(pd.DataFrame(data['Vwap'])) rank = pd.concat([r1,r2],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(Rank(corr),5) alpha.columns = ['alpha16'] return alpha @timer def alpha17(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close],axis = 1, join = 'inner') data['vwap_max15'] = TsMax(data['Vwap'],15) data['close_delta5'] = Delta(data['Close'],5) temp = np.power(data['vwap_max15'],data['close_delta5']) alpha = Rank(pd.DataFrame(temp)) alpha.columns = ['alpha17'] return alpha @timer def alpha18(self): """ this one is similar with alpha14 """ close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close']/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha18'] return alpha @timer def alpha19(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') data['temp1'] = (data['Close'] - data['close_delay'])/data['close_delay'] data['temp2'] = (data['Close'] - data['close_delay'])/data['Close'] temp1 = pd.DataFrame(data['temp1'][data['Close'] < data['close_delay']]) temp2 = pd.DataFrame(data['temp2'][data['Close'] >= data['close_delay']]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0) data = pd.concat([data,temp],axis = 1,join = 'outer') alpha = pd.DataFrame(data['temp']) alpha.columns = ['alpha19'] return alpha @timer def alpha20(self): close = self.close close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha20'] return alpha @timer def alpha21(self): close = self.close close_mean = Mean(close,6) alpha = RegBeta(0,close_mean,None,6) alpha.columns = ['alpha21'] return alpha @timer def alpha22(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1,join = 'inner') data.columns = ['close','close_mean'] temp = pd.DataFrame((data['close'] - data['close_mean'])/data['close_mean']) temp_delay = Delay(temp,3) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] temp2 = pd.DataFrame(data_temp['temp'] - data_temp['temp_delay']) alpha = SMA(temp2,12,1) alpha.columns = ['alpha22'] return alpha @timer def alpha23(self): close = self.close close_std = STD(close,20) close_delay = Delay(close,1) data = pd.concat([close,close_std,close_delay],axis = 1, join = 'inner') data.columns = ['Close','close_std','close_delay'] data['temp'] = data['close_std'] data['temp'][data['Close'] <= data['close_delay']] = 0 temp = pd.DataFrame(data['temp']) sma1 = SMA(temp,20,1) sma2 = SMA(pd.DataFrame(data['close_std']),20,1) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2']) alpha.columns = ['alpha23'] return alpha @timer def alpha24(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis=1 ,join = 'inner' ) temp = data['Close'] - data['close_delay'] temp = pd.DataFrame(temp) alpha = SMA(temp,5,1) alpha.columns = ['alpha24'] return alpha @timer def alpha25(self): close = self.close close_delta = Delta(close,7) ret = self.ret r1 = Rank(close_delta) r3 = Rank(Sum(ret,250)) volume = self.volume volume_mean = Mean(pd.DataFrame(volume['Vol']),20) volume_mean.columns = ['volume_mean'] data = pd.concat([volume,volume_mean],axis = 1,join = 'inner') temp0 = pd.DataFrame(data['Vol']/data['volume_mean']) temp = DecayLinear(temp0,9) r2 = Rank(temp) rank = pd.concat([r1,r2,r3],axis = 1, join = 'inner') rank.columns = ['r1','r2','r3'] alpha = pd.DataFrame(-1 * rank['r1'] * (1 - rank['r2']) * rank['r3']) alpha.columns = ['alpha25'] return alpha @timer def alpha26(self): close = self.close vwap = self.vwap close_mean7 = Mean(close,7) close_mean7.columns = ['close_mean7'] close_delay5 = Delay(close,5) close_delay5.columns = ['close_delay5'] data = pd.concat([vwap,close_delay5],axis = 1,join = 'inner') corr = Corr(data,230) corr.columns = ['corr'] data_temp = pd.concat([corr,close_mean7,close],axis = 1,join = 'inner') alpha = data_temp['close_mean7'] - data_temp['Close'] + data_temp['corr'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha26'] return alpha @timer def alpha27(self): """ uncompleted """ close = self.close close_delay3 = Delay(close,3) close_delay6 = Delay(close,6) data = pd.concat([close,close_delay3,close_delay6],axis = 1,join = 'inner') data.columns = ['close','close_delay3','close_delay6'] temp1 = pd.DataFrame((data['close'] - data['close_delay3'])/data['close_delay3'] * 100) temp2 = pd.DataFrame((data['close'] - data['close_delay6'])/data['close_delay6'] * 100) data_temp = pd.concat([temp1,temp2],axis = 1,join = 'inner') data_temp.columns = ['temp1','temp2'] temp = pd.DataFrame(data_temp['temp1'] + data_temp['temp2']) alpha = DecayLinear(temp,12) alpha.columns = ['alpha27'] return alpha @timer def alpha28(self): close = self.close low = self.low high = self.high low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['Close','low_min','high_max'] temp1 = pd.DataFrame((data['Close'] - data['low_min']) /(data['high_max'] - data['low_min'])) sma1 = SMA(temp1,3,1) sma2 = SMA(sma1,3,1) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1'] * 2 - sma['sma2'] * 3) alpha.columns = ['alpha28'] return alpha @timer def alpha29(self): close = self.close volume = self.volume close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] * data['Vol'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha29'] return alpha @timer def alpha30(self): close = self.close close_delay = Delay(close,1) @timer def alpha31(self): close = self.close close_delay = Delay(close,12) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha31'] return alpha @timer def alpha32(self): volume = self.volume high = self.high r1 = Rank(volume) r2 = Rank(high) rank = pd.concat([r1,r2],axis = 1,join = 'inner') corr = Corr(rank,3) r = Rank(corr) alpha = -1 * Sum(r,3) alpha.columns = ['alpha32'] return alpha @timer def alpha33(self): low = self.low volume = self.volume ret = self.ret low_min = TsMin(low,5) low_min_delay = Delay(low_min,5) data1 = pd.concat([low_min,low_min_delay],axis = 1,join = 'inner') data1.columns = ['low_min','low_min_delay'] ret_sum240 = Sum(ret,240) ret_sum20 = Sum(ret,20) ret_temp = pd.concat([ret_sum240,ret_sum20],axis = 1, join = 'inner') ret_temp.columns = ['ret240','ret20'] temp1 = pd.DataFrame(data1['low_min_delay'] - data1['low_min']) temp2 = pd.DataFrame((ret_temp['ret240'] - ret_temp['ret20'])/220) r_temp2 = Rank(temp2) r_volume = TsRank(volume,5) temp = pd.concat([temp1,r_temp2,r_volume],axis = 1,join = 'inner') temp.columns = ['temp1','r_temp2','r_volume'] alpha = temp['temp1'] * temp['r_temp2'] * temp['r_volume'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha33'] return alpha @timer def alpha34(self): close = self.close close_mean = Mean(close,12) close_mean.columns = ['close_mean'] data = pd.concat([close,close_mean],axis = 1, join = 'inner') alpha = pd.DataFrame(data['close_mean']/data['Close']) alpha.columns = ['alpha34'] return alpha @timer def alpha35(self): volume = self.volume Open = self.open open_delay = Delay(Open,1) open_delay.columns = ['open_delay'] open_linear = DecayLinear(Open,17) open_linear.columns = ['open_linear'] open_delay_temp = DecayLinear(open_delay,15) r1 = Rank(open_delay_temp) data = pd.concat([Open,open_linear],axis = 1,join = 'inner') Open_temp = data['Open'] * 0.65 + 0.35 * data['open_linear'] rank = pd.concat([volume,Open_temp],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,7) r2 = Rank(-1 * corr) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = Cross_min(pd.DataFrame(r['r1']),pd.DataFrame(r['r2'])) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha35'] return alpha @timer def alpha36(self): volume = self.volume vwap = self.vwap r1 = Rank(volume) r2 = Rank(vwap) rank = pd.concat([r1,r2],axis = 1,join = 'inner') corr = Corr(rank,6) temp = Sum(corr,2) alpha = Rank(temp) alpha.columns = ['alpha36'] return alpha @timer def alpha37(self): Open = self.open ret = self.ret open_sum = Sum(Open,5) ret_sum = Sum(ret,5) data = pd.concat([open_sum,ret_sum],axis = 1,join = 'inner') data.columns = ['open_sum','ret_sum'] temp = data['open_sum'] * data['ret_sum'] temp_delay = Delay(temp,10) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] alpha = -1 * Rank(pd.DataFrame(data_temp['temp'] - data_temp['temp_delay'])) alpha.columns = ['alpha37'] return alpha @timer def alpha38(self): high = self.high high_mean = Mean(high,20) high_delta = Delta(high,2) data = pd.concat([high,high_mean,high_delta],axis = 1,join = 'inner') data.columns = ['high','high_mean','high_delta'] data['alpha'] = -1 * data['high_delta'] data['alpha'][data['high_mean'] >= data['high']] = 0 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha38'] return alpha @timer def alpha39(self): close = self.close Open = self.open vwap = self.vwap volume = self.volume close_delta2 = Delta(close,2) close_delta2_decay = DecayLinear(close_delta2,8) r1 = Rank(close_delta2_decay) price_temp = pd.concat([vwap,Open],axis = 1,join = 'inner') price = pd.DataFrame(price_temp['Vwap'] * 0.3 + price_temp['Open'] * 0.7) volume_mean = Mean(volume,180) volume_mean_sum = Sum(volume_mean,37) rank = pd.concat([price,volume_mean_sum],axis = 1,join = 'inner') corr = Corr(rank,14) corr_decay = DecayLinear(corr,12) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r2'] - r['r1']) alpha.columns = ['alpha39'] return alpha @timer def alpha40(self): close = self.close volume = self.volume close_delay = Delay(close,1) data = pd.concat([close,volume,close_delay],axis = 1, join = 'inner') data.columns = ['close','volume','close_delay'] data['temp1'] = data['volume'] data['temp2'] = data['volume'] data['temp1'][data['close'] <= data['close_delay']] = 0 data['temp2'][data['close'] > data['close_delay']] = 0 s1 = Sum(pd.DataFrame(data['temp1']),26) s2 = Sum(pd.DataFrame(data['temp2']),26) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2'] * 100) alpha.columns = ['alpha40'] return alpha @timer def alpha41(self): vwap = self.vwap vwap_delta = Delta(vwap,3) vwap_delta_max = TsMax(vwap_delta,5) alpha = -1 * Rank(vwap_delta_max) alpha.columns = ['alpha41'] return alpha @timer def alpha42(self): high = self.high volume = self.volume high_std = STD(high,10) r1 = Rank(high_std) data = pd.concat([high,volume],axis = 1,join = 'inner') corr = Corr(data,10) r = pd.concat([r1,corr],axis = 1,join = 'inner') r.columns = ['r1','corr'] alpha = pd.DataFrame(-1 * r['r1'] * r['corr']) alpha.columns = ['alpha42'] return alpha @timer def alpha43(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,6) alpha.columns = ['alpha43'] return alpha @timer def alpha44(self): volume = self.volume vwap = self.vwap low = self.low volume_mean = Mean(volume,10) rank = pd.concat([low,volume_mean],axis = 1,join = 'inner') corr = Corr(rank,7) corr_decay = DecayLinear(corr,6) r1 = TsRank(corr_decay,4) vwap_delta = Delta(vwap,3) vwap_delta_decay = DecayLinear(vwap_delta,10) r2 = TsRank(vwap_delta_decay,15) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha44'] return alpha @timer def alpha45(self): volume = self.volume vwap = self.vwap close = self.close Open = self.open price = pd.concat([close,Open],axis = 1,join = 'inner') price['price'] = price['Close'] * 0.6 + price['Open'] * 0.4 price_delta = Delta(pd.DataFrame(price['price']),1) r1 = Rank(price_delta) volume_mean = Mean(volume,150) data = pd.concat([vwap,volume_mean],axis = 1,join = 'inner') corr = Corr(data,15) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha45'] return alpha @timer def alpha46(self): close = self.close close_mean3 = Mean(close,3) close_mean6 = Mean(close,6) close_mean12 = Mean(close,12) close_mean24 = Mean(close,24) data = pd.concat([close,close_mean3,close_mean6,close_mean12,close_mean24],axis = 1,join = 'inner') data.columns = ['c','c3','c6','c12','c24'] alpha = (data['c3'] + data['c6'] + data['c12'] + data['c24'])/(4 * data['c']) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha46'] return alpha @timer def alpha47(self): close = self.close low = self.low high = self.high high_max = TsMax(high,6) low_min = TsMin(low,6) data = pd.concat([high_max,low_min,close],axis = 1,join = 'inner') data.columns = ['high_max','low_min','close'] temp = pd.DataFrame((data['high_max'] - data['close'])/(data['high_max'] - \ data['low_min']) * 100) alpha = SMA(temp,9,1) alpha.columns = ['alpha47'] return alpha @timer def alpha48(self): close = self.close volume = self.volume temp1 = Delta(close,1) temp1_delay1 = Delay(temp1,1) temp1_delay2 = Delay(temp1,2) data = pd.concat([temp1,temp1_delay1,temp1_delay2],axis = 1,join = 'inner') data.columns = ['temp1','temp1_delay1','temp1_delay2'] temp2 = pd.DataFrame(np.sign(data['temp1']) + np.sign(data['temp1_delay1']) \ + np.sign(data['temp1_delay2'])) volume_sum5 = Sum(volume,5) volume_sum20 = Sum(volume,20) data_temp = pd.concat([temp2,volume_sum5,volume_sum20],axis = 1,join = 'inner') data_temp.columns = ['temp2','volume_sum5','volume_sum20'] temp3 = pd.DataFrame(data_temp['temp2'] * data_temp['volume_sum5']/\ data_temp['volume_sum20']) alpha = -1 * Rank(temp3) alpha.columns = ['alpha48'] return alpha @timer def alpha49(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 0 price['temp'][price['sum'] < price['sum_delay']] = 1 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha49'] return alpha @timer def alpha50(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 1 price['temp'][price['sum'] <= price['sum_delay']] = -1 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha50'] return alpha @timer def alpha51(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 1 price['temp'][price['sum'] <= price['sum_delay']] = 0 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha51'] return alpha @timer def alpha52(self): low = self.low high = self.high close = self.close data = pd.concat([low,high,close],axis = 1,join = 'inner') data['sum_delay'] = Delay(pd.DataFrame((data['High'] + data['Low'] + data['Close'])/3),1) temp1 = pd.DataFrame(data['High'] - data['sum_delay']) temp1.columns = ['high_diff'] temp2 = pd.DataFrame(data['sum_delay'] - data['Low']) temp2.columns = ['low_diff'] temp1['max'] = temp1['high_diff'] temp1['max'][temp1['high_diff'] < 0 ] = 0 temp2['max'] = temp2['low_diff'] temp2['max'][temp2['low_diff'] < 0 ] = 0 temp1_sum = Sum(pd.DataFrame(temp1['max']),26) temp2_sum = Sum(pd.DataFrame(temp2['max']),26) alpha_temp = pd.concat([temp1_sum,temp2_sum],axis = 1,join = 'inner') alpha_temp.columns = ['s1','s2'] alpha = pd.DataFrame(alpha_temp['s1']/alpha_temp['s2'] * 100) alpha.columns = ['alpha52'] return alpha @timer def alpha53(self): close = self.close close_delay = Delay(close,1) count = Count(0,close,close_delay,12) alpha = count/12.0 * 100 alpha.columns = ['alpha53'] return alpha @timer def alpha54(self): Open = self.open close = self.close data = pd.concat([Open,close], axis = 1, join = 'inner') data.columns = ['close','open'] temp = pd.DataFrame(data['close'] - data['open']) temp_abs = pd.DataFrame(np.abs(temp)) df = pd.concat([temp,temp_abs], axis = 1, join= 'inner') df.columns = ['temp','abs'] std = STD(pd.DataFrame(df['temp'] + df['abs']),10) corr = Corr(data,10) data1 = pd.concat([corr,std],axis = 1, join = 'inner') data1.columns = ['corr','std'] alpha = Rank(pd.DataFrame(data1['corr'] + data1['std'])) * -1 alpha.columns = ['alpha54'] return alpha @timer def alpha55(self): Open = self.open close = self.close low = self.low high = self.high close_delay = Delay(close,1) open_delay = Delay(Open,1) low_delay = Delay(low,1) data = pd.concat([Open,close,low,high,close_delay,open_delay,low_delay], axis =1 ,join = 'inner') data.columns= ['open','close','low','high','close_delay','open_delay','low_delay'] temp1 = pd.DataFrame((data['close'] - data['close_delay'] + (data['close'] - data['open'])/2\ + data['close_delay'] - data['open_delay'])/ np.abs(data['high'] - data['close_delay'])) temp2 = pd.DataFrame(np.abs(data['high'] - data['close_delay']) + np.abs(data['low'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) temp3 = pd.DataFrame(np.abs(data['low'] - data['close_delay']) + np.abs(data['high'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) abs1 = pd.DataFrame(np.abs(data['high'] - data['close_delay'])) abs2 = pd.DataFrame(np.abs(data['low'] - data['close_delay'])) abs3 = pd.DataFrame(np.abs(data['high'] - data['low_delay'])) data1 = pd.concat([abs1,abs2,abs3], axis = 1, join = 'inner') data1.columns = ['abs1','abs2','abs3'] data_temp = pd.concat([abs1,abs2],axis = 1, join = 'inner') data_temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) data_temp_max.columns = ['max'] data_temp1 = pd.concat([data,data_temp_max], axis = 1, join = 'inner') temp4 = pd.DataFrame((np.abs(data_temp1['high'] - data_temp1['low_delay']) + \ np.abs(data_temp1['close_delay'] - data_temp1['open_delay'])) *\ data_temp1['max']) data1['judge1'] = 0 data1['judge2'] = 0 data1['judge3'] = 0 data1['judge4'] = 0 data1['judge1'][data1['abs1'] > data1['abs2']] = 1 data1['judge2'][data1['abs1'] > data1['abs3']] = 1 data1['judge3'][data1['abs2'] > data1['abs3']] = 1 data1['judge3'][data1['abs3'] > data1['abs1']] = 1 judge_1 = pd.DataFrame(data1['judge1'] * data1['judge2']) judge_2 = pd.DataFrame(data1['judge3'] * data1['judge4']) data2 = pd.concat([temp1,temp2,temp3,temp4,judge_1,judge_2], axis = 1, join = 'inner') data2.columns = ['t1','t2','t3','t4','j1','j2'] data2['j3'] = 1 data2['j4'] = data2['j3'] - data2['j1'] - data2['j2'] data2['t5'] = data2['t2'] * data2['j1'] + data2['t3'] * data2['j2'] + \ data2['t4'] * data2['j4'] tep = pd.DataFrame(16 * data2['t5']/data2['t1']) alpha = Sum(tep,20) alpha.columns = ['alpha55'] return alpha @timer def alpha56(self): low = self.low high = self.high volume = self.volume Open = self.open open_min = TsMin(Open,12) data1 = pd.concat([Open,open_min], axis = 1, join = 'inner') data1.columns = ['open','open_min'] r1 = Rank(pd.DataFrame(data1['open'] - data1['open_min'])) volume_mean = Mean(volume,40) volume_mean_sum= Sum(volume_mean,19) data2 = pd.concat([high,low],axis = 1, join = 'inner') temp = pd.DataFrame((data2['High'] + data2['Low'])/2) rank = pd.concat([temp,volume_mean_sum],axis = 1 , join = 'inner') rank.columns = ['temp','volume_mean_sum'] corr = Corr(rank,13) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = 0 r['alpha'][r['r1'] >= r['r2']] = 1 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha56'] return alpha @timer def alpha57(self): low = self.low high = self.high close = self.close low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = pd.DataFrame((data['close'] - data['low_min'])/(data['high_max'] \ - data['low_min']) * 100) alpha = SMA(temp,3,1) alpha.columns = ['alpha57'] return alpha @timer def alpha58(self): close = self.close close_delay = Delay(close,1) count = Count(0,close,close_delay,20) alpha = count/20.0 * 100 alpha.columns = ['alpha58'] return alpha @timer def alpha59(self): low = self.low high = self.high close = self.close close_delay = Delay(close,1) max_temp = pd.concat([high,close_delay],axis = 1,join = 'inner') min_temp = pd.concat([low,close_delay],axis = 1,join = 'inner') max_temp1 = pd.DataFrame(np.max(max_temp,axis = 1)) min_temp1 = pd.DataFrame(np.min(min_temp,axis = 1)) data = pd.concat([close,close_delay,max_temp1,min_temp1],axis = 1,join = 'inner') data.columns = ['close','close_delay','max','min'] data['max'][data['close'] > data['close_delay']] = 0 data['min'][data['close'] <= data['close_delay']] = 0 alpha = pd.DataFrame(data['max'] + data['min']) alpha.columns = ['alpha59'] return alpha @timer def alpha60(self): low = self.low high = self.high close = self.close volume = self.volume data = pd.concat([low,high,close,volume],axis = 1,join = 'inner') temp = pd.DataFrame((2 * data['Close'] - data['Low'] - data['High'])/(data['Low'] + \ data['High']) * data['Vol']) alpha = Sum(temp,20) alpha.columns = ['alpha60'] return alpha @timer def alpha61(self): low = self.low volume = self.volume vwap = self.vwap vwap_delta = Delta(vwap,1) vwap_delta_decay = DecayLinear(vwap_delta,12) r1 = Rank(vwap_delta_decay) volume_mean = Mean(volume,80) data = pd.concat([low,volume_mean],axis = 1,join = 'inner') corr = Corr(data,8) corr_decay = DecayLinear(corr,17) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.max(r,axis = 1) * -1) alpha.columns = ['alpha61'] return alpha @timer def alpha62(self): high = self.high volume = self.volume volume_r = Rank(volume) data = pd.concat([high,volume_r],axis = 1,join = 'inner') alpha = -1 * Corr(data,5) alpha.columns = ['alpha62'] return alpha @timer def alpha63(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),6,1) sma2 = SMA(pd.DataFrame(data['abs']),6,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha63'] return alpha @timer def alpha64(self): vwap = self.vwap volume = self.volume close = self.close vwap_r = Rank(vwap) volume_r = Rank(volume) data1 = pd.concat([vwap_r,volume_r],axis = 1,join = 'inner') corr1 = Corr(data1,4) corr1_decay = DecayLinear(corr1,4) r1 = Rank(corr1_decay) close_mean = Mean(close,60) close_r = Rank(close) close_mean_r = Rank(close_mean) data2 = pd.concat([close_r,close_mean_r],axis = 1,join = 'inner') corr2 = Corr(data2,4) corr2_max = TsMax(corr2,13) corr2_max_decay = DecayLinear(corr2_max,14) r2 = Rank(corr2_max_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.max(r,axis = 1) *-1) alpha.columns = ['alpha64'] return alpha @timer def alpha65(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = pd.DataFrame(data['close_mean']/data['close']) alpha.columns = ['alpha65'] return alpha @timer def alpha66(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = (data['close'] - data['close_mean'])/data['close_mean'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha66'] return alpha @timer def alpha67(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),24,1) sma2 = SMA(pd.DataFrame(data['abs']),24,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha67'] return alpha @timer def alpha68(self): high = self.high volume = self.volume low = self.low data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['sum']= (data['High'] + data['Low'])/2 data['sum_delta'] = Delta(pd.DataFrame(data['sum']),1) temp = data['sum_delta'] * (data['High'] - data['Low'])/data['Vol'] alpha = SMA(pd.DataFrame(temp),15,2) alpha.columns = ['alpha68'] return alpha @timer def alpha69(self): high = self.high low = self.low Open = self.open dtm = DTM(Open,high) dbm = DBM(Open,low) dtm_sum = Sum(dtm,20) dbm_sum = Sum(dbm,20) data = pd.concat([dtm_sum,dbm_sum],axis = 1, join = 'inner') data.columns = ['dtm','dbm'] data['temp1'] = (data['dtm'] - data['dbm'])/data['dtm'] data['temp2'] = (data['dtm'] - data['dbm'])/data['dbm'] data['temp1'][data['dtm'] <= data['dbm']] = 0 data['temp2'][data['dtm'] >= data['dbm']] = 0 alpha = pd.DataFrame(data['temp1'] + data['temp2']) alpha.columns = ['alpha69'] return alpha @timer def alpha70(self): amount = self.amt alpha= STD(amount,6) alpha.columns = ['alpha70'] return alpha @timer def alpha71(self): close = self.close close_mean = Mean(close,24) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = (data['close'] - data['close_mean'])/data['close_mean'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha71'] return alpha @timer def alpha72(self): low = self.low high = self.high close = self.close low_min = TsMin(low,6) high_max = TsMax(high,6) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = (data['high_max'] - data['close'])/(data['high_max'] - data['low_min']) * 100 alpha = SMA(pd.DataFrame(temp),15,1) alpha.columns = ['alpha72'] return alpha @timer def alpha73(self): vwap = self.vwap volume = self.volume close = self.close data1 = pd.concat([close,volume],axis = 1,join = 'inner') corr1 = Corr(data1,10) corr1_decay = DecayLinear(DecayLinear(corr1,16),4) r1 = TsRank(corr1_decay,5) volume_mean = Mean(volume,30) data2 = pd.concat([vwap,volume_mean],axis = 1,join = 'inner') corr2 = Corr(data2,4) corr2_decay = DecayLinear(corr2,3) r2 = Rank(corr2_decay) r = pd.concat([r1,r2],axis = 1,join ='inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r2'] - r['r1']) alpha.columns= ['alpha73'] return alpha @timer def alpha74(self): vwap = self.vwap volume = self.volume low = self.low volume_mean = Mean(volume,40) volume_mean_sum = Sum(volume_mean,20) data1 = pd.concat([low,vwap],axis = 1,join = 'inner') data_sum = Sum(pd.DataFrame(data1['Low'] * 0.35 + data1['Vwap'] * 0.65),20) data = pd.concat([volume_mean_sum,data_sum],axis = 1,join = 'inner') corr = Corr(data,7) r1 = Rank(corr) vwap_r = Rank(vwap) volume_r = Rank(volume) data_temp = pd.concat([vwap_r,volume_r],axis = 1,join = 'inner') corr2 = Corr(data_temp,6) r2 = Rank(corr2) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha74'] return alpha @timer def alpha75(self): close = self.close Open = self.open close_index = self.close_index open_index = self.open_index data1 = pd.concat([close,Open], axis = 1, join = 'inner') data1.columns = ['close','open'] data1['temp'] = 1 data1['temp'][data1['close'] <= data1['open']] = 0 data2 = pd.concat([close_index,open_index], axis = 1, join = 'inner') data2.columns = ['close','open'] data2['tep'] = 1 data2['tep'][data2['close'] > data2['open']] = 0 temp = data1['temp'].unstack() tep = data2['tep'].unstack() tep1 = repmat(tep,1,np.size(temp,1)) data3 = temp * tep1 temp_result = data3.rolling(50,min_periods = 50).sum() tep_result = tep.rolling(50,min_periods = 50).sum() tep2_result = np.matlib.repmat(tep_result,1,np.size(temp,1)) result = temp_result/tep2_result alpha = pd.DataFrame(result.stack()) alpha.columns = ['alpha75'] return alpha @timer def alpha76(self): volume = self.volume close = self.close close_delay = Delay(close,1) data = pd.concat([volume,close,close_delay],axis = 1,join = 'inner') data.columns = ['volume','close','close_delay'] temp = pd.DataFrame(np.abs((data['close']/data['close_delay'] -1 )/data['volume'])) temp_std = STD(temp,20) temp_mean = Mean(temp,20) data_temp = pd.concat([temp_std,temp_mean],axis = 1,join = 'inner') data_temp.columns = ['std','mean'] alpha = pd.DataFrame(data_temp['std']/data_temp['mean']) alpha.columns = ['alpha76'] return alpha @timer def alpha77(self): vwap = self.vwap volume = self.volume low = self.low high = self.high data = pd.concat([high,low,vwap],axis = 1,join = 'inner') temp = pd.DataFrame((data['High'] + data['Low'])/2 - data['Vwap']) temp_decay = DecayLinear(temp,20) r1 = Rank(temp_decay) temp1 = pd.DataFrame((data['High'] + data['Low'])/2) volume_mean = Mean(volume,40) data2 = pd.concat([temp1,volume_mean],axis = 1,join = 'inner') corr = Corr(data2,3) corr_decay = DecayLinear(corr,6) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.min(r,axis = 1)) alpha.columns = ['alpha77'] return alpha @timer def alpha78(self): low = self.low high = self.high close = self.close data = pd.concat([low,high,close],axis = 1,join = 'inner') temp = pd.DataFrame((data['Low'] + data['High'] + data['Close'])/3) temp.columns = ['temp'] temp_mean = Mean(temp,12) temp_mean.columns = ['temp_mean'] temp2 = pd.concat([temp,temp_mean],axis = 1,join = 'inner') tmp = pd.DataFrame(temp2['temp'] - temp2['temp_mean']) data1 = pd.concat([close,temp_mean],axis = 1,join = 'inner') temp_abs = pd.DataFrame(np.abs(data1['Close'] - data1['temp_mean'])) temp_abs_mean = Mean(temp_abs,12) df = pd.concat([tmp,temp_abs_mean],axis = 1,join = 'inner') df.columns = ['df1','df2'] alpha = pd.DataFrame(df['df1']/(df['df2'] * 0.015)) alpha.columns = ['alpha78'] return alpha @timer def alpha79(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),12,1) sma2 = SMA(pd.DataFrame(data['abs']),12,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha79'] return alpha @timer def alpha80(self): volume = self.volume volume_delay = Delay(volume,5) volume_delay.columns = ['volume_delay'] data = pd.concat([volume,volume_delay],axis = 1,join = 'inner') alpha = (data['Vol'] - data['volume_delay'])/data['volume_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha80'] return alpha @timer def alpha81(self): volume = self.volume alpha = SMA(volume,21,2) alpha.columns = ['alpha81'] return alpha @timer def alpha82(self): low = self.low high = self.high close = self.close low_min = TsMin(low,6) high_max = TsMax(high,6) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = (data['high_max'] - data['close'])/(data['high_max'] - data['low_min']) * 100 alpha = SMA(pd.DataFrame(temp),20,1) alpha.columns = ['alpha82'] return alpha @timer def alpha83(self): high = self.high volume = self.volume high_r = Rank(high) volume_r = Rank(volume) data = pd.concat([high_r,volume_r],axis = 1,join = 'inner') corr = Corr(data,5) alpha = -1 * Rank(corr) alpha.columns = ['alpha83'] return alpha @timer def alpha84(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 data['sign'][data['Close'] == data['close_delay']] = 0 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,20) alpha.columns = ['alpha84'] return alpha @timer def alpha85(self): close = self.close volume = self.volume volume_mean = Mean(volume,20) close_delta = Delta(close,7) data1 = pd.concat([volume,volume_mean],axis = 1,join = 'inner') data1.columns = ['volume','volume_mean'] temp1 = pd.DataFrame(data1['volume']/data1['volume_mean']) r1 = TsRank(temp1,20) r2 = TsRank(-1 * close_delta,8) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2']) alpha.columns = ['alpha85'] return alpha @timer def alpha86(self): close = self.close close_delay20 = Delay(close,20) close_delay10 = Delay(close,20) data = pd.concat([close,close_delay20,close_delay10],axis = 1,join = 'inner') data.columns = ['close','close_delay20','close_delay10'] temp = pd.DataFrame((data['close_delay20'] - data['close_delay10'])/10 - \ (data['close_delay10'] - data['close'])/10) close_delta = Delta(close,1) * -1 data_temp = pd.concat([close_delta,temp],axis = 1,join = 'inner') data_temp.columns = ['close_delta','temp'] data_temp['close_delta'][data_temp['temp'] > 0.25]= -1 data_temp['close_delta'][data_temp['temp'] < 0]= 1 alpha = pd.DataFrame(data_temp['close_delta']) alpha.columns = ['alpha86'] return alpha @timer def alpha87(self): vwap = self.vwap high = self.high low = self.low Open = self.open vwap_delta = Delta(vwap,4) vwap_delta_decay = DecayLinear(vwap_delta,7) r1 = Rank(vwap_delta_decay) data = pd.concat([low,high,vwap,Open], axis = 1, join = 'inner') temp = pd.DataFrame((data['Low'] * 0.1 + data['High'] * 0.9 - data['Vwap'])/\ (data['Open'] - 0.5 * (data['Low'] + data['High']))) temp_decay = DecayLinear(temp,11) r2 = TsRank(temp_decay,7) r = pd.concat([r1,r2], axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(-1 * (r['r1'] + r['r2'])) alpha.columns = ['alpha87'] return alpha @timer def alpha88(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delta'] alpha = (data['close'] - data['close_delta'])/data['close_delta'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha88'] return alpha @timer def alpha89(self): close = self.close sma1 = SMA(close,13,2) sma2 = SMA(close,27,2) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] temp = pd.DataFrame(sma['sma1'] - sma['sma2']) sma3 = SMA(temp,10,2) data = pd.concat([temp,sma3],axis = 1, join = 'inner') data.columns = ['temp','sma'] alpha = pd.DataFrame(2 *(data['temp'] - data['sma'])) alpha.columns = ['alpha89'] return alpha @timer def alpha90(self): volume = self.volume vwap = self.vwap r1 = Rank(volume) r2 = Rank(vwap) rank = pd.concat([r1,r2], axis = 1, join = 'inner') corr = Corr(rank,5) alpha = -1 * Rank(corr) alpha.columns = ['alpha90'] return alpha @timer def alpha91(self): close = self.close volume = self.volume low = self.low close_max = TsMax(close,5) data1 = pd.concat([close,close_max], axis = 1,join = 'inner') data1.columns = ['close','close_max'] r1 = Rank(pd.DataFrame(data1['close'] - data1['close_max'])) volume_mean = Mean(volume,40) data2 = pd.concat([volume_mean,low], axis = 1, join = 'inner') corr = Corr(data2,5) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2'] * -1) alpha.columns = ['alpha91'] return alpha @timer def alpha92(self): volume = self.volume vwap = self.vwap close = self.close data = pd.concat([close,vwap],axis = 1, join = 'inner') data['price'] = data['Close'] * 0.35 + data['Vwap'] * 0.65 price_delta = Delta(pd.DataFrame(data['price']),2) price_delta_decay = DecayLinear(price_delta,3) r1 = Rank(price_delta_decay) volume_mean = Mean(volume,180) rank = pd.concat([volume_mean,close],axis = 1,join = 'inner') corr = Corr(rank,13) temp = pd.DataFrame(np.abs(corr)) temp_decay = DecayLinear(temp,5) r2 = TsRank(temp_decay,15) r = pd.concat([r1,r2],axis = 1, join = 'inner') alpha = pd.DataFrame(-1 * np.max(r, axis = 1)) alpha.columns = ['alpha92'] return alpha @timer def alpha93(self): low = self.low Open = self.open open_delay = Delay(Open,1) data = pd.concat([low,Open,open_delay],axis = 1,join = 'inner') data.columns = ['low','open','open_delay'] temp1 = pd.DataFrame(data['open'] - data['low']) temp2 = pd.DataFrame(data['open'] - data['open_delay']) data_temp = pd.concat([temp1,temp2],axis = 1 ,join = 'inner') temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) temp_max.columns = ['max'] data2 = pd.concat([data,temp_max],axis = 1,join = 'inner') data2['temp'] = data2['max'] data2['temp'][data2['open'] >= data2['open_delay']] = 0 alpha = Sum(pd.DataFrame(data2['temp']),20) alpha.columns = ['alpha93'] return alpha @timer def alpha94(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 data['sign'][data['Close'] == data['close_delay']] = 0 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,30) alpha.columns = ['alpha94'] return alpha @timer def alpha95(self): amt = self.amt alpha = STD(amt,20) alpha.columns = ['alpha95'] return alpha @timer def alpha96(self): low = self.low high = self.high close = self.close low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = ( data['close'] - data['low_min'])/(data['high_max'] - data['low_min']) * 100 alpha_temp = SMA(pd.DataFrame(temp),3,1) alpha = SMA(alpha_temp,3,1) alpha.columns = ['alpha96'] return alpha @timer def alpha97(self): volume = self.volume alpha = STD(volume,10) alpha.columns = ['alpha97'] return alpha @timer def alpha98(self): close = self.close close_mean = Mean(close,100) close_mean_delta = Delta(close_mean,100) close_delay = Delay(close,100) data = pd.concat([close_mean_delta,close_delay],axis = 1,join = 'inner') data.columns = ['delta','delay'] temp = pd.DataFrame(data['delta']/ data['delay']) close_delta = Delta(close,3) close_min = TsMin(close,100) data_temp = pd.concat([close,close_delta,close_min,temp],axis = 1,join = 'inner') data_temp.columns = ['close','close_delta','close_min','temp'] data_temp['diff'] = (data_temp['close'] - data_temp['close_min']) * -1 data_temp['diff'][data_temp['temp'] < 0.05] = 0 data_temp['close_delta'] = data_temp['close_delta'] * -1 data_temp['close_delta'][data_temp['temp'] >= 0.05]= 0 alpha = pd.DataFrame(data_temp['close_delta'] + data_temp['diff']) alpha.columns = ['alpha98'] return alpha @timer def alpha99(self): close = self.close volume = self.volume r1 = Rank(close) r2 = Rank(volume) r = pd.concat([r1,r2],axis = 1,join = 'inner') cov = Cov(r,5) alpha = -1 * Rank(cov) alpha.columns = ['alpha99'] return alpha @timer def alpha100(self): volume = self.volume alpha = STD(volume,20) alpha.columns = ['alpha100'] return alpha @timer def alpha101(self): close = self.close volume = self.volume high = self.high vwap = self.vwap volume_mean = Mean(volume,30) volume_mean_sum = Sum(volume_mean,37) data1 = pd.concat([close,volume_mean_sum], axis = 1, join = 'inner') corr1 = Corr(data1,15) r1 = Rank(corr1) data2 = pd.concat([high,vwap],axis = 1, join = 'inner') temp = pd.DataFrame(data2['High'] * 0.1 + data2['Vwap'] * 0.9) temp_r = Rank(temp) volume_r = Rank(volume) data3 = pd.concat([temp_r,volume_r], axis = 1, join = 'inner') corr2 = Corr(data3,11) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = 0 r['alpha'][r['r1'] < r['r2']] = -1 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha101'] return alpha @timer def alpha102(self): volume = self.volume temp = Delta(volume,1) temp.columns = ['temp'] temp['max'] = temp['temp'] temp['max'][temp['temp'] < 0 ] = 0 temp['abs'] = np.abs(temp['temp']) sma1 = SMA(pd.DataFrame(temp['max']),6,1) sma2 = SMA(pd.DataFrame(temp['abs']),6,1) sma = pd.concat([sma1,sma2], axis = 1 ,join ='inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/ sma['sma2'] * 100) alpha.columns = ['alpha102'] return alpha @timer def alpha103(self): low = self.low lowday = Lowday(low,20) alpha = (20 - lowday)/20.0 * 100 alpha.columns = ['alpha103'] return alpha @timer def alpha104(self): close = self.close volume = self.volume high = self.high data = pd.concat([high,volume], axis = 1, join = 'inner') corr = Corr(data,5) corr_delta = Delta(corr,5) close_std = STD(close,20) r1 = Rank(close_std) temp = pd.concat([corr_delta,r1], axis = 1, join = 'inner') temp.columns = ['delta','r'] alpha = pd.DataFrame(-1 * temp['delta'] * temp['r']) alpha.columns = ['alpha104'] return alpha @timer def alpha105(self): volume = self.volume Open = self.open volume_r = Rank(volume) open_r = Rank(Open) rank = pd.concat([volume_r,open_r],axis = 1, join = 'inner') alpha = -1 * Corr(rank,10) alpha.columns = ['alpha105'] return alpha @timer def alpha106(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] alpha = pd.DataFrame(data['close'] - data['close_delay']) alpha.columns = ['alpha106'] return alpha @timer def alpha107(self): Open = self.open high = self.high close = self.close low = self.low high_delay = Delay(high,1) close_delay = Delay(close,1) low_delay = Delay(low,1) data = pd.concat([high_delay,close_delay,low_delay,Open], axis = 1, join = 'inner') data.columns = ['high_delay','close_delay','low_delay','open'] r1 = Rank(pd.DataFrame(data['open'] - data['high_delay'])) r2 = Rank(pd.DataFrame(data['open'] - data['close_delay'])) r3 = Rank(pd.DataFrame(data['open'] - data['low_delay'])) alpha = -1 * r1 * r2 * r3 alpha.columns = ['alpha107'] return alpha @timer def alpha108(self): high = self.high volume = self.volume vwap = self.vwap high_min = TsMin(high,2) data1 = pd.concat([high,high_min], axis = 1, join = 'inner') data1.columns = ['high','high_min'] r1 = Rank(pd.DataFrame(data1['high'] - data1['high_min'])) volume_mean = Mean(volume,120) rank = pd.concat([vwap,volume_mean],axis = 1, join = 'inner') corr = Corr(rank,6) r2 = Rank(corr) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = r['r1'] * r['r2'] * -1 alpha.columns = ['alpha108'] return alpha @timer def alpha109(self): high = self.high low = self.low data = pd.concat([high,low],axis = 1, join = 'inner') temp = SMA(pd.DataFrame(data['High'] - data['Low']),10,2) sma = SMA(temp,10,2) sma_temp = pd.concat([temp,sma],axis = 1, join = 'inner') sma_temp.columns = ['temp','sma'] alpha = pd.DataFrame(sma_temp['temp']/sma_temp['sma']) alpha.columns = ['alpha109'] return alpha @timer def alpha110(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([high,low,close_delay], axis = 1, join = 'inner') data['max1'] = data['High'] - data['close_delay'] data['max2'] = data['close_delay'] - data['Low'] data['max1'][data['max1'] < 0] = 0 data['max2'][data['max2'] < 0] = 0 s1 = Sum(pd.DataFrame(data['max1']),20) s2 = Sum(pd.DataFrame(data['max2']),20) s = pd.concat([s1,s2], axis = 1 , join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2']) alpha.columns = ['alpha110'] return alpha @timer def alpha111(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume], axis = 1, join = 'inner') temp = pd.DataFrame(data['Vol'] * (2 * data['Close'] - data['Low'] - data['High'])\ /(data['High'] - data['Low'])) sma1 = SMA(temp,11,2) sma2 = SMA(temp,4,2) sma = pd.concat([sma1, sma2], axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1'] - sma['sma2']) alpha.columns = ['alpha111'] return alpha @timer def alpha112(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close, close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['temp'] = 1 data['temp'][data['close'] > data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha112'] return alpha @timer def alpha113(self): close = self.close volume = self.volume close_delay = Delay(close,5) close_delay_mean = Mean(close_delay,20) data1 = pd.concat([close,volume],axis = 1, join = 'inner') corr = Corr(data1,2) r1 = Rank(close_delay_mean) data2 = pd.concat([r1,corr], axis = 1, join = 'inner') data2.columns = ['r1','corr'] r1 = pd.DataFrame(data2['r1'] * data2['corr']) close_sum5 = Sum(close,5) close_sum20 = Sum(close,20) data3 = pd.concat([close_sum5,close_sum20],axis = 1, join = 'inner') corr2 = Corr(data3,2) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2'] * -1) alpha.columns = ['alpha113'] return alpha @timer def alpha114(self): close = self.close high = self.high low = self.low volume = self.volume vwap = self.vwap close_mean = Mean(close,5) data = pd.concat([high,low,close_mean], axis = 1, join = 'inner') data.columns = ['high','low','close_mean'] temp = pd.DataFrame(data['high'] - data['low'] / data['close_mean']) temp_delay = Delay(temp,2) r1 = TsRank(temp_delay,5) temp1 = pd.concat([temp,vwap,close], axis = 1, join = 'inner') temp1.columns = ['temp','vwap','close'] tep = pd.DataFrame(temp1['temp']/(temp1['vwap'] - temp1['close'])) r2 = TsRank(volume,5) data2 = pd.concat([r2,tep], axis = 1, join = 'inner') data2.columns = ['r2','tep'] tep1 = pd.DataFrame(data2['r2']/data2['tep']) r3 = TsRank(tep1,5) r = pd.concat([r1,r3],axis = 1, join = 'inner') r.columns = ['r1','r3'] alpha = pd.DataFrame(r['r1'] + r['r3']) alpha.columns = ['alpha114'] return alpha @timer def alpha115(self): high = self.high low = self.low volume = self.volume volume_mean = Mean(volume,30) price = pd.concat([high,low], axis = 1, join = 'inner') price.columns = ['high','low'] price_temp = price['high'] * 0.9 + price['low'] * 0.1 data = pd.concat([price_temp,volume_mean],axis = 1, join = 'inner') corr = Corr(data,10) r1 = Rank(corr) data2 = pd.concat([high,low], axis = 1, join = 'inner') temp = pd.DataFrame((data2['High'] + data2['Low'])/2) temp_r = TsRank(temp,4) volume_r = TsRank(volume,10) data3 = pd.concat([temp_r,volume_r], axis = 1, join = 'inner') corr2 = Corr(data3,7) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2']) alpha.columns = ['alpha115'] return alpha @timer def alpha116(self): close = self.close alpha = RegResi(0,close,None,20) alpha.columns = ['alpha116'] return alpha @timer def alpha117(self): high = self.high low = self.low close = self.close volume = self.volume ret = self.ret r1 = TsRank(volume,32) data1 = pd.concat([close,high,low],axis = 1, join = 'inner') r2 = TsRank(pd.DataFrame(data1['Close'] + data1['High'] - data1['Low']),16) r3 = TsRank(ret,32) r = pd.concat([r1,r2,r3], axis = 1, join = 'inner') r.columns = ['r1','r2','r3'] alpha = pd.DataFrame(r['r1'] * (1 - r['r2']) * (1 - r['r3'])) alpha.columns = ['alpha117'] return alpha @timer def alpha118(self): high = self.high low = self.low Open = self.open data = pd.concat([high,low,Open], axis = 1, join = 'inner') s1 = Sum(pd.DataFrame(data['High'] - data['Open']),20) s2 = Sum(pd.DataFrame(data['Open'] - data['Low']),20) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2'] * 100) alpha.columns = ['alpha118'] return alpha @timer def alpha119(self): Open = self.open volume = self.volume vwap = self.vwap volume_mean = Mean(volume,5) volume_mean_sum = Sum(volume_mean,26) data1 = pd.concat([vwap,volume_mean_sum],axis = 1, join = 'inner') corr1 = Corr(data1,5) corr1_decay = DecayLinear(corr1,7) r1 = Rank(corr1_decay) open_r = Rank(Open) volume_mean2 = Mean(volume,15) volume_mean2_r = Rank(volume_mean2) data2 = pd.concat([open_r, volume_mean2_r], axis = 1, join = 'inner') corr2 = Corr(data2,21) corr2_min = TsMin(corr2,9) corr2_min_r = TsRank(corr2_min,7) corr_min_r_decay = DecayLinear(corr2_min_r,8) r2 = Rank(corr_min_r_decay) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] - r['r2']) alpha.columns = ['alpha119'] return alpha @timer def alpha120(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close], axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vwap'] - data['Close'])) r2 = Rank(pd.DataFrame(data['Vwap'] + data['Close'])) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha120'] return alpha @timer def alpha121(self): vwap = self.vwap volume = self.volume vwap_r = TsRank(vwap,20) volume_mean = Mean(volume,60) volume_mean_r = TsRank(volume_mean,2) data = pd.concat([vwap_r,volume_mean_r], axis = 1, join = 'inner') corr= Corr(data,18) temp = TsRank(corr,3) vwap_min = TsMin(vwap,12) data2 = pd.concat([vwap,vwap_min],axis = 1, join = 'inner') data2.columns = ['vwap','vwap_min'] rank = Rank(pd.DataFrame(data2['vwap'] - data2['vwap_min'])) data3 = pd.concat([rank,temp],axis = 1, join = 'inner') data3.columns = ['rank','temp'] alpha = pd.DataFrame(np.power(data3['rank'],data3['temp']) * -1) alpha.columns = ['alpha121'] return alpha @timer def alpha122(self): close = self.close close_ln = pd.DataFrame(np.log(close)) temp1 = SMA(close_ln,13,2) sma1 = SMA(temp1,13,2) sma2 = SMA(sma1,13,2) sma3 = SMA(sma2,13,2) sma3_delay = Delay(sma3,1) data = pd.concat([sma3,sma3_delay],axis = 1, join = 'inner') data.columns = ['sma','sma_delay'] alpha = pd.DataFrame(data['sma']/data['sma_delay']) alpha.columns = ['alpha122'] return alpha @timer def alpha123(self): volume = self.volume high = self.high low = self.low data1 = pd.concat([high,low], axis = 1, join = 'inner') s1 = Sum(pd.DataFrame((data1['High'] + data1['Low'])/2),20) volume_mean = Mean(volume,60) s2 = Sum(volume_mean,20) data2 = pd.concat([s1,s2], axis = 1, join = 'inner') corr1 = Corr(data2,9) data3 = pd.concat([low,volume], axis = 1, join = 'inner') corr2 = Corr(data3,6) corr1_r = Rank(corr1) corr2_r = Rank(corr2) data = pd.concat([corr1_r,corr2_r], axis = 1, join = 'inner') data.columns = ['r1','r2'] data['alpha'] = -1 data['alpha'][data['r1'] >= data['r2']] = 0 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha123'] return alpha @timer def alpha124(self): close = self.close vwap = self.vwap close_max = TsMax(close,30) close_max_r = Rank(close_max) close_max_r_decay = DecayLinear(close_max_r,2) close_max_r_decay.columns = ['decay'] data = pd.concat([close,vwap,close_max_r_decay], axis = 1, join ='inner') alpha = pd.DataFrame((data['Close'] - data['Vwap'])/data['decay']) alpha.columns = ['alpha124'] return alpha @timer def alpha125(self): close = self.close vwap = self.vwap volume = self.volume volume_mean = Mean(volume,80) data1 = pd.concat([vwap,volume_mean], axis = 1, join = 'inner') corr1 = Corr(data1,17) data2 = pd.concat([close,vwap], axis = 1, join = 'inner') temp2 = pd.DataFrame(0.5*(data2['Close'] + data2['Vwap'])) temp2_delta = Delta(temp2,3) corr1_decay = DecayLinear(corr1,20) r1 = Rank(corr1_decay) temp2_delta_decay = DecayLinear(temp2_delta,16) r2 = Rank(temp2_delta_decay) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha125'] return alpha @timer def alpha126(self): close = self.close high = self.high low = self.low data = pd.concat([close,high,low], axis = 1, join = 'inner') alpha = pd.DataFrame((data['Close'] + data['High'] + data['Low'])/3) alpha.columns = ['alpha126'] return alpha @timer def alpha127(self): close = self.close close_max = TsMax(close,12) data = pd.concat([close,close_max], axis = 1, join = 'inner') data.columns = ['close','close_max'] alpha = pd.DataFrame((data['close'] - data['close_max'])/data['close_max']) alpha.columns = ['alpha127'] return alpha @timer def alpha128(self): close = self.close high = self.high low = self.low volume = self.volume data = pd.concat([close,high,low,volume], axis = 1, join = 'inner') data['temp1'] = (data['Close'] + data['Low'] + data['High'])/3 data['temp2'] = data['temp1'] * data['Vol'] data['temp3'] = data['temp1'] * data['Vol'] temp_delay = Delay(pd.DataFrame(data['temp1']),1) temp_delay.columns = ['temp_decay'] data = pd.concat([data,temp_delay], axis = 1, join = 'inner') data['temp2'][data['temp1'] < data['temp_decay']] = 0 data['temp3'][data['temp1'] > data['temp_decay']] = 0 s1 = Sum(pd.DataFrame(data['temp2']),14) s2 = Sum(pd.DataFrame(data['temp3']),14) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(100 - 100/(1+ s['s1']/s['s2'])) alpha.columns = ['alpha128'] return alpha @timer def alpha129(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['abs'] = np.abs(data['close'] - data['close_delay']) data['temp'] = data['abs'] data['temp'][data['close'] < data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha129'] return alpha @timer def alpha130(self): close = self.close high = self.high low = self.low volume = self.volume volume_mean = Mean(volume,40) data1 = pd.concat([high,low],axis = 1, join = 'inner') temp1 = pd.DataFrame((data1['High'] + data1['Low'])/2) rank1 = pd.concat([temp1,volume_mean], axis = 1, join = 'inner') corr = Corr(rank1,9) close_r = Rank(close) volume_r = Rank(volume) data2 = pd.concat([close_r,volume_r],axis = 1, join = 'inner') corr2 = Corr(data2,7) corr_decay = DecayLinear(corr,10) r1 = Rank(corr_decay) corr2_decay = DecayLinear(corr2,3) r2 = Rank(corr2_decay) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha130'] return alpha @timer def alpha131(self): close = self.close vwap = self.vwap volume = self.volume volume_mean = Mean(volume,50) data1 = pd.concat([close,volume_mean], axis = 1, join = 'inner') corr = Corr(data1,18) vwap_delta = Delta(vwap,1) temp2 = TsRank(corr,18) data2 = pd.concat([vwap_delta,temp2],axis = 1, join = 'inner') data2.columns = ['vwap_delta','temp2'] temp3 = np.power(data2['vwap_delta'],data2['temp2']) alpha = Rank(pd.DataFrame(temp3)) alpha.columns = ['alpha131'] return alpha @timer def alpha132(self): amt = self.amt alpha = Mean(amt,20) alpha.columns = ['alpha132'] return alpha @timer def alpha133(self): low = self.low high = self.high highday = Highday(high,20) lowday = Lowday(low,20) data = pd.concat([highday,lowday],axis = 1, join = 'inner') data.columns = ['highday','lowday'] alpha = (20 - data['highday']/20.0) * 100 - (20 - data['lowday']/20.0) * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha133'] return alpha @timer def alpha134(self): close = self.close volume = self.volume close_delay = Delay(close,12) close_delay.columns = ['close_delay'] data = pd.concat([close,volume,close_delay], axis = 1, join = 'inner') alpha = pd.DataFrame((data['Close'] - data['close_delay'])/data['close_delay']) alpha.columns = ['alpha134'] return alpha @timer def alpha135(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay],axis = 1 , join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_delay = Delay(temp,1) alpha = SMA(temp_delay,20,1) alpha.columns = ['alpha135'] return alpha @timer def alpha136(self): volume = self.volume Open = self.open ret = self.ret ret_delta = Delta(ret,3) ret_delta_r = Rank(ret_delta) data = pd.concat([Open,volume],axis = 1, join = 'inner') corr = Corr(data,10) data_temp = pd.concat([ret_delta_r,corr],axis = 1, join = 'inner') data_temp.columns = ['ret_delta','corr'] alpha = pd.DataFrame(-1 * data_temp['ret_delta'] * data_temp['corr']) alpha.columns = ['alpha136'] return alpha @timer def alpha137(self): Open = self.open close = self.close low = self.low high = self.high close_delay = Delay(close,1) open_delay = Delay(Open,1) low_delay = Delay(low,1) data = pd.concat([Open,close,low,high,close_delay,open_delay,low_delay], axis =1 ,join = 'inner') data.columns= ['open','close','low','high','close_delay','open_delay','low_delay'] temp1 = pd.DataFrame((data['close'] - data['close_delay'] + (data['close'] - data['open'])/2\ + data['close_delay'] - data['open_delay'])/ np.abs(data['high'] - data['close_delay'])) temp2 = pd.DataFrame(np.abs(data['high'] - data['close_delay']) + np.abs(data['low'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) temp3 = pd.DataFrame(np.abs(data['low'] - data['close_delay']) + np.abs(data['high'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) abs1 = pd.DataFrame(np.abs(data['high'] - data['close_delay'])) abs2 = pd.DataFrame(np.abs(data['low'] - data['close_delay'])) abs3 = pd.DataFrame(np.abs(data['high'] - data['low_delay'])) data1 = pd.concat([abs1,abs2,abs3], axis = 1, join = 'inner') data1.columns = ['abs1','abs2','abs3'] data_temp = pd.concat([abs1,abs2],axis = 1, join = 'inner') data_temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) data_temp_max.columns = ['max'] data_temp1 = pd.concat([data,data_temp_max], axis = 1, join = 'inner') temp4 = pd.DataFrame((np.abs(data_temp1['high'] - data_temp1['low_delay']) + \ np.abs(data_temp1['close_delay'] - data_temp1['open_delay'])) *\ data_temp1['max']) data1['judge1'] = 0 data1['judge2'] = 0 data1['judge3'] = 0 data1['judge4'] = 0 data1['judge1'][data1['abs1'] > data1['abs2']] = 1 data1['judge2'][data1['abs1'] > data1['abs3']] = 1 data1['judge3'][data1['abs2'] > data1['abs3']] = 1 data1['judge3'][data1['abs3'] > data1['abs1']] = 1 judge_1 = pd.DataFrame(data1['judge1'] * data1['judge2']) judge_2 = pd.DataFrame(data1['judge3'] * data1['judge4']) data2 = pd.concat([temp1,temp2,temp3,temp4,judge_1,judge_2], axis = 1, join = 'inner') data2.columns = ['t1','t2','t3','t4','j1','j2'] data2['j3'] = 1 data2['j4'] = data2['j3'] - data2['j1'] - data2['j2'] data2['t5'] = data2['t2'] * data2['j1'] + data2['t3'] * data2['j2'] + \ data2['t4'] * data2['j4'] alpha = pd.DataFrame(16 * data2['t5']/data2['t1']) alpha.columns = ['alpha137'] return alpha @timer def alpha138(self): vwap = self.vwap volume = self.volume low = self.low data1 = pd.concat([low,vwap], axis = 1, join = 'inner') temp1 = pd.DataFrame(data1['Low'] * 0.7 + data1['Vwap'] * 0.3) temp1_delta = Delta(temp1,3) temp1_delta_decay = DecayLinear(temp1_delta,20) r1 = Rank(temp1_delta_decay) low_r = TsRank(low,8) volume_mean = Mean(volume,60) volume_mean_r = TsRank(volume_mean,17) data2 = pd.concat([low_r,volume_mean_r],axis = 1, join = 'inner') corr = Corr(data2,5) corr_r = TsRank(corr,19) corr_r_decay = DecayLinear(corr_r,16) r2 = TsRank(corr_r_decay,7) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] - r['r2']) alpha.columns = ['alpha138'] return alpha @timer def alpha139(self): Open = self.open volume = self.volume data = pd.concat([Open,volume], axis = 1, join = 'inner') alpha = -1 * Corr(data,10) alpha.columns = ['alpha139'] return alpha @timer def alpha140(self): Open = self.open volume = self.volume high = self.high low = self.low close = self.close open_r = Rank(Open) low_r = Rank(low) high_r = Rank(high) close_r = Rank(close) data1 = pd.concat([open_r,low_r,high_r,close_r],axis = 1, join = 'inner') data1.columns = ['open_r','low_r','high_r','close_r'] temp = pd.DataFrame(data1['open_r'] + data1['low_r'] - \ (data1['high_r'] + data1['close_r'])) close_r_temp = TsRank(close,8) volume_mean = Mean(volume,70) volume_mean_r = TsRank(volume_mean,20) data2 = pd.concat([close_r_temp,volume_mean_r], axis = 1, join = 'inner') corr = Corr(data2,8) temp_decay = DecayLinear(temp,8) r1 = Rank(temp_decay) corr_decay = DecayLinear(corr,7) r2 = TsRank(corr_decay,3) r = pd.concat([r1,r2], axis = 1, join = 'inner') alpha = pd.DataFrame(np.min(r)) alpha.columns = ['alpha140'] return alpha @timer def alpha141(self): volume = self.volume high = self.high volume_mean = Mean(volume,15) high_r = Rank(high) volume_mean_r = Rank(volume_mean) data = pd.concat([high_r,volume_mean_r], axis = 1, join = 'inner') corr = Corr(data,9) alpha = -1 * Rank(corr) alpha.columns = ['alpha141'] return alpha @timer def alpha142(self): close = self.close volume = self.volume close_r = TsRank(close,10) r1 = Rank(close_r) close_delta = Delta(close,1) close_delta_delta = Delta(close_delta,1) r2 = Rank(close_delta_delta) volume_mean = Mean(volume,20) data = pd.concat([volume,volume_mean], axis = 1, join = 'inner') data.columns = ['v','v_m'] temp = pd.DataFrame(data['v']/data['v_m']) temp_r = TsRank(temp,5) r3 = Rank(temp_r) r = pd.concat([r1,r2,r3],axis = 1, join = 'inner') r.columns = ['r1','r2','r3'] alpha = pd.DataFrame(- 1* r['r1'] * r['r2'] * r['r3']) alpha.columns= ['alpha142'] return alpha @timer def alpha143(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame((data['close'] - data['close_delay'])/data['close_delay']) temp.columns= ['temp'] data_temp = pd.concat([data,temp],axis = 1, join = 'inner') data_temp['temp'][data_temp['close'] <= data_temp['close_delay']] = 1 temp_unstack = data_temp['temp'].unstack() temp_unstack.iloc[0,:] = 1 df = np.cumprod(temp_unstack,axis = 0) alpha = df.stack() alpha.columns = ['alpha143'] return alpha @timer def alpha144(self): close = self.close amt = self.amt close_delay = Delay(close,1) data = pd.concat([close,close_delay,amt], axis = 1, join = 'inner') data.columns = ['close','close_delay','amt'] data['temp'] = np.abs(data['close']/data['close_delay'] - 1)/data['amt'] data['sign'] = 1 data['sign'][data['close'] >= data['close_delay']] = 0 tep1 = Sum(pd.DataFrame(data['sign'] * data['temp']),20) tep2 = Count(0,pd.DataFrame(data['close_delay']),pd.DataFrame(data['close']),20) data2 = pd.concat([tep1,tep2], axis = 1, join = 'inner') data2.columns = ['tep1','tep2'] alpha = pd.DataFrame(data2['tep1']/data2['tep2']) alpha.columns = ['alpha144'] return alpha @timer def alpha145(self): volume = self.volume volume_mean9 = Mean(volume,9) volume_mean26 = Mean(volume,26) volume_mean12 = Mean(volume,12) data = pd.concat([volume_mean9,volume_mean26,volume_mean12], axis = 1, join = 'inner') data.columns = ['m9','m26','m12'] alpha = pd.DataFrame((data['m9'] - data['m26'])/data['m12'] * 100) alpha.columns = ['alpha145'] return alpha @timer def alpha146(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame((data['close'] -data['close_delay'])/data['close_delay']) sma1 = SMA(temp,61,2) data2 = pd.concat([temp,sma1], axis = 1, join = 'inner') data2.columns = ['temp1','sma1'] data2['temp2'] = data2['temp1'] - data2['sma1'] temp2_mean = Mean(pd.DataFrame(data2['temp2']),20) sma2 = SMA(pd.DataFrame(data2['temp1'] - data2['temp2']),61,2) data_temp = pd.concat([temp2_mean,pd.DataFrame(data2['temp2']),sma2], axis = 1 , join = 'inner') data_temp.columns = ['temp2_mean','temp2','sma2'] alpha = data_temp['temp2_mean'] * data_temp['temp2'] / data_temp['sma2'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha146'] return alpha @timer def alpha147(self): close = self.close close_mean = Mean(close,12) alpha = RegBeta(0,close_mean,None,12) alpha.columns = ['alpha147'] return alpha @timer def alpha148(self): Open = self.open volume = self.volume volume_mean = Mean(volume,60) volume_mean_s = Sum(volume_mean,9) data = pd.concat([Open,volume_mean_s],axis = 1, join = 'inner') corr = Corr(data,6) r1 = Rank(corr) open_min = TsMin(Open,14) data2 = pd.concat([Open,open_min], axis = 1, join = 'inner') data2.columns = ['open','open_min'] r2 = Rank(pd.DataFrame(data2['open'] - data2['open_min'])) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = -1 r['alpha'][r['r1'] > r['r2']] = 0 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha148'] return alpha @timer def alpha149(self): close = self.close close_index = self.close_index close_delay = Delay(close,1) close_index_delay = Delay(close_index,1) data_index = pd.concat([close_index,close_index_delay], axis = 1, join = 'inner') data_index.columns = ['close','close_delay'] data_index['delta'] = data_index['close']/data_index['close_delay'] - 1 data_index['judge'] = 1 data_index['judge'][data_index['close'] >= data_index['close_delay']] = 0 data_index['delta'][data_index['judge'] == 0] = np.nan # index_delta_unstack = index_delta_unstack.dropna() data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['delta'] = data['close'] / data['close_delay'] - 1 df1 = pd.DataFrame(data['delta']) df2 = pd.DataFrame(data_index['delta']) alpha = RegBeta(1,df1,df2,252) alpha.columns = ['alpha149'] return alpha @timer def alpha150(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume], axis = 1, join = 'inner') alpha = (data['Close'] + data['High'] + data['Low'])/3 * data['Vol'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha150'] return alpha @timer def alpha151(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close'] - data['close_delay']) alpha = SMA(temp,20,1) alpha.columns = ['alpha151'] return alpha @timer def alpha152(self): close = self.close close_delay = Delay(close,9) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_delay = Delay(temp,1) sma1 = SMA(temp_delay,9,1) sma1_delay = Delay(sma1,1) sma1_delay_mean1 = Mean(sma1_delay,12) sma1_delay_mean2 = Mean(sma1_delay,26) data_temp = pd.concat([sma1_delay_mean1,sma1_delay_mean2],axis = 1, join = 'inner') data_temp.columns = ['m1','m2'] alpha = SMA(pd.DataFrame(data_temp['m1'] - data_temp['m2']),9,1) alpha.columns = ['alpha152'] return alpha @timer def alpha153(self): close = self.close close_mean3 = Mean(close,3) close_mean6 = Mean(close,6) close_mean12 = Mean(close,12) close_mean24 = Mean(close,24) data = pd.concat([close_mean3, close_mean6, close_mean12, close_mean24], axis = 1 ,join ='inner') alpha = pd.DataFrame(np.mean(data, axis = 1)) alpha.columns = ['alpha153'] return alpha @timer def alpha154(self): volume = self.volume vwap = self.vwap volume_mean = Mean(volume,180) data = pd.concat([vwap,volume_mean], axis = 1, join = 'inner') corr = Corr(data,18) vwap_min = TsMin(vwap,16) data1 = pd.concat([vwap,vwap_min],axis = 1, join = 'inner') data1.columns = ['vwap','vwap_min'] temp = pd.DataFrame(data1['vwap'] - data1['vwap_min']) data_temp = pd.concat([corr,temp], axis = 1, join = 'inner') data_temp.columns = ['corr','temp'] data_temp['alpha'] = 1 data_temp['alpha'][data_temp['corr'] >= data_temp['temp']] = 0 alpha = pd.DataFrame(data_temp['alpha']) alpha.columns = ['alpha154'] return alpha @timer def alpha155(self): volume = self.volume sma1 = SMA(volume,13,2) sma2 = SMA(volume,26,2) sma = pd.concat([sma1, sma2], axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] temp = pd.DataFrame(sma['sma1'] - sma['sma2']) sma3 = SMA(temp,10,2) data = pd.concat([temp,sma3], axis = 1 ,join = 'inner') data.columns = ['temp','sma'] alpha = pd.DataFrame(data['temp'] - data['sma']) alpha.columns = ['alpha155'] return alpha @timer def alpha156(self): vwap = self.vwap Open = self.open low = self.low vwap_delta = Delta(vwap,5) vwap_delta_decay = DecayLinear(vwap_delta,3) r1 = Rank(vwap_delta_decay) data1 = pd.concat([Open,low],axis = 1, join = 'inner') temp = -1 * Delta(pd.DataFrame(data1['Open'] * 0.15 + data1['Low'] * 0.85),2) temp_decay = DecayLinear(temp,3) r2 = Rank(temp_decay) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(- 1 *np.max(r, axis = 1)) alpha.columns = ['alpha156'] return alpha @timer def alpha157(self): close = self.close ret = self.ret close_delta = Delta(close,5) close_delta_r = Rank(Rank(close_delta) * -1) r1 = TsMin(close_delta_r,2) ret_delay = Delay(-1 * ret,6) r2 = TsRank(ret_delay,5) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] temp = pd.DataFrame(r['r1'] + r['r2']) alpha = TsMin(temp,5) alpha.columns = ['alpha157'] return alpha @timer def alpha158(self): high = self.high low = self.low close = self.close temp = SMA(close,15,2) temp.columns = ['temp'] data = pd.concat([high,low,close,temp],axis = 1 , join = 'inner') alpha =(data['High'] + data['Low'] - 2 * data['temp'] )/data['Close'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha158'] return alpha @timer def alpha159(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) data1 = pd.concat([low,close_delay],axis = 1, join = 'inner') data2 = pd.concat([high, close_delay], axis = 1, join = 'inner') temp1 = pd.DataFrame(np.min(data1,axis = 1)) temp2= pd.DataFrame(np.max(data2,axis = 1)) temp = pd.concat([temp1,temp2], axis = 1 ,join = 'inner') temp.columns = ['temp1','temp2'] temp1_sum6 = Sum(temp1,6) temp1_sum12 = Sum(temp1,12) temp1_sum24 = Sum(temp1,24) tep = pd.DataFrame(temp['temp2'] - temp['temp1']) s6 = Sum(tep,6) s12 = Sum(tep,12) s24 = Sum(tep,24) data3 = pd.concat([temp1_sum6,temp1_sum12,temp1_sum24,s6,s12,s24], axis = 1 ,join = 'inner') data3.columns = ['ts6','ts12','ts24','s6','s12','s24'] temp3 = pd.DataFrame(data3['ts6']/data3['s6'] * 12 * 24 + data3['ts12']/data3['s12'] * 6 * 24 \ + data3['ts24']/data3['s24'] * 6 * 24) alpha = temp3 / (6*12 + 6*24 + 12*24) * 100 alpha.columns = ['alpha159'] return alpha @timer def alpha160(self): close = self.close close_std = STD(close,20) close_delay = Delay(close,1) data = pd.concat([close,close_std,close_delay],axis = 1, join = 'inner') data.columns = ['close','close_std','close_delay'] data['close_std'][data['close'] >= data['close_delay']] = 0 alpha = SMA(pd.DataFrame(data['close_std']),20,1) alpha.columns = ['alpha160'] return alpha @timer def alpha161(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data1 = pd.concat([high,low],axis = 1 , join = 'inner') diff = pd.DataFrame(data1['High'] - data1['Low']) data2 = pd.concat([close_delay,high], axis = 1, join ='inner') abs1 = pd.DataFrame(np.abs(data2['close_delay'] - data2['High'])) data3 = pd.concat([diff,abs1], axis = 1, join = 'inner') temp1 = pd.DataFrame(np.max(data3,axis = 1)) data4 = pd.concat([close_delay,low],axis = 1, join = 'inner') temp2 = pd.DataFrame(np.abs(data4['close_delay'] -data4['Low'])) data = pd.concat([temp1,temp2],axis =1 , join = 'inner') data.columns = ['temp1','temp2'] temp = pd.DataFrame(np.max(data, axis = 1)) alpha = Mean(temp,12) alpha.columns = ['alpha161'] return alpha @timer def alpha162(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['max']= data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) temp1 = SMA(pd.DataFrame(data['max']),12,1) temp2 = SMA(pd.DataFrame(data['abs']),12,1) data1 = pd.concat([temp1,temp2], axis = 1, join = 'inner') data1.columns = ['temp1','temp2'] tep = pd.DataFrame(data1['temp1']/data1['temp2']) temp3 = TsMin(tep,12) temp4 = TsMax(tep,12) data_temp = pd.concat([tep,temp3,temp4], axis = 1, join = 'inner') data_temp.columns = ['tep','temp3','temp4'] alpha = (data_temp['tep'] - data_temp['temp3']/data_temp['temp4']) * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha162'] return alpha @timer def alpha163(self): low = self.low high = self.high volume = self.volume ret = self.ret vwap = self.vwap volume_mean = Mean(volume,20) data = pd.concat([high,low,vwap,ret,volume_mean],axis = 1, join = 'inner') data.columns = ['high','low','vwap','ret','volume_mean'] temp = pd.DataFrame(-1 *data['ret'] * data['volume_mean'] *data['vwap'] * \ (data['high'] - data['low'])) alpha = Rank(temp) alpha.columns = ['alpha163'] return alpha @timer def alpha164(self): close = self.close high = self.high low = self.low close_delay = Delay(close,1) data = pd.concat([close,high,low,close_delay],axis = 1, join = 'inner') data.columns = ['close','high','low','close_delay'] data['temp'] = 1/(data['close'] - data['close_delay']) data_min = TsMin(pd.DataFrame(data['temp']),12) data_min.columns = ['min'] data2 = pd.concat([data,data_min],axis = 1, join = 'inner') data2['tep'] = data2['temp'] - data2['min']/(data2['high'] - data2['low']) data2['tep'][data['close'] <= data['close_delay']] = 0 alpha = SMA(pd.DataFrame(data2['tep']) * 100,13,2) alpha.columns = ['alpha164'] return alpha @timer def alpha165(self): close = self.close close_mean = Mean(close,48) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] temp = pd.DataFrame(data['close'] - data['close_mean']) temp_sum = Sum(temp,48) temp_sum_min = TsMin(temp_sum,48) temp_sum_max = TsMax(temp_sum,48) close_std = STD(close,48) data_temp = pd.concat([temp_sum_min,temp_sum_max,close_std], axis = 1, join = 'inner') data_temp.columns = ['min','max','std'] alpha = (data_temp['max'] - data_temp['min'])/data_temp['std'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha165'] return alpha @timer def alpha166(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_mean = Mean(temp,20) data1 = pd.concat([temp,temp_mean], axis = 1, join = 'inner') data1.columns = ['temp','temp_mean'] temp2 = Sum(pd.DataFrame(data1['temp'] - data1['temp_mean']),20) * 20 * 19 temp3 = Sum(temp,20) * 19 * 18 data2 = pd.concat([temp2,temp3], axis = 1, join = 'inner') data2.columns = ['temp2','temp3'] alpha = np.power(data2['temp2'],1.5)/np.power(data2['temp3'],1.5) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha166'] return alpha @timer def alpha167(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['temp'] = data['close'] - data['close_delay'] data['temp'][data['close'] <= data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha167'] return alpha @timer def alpha168(self): volume = self.volume volume_mean = Mean(volume,20) data = pd.concat([volume,volume_mean], axis = 1, join = 'inner') data.columns = ['volume','volume_mean'] alpha = data['volume']/data['volume_mean'] * -1 alpha.columns = ['alpha168'] return alpha @timer def alpha169(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp1 = pd.DataFrame(data['close'] - data['close_delay']) sma = SMA(temp1,9,1) temp2 = Delay(sma,1) temp2_mean12 = Mean(temp2,12) temp2_mean26 = Mean(temp2,26) data2 = pd.concat([temp2_mean12,temp2_mean26], axis = 1, join ='inner') data2.columns = ['mean1','mean2'] alpha = SMA(pd.DataFrame(data2['mean1'] - data2['mean2']),10,1) alpha.columns = ['alpha169'] return alpha @timer def alpha170(self): close = self.close high = self.high volume = self.volume vwap = self.vwap volume_mean = Mean(volume,20) data1 = pd.concat([high,close,volume,volume_mean], axis = 1, join = 'inner') data1.columns =['high','close','volume','volume_mean'] temp1 = pd.DataFrame(data1['high']/data1['close'] * data1['volume']/data1['volume_mean']) r1 = Rank(temp1) high_mean = Mean(high,5) vwap_delay = Delay(vwap,5) data2 = pd.concat([high,close,high_mean], axis = 1, join = 'inner') data2.columns = ['high','close','high_mean'] temp2 = pd.DataFrame((data2['high'] - data2['close'])/data2['high_mean']) temp2_r = Rank(temp2) data3 = pd.concat([vwap,vwap_delay], axis = 1, join = 'inner') data3.columns = ['vwap','vwap_delay'] temp3 = pd.DataFrame(data3['vwap'] - data3['vwap_delay']) temp3_r = Rank(temp3) rank = pd.concat([temp2_r,temp3_r], axis = 1, join = 'inner') rank.columns = ['r1','r2'] r2 = pd.DataFrame(rank['r1'] - rank['r2']) data_temp = pd.concat([r1,r2],axis = 1, join = 'inner') data_temp.columns = ['r1','r2'] alpha = pd.DataFrame(data_temp['r1'] * data_temp['r2']) alpha.columns = ['alpha170'] return alpha @timer def alpha171(self): high = self.high close = self.close low = self.low Open = self.open data = pd.concat([high,close,low,Open],axis = 1, join = 'inner') alpha = -1 * (data['Low'] - data['Close']) * np.power(data['Open'],5)/\ ((data['Close'] - data['High']) * np.power(data['Close'],5)) alpha.columns = ['alpha171'] return alpha @timer def alpha172(self): high = self.high low = self.low hd = HD(high) ld = LD(low) data = pd.concat([hd,ld],axis = 1, join = 'inner') data.columns = ['hd','ld'] data['temp'] = 0 data['temp'][((data['hd'] > data['ld'])& (data['hd'] > 0)) | \ ((data['ld'] > data['hd'])& (data['ld'] > 0))] = 1 alpha = Mean(pd.DataFrame(data['temp']),6) alpha.columns = ['alpha172'] return alpha @timer def alpha173(self): close = self.close close_ln = pd.DataFrame(np.log(close)) temp1 = SMA(close,13,2) temp2 = SMA(close_ln,13,2) temp3 = SMA(temp1,13,2) temp4 = SMA(SMA(temp2,13,2),13,2) data = pd.concat([temp1,temp3,temp4], axis = 1, join = 'inner') data.columns = ['t1','t2','t3'] alpha = pd.DataFrame(3 * data['t1'] - 2 * data['t2'] + data['t3']) alpha.columns = ['alpha173'] return alpha @timer def alpha174(self): close = self.close close_delay = Delay(close,1) close_std = STD(close,20) data = pd.concat([close,close_delay,close_std], axis = 1, join = 'inner') data.columns = ['close','close_delay','close_std'] data['close_std'][data['close'] <= data['close_delay']] = 0 alpha = SMA(pd.DataFrame(data['close_std']),12,1) alpha.columns = ['alpha174'] return alpha @timer def alpha175(self): high = self.high close = self.close low = self.low close_delay = Delay(close,1) data = pd.concat([high,close,low,close_delay],axis = 1, join = 'inner') data.columns = ['high','close','low','close_delay'] data_abs = pd.DataFrame(np.abs(data['close_delay'] - data['high'])) h_l = pd.DataFrame(data['high'] - data['low']) data1 = pd.concat([data_abs,h_l], axis = 1, join = 'inner') temp1 = pd.DataFrame(np.max(data1,axis = 1)) data_abs2 = pd.DataFrame(np.abs(data['close_delay'] - data['low'])) data2 = pd.concat([temp1,data_abs2], axis = 1, join = 'inner') temp2 = pd.DataFrame(np.max(data2,axis = 1)) data3 = pd.concat([temp1,temp2],axis = 1, join = 'inner') max_temp = pd.DataFrame(np.max(data3,axis = 1)) alpha = Mean(max_temp,6) alpha.columns = ['alpha175'] return alpha @timer def alpha176(self): high = self.high close = self.close low = self.low volume = self.volume low_min = TsMin(low,12) high_max = TsMax(high,12) data1 = pd.concat([close,low_min,high_max],axis = 1, join = 'inner') data1.columns = ['close','low_min','high_max'] temp = pd.DataFrame((data1['close'] - data1['low_min'])\ /(data1['high_max'] - data1['low_min'])) r1 = Rank(temp) r2 = Rank(volume) rank = pd.concat([r1,r2], axis = 1, join = 'inner') alpha = Corr(rank,6) alpha.columns = ['alpha176'] return alpha @timer def alpha177(self): high = self.high highday = Highday(high,20) alpha = pd.DataFrame((20 - highday)/20.0 * 100) alpha.columns = ['alpha177'] return alpha @timer def alpha178(self): close = self.close close_delay = Delay(close,1) volume = self.volume data = pd.concat([close,close_delay,volume], axis = 1, join = 'inner') data.columns = ['close','close_delay','volume'] alpha = pd.DataFrame((data['close'] - data['close_delay'])\ /data['close_delay'] * data['volume']) alpha.columns = ['alpha178'] return alpha @timer def alpha179(self): low = self.low volume = self.volume vwap = self.vwap data1 = pd.concat([vwap,volume], axis = 1, join = 'inner') corr = Corr(data1,4) r1 = Rank(corr) volume_mean = Mean(volume,50) volume_mean_r = Rank(volume_mean) row_r = Rank(low) data2 = pd.concat([row_r,volume_mean_r], axis = 1, join = 'inner') corr2 = Corr(data2,12) r2 = Rank(corr2) data = pd.concat([r1,r2], axis = 1, join = 'inner') data.columns = ['r1','r2'] alpha = pd.DataFrame(data['r1'] * data['r2']) alpha.columns = ['alpha179'] return alpha @timer def alpha180(self): volume = self.volume close = self.close close_delta = Delta(close,7) volume_mean = Mean(volume,20) close_delta_abs = pd.DataFrame(np.abs(close_delta)) r = TsRank(close_delta_abs,60) sign = pd.DataFrame(np.sign(close_delta)) temp = pd.concat([r,sign],axis = 1, join = 'inner') temp.columns = ['r','sign'] temp1 = temp['r'] * temp['sign'] data = pd.concat([volume,volume_mean,temp1], axis = 1, join = 'inner') data.columns = ['volume','volume_mean','temp1'] data['volume1'] = data['volume'] data['temp1'][data['volume'] >= data['volume_mean']] = 0 data['volume1'][data['volume'] < data['volume_mean']] = 0 alpha = -1 * pd.DataFrame(data['volume1'] + data['temp1']) alpha.columns = ['alpha180'] return alpha @timer def alpha181(self): close = self.close close_index = self.close_index close_delay = Delay(close,1) data1 = pd.concat([close,close_delay],axis = 1, join = 'inner') data1.columns = ['close','close_delay'] temp = pd.DataFrame(data1['close']/data1['close_delay']) - 1 temp_mean = Mean(temp,20) data_temp = pd.concat([temp,temp_mean], axis = 1, join = 'inner') data_temp.columns = ['temp','temp_mean'] temp1 = pd.DataFrame(data_temp['temp'] - data_temp['temp_mean']) close_index_mean = Mean(close_index,20) data2 = pd.concat([close_index,close_index_mean], axis = 1, join = 'inner') data2.columns = ['close_index','close_index_mean'] temp2 = pd.DataFrame(np.power(data2['close_index'] - data2['close_index_mean'],2)) temp3 = pd.DataFrame(np.power(data2['close_index'] - data2['close_index_mean'],3)) temp1_unstack = temp1.unstack() temp2_unstack = temp2.unstack() temp2_mod = pd.DataFrame(repmat(temp2_unstack,1,np.size(temp1_unstack,1))) temp3_unstack = temp3.unstack() temp3_mod = pd.DataFrame(repmat(temp3_unstack,1,np.size(temp1_unstack,1))) temp1_result = temp1_unstack.rolling(20, min_periods = 20).sum() temp2_result = temp2_mod.rolling(20, min_periods = 20).sum() temp2_result.index = temp2_unstack.index.tolist() temp3_result = temp3_mod.rolling(20, min_periods = 20).sum() temp3_result.index = temp3_unstack.index.tolist() result = pd.concat([temp1_result,temp2_result,temp3_result], axis = 1, join = 'inner') m = np.size(temp1_result,1) alpha_temp = pd.DataFrame((result.values[:,:m] - result.values[:,m:2*m])/result.values[:,2*m:]) df1 = result.iloc[:,:m] alpha_temp.columns = df1.columns.tolist() alpha_temp.index = df1.index.tolist() alpha = pd.DataFrame(alpha_temp.stack()) alpha.columns = ['alpha181'] return alpha @timer def alpha182(self): close = self.close Open = self.open close_index = self.close_index open_index = self.open_index data1 = pd.concat([close,Open], axis = 1, join = 'inner') data1['temp'] = 1 data1['temp'][data1['Close'] <= data1['Open']] = 0 data1['temp1'] = 1 data1['temp1'][data1['Close'] > data1['Open']] = 0 data2 = pd.concat([close_index,open_index], axis = 1, join = 'inner') data2['tep'] = 0 data2['tep'][data2['close'] > data2['open']] = 1 data2['tep1'] = 0 data2['tep1'][data2['close'] < data2['open']] = 1 temp = data1['temp'].unstack() temp1 = data1['temp1'].unstack() tep = data2['tep'].unstack() tep1 = data2['tep1'].unstack() tep_rep = repmat(tep,1,np.size(temp,1)) tep1_rep = repmat(tep1,1,np.size(temp,1)) data3 = temp * tep_rep + temp1 * tep1_rep - temp * tep_rep * temp1 * tep1_rep result = data3.rolling(20,min_periods = 20).sum() alpha_temp = result/20.0 alpha = pd.DataFrame(alpha_temp.stack()) alpha.columns = ['alpha182'] return alpha @timer def alpha183(self): close = self.close close_mean = Mean(close,24) close_std = STD(close,24) data1 = pd.concat([close,close_mean], axis = 1, join = 'inner') data1.columns = ['close','close_mean'] temp = pd.DataFrame(data1['close'] - data1['close_mean']) temp_max = TsMin(temp,24) temp_min = TsMin(temp,24) data2 = pd.concat([temp_max,temp_min,close_std],axis = 1, join = 'inner') data2.columns = ['max','min','std'] alpha = pd.DataFrame((data2['max'] - data2['min'])/data2['std']) alpha.columns = ['alpha183'] return alpha @timer def alpha184(self): close = self.close Open = self.open data = pd.concat([close,Open], axis = 1, join = 'inner') data['diff'] = data['Open'] - data['Close'] diff_delay = Delay(pd.DataFrame(data['diff']),1) data1 = pd.concat([diff_delay,close],axis = 1, join = 'inner') corr = Corr(data1,200) r1 = Rank(corr) r2 = Rank(pd.DataFrame(data['diff'])) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha184'] return alpha @timer def alpha185(self): close = self.close Open = self.open data = pd.concat([close,Open], axis = 1, join = 'inner') temp = pd.DataFrame(data['Open']/data['Close']) tep = -1 * (1 - np.power(temp,2)) alpha = Rank(pd.DataFrame(tep)) alpha.columns = ['alpha185'] return alpha @timer def alpha186(self): high = self.high low = self.low hd = HD(high) ld = LD(low) data = pd.concat([hd,ld],axis = 1, join = 'inner') data.columns = ['hd','ld'] data['temp'] = 0 data['temp'][((data['hd'] > data['ld'])& (data['hd'] > 0)) | \ ((data['ld'] > data['hd'])& (data['ld'] > 0))] = 1 temp = pd.DataFrame(data['temp']) temp_mean = Mean(temp,6) temp_mean_delay = Delay(temp_mean,6) data = pd.concat([temp_mean,temp_mean_delay], axis = 1, join = 'inner') data.columns = ['mean','delay'] alpha = pd.DataFrame((data['mean'] + data['delay'])/2) alpha.columns = ['alpha186'] return alpha @timer def alpha187(self): Open = self.open high = self.high open_delay = Delay(Open,1) data = pd.concat([Open,high,open_delay], axis = 1, join = 'inner') data.columns = ['open','high','open_delay'] diff = pd.DataFrame(data['high'] - data['open']) open_delta = Delta(Open,1) data1 = pd.concat([diff, open_delta], axis = 1, join = 'inner') max_temp = pd.DataFrame(np.max(data1, axis = 1)) temp = Sum(max_temp,20) data2 = pd.concat([Open,open_delay,temp],axis = 1, join = 'inner') data2.columns = ['open','open_delay','temp'] data2['temp'][data['open'] > data['open_delay']] = 0 alpha = pd.DataFrame(data2['temp']) alpha.columns = ['alpha187'] return alpha @timer def alpha188(self): high = self.high low = self.low data = pd.concat([high,low],axis = 1, join = 'inner') temp = SMA(pd.DataFrame(data['High'] - data['Low']),11,2) data1 = pd.concat([temp,low,high],axis = 1, join = 'inner') data1.columns = ['temp','low','high'] alpha = (data1['high'] - data1['low'] - data1['temp'])/data1['temp'] * 100 alpha =
pd.DataFrame(alpha)
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import timedelta from numpy import nan import numpy as np import pandas as pd from pandas import (Series, isnull, date_range, MultiIndex, Index) from pandas.tseries.index import Timestamp from pandas.compat import range from pandas.util.testing import assert_series_equal import pandas.util.testing as tm from .common import TestData def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.pchip missing') def _skip_if_no_akima(): try: from scipy.interpolate import Akima1DInterpolator # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.Akima1DInterpolator missing') class TestSeriesMissingData(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_timedelta_fillna(self): # GH 3371 s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) td = s.diff() # reg fillna result = td.fillna(0) expected = Series([timedelta(0), timedelta(0), timedelta(1), timedelta( days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) # interprested as seconds result = td.fillna(1) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(timedelta(days=1, seconds=1)) expected = Series([timedelta(days=1, seconds=1), timedelta( 0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(np.timedelta64(int(1e9))) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) from pandas import tslib result = td.fillna(tslib.NaT) expected = Series([tslib.NaT, timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)], dtype='m8[ns]') assert_series_equal(result, expected) # ffill td[2] = np.nan result = td.ffill() expected = td.fillna(0) expected[0] = np.nan assert_series_equal(result, expected) # bfill td[2] = np.nan result = td.bfill() expected = td.fillna(0) expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1) assert_series_equal(result, expected) def test_datetime64_fillna(self): s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) s[2] = np.nan # reg fillna result = s.fillna(Timestamp('20130104')) expected = Series([Timestamp('20130101'), Timestamp( '20130101'), Timestamp('20130104'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) from pandas import tslib result = s.fillna(tslib.NaT) expected = s assert_series_equal(result, expected) # ffill result = s.ffill() expected = Series([Timestamp('20130101'), Timestamp( '20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) # bfill result = s.bfill() expected = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01'), Timestamp( '20130103 9:01:01')]) assert_series_equal(result, expected) # GH 6587 # make sure that we are treating as integer when filling # this also tests inference of a datetime-like with NaT's s = Series([pd.NaT, pd.NaT, '2013-08-05 15:30:00.000001']) expected = Series( ['2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001'], dtype='M8[ns]') result = s.fillna(method='backfill') assert_series_equal(result, expected) def test_datetime64_tz_fillna(self): for tz in ['US/Eastern', 'Asia/Tokyo']: # DatetimeBlock s = Series([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp( '2011-01-03 10:00'), pd.NaT]) result = s.fillna(pd.Timestamp('2011-01-02 10:00')) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00'), Timestamp( '2011-01-02 10:00')]) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz)) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp('2011-01-03 10:00'), Timestamp('2011-01-02 10:00', tz=tz)]) self.assert_series_equal(expected, result) result = s.fillna('AAA') expected = Series([Timestamp('2011-01-01 10:00'), 'AAA', Timestamp('2011-01-03 10:00'), 'AAA'], dtype=object) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp('2011-01-03 10:00'), Timestamp('2011-01-04 10:00')]) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00'), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00'), Timestamp( '2011-01-04 10:00')]) self.assert_series_equal(expected, result) # DatetimeBlockTZ idx = pd.DatetimeIndex(['2011-01-01 10:00', pd.NaT, '2011-01-03 10:00', pd.NaT], tz=tz) s = pd.Series(idx) result = s.fillna(pd.Timestamp('2011-01-02 10:00')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp('2011-01-02 10:00')]) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz)) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-02 10:00', '2011-01-03 10:00', '2011-01-02 10:00'], tz=tz) expected = Series(idx) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp( '2011-01-02 10:00', tz=tz).to_pydatetime()) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-02 10:00', '2011-01-03 10:00', '2011-01-02 10:00'], tz=tz) expected = Series(idx) self.assert_series_equal(expected, result) result = s.fillna('AAA') expected = Series([
Timestamp('2011-01-01 10:00', tz=tz)
pandas.tseries.index.Timestamp
import os import numpy as np import pytest from pandas.compat import is_platform_little_endian import pandas as pd from pandas import DataFrame, HDFStore, Series, _testing as tm, read_hdf from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, tables, ) from pandas.io import pytables as pytables from pandas.io.pytables import ClosedFileError, PossibleDataLossError, Term pytestmark = pytest.mark.single def test_mode(setup_path): df = tm.makeTimeDataFrame() def check(mode): msg = r"[\S]* does not exist" with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError, match=msg): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError, match=msg): with HDFStore(path, mode=mode) as store: pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError, match=msg): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: msg = ( "mode w is not allowed while performing a read. " r"Allowed modes are r, r\+ and a." ) with pytest.raises(ValueError, match=msg): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] =
tm.makeTimeSeries()
pandas._testing.makeTimeSeries
import pandas as pd def timeseries_to_pandas(ts,ind,x): if x>1: ts=list(map(list,zip(*ts))) df=pd.DataFrame(data=ts,index=ind) else: df=pd.DataFrame(data=ts,index=ind) return df.astype('float64') def spectra_to_pandas(frequency,spectra,x,cols=None): if x>1: ts=list(map(list,zip(*spectra))) df=pd.DataFrame(data=ts,index=frequency) else: df=
pd.DataFrame(data=spectra,index=frequency)
pandas.DataFrame
# -*- coding: utf-8 -*- from bs4 import BeautifulSoup import pandas as pd import requests url_lemma = "https://news.yahoo.co.jp/search/?p=%E8%A6%B3%E5%85%89+%E8%AA%B2%E9%A1%8C&ei=UTF-8&b=" urls = [url_lemma + str(i) for i in range(1,992,10)] def extract_text(url,prev_text = ""): first_page = 0 if prev_text == "": first_page = 1 response = requests.get(url, proxies=proxies) soup = BeautifulSoup(response.text, 'html.parser') text = (soup.find('div',class_="articleMain").text).split("\n") text = list(filter(lambda x: ("画像" not in x), text)) text = list(map(lambda x: x.strip(),text)) text = list(filter(None, text)) p_ind = 0 for index,paragraph in enumerate(text): if paragraph[-3:] == "ページ": p_ind = 1 page_numbering = paragraph.strip()[:-3] current_page = page_numbering.split("/")[0] final_page = page_numbering.split("/")[1] """ if "次ページは" in paragraph: ### Recursive call inside a nested multi-page article p_ind = 1 text = text[:index] next_url = (soup.find("div",class_="textCenter marT10")).find('a').get('href') prev_text += extract_text(next_url," ".join(text)) """ if p_ind == 0: for index,paragraph in enumerate(text): if "関連記事" in paragraph: ### In case of single page article text = text[:index] meta_data = (soup.find("div",class_="hd").text).split("\n") meta_data = list(filter(None,meta_data)) title = meta_data[0].strip() date = url.split("a=")[1][:8] return " ".join(text),title,date if paragraph[-3:] == "ページ": ### Last page of a multiple page article (recursion floor) text = text[:index -2] return " ".join(text) if first_page == 1: ### Final return in the recursion (First page) meta_data = (soup.find("div",class_="hd").text).split("\n") meta_data = list(filter(None,meta_data)) title = meta_data[0].strip() date = url.split("a=")[1][:8] return [prev_text,title,date] ### String return in the middle of recursion return prev_text #%% contents = list() for url in urls: response = requests.get(url, proxies=proxies) soup = BeautifulSoup(response.text, 'html.parser') frame = soup.find("div",class_="cl") articles = frame.find_all("h2",class_="t") for article in articles: article_url = article.find('a').get('href') try: temp = (extract_text(article_url)) if type(temp) == list: contents.append(temp) except: pass if len(contents) > 10: break #%% df =
pd.DataFrame(contents,columns=["タイトル","日付","テキスト"])
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable=W0612,E1101 from collections import OrderedDict from datetime import datetime import numpy as np import pytest from pandas.compat import lrange from pandas import DataFrame, MultiIndex, Series, date_range, notna import pandas.core.panel as panelm from pandas.core.panel import Panel import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, assert_series_equal, makeCustomDataframe as mkdf, makeMixedDataFrame) from pandas.tseries.offsets import MonthEnd @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") class PanelTests(object): panel = None def not_hashable(self): c_empty = Panel() c = Panel(Panel([[[1]]])) pytest.raises(TypeError, hash, c_empty) pytest.raises(TypeError, hash, c) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") class SafeForSparse(object): # issue 7692 def test_raise_when_not_implemented(self): p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5), items=['ItemA', 'ItemB', 'ItemC'], major_axis=date_range('20130101', periods=4), minor_axis=list('ABCDE')) d = p.sum(axis=1).iloc[0] ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'div', 'mod', 'pow'] for op in ops: with pytest.raises(NotImplementedError): getattr(p, op)(d, axis=0) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") class CheckIndexing(object): def test_delitem_and_pop(self): values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = Panel(values, lrange(3), lrange(3), lrange(3)) # did we delete the right row? panelc = panel.copy() del panelc[0] tm.assert_frame_equal(panelc[1], panel[1]) tm.assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[1]
tm.assert_frame_equal(panelc[0], panel[0])
pandas.util.testing.assert_frame_equal
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2020 qizai <<EMAIL>> # # Distributed under terms of the MIT license. """ This script will take the bedgraph file as input, and process it to create the output binning intensity. """ import os from pyBedGraph import BedGraph import numpy as np import pandas as pd import scipy from scipy.stats import binom_test import ipdb import argparse import matplotlib.pyplot as plt import matplotlib as mpl def get_max_intensity_in_same_len_bins(bedGraph, nbins, left_start, chrom_left, right_end, chrom_right=None, chrom_size = np.infty, flank_per=5): ''' if chrom_right != None, then check if chrom_left == chrom_right. pyBedGraph can only query [chr, start, end] tuple. ---- left_start: left anchor starting site right_end: right anchor ending site nbins: number of bins in the loop flank_per: percent of loop length to extend on both side. ''' if chrom_right != None: if chrom_left != chrom_right: raise ValueError('row has anchors in different chromosome {}, {}'.format(chrom_left, left_start)) loop_length = right_end - left_start assert loop_length > 0 flank_length = int(loop_length * flank_per / 100) start_idx = max(left_start - flank_length, 0) # ipdb.set_trace() end_idx = min(right_end + flank_length, chrom_size.values[0] - 1) if start_idx < 0 or start_idx > chrom_size.values[0] - 1: ipdb.set_trace() nbins_edges = np.linspace(start_idx, end_idx, nbins + 1, dtype=np.int32) start_list = nbins_edges[:-1] end_list = nbins_edges[1:] try: bin_values = bedGraph.stats(start_list=start_list, end_list=end_list, chrom_name=chrom_left, stat='max') except: print(chrom_left) print(end_list) print(start_idx) ipdb.set_trace() return bin_values def get_aggregated_inten_for_each_class(df_binned_intensity_per_loop, nbins, catag): ''' nbins \in {100, 500, 1000} catag \in {'bias', 'convergence', 'NULL motif'} ''' bin_name = '{} binned intensity'.format(nbins) set_of_label = set(df_binned_intensity_per_loop[catag]) label_list = list([x for x in set_of_label if x != 'na']) label_list.sort() total_num_loops_in_catag = ( df_binned_intensity_per_loop[catag] != 'na').sum() chrom_list = list(set(df_binned_intensity_per_loop['chrom'])) chrom_list.sort(key=lambda x: int(x[3:]) if x != 'chrX' else 24) chrom_list.append('whole genome') df_aggregate_sum = pd.DataFrame(columns=label_list, index=chrom_list) df_aggregate_mean = pd.DataFrame(columns=label_list, index=chrom_list) df_aggregate_var =
pd.DataFrame(columns=label_list, index=chrom_list)
pandas.DataFrame
import datetime import io import pathlib import dataclasses import pytest import pandas as pd import structlog from covidactnow.datapublic.common_fields import CommonFields from covidactnow.datapublic.common_fields import FieldName from covidactnow.datapublic.common_fields import PdFields from covidactnow.datapublic.common_test_helpers import to_dict from libs import github_utils from libs.datasets import AggregationLevel from libs.datasets import combined_datasets from libs.datasets import dataset_pointer from libs.datasets import timeseries from libs.datasets.taglib import TagType from libs.datasets.taglib import UrlStr from libs.pipeline import Region from tests import test_helpers from tests.dataset_utils_test import read_csv_and_index_fips from tests.dataset_utils_test import read_csv_and_index_fips_date from tests.test_helpers import TimeseriesLiteral # turns all warnings into errors for this module pytestmark = pytest.mark.filterwarnings("error", "ignore::libs.pipeline.BadFipsWarning") def _make_dataset_pointer(tmpdir, filename: str = "somefile.csv") -> dataset_pointer.DatasetPointer: # The fixture passes in a py.path, which is not the type in DatasetPointer. path = pathlib.Path(tmpdir) / filename fake_git_summary = github_utils.GitSummary(sha="abcdef", branch="main", is_dirty=True) return dataset_pointer.DatasetPointer( dataset_type=dataset_pointer.DatasetType.MULTI_REGION, path=path, data_git_info=fake_git_summary, model_git_info=fake_git_summary, updated_at=datetime.datetime.utcnow(), ) @pytest.mark.parametrize("include_na_at_end", [False, True]) def test_remove_padded_nans(include_na_at_end): rows = [ {"date": "2020-02-01", "cases": pd.NA}, {"date": "2020-02-02", "cases": pd.NA}, {"date": "2020-02-03", "cases": 1}, {"date": "2020-02-04", "cases": pd.NA}, {"date": "2020-02-05", "cases": 2}, {"date": "2020-02-06", "cases": 3}, ] if include_na_at_end: rows += [{"date": "2020-02-07", "cases": pd.NA}] df = pd.DataFrame(rows) results = timeseries._remove_padded_nans(df, ["cases"]) expected_series = pd.Series([1, pd.NA, 2, 3], name="cases") pd.testing.assert_series_equal(results.cases, expected_series) def test_multi_region_to_from_timeseries_and_latest_values(tmp_path: pathlib.Path): ts_df = read_csv_and_index_fips_date( "fips,county,aggregate_level,date,m1,m2\n" "97111,Bar County,county,2020-04-02,2,\n" "97222,Foo County,county,2020-04-01,,10\n" "01,,state,2020-04-01,,20\n" ).reset_index() latest_values_df = read_csv_and_index_fips( "fips,county,aggregate_level,c1,c2\n" "97111,Bar County,county,3,\n" "97222,Foo County,county,4,10.5\n" "01,,state,,123.4\n" ).reset_index() multiregion = ( timeseries.MultiRegionDataset.from_fips_timeseries_df(ts_df) .add_fips_static_df(latest_values_df) .add_provenance_csv( io.StringIO("location_id,variable,provenance\n" "iso1:us#fips:97111,m1,ts197111prov\n") ) ) region_97111 = multiregion.get_one_region(Region.from_fips("97111")) assert region_97111.date_indexed.at["2020-04-02", "m1"] == 2 assert region_97111.latest["c1"] == 3 assert multiregion.get_one_region(Region.from_fips("01")).latest["c2"] == 123.4 csv_path = tmp_path / "multiregion.csv" multiregion.to_csv(csv_path) multiregion_loaded = timeseries.MultiRegionDataset.from_csv(csv_path) region_97111 = multiregion_loaded.get_one_region(Region.from_fips("97111")) assert region_97111.date_indexed.at["2020-04-02", "m1"] == 2 assert region_97111.latest["c1"] == 3 assert region_97111.region.fips == "97111" assert multiregion_loaded.get_one_region(Region.from_fips("01")).latest["c2"] == 123.4 test_helpers.assert_dataset_like( multiregion, multiregion_loaded, drop_na_latest=True, drop_na_timeseries=True ) def test_multi_region_get_one_region(): ts = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,county,aggregate_level,date,m1,m2\n" "iso1:us#fips:97111,Bar County,county,2020-04-02,2,\n" "iso1:us#fips:97222,Foo County,county,2020-04-01,,10\n" "iso1:us#fips:97111,Bar County,county,,3,\n" "iso1:us#fips:97222,Foo County,county,,,11\n" ) ) region_97111_ts = ts.get_one_region(Region.from_fips("97111")) assert to_dict(["date"], region_97111_ts.data[["date", "m1", "m2"]]) == { pd.to_datetime("2020-04-02"): {"m1": 2} } assert region_97111_ts.latest["m1"] == 3 assert region_97111_ts.region.fips == "97111" region_97222_ts = ts.get_one_region(Region.from_fips("97222")) assert to_dict(["date"], region_97222_ts.data) == { pd.to_datetime("2020-04-01"): {"m2": 10, "location_id": "iso1:us#fips:97222",} } assert region_97222_ts.latest["m2"] == 11 def test_multi_region_get_counties_and_places(): ds_in = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,county,aggregate_level,date,m1,m2\n" "iso1:us#fips:97111,Bar County,county,2020-04-02,2,\n" "iso1:us#fips:97111,Bar County,county,2020-04-03,3,\n" "iso1:us#fips:97222,Foo County,county,2020-04-01,,10\n" "iso1:us#fips:9711122,,place,2020-04-02,5,60\n" "iso1:us#fips:97,Great State,state,2020-04-01,1,2\n" "iso1:us#fips:97111,Bar County,county,,3,\n" "iso1:us#fips:9711122,,place,,3,\n" "iso1:us#fips:97222,Foo County,county,,,10\n" "iso1:us#fips:97,Great State,state,,1,2\n" ) ) ds_out = ds_in.get_counties_and_places( after=pd.to_datetime("2020-04-01") ).timeseries.reset_index() assert to_dict(["location_id", "date"], ds_out[["location_id", "date", "m1"]]) == { ("iso1:us#fips:97111", pd.to_datetime("2020-04-02")): {"m1": 2}, ("iso1:us#fips:97111", pd.to_datetime("2020-04-03")): {"m1": 3}, ("iso1:us#fips:9711122", pd.to_datetime("2020-04-02")): {"m1": 5}, } def test_multi_region_groupby(): ts = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,county,aggregate_level,date,m1,m2\n" "iso1:us#fips:97222,Foo County,county,2020-04-01,,10\n" "iso1:us#fips:97222,Foo County,county,2020-04-02,,20\n" "iso1:us#fips:97,Great State,state,2020-04-01,1,2\n" "iso1:us#fips:97222,Foo County,county,,,20\n" "iso1:us#fips:97,Great State,state,,1,2\n" ) ) assert ts.groupby_region()["m2"].last().to_dict() == { "iso1:us#fips:97": 2, "iso1:us#fips:97222": 20, } def test_one_region_dataset(): bar_county_row = { "location_id": "iso1:us#fips:97111", "county": "Bar County", "aggregate_level": "county", "date": "2020-04-02", "m1": 2, "m2": pd.NA, } ts = timeseries.OneRegionTimeseriesDataset( Region.from_fips("97111"), pd.DataFrame([bar_county_row]), {} ) assert ts.has_one_region() == True foo_county_row = { "location_id": "iso1:us#fips:97222", "county": "Foo County", "aggregate_level": "county", "date": "2020-04-01", "m1": pd.NA, "m2": 10, } with pytest.raises(ValueError): timeseries.OneRegionTimeseriesDataset( Region.from_fips("97222"), pd.DataFrame([bar_county_row, foo_county_row]), {}, ) with structlog.testing.capture_logs() as logs: ts = timeseries.OneRegionTimeseriesDataset( Region.from_fips("99999"), pd.DataFrame([], columns="location_id county aggregate_level date m1 m2".split()), {}, ) assert [l["event"] for l in logs] == ["Creating OneRegionTimeseriesDataset with zero regions"] assert ts.empty def test_multiregion_provenance(): input_df = read_csv_and_index_fips_date( "fips,county,aggregate_level,date,m1,m2\n" "97111,Bar County,county,2020-04-01,1,\n" "97111,Bar County,county,2020-04-02,2,\n" "97222,Foo County,county,2020-04-01,,10\n" "97222,Foo County,county,2020-04-03,3,30\n" "03,,state,2020-04-03,4,40\n" ).reset_index() provenance = combined_datasets.provenance_wide_metrics_to_series( read_csv_and_index_fips_date( "fips,date,m1,m2\n" "97111,2020-04-01,src11,\n" "97111,2020-04-02,src11,\n" "97222,2020-04-01,,src22\n" "97222,2020-04-03,src21,src22\n" "03,2020-04-03,src31,src32\n" ), structlog.get_logger(), ) out = timeseries.MultiRegionDataset.from_fips_timeseries_df(input_df).add_fips_provenance( provenance ) # Use loc[...].at[...] as work-around for https://github.com/pandas-dev/pandas/issues/26989 assert out.provenance.loc["iso1:us#fips:97111"].at["m1"] == "src11" assert out.get_one_region(Region.from_fips("97111")).provenance["m1"] == ["src11"] assert out.provenance.loc["iso1:us#fips:97222"].at["m2"] == "src22" assert out.get_one_region(Region.from_fips("97222")).provenance["m2"] == ["src22"] assert out.provenance.loc["iso1:us#fips:03"].at["m2"] == "src32" assert out.get_one_region(Region.from_fips("03")).provenance["m2"] == ["src32"] counties = out.get_counties_and_places(after=pd.to_datetime("2020-04-01")) assert "iso1:us#fips:03" not in counties.provenance.index assert counties.provenance.loc["iso1:us#fips:97222"].at["m1"] == "src21" assert counties.get_one_region(Region.from_fips("97222")).provenance["m1"] == ["src21"] def test_one_region_multiple_provenance(): tag1 = test_helpers.make_tag(date="2020-04-01") tag2 = test_helpers.make_tag(date="2020-04-02") dataset_in = test_helpers.build_default_region_dataset( { CommonFields.ICU_BEDS: TimeseriesLiteral( [0, 2, 4], annotation=[tag1, tag2], provenance=["prov1", "prov2"], ), CommonFields.CASES: [100, 200, 300], } ) one_region = dataset_in.get_one_region(test_helpers.DEFAULT_REGION) assert set(one_region.annotations(CommonFields.ICU_BEDS)) == {tag1, tag2} assert sorted(one_region.provenance[CommonFields.ICU_BEDS]) == ["prov1", "prov2"] def test_append_regions(): ts_fips = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m1,m2\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,2,\n" "iso1:us#fips:97111,2020-04-03,Bar County,county,3,\n" "iso1:us#fips:97222,2020-04-04,Foo County,county,,11\n" "iso1:us#fips:97111,,Bar County,county,3,\n" "iso1:us#fips:97222,,Foo County,county,,11\n" ) ).add_provenance_csv( io.StringIO("location_id,variable,provenance\n" "iso1:us#fips:97111,m1,prov97111m1\n") ) ts_cbsa = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,m2\n" "iso1:us#cbsa:10100,2020-04-02,2\n" "iso1:us#cbsa:10100,2020-04-03,3\n" "iso1:us#cbsa:20200,2020-04-03,4\n" "iso1:us#cbsa:10100,,3\n" "iso1:us#cbsa:20200,,4\n" ) ).add_provenance_csv( io.StringIO("location_id,variable,provenance\n" "iso1:us#cbsa:20200,m1,prov20200m2\n") ) # Check that merge is symmetric ts_merged_1 = ts_fips.append_regions(ts_cbsa) ts_merged_2 = ts_cbsa.append_regions(ts_fips) test_helpers.assert_dataset_like(ts_merged_1, ts_merged_2) ts_expected = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m1,m2\n" "iso1:us#cbsa:10100,2020-04-02,,,,2\n" "iso1:us#cbsa:10100,2020-04-03,,,,3\n" "iso1:us#cbsa:20200,2020-04-03,,,,4\n" "iso1:us#cbsa:10100,,,,,3\n" "iso1:us#cbsa:20200,,,,,4\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,2,\n" "iso1:us#fips:97111,2020-04-03,Bar County,county,3,\n" "iso1:us#fips:97222,2020-04-04,Foo County,county,,11\n" "iso1:us#fips:97111,,Bar County,county,3,\n" "iso1:us#fips:97222,,Foo County,county,,11\n" ) ).add_provenance_csv( io.StringIO( "location_id,variable,provenance\n" "iso1:us#fips:97111,m1,prov97111m1\n" "iso1:us#cbsa:20200,m1,prov20200m2\n" ) ) test_helpers.assert_dataset_like(ts_merged_1, ts_expected) def test_append_regions_duplicate_region_raises(): ts1 = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m1,m2\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,2,\n" ) ) ts2 = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m1,m2\n" "iso1:us#fips:97111,2020-04-03,Bar County,county,2,\n" ) ) with pytest.raises(ValueError): ts1.append_regions(ts2) def test_calculate_new_cases(): mrts_before = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,cases\n" "iso1:us#fips:1,2020-01-01,0\n" "iso1:us#fips:1,2020-01-02,1\n" "iso1:us#fips:1,2020-01-03,1\n" "iso1:us#fips:2,2020-01-01,5\n" "iso1:us#fips:2,2020-01-02,7\n" "iso1:us#fips:3,2020-01-01,9\n" "iso1:us#fips:4,2020-01-01,\n" "iso1:us#fips:1,,100\n" "iso1:us#fips:2,,\n" "iso1:us#fips:3,,\n" "iso1:us#fips:4,,\n" ) ) mrts_expected = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,cases,new_cases\n" "iso1:us#fips:1,2020-01-01,0,0\n" "iso1:us#fips:1,2020-01-02,1,1\n" "iso1:us#fips:1,2020-01-03,1,0\n" "iso1:us#fips:2,2020-01-01,5,5\n" "iso1:us#fips:2,2020-01-02,7,2\n" "iso1:us#fips:3,2020-01-01,9,9\n" "iso1:us#fips:4,2020-01-01,,\n" "iso1:us#fips:1,,100,0.0\n" "iso1:us#fips:2,,,2.0\n" "iso1:us#fips:3,,,9.0\n" "iso1:us#fips:4,,,\n" ) ) timeseries_after = timeseries.add_new_cases(mrts_before) test_helpers.assert_dataset_like(mrts_expected, timeseries_after) def test_new_cases_remove_negative(): mrts_before = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,cases\n" "iso1:us#fips:1,2020-01-01,100\n" "iso1:us#fips:1,2020-01-02,50\n" "iso1:us#fips:1,2020-01-03,75\n" "iso1:us#fips:1,2020-01-04,74\n" "iso1:us#fips:1,,75\n" ) ) mrts_expected = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,cases,new_cases\n" "iso1:us#fips:1,2020-01-01,100,100\n" "iso1:us#fips:1,2020-01-02,50,\n" "iso1:us#fips:1,2020-01-03,75,25\n" "iso1:us#fips:1,2020-01-04,74,0\n" "iso1:us#fips:1,,75,0.0\n" ) ) timeseries_after = timeseries.add_new_cases(mrts_before) test_helpers.assert_dataset_like(mrts_expected, timeseries_after) def test_new_cases_gap_in_date(): mrts_before = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,cases\n" "iso1:us#fips:1,2020-01-01,100\n" "iso1:us#fips:1,2020-01-02,\n" "iso1:us#fips:1,2020-01-03,110\n" "iso1:us#fips:1,2020-01-04,130\n" ) ) mrts_expected = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,cases,new_cases\n" "iso1:us#fips:1,2020-01-01,100,100\n" "iso1:us#fips:1,2020-01-02,,\n" "iso1:us#fips:1,2020-01-03,110,\n" "iso1:us#fips:1,2020-01-04,130,20\n" ) ) timeseries_after = timeseries.add_new_cases(mrts_before) test_helpers.assert_dataset_like(mrts_expected, timeseries_after) def test_timeseries_long(): ts = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m1,m2\n" "iso1:us#cbsa:10100,2020-04-02,,,,2\n" "iso1:us#cbsa:10100,2020-04-03,,,,3\n" "iso1:us#cbsa:10100,,,,,3\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,2,\n" "iso1:us#fips:97111,2020-04-04,Bar County,county,4,\n" "iso1:us#fips:97111,,Bar County,county,4,\n" ) ) expected = pd.read_csv( io.StringIO( "location_id,date,variable,value\n" "iso1:us#cbsa:10100,2020-04-02,m2,2\n" "iso1:us#cbsa:10100,2020-04-03,m2,3\n" "iso1:us#fips:97111,2020-04-02,m1,2\n" "iso1:us#fips:97111,2020-04-04,m1,4\n" ), parse_dates=[CommonFields.DATE], dtype={"value": float}, ) long_series = ts._timeseries_long() assert long_series.index.names == [ CommonFields.LOCATION_ID, CommonFields.DATE, PdFields.VARIABLE, ] assert long_series.name == PdFields.VALUE long_df = long_series.reset_index() pd.testing.assert_frame_equal(long_df, expected, check_like=True) def test_timeseries_wide_dates(): ds = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m1,m2\n" "iso1:us#cbsa:10100,2020-04-02,,,,2\n" "iso1:us#cbsa:10100,2020-04-03,,,,3\n" "iso1:us#cbsa:10100,,,,,3\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,2,\n" "iso1:us#fips:97111,2020-04-04,Bar County,county,4,\n" "iso1:us#fips:97111,,Bar County,county,4,\n" ) ) ds_wide = ds.timeseries_wide_dates() assert ds_wide.index.names == [CommonFields.LOCATION_ID, PdFields.VARIABLE] assert ds_wide.columns.names == [CommonFields.DATE] expected = ( pd.read_csv( io.StringIO( "location_id,variable,2020-04-02,2020-04-03,2020-04-04\n" "iso1:us#cbsa:10100,m2,2,3,\n" "iso1:us#fips:97111,m1,2,,4\n" ), ) .set_index(ds_wide.index.names) .rename_axis(columns="date") .astype(float) ) expected.columns = pd.to_datetime(expected.columns) pd.testing.assert_frame_equal(ds_wide, expected) # Recreate the dataset using `from_timeseries_wide_dates_df`. ds_recreated = timeseries.MultiRegionDataset.from_timeseries_wide_dates_df( ds_wide ).add_static_values(ds.static.reset_index()) test_helpers.assert_dataset_like(ds, ds_recreated) def test_timeseries_wide_dates_empty(): ts = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m1,m2\n" "iso1:us#cbsa:10100,,,,,3\n" "iso1:us#fips:97111,,Bar County,county,4,\n" ) ) timeseries_wide = ts.timeseries_wide_dates() assert timeseries_wide.index.names == [CommonFields.LOCATION_ID, PdFields.VARIABLE] assert timeseries_wide.columns.names == [CommonFields.DATE] assert timeseries_wide.empty def test_write_read_wide_dates_csv_compare_literal(tmpdir): pointer = _make_dataset_pointer(tmpdir) region_as = Region.from_state("AS") region_sf = Region.from_fips("06075") metrics_as = { CommonFields.ICU_BEDS: TimeseriesLiteral([0, 2, 4], provenance="pt_src1"), CommonFields.CASES: [100, 200, 300], } metrics_sf = { CommonFields.DEATHS: TimeseriesLiteral([1, 2, None], provenance="pt_src2"), CommonFields.CASES: [None, 210, 310], } dataset_in = test_helpers.build_dataset({region_as: metrics_as, region_sf: metrics_sf}) dataset_in.write_to_dataset_pointer(pointer) # Compare written file with a string literal so a test fails if something changes in how the # file is written. The literal contains spaces to align the columns in the source. assert pointer.path_wide_dates().read_text() == ( " location_id,variable,provenance,2020-04-03,2020-04-02,2020-04-01\n" " iso1:us#iso2:us-as, cases, , 300, 200, 100\n" " iso1:us#iso2:us-as,icu_beds, pt_src1, 4, 2, 0\n" "iso1:us#iso2:us-ca#fips:06075, cases, , 310, 210\n" "iso1:us#iso2:us-ca#fips:06075, deaths, pt_src2, , 2, 1\n" ).replace(" ", "") dataset_read = timeseries.MultiRegionDataset.read_from_pointer(pointer) test_helpers.assert_dataset_like(dataset_read, dataset_in) def test_write_read_wide_dates_csv_with_annotation(tmpdir): pointer = _make_dataset_pointer(tmpdir) region = Region.from_state("AS") metrics = { CommonFields.ICU_BEDS: TimeseriesLiteral( [0, 2, 4], annotation=[ test_helpers.make_tag(date="2020-04-01"), test_helpers.make_tag(type=TagType.ZSCORE_OUTLIER, date="2020-04-02"), ], ), CommonFields.CASES: [100, 200, 300], } dataset_in = test_helpers.build_dataset({region: metrics}) dataset_in.write_to_dataset_pointer(pointer) dataset_read = timeseries.MultiRegionDataset.read_from_pointer(pointer) test_helpers.assert_dataset_like(dataset_read, dataset_in) def test_write_read_dataset_pointer_with_provenance_list(tmpdir): pointer = _make_dataset_pointer(tmpdir) dataset_in = test_helpers.build_default_region_dataset( { CommonFields.ICU_BEDS: TimeseriesLiteral( [0, 2, 4], annotation=[ test_helpers.make_tag(date="2020-04-01"), test_helpers.make_tag(date="2020-04-02"), ], provenance=["prov1", "prov2"], ), CommonFields.CASES: [100, 200, 300], } ) dataset_in.write_to_dataset_pointer(pointer) dataset_read = timeseries.MultiRegionDataset.read_from_pointer(pointer) test_helpers.assert_dataset_like(dataset_read, dataset_in) def test_timeseries_drop_stale_timeseries_entire_region(): ds_in = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m1,m2\n" "iso1:us#cbsa:10100,2020-04-02,,,,2\n" "iso1:us#cbsa:10100,2020-04-03,,,,3\n" "iso1:us#cbsa:10100,,,,,3\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,2,\n" "iso1:us#fips:97111,2020-04-04,Bar County,county,4,\n" "iso1:us#fips:97111,,Bar County,county,4,\n" ) ) ds_out = ds_in.drop_stale_timeseries(pd.to_datetime("2020-04-04")) ds_expected = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m1,m2\n" "iso1:us#cbsa:10100,,,,,3\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,2,\n" "iso1:us#fips:97111,2020-04-04,Bar County,county,4,\n" "iso1:us#fips:97111,,Bar County,county,4,\n" ) ) test_helpers.assert_dataset_like(ds_out, ds_expected) def test_timeseries_drop_stale_timeseries_one_metric(): csv_in = ( "location_id,date,county,aggregate_level,m1,m2\n" "iso1:us#cbsa:10100,2020-04-02,,,11,2\n" "iso1:us#cbsa:10100,2020-04-03,,,,3\n" "iso1:us#cbsa:10100,,,,,3\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,2,\n" "iso1:us#fips:97111,2020-04-04,Bar County,county,4,\n" "iso1:us#fips:97111,,Bar County,county,4,\n" ) ds_in = timeseries.MultiRegionDataset.from_csv(io.StringIO(csv_in)).add_provenance_csv( io.StringIO( "location_id,variable,provenance\n" "iso1:us#cbsa:10100,m1,m1-10100prov\n" "iso1:us#cbsa:10100,m2,m2-10100prov\n" "iso1:us#fips:97111,m1,m1-97111prov\n" ) ) ds_out = ds_in.drop_stale_timeseries(pd.to_datetime("2020-04-03")) # The only timeseries that is stale with cutoff of 4/3 is the CBSA m1. The expected # dataset is the same as the input with "11" removed from the timeseries and # corresponding provenance removed. ds_expected = timeseries.MultiRegionDataset.from_csv( io.StringIO(csv_in.replace(",11,", ",,")) ).add_provenance_csv( io.StringIO( "location_id,variable,provenance\n" "iso1:us#cbsa:10100,m2,m2-10100prov\n" "iso1:us#fips:97111,m1,m1-97111prov\n" ) ) test_helpers.assert_dataset_like(ds_out, ds_expected) def test_timeseries_drop_stale_timeseries_with_tag(): region = Region.from_state("TX") values_recent = [100, 200, 300, 400] values_stale = [100, 200, None, None] ts_recent = TimeseriesLiteral(values_recent, annotation=[test_helpers.make_tag()]) ts_stale = TimeseriesLiteral(values_stale, annotation=[test_helpers.make_tag()]) dataset_in = test_helpers.build_dataset( {region: {CommonFields.CASES: ts_recent, CommonFields.DEATHS: ts_stale}} ) dataset_out = dataset_in.drop_stale_timeseries(pd.to_datetime("2020-04-03")) assert len(dataset_out.tag) == 1 # drop_stale_timeseries preserves the empty DEATHS column so add it to dataset_expected dataset_expected = test_helpers.build_dataset( {region: {CommonFields.CASES: ts_recent}}, timeseries_columns=[CommonFields.DEATHS] ) test_helpers.assert_dataset_like(dataset_out, dataset_expected) def test_append_region_and_get_regions_subset_with_tag(): region_tx = Region.from_state("TX") region_sf = Region.from_fips("06075") values = [100, 200, 300, 400] ts_with_tag = TimeseriesLiteral(values, annotation=[test_helpers.make_tag()]) dataset_tx = test_helpers.build_dataset({region_tx: {CommonFields.CASES: ts_with_tag}}) dataset_sf = test_helpers.build_dataset({region_sf: {CommonFields.CASES: ts_with_tag}}) dataset_appended = dataset_tx.append_regions(dataset_sf) assert len(dataset_appended.tag) == 2 dataset_tx_and_sf = test_helpers.build_dataset( {region_tx: {CommonFields.CASES: ts_with_tag}, region_sf: {CommonFields.CASES: ts_with_tag}} ) test_helpers.assert_dataset_like(dataset_appended, dataset_tx_and_sf) dataset_out = dataset_tx_and_sf.get_regions_subset([region_tx]) assert len(dataset_out.tag) == 1 test_helpers.assert_dataset_like(dataset_out, dataset_tx) def test_one_region_annotations(): region_tx = Region.from_state("TX") region_sf = Region.from_fips("06075") values = [100, 200, 300, 400] tag1 = test_helpers.make_tag(date="2020-04-01") tag2a = test_helpers.make_tag(date="2020-04-02") tag2b = test_helpers.make_tag(date="2020-04-03") dataset_tx_and_sf = test_helpers.build_dataset( { region_tx: {CommonFields.CASES: (TimeseriesLiteral(values, annotation=[tag1]))}, region_sf: {CommonFields.CASES: (TimeseriesLiteral(values, annotation=[tag2a, tag2b]))}, } ) # get_one_region and iter_one_regions use separate code to split up the tags. Test both of them. assert dataset_tx_and_sf.get_one_region(region_tx).annotations(CommonFields.CASES) == [tag1] assert dataset_tx_and_sf.get_one_region(region_sf).annotations(CommonFields.CASES) == [ tag2a, tag2b, ] assert { region: one_region_dataset.annotations(CommonFields.CASES) for region, one_region_dataset in dataset_tx_and_sf.iter_one_regions() } == {region_sf: [tag2a, tag2b], region_tx: [tag1],} def test_timeseries_latest_values(): dataset = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m1,m2\n" "iso1:us#cbsa:10100,2020-04-02,,,,2\n" "iso1:us#cbsa:10100,2020-04-03,,,10,3\n" "iso1:us#cbsa:10100,2020-04-04,,,,1\n" "iso1:us#cbsa:10100,,,,,4\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,2,\n" "iso1:us#fips:97111,2020-04-04,Bar County,county,4,\n" "iso1:us#fips:97111,,Bar County,county,5,\n" ) ) # Check bulk access via _timeseries_latest_values expected = pd.read_csv( io.StringIO("location_id,m1,m2\n" "iso1:us#cbsa:10100,10,1\n" "iso1:us#fips:97111,4,\n") ) latest_from_timeseries = dataset._timeseries_latest_values().reset_index() pd.testing.assert_frame_equal( latest_from_timeseries, expected, check_like=True, check_dtype=False ) # Check access to timeseries latests values via get_one_region region_10100 = dataset.get_one_region(Region.from_cbsa_code("10100")) assert region_10100.latest == { "aggregate_level": None, "county": None, "m1": 10, # Derived from timeseries "m2": 4, # Explicitly in recent values } region_97111 = dataset.get_one_region(Region.from_fips("97111")) assert region_97111.latest == { "aggregate_level": "county", "county": "Bar County", "m1": 5, "m2": None, } def test_timeseries_latest_values_copied_to_static(): dataset = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,t1,s1\n" "iso1:us#cbsa:10100,2020-04-02,,,,2\n" "iso1:us#cbsa:10100,2020-04-03,,,10,3\n" "iso1:us#cbsa:10100,2020-04-04,,,,1\n" "iso1:us#cbsa:10100,,,,,4\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,2,\n" "iso1:us#fips:97111,2020-04-04,Bar County,county,4,\n" "iso1:us#fips:97111,,Bar County,county,,\n" ) ) # Check access to latest values as copied to static t1 = FieldName("t1") s1 = FieldName("s1") dataset_t1_latest_in_static = dataset.latest_in_static(t1) assert dataset_t1_latest_in_static.static.loc["iso1:us#cbsa:10100", t1] == 10 assert dataset_t1_latest_in_static.static.loc["iso1:us#fips:97111", t1] == 4 # Trying to copy the latest values of s1 fails because s1 already has a real value in static. # See also longer comment where the ValueError is raised. with pytest.raises(ValueError): dataset.latest_in_static(s1) def test_join_columns(): ts_1 = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m1\n" "iso1:us#cbsa:10100,2020-04-02,,,\n" "iso1:us#cbsa:10100,2020-04-03,,,\n" "iso1:us#cbsa:10100,,,,\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,2\n" "iso1:us#fips:97111,2020-04-04,Bar County,county,4\n" "iso1:us#fips:97111,,Bar County,county,4\n" ) ).add_provenance_csv( io.StringIO( "location_id,variable,provenance\n" "iso1:us#cbsa:10100,m1,ts110100prov\n" "iso1:us#fips:97111,m1,ts197111prov\n" ) ) ts_2 = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m2\n" "iso1:us#cbsa:10100,2020-04-02,,,2\n" "iso1:us#cbsa:10100,2020-04-03,,,3\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,\n" "iso1:us#fips:97111,2020-04-04,Bar County,county,\n" ) ).add_provenance_csv( io.StringIO( "location_id,variable,provenance\n" "iso1:us#cbsa:10100,m2,ts110100prov\n" "iso1:us#fips:97111,m2,ts197111prov\n" ) ) ts_expected = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m1,m2\n" "iso1:us#cbsa:10100,2020-04-02,,,,2\n" "iso1:us#cbsa:10100,2020-04-03,,,,3\n" "iso1:us#cbsa:10100,,,,,\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,2,\n" "iso1:us#fips:97111,2020-04-04,Bar County,county,4,\n" "iso1:us#fips:97111,,Bar County,county,4,\n" ) ).add_provenance_csv( io.StringIO( "location_id,variable,provenance\n" "iso1:us#cbsa:10100,m1,ts110100prov\n" "iso1:us#cbsa:10100,m2,ts110100prov\n" "iso1:us#fips:97111,m1,ts197111prov\n" "iso1:us#fips:97111,m2,ts197111prov\n" ) ) ts_joined = ts_1.join_columns(ts_2) test_helpers.assert_dataset_like(ts_joined, ts_expected, drop_na_latest=True) with pytest.raises(NotImplementedError): ts_2.join_columns(ts_1) with pytest.raises(ValueError): # Raises because the same column is in both datasets ts_2.join_columns(ts_2) # Checking geo attributes is currently disabled. # ts_2_variation_df = ts_2.combined_df.copy() # ts_2_variation_df.loc[ # ts_2_variation_df[CommonFields.COUNTY] == "Bar County", CommonFields.COUNTY # ] = "Bart County" # ts_2_variation = timeseries.MultiRegionDataset.from_combined_dataframe( # ts_2_variation_df # ) # with pytest.raises(ValueError): # ts_1.join_columns(ts_2_variation) def test_join_columns_missing_regions(): ts_1 = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m1\n" "iso1:us#cbsa:10100,2020-04-02,,,\n" "iso1:us#cbsa:10100,2020-04-03,,,\n" "iso1:us#cbsa:10100,,,,\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,2\n" "iso1:us#fips:97111,2020-04-04,Bar County,county,4\n" "iso1:us#fips:97111,,Bar County,county,4\n" ) ) ts_2 = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m2\n" "iso1:us#cbsa:10100,2020-04-02,,,2\n" ) ) ts_expected = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m1,m2\n" "iso1:us#cbsa:10100,2020-04-02,,,,2\n" "iso1:us#cbsa:10100,2020-04-03,,,,\n" "iso1:us#cbsa:10100,,,,,\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,2,\n" "iso1:us#fips:97111,2020-04-04,Bar County,county,4,\n" "iso1:us#fips:97111,,Bar County,county,4,\n" ) ) ts_joined = ts_1.join_columns(ts_2) test_helpers.assert_dataset_like(ts_joined, ts_expected, drop_na_latest=True) def test_iter_one_region(): ts = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m1\n" "iso1:us#cbsa:10100,2020-04-02,,,\n" "iso1:us#cbsa:10100,2020-04-03,,,\n" "iso1:us#cbsa:10100,,,,\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,2\n" "iso1:us#fips:97111,2020-04-04,Bar County,county,4\n" "iso1:us#fips:97111,,Bar County,county,4\n" # 97222 does not have a row of latest data to make sure it still works "iso1:us#fips:97222,2020-04-02,No Recent County,county,3\n" "iso1:us#fips:97222,2020-04-04,No Recent County,county,5\n" ) ) assert {region.location_id for region, _ in ts.iter_one_regions()} == { "iso1:us#cbsa:10100", "iso1:us#fips:97111", "iso1:us#fips:97222", } for it_region, it_one_region in ts.iter_one_regions(): one_region = ts.get_one_region(it_region) assert (one_region.data.fillna("") == it_one_region.data.fillna("")).all(axis=None) assert one_region.latest == it_one_region.latest assert one_region.provenance == it_one_region.provenance assert one_region.region == it_region assert one_region.region == it_one_region.region def test_drop_regions_without_population(): # Only regions with location_id containing 1 have population, those with 2 don't ts_in = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,population,m1\n" "iso1:us#cbsa:10100,2020-04-02,,,,\n" "iso1:us#cbsa:10100,,,,80000,\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,,2\n" "iso1:us#fips:97111,,Bar County,county,40000,4\n" "iso1:us#cbsa:20200,2020-04-02,,,,\n" "iso1:us#cbsa:20200,,,,,\n" "iso1:us#fips:97222,2020-04-02,Bar County,county,,2\n" "iso1:us#fips:97222,,Bar County,county,,4\n" ) ) ts_expected = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,population,m1\n" "iso1:us#cbsa:10100,2020-04-02,,,,\n" "iso1:us#cbsa:10100,,,,80000,\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,,2\n" "iso1:us#fips:97111,,Bar County,county,40000,4\n" ) ) with structlog.testing.capture_logs() as logs: ts_out = timeseries.drop_regions_without_population( ts_in, ["iso1:us#fips:97222"], structlog.get_logger() ) test_helpers.assert_dataset_like(ts_out, ts_expected) assert [l["event"] for l in logs] == ["Dropping unexpected regions without populaton"] assert [l["location_ids"] for l in logs] == [["iso1:us#cbsa:20200"]] def test_merge_provenance(): ts = timeseries.MultiRegionDataset.from_csv( io.StringIO( "location_id,date,county,aggregate_level,m1\n" "iso1:us#cbsa:10100,2020-04-02,,,\n" "iso1:us#cbsa:10100,2020-04-03,,,\n" "iso1:us#cbsa:10100,,,,\n" "iso1:us#fips:97111,2020-04-02,Bar County,county,2\n" "iso1:us#fips:97111,2020-04-04,Bar County,county,4\n" "iso1:us#fips:97111,,Bar County,county,4\n" ) ).add_provenance_csv( io.StringIO("location_id,variable,provenance\n" "iso1:us#cbsa:10100,m1,ts110100prov\n") ) with pytest.raises(NotImplementedError): ts.add_provenance_csv( io.StringIO("location_id,variable,provenance\n" "iso1:us#fips:97111,m1,ts197111prov\n") ) def test_append_tags(): region_sf = Region.from_fips("06075") cases_values = [100, 200, 300, 400] metrics_sf = { CommonFields.POSITIVE_TESTS: TimeseriesLiteral([1, 2, 3, 4], provenance="pt_src2"), CommonFields.CASES: cases_values, } dataset_in = test_helpers.build_dataset({region_sf: metrics_sf}) tag_sf_cases = test_helpers.make_tag(TagType.CUMULATIVE_TAIL_TRUNCATED, date="2020-04-02") tag_df = test_helpers.make_tag_df(region_sf, CommonFields.CASES, [tag_sf_cases]) dataset_out = dataset_in.append_tag_df(tag_df) metrics_sf[CommonFields.CASES] = TimeseriesLiteral(cases_values, annotation=[tag_sf_cases]) dataset_expected = test_helpers.build_dataset({region_sf: metrics_sf}) test_helpers.assert_dataset_like(dataset_out, dataset_expected) def test_add_provenance_all_with_tags(): """Checks that add_provenance_all (and add_provenance_series that it calls) preserves tags.""" region = Region.from_state("TX") cases_values = [100, 200, 300, 400] timeseries = TimeseriesLiteral(cases_values, annotation=[(test_helpers.make_tag())]) dataset_in = test_helpers.build_dataset({region: {CommonFields.CASES: timeseries}}) dataset_out = dataset_in.add_provenance_all("prov_prov") timeseries = dataclasses.replace(timeseries, provenance=["prov_prov"]) dataset_expected = test_helpers.build_dataset({region: {CommonFields.CASES: timeseries}}) test_helpers.assert_dataset_like(dataset_out, dataset_expected) def test_join_columns_with_tags(): """Checks that join_columns preserves tags.""" region = Region.from_state("TX") cases_values = [100, 200, 300, 400] ts_lit = TimeseriesLiteral(cases_values, annotation=[test_helpers.make_tag()]) dataset_cases = test_helpers.build_dataset({region: {CommonFields.CASES: ts_lit}}) dataset_deaths = test_helpers.build_dataset({region: {CommonFields.DEATHS: ts_lit}}) dataset_out = dataset_cases.join_columns(dataset_deaths) assert len(dataset_out.tag) == 2 # The following checks that the tags in `ts_lit` have been preserved. dataset_expected = test_helpers.build_dataset( {region: {CommonFields.CASES: ts_lit, CommonFields.DEATHS: ts_lit}} ) test_helpers.assert_dataset_like(dataset_out, dataset_expected) def test_drop_column_with_tags(): """Checks that join_columns preserves tags.""" region = Region.from_state("TX") cases_values = [100, 200, 300, 400] ts_lit = TimeseriesLiteral(cases_values, annotation=[test_helpers.make_tag()]) dataset_in = test_helpers.build_dataset( {region: {CommonFields.CASES: ts_lit, CommonFields.DEATHS: ts_lit}} ) dataset_out = dataset_in.drop_column_if_present(CommonFields.DEATHS) assert len(dataset_out.tag) == 1 dataset_expected = test_helpers.build_dataset({region: {CommonFields.CASES: ts_lit}}) test_helpers.assert_dataset_like(dataset_out, dataset_expected) def test_remove_outliers(): values = [10.0] * 7 + [1000.0] dataset = test_helpers.build_default_region_dataset({CommonFields.NEW_CASES: values}) dataset = timeseries.drop_new_case_outliers(dataset) # Expected result is the same series with the last value removed expected_tag = test_helpers.make_tag( TagType.ZSCORE_OUTLIER, date="2020-04-08", original_observation=1000.0, ) expected_ts = TimeseriesLiteral([10.0] * 7, annotation=[expected_tag]) expected = test_helpers.build_default_region_dataset({CommonFields.NEW_CASES: expected_ts}) test_helpers.assert_dataset_like(dataset, expected, drop_na_dates=True) def test_remove_outliers_threshold(): values = [1.0] * 7 + [30.0] dataset = test_helpers.build_default_region_dataset({CommonFields.NEW_CASES: values}) result = timeseries.drop_new_case_outliers(dataset, case_threshold=30) # Should not modify becasue not higher than threshold test_helpers.assert_dataset_like(dataset, result) result = timeseries.drop_new_case_outliers(dataset, case_threshold=29) # Expected result is the same series with the last value removed expected_tag = test_helpers.make_tag( TagType.ZSCORE_OUTLIER, date="2020-04-08", original_observation=30.0 ) expected_ts = TimeseriesLiteral([1.0] * 7, annotation=[expected_tag]) expected = test_helpers.build_default_region_dataset({CommonFields.NEW_CASES: expected_ts}) test_helpers.assert_dataset_like(result, expected, drop_na_dates=True) def test_not_removing_short_series(): values = [None] * 7 + [1, 1, 300] dataset = test_helpers.build_default_region_dataset({CommonFields.NEW_CASES: values}) result = timeseries.drop_new_case_outliers(dataset, case_threshold=30) # Should not modify becasue not higher than threshold test_helpers.assert_dataset_like(dataset, result) def test_timeseries_empty_timeseries_and_static(): # Check that empty dataset creates a MultiRegionDataset # and that get_one_region raises expected exception. dataset = timeseries.MultiRegionDataset.new_without_timeseries() with pytest.raises(timeseries.RegionLatestNotFound): dataset.get_one_region(Region.from_fips("01001")) def test_timeseries_empty(): # Check that empty geodata_timeseries_df creates a MultiRegionDataset # and that get_one_region raises expected exception. dataset = timeseries.MultiRegionDataset.from_geodata_timeseries_df( pd.DataFrame([], columns=[CommonFields.LOCATION_ID, CommonFields.DATE]) ) with pytest.raises(timeseries.RegionLatestNotFound): dataset.get_one_region(Region.from_fips("01001")) def test_timeseries_empty_static_not_empty(): # Check that empty timeseries does not prevent static data working as expected. dataset = timeseries.MultiRegionDataset.from_geodata_timeseries_df(
pd.DataFrame([], columns=[CommonFields.LOCATION_ID, CommonFields.DATE])
pandas.DataFrame
import lightgbm as lgbm import numpy as np import pandas as pd from sklearn.model_selection import KFold from tqdm import tqdm X_train = pd.read_pickle("data/train.pkl") X_test =
pd.read_pickle("data/test.pkl")
pandas.read_pickle
# Copyright 2016 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import collections try: import pandas as pd except ImportError: pd = None SurfaceFlingerFrame = collections.namedtuple('SurfaceFlingerFrame', 'desired_present_time actual_present_time frame_ready_time') GfxInfoFrame = collections.namedtuple('GfxInfoFrame', 'Flags IntendedVsync Vsync OldestInputEvent NewestInputEvent HandleInputStart AnimationStart PerformTraversalsStart DrawStart SyncQueued SyncStart IssueDrawCommandsStart SwapBuffers FrameCompleted') # https://android.googlesource.com/platform/frameworks/base/+/marshmallow-release/libs/hwui/JankTracker.cpp # Frames that are exempt from jank metrics. # First-draw frames, for example, are expected to be slow, # this is hidden from the user with window animations and other tricks # Similarly, we don't track direct-drawing via Surface:lockHardwareCanvas() for now # Android M: WindowLayoutChanged | SurfaceCanvas GFXINFO_EXEMPT = 1 | 4 VSYNC_INTERVAL = 16666667 class FpsProcessor(object): """ Provides common object for processing surfaceFlinger output for frame statistics. This processor returns the four frame statistics below: :FPS: Frames Per Second. This is the frame rate of the workload. :frame_count: The total number of frames rendered during the execution of the workload. :janks: The number of "janks" that occurred during execution of the workload. Janks are sudden shifts in frame rate. They result in a "stuttery" UI. See http://jankfree.org/jank-busters-io :not_at_vsync: The number of frames that did not render in a single vsync cycle. """ def __init__(self, data, action=None, extra_data=None): """ data - a pandas.DataFrame object with frame data (e.g. frames.csv) action - output metrics names with additional action specifier extra_data - extra data given to use for calculations of metrics """ self.data = data self.action = action self.extra_data = extra_data def process(self, refresh_period, drop_threshold): # pylint: disable=too-many-locals """ Generate frame per second (fps) and associated metrics for workload. refresh_period - the vsync interval drop_threshold - data points below this fps will be dropped """ fps = float('nan') frame_count, janks, not_at_vsync = 0, 0, 0 vsync_interval = refresh_period per_frame_fps = pd.Series() # SurfaceFlinger Algorithm if self.data.columns.tolist() == list(SurfaceFlingerFrame._fields): # fiter out bogus frames. bogus_frames_filter = self.data.actual_present_time != 0x7fffffffffffffff actual_present_times = self.data.actual_present_time[bogus_frames_filter] actual_present_time_deltas = actual_present_times.diff().dropna() vsyncs_to_compose = actual_present_time_deltas.div(vsync_interval) vsyncs_to_compose.apply(lambda x: int(round(x, 0))) # drop values lower than drop_threshold FPS as real in-game frame # rate is unlikely to drop below that (except on loading screens # etc, which should not be factored in frame rate calculation). per_frame_fps = (1.0 / (vsyncs_to_compose.multiply(vsync_interval / 1e9))) keep_filter = per_frame_fps > drop_threshold filtered_vsyncs_to_compose = vsyncs_to_compose[keep_filter] per_frame_fps.name = 'fps' if not filtered_vsyncs_to_compose.empty: total_vsyncs = filtered_vsyncs_to_compose.sum() frame_count = filtered_vsyncs_to_compose.size if total_vsyncs: fps = 1e9 * frame_count / (vsync_interval * total_vsyncs) janks = self._calc_janks(filtered_vsyncs_to_compose) not_at_vsync = self._calc_not_at_vsync(vsyncs_to_compose) # GfxInfo Algorithm elif self.data.columns.tolist() == list(GfxInfoFrame._fields): frame_time = self.data.FrameCompleted - self.data.IntendedVsync per_frame_fps = (1e9 / frame_time) keep_filter = per_frame_fps > drop_threshold per_frame_fps = per_frame_fps[keep_filter] per_frame_fps.name = 'fps' frame_count = self.data.index.size if frame_count: janks = frame_time[frame_time >= vsync_interval].count() not_at_vsync = self.data.IntendedVsync - self.data.Vsync not_at_vsync = not_at_vsync[not_at_vsync != 0].count() if frame_count > 1: duration = self.data.Vsync.iloc[-1] - self.data.Vsync.iloc[0] fps = (1e9 * frame_count) / float(duration) # If gfxinfocsv is provided, get stats from that instead if self.extra_data: series = pd.read_csv(self.extra_data, header=None, index_col=0, squeeze=True) if not series.empty: # pylint: disable=maybe-no-member frame_count = series['Total frames rendered'] janks = series['Janky frames'] not_at_vsync = series['Number Missed Vsync'] metrics = (fps, frame_count, janks, not_at_vsync) return per_frame_fps, metrics def percentiles(self): # SurfaceFlinger Algorithm if self.data.columns.tolist() == list(SurfaceFlingerFrame._fields): frame_time = self.data.frame_ready_time.diff() # GfxInfo Algorithm elif self.data.columns.tolist() == list(GfxInfoFrame._fields): frame_time = self.data.FrameCompleted - self.data.IntendedVsync data = frame_time.dropna().quantile([0.90, 0.95, 0.99]) # Convert to ms, round to nearest, cast to int data = data.div(1e6).round() try: data = data.astype('int') except ValueError: pass # If gfxinfocsv is provided, get stats from that instead if self.extra_data: series =
pd.read_csv(self.extra_data, header=None, index_col=0, squeeze=True)
pandas.read_csv
from IMLearn import BaseEstimator from challenge.agoda_cancellation_estimator import * from challenge.agoda_cancellation_preprocessor import \ AgodaCancellationPreprocessor from sklearn.ensemble import RandomForestClassifier import numpy as np import pandas as pd WEEK = 10 def load_data(filename: str): """ Load Agoda booking cancellation dataset Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector in either of the following formats: 1) Single dataframe with last column representing the response 2) Tuple of pandas.DataFrame and Series 3) Tuple of ndarray of shape (n_samples, n_features) and ndarray of shape (n_samples,) """ full_data = pd.read_csv(filename).drop_duplicates() full_data = full_data.drop( full_data[full_data["cancellation_policy_code"] == "UNKNOWN"].index) full_data["cancellation_datetime"].fillna(0, inplace=True) return full_data.dropna() def evaluate_and_export(estimator: BaseEstimator, X: np.ndarray, filename: str): """ Export to specified file the prediction results of given estimator on given testset. File saved is in csv format with a single column named 'predicted_values' and n_samples rows containing predicted values. Parameters ---------- estimator: BaseEstimator or any object implementing predict() method as in BaseEstimator (for example sklearn) Fitted estimator to use for prediction X: ndarray of shape (n_samples, n_features) Test design matrix to predict its responses filename: path to store file at """ prediction = estimator.predict(X) pd.DataFrame(prediction.astype(int), columns=["predicted_values"]).to_csv(filename, index=False) print(np.unique(prediction, return_counts=True)) def fill_missing_columns(design_matrix, test_set): missing_cols = set(design_matrix.columns) - set(test_set.columns) for c in missing_cols: test_set[c] = 0 return test_set[design_matrix.columns] if __name__ == '__main__': np.random.seed(0) # Load and preprocess data full_data = load_data( "../datasets/agoda_cancellation_train.csv") p = AgodaCancellationPreprocessor(full_data) base_design_matrix, week_specific = p.preprocess(full_data) cancellation_labels_list = p.preprocess_labels( full_data.cancellation_datetime, full_data.booking_datetime) design_matrix = pd.DataFrame() cancellation_labels = pd.DataFrame() for i in range(len(week_specific)): pd.concat([design_matrix, pd.concat([base_design_matrix, week_specific[i]], axis=1)]) pd.concat([cancellation_labels, cancellation_labels_list[i]]) for i in range(1, WEEK): week_data =
pd.read_csv(f"week_{i}_test_data.csv")
pandas.read_csv
import math import warnings from copy import copy from typing import TYPE_CHECKING from typing import Any from typing import Dict from typing import List from typing import Optional from typing import Sequence from typing import Set from typing import Tuple from typing import Union import numpy as np import pandas as pd from matplotlib import pyplot as plt from typing_extensions import Literal from etna.loggers import tslogger if TYPE_CHECKING: from etna.transforms.base import Transform TTimestamp = Union[str, pd.Timestamp] class TSDataset: """TSDataset is the main class to handle your time series data. It prepares the series for exploration analyzing, implements feature generation with Transforms and generation of future points. Notes ----- TSDataset supports custom indexing and slicing method. It maybe done through these interface: ``TSDataset[timestamp, segment, column]`` If at the start of the period dataset contains NaN those timestamps will be removed. During creation segment is casted to string type. Examples -------- >>> from etna.datasets import generate_const_df >>> df = generate_const_df(periods=30, start_time="2021-06-01", n_segments=2, scale=1) >>> df_ts_format = TSDataset.to_dataset(df) >>> ts = TSDataset(df_ts_format, "D") >>> ts["2021-06-01":"2021-06-07", "segment_0", "target"] timestamp 2021-06-01 1.0 2021-06-02 1.0 2021-06-03 1.0 2021-06-04 1.0 2021-06-05 1.0 2021-06-06 1.0 2021-06-07 1.0 Freq: D, Name: (segment_0, target), dtype: float64 >>> from etna.datasets import generate_ar_df >>> pd.options.display.float_format = '{:,.2f}'.format >>> df_to_forecast = generate_ar_df(100, start_time="2021-01-01", n_segments=1) >>> df_regressors = generate_ar_df(120, start_time="2021-01-01", n_segments=5) >>> df_regressors = df_regressors.pivot(index="timestamp", columns="segment").reset_index() >>> df_regressors.columns = ["timestamp"] + [f"regressor_{i}" for i in range(5)] >>> df_regressors["segment"] = "segment_0" >>> df_to_forecast = TSDataset.to_dataset(df_to_forecast) >>> df_regressors = TSDataset.to_dataset(df_regressors) >>> tsdataset = TSDataset(df=df_to_forecast, freq="D", df_exog=df_regressors, known_future="all") >>> tsdataset.df.head(5) segment segment_0 feature regressor_0 regressor_1 regressor_2 regressor_3 regressor_4 target timestamp 2021-01-01 1.62 -0.02 -0.50 -0.56 0.52 1.62 2021-01-02 1.01 -0.80 -0.81 0.38 -0.60 1.01 2021-01-03 0.48 0.47 -0.81 -1.56 -1.37 0.48 2021-01-04 -0.59 2.44 -2.21 -1.21 -0.69 -0.59 2021-01-05 0.28 0.58 -3.07 -1.45 0.77 0.28 """ idx = pd.IndexSlice def __init__( self, df: pd.DataFrame, freq: str, df_exog: Optional[pd.DataFrame] = None, known_future: Union[Literal["all"], Sequence] = (), ): """Init TSDataset. Parameters ---------- df: dataframe with timeseries freq: frequency of timestamp in df df_exog: dataframe with exogenous data; known_future: columns in ``df_exog[known_future]`` that are regressors, if "all" value is given, all columns are meant to be regressors """ self.raw_df = self._prepare_df(df) self.raw_df.index = pd.to_datetime(self.raw_df.index) self.freq = freq self.df_exog = None self.raw_df.index = pd.to_datetime(self.raw_df.index) try: inferred_freq = pd.infer_freq(self.raw_df.index) except ValueError: warnings.warn("TSDataset freq can't be inferred") inferred_freq = None if inferred_freq != self.freq: warnings.warn( f"You probably set wrong freq. Discovered freq in you data is {inferred_freq}, you set {self.freq}" ) self.raw_df = self.raw_df.asfreq(self.freq) self.df = self.raw_df.copy(deep=True) self.known_future = self._check_known_future(known_future, df_exog) self._regressors = copy(self.known_future) if df_exog is not None: self.df_exog = df_exog.copy(deep=True) self.df_exog.index = pd.to_datetime(self.df_exog.index) self.df = self._merge_exog(self.df) self.transforms: Optional[Sequence["Transform"]] = None def transform(self, transforms: Sequence["Transform"]): """Apply given transform to the data.""" self._check_endings(warning=True) self.transforms = transforms for transform in self.transforms: tslogger.log(f"Transform {repr(transform)} is applied to dataset") columns_before = set(self.columns.get_level_values("feature")) self.df = transform.transform(self.df) columns_after = set(self.columns.get_level_values("feature")) self._update_regressors(transform=transform, columns_before=columns_before, columns_after=columns_after) def fit_transform(self, transforms: Sequence["Transform"]): """Fit and apply given transforms to the data.""" self._check_endings(warning=True) self.transforms = transforms for transform in self.transforms: tslogger.log(f"Transform {repr(transform)} is applied to dataset") columns_before = set(self.columns.get_level_values("feature")) self.df = transform.fit_transform(self.df) columns_after = set(self.columns.get_level_values("feature")) self._update_regressors(transform=transform, columns_before=columns_before, columns_after=columns_after) @staticmethod def _prepare_df(df: pd.DataFrame) -> pd.DataFrame: # cast segment to str type df_copy = df.copy(deep=True) columns_frame = df.columns.to_frame() columns_frame["segment"] = columns_frame["segment"].astype(str) df_copy.columns =
pd.MultiIndex.from_frame(columns_frame)
pandas.MultiIndex.from_frame
# -*- coding: utf-8 -*- import pickle import click import logging from pathlib import Path import os.path import pandas as pd import numpy as np from sklearn.decomposition import PCA project_dir = Path(__file__).resolve().parents[2] @click.command() @click.argument('input_filepath', type=click.Path(exists=True)) @click.argument('output_filepath', type=click.Path()) @click.option('--pca-var', default=0.95) @click.option('--pca-output', type=click.Path(), default=os.path.join(project_dir, 'models/pca.p')) @click.option('--colnames-output', type=click.Path(), default=os.path.join(project_dir, 'models/colnames.p')) def main(input_filepath, output_filepath, pca_var, pca_output, colnames_output): """ Runs data processing scripts to turn raw data from (../raw) into cleaned data ready to be analyzed (saved in ../processed). """ logger = logging.getLogger(__name__) logger.info('making final data set from raw data') # read raw dataset logger.info('reading dataset at {}'.format(input_filepath)) df =
pd.read_csv(input_filepath)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed Sep 5 15:51:36 2018 @author: huangjin """ import pandas as pd from tqdm import tqdm import os def gen_data(df, time_start, time_end): df = df.sort_values(by=['code','pt']) df = df[(df['pt']<=time_end)&(df['pt']>=time_start)] col = [c for c in df.columns if c not in ['code','pt']] df_tem = df.groupby(['code']).shift(1).fillna(0) all_data = df[['code','pt']] for j in tqdm(range(len(col))): tem = df[col[j]]-df_tem[col[j]] all_data = pd.concat([all_data, tem], axis=1) return all_data def process_data(): industry_name = ['非银金融','纺织服装','有色金属','计算机','交通运输','医药生物','钢铁','家用电器', '采掘','国防军工','房地产','建筑材料','休闲服务','综合','建筑装饰','银行', '轻工制造','化工','电子','机械设备','商业贸易','通信','电气设备','公用事业','传媒', '农林牧渔','食品饮料','汽车'] industry_name_english = ['Non bank finance', 'textile and clothing', 'non-ferrous metals', 'computer', 'transportation', 'medical biology', 'steel', 'household appliances','Excavation','Defense Force', 'Real Estate', 'Building Materials', 'Leisure Services', 'Comprehensive', 'Architectural Decoration', 'Bank', 'Light manufacturing', 'Chemical', 'Electronic', 'Mechanical equipment', 'Commercial trade', 'Communication', 'Electrical equipment', 'Utilities', 'Media','Agriculture and fishing', 'food and beverage', 'car'] for industry_name_i in range(len(industry_name)): # 市场值 market_value = pd.read_csv('market_values_end.csv') stocks_info =
pd.read_csv('stocks_info.csv')
pandas.read_csv
from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import QThread, pyqtSignal from GUI import Ui_MainWindow # generated GUI py file import sys import os import pandas as pd import numpy as np from dateutil.relativedelta import relativedelta from datetime import datetime import ctypes import matplotlib.pyplot as plt import matplotlib.ticker as mtick import pwlf from GPyOpt.methods import BayesianOptimization import openpyxl import math from scipy import stats # python included dependencies: datetime, ctypes, math, os, sys # installed package dependencies: dateutil, gpy, matplotlib, numpy, openpyxl (and image), pandas (and xlsxwriter), pwlf, pyqt, scipi # class to populate a PyQT table view with a pandas dataframe class PandasModel(QtCore.QAbstractTableModel): def __init__(self, data, parent=None): QtCore.QAbstractTableModel.__init__(self, parent) self._data = data def rowCount(self, parent=None): return self._data.shape[0] def columnCount(self, parent=None): return self._data.shape[1] def data(self, index, role=QtCore.Qt.DisplayRole): if index.isValid(): if role == QtCore.Qt.DisplayRole: return str(self._data.iloc[index.row(), index.column()]) return None def headerData(self, col, orientation, role): if orientation == QtCore.Qt.Horizontal and role == QtCore.Qt.DisplayRole: return self._data.columns[col] return None # class to handle threading of datapoints so GUI is responsive class DataPointsWorkThread(QThread): signal = pyqtSignal('PyQt_PyObject') signal_pb = pyqtSignal('PyQt_PyObject') def __init__(self, data, start_date, end_date, pb_inc, option): QThread.__init__(self) # create instance of WorkerThread class and pass variables from application class as instance variables self.data = data self.start_date = start_date self.end_date = end_date self.pb_inc = pb_inc self.option = option def run(self): # local variables from instance variables for reference convenience data = self.data start_date = self.start_date end_date = self.end_date pb_inc = self.pb_inc option = self.option # initialize datapoints data frame and progress bar df =
pd.DataFrame()
pandas.DataFrame
""" Provide a generic structure to support window functions, similar to how we have a Groupby object. """ from collections import defaultdict from datetime import timedelta from textwrap import dedent from typing import List, Optional, Set import warnings import numpy as np import pandas._libs.window as libwindow from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, cache_readonly from pandas.core.dtypes.common import ( ensure_float64, is_bool, is_float_dtype, is_integer, is_integer_dtype, is_list_like, is_scalar, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDateOffset, ABCDatetimeIndex, ABCPeriodIndex, ABCSeries, ABCTimedeltaIndex, ) from pandas._typing import Axis, FrameOrSeries from pandas.core.base import DataError, PandasObject, SelectionMixin import pandas.core.common as com from pandas.core.generic import _shared_docs from pandas.core.groupby.base import GroupByMixin _shared_docs = dict(**_shared_docs) _doc_template = """ Returns ------- Series or DataFrame Return type is determined by the caller. See Also -------- Series.%(name)s : Series %(name)s. DataFrame.%(name)s : DataFrame %(name)s. """ class _Window(PandasObject, SelectionMixin): _attributes = [ "window", "min_periods", "center", "win_type", "axis", "on", "closed", ] # type: List[str] exclusions = set() # type: Set[str] def __init__( self, obj, window=None, min_periods: Optional[int] = None, center: Optional[bool] = False, win_type: Optional[str] = None, axis: Axis = 0, on: Optional[str] = None, closed: Optional[str] = None, **kwargs ): self.__dict__.update(kwargs) self.obj = obj self.on = on self.closed = closed self.window = window self.min_periods = min_periods self.center = center self.win_type = win_type self.win_freq = None self.axis = obj._get_axis_number(axis) if axis is not None else None self.validate() @property def _constructor(self): return Window @property def is_datetimelike(self) -> Optional[bool]: return None @property def _on(self): return None @property def is_freq_type(self) -> bool: return self.win_type == "freq" def validate(self): if self.center is not None and not is_bool(self.center): raise ValueError("center must be a boolean") if self.min_periods is not None and not is_integer(self.min_periods): raise ValueError("min_periods must be an integer") if self.closed is not None and self.closed not in [ "right", "both", "left", "neither", ]: raise ValueError("closed must be 'right', 'left', 'both' or " "'neither'") def _create_blocks(self): """ Split data into blocks & return conformed data. """ obj = self._selected_obj # filter out the on from the object if self.on is not None: if obj.ndim == 2: obj = obj.reindex(columns=obj.columns.difference([self.on]), copy=False) blocks = obj._to_dict_of_blocks(copy=False).values() return blocks, obj def _gotitem(self, key, ndim, subset=None): """ Sub-classes to define. Return a sliced object. Parameters ---------- key : str / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ # create a new object to prevent aliasing if subset is None: subset = self.obj self = self._shallow_copy(subset) self._reset_cache() if subset.ndim == 2: if is_scalar(key) and key in subset or is_list_like(key): self._selection = key return self def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] raise AttributeError( "%r object has no attribute %r" % (type(self).__name__, attr) ) def _dir_additions(self): return self.obj._dir_additions() def _get_window(self, other=None): return self.window @property def _window_type(self) -> str: return self.__class__.__name__ def __repr__(self) -> str: """ Provide a nice str repr of our rolling object. """ attrs = ( "{k}={v}".format(k=k, v=getattr(self, k)) for k in self._attributes if getattr(self, k, None) is not None ) return "{klass} [{attrs}]".format( klass=self._window_type, attrs=",".join(attrs) ) def __iter__(self): url = "https://github.com/pandas-dev/pandas/issues/11704" raise NotImplementedError("See issue #11704 {url}".format(url=url)) def _get_index(self) -> Optional[np.ndarray]: """ Return index as an ndarray. Returns ------- None or ndarray """ if self.is_freq_type: return self._on.asi8 return None def _prep_values(self, values: Optional[np.ndarray] = None) -> np.ndarray: """Convert input to numpy arrays for Cython routines""" if values is None: values = getattr(self._selected_obj, "values", self._selected_obj) # GH #12373 : rolling functions error on float32 data # make sure the data is coerced to float64 if is_float_dtype(values.dtype): values = ensure_float64(values) elif is_integer_dtype(values.dtype): values = ensure_float64(values) elif needs_i8_conversion(values.dtype): raise NotImplementedError( "ops for {action} for this " "dtype {dtype} are not " "implemented".format(action=self._window_type, dtype=values.dtype) ) else: try: values = ensure_float64(values) except (ValueError, TypeError): raise TypeError( "cannot handle this type -> {0}" "".format(values.dtype) ) # Always convert inf to nan values[np.isinf(values)] = np.NaN return values def _wrap_result(self, result, block=None, obj=None) -> FrameOrSeries: """ Wrap a single result. """ if obj is None: obj = self._selected_obj index = obj.index if isinstance(result, np.ndarray): # coerce if necessary if block is not None: if is_timedelta64_dtype(block.values.dtype): from pandas import to_timedelta result = to_timedelta(result.ravel(), unit="ns").values.reshape( result.shape ) if result.ndim == 1: from pandas import Series return Series(result, index, name=obj.name) return type(obj)(result, index=index, columns=block.columns) return result def _wrap_results(self, results, blocks, obj, exclude=None) -> FrameOrSeries: """ Wrap the results. Parameters ---------- results : list of ndarrays blocks : list of blocks obj : conformed data (may be resampled) exclude: list of columns to exclude, default to None """ from pandas import Series, concat from pandas.core.index import ensure_index final = [] for result, block in zip(results, blocks): result = self._wrap_result(result, block=block, obj=obj) if result.ndim == 1: return result final.append(result) # if we have an 'on' column # we want to put it back into the results # in the same location columns = self._selected_obj.columns if self.on is not None and not self._on.equals(obj.index): name = self._on.name final.append(Series(self._on, index=obj.index, name=name)) if self._selection is not None: selection = ensure_index(self._selection) # need to reorder to include original location of # the on column (if its not already there) if name not in selection: columns = self.obj.columns indexer = columns.get_indexer(selection.tolist() + [name]) columns = columns.take(sorted(indexer)) # exclude nuisance columns so that they are not reindexed if exclude is not None and exclude: columns = [c for c in columns if c not in exclude] if not columns: raise DataError("No numeric types to aggregate") if not len(final): return obj.astype("float64") return concat(final, axis=1).reindex(columns=columns, copy=False) def _center_window(self, result, window) -> np.ndarray: """ Center the result in the window. """ if self.axis > result.ndim - 1: raise ValueError( "Requested axis is larger then no. of argument " "dimensions" ) offset = _offset(window, True) if offset > 0: if isinstance(result, (ABCSeries, ABCDataFrame)): result = result.slice_shift(-offset, axis=self.axis) else: lead_indexer = [slice(None)] * result.ndim lead_indexer[self.axis] = slice(offset, None) result = np.copy(result[tuple(lead_indexer)]) return result def aggregate(self, func, *args, **kwargs): result, how = self._aggregate(func, *args, **kwargs) if result is None: return self.apply(func, raw=False, args=args, kwargs=kwargs) return result agg = aggregate _shared_docs["sum"] = dedent( """ Calculate %(name)s sum of given DataFrame or Series. Parameters ---------- *args, **kwargs For compatibility with other %(name)s methods. Has no effect on the computed value. Returns ------- Series or DataFrame Same type as the input, with the same index, containing the %(name)s sum. See Also -------- Series.sum : Reducing sum for Series. DataFrame.sum : Reducing sum for DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4, 5]) >>> s 0 1 1 2 2 3 3 4 4 5 dtype: int64 >>> s.rolling(3).sum() 0 NaN 1 NaN 2 6.0 3 9.0 4 12.0 dtype: float64 >>> s.expanding(3).sum() 0 NaN 1 NaN 2 6.0 3 10.0 4 15.0 dtype: float64 >>> s.rolling(3, center=True).sum() 0 NaN 1 6.0 2 9.0 3 12.0 4 NaN dtype: float64 For DataFrame, each %(name)s sum is computed column-wise. >>> df = pd.DataFrame({"A": s, "B": s ** 2}) >>> df A B 0 1 1 1 2 4 2 3 9 3 4 16 4 5 25 >>> df.rolling(3).sum() A B 0 NaN NaN 1 NaN NaN 2 6.0 14.0 3 9.0 29.0 4 12.0 50.0 """ ) _shared_docs["mean"] = dedent( """ Calculate the %(name)s mean of the values. Parameters ---------- *args Under Review. **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.mean : Equivalent method for Series. DataFrame.mean : Equivalent method for DataFrame. Examples -------- The below examples will show rolling mean calculations with window sizes of two and three, respectively. >>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).mean() 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64 >>> s.rolling(3).mean() 0 NaN 1 NaN 2 2.0 3 3.0 dtype: float64 """ ) class Window(_Window): """ Provide rolling window calculations. .. versionadded:: 0.18.0 Parameters ---------- window : int, or offset Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size. If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes. This is new in 0.19.0 min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, `min_periods` will default to 1. Otherwise, `min_periods` will default to the size of the window. center : bool, default False Set the labels at the center of the window. win_type : str, default None Provide a window type. If ``None``, all points are evenly weighted. See the notes below for further information. on : str, optional For a DataFrame, a datetime-like column on which to calculate the rolling window, rather than the DataFrame's index. Provided integer column is ignored and excluded from result since an integer index is not used to calculate the rolling window. axis : int or str, default 0 closed : str, default None Make the interval closed on the 'right', 'left', 'both' or 'neither' endpoints. For offset-based windows, it defaults to 'right'. For fixed windows, defaults to 'both'. Remaining cases not implemented for fixed windows. .. versionadded:: 0.20.0 Returns ------- a Window or Rolling sub-classed for the particular operation See Also -------- expanding : Provides expanding transformations. ewm : Provides exponential weighted functions. Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. To learn more about the offsets & frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. The recognized win_types are: * ``boxcar`` * ``triang`` * ``blackman`` * ``hamming`` * ``bartlett`` * ``parzen`` * ``bohman`` * ``blackmanharris`` * ``nuttall`` * ``barthann`` * ``kaiser`` (needs beta) * ``gaussian`` (needs std) * ``general_gaussian`` (needs power, width) * ``slepian`` (needs width) * ``exponential`` (needs tau), center is set to None. If ``win_type=None`` all points are evenly weighted. To learn more about different window types see `scipy.signal window functions <https://docs.scipy.org/doc/scipy/reference/signal.html#window-functions>`__. Examples -------- >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 Rolling sum with a window length of 2, using the 'triang' window type. >>> df.rolling(2, win_type='triang').sum() B 0 NaN 1 0.5 2 1.5 3 NaN 4 NaN Rolling sum with a window length of 2, min_periods defaults to the window length. >>> df.rolling(2).sum() B 0 NaN 1 1.0 2 3.0 3 NaN 4 NaN Same as above, but explicitly set the min_periods >>> df.rolling(2, min_periods=1).sum() B 0 0.0 1 1.0 2 3.0 3 2.0 4 4.0 A ragged (meaning not-a-regular frequency), time-indexed DataFrame >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}, ... index = [pd.Timestamp('20130101 09:00:00'), ... pd.Timestamp('20130101 09:00:02'), ... pd.Timestamp('20130101 09:00:03'), ... pd.Timestamp('20130101 09:00:05'), ... pd.Timestamp('20130101 09:00:06')]) >>> df B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 Contrasting to an integer rolling window, this will roll a variable length window corresponding to the time period. The default for min_periods is 1. >>> df.rolling('2s').sum() B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 """ def validate(self): super().validate() window = self.window if isinstance(window, (list, tuple, np.ndarray)): pass elif is_integer(window): if window <= 0: raise ValueError("window must be > 0 ") import_optional_dependency( "scipy", extra="Scipy is required to generate window weight." ) import scipy.signal as sig if not isinstance(self.win_type, str): raise ValueError("Invalid win_type {0}".format(self.win_type)) if getattr(sig, self.win_type, None) is None: raise ValueError("Invalid win_type {0}".format(self.win_type)) else: raise ValueError("Invalid window {0}".format(window)) def _prep_window(self, **kwargs): """ Provide validation for our window type, return the window we have already been validated. """ window = self._get_window() if isinstance(window, (list, tuple, np.ndarray)): return com.asarray_tuplesafe(window).astype(float) elif is_integer(window): import scipy.signal as sig # the below may pop from kwargs def _validate_win_type(win_type, kwargs): arg_map = { "kaiser": ["beta"], "gaussian": ["std"], "general_gaussian": ["power", "width"], "slepian": ["width"], "exponential": ["tau"], } if win_type in arg_map: win_args = _pop_args(win_type, arg_map[win_type], kwargs) if win_type == "exponential": # exponential window requires the first arg (center) # to be set to None (necessary for symmetric window) win_args.insert(0, None) return tuple([win_type] + win_args) return win_type def _pop_args(win_type, arg_names, kwargs): msg = "%s window requires %%s" % win_type all_args = [] for n in arg_names: if n not in kwargs: raise ValueError(msg % n) all_args.append(kwargs.pop(n)) return all_args win_type = _validate_win_type(self.win_type, kwargs) # GH #15662. `False` makes symmetric window, rather than periodic. return sig.get_window(win_type, window, False).astype(float) def _apply_window(self, mean=True, **kwargs): """ Applies a moving window of type ``window_type`` on the data. Parameters ---------- mean : bool, default True If True computes weighted mean, else weighted sum Returns ------- y : same type as input argument """ window = self._prep_window(**kwargs) center = self.center blocks, obj = self._create_blocks() block_list = list(blocks) results = [] exclude = [] for i, b in enumerate(blocks): try: values = self._prep_values(b.values) except (TypeError, NotImplementedError): if isinstance(obj, ABCDataFrame): exclude.extend(b.columns) del block_list[i] continue else: raise DataError("No numeric types to aggregate") if values.size == 0: results.append(values.copy()) continue offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def f(arg, *args, **kwargs): minp = _use_window(self.min_periods, len(window)) return libwindow.roll_window( np.concatenate((arg, additional_nans)) if center else arg, window, minp, avg=mean, ) result = np.apply_along_axis(f, self.axis, values) if center: result = self._center_window(result, window) results.append(result) return self._wrap_results(results, block_list, obj, exclude) _agg_see_also_doc = dedent( """ See Also -------- pandas.DataFrame.rolling.aggregate pandas.DataFrame.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3, win_type='boxcar').agg('mean') A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -0.885035 0.212600 -0.711689 3 -0.323928 -0.200122 -1.093408 4 -0.071445 -0.431533 -1.075833 5 0.504739 0.676083 -0.996353 6 0.358206 1.903256 -0.774200 7 0.906020 1.283573 0.085482 8 -0.096361 0.818139 0.472290 9 0.070889 0.134399 -0.031308 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series/DataFrame", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): result, how = self._aggregate(arg, *args, **kwargs) if result is None: # these must apply directly result = arg(self) return result agg = aggregate @Substitution(name="window") @Appender(_shared_docs["sum"]) def sum(self, *args, **kwargs): nv.validate_window_func("sum", args, kwargs) return self._apply_window(mean=False, **kwargs) @Substitution(name="window") @Appender(_shared_docs["mean"]) def mean(self, *args, **kwargs): nv.validate_window_func("mean", args, kwargs) return self._apply_window(mean=True, **kwargs) class _GroupByMixin(GroupByMixin): """ Provide the groupby facilities. """ def __init__(self, obj, *args, **kwargs): parent = kwargs.pop("parent", None) # noqa groupby = kwargs.pop("groupby", None) if groupby is None: groupby, obj = obj, obj.obj self._groupby = groupby self._groupby.mutated = True self._groupby.grouper.mutated = True super().__init__(obj, *args, **kwargs) count = GroupByMixin._dispatch("count") corr = GroupByMixin._dispatch("corr", other=None, pairwise=None) cov = GroupByMixin._dispatch("cov", other=None, pairwise=None) def _apply( self, func, name=None, window=None, center=None, check_minp=None, **kwargs ): """ Dispatch to apply; we are stripping all of the _apply kwargs and performing the original function call on the grouped object. """ def f(x, name=name, *args): x = self._shallow_copy(x) if isinstance(name, str): return getattr(x, name)(*args, **kwargs) return x.apply(name, *args, **kwargs) return self._groupby.apply(f) class _Rolling(_Window): @property def _constructor(self): return Rolling def _apply( self, func, name=None, window=None, center=None, check_minp=None, **kwargs ): """ Rolling statistical measure using supplied function. Designed to be used with passed-in Cython array-based functions. Parameters ---------- func : str/callable to apply name : str, optional name of this function window : int/array, default to _get_window() center : bool, default to self.center check_minp : function, default to _use_window Returns ------- y : type of input """ if center is None: center = self.center if window is None: window = self._get_window() if check_minp is None: check_minp = _use_window blocks, obj = self._create_blocks() block_list = list(blocks) index_as_array = self._get_index() results = [] exclude = [] for i, b in enumerate(blocks): try: values = self._prep_values(b.values) except (TypeError, NotImplementedError): if isinstance(obj, ABCDataFrame): exclude.extend(b.columns) del block_list[i] continue else: raise DataError("No numeric types to aggregate") if values.size == 0: results.append(values.copy()) continue # if we have a string function name, wrap it if isinstance(func, str): cfunc = getattr(libwindow, func, None) if cfunc is None: raise ValueError( "we do not support this function " "in libwindow.{func}".format(func=func) ) def func(arg, window, min_periods=None, closed=None): minp = check_minp(min_periods, window) # ensure we are only rolling on floats arg = ensure_float64(arg) return cfunc(arg, window, minp, index_as_array, closed, **kwargs) # calculation function if center: offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def calc(x): return func( np.concatenate((x, additional_nans)), window, min_periods=self.min_periods, closed=self.closed, ) else: def calc(x): return func( x, window, min_periods=self.min_periods, closed=self.closed ) with np.errstate(all="ignore"): if values.ndim > 1: result = np.apply_along_axis(calc, self.axis, values) else: result = calc(values) if center: result = self._center_window(result, window) results.append(result) return self._wrap_results(results, block_list, obj, exclude) class _Rolling_and_Expanding(_Rolling): _shared_docs["count"] = dedent( r""" The %(name)s count of any non-NaN observations inside the window. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. DataFrame.count : Count of the full DataFrame. Examples -------- >>> s = pd.Series([2, 3, np.nan, 10]) >>> s.rolling(2).count() 0 1.0 1 2.0 2 1.0 3 1.0 dtype: float64 >>> s.rolling(3).count() 0 1.0 1 2.0 2 2.0 3 2.0 dtype: float64 >>> s.rolling(4).count() 0 1.0 1 2.0 2 2.0 3 3.0 dtype: float64 """ ) def count(self): blocks, obj = self._create_blocks() # Validate the index self._get_index() window = self._get_window() window = min(window, len(obj)) if not self.center else window results = [] for b in blocks: result = b.notna().astype(int) result = self._constructor( result, window=window, min_periods=0, center=self.center, axis=self.axis, closed=self.closed, ).sum() results.append(result) return self._wrap_results(results, blocks, obj) _shared_docs["apply"] = dedent( r""" The %(name)s function's apply function. Parameters ---------- func : function Must produce a single value from an ndarray input if ``raw=True`` or a single value from a Series if ``raw=False``. raw : bool, default None * ``False`` : passes each row or column as a Series to the function. * ``True`` or ``None`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. The `raw` parameter is required and will show a FutureWarning if not passed. In the future `raw` will default to False. .. versionadded:: 0.23.0 *args, **kwargs Arguments and keyword arguments to be passed into func. Returns ------- Series or DataFrame Return type is determined by the caller. See Also -------- Series.%(name)s : Series %(name)s. DataFrame.%(name)s : DataFrame %(name)s. """ ) def apply(self, func, raw=None, args=(), kwargs={}): from pandas import Series kwargs.pop("_level", None) window = self._get_window() offset = _offset(window, self.center) index_as_array = self._get_index() # TODO: default is for backward compat # change to False in the future if raw is None: warnings.warn( "Currently, 'apply' passes the values as ndarrays to the " "applied function. In the future, this will change to passing " "it as Series objects. You need to specify 'raw=True' to keep " "the current behaviour, and you can pass 'raw=False' to " "silence this warning", FutureWarning, stacklevel=3, ) raw = True def f(arg, window, min_periods, closed): minp = _use_window(min_periods, window) if not raw: arg = Series(arg, index=self.obj.index) return libwindow.roll_generic( arg, window, minp, index_as_array, closed, offset, func, raw, args, kwargs, ) return self._apply(f, func, args=args, kwargs=kwargs, center=False, raw=raw) def sum(self, *args, **kwargs): nv.validate_window_func("sum", args, kwargs) return self._apply("roll_sum", "sum", **kwargs) _shared_docs["max"] = dedent( """ Calculate the %(name)s maximum. Parameters ---------- *args, **kwargs Arguments and keyword arguments to be passed into func. """ ) def max(self, *args, **kwargs):
nv.validate_window_func("max", args, kwargs)
pandas.compat.numpy.function.validate_window_func
from datetime import ( datetime, timedelta, ) import re import numpy as np import pytest from pandas._libs import iNaT from pandas.errors import InvalidIndexError import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_integer import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, Timestamp, date_range, isna, notna, ) import pandas._testing as tm import pandas.core.common as com # We pass through a TypeError raised by numpy _slice_msg = "slice indices must be integers or None or have an __index__ method" class TestDataFrameIndexing: def test_getitem(self, float_frame): # Slicing sl = float_frame[:20] assert len(sl.index) == 20 # Column access for _, series in sl.items(): assert len(series.index) == 20 assert tm.equalContents(series.index, sl.index) for key, _ in float_frame._series.items(): assert float_frame[key] is not None assert "random" not in float_frame with pytest.raises(KeyError, match="random"): float_frame["random"] def test_getitem2(self, float_frame): df = float_frame.copy() df["$10"] = np.random.randn(len(df)) ad = np.random.randn(len(df)) df["@awesome_domain"] = ad with pytest.raises(KeyError, match=re.escape("'df[\"$10\"]'")): df.__getitem__('df["$10"]') res = df["@awesome_domain"] tm.assert_numpy_array_equal(ad, res.values) def test_setitem_list(self, float_frame): float_frame["E"] = "foo" data = float_frame[["A", "B"]] float_frame[["B", "A"]] = data tm.assert_series_equal(float_frame["B"], data["A"], check_names=False) tm.assert_series_equal(float_frame["A"], data["B"], check_names=False) msg = "Columns must be same length as key" with pytest.raises(ValueError, match=msg): data[["A"]] = float_frame[["A", "B"]] newcolumndata = range(len(data.index) - 1) msg = ( rf"Length of values \({len(newcolumndata)}\) " rf"does not match length of index \({len(data)}\)" ) with pytest.raises(ValueError, match=msg): data["A"] = newcolumndata def test_setitem_list2(self): df = DataFrame(0, index=range(3), columns=["tt1", "tt2"], dtype=np.int_) df.loc[1, ["tt1", "tt2"]] = [1, 2] result = df.loc[df.index[1], ["tt1", "tt2"]] expected = Series([1, 2], df.columns, dtype=np.int_, name=1) tm.assert_series_equal(result, expected) df["tt1"] = df["tt2"] = "0" df.loc[df.index[1], ["tt1", "tt2"]] = ["1", "2"] result = df.loc[df.index[1], ["tt1", "tt2"]] expected = Series(["1", "2"], df.columns, name=1) tm.assert_series_equal(result, expected) def test_getitem_boolean(self, mixed_float_frame, mixed_int_frame, datetime_frame): # boolean indexing d = datetime_frame.index[10] indexer = datetime_frame.index > d indexer_obj = indexer.astype(object) subindex = datetime_frame.index[indexer] subframe = datetime_frame[indexer] tm.assert_index_equal(subindex, subframe.index) with pytest.raises(ValueError, match="Item wrong length"): datetime_frame[indexer[:-1]] subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) with pytest.raises(ValueError, match="Boolean array expected"): datetime_frame[datetime_frame] # test that Series work indexer_obj = Series(indexer_obj, datetime_frame.index) subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) # test that Series indexers reindex # we are producing a warning that since the passed boolean # key is not the same as the given index, we will reindex # not sure this is really necessary with tm.assert_produces_warning(UserWarning): indexer_obj = indexer_obj.reindex(datetime_frame.index[::-1]) subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) # test df[df > 0] for df in [ datetime_frame, mixed_float_frame, mixed_int_frame, ]: data = df._get_numeric_data() bif = df[df > 0] bifw = DataFrame( {c: np.where(data[c] > 0, data[c], np.nan) for c in data.columns}, index=data.index, columns=data.columns, ) # add back other columns to compare for c in df.columns: if c not in bifw: bifw[c] = df[c] bifw = bifw.reindex(columns=df.columns) tm.assert_frame_equal(bif, bifw, check_dtype=False) for c in df.columns: if bif[c].dtype != bifw[c].dtype: assert bif[c].dtype == df[c].dtype def test_getitem_boolean_casting(self, datetime_frame): # don't upcast if we don't need to df = datetime_frame.copy() df["E"] = 1 df["E"] = df["E"].astype("int32") df["E1"] = df["E"].copy() df["F"] = 1 df["F"] = df["F"].astype("int64") df["F1"] = df["F"].copy() casted = df[df > 0] result = casted.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("int32")] * 2 + [np.dtype("int64")] * 2, index=["A", "B", "C", "D", "E", "E1", "F", "F1"], ) tm.assert_series_equal(result, expected) # int block splitting df.loc[df.index[1:3], ["E1", "F1"]] = 0 casted = df[df > 0] result = casted.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("int32")] + [np.dtype("float64")] + [np.dtype("int64")] + [np.dtype("float64")], index=["A", "B", "C", "D", "E", "E1", "F", "F1"], ) tm.assert_series_equal(result, expected) def test_getitem_boolean_list(self): df = DataFrame(np.arange(12).reshape(3, 4)) def _checkit(lst): result = df[lst] expected = df.loc[df.index[lst]] tm.assert_frame_equal(result, expected) _checkit([True, False, True]) _checkit([True, True, True]) _checkit([False, False, False]) def test_getitem_boolean_iadd(self): arr = np.random.randn(5, 5) df = DataFrame(arr.copy(), columns=["A", "B", "C", "D", "E"]) df[df < 0] += 1 arr[arr < 0] += 1 tm.assert_almost_equal(df.values, arr) def test_boolean_index_empty_corner(self): # #2096 blah = DataFrame(np.empty([0, 1]), columns=["A"], index=DatetimeIndex([])) # both of these should succeed trivially k = np.array([], bool) blah[k] blah[k] = 0 def test_getitem_ix_mixed_integer(self): df = DataFrame( np.random.randn(4, 3), index=[1, 10, "C", "E"], columns=[1, 2, 3] ) result = df.iloc[:-1] expected = df.loc[df.index[:-1]] tm.assert_frame_equal(result, expected) result = df.loc[[1, 10]] expected = df.loc[Index([1, 10])] tm.assert_frame_equal(result, expected) def test_getitem_ix_mixed_integer2(self): # 11320 df = DataFrame( { "rna": (1.5, 2.2, 3.2, 4.5), -1000: [11, 21, 36, 40], 0: [10, 22, 43, 34], 1000: [0, 10, 20, 30], }, columns=["rna", -1000, 0, 1000], ) result = df[[1000]] expected = df.iloc[:, [3]] tm.assert_frame_equal(result, expected) result = df[[-1000]] expected = df.iloc[:, [1]] tm.assert_frame_equal(result, expected) def test_getattr(self, float_frame): tm.assert_series_equal(float_frame.A, float_frame["A"]) msg = "'DataFrame' object has no attribute 'NONEXISTENT_NAME'" with pytest.raises(AttributeError, match=msg): float_frame.NONEXISTENT_NAME def test_setattr_column(self): df = DataFrame({"foobar": 1}, index=range(10)) df.foobar = 5 assert (df.foobar == 5).all() def test_setitem(self, float_frame): # not sure what else to do here series = float_frame["A"][::2] float_frame["col5"] = series assert "col5" in float_frame assert len(series) == 15 assert len(float_frame) == 30 exp = np.ravel(np.column_stack((series.values, [np.nan] * 15))) exp = Series(exp, index=float_frame.index, name="col5") tm.assert_series_equal(float_frame["col5"], exp) series = float_frame["A"] float_frame["col6"] = series tm.assert_series_equal(series, float_frame["col6"], check_names=False) # set ndarray arr = np.random.randn(len(float_frame)) float_frame["col9"] = arr assert (float_frame["col9"] == arr).all() float_frame["col7"] = 5 assert (float_frame["col7"] == 5).all() float_frame["col0"] = 3.14 assert (float_frame["col0"] == 3.14).all() float_frame["col8"] = "foo" assert (float_frame["col8"] == "foo").all() # this is partially a view (e.g. some blocks are view) # so raise/warn smaller = float_frame[:2] msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): smaller["col10"] = ["1", "2"] assert smaller["col10"].dtype == np.object_ assert (smaller["col10"] == ["1", "2"]).all() def test_setitem2(self): # dtype changing GH4204 df = DataFrame([[0, 0]]) df.iloc[0] = np.nan expected = DataFrame([[np.nan, np.nan]]) tm.assert_frame_equal(df, expected) df = DataFrame([[0, 0]]) df.loc[0] = np.nan tm.assert_frame_equal(df, expected) def test_setitem_boolean(self, float_frame): df = float_frame.copy() values = float_frame.values df[df["A"] > 0] = 4 values[values[:, 0] > 0] = 4 tm.assert_almost_equal(df.values, values) # test that column reindexing works series = df["A"] == 4 series = series.reindex(df.index[::-1]) df[series] = 1 values[values[:, 0] == 4] = 1 tm.assert_almost_equal(df.values, values) df[df > 0] = 5 values[values > 0] = 5 tm.assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 tm.assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) tm.assert_almost_equal(df.values, values) # indexed with same shape but rows-reversed df df[df[::-1] == 2] = 3 values[values == 2] = 3 tm.assert_almost_equal(df.values, values) msg = "Must pass DataFrame or 2-d ndarray with boolean values only" with pytest.raises(TypeError, match=msg): df[df * 0] = 2 # index with DataFrame mask = df > np.abs(df) expected = df.copy() df[df > np.abs(df)] = np.nan expected.values[mask.values] = np.nan tm.assert_frame_equal(df, expected) # set from DataFrame expected = df.copy() df[df > np.abs(df)] = df * 2 np.putmask(expected.values, mask.values, df.values * 2) tm.assert_frame_equal(df, expected) def test_setitem_cast(self, float_frame): float_frame["D"] = float_frame["D"].astype("i8") assert float_frame["D"].dtype == np.int64 # #669, should not cast? # this is now set to int64, which means a replacement of the column to # the value dtype (and nothing to do with the existing dtype) float_frame["B"] = 0 assert float_frame["B"].dtype == np.int64 # cast if pass array of course float_frame["B"] = np.arange(len(float_frame)) assert issubclass(float_frame["B"].dtype.type, np.integer) float_frame["foo"] = "bar" float_frame["foo"] = 0 assert float_frame["foo"].dtype == np.int64 float_frame["foo"] = "bar" float_frame["foo"] = 2.5 assert float_frame["foo"].dtype == np.float64 float_frame["something"] = 0 assert float_frame["something"].dtype == np.int64 float_frame["something"] = 2 assert float_frame["something"].dtype == np.int64 float_frame["something"] = 2.5 assert float_frame["something"].dtype == np.float64 def test_setitem_corner(self, float_frame): # corner case df = DataFrame({"B": [1.0, 2.0, 3.0], "C": ["a", "b", "c"]}, index=np.arange(3)) del df["B"] df["B"] = [1.0, 2.0, 3.0] assert "B" in df assert len(df.columns) == 2 df["A"] = "beginning" df["E"] = "foo" df["D"] = "bar" df[datetime.now()] = "date" df[datetime.now()] = 5.0 # what to do when empty frame with index dm = DataFrame(index=float_frame.index) dm["A"] = "foo" dm["B"] = "bar" assert len(dm.columns) == 2 assert dm.values.dtype == np.object_ # upcast dm["C"] = 1 assert dm["C"].dtype == np.int64 dm["E"] = 1.0 assert dm["E"].dtype == np.float64 # set existing column dm["A"] = "bar" assert "bar" == dm["A"][0] dm = DataFrame(index=np.arange(3)) dm["A"] = 1 dm["foo"] = "bar" del dm["foo"] dm["foo"] = "bar" assert dm["foo"].dtype == np.object_ dm["coercible"] = ["1", "2", "3"] assert dm["coercible"].dtype == np.object_ def test_setitem_corner2(self): data = { "title": ["foobar", "bar", "foobar"] + ["foobar"] * 17, "cruft": np.random.random(20), } df = DataFrame(data) ix = df[df["title"] == "bar"].index df.loc[ix, ["title"]] = "foobar" df.loc[ix, ["cruft"]] = 0 assert df.loc[1, "title"] == "foobar" assert df.loc[1, "cruft"] == 0 def test_setitem_ambig(self): # Difficulties with mixed-type data from decimal import Decimal # Created as float type dm = DataFrame(index=range(3), columns=range(3)) coercable_series = Series([Decimal(1) for _ in range(3)], index=range(3)) uncoercable_series = Series(["foo", "bzr", "baz"], index=range(3)) dm[0] = np.ones(3) assert len(dm.columns) == 3 dm[1] = coercable_series assert len(dm.columns) == 3 dm[2] = uncoercable_series assert len(dm.columns) == 3 assert dm[2].dtype == np.object_ def test_setitem_None(self, float_frame): # GH #766 float_frame[None] = float_frame["A"] tm.assert_series_equal( float_frame.iloc[:, -1], float_frame["A"], check_names=False ) tm.assert_series_equal( float_frame.loc[:, None], float_frame["A"], check_names=False ) tm.assert_series_equal(float_frame[None], float_frame["A"], check_names=False) repr(float_frame) def test_loc_setitem_boolean_mask_allfalse(self): # GH 9596 df = DataFrame( {"a": ["1", "2", "3"], "b": ["11", "22", "33"], "c": ["111", "222", "333"]} ) result = df.copy() result.loc[result.b.isna(), "a"] = result.a tm.assert_frame_equal(result, df) def test_getitem_fancy_slice_integers_step(self): df = DataFrame(np.random.randn(10, 5)) # this is OK result = df.iloc[:8:2] # noqa df.iloc[:8:2] = np.nan assert isna(df.iloc[:8:2]).values.all() def test_getitem_setitem_integer_slice_keyerrors(self): df = DataFrame(np.random.randn(10, 5), index=range(0, 20, 2)) # this is OK cp = df.copy() cp.iloc[4:10] = 0 assert (cp.iloc[4:10] == 0).values.all() # so is this cp = df.copy() cp.iloc[3:11] = 0 assert (cp.iloc[3:11] == 0).values.all() result = df.iloc[2:6] result2 = df.loc[3:11] expected = df.reindex([4, 6, 8, 10]) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # non-monotonic, raise KeyError df2 = df.iloc[list(range(5)) + list(range(5, 10))[::-1]] with pytest.raises(KeyError, match=r"^3$"): df2.loc[3:11] with pytest.raises(KeyError, match=r"^3$"): df2.loc[3:11] = 0 @td.skip_array_manager_invalid_test # already covered in test_iloc_col_slice_view def test_fancy_getitem_slice_mixed(self, float_frame, float_string_frame): sliced = float_string_frame.iloc[:, -3:] assert sliced["D"].dtype == np.float64 # get view with single block # setting it triggers setting with copy sliced = float_frame.iloc[:, -3:] assert np.shares_memory(sliced["C"]._values, float_frame["C"]._values) msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): sliced.loc[:, "C"] = 4.0 assert (float_frame["C"] == 4).all() def test_getitem_setitem_non_ix_labels(self): df = tm.makeTimeDataFrame() start, end = df.index[[5, 10]] result = df.loc[start:end] result2 = df[start:end] expected = df[5:11] tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) result = df.copy() result.loc[start:end] = 0 result2 = df.copy() result2[start:end] = 0 expected = df.copy() expected[5:11] = 0 tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) def test_ix_multi_take(self): df = DataFrame(np.random.randn(3, 2)) rs = df.loc[df.index == 0, :] xp = df.reindex([0]) tm.assert_frame_equal(rs, xp) # GH#1321 df = DataFrame(np.random.randn(3, 2)) rs = df.loc[df.index == 0, df.columns == 1] xp = df.reindex(index=[0], columns=[1]) tm.assert_frame_equal(rs, xp) def test_getitem_fancy_scalar(self, float_frame): f = float_frame ix = f.loc # individual value for col in f.columns: ts = f[col] for idx in f.index[::5]: assert ix[idx, col] == ts[idx] @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite not using .values def test_setitem_fancy_scalar(self, float_frame): f = float_frame expected = float_frame.copy() ix = f.loc # individual value for j, col in enumerate(f.columns): ts = f[col] # noqa for idx in f.index[::5]: i = f.index.get_loc(idx) val = np.random.randn() expected.values[i, j] = val ix[idx, col] = val tm.assert_frame_equal(f, expected) def test_getitem_fancy_boolean(self, float_frame): f = float_frame ix = f.loc expected = f.reindex(columns=["B", "D"]) result = ix[:, [False, True, False, True]]
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import asyncio import pandas as pd # type: ignore import pyEX # type: ignore from collections import deque from datetime import datetime, timedelta from tqdm import tqdm # type: ignore from aat.exchange import Exchange from aat.config import InstrumentType, EventType, Side, TradingType from aat.core import ExchangeType, Instrument, Event, Trade, Order _iex_instrument_types = { 'ad': InstrumentType.EQUITY, # ad - ADR 'gdr': InstrumentType.EQUITY, # gdr - GDR 're': InstrumentType.OTHER, # re - REIT 'ce': InstrumentType.MUTUALFUND, # ce - Closed end fund 'si': InstrumentType.EQUITY, # si - Secondary Issue 'lp': InstrumentType.OTHER, # lp - Limited Partnerships 'cs': InstrumentType.EQUITY, # cs - Common Stock 'et': InstrumentType.EQUITY, # et - ETF 'wt': InstrumentType.OTHER, # wt - Warrant 'rt': InstrumentType.OTHER, # rt – Right 'oef': InstrumentType.MUTUALFUND, # oef - Open Ended Fund 'cef': InstrumentType.MUTUALFUND, # cef - Closed Ended Fund 'ps': InstrumentType.EQUITY, # ps - Preferred Stock 'ut': InstrumentType.OTHER, # ut - Unit 'struct': InstrumentType.OTHER, # struct - Structured Product } class IEX(Exchange): '''Investor's Exchange''' def __init__(self, trading_type, verbose, api_key, is_sandbox, timeframe='1y', start_date=None, end_date=None): super().__init__(ExchangeType('iex')) self._trading_type = trading_type self._verbose = verbose self._api_key = api_key self._is_sandbox = is_sandbox if trading_type == TradingType.LIVE: assert not is_sandbox self._timeframe = timeframe if timeframe == 'live': assert trading_type != TradingType.BACKTEST if timeframe == '1d': # intraday testing # TODO if today is weekend/holiday, pick last day with data self._start_date = datetime.strptime(start_date, '%Y%m%d') if start_date else datetime.today() self._end_date = datetime.strptime(end_date, '%Y%m%d') if end_date else datetime.today() self._subscriptions = [] # "Order" management self._queued_orders = deque() self._order_id = 1 # *************** # # General methods # # *************** # async def connect(self): '''connect to exchange. should be asynchronous. For OrderEntry-only, can just return None ''' self._client = pyEX.Client(self._api_key, 'sandbox' if self._is_sandbox else 'stable') # ******************* # # Market Data Methods # # ******************* # async def instruments(self): '''get list of available instruments''' instruments = [] symbols = self._client.symbols() for record in symbols: if not record['isEnabled'] or not record['type'] or record['type'] == 'temp': continue symbol = record['symbol'] brokerExchange = record['exchange'] type = _iex_instrument_types[record['type']] currency = Instrument(type=InstrumentType.CURRENCY, name=record['currency']) try: inst = Instrument(name=symbol, type=type, exchange=self.exchange(), brokerExchange=brokerExchange, currency=currency) except AssertionError: # Happens sometimes on sandbox continue instruments.append(inst) return instruments async def subscribe(self, instrument): self._subscriptions.append(instrument) async def tick(self): '''return data from exchange''' if self._timeframe == 'live': data = deque() def _callback(record): data.append(record) self._client.tradesSSE(symbols=",".join([i.name for i in self._subscriptions]), on_data=_callback) while True: while data: record = data.popleft() volume = record['volume'] price = record['price'] instrument = Instrument(record['symbol'], InstrumentType.EQUITY) o = Order(volume=volume, price=price, side=Side.BUY, instrument=instrument, exchange=self.exchange()) t = Trade(volume=volume, price=price, taker_order=o, maker_orders=[]) yield Event(type=EventType.TRADE, target=t) await asyncio.sleep(0) else: dfs = [] if self._timeframe != '1d': for i in tqdm(self._subscriptions, desc="Fetching data..."): df = self._client.chartDF(i.name, timeframe=self._timeframe) df = df[['close', 'volume']] df.columns = ['close:{}'.format(i.name), 'volume:{}'.format(i.name)] dfs.append(df) data = pd.concat(dfs, axis=1) data.sort_index(inplace=True) data = data.groupby(data.index).last() data.drop_duplicates(inplace=True) data.fillna(method='ffill', inplace=True) else: for i in tqdm(self._subscriptions, desc="Fetching data..."): date = self._start_date subdfs = [] while date <= self._end_date: df = self._client.chartDF(i.name, timeframe='1d', date=date.strftime('%Y%m%d')) if not df.empty: df = df[['average', 'volume']] df.columns = ['close:{}'.format(i.name), 'volume:{}'.format(i.name)] subdfs.append(df) date += timedelta(days=1) dfs.append(
pd.concat(subdfs)
pandas.concat
# Create the preprocessor instance required for custom prediction on GCP AI Platform, requires the df.csv file generated by the jupyter notebook script import pandas as pd import numpy as np import pickle import preprocess if __name__ == '__main__': df =
pd.read_csv('df.csv', index_col=0)
pandas.read_csv
""" Provide convenient functions to get FRED economic data. Series can be found here: https://fred.stlouisfed.org/ """ from pilates import data_module import pandas as pd import numpy as np from fredapi import Fred FRED_API_KEY = '69e42ccbb7fa5da6cc743e564d08be62' class fred(data_module): def __init__(self, w): data_module.__init__(self, w) ####################################### # Make available some fredapi methods # ####################################### def get_series_info(series): self.fred = Fred(api_key = FRED_API_KEY) return self.fred.get_series_info(series) ########################################## # Additional generic methods for pilates # ########################################## def get_series_for_data(self, data, series, col_date=None, tolerance=None): if col_date is None: # Use the date set at the library level col_date = self.d.col_date if tolerance is None: # Series is given as a name fred_series = self.fred.get_series(series) # Get series information (frequency, etc) df_fred_info = self.fred.get_series_info(series) freq = df_fred_info['frequency_short'] if freq == 'A': tolerance = pd.Timedelta('370 day') elif freq == 'Q': tolerance = pd.Timedelta('100 day') elif freq == 'M': tolerance = pd.Timedelta('40 day') elif freq == 'D': tolerance = pd.Timedelta('2 day') else: # Series is given as data fred_series = series series = 'series_name' df = pd.DataFrame(fred_series).reset_index() df.columns = ['date_fred', series] # Prepare the user data data[col_date] = pd.to_datetime(data[col_date]) # Find nearest dates data = data.sort_values(col_date) df = df.sort_values('date_fred') data = data[np.isfinite(data[col_date])] dfin = pd.merge_asof(data[col_date], df, left_on=col_date, right_on='date_fred', direction='nearest', tolerance=tolerance) dfin.index = data.index return dfin[series].astype('float32') def get_series(self, series, data=None, col_date=None): """ Return the FRED series to be added to the user data. """ # Connection to FRED (connect just before downloading series # to avoid Error 504: Gateway Time-out) self.fred = Fred(api_key = FRED_API_KEY) if data is None: return self.fred.get_series(series) if col_date is None: # Use the date set at the library level col_date = self.d.col_date dfin = data[[col_date]] for s in series: dfin[s] = self.get_series_for_data(dfin, s, col_date) return dfin[series] # Depreciated def __get_10y_US_rates(self, data, col_date=None): """ Return the 10 years treasury rates. Depreciated. Use get_series(). """ if col_date is None: col_date = self.d.col_date df_fred = self.fred.get_series('DGS10') df =
pd.DataFrame(df_fred)
pandas.DataFrame
""" This script is the ETL pipeline to create 'people' file and 'aquisition_facts' """ import pandas as pd # Save links to csv files url1 = 'https://als-hiring.s3.amazonaws.com/fake_data/2020-07-01_17%3A11%3A00/cons.csv' url2 = 'https://als-hiring.s3.amazonaws.com/fake_data/2020-07-01_17%3A11%3A00/cons_email.csv' url3 = 'https://als-hiring.s3.amazonaws.com/fake_data/2020-07-01_17%3A11%3A00/cons_email_chapter_subscription.csv' # Load csv files into Pandas dataframes cons =
pd.read_csv(url1)
pandas.read_csv
import matplotlib.pyplot as plt import cantools import pandas as pd import cv2 import numpy as np import os LOG_FOLDER = "/media/andrei/Samsung_T51/nemodrive_data/18_nov/session_1/1542549716_log/" CAN_FILE_PATH = os.path.join(LOG_FOLDER, "can_raw.log") DBC_FILE = "logan.dbc" SPEED_CAN_ID = "354" OBD_SPEED_FILE = LOG_FOLDER + "obd_SPEED.log" CAMERA_FILE_PREFIX = LOG_FOLDER + "camera_0" def read_can_file(can_file_path): df_can = pd.read_csv(can_file_path, header=None, delimiter=" ") df_can["tp"] = df_can[0].apply(lambda x: float(x[1:-1])) df_can["can_id"] = df_can[2].apply(lambda x: x[:x.find("#")]) df_can["data_str"] = df_can[2].apply(lambda x: x[x.find("#") + 1:]) return df_can def get_can_data(db, cmd, data, msg): decoded_info = db.decode_message(cmd, bytearray.fromhex(msg)) return decoded_info[data] # ======================================================================= # -- Load DBC file stuff db = cantools.database.load_file(DBC_FILE, strict=False) cmd_names = [ ("SPEED_SENSOR", "SPEED_KPS"), ("STEERING_SENSORS", "STEER_ANGLE"), ("BRAKE_SENSOR", "PRESIUNE_C_P") ] cmd_idx = 0 cmd_name = cmd_names[cmd_idx][0] data_name = cmd_names[cmd_idx][1] """ Decode values using: Define: cmd_name, data_name, raw_can_msg decoded_info = db.decode_message(cmd_name, bytearray.fromhex(raw_can_msg)) print(decoded_info[data_name]) ffmpeg -f v4l2 -video_size {}x{} -i /dev/video{} -c copy {}.mkv """ # ======================================================================= # -- Load Raw can df_can = read_can_file(CAN_FILE_PATH) # ======================================================================= # -- Load speed command df_can_speed = df_can[df_can["can_id"] == SPEED_CAN_ID] df_can_speed["speed"] = df_can_speed["data_str"].apply(lambda x: get_can_data(db, cmd_name, data_name, x)) df_can_speed[df_can_speed.speed > 0] df_can_speed["pts"] = df_can_speed["tp"] - 1539434950.220346 plt.plot(df_can_speed["tp"].values, df_can_speed["speed"]) plt.show() # Write to csv speed_file = os.path.join(LOG_FOLDER, "speed.csv") df_can_speed.to_csv(speed_file) # ======================================================================= # -- Load steer command STEER_CMD_NAME = "STEERING_SENSORS" STEER_CMD_DATA_NAME = "STEER_ANGLE" STEERING_CAN_ID = "0C6" df_can_steer = df_can[df_can["can_id"] == STEERING_CAN_ID] df_can_steer["steering"] = df_can_steer["data_str"].apply(lambda x: get_can_data(db, STEER_CMD_NAME, STEER_CMD_DATA_NAME, x)) # Write to csv steer_file = os.path.join(LOG_FOLDER, "steer.csv") df_can_steer.to_csv(steer_file) # --Plot can data plt.plot(df_can_steer["tp"].values, df_can_steer["steering"]) plt.show() steering_values = [] rng = 100 for index in range(rng, len(df_can_steer)): x = df_can_steer.iloc[index-rng: index+1]["steering"].values steering_values.append(np.abs(x[1:] - x[:-1]).sum()) steering_values_df = pd.Series(steering_values[:36494], name="Steering angle per second") steering_values_df.describe() # steering_values_df.plot() steering_values_df.plot(kind="box") plt.show() # ======================================================================= # -- speed file df_speed = pd.read_csv(OBD_SPEED_FILE, header=None) df_speed["value"] = df_speed[1].apply(lambda x: None if x is None else x.split()[0]) df_speed["value"] = df_speed["value"].apply(lambda x: None if x == "None" else float(x)) df_speed.set_index(0, inplace=True) no_unique_val = df_speed["value"].nunique() # ================================================================================================== # --Plot can data plt.plot(df_can_speed["tp"].values, df_can_speed["speed"]) # Plot plt.plot(df_speed.index, df_speed["value"].values) plt.show() # ================================================================================================== # -- CAMERA processing camera_start_tp = None with open(CAMERA_FILE_PREFIX + "_timestamp") as file: data = file.read() camera_start_tp = float(data) camera_start_tp = 1539434950.130855 - 35.4 pts_file =
pd.read_csv(CAMERA_FILE_PREFIX + "_pts.log", header=None)
pandas.read_csv
"""Multiple Factor Analysis (MFA)""" import itertools from matplotlib import markers import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn import utils from . import mca from . import pca from . import plot class MFA(pca.PCA): def __init__(self, groups=None, normalize=True, n_components=2, n_iter=10, copy=True, check_input=True, random_state=None, engine='auto'): super().__init__( rescale_with_mean=False, rescale_with_std=False, n_components=n_components, n_iter=n_iter, copy=copy, check_input=check_input, random_state=random_state, engine=engine ) self.groups = groups self.normalize = normalize def fit(self, X, y=None): # Checks groups are provided if self.groups is None: raise ValueError('Groups have to be specified') # Check input if self.check_input: utils.check_array(X, dtype=[str, np.number]) # Prepare input X = self._prepare_input(X) # Check group types are consistent self.all_nums_ = {} for name, cols in sorted(self.groups.items()): all_num = all(pd.api.types.is_numeric_dtype(X[c]) for c in cols) all_cat = all(
pd.api.types.is_string_dtype(X[c])
pandas.api.types.is_string_dtype
# -*- coding: utf-8 -*- import nose import numpy as np import pandas as pd import pandas.util.testing as tm import pandas.compat as compat ############################################################### # Index / Series common tests which may trigger dtype coercions ############################################################### class TestIndexCoercion(tm.TestCase): _multiprocess_can_split_ = True def test_setitem_index_numeric_coercion_int(self): # tests setitem with non-existing numeric key s = pd.Series([1, 2, 3, 4]) self.assertEqual(s.index.dtype, np.int64) # int + int -> int temp = s.copy() temp[5] = 5 tm.assert_series_equal(temp, pd.Series([1, 2, 3, 4, 5], index=[0, 1, 2, 3, 5])) self.assertEqual(temp.index.dtype, np.int64) # int + float -> float temp = s.copy() temp[1.1] = 5 tm.assert_series_equal(temp, pd.Series([1, 2, 3, 4, 5], index=[0, 1, 2, 3, 1.1])) self.assertEqual(temp.index.dtype, np.float64) def test_setitem_index_numeric_coercion_float(self): # tests setitem with non-existing numeric key s = pd.Series([1, 2, 3, 4], index=[1.1, 2.1, 3.1, 4.1]) self.assertEqual(s.index.dtype, np.float64) # float + int -> int temp = s.copy() # TODO_GH12747 The result must be float with tm.assertRaises(IndexError): temp[5] = 5 # float + float -> float temp = s.copy() temp[5.1] = 5 exp = pd.Series([1, 2, 3, 4, 5], index=[1.1, 2.1, 3.1, 4.1, 5.1]) tm.assert_series_equal(temp, exp) self.assertEqual(temp.index.dtype, np.float64) def test_insert_numeric_coercion_int(self): idx = pd.Int64Index([1, 2, 3, 4]) self.assertEqual(idx.dtype, np.int64) # int + int -> int res = idx.insert(1, 1) tm.assert_index_equal(res, pd.Index([1, 1, 2, 3, 4])) self.assertEqual(res.dtype, np.int64) # int + float -> float res = idx.insert(1, 1.1) tm.assert_index_equal(res, pd.Index([1, 1.1, 2, 3, 4])) self.assertEqual(res.dtype, np.float64) # int + bool -> int res = idx.insert(1, False) tm.assert_index_equal(res, pd.Index([1, 0, 2, 3, 4])) self.assertEqual(res.dtype, np.int64) def test_insert_numeric_coercion_float(self): idx = pd.Float64Index([1, 2, 3, 4]) self.assertEqual(idx.dtype, np.float64) # float + int -> int res = idx.insert(1, 1) tm.assert_index_equal(res, pd.Index([1., 1., 2., 3., 4.])) self.assertEqual(res.dtype, np.float64) # float + float -> float res = idx.insert(1, 1.1) tm.assert_index_equal(res, pd.Index([1., 1.1, 2., 3., 4.])) self.assertEqual(res.dtype, np.float64) # float + bool -> float res = idx.insert(1, False) tm.assert_index_equal(res, pd.Index([1., 0., 2., 3., 4.])) self.assertEqual(res.dtype, np.float64) class TestSeriesCoercion(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.rep = {} self.rep['object'] = ['a', 'b'] self.rep['int64'] = [4, 5] self.rep['float64'] = [1.1, 2.2] self.rep['complex128'] = [1 + 1j, 2 + 2j] self.rep['bool'] = [True, False] def test_setitem_numeric_coercion_int(self): s = pd.Series([1, 2, 3, 4]) self.assertEqual(s.dtype, np.int64) # int + int -> int temp = s.copy() temp[1] = 1 tm.assert_series_equal(temp, pd.Series([1, 1, 3, 4])) self.assertEqual(temp.dtype, np.int64) # int + float -> float # TODO_GH12747 The result must be float temp = s.copy() temp[1] = 1.1 # tm.assert_series_equal(temp, pd.Series([1, 1.1, 3, 4])) # self.assertEqual(temp.dtype, np.float64) tm.assert_series_equal(temp, pd.Series([1, 1, 3, 4])) self.assertEqual(temp.dtype, np.int64) # int + complex -> complex temp = s.copy() temp[1] = 1 + 1j tm.assert_series_equal(temp, pd.Series([1, 1 + 1j, 3, 4])) self.assertEqual(temp.dtype, np.complex128) # int + bool -> int temp = s.copy() temp[1] = True tm.assert_series_equal(temp, pd.Series([1, 1, 3, 4])) self.assertEqual(temp.dtype, np.int64) def test_setitem_numeric_coercion_float(self): s = pd.Series([1.1, 2.2, 3.3, 4.4]) self.assertEqual(s.dtype, np.float64) # float + int -> float temp = s.copy() temp[1] = 1 tm.assert_series_equal(temp, pd.Series([1.1, 1.0, 3.3, 4.4])) self.assertEqual(temp.dtype, np.float64) # float + float -> float temp = s.copy() temp[1] = 1.1 tm.assert_series_equal(temp, pd.Series([1.1, 1.1, 3.3, 4.4])) self.assertEqual(temp.dtype, np.float64) # float + complex -> complex temp = s.copy() temp[1] = 1 + 1j tm.assert_series_equal(temp, pd.Series([1.1, 1 + 1j, 3.3, 4.4])) self.assertEqual(temp.dtype, np.complex128) # float + bool -> float temp = s.copy() temp[1] = True tm.assert_series_equal(temp, pd.Series([1.1, 1.0, 3.3, 4.4])) self.assertEqual(temp.dtype, np.float64) def test_setitem_numeric_coercion_complex(self): s = pd.Series([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j]) self.assertEqual(s.dtype, np.complex128) # complex + int -> complex temp = s.copy() temp[1] = 1 tm.assert_series_equal(temp, pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j])) self.assertEqual(temp.dtype, np.complex128) # complex + float -> complex temp = s.copy() temp[1] = 1.1 tm.assert_series_equal(temp, pd.Series([1 + 1j, 1.1, 3 + 3j, 4 + 4j])) self.assertEqual(temp.dtype, np.complex128) # complex + complex -> complex temp = s.copy() temp[1] = 1 + 1j tm.assert_series_equal(temp, pd.Series([1 + 1j, 1 + 1j, 3 + 3j, 4 + 4j])) self.assertEqual(temp.dtype, np.complex128) # complex + bool -> complex temp = s.copy() temp[1] = True tm.assert_series_equal(temp, pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j])) self.assertEqual(temp.dtype, np.complex128) def test_setitem_numeric_coercion_bool(self): s = pd.Series([True, False, True, False]) self.assertEqual(s.dtype, np.bool) # bool + int -> int # TODO_GH12747 The result must be int temp = s.copy() temp[1] = 1 # tm.assert_series_equal(temp, pd.Series([1, 1, 1, 0])) # self.assertEqual(temp.dtype, np.int64) tm.assert_series_equal(temp, pd.Series([True, True, True, False])) self.assertEqual(temp.dtype, np.bool) # TODO_GH12747 The result must be int temp = s.copy() temp[1] = 3 # greater than bool # tm.assert_series_equal(temp, pd.Series([1, 3, 1, 0])) # self.assertEqual(temp.dtype, np.int64) tm.assert_series_equal(temp,
pd.Series([True, True, True, False])
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jun 4 13:05:41 2022 @author: maxime """ import vectorbtpro as vbt import core.indicators as ic from core.strat import Strat from core.bt import BT, WQ import numpy as np import pandas as pd ### To back stage recent data class StratLIVE(Strat): def __init__(self,symbols,period,index_symbol): self.period=period self.symbols=symbols self.index_symbol=index_symbol self.retrieve_live() ##to plot the last days for instance def retrieve_live(self): all_symbols=self.symbols+[self.index_symbol] cours=vbt.YFData.fetch(all_symbols, period=self.period,missing_index='drop') cours_action=cours.select(self.symbols) self.open =cours_action.get('Open') self.high=cours_action.get('High') self.low=cours_action.get('Low') self.close=cours_action.get('Close') self.volume=cours_action.get('Volume') print("number of days retrieved: " + str(np.shape(self.close)[0])) #assuming all actions in the same exchange here: #cours_ind=vbt.YFData.fetch(index_symbol, period=period,missing_index='drop',**kwargs) cours_index=cours.select(self.index_symbol) self.open_ind =cours_index.get('Open') self.high_ind=cours_index.get('High') self.low_ind=cours_index.get('Low') self.close_ind=cours_index.get('Close') self.volume_ind=cours_index.get('Volume') class btLIVE(BT): def __init__(self,longshort,**kwargs): st=kwargs.get("st") self.high=st.high self.low=st.low self.close=st.close self.open=st.open self.volume=st.volume self.high_ind=st.high_ind self.low_ind=st.low_ind self.close_ind=st.close_ind self.open_ind=st.open_ind self.volume_ind=st.volume_ind self.symbols=self.close.columns.values self.start_capital=10000 self.order_size=self.start_capital self.capital=self.start_capital self.longshort=longshort self.entries=pd.DataFrame.vbt.empty_like(self.close, fill_value=False) self.exits=pd.DataFrame.vbt.empty_like(self.close, fill_value=False) self.exits_short=pd.DataFrame.vbt.empty_like(self.close, fill_value=False) self.entries_short=pd.DataFrame.vbt.empty_like(self.close, fill_value=False) self.pf=[] self.pf_short=[] st.strat_kama_stoch_matrend_bbands() self.ent11=st.entries self.ex11=st.exits self.vol=ic.VBTNATR.run(self.high,self.low,self.close).natr self.excluded=[] self.hold_dur=0 self.candidates=[[] for ii in range(len(self.close))] self.candidates_short=[[] for ii in range(len(self.close))] self.symbols_simple=self.close.columns.values self.symbols_complex=self.ent11.columns.values self.last_order_dir="long" class WQLIVE(WQ): def __init__(self, nb,**kwargs): st=kwargs.get("st") self.high=st.high self.low=st.low self.close=st.close self.open=st.open self.volume=st.volume self.high_ind=st.high_ind self.low_ind=st.low_ind self.close_ind=st.close_ind self.open_ind=st.open_ind self.volume_ind=st.volume_ind self.candidates=[[] for ii in range(len(self.close))] self.pf=[] self.entries=pd.DataFrame.vbt.empty_like(self.close, fill_value=False) self.exits=pd.DataFrame.vbt.empty_like(self.close, fill_value=False) #actually only long are used in those strategy self.exits_short=
pd.DataFrame.vbt.empty_like(self.close, fill_value=False)
pandas.DataFrame.vbt.empty_like
''' Takes literature metallicities and makes new Fe/H basis ''' import pickle import sys import pandas as pd import numpy as np import matplotlib.pyplot as plt from . import * class LitMetallicities(): ''' Class to 1. read in Fe/H values from the literature 2. initialize data set cross-referencing functionality ''' def __init__(self, source_dir=config_red["data_dirs"]["DIR_LIT_HIGH_RES_FEH"]): # stand-in that consists of our program star names self.our_program_stars = pd.read_csv(source_dir + "our_program_stars_names_only.csv") # Fe/H from Layden+ 1994; this may serve as the common basis for RRabs self.layden_feh = pd.read_csv(source_dir + "layden_1994_abundances.dat") # RES: "rather low" # Fe/H Clementini+ 1995 self.clementini_feh = pd.read_csv(source_dir + "clementini_1995_abundances.dat") # Fe/H Fernley+ 1996 self.fernley96_feh = pd.read_csv(source_dir + "fernley_1996_abundances.dat") # RES: 60,000, FeI & FeII, 5900-8100 A # Fe/H from Fernley+ 1997 self.fernley97_feh = pd.read_csv(source_dir + "fernley_1997_abundances.dat") # RES: 60,000, two FeII lines, 5900-8100 A # log(eps) from Lambert+ 1996 self.lambert_logeps = pd.read_csv(source_dir + "lambert_1996_abundances.dat") # RES: ~23,000, FeII + photometric models, 3600-9000 A # Fe/H from Wallerstein and Huang 2010, arXiv 1004.2017 self.wallerstein_feh = pd.read_csv(source_dir + "wallerstein_huang_2010_abundances.dat") # RES: ~30,000, FeII # Fe/H from Chadid+ 2017 ApJ 835.2:187 (FeI and II lines) self.chadid_feh = pd.read_csv(source_dir + "chadid_2017_abundances.dat") # RES: 38000, FeI & FeII, 3400-9900 A # Fe/H from Liu+ 2013 Res Ast Astroph 13:1307 self.liu_feh = pd.read_csv(source_dir + "liu_2013_abundances.dat") # RES: ~60,000, FeI (& FeII?), 5100-6400 A # Fe/H from Nemec+ 2013 self.nemec_feh = pd.read_csv(source_dir + "nemec_2013_abundances.dat") # RES: ~65,000 or 36,000, FeI & FeII, 5150-5200 A # Fe/H from Solano+ 1997 self.solano_feh = pd.read_csv(source_dir + "solano_1997_abundances.dat") # RES: 22,000 & 19,000, strong FeI lines, 4160-4390 & 4070-4490 A # Fe/H from Pancino+ 2015 MNRAS 447:2404 self.pancino_feh =
pd.read_csv(source_dir + "pancino_2015_abundances.dat")
pandas.read_csv
from opentrons import robot, containers, instruments from datetime import datetime import numpy as np import pandas as pd import getch import shutil import os import sys def initialize_pipettes(p10_tipracks,p10s_tipracks,p200_tipracks,trash): # Declare all of the pipettes p10 = instruments.Pipette( axis='a', max_volume=10, min_volume=0.5, tip_racks=p10_tipracks, trash_container=trash, channels=8, name='p10-8', aspirate_speed=400, dispense_speed=800 ) p10s = instruments.Pipette( axis='a', max_volume=10, min_volume=0.5, tip_racks=p10s_tipracks, trash_container=trash, channels=1, name='p10-8s', aspirate_speed=400, dispense_speed=800 ) p200 = instruments.Pipette( axis='b', max_volume=200, min_volume=20, tip_racks=p200_tipracks, trash_container=trash, channels=1, name='p200-1', aspirate_speed=400, dispense_speed=800 ) return p10,p10s,p200 def display_deck(robot): df = pd.DataFrame(np.zeros((3,5)), columns=['A','B','C','D','E'], index=['3','2','1']) df.loc[:,:] = "---" for slot in robot.deck: for child in slot.get_children_list(): print(slot.get_name()[0],slot.get_name()[1],child.get_name()) df.loc[slot.get_name()[1],slot.get_name()[0]] = child.get_name() print(df) def print_layout(locations): # Generate an empty dataframe with the right shape layout_table = pd.DataFrame(np.zeros((3,5)), columns=['A','B','C','D','E'], index=['3','2','1']) layout_table.loc[:,:] = "---" # Fill in the data frame with the locations for obj in locations: layout_table.loc[locations[obj][1], locations[obj][0]] = obj # Displays the required plate map and waits to proceed print("\n Please arrange the items in the following configuration: \n") print(layout_table,"\n") input("Press enter to continue") def change_speed(robot): robot.head_speed(5000) def change_height(pipette,container,target,recalibrate=False): counter = 0 z = 0 print("Change height - s-g:up h-l:down x:exit") while True: c = getch.getch() if c == "s": print("Up 20mm") pipette.robot._driver.move(z=20,mode="relative") z += 20 elif c == "d": print("Up 5mm") pipette.robot._driver.move(z=5,mode="relative") z += 5 elif c == "f": print("Up 0.5mm") pipette.robot._driver.move(z=0.5,mode="relative") z += 0.5 elif c == "g": print("Up 0.1mm") pipette.robot._driver.move(z=0.1,mode="relative") z += 0.1 elif c == "h": print("Down 0.1mm") pipette.robot._driver.move(z=-0.1,mode="relative") z += -0.1 elif c == "j": print("Down 0.5mm") pipette.robot._driver.move(z=-0.5,mode="relative") z += -0.5 elif c == "k": print("Down 5mm") pipette.robot._driver.move(z=-5,mode="relative") z += -5 elif c == "l": print("Down 20mm") pipette.robot._driver.move(z=-20,mode="relative") z += -20 elif c == "x": print("Exit") break counter += 1 pipette.calibrate_position((container,target.from_center(x=0, y=0, z=-1,reference=container))) if recalibrate: if counter > 1: print("Will recalibrate") redo = True else: print("Calibrated") redo = False return redo,z else: return z def well_addresses(): '''Generates a list of well address A1-H12''' letter = ["A","B","C","D","E","F","G","H"] number = ["1","2","3","4","5","6","7","8","9","10","11","12"] target_well = [] temp_well = 0 for n in number: for l in letter: temp_well = l + n target_well.append(temp_well) return target_well def print_center(statement): columns = shutil.get_terminal_size().columns print('\n',statement.center(columns)) def request_info(statement,type='string',length=0,select_from=[]): answer = input(statement) if answer == '': print("Please enter a value\n") return request_info(statement,type=type) elif type == 'int': try: int(answer) return int(answer) except: print("Invalid type\n") return request_info(statement,type=type) elif type == 'list': try: nums = [int(num) for num in answer.split(' ')] if len(nums) != length: print('Requires {} inputs'.format(length)) return request_info(statement,type=type,length=length) return [int(num) for num in answer.split(' ')] except: print("Invalid type\n") return request_info(statement,type=type,length=length) if select_from != []: if answer not in select_from: print('Not in list') print(select_from) return request_info(statement,type=type,select_from=select_from) else: return answer return answer def make_directory(path): dir_name = path.split("/")[-1] if os.path.exists(path): print("Directory {} already exists".format(dir_name)) else: # Generates a new directory with the ID# as its name os.makedirs(path) print("Making directory for {}".format(dir_name)) def check_robot(): try: robot_name = str(os.environ["ROBOT_DEV"][-5:]) except: sys.exit("Not connected to a robot, run roboswitch <robot_name> to change the robot") robot_number = int(request_info("Run on this robot: {} ? 1-Yes, 2-No ".format(robot_name),type='int')) if robot_number == 1: print("Proceeding with run") else: sys.exit("Run `roboswitch <robot_name>` to change the robot") def list_to_string(ls): string = '' for l in ls: string += "'{}',".format(l) return string[:-1] def query_for_parts(status,enzyme,engine): query = "SELECT parts.part_id,parts.status,fragments.fragment_name,plates.plate_id,wells.address,wells.volume,plates.id FROM parts\ INNER JOIN part_frag ON parts.id = part_frag.part_id\ INNER JOIN fragments ON part_frag.fragment_id = fragments.id\ INNER JOIN wells ON fragments.id = wells.fragment_id\ INNER JOIN plates on wells.plate_id = plates.id\ WHERE parts.status IN ({})\ AND parts.cloning_enzyme = '{}'".format(list_to_string(status),enzyme) return pd.read_sql_query(query, con=engine) def query_for_plates(parts,engine): query = "SELECT parts.part_id,fragments.fragment_name,plates.plate_id,wells.address,wells.volume,plates.id,plates.plate_name FROM parts\ INNER JOIN part_frag ON parts.id = part_frag.part_id\ INNER JOIN fragments ON part_frag.fragment_id = fragments.id\ INNER JOIN wells ON fragments.id = wells.fragment_id\ INNER JOIN plates on wells.plate_id = plates.id\ WHERE parts.part_id IN ({})".format(list_to_string(parts)) return pd.read_sql_query(query, con=engine) def query_for_fragments(parts,engine): query = "SELECT parts.part_id,fragments.fragment_name FROM parts\ INNER JOIN part_frag ON parts.id = part_frag.part_id\ INNER JOIN fragments ON part_frag.fragment_id = fragments.id\ WHERE parts.part_id IN ({})".format(list_to_string(parts)) return pd.read_sql_query(query, con=engine) def query_everything(engine): print() print(datetime.now(),'Began run') query_outcomes = "SELECT parts.part_id,parts.status,wells.seq_outcome,wells.plate_type,builds.build_name,wells.misplaced FROM parts \ INNER JOIN wells ON parts.id = wells.part_id\ INNER JOIN plates ON wells.plate_id = plates.id\ INNER JOIN builds ON plates.build_id = builds.id" query_frag = "SELECT parts.part_id,fragments.fragment_name FROM parts\ INNER JOIN part_frag ON parts.id = part_frag.part_id\ INNER JOIN fragments ON part_frag.fragment_id = fragments.id" query_parts = "SELECT * FROM parts" df_frag = pd.read_sql_query(query_frag, con=engine) frags = df_frag.groupby('part_id')['fragment_name'].agg(len) frags.name = 'Count' frags = pd.DataFrame(frags).reset_index() frags_dict = dict(zip(frags.part_id.tolist(),frags.Count.tolist())) # subs_dict = dict(zip(df_frag.part_id.tolist(),df_frag.sub_name.tolist())) print(datetime.now(),'Finished analyzing fragments') def multiple(x): if len(x) == 1: x.append('N/A') return x def find_outcome(x): if x in df_out_dict.keys(): return df_out_dict[x] else: return ['N/A','N/A'] def find_build(x): if x in df_build_dict.keys(): return df_build_dict[x] else: return ['N/A','N/A'] def simplify_outcome(x): if "mutation" in x: return 'cloning_mutation' elif "bad" in x: return 'sequence_failure' else: return x df_res = pd.read_sql_query(query_outcomes, con=engine) df_res = df_res[df_res.plate_type == 'seq_plate'] df_out = df_res.groupby('part_id')['seq_outcome'].apply(list) df_out.name = 'Outcomes' df_out = pd.DataFrame(df_out).reset_index() df_out.Outcomes = df_out.Outcomes.apply(multiple) df_out_dict = dict(zip(df_out.part_id.tolist(),df_out.Outcomes.tolist())) df_build = df_res.groupby('part_id')['build_name'].apply(list) df_build.name = 'Builds' df_build = pd.DataFrame(df_build).reset_index() df_build.Builds = df_build.Builds.apply(multiple) df_build_dict = dict(zip(df_build.part_id.tolist(),df_build.Builds.tolist())) print(datetime.now(),'Finished analyzing outcomes') df_parts =
pd.read_sql_query(query_parts, con=engine)
pandas.read_sql_query
""" coding: utf-8 @authour: <NAME>, modified <NAME> Inspired by: https://github.com/hmelberg/stats-to-pandas/blob/master/stats_to_pandas/__init__.py https://github.com/eurostat/prophet """ from __future__ import print_function import pandas as pd import requests import ast from pyjstat import pyjstat from collections import OrderedDict from ipywidgets import widgets from IPython.display import display # todo: consider using jsonstat instead of pyjstat class API_to_data: def __init__(self, language='en', base_url='http://data.ssb.no/api/v0'): """ Parameters: ----------- language: string default in Statistics Norway: 'en' (Search for English words) optional in Statistics Norway: 'no' (Search for Norwegian words) url: string default in Statistics Norway: 'http://data.ssb.no/api/v0' different defaults can be specified """ self.language = language self.burl = base_url self.furl = None self.variables = None self.time = None def search(self, phrase): """ Search for tables that contain the phrase in Statistics Norway. Returns a pandas dataframe with the results. Not case sensitive. Language sensitive (specified in the language option) Example ------- df = search("income") Parameters ---------- phrase: string The phrase can contain several words (space separated): search("export Norwegian parrot") It also supports trucation: search("pharma*") """ # todo: make converter part of the default specification only for statistics norway convert = {'æ' : '%C3%A6', 'Æ' : '%C3%86', 'ø' : '%C3%B8', 'Ø' : '%C3%98', 'å' : '%C3%A5', 'Å' : '%C3%85', '"' : '%22', '(' : '%28', ')' : '%29', ' ' : '%20'} search_str = '{base_url}/{language}/table/?query={phrase}'.format(base_url=self.burl, language=self.language, phrase=phrase) for k, v in convert.items(): search_str = search_str.replace(k, v) df =
pd.read_json(search_str)
pandas.read_json
import pandas as pd import numpy as np from zipfile import ZipFile from cleanco import cleanco import re import os import zipcode from pyzipcode import ZipCodeDatabase #State formats state_format_extrastuff = '^[a-zA-Z]{2} ' state_format_right = '^[A-Z]{2}$' #Set up standardization for date fields date_right_pattern = '^[0-9]{4}-[0-9]{2}-[0-9]{2}$' date_long_format = '^[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{1,2}:[0-9]{1,2}:[0-9]{1,2}$' date_long_format_no_space = '^[0-9]{4}-[0-9]{2}-[0-9]{2}[0-9]{1,2}:[0-9]{1,2}:[0-9]{1,2}$' date_slash_format = '^[0-9]{1,2}/[0-9]{1,2}/[0-9]{4}$' date_slash_format_5='^[0-9]{1,2}/[0-9]{1,2}/[0-9]{5}$' date_slash_format_2 = '^[0-9]{1,2}/[0-9]{1,2}/[0-9]{2}$' date_slash_format_long = '^[0-9]{1,2}/[0-9]{1,2}/[0-9]{4}[0-9]{1,2}:[0-9]{1,2}:[0-9]{1,2}$' #Set up standardization for zipcodes right_zip = '^[0-9]{5}$' long_zip = '^[0-9]{5}-[0-9]{4}$' zip_dict = {'77098':'TX','49855':'MI', '48075':'MI','48334':'MI', '48034':'MI', '48335':'MI','95014':'CA','92833':'CA','92834':'CA','10962':'NY','98117':'WA','98765':'WA','20008':'DC','20002':'DC','21704':'MD','20814':'MD','21208':'MD','22222':'VA'} state_values = ['TX', 'MA', 'MI', 'CA', 'VA', 'NJ', 'NY', 'PA', 'FL', 'MN', 'IL', 'MD', 'CT', 'WA', 'IA', 'CO', 'AZ', 'GA', 'OK', 'LA', 'WI', 'ND', 'UT', 'IN', 'OH', 'KY', 'NC', 'NH', 'MO', 'TN', 'ID', 'VT', 'DC', 'SD', 'AL', 'OR', 'AR', 'NM', 'SC', 'NE', 'DE', 'WY', 'HI', 'KS', 'WV', 'ME', 'RI', 'NV', 'MS', 'AK','MT','PR','GU','VI'] def get_file_from_zip(zipname, filename): with ZipFile('/'.join(['raw_data', zipname])) as zip_file: with zip_file.open(filename) as file: return pd.read_csv(file, dtype=str, encoding='Latin-1') def count_wrong_formats(df): has_submitted = "CASE_SUBMITTED" in df.columns has_decision = "DECISION_DATE" in df.columns wrong_submitted_date_format = 0 wrong_decision_date_format=0 wrong_employer_state_format = 0 wrong_worksite_state_format = 0 wrong_zip_format = 0 for index, row in df.iterrows(): if has_submitted and (pd.isnull(row['CASE_SUBMITTED']) or not re.match(date_right_pattern,row['CASE_SUBMITTED'])): wrong_submitted_date_format+=1 if has_decision and (pd.isnull(row['DECISION_DATE']) or not re.match(date_right_pattern,row['DECISION_DATE'])): wrong_decision_date_format+=1 if row['EMPLOYER_STATE'] not in state_values: wrong_employer_state_format+=1 if row['WORKSITE_STATE'] not in state_values: wrong_worksite_state_format+=1 if pd.isnull(row['EMPLOYER_POSTAL_CODE']) or not re.match(right_zip, row['EMPLOYER_POSTAL_CODE']): wrong_zip_format+=1 if has_submitted: print(wrong_submitted_date_format,"bad CASE_SUBMITTED fields") if has_decision: print(wrong_decision_date_format,"bad DECISION_DATE fields") print(wrong_employer_state_format, "bad EMPLOYER_STATE fields") print(wrong_worksite_state_format, "bad WORKSITE_STATE fields") print(wrong_zip_format, "bad EMPLOYER_POSTAL_CODE fields") def address_concatenate(data): data["EMPLOYER_ADDRESS"] = (data["EMPLOYER_ADDRESS1"].map(str) +" "+ data["EMPLOYER_ADDRESS2"].map(str)).str.replace('nan','').str.upper().str.strip() #Set up cleaning functions def employer_name_uppercase_cleanco(x): if pd.isnull(x): return x else: return cleanco(str(x).upper()).clean_name() def uppercase_nopunct(x): if pd.isnull(x): return x else: return str(x).upper().replace('[^\w\s]','').replace('/',' ').replace('"','').replace(' ',' ').strip() def clean_states(x): if pd.isnull(x): return x if str(x).strip()=='': return np.nan elif re.match(state_format_right, x): return x elif re.match(state_format_extrastuff, x) and x[:2] in state_values: return x[:2] elif x=="MARYLAND": return "MD" elif x=="NEW YORK": return "NY" else: print("\t\tState Error, ",x) return x def case_status_withdrawn(x): if x.WITHDRAWN=="Y" or x.WITHDRAWN=="y": return x.CASE_STATUS+"-WITHDRAWN" else: return x.CASE_STATUS def dot_code_format(x): if pd.isnull(x): return x else: return str(x).zfill(3) def check_apply_date_pattern(x): if pd.isnull(x): return x else: x=str(x).replace(" ",'') if re.match(date_right_pattern,x): return x elif re.match(date_long_format, x): return x[:10].strip() elif re.match(date_long_format_no_space,x): return x[:10].strip() elif re.match(date_slash_format, x): month = x[:x.index('/')] day = x[x.index('/')+1:x.index('/',x.index('/')+1)] year = x[x.index('/',x.index('/')+1)+1:] return "{}-{}-{}".format(year.strip(), month.zfill(2).strip(), day.zfill(2).strip()) elif re.match(date_slash_format_5, x): month = x[:x.index('/')] day = x[x.index('/')+1:x.index('/',x.index('/')+1)] year = x[x.index('/',x.index('/')+1)+1:x.index('/',x.index('/')+1)+5] return "{}-{}-{}".format(year.strip(), month.zfill(2).strip(), day.zfill(2).strip()) elif re.match(date_slash_format_2, x): month = x[:x.index('/')] day = x[x.index('/')+1:x.index('/',x.index('/')+1)] year = x[x.index('/',x.index('/')+1)+1:] return "20{}-{}-{}".format(year.strip(), month.zfill(2).strip(), day.zfill(2).strip()) elif re.match(date_slash_format_long, x): month = x[:x.index('/')] day = x[x.index('/')+1:x.index('/',x.index('/')+1)] year = x[x.index('/',x.index('/')+1)+1:x.index('/',x.index('/')+1)+5] return "{}-{}-{}".format(year.strip(), month.zfill(2).strip(), day.zfill(2).strip()) else: print("\t\tDATE ERROR: x is",x,"returning None") return None def fix_zip(x): if pd.isnull(x): return x x=str(x).strip() if x.isnumeric(): x=x.zfill(5) if re.match(right_zip,x): return x elif re.match(long_zip,x): return x[:5] else: print("\t\tError in zip,",x) return x def fix_visa_class(x): if pd.isnull(x): return x x=str(x).strip() valid = ["H-1B","E-3","H-1B1 CHILE","H-1B1 SINGAPORE"] if x in valid: return x elif x=="R": return "H-1B" elif x=="A": return "E-3" elif x=="C": return "H-1B1 CHILE" elif x=="S": return "H-1B1 SINGAPORE" else: print("\t\tError in visa class, ",x) return x def fix_employer_states(x): if pd.isnull(x['EMPLOYER_STATE']): return x.EMPLOYER_STATE elif x['EMPLOYER_STATE'] not in state_values and x.EMPLOYER_POSTAL_CODE.isdigit(): if x.EMPLOYER_POSTAL_CODE in zip_dict.keys(): return zip_dict[x.EMPLOYER_POSTAL_CODE] else: newzip = zipcode.isequal(x.EMPLOYER_POSTAL_CODE) if newzip is not None: return newzip.state else: pyzip = findpyzipcode(x) if pyzip: return pyzip print("\t\tCouldnt find",x.EMPLOYER_POSTAL_CODE,"in either zip package") return x.EMPLOYER_STATE elif x['EMPLOYER_STATE'] not in state_values and re.match(state_format_right, x.EMPLOYER_POSTAL_CODE.upper()): #print("Employer state found in postal code, shifting",x.EMPLOYER_POSTAL_CODE.upper()) x.EMPLOYER_CITY = x.EMPLOYER_STATE return x.EMPLOYER_POSTAL_CODE.upper() else: return x.EMPLOYER_STATE def findpyzipcode(x): zcdb = ZipCodeDatabase() try: value = zcdb[x] return value.state except IndexError: return None def fix_worksite_states(x): if pd.isnull(x['WORKSITE_STATE']): return x.WORKSITE_STATE elif x['WORKSITE_STATE'] not in state_values and x['EMPLOYER_STATE'] in state_values and x.WORKSITE_CITY == x.EMPLOYER_CITY: #print("Cities match, returning",x.EMPLOYER_STATE,"to fix",x.WORKSITE_STATE) return x.EMPLOYER_STATE else: return x.WORKSITE_STATE def check_states(x): if x.CASE_STATUS=="CERTIFIED": if pd.isnull(x.EMPLOYER_STATE): print("Null Employer State: {}, Status - {}".format(x.EMPLOYER_NAME, x.CASE_STATUS)) elif x['EMPLOYER_STATE'] not in state_values: print("Wrong Employer State: Name - {}, City - {}, State - {}, Zip - {}, Status - {}".format(x.EMPLOYER_NAME, x.EMPLOYER_CITY, x.EMPLOYER_STATE, x.EMPLOYER_POSTAL_CODE, x.CASE_STATUS)) if
pd.isnull(x['WORKSITE_STATE'])
pandas.isnull
# -*- coding: utf-8 -*- """ Created on Thu Apr 29 21:45:02 2021 @author: <NAME> -Spatial structure index value distribution of urban streetscape """ from mayavi import mlab from tvtk.api import tvtk # python wrappers for the C++ vtk ecosystem import numpy as np from mayavi import mlab from tvtk.api import tvtk import matplotlib.pyplot as plt # only for manipulating the input image import glob,os, pickle label_mapping={ 0:"pole", 1:"slight", 2:"bboard", 3:"tlight", 4:"car", 5:"truck", 6:"bicycle", 7:"motor", 8:"bus", 9:"tsignf", 10:"tsignb", 11:"road", 12:"sidewalk", 13:"curbcut", 14:"crosspln", 15:"bikelane", 16:"curb", 17:"fence", 18:"wall", 19:"building", 20:"person", 21:"rider", 22:"sky", 23:"vege", 24:"terrain", 25:"markings", 26:"crosszeb", 27:"Nan", } label_color={ 0:(117,115,102), #"pole", 1:(212,209,156),#"slight", 2:(224,9,9),#"bboard", 3:(227,195,66),#"tlight", 4:(137,147,169),#"car", 5:(53,67,98),#"truck", 6:(185,181,51),#"bicycle", 7:(238,108,91),#"motor", 8:(247,5,5),#"bus", 9:(127,154,82),#"tsignf", 10:(193,209,167),#"tsignb", 11:(82,83,76),#"road", 12:(141,142,133),#"sidewalk", 13:(208,212,188),#"curbcut", 14:(98,133,145),#"crosspln", 15:(194,183,61),#"bikelane", 16:(141,139,115),#"curb", 17:(157,186,133),#"fence", 18:(114,92,127),#"wall", 19:(78,61,76),#"building", 20:(100,56,67),#"person", 21:(240,116,148),#"rider", 22:(32,181,191),#"sky", 23:(55,204,26),#"vege", 24:(84,97,82),#"terrain", 25:(231,24,126),#"markings", 26:(141,173,166),#"crosszeb", 27:(0,0,0),#"Nan", } def auto_sphere(image_file): # create a figure window (and scene) fig = mlab.figure(size=(600, 600)) # load and map the texture img = tvtk.JPEGReader() img.file_name = image_file texture = tvtk.Texture(input_connection=img.output_port, interpolate=1) # print(texture) # (interpolate for a less raster appearance when zoomed in) # use a TexturedSphereSource, a.k.a. getting our hands dirty R = 1 Nrad = 180 # create the sphere source with a given radius and angular resolution sphere = tvtk.TexturedSphereSource(radius=R, theta_resolution=Nrad, phi_resolution=Nrad) # print(sphere) # assemble rest of the pipeline, assign texture sphere_mapper = tvtk.PolyDataMapper(input_connection=sphere.output_port) sphere_actor = tvtk.Actor(mapper=sphere_mapper, texture=texture) fig.scene.add_actor(sphere_actor) mlab.show() def manual_sphere(image_file): # caveat 1: flip the input image along its first axis img = plt.imread(image_file) # shape (N,M,3), flip along first dim outfile = image_file.replace('.jfif', '_flipped.jpg') # flip output along first dim to get right chirality of the mapping img = img[::-1,...] plt.imsave(outfile, img) image_file = outfile # work with the flipped file from now on # parameters for the sphere R = 1 # radius of the sphere Nrad = 180 # points along theta and phi phi = np.linspace(0, 2 * np.pi, Nrad) # shape (Nrad,) theta = np.linspace(0, np.pi, Nrad) # shape (Nrad,) phigrid,thetagrid = np.meshgrid(phi, theta) # shapes (Nrad, Nrad) # compute actual points on the sphere x = R * np.sin(thetagrid) * np.cos(phigrid) y = R * np.sin(thetagrid) * np.sin(phigrid) z = R * np.cos(thetagrid) # create figure mlab.figure(size=(600, 600)) # create meshed sphere mesh = mlab.mesh(x,y,z) mesh.actor.actor.mapper.scalar_visibility = False mesh.actor.enable_texture = True # probably redundant assigning the texture later # load the (flipped) image for texturing img = tvtk.JPEGReader(file_name=image_file) texture = tvtk.Texture(input_connection=img.output_port, interpolate=0, repeat=0) # print(texture) mesh.actor.actor.texture = texture # tell mayavi that the mapping from points to pixels happens via a sphere mesh.actor.tcoord_generator_mode = 'sphere' # map is already given for a spherical mapping cylinder_mapper = mesh.actor.tcoord_generator # caveat 2: if prevent_seam is 1 (default), half the image is used to map half the sphere cylinder_mapper.prevent_seam = 0 # use 360 degrees, might cause seam but no fake data #cylinder_mapper.center = np.array([0,0,0]) # set non-trivial center for the mapping sphere if necessary def mpl_sphere(image_file): import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D img = plt.imread(image_file) # define a grid matching the map size, subsample along with pixels theta = np.linspace(0, np.pi, img.shape[0]) phi = np.linspace(0, 2*np.pi, img.shape[1]) print(img.shape) print(theta.shape) print(phi.shape) #''' count =180 #180 # keep 180 points along theta and phi theta_inds = np.linspace(0, img.shape[0] - 1, count).round().astype(int) phi_inds = np.linspace(0, img.shape[1] - 1, count).round().astype(int) # print(theta_inds) theta = theta[theta_inds] phi = phi[phi_inds] print(theta.shape) print(phi.shape) img = img[np.ix_(theta_inds, phi_inds)] print("_"*50) print(img.shape) #''' theta,phi = np.meshgrid(theta, phi) print(theta.shape,phi.shape) R = 1 # sphere x = R * np.sin(theta) * np.cos(phi) y = R * np.sin(theta) * np.sin(phi) z = R * np.cos(theta) # create 3d Axes fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(x.T, y.T, z.T, facecolors=img/255, cstride=1, rstride=1) # we've already pruned ourselves # make the plot more spherical ax.axis('scaled') plt.show() def spherical_segs_pts_show(label_seg_fn,label_color): from tqdm import tqdm import pickle import numpy as np from skimage.io._plugins.pil_plugin import ndarray_to_pil, pil_to_ndarray from PIL import Image,ImageOps fig=mlab.figure(size=(600, 600)) print(label_seg_fn) with open(label_seg_fn,'rb') as f: label_seg=pickle.load(f).numpy() print('\nseg shape={}'.format(label_seg.shape)) # define a grid matching the map size, subsample along with pixels theta=np.linspace(0, np.pi, label_seg.shape[0]) phi=np.linspace(0, 2*np.pi, label_seg.shape[1]) print("theta shape={};phi shape={}".format(theta.shape,phi.shape)) theta,phi=np.meshgrid(theta, phi) print("theta shape={};phi shape={}".format(theta.shape,phi.shape)) label_seg_color=np.array([label_color[v] for v in label_seg.flatten()]).reshape((label_seg.shape[0],label_seg.shape[1],3)) print("\nlabel_seg_color shape={}".format(label_seg_color.shape)) R=10 # sphere x=R * np.sin(theta) * np.cos(phi) y=R * np.sin(theta) * np.sin(phi) z=R * np.cos(theta) print("x,y,z shape={},{},{}".format(x.shape,y.shape,z.shape)) mask=label_seg==22 # print(len(np.extract(mask,x.T)),len(np.extract(mask,y.T)),len(np.extract(mask,z.T)),len(np.extract(mask,label_seg_color[:,:,0]/255))) mlab.points3d(x.T, y.T, z.T, label_seg_color[:,:,0]/255,) #opacity=0.75,scale_factor=0.1 # mlab.points3d(np.extract(mask,x.T),np.extract(mask,y.T),np.extract(mask,z.T),) theta_phi=np.dstack((theta,phi)) mlab.show() def spherical_segs_object_changing(label_seg_path,label_color): from tqdm import tqdm import glob,os import pickle import numpy as np from skimage.io._plugins.pil_plugin import ndarray_to_pil, pil_to_ndarray from PIL import Image,ImageOps # fig=mlab.figure(size=(600, 600)) label_seg_fns=glob.glob(os.path.join(label_seg_path,'*.pkl')) # print(label_seg_fns) for label_seg_fn in tqdm(label_seg_fns): print(label_seg_fn) with open(label_seg_fn,'rb') as f: label_seg=pickle.load(f).numpy() print('\nseg shape={}'.format(label_seg.shape)) # define a grid matching the map size, subsample along with pixels theta=np.linspace(0, np.pi, label_seg.shape[0]) phi=np.linspace(0, 2*np.pi, label_seg.shape[1]) print("theta shape={};phi shape={}".format(theta.shape,phi.shape)) theta,phi=np.meshgrid(theta, phi) print("theta shape={};phi shape={}".format(theta.shape,phi.shape)) label_seg_color=np.array([label_color[v] for v in label_seg.flatten()]).reshape((label_seg.shape[0],label_seg.shape[1],3)) print("\nlabel_seg_color shape={}".format(label_seg_color.shape)) R=10 # sphere x=R * np.sin(theta) * np.cos(phi) y=R * np.sin(theta) * np.sin(phi) z=R * np.cos(theta) print("x,y,z shape={},{},{}".format(x.shape,y.shape,z.shape)) mask=label_seg==22 # print(len(np.extract(mask,x.T)),len(np.extract(mask,y.T)),len(np.extract(mask,z.T)),len(np.extract(mask,label_seg_color[:,:,0]/255))) # mlab.points3d(x.T, y.T, z.T, label_seg_color[:,:,0]/255,) #opacity=0.75,scale_factor=0.1 # mlab.show() # mlab.points3d(np.extract(mask,x.T),np.extract(mask,y.T),np.extract(mask,z.T),) theta_phi=np.dstack((theta,phi)) break def fns_sort(fns_list): from pathlib import Path fns_dict={int(Path(p).stem.split('_')[-1]):p for p in fns_list} fns_dict_key=list(fns_dict.keys()) fns_dict_key.sort() fns_dict_sorted=[fns_dict[k] for k in fns_dict_key] return fns_dict_sorted def panorama_object_change(label_seg_path,label_color): from tqdm import tqdm import glob,os import pickle import numpy as np from skimage.io._plugins.pil_plugin import ndarray_to_pil, pil_to_ndarray from PIL import Image,ImageOps from pathlib import Path import pandas as pd from sklearn import preprocessing label_seg_fns=glob.glob(os.path.join(label_seg_path,'*.pkl')) label_seg_fns_sorted=fns_sort(label_seg_fns) pixels={} # i=0 for label_seg_fn in tqdm(label_seg_fns_sorted): # print(label_seg_fn) with open(label_seg_fn,'rb') as f: label_seg=pickle.load(f).numpy() # print('\nseg shape={}'.format(label_seg.shape)) fn_stem=Path(label_seg_fn).stem fn_key,fn_idx=fn_stem.split("_") pixels[fn_stem]=label_seg.flatten() # if i==10:break # i+=1 img_pixels_df=
pd.DataFrame.from_dict(pixels,orient='index')
pandas.DataFrame.from_dict
#!/usr/bin/env python import asyncio import logging import time from base64 import b64decode from typing import Optional, List, Dict, AsyncIterable, Any from zlib import decompress, MAX_WBITS import aiohttp import pandas as pd import signalr_aio import ujson from signalr_aio import Connection from signalr_aio.hubs import Hub from async_timeout import timeout from hummingbot.core.data_type.order_book import OrderBook from hummingbot.core.data_type.order_book_message import OrderBookMessage from hummingbot.core.data_type.order_book_tracker_data_source import OrderBookTrackerDataSource from hummingbot.core.data_type.order_book_tracker_entry import OrderBookTrackerEntry, BittrexOrderBookTrackerEntry from hummingbot.core.utils import async_ttl_cache from hummingbot.core.utils.async_utils import safe_gather from hummingbot.logger import HummingbotLogger from hummingbot.market.bittrex.bittrex_active_order_tracker import BittrexActiveOrderTracker from hummingbot.market.bittrex.bittrex_order_book import BittrexOrderBook EXCHANGE_NAME = "Bittrex" BITTREX_REST_URL = "https://api.bittrex.com/v3" BITTREX_EXCHANGE_INFO_PATH = "/markets" BITTREX_MARKET_SUMMARY_PATH = "/markets/summaries" BITTREX_TICKER_PATH = "/markets/tickers" BITTREX_WS_FEED = "https://socket.bittrex.com/signalr" MAX_RETRIES = 20 MESSAGE_TIMEOUT = 30.0 SNAPSHOT_TIMEOUT = 10.0 NaN = float("nan") class BittrexAPIOrderBookDataSource(OrderBookTrackerDataSource): PING_TIMEOUT = 10.0 _bittrexaobds_logger: Optional[HummingbotLogger] = None @classmethod def logger(cls) -> HummingbotLogger: if cls._bittrexaobds_logger is None: cls._bittrexaobds_logger = logging.getLogger(__name__) return cls._bittrexaobds_logger def __init__(self, symbols: Optional[List[str]] = None): super().__init__() self._symbols: Optional[List[str]] = symbols self._websocket_connection: Optional[Connection] = None self._websocket_hub: Optional[Hub] = None self._snapshot_msg: Dict[str, any] = {} @classmethod @async_ttl_cache(ttl=60 * 30, maxsize=1) async def get_active_exchange_markets(cls) -> pd.DataFrame: """ Returned data frame should have symbol as index and include USDVolume, baseAsset and quoteAsset """ market_path_url = f"{BITTREX_REST_URL}{BITTREX_EXCHANGE_INFO_PATH}" summary_path_url = f"{BITTREX_REST_URL}{BITTREX_MARKET_SUMMARY_PATH}" ticker_path_url = f"{BITTREX_REST_URL}{BITTREX_TICKER_PATH}" async with aiohttp.ClientSession() as client: market_response, ticker_response, summary_response = await safe_gather( client.get(market_path_url), client.get(ticker_path_url), client.get(summary_path_url) ) market_response: aiohttp.ClientResponse = market_response ticker_response: aiohttp.ClientResponse = ticker_response summary_response: aiohttp.ClientResponse = summary_response if market_response.status != 200: raise IOError( f"Error fetching active Bittrex markets information. " f"HTTP status is {market_response.status}." ) if ticker_response.status != 200: raise IOError( f"Error fetching active Bittrex market tickers. " f"HTTP status is {ticker_response.status}." ) if summary_response.status != 200: raise IOError( f"Error fetching active Bittrex market summaries. " f"HTTP status is {summary_response.status}." ) market_data, ticker_data, summary_data = await safe_gather( market_response.json(), ticker_response.json(), summary_response.json() ) ticker_data: Dict[str, Any] = {item["symbol"]: item for item in ticker_data} summary_data: Dict[str, Any] = {item["symbol"]: item for item in summary_data} market_data: List[Dict[str, Any]] = [ {**item, **ticker_data[item["symbol"]], **summary_data[item["symbol"]]} for item in market_data if item["symbol"] in ticker_data and item["symbol"] in summary_data ] all_markets: pd.DataFrame =
pd.DataFrame.from_records(data=market_data, index="symbol")
pandas.DataFrame.from_records
# -*- coding: utf-8 -*- from __future__ import print_function import pytest import operator from collections import OrderedDict from datetime import datetime from itertools import chain import warnings import numpy as np from pandas import (notna, DataFrame, Series, MultiIndex, date_range, Timestamp, compat) import pandas as pd from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.apply import frame_apply from pandas.util.testing import (assert_series_equal, assert_frame_equal) import pandas.util.testing as tm from pandas.conftest import _get_cython_table_params from pandas.tests.frame.common import TestData class TestDataFrameApply(TestData): def test_apply(self): with np.errstate(all='ignore'): # ufunc applied = self.frame.apply(np.sqrt) tm.assert_series_equal(np.sqrt(self.frame['A']), applied['A']) # aggregator applied = self.frame.apply(np.mean) assert applied['A'] == np.mean(self.frame['A']) d = self.frame.index[0] applied = self.frame.apply(np.mean, axis=1) assert applied[d] == np.mean(self.frame.xs(d)) assert applied.index is self.frame.index # want this # invalid axis df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) pytest.raises(ValueError, df.apply, lambda x: x, 2) # see gh-9573 df = DataFrame({'c0': ['A', 'A', 'B', 'B'], 'c1': ['C', 'C', 'D', 'D']}) df = df.apply(lambda ts: ts.astype('category')) assert df.shape == (4, 2) assert isinstance(df['c0'].dtype, CategoricalDtype) assert isinstance(df['c1'].dtype, CategoricalDtype) def test_apply_mixed_datetimelike(self): # mixed datetimelike # GH 7778 df = DataFrame({'A': date_range('20130101', periods=3), 'B': pd.to_timedelta(np.arange(3), unit='s')}) result = df.apply(lambda x: x, axis=1) assert_frame_equal(result, df) def test_apply_empty(self): # empty applied = self.empty.apply(np.sqrt) assert applied.empty applied = self.empty.apply(np.mean) assert applied.empty no_rows = self.frame[:0] result = no_rows.apply(lambda x: x.mean()) expected = Series(np.nan, index=self.frame.columns) assert_series_equal(result, expected) no_cols = self.frame.loc[:, []] result = no_cols.apply(lambda x: x.mean(), axis=1) expected = Series(np.nan, index=self.frame.index) assert_series_equal(result, expected) # 2476 xp = DataFrame(index=['a']) rs = xp.apply(lambda x: x['a'], axis=1) assert_frame_equal(xp, rs) def test_apply_with_reduce_empty(self): # reduce with an empty DataFrame x = [] result = self.empty.apply(x.append, axis=1, result_type='expand') assert_frame_equal(result, self.empty) result = self.empty.apply(x.append, axis=1, result_type='reduce') assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) empty_with_cols = DataFrame(columns=['a', 'b', 'c']) result = empty_with_cols.apply(x.append, axis=1, result_type='expand') assert_frame_equal(result, empty_with_cols) result = empty_with_cols.apply(x.append, axis=1, result_type='reduce') assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) # Ensure that x.append hasn't been called assert x == [] def test_apply_deprecate_reduce(self): with warnings.catch_warnings(record=True): x = [] self.empty.apply(x.append, axis=1, result_type='reduce') def test_apply_standard_nonunique(self): df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) rs = df.apply(lambda s: s[0], axis=1) xp = Series([1, 4, 7], ['a', 'a', 'c']) assert_series_equal(rs, xp) rs = df.T.apply(lambda s: s[0], axis=0) assert_series_equal(rs, xp) def test_with_string_args(self): for arg in ['sum', 'mean', 'min', 'max', 'std']: result = self.frame.apply(arg) expected = getattr(self.frame, arg)() tm.assert_series_equal(result, expected) result = self.frame.apply(arg, axis=1) expected = getattr(self.frame, arg)(axis=1) tm.assert_series_equal(result, expected) def test_apply_broadcast_deprecated(self): with tm.assert_produces_warning(FutureWarning): self.frame.apply(np.mean, broadcast=True) def test_apply_broadcast(self): # scalars result = self.frame.apply(np.mean, result_type='broadcast') expected = DataFrame([self.frame.mean()], index=self.frame.index) tm.assert_frame_equal(result, expected) result = self.frame.apply(np.mean, axis=1, result_type='broadcast') m = self.frame.mean(axis=1) expected = DataFrame({c: m for c in self.frame.columns}) tm.assert_frame_equal(result, expected) # lists result = self.frame.apply( lambda x: list(range(len(self.frame.columns))), axis=1, result_type='broadcast') m = list(range(len(self.frame.columns))) expected = DataFrame([m] * len(self.frame.index), dtype='float64', index=self.frame.index, columns=self.frame.columns) tm.assert_frame_equal(result, expected) result = self.frame.apply(lambda x: list(range(len(self.frame.index))), result_type='broadcast') m = list(range(len(self.frame.index))) expected = DataFrame({c: m for c in self.frame.columns}, dtype='float64', index=self.frame.index) tm.assert_frame_equal(result, expected) # preserve columns df = DataFrame(np.tile(np.arange(3), 6).reshape(6, -1) + 1, columns=list('ABC')) result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='broadcast') tm.assert_frame_equal(result, df) df = DataFrame(np.tile(np.arange(3), 6).reshape(6, -1) + 1, columns=list('ABC')) result = df.apply(lambda x: Series([1, 2, 3], index=list('abc')), axis=1, result_type='broadcast') expected = df.copy() tm.assert_frame_equal(result, expected) def test_apply_broadcast_error(self): df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) # > 1 ndim with pytest.raises(ValueError): df.apply(lambda x: np.array([1, 2]).reshape(-1, 2), axis=1, result_type='broadcast') # cannot broadcast with pytest.raises(ValueError): df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') with pytest.raises(ValueError): df.apply(lambda x: Series([1, 2]), axis=1, result_type='broadcast') def test_apply_raw(self): result0 = self.frame.apply(np.mean, raw=True) result1 = self.frame.apply(np.mean, axis=1, raw=True) expected0 = self.frame.apply(lambda x: x.values.mean()) expected1 = self.frame.apply(lambda x: x.values.mean(), axis=1) assert_series_equal(result0, expected0) assert_series_equal(result1, expected1) # no reduction result = self.frame.apply(lambda x: x * 2, raw=True) expected = self.frame * 2 assert_frame_equal(result, expected) def test_apply_axis1(self): d = self.frame.index[0] tapplied = self.frame.apply(np.mean, axis=1) assert tapplied[d] == np.mean(self.frame.xs(d)) def test_apply_ignore_failures(self): result = frame_apply(self.mixed_frame, np.mean, 0, ignore_failures=True).apply_standard() expected = self.mixed_frame._get_numeric_data().apply(np.mean) assert_series_equal(result, expected) def test_apply_mixed_dtype_corner(self): df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df[:0].apply(np.mean, axis=1) # the result here is actually kind of ambiguous, should it be a Series # or a DataFrame? expected = Series(np.nan, index=pd.Index([], dtype='int64')) assert_series_equal(result, expected) df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df.apply(lambda x: x['A'], axis=1) expected = Series(['foo'], index=[0]) assert_series_equal(result, expected) result = df.apply(lambda x: x['B'], axis=1) expected = Series([1.], index=[0]) assert_series_equal(result, expected) def test_apply_empty_infer_type(self): no_cols = DataFrame(index=['a', 'b', 'c']) no_index = DataFrame(columns=['a', 'b', 'c']) def _check(df, f): with warnings.catch_warnings(record=True): test_res = f(np.array([], dtype='f8')) is_reduction = not isinstance(test_res, np.ndarray) def _checkit(axis=0, raw=False): res = df.apply(f, axis=axis, raw=raw) if is_reduction: agg_axis = df._get_agg_axis(axis) assert isinstance(res, Series) assert res.index is agg_axis else: assert isinstance(res, DataFrame) _checkit() _checkit(axis=1) _checkit(raw=True) _checkit(axis=0, raw=True) with np.errstate(all='ignore'): _check(no_cols, lambda x: x) _check(no_cols, lambda x: x.mean()) _check(no_index, lambda x: x) _check(no_index, lambda x: x.mean()) result = no_cols.apply(lambda x: x.mean(), result_type='broadcast') assert isinstance(result, DataFrame) def test_apply_with_args_kwds(self): def add_some(x, howmuch=0): return x + howmuch def agg_and_add(x, howmuch=0): return x.mean() + howmuch def subtract_and_divide(x, sub, divide=1): return (x - sub) / divide result = self.frame.apply(add_some, howmuch=2) exp = self.frame.apply(lambda x: x + 2) assert_frame_equal(result, exp) result = self.frame.apply(agg_and_add, howmuch=2) exp = self.frame.apply(lambda x: x.mean() + 2) assert_series_equal(result, exp) res = self.frame.apply(subtract_and_divide, args=(2,), divide=2) exp = self.frame.apply(lambda x: (x - 2.) / 2.) assert_frame_equal(res, exp) def test_apply_yield_list(self): result = self.frame.apply(list) assert_frame_equal(result, self.frame) def test_apply_reduce_Series(self): self.frame.loc[::2, 'A'] = np.nan expected = self.frame.mean(1) result = self.frame.apply(np.mean, axis=1) assert_series_equal(result, expected) def test_apply_differently_indexed(self): df = DataFrame(np.random.randn(20, 10)) result0 = df.apply(Series.describe, axis=0) expected0 = DataFrame(dict((i, v.describe()) for i, v in compat.iteritems(df)), columns=df.columns) assert_frame_equal(result0, expected0) result1 = df.apply(Series.describe, axis=1) expected1 = DataFrame(dict((i, v.describe()) for i, v in compat.iteritems(df.T)), columns=df.index).T assert_frame_equal(result1, expected1) def test_apply_modify_traceback(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) data.loc[4, 'C'] = np.nan def transform(row): if row['C'].startswith('shin') and row['A'] == 'foo': row['D'] = 7 return row def transform2(row): if (notna(row['C']) and row['C'].startswith('shin') and row['A'] == 'foo'): row['D'] = 7 return row try: data.apply(transform, axis=1) except AttributeError as e: assert len(e.args) == 2 assert e.args[1] == 'occurred at index 4' assert e.args[0] == "'float' object has no attribute 'startswith'" def test_apply_bug(self): # GH 6125 positions = pd.DataFrame([[1, 'ABC0', 50], [1, 'YUM0', 20], [1, 'DEF0', 20], [2, 'ABC1', 50], [2, 'YUM1', 20], [2, 'DEF1', 20]], columns=['a', 'market', 'position']) def f(r): return r['market'] expected = positions.apply(f, axis=1) positions = DataFrame([[datetime(2013, 1, 1), 'ABC0', 50], [datetime(2013, 1, 2), 'YUM0', 20], [datetime(2013, 1, 3), 'DEF0', 20], [datetime(2013, 1, 4), 'ABC1', 50], [datetime(2013, 1, 5), 'YUM1', 20], [datetime(2013, 1, 6), 'DEF1', 20]], columns=['a', 'market', 'position']) result = positions.apply(f, axis=1) assert_series_equal(result, expected) def test_apply_convert_objects(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) result = data.apply(lambda x: x, axis=1) assert_frame_equal(result._convert(datetime=True), data) def test_apply_attach_name(self): result = self.frame.apply(lambda x: x.name) expected = Series(self.frame.columns, index=self.frame.columns) assert_series_equal(result, expected) result = self.frame.apply(lambda x: x.name, axis=1) expected = Series(self.frame.index, index=self.frame.index) assert_series_equal(result, expected) # non-reductions result = self.frame.apply(lambda x: np.repeat(x.name, len(x))) expected = DataFrame(np.tile(self.frame.columns, (len(self.frame.index), 1)), index=self.frame.index, columns=self.frame.columns) assert_frame_equal(result, expected) result = self.frame.apply(lambda x: np.repeat(x.name, len(x)), axis=1) expected = Series(np.repeat(t[0], len(self.frame.columns)) for t in self.frame.itertuples()) expected.index = self.frame.index assert_series_equal(result, expected) def test_apply_multi_index(self): index = MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'd']]) s = DataFrame([[1, 2], [3, 4], [5, 6]], index=index, columns=['col1', 'col2']) result = s.apply( lambda x: Series({'min': min(x), 'max': max(x)}), 1) expected = DataFrame([[1, 2], [3, 4], [5, 6]], index=index, columns=['min', 'max']) assert_frame_equal(result, expected, check_like=True) def test_apply_dict(self): # GH 8735 A = DataFrame([['foo', 'bar'], ['spam', 'eggs']]) A_dicts = Series([dict([(0, 'foo'), (1, 'spam')]), dict([(0, 'bar'), (1, 'eggs')])]) B = DataFrame([[0, 1], [2, 3]]) B_dicts = Series([dict([(0, 0), (1, 2)]), dict([(0, 1), (1, 3)])]) fn = lambda x: x.to_dict() for df, dicts in [(A, A_dicts), (B, B_dicts)]: reduce_true = df.apply(fn, result_type='reduce') reduce_false = df.apply(fn, result_type='expand') reduce_none = df.apply(fn) assert_series_equal(reduce_true, dicts) assert_frame_equal(reduce_false, df) assert_series_equal(reduce_none, dicts) def test_applymap(self): applied = self.frame.applymap(lambda x: x * 2) tm.assert_frame_equal(applied, self.frame * 2) self.frame.applymap(type) # gh-465: function returning tuples result = self.frame.applymap(lambda x: (x, x)) assert isinstance(result['A'][0], tuple) # gh-2909: object conversion to float in constructor? df = DataFrame(data=[1, 'a']) result = df.applymap(lambda x: x) assert result.dtypes[0] == object df = DataFrame(data=[1., 'a']) result = df.applymap(lambda x: x) assert result.dtypes[0] == object # see gh-2786 df = DataFrame(np.random.random((3, 4))) df2 = df.copy() cols = ['a', 'a', 'a', 'a'] df.columns = cols expected = df2.applymap(str) expected.columns = cols result = df.applymap(str) tm.assert_frame_equal(result, expected) # datetime/timedelta df['datetime'] = Timestamp('20130101') df['timedelta'] = pd.Timedelta('1 min') result = df.applymap(str) for f in ['datetime', 'timedelta']: assert result.loc[0, f] == str(df.loc[0, f]) # see gh-8222 empty_frames = [pd.DataFrame(), pd.DataFrame(columns=list('ABC')), pd.DataFrame(index=list('ABC')), pd.DataFrame({'A': [], 'B': [], 'C': []})] for frame in empty_frames: for func in [round, lambda x: x]: result = frame.applymap(func) tm.assert_frame_equal(result, frame) def test_applymap_box_timestamps(self): # #2689, #2627 ser = pd.Series(date_range('1/1/2000', periods=10)) def func(x): return (x.hour, x.day, x.month) # it works! pd.DataFrame(ser).applymap(func) def test_applymap_box(self): # ufunc will not be boxed. Same test cases as the test_map_box df = pd.DataFrame({'a': [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')], 'b': [pd.Timestamp('2011-01-01', tz='US/Eastern'), pd.Timestamp('2011-01-02', tz='US/Eastern')], 'c': [pd.Timedelta('1 days'), pd.Timedelta('2 days')], 'd': [pd.Period('2011-01-01', freq='M'), pd.Period('2011-01-02', freq='M')]}) res = df.applymap(lambda x: '{0}'.format(x.__class__.__name__)) exp = pd.DataFrame({'a': ['Timestamp', 'Timestamp'], 'b': ['Timestamp', 'Timestamp'], 'c': ['Timedelta', 'Timedelta'], 'd': ['Period', 'Period']}) tm.assert_frame_equal(res, exp) def test_frame_apply_dont_convert_datetime64(self): from pandas.tseries.offsets import BDay df = DataFrame({'x1': [datetime(1996, 1, 1)]}) df = df.applymap(lambda x: x + BDay()) df = df.applymap(lambda x: x + BDay()) assert df.x1.dtype == 'M8[ns]' def test_apply_non_numpy_dtype(self): # See gh-12244 df = DataFrame({'dt': pd.date_range( "2015-01-01", periods=3, tz='Europe/Brussels')}) result = df.apply(lambda x: x) assert_frame_equal(result, df) result = df.apply(lambda x: x + pd.Timedelta('1day')) expected = DataFrame({'dt': pd.date_range( "2015-01-02", periods=3, tz='Europe/Brussels')}) assert_frame_equal(result, expected) df = DataFrame({'dt': ['a', 'b', 'c', 'a']}, dtype='category') result = df.apply(lambda x: x) assert_frame_equal(result, df) def test_apply_dup_names_multi_agg(self): # GH 21063 df = pd.DataFrame([[0, 1], [2, 3]], columns=['a', 'a']) expected = pd.DataFrame([[0, 1]], columns=['a', 'a'], index=['min']) result = df.agg(['min']) tm.assert_frame_equal(result, expected) class TestInferOutputShape(object): # the user has supplied an opaque UDF where # they are transforming the input that requires # us to infer the output def test_infer_row_shape(self): # gh-17437 # if row shape is changing, infer it df = pd.DataFrame(np.random.rand(10, 2)) result = df.apply(np.fft.fft, axis=0) assert result.shape == (10, 2) result = df.apply(np.fft.rfft, axis=0) assert result.shape == (6, 2) def test_with_dictlike_columns(self): # gh 17602 df = DataFrame([[1, 2], [1, 2]], columns=['a', 'b']) result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1) expected = Series([{'s': 3} for t in df.itertuples()]) assert_series_equal(result, expected) df['tm'] = [pd.Timestamp('2017-05-01 00:00:00'), pd.Timestamp('2017-05-02 00:00:00')] result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1) assert_series_equal(result, expected) # compose a series result = (df['a'] + df['b']).apply(lambda x: {'s': x}) expected = Series([{'s': 3}, {'s': 3}]) assert_series_equal(result, expected) # gh-18775 df = DataFrame() df["author"] = ["X", "Y", "Z"] df["publisher"] = ["BBC", "NBC", "N24"] df["date"] = pd.to_datetime(['17-10-2010 07:15:30', '13-05-2011 08:20:35', '15-01-2013 09:09:09']) result = df.apply(lambda x: {}, axis=1) expected = Series([{}, {}, {}]) assert_series_equal(result, expected) def test_with_dictlike_columns_with_infer(self): # gh 17602 df = DataFrame([[1, 2], [1, 2]], columns=['a', 'b']) result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1, result_type='expand') expected = DataFrame({'s': [3, 3]}) assert_frame_equal(result, expected) df['tm'] = [pd.Timestamp('2017-05-01 00:00:00'), pd.Timestamp('2017-05-02 00:00:00')] result = df.apply(lambda x: {'s': x['a'] + x['b']}, axis=1, result_type='expand') assert_frame_equal(result, expected) def test_with_listlike_columns(self): # gh-17348 df = DataFrame({'a': Series(np.random.randn(4)), 'b': ['a', 'list', 'of', 'words'], 'ts': date_range('2016-10-01', periods=4, freq='H')}) result = df[['a', 'b']].apply(tuple, axis=1) expected = Series([t[1:] for t in df[['a', 'b']].itertuples()]) assert_series_equal(result, expected) result = df[['a', 'ts']].apply(tuple, axis=1) expected = Series([t[1:] for t in df[['a', 'ts']].itertuples()]) assert_series_equal(result, expected) # gh-18919 df = DataFrame({'x': Series([['a', 'b'], ['q']]), 'y': Series([['z'], ['q', 't']])}) df.index = MultiIndex.from_tuples([('i0', 'j0'), ('i1', 'j1')]) result = df.apply( lambda row: [el for el in row['x'] if el in row['y']], axis=1) expected = Series([[], ['q']], index=df.index) assert_series_equal(result, expected) def test_infer_output_shape_columns(self): # gh-18573 df = DataFrame({'number': [1., 2.], 'string': ['foo', 'bar'], 'datetime': [pd.Timestamp('2017-11-29 03:30:00'), pd.Timestamp('2017-11-29 03:45:00')]}) result = df.apply(lambda row: (row.number, row.string), axis=1) expected = Series([(t.number, t.string) for t in df.itertuples()]) assert_series_equal(result, expected) def test_infer_output_shape_listlike_columns(self): # gh-16353 df = DataFrame(np.random.randn(6, 3), columns=['A', 'B', 'C']) result = df.apply(lambda x: [1, 2, 3], axis=1) expected = Series([[1, 2, 3] for t in df.itertuples()]) assert_series_equal(result, expected) result = df.apply(lambda x: [1, 2], axis=1) expected = Series([[1, 2] for t in df.itertuples()]) assert_series_equal(result, expected) # gh-17970 df = DataFrame({"a": [1, 2, 3]}, index=list('abc')) result = df.apply(lambda row: np.ones(1), axis=1) expected = Series([np.ones(1) for t in df.itertuples()], index=df.index) assert_series_equal(result, expected) result = df.apply(lambda row: np.ones(2), axis=1) expected = Series([np.ones(2) for t in df.itertuples()], index=df.index) assert_series_equal(result, expected) # gh-17892 df = pd.DataFrame({'a': [pd.Timestamp('2010-02-01'), pd.Timestamp('2010-02-04'), pd.Timestamp('2010-02-05'), pd.Timestamp('2010-02-06')], 'b': [9, 5, 4, 3], 'c': [5, 3, 4, 2], 'd': [1, 2, 3, 4]}) def fun(x): return (1, 2) result = df.apply(fun, axis=1) expected = Series([(1, 2) for t in df.itertuples()]) assert_series_equal(result, expected) def test_consistent_coerce_for_shapes(self): # we want column names to NOT be propagated # just because the shape matches the input shape df = DataFrame(np.random.randn(4, 3), columns=['A', 'B', 'C']) result = df.apply(lambda x: [1, 2, 3], axis=1) expected = Series([[1, 2, 3] for t in df.itertuples()]) assert_series_equal(result, expected) result = df.apply(lambda x: [1, 2], axis=1) expected = Series([[1, 2] for t in df.itertuples()]) assert_series_equal(result, expected) def test_consistent_names(self): # if a Series is returned, we should use the resulting index names df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) result = df.apply(lambda x: Series([1, 2, 3], index=['test', 'other', 'cols']), axis=1) expected = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['test', 'other', 'cols']) assert_frame_equal(result, expected) result = df.apply( lambda x: pd.Series([1, 2], index=['test', 'other']), axis=1) expected = DataFrame( np.tile(np.arange(2, dtype='int64'), 6).reshape(6, -1) + 1, columns=['test', 'other']) assert_frame_equal(result, expected) def test_result_type(self): # result_type should be consistent no matter which # path we take in the code df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='expand') expected = df.copy() expected.columns = [0, 1, 2] assert_frame_equal(result, expected) result = df.apply(lambda x: [1, 2], axis=1, result_type='expand') expected = df[['A', 'B']].copy() expected.columns = [0, 1] assert_frame_equal(result, expected) # broadcast result result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='broadcast') expected = df.copy() assert_frame_equal(result, expected) columns = ['other', 'col', 'names'] result = df.apply( lambda x: pd.Series([1, 2, 3], index=columns), axis=1, result_type='broadcast') expected = df.copy() assert_frame_equal(result, expected) # series result result = df.apply(lambda x: Series([1, 2, 3], index=x.index), axis=1) expected = df.copy() assert_frame_equal(result, expected) # series result with other index columns = ['other', 'col', 'names'] result = df.apply( lambda x: pd.Series([1, 2, 3], index=columns), axis=1) expected = df.copy() expected.columns = columns assert_frame_equal(result, expected) @pytest.mark.parametrize("result_type", ['foo', 1]) def test_result_type_error(self, result_type): # allowed result_type df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) with pytest.raises(ValueError): df.apply(lambda x: [1, 2, 3], axis=1, result_type=result_type) @pytest.mark.parametrize( "box", [lambda x: list(x), lambda x: tuple(x), lambda x: np.array(x, dtype='int64')], ids=['list', 'tuple', 'array']) def test_consistency_for_boxed(self, box): # passing an array or list should not affect the output shape df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) result = df.apply(lambda x: box([1, 2]), axis=1) expected = Series([box([1, 2]) for t in df.itertuples()]) assert_series_equal(result, expected) result = df.apply(lambda x: box([1, 2]), axis=1, result_type='expand') expected = DataFrame( np.tile(np.arange(2, dtype='int64'), 6).reshape(6, -1) + 1) assert_frame_equal(result, expected) def zip_frames(frames, axis=1): """ take a list of frames, zip them together under the assumption that these all have the first frames' index/columns. Returns ------- new_frame : DataFrame """ if axis == 1: columns = frames[0].columns zipped = [f.loc[:, c] for c in columns for f in frames] return
pd.concat(zipped, axis=1)
pandas.concat
#!/usr/bin/env python import pandas as pd import argparse import datetime import time import sys import investpy scrap_delay = 2 def main(): parser = argparse.ArgumentParser(description='scrap investing.com daily close') parser.add_argument('-input_file', type=str, default='data_tickers/investing_stock_info.csv', help='input file') parser.add_argument('-output_prefix', type=str, default='../stock_data/raw_daily_investing_stock/investing_stock_', help='prefix of the output file') parser.add_argument('-date', type=str, help='Specify the date') args = parser.parse_args() if args.date is None: scrap_date = datetime.date.today() args.date = str(scrap_date) filename = args.output_prefix + args.date + '.csv' df_input =
pd.read_csv(args.input_file)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed Mar 13 08:58:04 2019 @author: <NAME> """ #################################################################### #Federal Columbia River Power System Model developed from HYSSR #This version operates on a daily time step. #################################################################### import numpy as np import pandas as pd import matplotlib.pyplot as plt def simulate(sim_years): def ismember(A,B): x = np.in1d(A,B) return 1 if x==True else 0 #Data input - select flows september 1 (244 julian date) #d=pd.read_excel('Synthetic_streamflows/BPA_hist_streamflow.xlsx',usecols=range(3,58), header=None, names=np.arange(0,55)) d=pd.read_csv('Synthetic_streamflows/synthetic_streamflows_FCRPS.csv',header=None) d = d.iloc[0:(sim_years+3)*365,:] d = d.iloc[243:len(d)-122,:] d= d.reset_index(drop=True) [r, c]= d.shape for i in range(0,r): for j in range(0,c): if np.isnan(d.iloc[i,j]) == True: d.iloc[i,j] = 0 no_days = int(len(d)) no_years = int(no_days/365) calender=pd.read_excel('PNW_hydro/FCRPS/daily_streamflows.xlsx','Calender',header=None) c=np.zeros((no_days,4)) for i in range(0,no_years): c[i*365:i*365+365,0] = calender.iloc[:,0] c[i*365:i*365+365,1] = calender.iloc[:,1] c[i*365:i*365+365,2] = calender.iloc[:,2] c[i*365:i*365+365,3] = calender.iloc[:,3]+i #month, day, year of simulation data months = c[:,0] days = c[:,1] julians = c[:,2] no_days = len(c) years = c[:,3] #Simulated Runoff ("local" flow accretions defined by USACE and BPA) local = d #%Project indices (consistent with HYSSR) #% No. Name HYSSR ID #% 0 MICA 1 #% 1 ARROW 2 #% 2 LIBBY 3 #% 3 DUNCAN 5 #% 4 <NAME> 6 #% 5 HUNGRY HORSE 10 #% 6 KERR 11 #% 7 <NAME> 16 #% 8 POST FALLS 18 #% 9 <NAME> 19 #% 10 CHELAN 20 #% 11 BROWNLEE 21 #% 12 DWORSHAK 31 #% 13 NOXON 38 #% 14 ROUND BUTTE 40 #% 15 REVELSTOKE 41 #% 16 SEVEN MILE 46 #% 17 BRILLIANT 50 #% 18 <NAME> 54 #% 19 CABINET GRGE 56 #% 20 BOX CANYON 57 #% 21 BOUNDARY 58 #% 22 WANETA 59 #% 23 UPPER FALLS 61 #% 24 MONROE ST 62 #% 25 NINE MILE 63 #% 26 LONG LAKE 64 #% 27 LITTLE FALLS 65 #% 28 <NAME> 66 #% 29 WELLS 67 #% 30 ROCKY REACH 68 #% 31 ROCK ISLAND 69 #% 32 WANAPUM 70 #% 33 PRIE<NAME> 71 #% 34 OXBOW 72 #% 35 LOWER GRANITE 76 #% 36 LITTLE GOOSE 77 #% 37 LOWER MONUMENTAL 78 #% 38 <NAME> 79 #% 39 MCNARY 80 #% 40 <NAME> 81 #% 41 DALLES 82 #% 42 BONNEVILLE 83 #% 43 <NAME> 84 #% 44 PELTON 95 #% 45 <NAME> 146 #% 46 <NAME> 400 #%Simulated unregulated flows for The Dalles. These flows are used to #%adjust rule curves for storage reservoirs. In reality, ESP FORECASTS are #%used-- but for now, the model assumes that BPA/USACE gets the forecast #%exactly right. TDA_unreg = d.iloc[:,47] ############ #%Additional input to fix the model # #%Fix No.1 Kerr Dam lack of input from CFM CFM5L= d.iloc[:,48] #%add to Kerr # #%Fix No.2 Lower Granite lack of input from 5 sources #%Following will be add ti LWG ORF5H= d.iloc[:,49] SPD5L= d.iloc[:,50] ANA5L= d.iloc[:,51] LIM5L= d.iloc[:,52] WHB5H= d.iloc[:,53] #% #%Fix No.3 lack of input McNary #% YAK5H= d.iloc[:,54] ############################################## ############################################## #%Flood control curves MCD_fc = pd.read_excel('PNW_hydro/FCRPS/res_specs2.xlsx',sheet_name='Mica_Daily',usecols='B:M',skiprows=3,header=None) ARD_fc = pd.read_excel('PNW_hydro/FCRPS/res_specs2.xlsx',sheet_name='Arrow_Daily',usecols='B:G',skiprows=3,header=None) LIB_fc = pd.read_excel('PNW_hydro/FCRPS/res_specs2.xlsx',sheet_name='Libby_Daily',usecols='B:F',skiprows=3,header=None) DNC_fc = pd.read_excel('PNW_hydro/FCRPS/res_specs2.xlsx',sheet_name='Duncan_Daily',usecols='B:F',skiprows=3,header=None) HHO_fc = pd.read_excel('PNW_hydro/FCRPS/res_specs2.xlsx',sheet_name='HungryHorse_Daily',usecols='B:I',skiprows=3,header=None) ALB_fc = pd.read_excel('PNW_hydro/FCRPS/res_specs2.xlsx',sheet_name='Albeni_Daily',usecols='B:C',skiprows=3,header=None) GCL_fc = pd.read_excel('PNW_hydro/FCRPS/res_specs2.xlsx',sheet_name='GrandCoulee_Daily',usecols='B:J',skiprows=3,header=None) BRN_fc = pd.read_excel('PNW_hydro/FCRPS/res_specs2.xlsx',sheet_name='Brownlee_Daily',usecols='B:U',skiprows=3,header=None) DWR_fc = pd.read_excel('PNW_hydro/FCRPS/res_specs2.xlsx',sheet_name='Dworshak_Daily',usecols='B:K',skiprows=3,header=None) #%Read Other CRCs LIB_CRC_hm3 = pd.read_excel('PNW_hydro/FCRPS/ORC.xlsx',sheet_name='LIB_CRC',header=None) LIB_ARC_hm3 = pd.read_excel('PNW_hydro/FCRPS/ORC.xlsx',sheet_name='LIB_ARC', header=None) #% COR_CRC_hm3 = pd.read_excel('ORC.xlsx','COR_CRC', 'A1:B365') HHO_CRC_hm3 = pd.read_excel('PNW_hydro/FCRPS/ORC.xlsx',sheet_name='HHO_CRC', header=None) HHO_ARC_hm3 = pd.read_excel('PNW_hydro/FCRPS/ORC.xlsx',sheet_name='HHO_ARC', header=None) #% KER_CRC_hm3 = pd.read_excel('ORC.xlsx','KER_CRC', 'A1:B365') ALF_CRC_hm3 = pd.read_excel('PNW_hydro/FCRPS/ORC.xlsx',sheet_name='ALF_CRC', header=None) ALF_ARC_hm3 = pd.read_excel('PNW_hydro/FCRPS/ORC.xlsx',sheet_name='ALF_ARC', header=None) GCL_CRC_hm3 = pd.read_excel('PNW_hydro/FCRPS/ORC.xlsx',sheet_name='GCL_CRC', header=None) GCL_ARC_hm3 = pd.read_excel('PNW_hydro/FCRPS/ORC.xlsx',sheet_name='GCL_ARC', header=None) #% CHL_CRC_hm3 = pd.read_excel('ORC.xlsx','CHL_CRC', 'A1:B365') BRN_CRC_hm3 = pd.read_excel('PNW_hydro/FCRPS/ORC.xlsx',sheet_name='BRN_CRC', header=None) BRN_ARC_hm3 = pd.read_excel('PNW_hydro/FCRPS/ORC.xlsx',sheet_name='BRN_ARC', header=None) DWR_CRC_hm3 = pd.read_excel('PNW_hydro/FCRPS/ORC.xlsx',sheet_name='DWR_CRC', header=None) DWR_ARC_hm3 =
pd.read_excel('PNW_hydro/FCRPS/ORC.xlsx',sheet_name='DWR_ARC', header=None)
pandas.read_excel
import operator from operator import methodcaller import numpy as np import numpy.testing as npt import pandas as pd import pandas.testing as tm import pytest import ibis import ibis.expr.datatypes as dt from ... import connect, execute pytestmark = pytest.mark.pandas def test_table_column(t, df): expr = t.plain_int64 result = expr.execute() expected = df.plain_int64 tm.assert_series_equal(result, expected) def test_literal(client): assert client.execute(ibis.literal(1)) == 1 def test_read_with_undiscoverable_type(client): with pytest.raises(TypeError): client.table('df') def test_selection(t, df): expr = t[ ((t.plain_strings == 'a') | (t.plain_int64 == 3)) & (t.dup_strings == 'd') ] result = expr.execute() expected = df[ ((df.plain_strings == 'a') | (df.plain_int64 == 3)) & (df.dup_strings == 'd') ].reset_index(drop=True) tm.assert_frame_equal(result[expected.columns], expected) def test_mutate(t, df): expr = t.mutate(x=t.plain_int64 + 1, y=t.plain_int64 * 2) result = expr.execute() expected = df.assign(x=df.plain_int64 + 1, y=df.plain_int64 * 2) tm.assert_frame_equal(result[expected.columns], expected) def test_project_scope_does_not_override(t, df): col = t.plain_int64 expr = t[ [ col.name('new_col'), col.sum() .over(ibis.window(group_by='dup_strings')) .name('grouped'), ] ] result = expr.execute() expected = pd.concat( [ df[['plain_int64', 'dup_strings']].rename( columns={'plain_int64': 'new_col'} ), df.groupby('dup_strings') .plain_int64.transform('sum') .reset_index(drop=True) .rename('grouped'), ], axis=1, )[['new_col', 'grouped']] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( 'where', [ lambda t: None, lambda t: t.dup_strings == 'd', lambda t: (t.dup_strings == 'd') | (t.plain_int64 < 100), ], ) @pytest.mark.parametrize( ('ibis_func', 'pandas_func'), [ (methodcaller('abs'), np.abs), (methodcaller('ceil'), np.ceil), (methodcaller('exp'), np.exp), (methodcaller('floor'), np.floor), (methodcaller('ln'), np.log), (methodcaller('log10'), np.log10), (methodcaller('log', 2), lambda x: np.log(x) / np.log(2)), (methodcaller('log2'), np.log2), (methodcaller('round', 0), lambda x: x.round(0).astype('int64')), (methodcaller('round', -2), methodcaller('round', -2)), (methodcaller('round', 2), methodcaller('round', 2)), (methodcaller('round'), lambda x: x.round().astype('int64')), (methodcaller('sign'), np.sign), (methodcaller('sqrt'), np.sqrt), ], ) def test_aggregation_group_by(t, df, where, ibis_func, pandas_func): ibis_where = where(t) expr = t.group_by(t.dup_strings).aggregate( avg_plain_int64=t.plain_int64.mean(where=ibis_where), sum_plain_float64=t.plain_float64.sum(where=ibis_where), mean_float64_positive=ibis_func(t.float64_positive).mean( where=ibis_where ), neg_mean_int64_with_zeros=(-t.int64_with_zeros).mean(where=ibis_where), nunique_dup_ints=t.dup_ints.nunique(), ) result = expr.execute() pandas_where = where(df) mask = slice(None) if pandas_where is None else pandas_where expected = ( df.groupby('dup_strings') .agg( { 'plain_int64': lambda x, mask=mask: x[mask].mean(), 'plain_float64': lambda x, mask=mask: x[mask].sum(), 'dup_ints': 'nunique', 'float64_positive': ( lambda x, mask=mask, func=pandas_func: func(x[mask]).mean() ), 'int64_with_zeros': lambda x, mask=mask: (-x[mask]).mean(), } ) .reset_index() .rename( columns={ 'plain_int64': 'avg_plain_int64', 'plain_float64': 'sum_plain_float64', 'dup_ints': 'nunique_dup_ints', 'float64_positive': 'mean_float64_positive', 'int64_with_zeros': 'neg_mean_int64_with_zeros', } ) ) # TODO(phillipc): Why does pandas not return floating point values here? expected['avg_plain_int64'] = expected.avg_plain_int64.astype('float64') result['avg_plain_int64'] = result.avg_plain_int64.astype('float64') expected[ 'neg_mean_int64_with_zeros' ] = expected.neg_mean_int64_with_zeros.astype('float64') result[ 'neg_mean_int64_with_zeros' ] = result.neg_mean_int64_with_zeros.astype('float64') expected['mean_float64_positive'] = expected.mean_float64_positive.astype( 'float64' ) result['mean_float64_positive'] = result.mean_float64_positive.astype( 'float64' ) lhs = result[expected.columns] rhs = expected tm.assert_frame_equal(lhs, rhs) def test_aggregation_without_group_by(t, df): expr = t.aggregate( avg_plain_int64=t.plain_int64.mean(), sum_plain_float64=t.plain_float64.sum(), ) result = expr.execute()[['avg_plain_int64', 'sum_plain_float64']] new_names = { 'plain_float64': 'sum_plain_float64', 'plain_int64': 'avg_plain_int64', } expected = ( pd.Series( [df['plain_int64'].mean(), df['plain_float64'].sum()], index=['plain_int64', 'plain_float64'], ) .to_frame() .T.rename(columns=new_names) ) tm.assert_frame_equal(result[expected.columns], expected) def test_group_by_with_having(t, df): expr = ( t.group_by(t.dup_strings) .having(t.plain_float64.sum() == 5) .aggregate(avg_a=t.plain_int64.mean(), sum_c=t.plain_float64.sum()) ) result = expr.execute() expected = ( df.groupby('dup_strings') .agg({'plain_int64': 'mean', 'plain_float64': 'sum'}) .reset_index() .rename(columns={'plain_int64': 'avg_a', 'plain_float64': 'sum_c'}) ) expected = expected.loc[expected.sum_c == 5, ['avg_a', 'sum_c']] tm.assert_frame_equal(result[expected.columns], expected) def test_group_by_rename_key(t, df): expr = t.groupby(t.dup_strings.name('foo')).aggregate( dup_string_count=t.dup_strings.count() ) assert 'foo' in expr.schema() result = expr.execute() assert 'foo' in result.columns expected = ( df.groupby('dup_strings') .dup_strings.count() .rename('dup_string_count') .reset_index() .rename(columns={'dup_strings': 'foo'}) ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('reduction', ['mean', 'sum', 'count', 'std', 'var']) @pytest.mark.parametrize( 'where', [ lambda t: (t.plain_strings == 'a') | (t.plain_strings == 'c'), lambda t: (t.dup_strings == 'd') & ((t.plain_int64 == 1) | (t.plain_int64 == 3)), lambda t: None, ], ) def test_reduction(t, df, reduction, where): func = getattr(t.plain_int64, reduction) mask = where(t) expr = func(where=mask) result = expr.execute() df_mask = where(df) expected_func = getattr( df.loc[df_mask if df_mask is not None else slice(None), 'plain_int64'], reduction, ) expected = expected_func() assert result == expected @pytest.mark.parametrize( 'reduction', [ lambda x: x.any(), lambda x: x.all(), lambda x: ~(x.any()), lambda x: ~(x.all()), ], ) def test_boolean_aggregation(t, df, reduction): expr = reduction(t.plain_int64 == 1) result = expr.execute() expected = reduction(df.plain_int64 == 1) assert result == expected @pytest.mark.parametrize('column', ['float64_with_zeros', 'int64_with_zeros']) def test_null_if_zero(t, df, column): expr = t[column].nullifzero() result = expr.execute() expected = df[column].replace(0, np.nan) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( ('left', 'right', 'expected', 'compare'), [ pytest.param( lambda t: ibis.literal(1), lambda t: ibis.literal(1), lambda df: np.nan, np.testing.assert_array_equal, # treats NaNs as equal id='literal_literal_equal', ), pytest.param( lambda t: ibis.literal(1), lambda t: ibis.literal(2), lambda df: 1, np.testing.assert_equal, id='literal_literal_not_equal', ), pytest.param( lambda t: t.dup_strings, lambda t: ibis.literal('a'), lambda df: df.dup_strings.where(df.dup_strings != 'a'), tm.assert_series_equal, id='series_literal', ), pytest.param( lambda t: t.dup_strings, lambda t: t.dup_strings, lambda df: df.dup_strings.where(df.dup_strings != df.dup_strings), tm.assert_series_equal, id='series_series', ), pytest.param( lambda t: ibis.literal('a'), lambda t: t.dup_strings, lambda df: pd.Series( np.where(df.dup_strings == 'a', np.nan, 'a'), index=df.index ), tm.assert_series_equal, id='literal_series', ), ], ) def test_nullif(t, df, left, right, expected, compare): expr = left(t).nullif(right(t)) result = execute(expr) compare(result, expected(df)) def test_nullif_inf(): df = pd.DataFrame({'a': [np.inf, 3.14, -np.inf, 42.0]}) con = connect({'t': df}) t = con.table('t') expr = t.a.nullif(np.inf).nullif(-np.inf) result = expr.execute() expected = pd.Series([np.nan, 3.14, np.nan, 42.0], name='a') tm.assert_series_equal(result, expected) def test_group_concat(t, df): expr = t.groupby(t.dup_strings).aggregate( foo=t.plain_int64.group_concat(',') ) result = expr.execute() expected = ( df.groupby('dup_strings') .apply(lambda df: ','.join(df.plain_int64.astype(str))) .reset_index() .rename(columns={0: 'foo'}) ) tm.assert_frame_equal(result[expected.columns], expected) @pytest.mark.parametrize('offset', [0, 2]) def test_frame_limit(t, df, offset): n = 5 df_expr = t.limit(n, offset=offset) result = df_expr.execute() expected = df.iloc[offset : offset + n].reset_index(drop=True) tm.assert_frame_equal(result[expected.columns], expected) @pytest.mark.xfail( raises=AttributeError, reason='TableColumn does not implement limit' ) @pytest.mark.parametrize('offset', [0, 2]) def test_series_limit(t, df, offset): n = 5 s_expr = t.plain_int64.limit(n, offset=offset) result = s_expr.execute() tm.assert_series_equal(result, df.plain_int64.iloc[offset : offset + n]) @pytest.mark.parametrize( ('key', 'pandas_by', 'pandas_ascending'), [ (lambda t, col: [ibis.desc(t[col])], lambda col: [col], False), ( lambda t, col: [t[col], ibis.desc(t.plain_int64)], lambda col: [col, 'plain_int64'], [True, False], ), ( lambda t, col: [ibis.desc(t.plain_int64 * 2)], lambda col: ['plain_int64'], False, ), ], ) @pytest.mark.parametrize( 'column', ['plain_datetimes_naive', 'plain_datetimes_ny', 'plain_datetimes_utc'], ) def test_sort_by(t, df, column, key, pandas_by, pandas_ascending): expr = t.sort_by(key(t, column)) result = expr.execute() expected = df.sort_values( pandas_by(column), ascending=pandas_ascending ).reset_index(drop=True) tm.assert_frame_equal(result[expected.columns], expected) def test_complex_sort_by(t, df): expr = t.sort_by( [ibis.desc(t.plain_int64 * t.plain_float64), t.plain_float64] ) result = expr.execute() expected = ( df.assign(foo=df.plain_int64 * df.plain_float64) .sort_values(['foo', 'plain_float64'], ascending=[False, True]) .drop(['foo'], axis=1) .reset_index(drop=True) ) tm.assert_frame_equal(result[expected.columns], expected) def test_distinct(t, df): expr = t.dup_strings.distinct() result = expr.execute() expected = pd.Series(df.dup_strings.unique(), name='dup_strings') tm.assert_series_equal(result, expected) def test_count_distinct(t, df): expr = t.dup_strings.nunique() result = expr.execute() expected = df.dup_strings.nunique() assert result == expected def test_value_counts(t, df): expr = t.dup_strings.value_counts() result = expr.execute() expected = ( df.dup_strings.value_counts() .reset_index() .rename(columns={'dup_strings': 'count'}) .rename(columns={'index': 'dup_strings'}) .sort_values(['dup_strings']) .reset_index(drop=True) ) tm.assert_frame_equal(result[expected.columns], expected) def test_table_count(t, df): expr = t.count() result = expr.execute() expected = len(df) assert result == expected def test_weighted_average(t, df): expr = t.groupby(t.dup_strings).aggregate( avg=(t.plain_float64 * t.plain_int64).sum() / t.plain_int64.sum() ) result = expr.execute() expected = ( df.groupby('dup_strings') .apply( lambda df: (df.plain_int64 * df.plain_float64).sum() / df.plain_int64.sum() ) .reset_index() .rename(columns={0: 'avg'}) ) tm.assert_frame_equal(result[expected.columns], expected) def test_group_by_multiple_keys(t, df): expr = t.groupby([t.dup_strings, t.dup_ints]).aggregate( avg_plain_float64=t.plain_float64.mean() ) result = expr.execute() expected = ( df.groupby(['dup_strings', 'dup_ints']) .agg({'plain_float64': 'mean'}) .reset_index() .rename(columns={'plain_float64': 'avg_plain_float64'}) ) tm.assert_frame_equal(result[expected.columns], expected) def test_mutate_after_group_by(t, df): gb = t.groupby(t.dup_strings).aggregate( avg_plain_float64=t.plain_float64.mean() ) expr = gb.mutate(x=gb.avg_plain_float64) result = expr.execute() expected = ( df.groupby('dup_strings') .agg({'plain_float64': 'mean'}) .reset_index() .rename(columns={'plain_float64': 'avg_plain_float64'}) ) expected = expected.assign(x=expected.avg_plain_float64) tm.assert_frame_equal(result[expected.columns], expected) def test_groupby_with_unnamed_arithmetic(t, df): expr = t.groupby(t.dup_strings).aggregate( naive_variance=( (t.plain_float64 ** 2).sum() - t.plain_float64.mean() ** 2 ) / t.plain_float64.count() ) result = expr.execute() expected = ( df.groupby('dup_strings') .agg( { 'plain_float64': lambda x: ((x ** 2).sum() - x.mean() ** 2) / x.count() } ) .reset_index() .rename(columns={'plain_float64': 'naive_variance'}) ) tm.assert_frame_equal(result[expected.columns], expected) def test_isnull(t, df): expr = t.strings_with_nulls.isnull() result = expr.execute() expected = df.strings_with_nulls.isnull() tm.assert_series_equal(result, expected) def test_notnull(t, df): expr = t.strings_with_nulls.notnull() result = expr.execute() expected = df.strings_with_nulls.notnull()
tm.assert_series_equal(result, expected)
pandas.testing.assert_series_equal
import numpy as np import six.moves.cPickle as pickle import gzip import os def load_mnist_data(dataset): """ Load the dataset Code adapted from http://deeplearning.net/tutorial/code/logistic_sgd.py :type dataset: string :param dataset: the path to the dataset (here MNIST) """ # Download the MNIST dataset if it is not present data_dir, data_file = os.path.split(dataset) if data_dir == "" and not os.path.isfile(dataset): # Check if dataset is in the data directory. new_path = os.path.join( os.path.split(__file__)[0], dataset ) if os.path.isfile(new_path) or data_file == 'mnist.pkl.gz': dataset = new_path if (not os.path.isfile(dataset)) and data_file == 'mnist.pkl.gz': from six.moves import urllib origin = ( 'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz' ) print('Downloading data from %s' % origin) urllib.request.urlretrieve(origin, dataset) # Load the dataset with gzip.open(dataset, 'rb') as f: try: train_set, valid_set, test_set = pickle.load(f, encoding='latin1') except: train_set, valid_set, test_set = pickle.load(f) # train_set, valid_set, test_set format: tuple(input, target) # input is a numpy.ndarray of 2 dimensions (a matrix), np.float32 # where each row corresponds to an example. target is a # numpy.ndarray of 1 dimension (vector), np.int64 that has the same length # as the number of rows in the input. It should give the target # to the example with the same index in the input. return train_set, valid_set, test_set def convert_to_one_hot(vals, max_val=0): """Helper method to convert label array to one-hot array.""" if max_val == 0: max_val = vals.max() + 1 one_hot_vals = np.zeros((vals.size, max_val)) one_hot_vals[np.arange(vals.size), vals] = 1 return one_hot_vals ########################################################################### # adult ########################################################################### def maybe_download(train_data, test_data): import pandas as pd """if adult data "train.csv" and "test.csv" are not in your directory, download them. """ COLUMNS = ["age", "workclass", "fnlwgt", "education", "education_num", "marital_status", "occupation", "relationship", "race", "gender", "capital_gain", "capital_loss", "hours_per_week", "native_country", "income_bracket"] if not os.path.exists(train_data): print("downloading training data...") df_train = pd.read_csv("http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data", names=COLUMNS, skipinitialspace=True) else: df_train = pd.read_csv("train.csv") if not os.path.exists(test_data): print("downloading testing data...") df_test = pd.read_csv("http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test", names=COLUMNS, skipinitialspace=True, skiprows=1) else: df_test = pd.read_csv("test.csv") return df_train, df_test def cross_columns(x_cols): """simple helper to build the crossed columns in a pandas dataframe """ crossed_columns = dict() colnames = ['_'.join(x_c) for x_c in x_cols] for cname, x_c in zip(colnames, x_cols): crossed_columns[cname] = x_c return crossed_columns def val2idx(df, cols): """helper to index categorical columns before embeddings. """ val_types = dict() for c in cols: val_types[c] = df[c].unique() val_to_idx = dict() for k, v in val_types.items(): val_to_idx[k] = {o: i for i, o in enumerate(val_types[k])} for k, v in val_to_idx.items(): df[k] = df[k].apply(lambda x: v[x]) unique_vals = dict() for c in cols: unique_vals[c] = df[c].nunique() return df, unique_vals def onehot(x): from sklearn.preprocessing import OneHotEncoder return np.array(OneHotEncoder().fit_transform(x).todense()) def wide(df_train, df_test, wide_cols, x_cols, target): import pandas as pd print('Processing wide data') df_train['IS_TRAIN'] = 1 df_test['IS_TRAIN'] = 0 df_wide = pd.concat([df_train, df_test]) crossed_columns_d = cross_columns(x_cols) categorical_columns = list( df_wide.select_dtypes(include=['object']).columns) wide_cols += list(crossed_columns_d.keys()) for k, v in crossed_columns_d.items(): df_wide[k] = df_wide[v].apply(lambda x: '-'.join(x), axis=1) df_wide = df_wide[wide_cols + [target] + ['IS_TRAIN']] dummy_cols = [ c for c in wide_cols if c in categorical_columns + list(crossed_columns_d.keys())] df_wide = pd.get_dummies(df_wide, columns=[x for x in dummy_cols]) train = df_wide[df_wide.IS_TRAIN == 1].drop('IS_TRAIN', axis=1) test = df_wide[df_wide.IS_TRAIN == 0].drop('IS_TRAIN', axis=1) assert all(train.columns == test.columns) cols = [c for c in train.columns if c != target] X_train = train[cols].values y_train = train[target].values.reshape(-1, 1) X_test = test[cols].values y_test = test[target].values.reshape(-1, 1) return X_train, y_train, X_test, y_test def load_adult_data(return_val=True): import pandas as pd df_train, df_test = maybe_download("train.csv", "test.csv") df_train['income_label'] = ( df_train["income_bracket"].apply(lambda x: ">50K" in x)).astype(int) df_test['income_label'] = ( df_test["income_bracket"].apply(lambda x: ">50K" in x)).astype(int) age_groups = [0, 25, 65, 90] age_labels = range(len(age_groups) - 1) df_train['age_group'] = pd.cut( df_train['age'], age_groups, labels=age_labels) df_test['age_group'] = pd.cut( df_test['age'], age_groups, labels=age_labels) # columns for wide model wide_cols = ['workclass', 'education', 'marital_status', 'occupation', 'relationship', 'race', 'gender', 'native_country', 'age_group'] x_cols = (['education', 'occupation'], ['native_country', 'occupation']) # columns for deep model embedding_cols = ['workclass', 'education', 'marital_status', 'occupation', 'relationship', 'race', 'gender', 'native_country'] cont_cols = ['age', 'capital_gain', 'capital_loss', 'hours_per_week'] target = 'income_label' x_train_wide, y_train_wide, x_test_wide, y_test_wide = wide( df_train, df_test, wide_cols, x_cols, target) x_train_wide = np.array(x_train_wide).astype(np.float32) x_test_wide = np.array(x_test_wide).astype(np.float32) print('Processing deep data') df_train['IS_TRAIN'] = 1 df_test['IS_TRAIN'] = 0 df_deep =
pd.concat([df_train, df_test])
pandas.concat
import os from scipy.io import loadmat import numpy as np import pandas as pd import torch from sklearn.model_selection import train_test_split from datasets.SequenceDatasets import dataset from datasets.sequence_aug import * from tqdm import tqdm from itertools import islice #Digital data was collected at 12,000 samples per second signal_size = 1024 work_condition=['_20_0.csv','_30_2.csv'] dataname= {0:[os.path.join('bearingset','health'+work_condition[0]), os.path.join('gearset','Health'+work_condition[0]), os.path.join('bearingset','ball'+work_condition[0]), os.path.join('bearingset','outer'+work_condition[0]), os.path.join('bearingset', 'inner' + work_condition[0]), os.path.join('bearingset', 'comb' + work_condition[0]), os.path.join('gearset', 'Chipped' + work_condition[0]), os.path.join('gearset', 'Miss' + work_condition[0]), os.path.join('gearset', 'Surface' + work_condition[0]), os.path.join('gearset', 'Root' + work_condition[0]), ], 1:[os.path.join('bearingset','health'+work_condition[1]), os.path.join('gearset','Health'+work_condition[1]), os.path.join('bearingset','ball'+work_condition[1]), os.path.join('bearingset','outer'+work_condition[1]), os.path.join('bearingset', 'inner' + work_condition[1]), os.path.join('bearingset', 'comb' + work_condition[1]), os.path.join('gearset', 'Chipped' + work_condition[1]), os.path.join('gearset', 'Miss' + work_condition[1]), os.path.join('gearset', 'Surface' + work_condition[1]), os.path.join('gearset', 'Root' + work_condition[1]), ] } label = [i for i in range(0, 9)] def get_files(root, N): ''' This function is used to generate the final training set and test set. root:The location of the data set ''' data = [] lab =[] for k in range(len(N)): for n in tqdm(range(len(dataname[N[k]]))): path1 = os.path.join(root, dataname[N[k]][n]) if n==0: data1, lab1 = data_load(path1, label=label[n]) else: data1, lab1 = data_load(path1, label=label[n-1]) data += data1 lab +=lab1 return [data, lab] def data_load(filename, label): ''' This function is mainly used to generate test data and training data. filename:Data location axisname:Select which channel's data,---->"_DE_time","_FE_time","_BA_time" ''' #-------------------- f = open(filename, "r", encoding='gb18030', errors='ignore') fl = [] if "ball_20_0.csv" in filename: for line in islice(f, 16, None): # Skip the first 16 lines line = line.rstrip() word = line.split(",", 8) # Separated by commas fl.append(eval(word[1])) # Take a vibration signal in the x direction as input else: for line in islice(f, 16, None): # Skip the first 16 lines line = line.rstrip() word = line.split("\t", 8) # Separated by \t fl.append(eval(word[1])) # Take a vibration signal in the x direction as input #-------------------- fl = np.array(fl) fl = fl.reshape(-1, 1) # print(fl.shape()) data = [] lab = [] start, end = int(fl.shape[0]/2), int(fl.shape[0]/2)+signal_size while end <= (int(fl.shape[0]/2)+int(fl.shape[0]/3)): data.append(fl[start:end]) lab.append(label) start += signal_size end += signal_size return data, lab #-------------------------------------------------------------------------------------------------------------------- class Md(object): num_classes = 9 inputchannel = 1 def __init__(self, data_dir, transfer_task, normlizetype="0-1"): self.data_dir = data_dir self.source_N = transfer_task[0] self.target_N = transfer_task[1] self.normlizetype = normlizetype self.data_transforms = { 'train': Compose([ Reshape(), Normalize(self.normlizetype), # RandomAddGaussian(), # RandomScale(), # RandomStretch(), # RandomCrop(), Retype(), # Scale(1) ]), 'val': Compose([ Reshape(), Normalize(self.normlizetype), Retype(), # Scale(1) ]) } def data_split(self, transfer_learning=True): if transfer_learning: # get source train and val list_data = get_files(self.data_dir, self.source_N) data_pd = pd.DataFrame({"data": list_data[0], "label": list_data[1]}) train_pd, val_pd = train_test_split(data_pd, test_size=0.2, random_state=40, stratify=data_pd["label"]) source_train = dataset(list_data=train_pd, transform=self.data_transforms['train']) source_val = dataset(list_data=val_pd, transform=self.data_transforms['val']) # get target train and val list_data = get_files(self.data_dir, self.target_N) data_pd = pd.DataFrame({"data": list_data[0], "label": list_data[1]}) train_pd, val_pd = train_test_split(data_pd, test_size=0.2, random_state=40, stratify=data_pd["label"]) target_train = dataset(list_data=train_pd, transform=self.data_transforms['train']) target_val = dataset(list_data=val_pd, transform=self.data_transforms['val']) return source_train, source_val, target_train, target_val else: #get source train and val list_data = get_files(self.data_dir, self.source_N) data_pd =
pd.DataFrame({"data": list_data[0], "label": list_data[1]})
pandas.DataFrame
# -*- coding: utf-8 -*- import string import pickle import pandas as pd from nltk import FreqDist from nltk.stem import SnowballStemmer from nltk.corpus import stopwords as StopWords from nltk.tokenize import sent_tokenize, word_tokenize import numpy as np def normalize(words, language = 'english'): # removes stopwords, lowercases, removes non-alphanumerics and stems (snowball) # words: list of strings # assert not isinstance(lst, basestring) def ispunctuation(word): punctuation = string.punctuation + "„“”—–" for letter in word: if not letter in punctuation: return False return True stopwords = StopWords.words(language) stemmer = SnowballStemmer(language) #lowercase all terms words = [w.lower() for w in words] #remove stopwords words = [w for w in words if not w in stopwords] # stem (snowball) words = [stemmer.stem(w) for w in words] # remove all numerical terms words = [w for w in words if not w.isnumeric()] # remove pure punctuations words = [w for w in words if not ispunctuation(w)] #remove short words words = [w for w in words if not len(w) < 3] return words def frequency_threshold(tokens, fqt = 10): """Return only those WORDS (i.e. unique wordforms) that appear more frequent than @fqt""" fq = FreqDist(tokens) fqt = fqt - 1 words = list( filter( lambda x: x[1] > fqt, fq.items() ) ) words = [item[0] for item in words] return words def remove_word_pairs_not_in_corpus(word_pairs, words, language = 'english'): """Only return those word pairs in @word_pairs of which both words are in @words Expects @words to already be normalized""" if not (word_pairs and words): raise ValueError('Cannot remove word_pairs, array empty') return_word_pairs = [] for pair in word_pairs: pair_in_words = True for word in pair: word = normalize([word], language)[0] if word not in words: pair_in_words = False if pair_in_words: return_word_pairs.append(pair) return return_word_pairs def remove_words_not_in_list(word_list, words, language = 'english'): """Only return those strings of @word_list that are also in @words Expects @words to already be normalized """ if not (word_list and words): raise ValueError('Cannot remove word_pairs, array empty') word_list = [w for w in word_list if normalize([w], language)[0] in words] return word_list def printprettymatrix(M, rns = None, cns = None, filename = None): """Prints a Matrix with row and columns labels Matrix should be dense. Arguments: M -- Matrix to print rns -- Row labels cns -- Columnn labels Optional plotz says to frobnicate the bizbaz first. """ df = pd.DataFrame(M, columns=cns, index=rns) pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pandas.set_option
import pandas as pd import transformers import datasets import shap import pickle dataset = datasets.load_dataset("emotion", split="train") data =
pd.DataFrame({"text": dataset["text"], "emotion": dataset["label"]})
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon May 29 13:56:29 2017 @author: ning """ import pandas as pd import os import numpy as np #from sklearn.model_selection import StratifiedKFold,KFold #from sklearn.pipeline import Pipeline #from sklearn.preprocessing import StandardScaler #from sklearn.linear_model import LogisticRegressionCV #from sklearn.metrics import roc_curve,precision_recall_curve,auc,average_precision_score,confusion_matrix import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams.update({'font.size':22}) matplotlib.rcParams['legend.numpoints'] = 1 import seaborn as sns sns.set_style('white') try: function_dir = 'D:\\NING - spindle\\Spindle_by_Graphical_Features' os.chdir(function_dir) except: function_dir = 'C:\\Users\\ning\\OneDrive\\python works\\Spindle_by_Graphical_Features' os.chdir(function_dir) #import eegPipelineFunctions try: file_dir = 'D:\\NING - spindle\\training set\\road_trip\\' # file_dir = 'D:\\NING - spindle\\training set\\road_trip_more_channels\\' os.chdir(file_dir) except: file_dir = 'C:\\Users\\ning\\Downloads\\road_trip\\' # file_dir = 'C:\\Users\\ning\\Downloads\\road_trip_more_channels\\' os.chdir(file_dir) def average(x): x = x[1:-1].split(', ') x = np.array(x,dtype=float) return np.nanmean(x) figsize = 6 signal_features_indivisual_results_RF=pd.read_csv(file_dir+'individual_signal_feature_RF.csv') signal_features_indivisual_results_RF['clf']='Random Forest' graph_features_indivisual_results_RF=
pd.read_csv(file_dir+'individual_graph_feature_RF.csv')
pandas.read_csv
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_preprocessing ---------------------------------- Tests for `preprocessing` module. """ import pytest from sktutor.preprocessing import (GroupByImputer, MissingValueFiller, OverMissingThresholdDropper, ValueReplacer, FactorLimiter, SingleValueAboveThresholdDropper, SingleValueDropper, ColumnExtractor, ColumnDropper, DummyCreator, ColumnValidator, TextContainsDummyExtractor, BitwiseOperator, BoxCoxTransformer, InteractionCreator, StandardScaler, PolynomialFeatures, ContinuousFeatureBinner, TypeExtractor, GenericTransformer, MissingColumnsReplacer) from sktutor.pipeline import make_union import numpy as np import pandas as pd import pandas.util.testing as tm from random import shuffle from sklearn.pipeline import make_pipeline @pytest.mark.usefixtures("missing_data") @pytest.mark.usefixtures("missing_data2") class TestGroupByImputer(object): def test_groups_most_frequent(self, missing_data): # Test imputing most frequent value per group. prep = GroupByImputer('most_frequent', 'b') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 1.0, 4.0, 4.0, 4.0, 7.0, 9.0, 9.0, 9.0], 'd': ['a', 'a', 'a', None, 'e', 'f', 'j', 'h', 'j', 'j'], 'e': [1, 2, 1, None, None, None, None, None, None, None], 'f': ['a', 'b', 'a', None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'a'], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_groups_mean(self, missing_data): # Test imputing mean by group. prep = GroupByImputer('mean', 'b') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 7 + 2/3, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 1.5, 4.0, 4.0, 4.0, 7.0, 9.0, 8+1/3, 9.0], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_groups_median(self, missing_data): # Test imputing median by group. prep = GroupByImputer('median', 'b') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, 1.5, 4, 4, 4, 7, 9, 9, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_all_most_frequent(self, missing_data): # Test imputing most frequent with no group by. prep = GroupByImputer('most_frequent') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, 2, 4, 4, 7, 8, 2, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 4.0, 4.0, 4.0, 4.0, 7.0, 9.0, 4.0, 9.0], 'd': ['a', 'a', 'a', 'a', 'e', 'f', 'a', 'h', 'j', 'j'], 'e': [1, 2, 1, 1, 1, 1, 1, 1, 1, 1], 'f': ['a', 'b', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'a'], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_all_mean(self, missing_data): # Test imputing mean with no group by. prep = GroupByImputer('mean') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 5, 5, 4, 4, 7, 8, 5, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, 5, 4, 4, 4, 7, 9, 5, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_all_median(self, missing_data): # Test imputing median with no group by. prep = GroupByImputer('median') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 4, 4, 4, 4, 7, 8, 4, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, 4, 4, 4, 4, 7, 9, 4, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_value_error(self, missing_data): # Test limiting options without a group by. prep = GroupByImputer('stdev') with pytest.raises(ValueError): prep.fit(missing_data) def test_key_error(self, missing_data): # Test imputing with np.nan when a new group level is introduced in # Transform. prep = GroupByImputer('mean', 'b') prep.fit(missing_data) new_dict = {'a': [2, 2, None, None, 4, 4, 7, 8, None, 8], 'b': ['123', '123', '123', '987', '987', '456', '789', '789', '789', '789'], 'c': [1, 2, None, 4, 4, 4, 7, 9, None, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, None, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } new_data = pd.DataFrame(new_dict) # set equal to the expected for test means group exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 7+2/3, 8], 'b': ['123', '123', '123', '987', '987', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 1.5, 4.0, 4.0, 4.0, 7.0, 9.0, 8+1/3, 9.0], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) result = prep.transform(new_data) tm.assert_frame_equal(result, expected, check_dtype=False) def test_2groups_most_frequent(self, missing_data2): # Test most frequent with group by with 2 columns. prep = GroupByImputer('most_frequent', ['b', 'c']) prep.fit(missing_data2) result = prep.transform(missing_data2) exp_dict = {'a': [1, 2, 1, 4, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '123', '123', '789', '789', '789', '789', '789'], 'c': ['a', 'a', 'a', 'b', 'b', 'c', 'c', 'a', 'a', 'c'], 'd': ['a', 'a', 'a', 'e', 'e', 'f', 'f', 'h', 'j', 'j'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_2groups_mean(self, missing_data2): # Test mean with group by with 2 columns. prep = GroupByImputer('mean', ['b', 'c']) prep.fit(missing_data2) result = prep.transform(missing_data2) exp_dict = {'a': [1, 2, 1.5, 4, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '123', '123', '789', '789', '789', '789', '789'], 'c': ['a', 'a', 'a', 'b', 'b', 'c', 'c', 'a', 'a', 'c'], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_2groups_median(self, missing_data2): # Test median with group by with 2 columns. prep = GroupByImputer('median', ['b', 'c']) prep.fit(missing_data2) result = prep.transform(missing_data2) exp_dict = {'a': [1, 2, 1.5, 4, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '123', '123', '789', '789', '789', '789', '789'], 'c': ['a', 'a', 'a', 'b', 'b', 'c', 'c', 'a', 'a', 'c'], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_unordered_index(self, missing_data): # Test unordered index is handled properly new_index = list(missing_data.index) shuffle(new_index) missing_data.index = new_index prep = GroupByImputer('most_frequent', 'b') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 1.0, 4.0, 4.0, 4.0, 7.0, 9.0, 9.0, 9.0], 'd': ['a', 'a', 'a', None, 'e', 'f', 'j', 'h', 'j', 'j'], 'e': [1, 2, 1, None, None, None, None, None, None, None], 'f': ['a', 'b', 'a', None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'a'], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'] } expected = pd.DataFrame(exp_dict, index=new_index)
tm.assert_frame_equal(result, expected, check_dtype=False)
pandas.util.testing.assert_frame_equal
#/*########################################################################## # Copyright (C) 2020-2021 The University of Lorraine - France # # This file is part of the PyRecon toolkit developed at the GeoRessources # Laboratory of the University of Lorraine, France. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ # -*- coding: utf-8 -*- from os.path import join from pkgs.SpectraPreProcessing import * import numpy as np import pandas as pd import os import re import json ''' ''' class XRF(SpectraPreProcessing): def __init__(self, AdressFolder, Name): SpectraPreProcessing.__init__(self,AdressFolder) self.Name = Name def NameSpectrumColumns(self): '''Returns List of tuples containing the names of each column ''' ColomnsName = ["KeV", "Main Range", "Low Range", "High Range", "Light Range"] Name = [self.NameColumn(SampleName = self.Name, ColomnName = ["_",w]) for w in ColomnsName] return Name def Read_spectrum(self): ''' ''' File = self.FilePath(self.Name) Sep = self.Separator(Extension = self.FileExtension(self.Name)) #df = pd.read_csv(File, header = 0, sep = Sep, index_col = False,low_memory=False) index_col df = pd.read_csv(File, header = 0, sep = Sep, index_col = False,low_memory=False) return df #def Read_spectrums(self): # ''' Returns Data Frame that concatenate all spectrums in the folder. ''' # global df # Names = self.NameFiles() # DF = [XRF(self.AdressFolder, Names[i]).Read_spectrum() for i in range(len(Names))] # df = DF[0][DF[0].columns[0]].to_frame() # for i in range(len(DF)): # df = df.join(DF[i][DF[i].columns[1::]]) # return df ######################################### Extruction of Spectrums ######################################### def SelectXrfSamplesName(self): ''' Return the sample names in Xrf spectrums > DataFrame : is the imported csv file contining all xrf spectrums. ''' DataFrame = self.Read_spectrum() id_sample = [name[0:name.find("(")] for name in DataFrame.columns[1::]] SamplesName = [item for item, count in collections.Counter(id_sample).items()] return SamplesName def SelectXrfColumnsName(self): ''' Return list of extracted spectrums > DataFrame : is the imported csv file contining all xrf spectrums. > XrfColumnsName : the samples name generated by the function "SelectXrfColumnsName". ''' DataFrame = self.Read_spectrum() SamplesName = self.SelectXrfSamplesName() NameColumns = list() for i in range(len(SamplesName)): NameColumns.append([name for name in DataFrame.columns.to_list() if name.startswith(SamplesName[i] + "(") ]) return NameColumns def SelectXrfColumnsFilters(self): ''' Ruturn the sample names in Xrf spectrums ''' DataFrame = self.Read_spectrum() SamplesName = self.SelectXrfSamplesName() NameFIlters = list() for i in range(len(SamplesName)): NameFIlters.append([name[len(SamplesName[i])::] for name in DataFrame.columns.to_list() if name.startswith(SamplesName[i]+ "(") ]) return NameFIlters def NameXRFSpectrumColumns(self,SamplesName,ColumnsFilters): ''' list tuples for naming each xrf spectrum ''' listOfTuples = [tuple([SamplesName,"_",w]) for w in ColumnsFilters] return listOfTuples def ExtractSpectrums(self): ''' Return Liste of all Spectrums ''' DataFrame = self.Read_spectrum() SamplesName = self.SelectXrfSamplesName() ColumnsName = self.SelectXrfColumnsName() ColumnsFilters = self.SelectXrfColumnsFilters() Names = [self.NameXRFSpectrumColumns(SamplesName[i],ColumnsFilters[i]) for i in range(len(SamplesName))] first_column_name = pd.MultiIndex.from_tuples([("_","_","kev")]) first_column =
pd.DataFrame(DataFrame[DataFrame.columns[0]].values, columns=first_column_name)
pandas.DataFrame
from scipy.optimize import fsolve as _fsolve from scipy import signal as _signal import pandas as pd import numpy as np from scipy import stats ### Spectrum def elevation_spectrum(eta, sample_rate, nnft, window='hann', detrend=True, noverlap=None): """ Calculates the wave energy spectrum from wave elevation time-series Parameters ------------ eta: pandas DataFrame Wave surface elevation [m] indexed by time [datetime or s] sample_rate: float Data frequency [Hz] nnft: integer Number of bins in the Fast Fourier Transform window: string (optional) Signal window type. 'hann' is used by default given the broadband nature of waves. See scipy.signal.get_window for more options. detrend: bool (optional) Specifies if a linear trend is removed from the data before calculating the wave energy spectrum. Data is detrended by default. noverlap: int, optional Number of points to overlap between segments. If None, ``noverlap = nperseg / 2``. Defaults to None. Returns --------- S: pandas DataFrame Spectral density [m^2/Hz] indexed by frequency [Hz] """ # TODO: Add confidence intervals, equal energy frequency spacing, and NDBC # frequency spacing # TODO: may need an assert for the length of nnft- signal.welch breaks when nfft is too short # TODO: check for uniform sampling assert isinstance(eta, pd.DataFrame), 'eta must be of type pd.DataFrame' assert isinstance(sample_rate, (float,int)), 'sample_rate must be of type int or float' assert isinstance(nnft, int), 'nnft must be of type int' assert isinstance(window, str), 'window must be of type str' assert isinstance(detrend, bool), 'detrend must be of type bool' assert nnft > 0, 'nnft must be > 0' assert sample_rate > 0, 'sample_rate must be > 0' S = pd.DataFrame() for col in eta.columns: data = eta[col] if detrend: data = _signal.detrend(data.dropna(), axis=-1, type='linear', bp=0) [f, wave_spec_measured] = _signal.welch(data, fs=sample_rate, window=window, nperseg=nnft, nfft=nnft, noverlap=noverlap) S[col] = wave_spec_measured S.index=f S.columns = eta.columns return S def pierson_moskowitz_spectrum(f, Tp, Hs): """ Calculates Pierson-Moskowitz Spectrum from IEC TS 62600-2 ED2 Annex C.2 (2019) Parameters ------------ f: numpy array Frequency [Hz] Tp: float/int Peak period [s] Hs: float/int Significant wave height [m] Returns --------- S: pandas DataFrame Spectral density [m^2/Hz] indexed frequency [Hz] """ try: f = np.array(f) except: pass assert isinstance(f, np.ndarray), 'f must be of type np.ndarray' assert isinstance(Tp, (int,float)), 'Tp must be of type int or float' assert isinstance(Hs, (int,float)), 'Hs must be of type int or float' f.sort() B_PM = (5/4)*(1/Tp)**4 A_PM = B_PM*(Hs/2)**2 Sf = A_PM*f**(-5)*np.exp(-B_PM*f**(-4)) col_name = 'Pierson-Moskowitz ('+str(Tp)+'s)' S = pd.DataFrame(Sf, index=f, columns=[col_name]) return S def jonswap_spectrum(f, Tp, Hs, gamma=None): """ Calculates JONSWAP Spectrum from IEC TS 62600-2 ED2 Annex C.2 (2019) Parameters ------------ f: numpy array Frequency [Hz] Tp: float/int Peak period [s] Hs: float/int Significant wave height [m] gamma: float (optional) Gamma Returns --------- S: pandas DataFrame Spectral density [m^2/Hz] indexed frequency [Hz] """ try: f = np.array(f) except: pass assert isinstance(f, np.ndarray), 'f must be of type np.ndarray' assert isinstance(Tp, (int,float)), 'Tp must be of type int or float' assert isinstance(Hs, (int,float)), 'Hs must be of type int or float' assert isinstance(gamma, (int,float, type(None))), \ 'gamma must be of type int or float' f.sort() B_PM = (5/4)*(1/Tp)**4 A_PM = B_PM*(Hs/2)**2 S_f = A_PM*f**(-5)*np.exp(-B_PM*f**(-4)) if not gamma: TpsqrtHs = Tp/np.sqrt(Hs); if TpsqrtHs <= 3.6: gamma = 5; elif TpsqrtHs > 5: gamma = 1; else: gamma = np.exp(5.75 - 1.15*TpsqrtHs); # Cutoff frequencies for gamma function siga = 0.07 sigb = 0.09 fp = 1/Tp # peak frequency lind = np.where(f<=fp) hind = np.where(f>fp) Gf = np.zeros(f.shape) Gf[lind] = gamma**np.exp(-(f[lind]-fp)**2/(2*siga**2*fp**2)) Gf[hind] = gamma**np.exp(-(f[hind]-fp)**2/(2*sigb**2*fp**2)) C = 1- 0.287*np.log(gamma) Sf = C*S_f*Gf col_name = 'JONSWAP ('+str(Hs)+'m,'+str(Tp)+'s)' S = pd.DataFrame(Sf, index=f, columns=[col_name]) return S ### Metrics def surface_elevation(S, time_index, seed=None, frequency_bins=None, phases=None): """ Calculates wave elevation time-series from spectrum Parameters ------------ S: pandas DataFrame Spectral density [m^2/Hz] indexed by frequency [Hz] time_index: numpy array Time used to create the wave elevation time-series [s], for example, time = np.arange(0,100,0.01) seed: int (optional) Random seed phases: numpy array or pandas DataFrame (optional) Explicit phases for frequency components (overrides seed) for example, phases = np.random.rand(len(S)) * 2 * np.pi Returns --------- eta: pandas DataFrame Wave surface elevation [m] indexed by time [s] """ time_index = np.array(time_index) assert isinstance(S, pd.DataFrame), 'S must be of type pd.DataFrame' assert isinstance(time_index, np.ndarray), ('time_index must be of type' 'np.ndarray') assert isinstance(seed, (type(None),int)), 'seed must be of type int' assert isinstance(frequency_bins, (type(None), np.ndarray, pd.DataFrame)),( "frequency_bins must be of type None, np.ndarray, or pd,DataFrame") assert isinstance(phases, (type(None), np.ndarray, pd.DataFrame)), ( 'phases must be of type None, np.ndarray, or pd,DataFrame') if frequency_bins is not None: assert frequency_bins.squeeze().shape == (S.squeeze().shape[0],),( 'shape of frequency_bins must match shape of S') if phases is not None: assert phases.squeeze().shape == S.squeeze().shape,( 'shape of phases must match shape of S') f = pd.Series(S.index) f.index = f if frequency_bins is None: delta_f = f.values[1]-f.values[0] assert np.allclose(f.diff()[1:], delta_f) elif isinstance(frequency_bins, np.ndarray): delta_f = pd.Series(frequency_bins, index=S.index) elif isinstance(frequency_bins, pd.DataFrame): assert len(frequency_bins.columns) == 1, ('frequency_bins must only' 'contain 1 column') delta_f = frequency_bins.squeeze() if phases is None: np.random.seed(seed) phase = pd.DataFrame(2*np.pi*np.random.rand(S.shape[0], S.shape[1]), index=S.index, columns=S.columns) elif isinstance(phases, np.ndarray): phase = pd.DataFrame(phases, index=S.index, columns=S.columns) elif isinstance(phases, pd.DataFrame): phase = phases omega = pd.Series(2*np.pi*f) omega.index = f # Wave amplitude times delta f A = 2*S A = A.multiply(delta_f, axis=0) A = np.sqrt(A) # Product of omega and time B = np.outer(time_index, omega) B = B.reshape((len(time_index), len(omega))) B = pd.DataFrame(B, index=time_index, columns=omega.index) # wave elevation eta =
pd.DataFrame(columns=S.columns, index=time_index)
pandas.DataFrame
import copy import itertools import re import operator from datetime import datetime, timedelta from collections import defaultdict import numpy as np from pandas.core.base import PandasObject from pandas.core.common import (_possibly_downcast_to_dtype, isnull, _NS_DTYPE, _TD_DTYPE, ABCSeries, is_list_like, ABCSparseSeries, _infer_dtype_from_scalar, is_null_datelike_scalar, _maybe_promote, is_timedelta64_dtype, is_datetime64_dtype, array_equivalent, _maybe_convert_string_to_object, is_categorical, needs_i8_conversion, is_datetimelike_v_numeric) from pandas.core.index import Index, MultiIndex, _ensure_index from pandas.core.indexing import maybe_convert_indices, length_of_indexer from pandas.core.categorical import Categorical, maybe_to_categorical import pandas.core.common as com from pandas.sparse.array import _maybe_to_sparse, SparseArray import pandas.lib as lib import pandas.tslib as tslib import pandas.computation.expressions as expressions from pandas.util.decorators import cache_readonly from pandas.tslib import Timestamp, Timedelta from pandas import compat from pandas.compat import range, map, zip, u from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type from pandas.lib import BlockPlacement class Block(PandasObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a pandas data structure Index-ignorant; let the container take care of that """ __slots__ = ['_mgr_locs', 'values', 'ndim'] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_sparse = False _can_hold_na = False _downcast_dtype = None _can_consolidate = True _verify_integrity = True _validate_ndim = True _ftype = 'dense' _holder = None def __init__(self, values, placement, ndim=None, fastpath=False): if ndim is None: ndim = values.ndim elif values.ndim != ndim: raise ValueError('Wrong number of dimensions') self.ndim = ndim self.mgr_locs = placement self.values = values if len(self.mgr_locs) != len(self.values): raise ValueError('Wrong number of items passed %d,' ' placement implies %d' % ( len(self.values), len(self.mgr_locs))) @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self): return self.ndim == 1 @property def is_view(self): """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self): """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_astype(self, dtype): """ validate that we have a astypeable to categorical, returns a boolean if we are a categorical """ if com.is_categorical_dtype(dtype): if dtype == com.CategoricalDtype(): return True # this is a pd.Categorical, but is not # a valid type for astypeing raise TypeError("invalid type {0} for astype".format(dtype)) return False def to_dense(self): return self.values.view() @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return self.dtype def make_block_same_class(self, values, placement, copy=False, fastpath=True, **kwargs): """ Wrap given values in a block of same type as self. `kwargs` are used in SparseBlock override. """ if copy: values = values.copy() return make_block(values, placement, klass=self.__class__, fastpath=fastpath, **kwargs) @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not isinstance(new_mgr_locs, BlockPlacement): new_mgr_locs = BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs def __unicode__(self): # don't want to print out all of the items here name = com.pprint_thing(self.__class__.__name__) if self._is_single_block: result = '%s: %s dtype: %s' % ( name, len(self), self.dtype) else: shape = ' x '.join([com.pprint_thing(s) for s in self.shape]) result = '%s: %s, %s, dtype: %s' % ( name, com.pprint_thing(self.mgr_locs.indexer), shape, self.dtype) return result def __len__(self): return len(self.values) def __getstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def reshape_nd(self, labels, shape, ref_items): """ Parameters ---------- labels : list of new axis labels shape : new shape ref_items : new ref_items return a new block that is transformed to a nd block """ return _block2d_to_blocknd( values=self.get_values().T, placement=self.mgr_locs, shape=shape, labels=labels, ref_items=ref_items) def getitem_block(self, slicer, new_mgr_locs=None): """ Perform __getitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: if isinstance(slicer, tuple): axis0_slicer = slicer[0] else: axis0_slicer = slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def itemsize(self): return self.values.itemsize @property def dtype(self): return self.values.dtype @property def ftype(self): return "%s:%s" % (self.dtype, self._ftype) def merge(self, other): return _merge_blocks([self, other]) def reindex_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer information """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) if fill_value is None: fill_value = self.fill_value new_values = com.take_nd(self.values, indexer, axis, fill_value=fill_value, mask_info=mask_info) return make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs) def get(self, item): loc = self.items.get_loc(item) return self.values[loc] def iget(self, i): return self.values[i] def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc): """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def apply(self, func, **kwargs): """ apply the function to my values; return a block if we are not one """ result = func(self.values, **kwargs) if not isinstance(result, Block): result = make_block(values=_block_shape(result), placement=self.mgr_locs,) return result def fillna(self, value, limit=None, inplace=False, downcast=None): if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] mask = isnull(self.values) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillna' " "is currently limited to 2") mask[mask.cumsum(self.ndim-1) > limit] = False value = self._try_fill(value) blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) def _maybe_downcast(self, blocks, downcast=None): # no need to downcast our float # unless indicated if downcast is None and self.is_float: return blocks elif downcast is None and (self.is_timedelta or self.is_datetime): return blocks result_blocks = [] for b in blocks: result_blocks.extend(b.downcast(downcast)) return result_blocks def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return [self] values = self.values # single block handling if self._is_single_block: # try to cast all non-floats here if dtypes is None: dtypes = 'infer' nv = _possibly_downcast_to_dtype(values, dtypes) return [make_block(nv, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] # ndim > 1 if dtypes is None: return [self] if not (dtypes == 'infer' or isinstance(dtypes, dict)): raise ValueError("downcast must have a dictionary or 'infer' as " "its argument") # item-by-item # this is expensive as it splits the blocks items-by-item blocks = [] for i, rl in enumerate(self.mgr_locs): if dtypes == 'infer': dtype = 'infer' else: raise AssertionError("dtypes as dict is not supported yet") dtype = dtypes.get(item, self._downcast_dtype) if dtype is None: nv = _block_shape(values[i], ndim=self.ndim) else: nv = _possibly_downcast_to_dtype(values[i], dtype) nv = _block_shape(nv, ndim=self.ndim) blocks.append(make_block(nv, ndim=self.ndim, fastpath=True, placement=[rl])) return blocks def astype(self, dtype, copy=False, raise_on_error=True, values=None, **kwargs): return self._astype(dtype, copy=copy, raise_on_error=raise_on_error, values=values, **kwargs) def _astype(self, dtype, copy=False, raise_on_error=True, values=None, klass=None, **kwargs): """ Coerce to the new type (if copy=True, return a new copy) raise on an except if raise == True """ # may need to convert to categorical # this is only called for non-categoricals if self.is_categorical_astype(dtype): return make_block(Categorical(self.values, **kwargs), ndim=self.ndim, placement=self.mgr_locs) # astype processing dtype = np.dtype(dtype) if self.dtype == dtype: if copy: return self.copy() return self if klass is None: if dtype == np.object_: klass = ObjectBlock try: # force the copy here if values is None: # _astype_nansafe works fine with 1-d only values = com._astype_nansafe(self.values.ravel(), dtype, copy=True) values = values.reshape(self.values.shape) newb = make_block(values, ndim=self.ndim, placement=self.mgr_locs, fastpath=True, dtype=dtype, klass=klass) except: if raise_on_error is True: raise newb = self.copy() if copy else self if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError("cannot set astype for copy = [%s] for dtype " "(%s [%s]) with smaller itemsize that current " "(%s [%s])" % (copy, self.dtype.name, self.itemsize, newb.dtype.name, newb.itemsize)) return newb def convert(self, copy=True, **kwargs): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we are not an ObjectBlock here! """ return [self.copy()] if copy else [self] def _can_hold_element(self, value): raise NotImplementedError() def _try_cast(self, value): raise NotImplementedError() def _try_cast_result(self, result, dtype=None): """ try to cast the result to our original type, we may have roundtripped thru object in the mean-time """ if dtype is None: dtype = self.dtype if self.is_integer or self.is_bool or self.is_datetime: pass elif self.is_float and result.dtype == self.dtype: # protect against a bool/object showing up here if isinstance(dtype, compat.string_types) and dtype == 'infer': return result if not isinstance(dtype, type): dtype = dtype.type if issubclass(dtype, (np.bool_, np.object_)): if issubclass(dtype, np.bool_): if isnull(result).all(): return result.astype(np.bool_) else: result = result.astype(np.object_) result[result == 1] = True result[result == 0] = False return result else: return result.astype(np.object_) return result # may need to change the dtype here return _possibly_downcast_to_dtype(result, dtype) def _try_operate(self, values): """ return a version to operate on as the input """ return values def _try_coerce_args(self, values, other): """ provide coercion to our input arguments """ return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ return result def _try_coerce_and_cast_result(self, result, dtype=None): result = self._try_coerce_result(result) result = self._try_cast_result(result, dtype=dtype) return result def _try_fill(self, value): return value def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isnull(values) if not self.is_object and not quoting: values = values.astype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep return values # block actions #### def copy(self, deep=True): values = self.values if deep: values = values.copy() return make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs) def replace(self, to_replace, value, inplace=False, filter=None, regex=False): """ replace the to_replace value with value, possible to create new blocks here this is just a call to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility.""" mask = com.mask_missing(self.values, to_replace) if filter is not None: filtered_out = ~self.mgr_locs.isin(filter) mask[filtered_out.nonzero()[0]] = False if not mask.any(): if inplace: return [self] return [self.copy()] return self.putmask(mask, value, inplace=inplace) def setitem(self, indexer, value): """ set the value inplace; return a new block (of a possibly different dtype) indexer is a direct slice/positional indexer; value must be a compatible shape """ # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce args values, value = self._try_coerce_args(self.values, value) arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = com._maybe_promote(arr_value.dtype) values = values.astype(dtype) transf = (lambda x: x.T) if self.ndim == 2 else (lambda x: x) values = transf(values) l = len(values) # length checking # boolean with truth values == len of the value is ok too if isinstance(indexer, (np.ndarray, list)): if is_list_like(value) and len(indexer) != len(value): if not (isinstance(indexer, np.ndarray) and indexer.dtype == np.bool_ and len(indexer[indexer]) == len(value)): raise ValueError("cannot set using a list-like indexer " "with a different length than the value") # slice elif isinstance(indexer, slice): if is_list_like(value) and l: if len(value) != length_of_indexer(indexer, values): raise ValueError("cannot set using a slice indexer with a " "different length than the value") try: def _is_scalar_indexer(indexer): # return True if we are all scalar indexers if arr_value.ndim == 1: if not isinstance(indexer, tuple): indexer = tuple([indexer]) return all([ np.isscalar(idx) for idx in indexer ]) return False def _is_empty_indexer(indexer): # return a boolean if we have an empty indexer if arr_value.ndim == 1: if not isinstance(indexer, tuple): indexer = tuple([indexer]) return any(isinstance(idx, np.ndarray) and len(idx) == 0 for idx in indexer) return False # empty indexers # 8669 (empty) if _is_empty_indexer(indexer): pass # setting a single element for each dim and with a rhs that could be say a list # GH 6043 elif _is_scalar_indexer(indexer): values[indexer] = value # if we are an exact match (ex-broadcasting), # then use the resultant dtype elif len(arr_value.shape) and arr_value.shape[0] == values.shape[0] and np.prod(arr_value.shape) == np.prod(values.shape): values[indexer] = value values = values.astype(arr_value.dtype) # set else: values[indexer] = value # coerce and try to infer the dtypes of the result if np.isscalar(value): dtype, _ = _infer_dtype_from_scalar(value) else: dtype = 'infer' values = self._try_coerce_and_cast_result(values, dtype) block = make_block(transf(values), ndim=self.ndim, placement=self.mgr_locs, fastpath=True) # may have to soft convert_objects here if block.is_object and not self.is_object: block = block.convert(numeric=False) return block except (ValueError, TypeError) as detail: raise except Exception as detail: pass return [self] def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.copy() # may need to align the new if hasattr(new, 'reindex_axis'): new = new.values.T # may need to align the mask if hasattr(mask, 'reindex_axis'): mask = mask.values.T # if we are passed a scalar None, convert it here if not is_list_like(new) and isnull(new) and not self.is_object: new = self.fill_value if self._can_hold_element(new): new = self._try_cast(new) # pseudo-broadcast if isinstance(new, np.ndarray) and new.ndim == self.ndim - 1: new = np.repeat(new, self.shape[-1]).reshape(self.shape) np.putmask(new_values, mask, new) # maybe upcast me elif mask.any(): # need to go column by column new_blocks = [] if self.ndim > 1: for i, ref_loc in enumerate(self.mgr_locs): m = mask[i] v = new_values[i] # need a new block if m.any(): n = new[i] if isinstance( new, np.ndarray) else np.array(new) # type of the new block dtype, _ = com._maybe_promote(n.dtype) # we need to exiplicty astype here to make a copy n = n.astype(dtype) nv = _putmask_smart(v, m, n) else: nv = v if inplace else v.copy() # Put back the dimension that was taken from it and make # a block out of the result. block = make_block(values=nv[np.newaxis], placement=[ref_loc], fastpath=True) new_blocks.append(block) else: nv = _putmask_smart(new_values, mask, new) new_blocks.append(make_block(values=nv, placement=self.mgr_locs, fastpath=True)) return new_blocks if inplace: return [self] return [make_block(new_values, placement=self.mgr_locs, fastpath=True)] def interpolate(self, method='pad', axis=0, index=None, values=None, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None, **kwargs): def check_int_bool(self, inplace): # Only FloatBlocks will contain NaNs. # timedelta subclasses IntBlock if (self.is_bool or self.is_integer) and not self.is_timedelta: if inplace: return self else: return self.copy() # a fill na type method try: m = com._clean_fill_method(method) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate_with_fill(method=m, axis=axis, inplace=inplace, limit=limit, fill_value=fill_value, coerce=coerce, downcast=downcast) # try an interp method try: m = com._clean_interp_method(method, **kwargs) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate(method=m, index=index, values=values, axis=axis, limit=limit, fill_value=fill_value, inplace=inplace, downcast=downcast, **kwargs) raise ValueError("invalid method '{0}' to interpolate.".format(method)) def _interpolate_with_fill(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None): """ fillna but using the interpolate machinery """ # if we are coercing, then don't force the conversion # if the block can't hold the type if coerce: if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] fill_value = self._try_fill(fill_value) values = self.values if inplace else self.values.copy() values = self._try_operate(values) values = com.interpolate_2d(values, method=method, axis=axis, limit=limit, fill_value=fill_value, dtype=self.dtype) values = self._try_coerce_result(values) blocks = [make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def _interpolate(self, method=None, index=None, values=None, fill_value=None, axis=0, limit=None, inplace=False, downcast=None, **kwargs): """ interpolate using scipy wrappers """ data = self.values if inplace else self.values.copy() # only deal with floats if not self.is_float: if not self.is_integer: return self data = data.astype(np.float64) if fill_value is None: fill_value = self.fill_value if method in ('krogh', 'piecewise_polynomial', 'pchip'): if not index.is_monotonic: raise ValueError("{0} interpolation requires that the " "index be monotonic.".format(method)) # process 1-d slices in the axis direction def func(x): # process a 1-d slice, returning it # should the axis argument be handled below in apply_along_axis? # i.e. not an arg to com.interpolate_1d return com.interpolate_1d(index, x, method=method, limit=limit, fill_value=fill_value, bounds_error=False, **kwargs) # interp each column independently interp_values = np.apply_along_axis(func, axis, data) blocks = [make_block(interp_values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def take_nd(self, indexer, axis, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = self.fill_value new_values = com.take_nd(self.get_values(), indexer, axis=axis, allow_fill=False) else: fill_value = fill_tuple[0] new_values = com.take_nd(self.get_values(), indexer, axis=axis, allow_fill=True, fill_value=fill_value) if new_mgr_locs is None: if axis == 0: slc = lib.indexer_as_slice(indexer) if slc is not None: new_mgr_locs = self.mgr_locs[slc] else: new_mgr_locs = self.mgr_locs[indexer] else: new_mgr_locs = self.mgr_locs if new_values.dtype != self.dtype: return make_block(new_values, new_mgr_locs) else: return self.make_block_same_class(new_values, new_mgr_locs) def get_values(self, dtype=None): return self.values def diff(self, n, axis=1): """ return block for the diff of the values """ new_values = com.diff(self.values, n, axis=axis) return [make_block(values=new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def shift(self, periods, axis=0): """ shift the block by periods, possibly upcast """ # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = com._maybe_upcast(self.values) # make sure array sent to np.roll is c_contiguous f_ordered = new_values.flags.f_contiguous if f_ordered: new_values = new_values.T axis = new_values.ndim - axis - 1 if np.prod(new_values.shape): new_values = np.roll(new_values, com._ensure_platform_int(periods), axis=axis) axis_indexer = [ slice(None) ] * self.ndim if periods > 0: axis_indexer[axis] = slice(None,periods) else: axis_indexer[axis] = slice(periods,None) new_values[tuple(axis_indexer)] = fill_value # restore original order if f_ordered: new_values = new_values.T return [make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def eval(self, func, other, raise_on_error=True, try_cast=False): """ evaluate the block; return result block from the result Parameters ---------- func : how to combine self, other other : a ndarray/object raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had coming in) Returns ------- a new block, the result of the func """ values = self.values if hasattr(other, 'reindex_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim: is_transposed = True else: if values.shape == other.shape[::-1]: is_transposed = True elif values.shape[0] == other.shape[-1]: is_transposed = True else: # this is a broadcast error heree raise ValueError("cannot broadcast shape [%s] with block " "values [%s]" % (values.T.shape, other.shape)) transf = (lambda x: x.T) if is_transposed else (lambda x: x) # coerce/transpose the args if needed values, other = self._try_coerce_args(transf(values), other) # get the result, may need to transpose the other def get_result(other): return self._try_coerce_result(func(values, other)) # error handler if we have an issue operating with the function def handle_error(): if raise_on_error: raise TypeError('Could not operate %s with block values %s' % (repr(other), str(detail))) else: # return the values result = np.empty(values.shape, dtype='O') result.fill(np.nan) return result # get the result try: result = get_result(other) # if we have an invalid shape/broadcast error # GH4576, so raise instead of allowing to pass through except ValueError as detail: raise except Exception as detail: result = handle_error() # technically a broadcast error in numpy can 'work' by returning a # boolean False if not isinstance(result, np.ndarray): if not isinstance(result, np.ndarray): # differentiate between an invalid ndarray-ndarray comparison # and an invalid type comparison if isinstance(values, np.ndarray) and is_list_like(other): raise ValueError('Invalid broadcasting comparison [%s] ' 'with block values' % repr(other)) raise TypeError('Could not compare [%s] with block values' % repr(other)) # transpose if needed result = transf(result) # try to cast if requested if try_cast: result = self._try_cast_result(result) return [make_block(result, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def where(self, other, cond, align=True, raise_on_error=True, try_cast=False): """ evaluate the block; return result block(s) from the result Parameters ---------- other : a ndarray/object cond : the condition to respect align : boolean, perform alignment on other/cond raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had coming in) Returns ------- a new block(s), the result of the func """ values = self.values # see if we can align other if hasattr(other, 'reindex_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim or values.shape == other.shape[::-1]: # if its symmetric are ok, no reshaping needed (GH 7506) if (values.shape[0] == np.array(values.shape)).all(): pass # pseodo broadcast (its a 2d vs 1d say and where needs it in a # specific direction) elif (other.ndim >= 1 and values.ndim - 1 == other.ndim and values.shape[0] != other.shape[0]): other = _block_shape(other).T else: values = values.T is_transposed = True # see if we can align cond if not hasattr(cond, 'shape'): raise ValueError( "where must have a condition that is ndarray like") if hasattr(cond, 'reindex_axis'): cond = cond.values # may need to undo transpose of values if hasattr(values, 'ndim'): if values.ndim != cond.ndim or values.shape == cond.shape[::-1]: values = values.T is_transposed = not is_transposed other = _maybe_convert_string_to_object(other) # our where function def func(c, v, o): if c.ravel().all(): return v v, o = self._try_coerce_args(v, o) try: return self._try_coerce_result( expressions.where(c, v, o, raise_on_error=True) ) except Exception as detail: if raise_on_error: raise TypeError('Could not operate [%s] with block values ' '[%s]' % (repr(o), str(detail))) else: # return the values result = np.empty(v.shape, dtype='float64') result.fill(np.nan) return result # see if we can operate on the entire block, or need item-by-item # or if we are a single block (ndim == 1) result = func(cond, values, other) if self._can_hold_na or self.ndim == 1: if not isinstance(result, np.ndarray): raise TypeError('Could not compare [%s] with block values' % repr(other)) if is_transposed: result = result.T # try to cast if requested if try_cast: result = self._try_cast_result(result) return make_block(result, ndim=self.ndim, placement=self.mgr_locs) # might need to separate out blocks axis = cond.ndim - 1 cond = cond.swapaxes(axis, 0) mask = np.array([cond[i].all() for i in range(cond.shape[0])], dtype=bool) result_blocks = [] for m in [mask, ~mask]: if m.any(): r = self._try_cast_result( result.take(m.nonzero()[0], axis=axis)) result_blocks.append(make_block(r.T, placement=self.mgr_locs[m])) return result_blocks def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False return array_equivalent(self.values, other.values) class NonConsolidatableMixIn(object): """ hold methods for the nonconsolidatable blocks """ _can_consolidate = False _verify_integrity = False _validate_ndim = False _holder = None def __init__(self, values, placement, ndim=None, fastpath=False,): # Placement must be converted to BlockPlacement via property setter # before ndim logic, because placement may be a slice which doesn't # have a length. self.mgr_locs = placement # kludgetastic if ndim is None: if len(self.mgr_locs) != 1: ndim = 1 else: ndim = 2 self.ndim = ndim if not isinstance(values, self._holder): raise TypeError("values must be {0}".format(self._holder.__name__)) self.values = values def get_values(self, dtype=None): """ need to to_dense myself (and always return a ndim sized object) """ values = self.values.to_dense() if values.ndim == self.ndim - 1: values = values.reshape((1,) + values.shape) return values def iget(self, col): if self.ndim == 2 and isinstance(col, tuple): col, loc = col if col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values[loc] else: if col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values def should_store(self, value): return isinstance(value, self._holder) def set(self, locs, values, check=False): assert locs.tolist() == [0] self.values = values def get(self, item): if self.ndim == 1: loc = self.items.get_loc(item) return self.values[loc] else: return self.values def _slice(self, slicer): """ return a slice of my values (but densify first) """ return self.get_values()[slicer] def _try_cast_result(self, result, dtype=None): return result class NumericBlock(Block): __slots__ = () is_numeric = True _can_hold_na = True class FloatOrComplexBlock(NumericBlock): __slots__ = () def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False left, right = self.values, other.values return ((left == right) | (np.isnan(left) & np.isnan(right))).all() class FloatBlock(FloatOrComplexBlock): __slots__ = () is_float = True _downcast_dtype = 'int64' def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, (np.floating, np.integer)) and not issubclass( tipo, (np.datetime64, np.timedelta64)) return isinstance(element, (float, int, np.float_, np.int_)) and not isinstance( element, (bool, np.bool_, datetime, timedelta, np.datetime64, np.timedelta64)) def _try_cast(self, element): try: return float(element) except: # pragma: no cover return element def to_native_types(self, slicer=None, na_rep='', float_format=None, decimal='.', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isnull(values) formatter = None if float_format and decimal != '.': formatter = lambda v : (float_format % v).replace('.',decimal,1) elif decimal != '.': formatter = lambda v : ('%g' % v).replace('.',decimal,1) elif float_format: formatter = lambda v : float_format % v if formatter is None and not quoting: values = values.astype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep if formatter: imask = (~mask).ravel() values.flat[imask] = np.array( [formatter(val) for val in values.ravel()[imask]]) return values def should_store(self, value): # when inserting a column should not coerce integers to floats # unnecessarily return (issubclass(value.dtype.type, np.floating) and value.dtype == self.dtype) class ComplexBlock(FloatOrComplexBlock): __slots__ = () is_complex = True def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, (np.floating, np.integer, np.complexfloating)) return (isinstance(element, (float, int, complex, np.float_, np.int_)) and not isinstance(bool, np.bool_)) def _try_cast(self, element): try: return complex(element) except: # pragma: no cover return element def should_store(self, value): return issubclass(value.dtype.type, np.complexfloating) class IntBlock(NumericBlock): __slots__ = () is_integer = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, np.integer) and not issubclass(tipo, (np.datetime64, np.timedelta64)) return com.is_integer(element) def _try_cast(self, element): try: return int(element) except: # pragma: no cover return element def should_store(self, value): return com.is_integer_dtype(value) and value.dtype == self.dtype class TimeDeltaBlock(IntBlock): __slots__ = () is_timedelta = True _can_hold_na = True is_numeric = False @property def fill_value(self): return tslib.iNaT def _try_fill(self, value): """ if we are a NaT, return the actual fill value """ if isinstance(value, type(tslib.NaT)) or np.array(isnull(value)).all(): value = tslib.iNaT elif isinstance(value, Timedelta): value = value.value elif isinstance(value, np.timedelta64): pass elif com.is_integer(value): # coerce to seconds of timedelta value = np.timedelta64(int(value * 1e9)) elif isinstance(value, timedelta): value = np.timedelta64(value) return value def _try_coerce_args(self, values, other): """ Coerce values and other to float64, with null values converted to NaN. values is always ndarray-like, other may not be """ def masker(v): mask = isnull(v) v = v.astype('float64') v[mask] = np.nan return v values = masker(values) if is_null_datelike_scalar(other): other = np.nan elif isinstance(other, (np.timedelta64, Timedelta, timedelta)): other = _coerce_scalar_to_timedelta_type(other, unit='s', box=False).item() if other == tslib.iNaT: other = np.nan elif lib.isscalar(other): other = np.float64(other) else: other = masker(other) return values, other def _try_operate(self, values): """ return a version to operate on """ return values.view('i8') def _try_coerce_result(self, result): """ reverse of try_coerce_args / try_operate """ if isinstance(result, np.ndarray): mask = isnull(result) if result.dtype.kind in ['i', 'f', 'O']: result = result.astype('m8[ns]') result[mask] = tslib.iNaT elif isinstance(result, np.integer): result = lib.Timedelta(result) return result def should_store(self, value): return issubclass(value.dtype.type, np.timedelta64) def to_native_types(self, slicer=None, na_rep=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isnull(values) rvalues = np.empty(values.shape, dtype=object) if na_rep is None: na_rep = 'NaT' rvalues[mask] = na_rep imask = (~mask).ravel() #### FIXME #### # should use the core.format.Timedelta64Formatter here # to figure what format to pass to the Timedelta # e.g. to not show the decimals say rvalues.flat[imask] = np.array([Timedelta(val)._repr_base(format='all') for val in values.ravel()[imask]], dtype=object) return rvalues def get_values(self, dtype=None): # return object dtypes as Timedelta if dtype == object: return lib.map_infer(self.values.ravel(), lib.Timedelta ).reshape(self.values.shape) return self.values class BoolBlock(NumericBlock): __slots__ = () is_bool = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, np.integer) return isinstance(element, (int, bool)) def _try_cast(self, element): try: return bool(element) except: # pragma: no cover return element def should_store(self, value): return issubclass(value.dtype.type, np.bool_) def replace(self, to_replace, value, inplace=False, filter=None, regex=False): to_replace_values = np.atleast_1d(to_replace) if not np.can_cast(to_replace_values, bool): return self return super(BoolBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex) class ObjectBlock(Block): __slots__ = () is_object = True _can_hold_na = True def __init__(self, values, ndim=2, fastpath=False, placement=None): if issubclass(values.dtype.type, compat.string_types): values = np.array(values, dtype=object) super(ObjectBlock, self).__init__(values, ndim=ndim, fastpath=fastpath, placement=placement) @property def is_bool(self): """ we can be a bool if we have only bool values but are of type object """ return lib.is_bool_array(self.values.ravel()) def convert(self, datetime=True, numeric=True, timedelta=True, coerce=False, copy=True, by_item=True): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we ARE an ObjectBlock!!!!! can return multiple blocks! """ # attempt to create new type blocks blocks = [] if by_item and not self._is_single_block: for i, rl in enumerate(self.mgr_locs): values = self.iget(i) values = com._possibly_convert_objects( values.ravel(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=copy ).reshape(values.shape) values = _block_shape(values, ndim=self.ndim) newb = make_block(values, ndim=self.ndim, placement=[rl]) blocks.append(newb) else: values = com._possibly_convert_objects( self.values.ravel(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=copy ).reshape(self.values.shape) blocks.append(make_block(values, ndim=self.ndim, placement=self.mgr_locs)) return blocks def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ # GH6026 if check: try: if (self.values[locs] == values).all(): return except: pass try: self.values[locs] = values except (ValueError): # broadcasting error # see GH6171 new_shape = list(values.shape) new_shape[0] = len(self.items) self.values = np.empty(tuple(new_shape),dtype=self.dtype) self.values.fill(np.nan) self.values[locs] = values def _maybe_downcast(self, blocks, downcast=None): if downcast is not None: return blocks # split and convert the blocks result_blocks = [] for blk in blocks: result_blocks.extend(blk.convert(datetime=True, numeric=False)) return result_blocks def _can_hold_element(self, element): return True def _try_cast(self, element): return element def should_store(self, value): return not (issubclass(value.dtype.type, (np.integer, np.floating, np.complexfloating, np.datetime64, np.bool_)) or com.is_categorical_dtype(value)) def replace(self, to_replace, value, inplace=False, filter=None, regex=False): blk = [self] to_rep_is_list = com.is_list_like(to_replace) value_is_list = com.is_list_like(value) both_lists = to_rep_is_list and value_is_list either_list = to_rep_is_list or value_is_list if not either_list and com.is_re(to_replace): blk[0], = blk[0]._replace_single(to_replace, value, inplace=inplace, filter=filter, regex=True) elif not (either_list or regex): blk = super(ObjectBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex) elif both_lists: for to_rep, v in zip(to_replace, value): blk[0], = blk[0]._replace_single(to_rep, v, inplace=inplace, filter=filter, regex=regex) elif to_rep_is_list and regex: for to_rep in to_replace: blk[0], = blk[0]._replace_single(to_rep, value, inplace=inplace, filter=filter, regex=regex) else: blk[0], = blk[0]._replace_single(to_replace, value, inplace=inplace, filter=filter, regex=regex) return blk def _replace_single(self, to_replace, value, inplace=False, filter=None, regex=False): # to_replace is regex compilable to_rep_re = regex and com.is_re_compilable(to_replace) # regex is regex compilable regex_re = com.is_re_compilable(regex) # only one will survive if to_rep_re and regex_re: raise AssertionError('only one of to_replace and regex can be ' 'regex compilable') # if regex was passed as something that can be a regex (rather than a # boolean) if regex_re: to_replace = regex regex = regex_re or to_rep_re # try to get the pattern attribute (compiled re) or it's a string try: pattern = to_replace.pattern except AttributeError: pattern = to_replace # if the pattern is not empty and to_replace is either a string or a # regex if regex and pattern: rx = re.compile(to_replace) else: # if the thing to replace is not a string or compiled regex call # the superclass method -> to_replace is some kind of object result = super(ObjectBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex) if not isinstance(result, list): result = [result] return result new_values = self.values if inplace else self.values.copy() # deal with replacing values with objects (strings) that match but # whose replacement is not a string (numeric, nan, object) if isnull(value) or not isinstance(value, compat.string_types): def re_replacer(s): try: return value if rx.search(s) is not None else s except TypeError: return s else: # value is guaranteed to be a string here, s can be either a string # or null if it's null it gets returned def re_replacer(s): try: return rx.sub(value, s) except TypeError: return s f = np.vectorize(re_replacer, otypes=[self.dtype]) if filter is None: filt = slice(None) else: filt = self.mgr_locs.isin(filter).nonzero()[0] new_values[filt] = f(new_values[filt]) return [self if inplace else make_block(new_values, fastpath=True, placement=self.mgr_locs)] class CategoricalBlock(NonConsolidatableMixIn, ObjectBlock): __slots__ = () is_categorical = True _can_hold_na = True _holder = Categorical def __init__(self, values, placement, fastpath=False, **kwargs): # coerce to categorical if we can super(CategoricalBlock, self).__init__(maybe_to_categorical(values), fastpath=True, placement=placement, **kwargs) @property def is_view(self): """ I am never a view """ return False def to_dense(self): return self.values.to_dense().view() def convert(self, copy=True, **kwargs): return [self.copy() if copy else self] @property def shape(self): return (len(self.mgr_locs), len(self.values)) @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return np.object_ def _slice(self, slicer): """ return a slice of my values """ # slice the category # return same dims as we currently have return self.values._slice(slicer) def fillna(self, value, limit=None, inplace=False, downcast=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillna' has " "not been implemented yet") values = self.values if inplace else self.values.copy() return [self.make_block_same_class(values=values.fillna(value=value, limit=limit), placement=self.mgr_locs)] def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = self.values if inplace else self.values.copy() return self.make_block_same_class(values=values.fillna(fill_value=fill_value, method=method, limit=limit), placement=self.mgr_locs) def shift(self, periods, axis=0): return self.make_block_same_class(values=self.values.shift(periods), placement=self.mgr_locs) def take_nd(self, indexer, axis=0, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = None else: fill_value = fill_tuple[0] # axis doesn't matter; we are really a single-dim object # but are passed the axis depending on the calling routing # if its REALLY axis 0, then this will be a reindex and not a take new_values = self.values.take_nd(indexer, fill_value=fill_value) # if we are a 1-dim object, then always place at 0 if self.ndim == 1: new_mgr_locs = [0] else: if new_mgr_locs is None: new_mgr_locs = self.mgr_locs return self.make_block_same_class(new_values, new_mgr_locs) def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.copy() new_values[mask] = new return [self.make_block_same_class(values=new_values, placement=self.mgr_locs)] def _astype(self, dtype, copy=False, raise_on_error=True, values=None, klass=None): """ Coerce to the new type (if copy=True, return a new copy) raise on an except if raise == True """ if self.is_categorical_astype(dtype): values = self.values else: values = np.asarray(self.values).astype(dtype, copy=False) if copy: values = values.copy() return make_block(values, ndim=self.ndim, placement=self.mgr_locs) def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: # Categorical is always one dimension values = values[slicer] mask = isnull(values) values = np.array(values, dtype='object') values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1,len(values)) class DatetimeBlock(Block): __slots__ = () is_datetime = True _can_hold_na = True def __init__(self, values, placement, fastpath=False, **kwargs): if values.dtype != _NS_DTYPE: values = tslib.cast_to_nanoseconds(values) super(DatetimeBlock, self).__init__(values, fastpath=True, placement=placement, **kwargs) def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return element.dtype == _NS_DTYPE or element.dtype == np.int64 return (com.is_integer(element) or isinstance(element, datetime) or isnull(element)) def _try_cast(self, element): try: return int(element) except: return element def _try_operate(self, values): """ return a version to operate on """ return values.view('i8') def _try_coerce_args(self, values, other): """ Coerce values and other to dtype 'i8'. NaN and NaT convert to the smallest i8, and will correctly round-trip to NaT if converted back in _try_coerce_result. values is always ndarray-like, other may not be """ values = values.view('i8') if is_null_datelike_scalar(other): other = tslib.iNaT elif isinstance(other, datetime): other = lib.Timestamp(other).asm8.view('i8') elif hasattr(other, 'dtype') and com.is_integer_dtype(other): other = other.view('i8') else: other = np.array(other, dtype='i8') return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ if isinstance(result, np.ndarray): if result.dtype.kind in ['i', 'f', 'O']: result = result.astype('M8[ns]') elif isinstance(result, (np.integer, np.datetime64)): result = lib.Timestamp(result) return result @property def fill_value(self): return tslib.iNaT def _try_fill(self, value): """ if we are a NaT, return the actual fill value """ if isinstance(value, type(tslib.NaT)) or np.array(isnull(value)).all(): value = tslib.iNaT return value def fillna(self, value, limit=None, inplace=False, downcast=None): # straight putmask here values = self.values if inplace else self.values.copy() mask = isnull(self.values) value = self._try_fill(value) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillna' " "is currently limited to 2") mask[mask.cumsum(self.ndim-1)>limit]=False np.putmask(values, mask, value) return [self if inplace else make_block(values, fastpath=True, placement=self.mgr_locs)] def to_native_types(self, slicer=None, na_rep=None, date_format=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] from pandas.core.format import _get_format_datetime64_from_values format = _get_format_datetime64_from_values(values, date_format) result = tslib.format_array_from_datetime(values.view('i8').ravel(), tz=None, format=format, na_rep=na_rep).reshape(values.shape) return result def should_store(self, value): return issubclass(value.dtype.type, np.datetime64) def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ if values.dtype != _NS_DTYPE: # Workaround for numpy 1.6 bug values = tslib.cast_to_nanoseconds(values) self.values[locs] = values def get_values(self, dtype=None): # return object dtype as Timestamps if dtype == object: return lib.map_infer(self.values.ravel(), lib.Timestamp)\ .reshape(self.values.shape) return self.values class SparseBlock(NonConsolidatableMixIn, Block): """ implement as a list of sparse arrays of the same dtype """ __slots__ = () is_sparse = True is_numeric = True _can_hold_na = True _ftype = 'sparse' _holder = SparseArray @property def shape(self): return (len(self.mgr_locs), self.sp_index.length) @property def itemsize(self): return self.dtype.itemsize @property def fill_value(self): #return np.nan return self.values.fill_value @fill_value.setter def fill_value(self, v): # we may need to upcast our fill to match our dtype if issubclass(self.dtype.type, np.floating): v = float(v) self.values.fill_value = v @property def sp_values(self): return self.values.sp_values @sp_values.setter def sp_values(self, v): # reset the sparse values self.values = SparseArray(v, sparse_index=self.sp_index, kind=self.kind, dtype=v.dtype, fill_value=self.values.fill_value, copy=False) @property def sp_index(self): return self.values.sp_index @property def kind(self): return self.values.kind def __len__(self): try: return self.sp_index.length except: return 0 def copy(self, deep=True): return self.make_block_same_class(values=self.values, sparse_index=self.sp_index, kind=self.kind, copy=deep, placement=self.mgr_locs) def make_block_same_class(self, values, placement, sparse_index=None, kind=None, dtype=None, fill_value=None, copy=False, fastpath=True): """ return a new block """ if dtype is None: dtype = self.dtype if fill_value is None: fill_value = self.values.fill_value # if not isinstance(values, SparseArray) and values.ndim != self.ndim: # raise ValueError("ndim mismatch") if values.ndim == 2: nitems = values.shape[0] if nitems == 0: # kludgy, but SparseBlocks cannot handle slices, where the # output is 0-item, so let's convert it to a dense block: it # won't take space since there's 0 items, plus it will preserve # the dtype. return make_block(np.empty(values.shape, dtype=dtype), placement, fastpath=True,) elif nitems > 1: raise ValueError("Only 1-item 2d sparse blocks are supported") else: values = values.reshape(values.shape[1]) new_values = SparseArray(values, sparse_index=sparse_index, kind=kind or self.kind, dtype=dtype, fill_value=fill_value, copy=copy) return make_block(new_values, ndim=self.ndim, fastpath=fastpath, placement=placement) def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = com.interpolate_2d( self.values.to_dense(), method, axis, limit, fill_value) return self.make_block_same_class(values=values, placement=self.mgr_locs) def fillna(self, value, limit=None, inplace=False, downcast=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillna' has " "not been implemented yet") if issubclass(self.dtype.type, np.floating): value = float(value) values = self.values if inplace else self.values.copy() return [self.make_block_same_class(values=values.get_values(value), fill_value=value, placement=self.mgr_locs)] def shift(self, periods, axis=0): """ shift the block by periods """ N = len(self.values.T) indexer = np.zeros(N, dtype=int) if periods > 0: indexer[periods:] = np.arange(N - periods) else: indexer[:periods] = np.arange(-periods, N) new_values = self.values.to_dense().take(indexer) # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = com._maybe_upcast(new_values) if periods > 0: new_values[:periods] = fill_value else: new_values[periods:] = fill_value return [self.make_block_same_class(new_values, placement=self.mgr_locs)] def reindex_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer information """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) # taking on the 0th axis always here if fill_value is None: fill_value = self.fill_value return self.make_block_same_class(self.values.take(indexer), fill_value=fill_value, placement=self.mgr_locs) def sparse_reindex(self, new_index): """ sparse reindex and return a new block current reindex only works for float64 dtype! """ values = self.values values = values.sp_index.to_int_index().reindex( values.sp_values.astype('float64'), values.fill_value, new_index) return self.make_block_same_class(values, sparse_index=new_index, placement=self.mgr_locs) def make_block(values, placement, klass=None, ndim=None, dtype=None, fastpath=False): if klass is None: dtype = dtype or values.dtype vtype = dtype.type if isinstance(values, SparseArray): klass = SparseBlock elif issubclass(vtype, np.floating): klass = FloatBlock elif (issubclass(vtype, np.integer) and issubclass(vtype, np.timedelta64)): klass = TimeDeltaBlock elif (issubclass(vtype, np.integer) and not issubclass(vtype, np.datetime64)): klass = IntBlock elif dtype == np.bool_: klass = BoolBlock elif issubclass(vtype, np.datetime64): klass = DatetimeBlock elif issubclass(vtype, np.complexfloating): klass = ComplexBlock elif is_categorical(values): klass = CategoricalBlock else: klass = ObjectBlock return klass(values, ndim=ndim, fastpath=fastpath, placement=placement) # TODO: flexible with index=None and/or items=None class BlockManager(PandasObject): """ Core internal data structure to implement DataFrame Manage a bunch of labeled 2D mixed-type ndarrays. Essentially it's a lightweight blocked set of labeled data to be manipulated by the DataFrame public API class Attributes ---------- shape ndim axes values items Methods ------- set_axis(axis, new_labels) copy(deep=True) get_dtype_counts get_ftype_counts get_dtypes get_ftypes apply(func, axes, block_filter_fn) get_bool_data get_numeric_data get_slice(slice_like, axis) get(label) iget(loc) get_scalar(label_tup) take(indexer, axis) reindex_axis(new_labels, axis) reindex_indexer(new_labels, indexer, axis) delete(label) insert(loc, label, value) set(label, value) Parameters ---------- Notes ----- This is *not* a public API class """ __slots__ = ['axes', 'blocks', '_ndim', '_shape', '_known_consolidated', '_is_consolidated', '_blknos', '_blklocs'] def __init__(self, blocks, axes, do_integrity_check=True, fastpath=True): self.axes = [_ensure_index(ax) for ax in axes] self.blocks = tuple(blocks) for block in blocks: if block.is_sparse: if len(block.mgr_locs) != 1: raise AssertionError("Sparse block refers to multiple items") else: if self.ndim != block.ndim: raise AssertionError(('Number of Block dimensions (%d) must ' 'equal number of axes (%d)') % (block.ndim, self.ndim)) if do_integrity_check: self._verify_integrity() self._consolidate_check() self._rebuild_blknos_and_blklocs() def make_empty(self, axes=None): """ return an empty BlockManager with the items axis of len 0 """ if axes is None: axes = [_ensure_index([])] + [ _ensure_index(a) for a in self.axes[1:] ] # preserve dtype if possible if self.ndim == 1: blocks = np.array([], dtype=self.array_dtype) else: blocks = [] return self.__class__(blocks, axes) def __nonzero__(self): return True # Python3 compat __bool__ = __nonzero__ @property def shape(self): return tuple(len(ax) for ax in self.axes) @property def ndim(self): return len(self.axes) def set_axis(self, axis, new_labels): new_labels = _ensure_index(new_labels) old_len = len(self.axes[axis]) new_len = len(new_labels) if new_len != old_len: raise ValueError('Length mismatch: Expected axis has %d elements, ' 'new values have %d elements' % (old_len, new_len)) self.axes[axis] = new_labels def rename_axis(self, mapper, axis, copy=True): """ Rename one of axes. Parameters ---------- mapper : unary callable axis : int copy : boolean, default True """ obj = self.copy(deep=copy) obj.set_axis(axis, _transform_index(self.axes[axis], mapper)) return obj def add_prefix(self, prefix): f = (str(prefix) + '%s').__mod__ return self.rename_axis(f, axis=0) def add_suffix(self, suffix): f = ('%s' + str(suffix)).__mod__ return self.rename_axis(f, axis=0) @property def _is_single_block(self): if self.ndim == 1: return True if len(self.blocks) != 1: return False blk = self.blocks[0] return (blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice == slice(0, len(self), 1)) def _rebuild_blknos_and_blklocs(self): """ Update mgr._blknos / mgr._blklocs. """ new_blknos = np.empty(self.shape[0], dtype=np.int64) new_blklocs = np.empty(self.shape[0], dtype=np.int64) new_blknos.fill(-1) new_blklocs.fill(-1) for blkno, blk in enumerate(self.blocks): rl = blk.mgr_locs new_blknos[rl.indexer] = blkno new_blklocs[rl.indexer] = np.arange(len(rl)) if (new_blknos == -1).any(): raise AssertionError("Gaps in blk ref_locs") self._blknos = new_blknos self._blklocs = new_blklocs # make items read only for now def _get_items(self): return self.axes[0] items = property(fget=_get_items) def _get_counts(self, f): """ return a dict of the counts of the function in BlockManager """ self._consolidate_inplace() counts = dict() for b in self.blocks: v = f(b) counts[v] = counts.get(v, 0) + b.shape[0] return counts def get_dtype_counts(self): return self._get_counts(lambda b: b.dtype.name) def get_ftype_counts(self): return self._get_counts(lambda b: b.ftype) def get_dtypes(self): dtypes = np.array([blk.dtype for blk in self.blocks]) return com.take_1d(dtypes, self._blknos, allow_fill=False) def get_ftypes(self): ftypes = np.array([blk.ftype for blk in self.blocks]) return com.take_1d(ftypes, self._blknos, allow_fill=False) def __getstate__(self): block_values = [b.values for b in self.blocks] block_items = [self.items[b.mgr_locs.indexer] for b in self.blocks] axes_array = [ax for ax in self.axes] extra_state = { '0.14.1': { 'axes': axes_array, 'blocks': [dict(values=b.values, mgr_locs=b.mgr_locs.indexer) for b in self.blocks] } } # First three elements of the state are to maintain forward # compatibility with 0.13.1. return axes_array, block_values, block_items, extra_state def __setstate__(self, state): def unpickle_block(values, mgr_locs): # numpy < 1.7 pickle compat if values.dtype == 'M8[us]': values = values.astype('M8[ns]') return make_block(values, placement=mgr_locs) if (isinstance(state, tuple) and len(state) >= 4 and '0.14.1' in state[3]): state = state[3]['0.14.1'] self.axes = [_ensure_index(ax) for ax in state['axes']] self.blocks = tuple( unpickle_block(b['values'], b['mgr_locs']) for b in state['blocks']) else: # discard anything after 3rd, support beta pickling format for a # little while longer ax_arrays, bvalues, bitems = state[:3] self.axes = [_ensure_index(ax) for ax in ax_arrays] if len(bitems) == 1 and self.axes[0].equals(bitems[0]): # This is a workaround for pre-0.14.1 pickles that didn't # support unpickling multi-block frames/panels with non-unique # columns/items, because given a manager with items ["a", "b", # "a"] there's no way of knowing which block's "a" is where. # # Single-block case can be supported under the assumption that # block items corresponded to manager items 1-to-1. all_mgr_locs = [slice(0, len(bitems[0]))] else: all_mgr_locs = [self.axes[0].get_indexer(blk_items) for blk_items in bitems] self.blocks = tuple( unpickle_block(values, mgr_locs) for values, mgr_locs in zip(bvalues, all_mgr_locs)) self._post_setstate() def _post_setstate(self): self._is_consolidated = False self._known_consolidated = False self._rebuild_blknos_and_blklocs() def __len__(self): return len(self.items) def __unicode__(self): output = com.pprint_thing(self.__class__.__name__) for i, ax in enumerate(self.axes): if i == 0: output += u('\nItems: %s') % ax else: output += u('\nAxis %d: %s') % (i, ax) for block in self.blocks: output +=
u('\n%s')
pandas.compat.u
# -*- coding: utf-8 -*- """ Authors: <NAME>, <NAME>, <NAME>, and <NAME> IHE Delft 2017 Contact: <EMAIL> Repository: https://github.com/gespinoza/hants Module: hants """ from __future__ import division import netCDF4 import pandas as pd import math from .davgis.functions import (Spatial_Reference, List_Datasets, Clip, Resample, Raster_to_Array, NetCDF_to_Raster) import os import tempfile from copy import deepcopy import matplotlib.pyplot as plt import warnings def run_HANTS(rasters_path_inp, name_format, start_date, end_date, latlim, lonlim, cellsize, nc_path, nb, nf, HiLo, low, high, fet, dod, delta, epsg=4326, fill_val=-9999.0, rasters_path_out=None, export_hants_only=False): ''' This function runs the python implementation of the HANTS algorithm. It takes a folder with geotiffs raster data as an input, creates a netcdf file, and optionally export the data back to geotiffs. ''' create_netcdf(rasters_path_inp, name_format, start_date, end_date, latlim, lonlim, cellsize, nc_path, epsg, fill_val) HANTS_netcdf(nc_path, nb, nf, HiLo, low, high, fet, dod, delta, fill_val) #if rasters_path_out: #export_tiffs(rasters_path_out, nc_path, name_format, export_hants_only) return nc_path def create_netcdf(rasters_path, name_format, start_date, end_date, latlim, lonlim, cellsize, nc_path, epsg=4326, fill_val=-9999.0): ''' This function creates a netcdf file from a folder with geotiffs rasters to be used to run HANTS. ''' # Latitude and longitude lat_ls = pd.np.arange(latlim[0] + 0.5*cellsize, latlim[1] + 0.5*cellsize, cellsize) lat_ls = lat_ls[::-1] # ArcGIS numpy lon_ls = pd.np.arange(lonlim[0] + 0.5*cellsize, lonlim[1] + 0.5*cellsize, cellsize) lat_n = len(lat_ls) lon_n = len(lon_ls) spa_ref = Spatial_Reference(epsg) ll_corner = [lonlim[0], latlim[0]] # Rasters dates_dt = pd.date_range(start_date, end_date, freq='D') dates_ls = [d.strftime('%Y%m%d') for d in dates_dt] ras_ls = List_Datasets(rasters_path, 'tif') # Cell code temp_ll_ls = [pd.np.arange(x, x + lon_n) for x in range(1, lat_n*lon_n, lon_n)] code_ls = pd.np.array(temp_ll_ls) empty_vec = pd.np.empty((lat_n, lon_n)) empty_vec[:] = fill_val # Create netcdf file print('Creating netCDF file...') nc_file = netCDF4.Dataset(nc_path, 'w', format="NETCDF4") # Create Dimensions lat_dim = nc_file.createDimension('latitude', lat_n) lon_dim = nc_file.createDimension('longitude', lon_n) time_dim = nc_file.createDimension('time', len(dates_ls)) # Create Variables crs_var = nc_file.createVariable('crs', 'i4') crs_var.grid_mapping_name = 'latitude_longitude' crs_var.crs_wkt = spa_ref lat_var = nc_file.createVariable('latitude', 'f8', ('latitude'), fill_value=fill_val) lat_var.units = 'degrees_north' lat_var.standard_name = 'latitude' lon_var = nc_file.createVariable('longitude', 'f8', ('longitude'), fill_value=fill_val) lon_var.units = 'degrees_east' lon_var.standard_name = 'longitude' time_var = nc_file.createVariable('time', 'l', ('time'), fill_value=fill_val) time_var.standard_name = 'time' time_var.calendar = 'gregorian' code_var = nc_file.createVariable('code', 'i4', ('latitude', 'longitude'), fill_value=fill_val) outliers_var = nc_file.createVariable('outliers', 'i4', ('latitude', 'longitude', 'time'), fill_value=fill_val) outliers_var.long_name = 'outliers' original_var = nc_file.createVariable('original_values', 'f8', ('latitude', 'longitude', 'time'), fill_value=fill_val) original_var.long_name = 'original values' hants_var = nc_file.createVariable('hants_values', 'f8', ('latitude', 'longitude', 'time'), fill_value=fill_val) hants_var.long_name = 'hants values' combined_var = nc_file.createVariable('combined_values', 'f8', ('latitude', 'longitude', 'time'), fill_value=fill_val) combined_var.long_name = 'combined values' print('\tVariables created') # Load data lat_var[:] = lat_ls lon_var[:] = lon_ls time_var[:] = dates_ls code_var[:] = code_ls # temp folder temp_dir = tempfile.mkdtemp() bbox = [lonlim[0], latlim[0], lonlim[1], latlim[1]] # Raster loop print('\tExtracting data from rasters...') for tt in range(len(dates_ls)): # Raster ras = name_format.format(dates_ls[tt]) if ras in ras_ls: # Resample ras_resampled = os.path.join(temp_dir, 'r_' + ras) Resample(os.path.join(rasters_path, ras), ras_resampled, cellsize) # Clip ras_clipped = os.path.join(temp_dir, 'c_' + ras) Clip(ras_resampled, ras_clipped, bbox) # Raster to Array array = Raster_to_Array(ras_resampled, ll_corner, lon_n, lat_n, values_type='float32') # Store values original_var[:, :, tt] = array else: # Store values original_var[:, :, tt] = empty_vec # Close file nc_file.close() print('NetCDF file created') # Return return nc_path def HANTS_netcdf(nc_path, nb, nf, HiLo, low, high, fet, dod, delta, fill_val=-9999.0): ''' This function runs the python implementation of the HANTS algorithm. It takes the input netcdf file and fills the 'hants_values', 'combined_values', and 'outliers' variables. ''' # Read netcdfs nc_file = netCDF4.Dataset(nc_path, 'r+') time_var = nc_file.variables['time'][:] original_values = nc_file.variables['original_values'][:] [rows, cols, ztime] = original_values.shape size_st = cols*rows values_hants = pd.np.empty((rows, cols, ztime)) outliers_hants = pd.np.empty((rows, cols, ztime)) values_hants[:] = pd.np.nan outliers_hants[:] = pd.np.nan # Additional parameters ni = len(time_var) ts = range(ni) # Loop counter = 1 print('Running HANTS...') for m in range(rows): for n in range(cols): print('\t{0}/{1}'.format(counter, size_st)) y = pd.np.array(original_values[m, n, :]) y[pd.np.isnan(y)] = fill_val [yr, outliers] = HANTS(ni, nb, nf, y, ts, HiLo, low, high, fet, dod, delta, fill_val) values_hants[m, n, :] = yr outliers_hants[m, n, :] = outliers counter = counter + 1 nc_file.variables['hants_values'][:] = values_hants nc_file.variables['outliers'][:] = outliers_hants nc_file.variables['combined_values'][:] = pd.np.where(outliers_hants, values_hants, original_values) # Close netcdf file nc_file.close() def HANTS_singlepoint(nc_path, point, nb, nf, HiLo, low, high, fet, dod, delta, fill_val=-9999.0): ''' This function runs the python implementation of the HANTS algorithm for a single point (lat, lon). It plots the fit and returns a data frame with the 'original' and the 'hants' time series. ''' # Location lonx = point[0] latx = point[1] nc_file = netCDF4.Dataset(nc_path, 'r') time = [pd.to_datetime(i, format='%Y%m%d') for i in nc_file.variables['time'][:]] lat = nc_file.variables['latitude'][:] lon = nc_file.variables['longitude'][:] # Check that the point falls within the extent of the netcdf file lon_max = max(lon) lon_min = min(lon) lat_max = max(lat) lat_min = min(lat) if not (lon_min < lonx < lon_max) or not (lat_min < latx < lat_max): warnings.warn('The point lies outside the extent of the netcd file. ' 'The closest cell is plotted.') if lonx > lon_max: lonx = lon_max elif lonx < lon_min: lonx = lon_min if latx > lat_max: latx = lat_max elif latx < lat_min: latx = lat_min # Get lat-lon index in the netcdf file lat_closest = lat.flat[pd.np.abs(lat - latx).argmin()] lon_closest = lon.flat[pd.np.abs(lon - lonx).argmin()] lat_i = pd.np.where(lat == lat_closest)[0][0] lon_i = pd.np.where(lon == lon_closest)[0][0] # Read values original_values = nc_file.variables['original_values'][lat_i, lon_i, :] # Additional parameters ni = len(time) ts = range(ni) # HANTS y = pd.np.array(original_values) y[pd.np.isnan(y)] = fill_val [hants_values, outliers] = HANTS(ni, nb, nf, y, ts, HiLo, low, high, fet, dod, delta, fill_val) # Plot top = 1.15*max(pd.np.nanmax(original_values), pd.np.nanmax(hants_values)) bottom = 1.15*min(pd.np.nanmin(original_values), pd.np.nanmin(hants_values)) ylim = [bottom, top] plt.plot(time, hants_values, 'r-', label='HANTS') plt.plot(time, original_values, 'b.', label='Original data') plt.ylim(ylim[0], ylim[1]) plt.legend(loc=4) plt.xlabel('time') plt.ylabel('values') plt.gcf().autofmt_xdate() plt.axes().set_title('Point: lon {0:.2f}, lat {1:.2f}'.format(lon_closest, lat_closest)) plt.axes().set_aspect(0.5*(time[-1] - time[0]).days/(ylim[1] - ylim[0])) plt.show() # Close netcdf file nc_file.close() # Data frame df = pd.DataFrame({'time': time, 'original': original_values, 'hants': hants_values}) # Return return df def HANTS(ni, nb, nf, y, ts, HiLo, low, high, fet, dod, delta, fill_val): ''' This function applies the Harmonic ANalysis of Time Series (HANTS) algorithm originally developed by the Netherlands Aerospace Centre (NLR) (http://www.nlr.org/space/earth-observation/). This python implementation was based on two previous implementations available at the following links: https://codereview.stackexchange.com/questions/71489/harmonic-analysis-of-time-series-applied-to-arrays http://nl.mathworks.com/matlabcentral/fileexchange/38841-matlab-implementation-of-harmonic-analysis-of-time-series--hants- ''' # Arrays mat = pd.np.zeros((min(2*nf+1, ni), ni)) # amp = np.zeros((nf + 1, 1)) # phi = np.zeros((nf+1, 1)) yr = pd.np.zeros((ni, 1)) outliers = pd.np.zeros((1, len(y))) # Filter sHiLo = 0 if HiLo == 'Hi': sHiLo = -1 elif HiLo == 'Lo': sHiLo = 1 nr = min(2*nf+1, ni) noutmax = ni - nr - dod # dg = 180.0/math.pi mat[0, :] = 1.0 ang = 2*math.pi*pd.np.arange(nb)/nb cs = pd.np.cos(ang) sn = pd.np.sin(ang) i = pd.np.arange(1, nf+1) for j in pd.np.arange(ni): index = pd.np.mod(i*ts[j], nb) mat[2 * i-1, j] = cs.take(index) mat[2 * i, j] = sn.take(index) p = pd.np.ones_like(y) bool_out = (y < low) | (y > high) p[bool_out] = 0 outliers[bool_out.reshape(1, y.shape[0])] = 1 nout = pd.np.sum(p == 0) if nout > noutmax: if pd.np.isclose(y, fill_val).any(): ready = pd.np.array([True]) yr = y outliers = pd.np.zeros((y.shape[0]), dtype=int) outliers[:] = fill_val else: raise Exception('Not enough data points.') else: ready = pd.np.zeros((y.shape[0]), dtype=bool) nloop = 0 nloopmax = ni while ((not ready.all()) & (nloop < nloopmax)): nloop += 1 za = pd.np.matmul(mat, p*y) A = pd.np.matmul(pd.np.matmul(mat, pd.np.diag(p)), pd.np.transpose(mat)) A = A + pd.np.identity(nr)*delta A[0, 0] = A[0, 0] - delta zr = pd.np.linalg.solve(A, za) yr = pd.np.matmul(pd.np.transpose(mat), zr) diffVec = sHiLo*(yr-y) err = p*diffVec err_ls = list(err) err_sort = deepcopy(err) err_sort.sort() rankVec = [err_ls.index(f) for f in err_sort] maxerr = diffVec[rankVec[-1]] ready = (maxerr <= fet) | (nout == noutmax) if (not ready): i = ni - 1 j = rankVec[i] while ((p[j]*diffVec[j] > 0.5*maxerr) & (nout < noutmax)): p[j] = 0 outliers[0, j] = 1 nout += 1 i -= 1 if i == 0: j = 0 else: j = 1 return [yr, outliers] def export_tiffs(rasters_path_out, nc_path, name_format, export_hants_only=False): ''' This function exports the output of the HANTS analysis. If 'export_hants_only' is False (default), the output rasters have the best value available. Therefore, the cells in the output rasters will have the original value for the cells that are not outliers and the hants values for the cells that are outliers or the cells where data is not available. If 'export_hants_only' is True, the exported rasters have the values obtained by the HANTS algorithm disregarding of the original values. ''' # Print print('Exporting...') # Create folders if not os.path.exists(rasters_path_out): os.makedirs(rasters_path_out) # Read time data nc_file = netCDF4.Dataset(nc_path, 'r') time_var = nc_file.variables['time'][:] nc_file.close() # Output type if export_hants_only: variable_selected = 'hants_values' else: variable_selected = 'combined_values' # Loop through netcdf file for yyyymmdd in time_var: print('\t{0}'.format(yyyymmdd)) output_name = rasters_path_out + os.sep + name_format.format(yyyymmdd) NetCDF_to_Raster(input_nc=nc_path, output_tiff=output_name, ras_variable=variable_selected, x_variable='longitude', y_variable='latitude', crs={'variable': 'crs', 'wkt': 'crs_wkt'}, time={'variable': 'time', 'value': yyyymmdd}) # Return print('Done') return rasters_path_out def plot_point(nc_path, point, ylim=None): ''' This function plots the original time series and the HANTS time series. It can be used to assess the fit. ''' # Location lonx = point[0] latx = point[1] nc_file = netCDF4.Dataset(nc_path, 'r') time = [pd.to_datetime(i, format='%Y%m%d') for i in nc_file.variables['time'][:]] lat = nc_file.variables['latitude'][:] lon = nc_file.variables['longitude'][:] # Check that the point falls within the extent of the netcdf file lon_max = max(lon) lon_min = min(lon) lat_max = max(lat) lat_min = min(lat) if not (lon_min < lonx < lon_max) or not (lat_min < latx < lat_max): warnings.warn('The point lies outside the extent of the netcd file. ' 'The closest cell is plotted.') if lonx > lon_max: lonx = lon_max elif lonx < lon_min: lonx = lon_min if latx > lat_max: latx = lat_max elif latx < lat_min: latx = lat_min # Get lat-lon index in the netcdf file lat_closest = lat.flat[pd.np.abs(lat - latx).argmin()] lon_closest = lon.flat[
pd.np.abs(lon - lonx)
pandas.np.abs
# This files contains your custom actions which can be used to run # custom Python code. # # See this guide on how to implement these action: # https://rasa.com/docs/rasa/core/actions/#custom-actions/ # This is a simple example for a custom action which utters "Hello World!" import re import io import ast import requests import numpy as np import pandas as pd import random from typing import Any, Text, Dict, List, Union, Optional from rasa_sdk import Action, Tracker from rasa_sdk import FormValidationAction from rasa_sdk.events import SlotSet, FollowupAction from rasa_sdk.types import DomainDict from rasa_sdk.executor import CollectingDispatcher import warnings from statistics import mean from os import path, getenv from datetime import datetime import matplotlib.pyplot as plt from botocore.exceptions import ClientError from boto3.exceptions import S3UploadFailedError import boto3 DB_AWS_ACCESS_KEY_ID = getenv('DB_AWS_ACCESS_KEY_ID') DB_AWS_SECRET_ACCESS_KEY = getenv('DB_AWS_SECRET_ACCESS_KEY') DB_AWS_BUCKET = 'journeypic' # ------------------------------------------------------------------ def upload_file_to_s3(local_file, s3_folder, s3_file, aws_access_key_id, aws_secret_access_key, aws_bucket, debug_en=False): """ upload a given file to given location on Amazon-S3 """ success = True HTTP_OK = 200 # Connect to Amazon-S3 client: s3_client = boto3.client('s3', aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key) # Make a new directory on S3 (if not already exists): if s3_folder + '/' in [x['Key'] for x in s3_client.list_objects(Bucket=aws_bucket)['Contents']]: pass elif not debug_en: res = s3_client.put_object(Bucket=aws_bucket, Key='%s/' % s3_folder) success = res['ResponseMetadata']['HTTPStatusCode'] == HTTP_OK if not success: return success, "" # Upload local_file to S3: x = 3 if not debug_en: try: if path.exists(local_file): s3_client.upload_file(local_file, aws_bucket, path.join(s3_folder, s3_file)) s3_client.put_object_acl(ACL='public-read', Bucket=aws_bucket, Key=path.join(s3_folder, s3_file)) except (ClientError, S3UploadFailedError) as e: success = False, "" return success, "https://%s.s3.eu-central-1.amazonaws.com/%s/%s" % (aws_bucket, s3_folder, s3_file) # ------------------------------------------------------------------ def donut_generator(names, sizes, radius=0.7, textstr_title='', colors=None, figname="image.png"): if colors is None: colors = [] my_circle = plt.Circle((0, 0), radius, color='white') fig, ax = plt.subplots() labels = [':%s\nתוירולק %d' % (k1, k2) for k1, k2 in zip(names, sizes)] if colors: ax.pie(sizes, colors=colors) else: ax.pie(sizes) plt.legend(bbox_to_anchor=(1.0, 0.88), fontsize=18, labels=labels) p = plt.gcf() p.gca().add_artist(my_circle) if textstr_title: ax.text(0.34, 1.05, textstr_title, transform=ax.transAxes, weight='bold', fontsize=30, verticalalignment='center_baseline') textstr_center1 = str(sum(sizes)) textstr_center2 = 'קלוריות'[::-1] ax.text(0.39, 0.56, textstr_center1, transform=ax.transAxes, weight='bold', fontsize=24, verticalalignment='center_baseline') ax.text(0.37, 0.44, textstr_center2, transform=ax.transAxes, fontsize=18, verticalalignment='center_baseline') if figname: fig.patch.set_facecolor('white') fig.savefig(figname, bbox_inches='tight', facecolor='white') else: plt.show() # ------------------------------------------------------------------ def donut_generator_wrapper(title, data): names = [x[::-1] for x in list(data.keys())] sizes = list(data.values()) colors = ['darkorange', 'lightgreen', 'blue'] textstr_title = title[::-1] figname = "donut_image1.png" donut_generator(names=names, sizes=sizes, radius=0.7, textstr_title=textstr_title, colors=colors, figname=figname) return figname # ------------------------------------------------------------------ def iniliatize_Diagram(title, data): unique_filename = lambda fname: "%s_%s%s" % (path.splitext(fname)[0], datetime.now().strftime("%m%d%Y_%H%M%S"), path.splitext(fname)[1]) figname = donut_generator_wrapper(title, data) res, figure_url = upload_file_to_s3(local_file=figname, s3_folder="auto_generated", s3_file=unique_filename(figname), aws_access_key_id=DB_AWS_ACCESS_KEY_ID, aws_secret_access_key=DB_AWS_SECRET_ACCESS_KEY, aws_bucket=DB_AWS_BUCKET) return figure_url # ------------------------------------------------------------------ def load_db(db_bitmap): db_dict = {} # "Zameret food list 22_JAN_2020" if (db_bitmap & 0x1) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=84892416" s = requests.get(url).content db_dict['tzameret'] = pd.read_csv(io.StringIO(s.decode('utf-8'))).fillna(0) # "Zameret_hebrew_features" - entities aliases if (db_bitmap & 0x2) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=1805881936" s = requests.get(url).content db_dict['lut'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, index_col=["Entity Alias"], usecols=["Entity Alias", "Entity", "Units", "Entity name", "RDA name", "action_simple_question", "action_nutrition_howmanyxiny_x", "action_nutrition_howmanyxiny_y", "action_nutrition_is_food_healthy", "action_nutrition_is_food_recommended", "action_nutrition_what_is_healthier_x", "action_nutrition_what_is_healthier_y", "action_nutrition_get_rda", "action_nutrition_bloodtest_generic", "action_nutrition_bloodtest_value", "action_nutrition_food_substitute", "action_nutrition_compare_foods", "action_nutrition_howmanyxyinz"]).fillna(0) # "Zameret_hebrew_features" - nutrients_questions if (db_bitmap & 0x4) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=1706335378" s = requests.get(url).content db_dict['nutrients_qna'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, index_col=["Entity"]).fillna(0) # "Zameret_hebrew_features" - Food questions if (db_bitmap & 0x8) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=1099284657" s = requests.get(url).content db_dict['food_qna'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, index_col=["nutrition_density"], usecols=["nutrition_density", "energy_density", "description_density"]).fillna(0) # "Zameret_hebrew_features" - List of common foods if (db_bitmap & 0x10) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=495295419" s = requests.get(url).content db_dict['common_food'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, index_col=["common_name"], usecols=["common_name", "shmmitzrach", "smlmitzrach"]).fillna(0) # "Newt Machine Readable" - FoodItemRanges if (db_bitmap & 0x20) > 0: url = "https://docs.google.com/spreadsheets/d/1IPTflCe6shaP-FBAuXWSFCX5hSuAo7bMGczNMTSTYY0/export?format=csv&gid=885087351" s = requests.get(url).content db_dict['food_ranges'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, index_col=["Nutrient"], usecols=["Nutrient", "Medium - threshold per 100gr", "High - threshold per 100gr", "good_or_bad", "tzameret_name", "hebrew_name"]).fillna(0) # "Newt Machine Readable" - MicroNutrients if (db_bitmap & 0x40) > 0: url = "https://docs.google.com/spreadsheets/d/1IPTflCe6shaP-FBAuXWSFCX5hSuAo7bMGczNMTSTYY0/export?format=csv&gid=222801095" s = requests.get(url).content micro_nutrients_df = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0).fillna(0) db_dict['micro_nutrients'] = micro_nutrients_df # "Newt Machine Readable" - MicroNutrients if (db_bitmap & 0x80) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=1373096469" s = requests.get(url).content food_units_df = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0).fillna(0) db_dict['food_units'] = food_units_df # "Newt Machine Readable" - BloodTestValues if (db_bitmap & 0x100) > 0: url = "https://docs.google.com/spreadsheets/d/1IPTflCe6shaP-FBAuXWSFCX5hSuAo7bMGczNMTSTYY0/export?format=csv&gid=1011022304" s = requests.get(url).content bloodtest_df = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, nrows=19, usecols=range(11)).fillna(0) db_dict['bloodtest_vals'] = bloodtest_df # "Zameret_hebrew_features" - Weight aliases if (db_bitmap & 0x200) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=623521836" s = requests.get(url).content food_units_aliases_df = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0) db_dict['food_units_aliases'] = food_units_aliases_df # "Zameret_hebrew_features" - For Noa if (db_bitmap & 0x400) > 0: url = "https://docs.google.com/spreadsheets/d/19rYDpki0jgGeNlKLPnINiDGye8QEfQ4IEEWSkLFo83Y/export?format=csv&gid=82221888" s = requests.get(url).content food_units_features_df = pd.read_csv(io.StringIO(s.decode('utf-8')), header=1) db_dict['food_units_features'] = food_units_features_df.dropna(axis=0, how='all') db_dict['food_units_features'] = db_dict['food_units_features'].rename({'Primary_SN': 'smlmitzrach'}, axis=1) # "Zameret_hebrew_features" - subs_tags_alias if (db_bitmap & 0x800) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=458428667" s = requests.get(url).content db_dict['subs_tags_alias'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, usecols=["Entity Alias", "Entity", "Show_stopers"]).set_index( 'Entity Alias') return db_dict # ------------------------------------------------------------------ def import_sheets(debug=False): '''Import the df noa and tzameret food group tabs from the suggested meal planning sheet as a DataFrame. Import weights and measures, and tzameret food list from Tzameret DB as a DataFrame''' sheet_id = '19rYDpki0jgGeNlKLPnINiDGye8QEfQ4IEEWSkLFo83Y' # import seperalty gid_2 = '428717261' df_tzameret_food_group = pd.read_csv( f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv&gid={gid_2}") df = load_db(0x481) df_nutrition = df['tzameret'] df_nutrition.fillna(0, inplace=True) df_nutrition.rename(columns={'carbohydrates': 'carbs'}, inplace=True) df_weights = df['food_units'] df_weights.head() df_noa_pre_1 = df['food_units_features'] df_noa = df['food_units_features'] header = list(df_noa_pre_1.columns.values) df_noa.loc[-1] = header # adding a row df_noa.index = df_noa.index + 1 # shifting index df_noa = df_noa.sort_index() # sorting by index df_noa.head() df_noa.columns = df_noa.columns.str.lower() df_noa = df_noa.iloc[1:] # df_noa doesn not have the first row with the numbers to make it easier to filter data df_noa['lactose_free'] = df_noa['lactose_free'].replace({'Low Lactose': 'Yes', 'Lactose Free': 'Yes'}) df_noa['food_category'] = df_noa['food_category'].replace({'N/A': 'Savoury_Snacks'}) df_noa.dropna(subset=["food_name"], inplace=True) # dropping all meals that don't have a meal name to get complete list of actual meals df_noa = df_noa.rename(columns={'smlmitzrach': 'primary_sn'}) df_noa['sn_1'] = df_noa['primary_sn'].astype(str).str[:1] df_noa['sn_2'] = df_noa['primary_sn'].astype(str).str[1:2] return df_noa, df_tzameret_food_group, df_weights, df_nutrition # ------------------------------------------------------------------ def get_rda(name, tracker, intent_upper=False): db_dict = load_db(0x46) lut_df = db_dict['lut'] micro_nutrients_df = db_dict['micro_nutrients'] if intent_upper: micro_nutrients_df = micro_nutrients_df[micro_nutrients_df['Type'] == "Upper Limit"] else: micro_nutrients_df = micro_nutrients_df[micro_nutrients_df['Type'] == "RDA"] status = "match" if not (tracker.get_slot('gender') and tracker.get_slot('age') and tracker.get_slot( 'weight') and tracker.get_slot( 'height')): status = "default" nutrient = None x = tracker.get_slot('x') if tracker.get_slot('x') else None if x is not None and x is not "": nutrient = x else: for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[name].values: nutrient = ent['value'] break try: feature = lut_df['Entity'][nutrient] feature_rda = lut_df['RDA name'][lut_df['Entity name'] == feature][0] gender = "Male" if tracker.get_slot('gender') == "זכר": gender = "Male" elif tracker.get_slot('gender') == "נקבה": gender = "Female" user_vars = {} user_vars['age'] = tracker.get_slot('age') if tracker.get_slot('age') else "40" user_vars['weight'] = tracker.get_slot('weight') if tracker.get_slot('weight') else "80" user_vars['height'] = tracker.get_slot('height') if tracker.get_slot('height') else "180" rda_row = micro_nutrients_df[(micro_nutrients_df['Micronutrient'] == feature_rda) & \ ((micro_nutrients_df['Gender'] == "ANY") | ( micro_nutrients_df['Gender'] == gender)) & \ ((micro_nutrients_df['Pregnancy'] == "ANY") | ( micro_nutrients_df['Pregnancy'] == "No")) & \ ((micro_nutrients_df['Lactating'] == "ANY") | ( micro_nutrients_df['Lactating'] == "No")) & \ ((micro_nutrients_df['Age Min'] == "ANY") | ( micro_nutrients_df['Age Min'].astype(float) <= int( user_vars['age']))) & \ ((micro_nutrients_df['Age Max'] == "ANY") | ( micro_nutrients_df['Age Max'].astype(float) > int(user_vars['age'])))] rda_text = str(rda_row['Free Text'].values[0]) rda_value = str(rda_row['Value'].values[0]) rda_units = rda_row['Units'].values[0] if 'slot#' in rda_value: rda_value_list = rda_value.split(' ') for k, el in enumerate(rda_value_list): if 'slot#' in el and el.split('#')[1] in user_vars: rda_value_list[k] = user_vars[el.split('#')[1]] rda_value = eval(' '.join(rda_value_list)) rda_value = float(rda_value) if 'slot#' in rda_text: rda_text_list = rda_text.split(' ') for k, el in enumerate(rda_text_list): if 'slot#' in el: rda_text_list[k] = tracker.get_slot(el.split('#')[1]) rda_text = ' '.join(rda_text_list) rda_text_list = re.findall('\{.*?\}', rda_text) for match in rda_text_list: rda_text = rda_text.replace(match, str(eval(match[1:-1]))) if rda_text == "0": rda_text = "" return rda_value, rda_units, rda_text, status, nutrient except: return -1, -1, "", "missmatch", nutrient # ------------------------------------------------------------------ def get_personal_str(rda_status, tracker): age = tracker.get_slot('age') if tracker.get_slot('age') and rda_status == "match" else '40' gender = tracker.get_slot('gender') if tracker.get_slot('gender') and rda_status == "match" else 'זכר' weight = tracker.get_slot('weight') if tracker.get_slot('weight') and rda_status == "match" else '80' height = tracker.get_slot('height') if tracker.get_slot('height') and rda_status == "match" else '180' if rda_status == "default": personal_str = "עבור %s בגיל %s במשקל %s ובגובה %s" % (gender, age, weight, height) else: personal_str = "עבורך (%s בגיל %s במשקל %s ובגובה %s)" % (gender, age, weight, height) return personal_str # ------------------------------------------------------------------ def get_food_nutrition_density(food, food_ranges_db): # Nutrition Density is defined in Tzameret: density_normalized = float(food["Nutrition density normalized"]) # Thresholds are defined in Machine-Readable: density = food_ranges_db[food_ranges_db.index == "Nutrition density"] density_med = float(density["Medium - threshold per 100gr"]) density_high = float(density["High - threshold per 100gr"]) # Binning: res = "high" if density_normalized < density_med: res = "low" elif density_normalized < density_high: res = "med" return density, res # ------------------------------------------------------------------ def get_food_energy_density(food, food_ranges_db): # Energy Density is defined in Tzameret: density_normalized = float(food["Energy density"]) # Thresholds are defined in Machine-Readable: density = food_ranges_db[food_ranges_db.index == "Energy density"] density_med = float(density["Medium - threshold per 100gr"]) density_high = float(density["High - threshold per 100gr"]) # Binning: res = "high" if density_normalized < density_med: res = "low" elif density_normalized < density_high: res = "med" return density, res # ------------------------------------------------------------------ def how_many_x_in_y_core(x, y, food_units, name, tracker): db_dict = load_db(0x293) y_common = y if y in db_dict['common_food'].index: y_common = db_dict['common_food'][db_dict['common_food'].index == y]['shmmitzrach'][0] else: y_food = ' '.join(y.split(' ')[1:]) food_units = db_dict['food_units_aliases'][db_dict['food_units_aliases']['Unit Alias'] == y.split(' ')[0]][ 'Zameret unit'] if food_units.empty: food_units = y.split(' ')[0] else: food_units = food_units.values[0] if y_food in db_dict['common_food'].index: y_common = db_dict['common_food'][db_dict['common_food'].index == y_food]['shmmitzrach'][0] else: y_common = y_food food = db_dict['tzameret'][db_dict['tzameret']['shmmitzrach'].str.contains(y_common)].iloc[0, :] feature = db_dict['lut'][db_dict['lut'].index == x]["Entity"][0] units = db_dict['lut'][db_dict['lut'].index == x]["Units"][0] food_units_row = pd.Series() if food_units: food_units_row = db_dict['food_units'][(db_dict['food_units']['smlmitzrach'] == int(food['smlmitzrach'])) & (db_dict['food_units']['shmmida'] == food_units)] is_food_units_match = not food_units_row.empty or food_units == "100 גרם" food_units_factor = 1.0 if not food_units_row.empty: food_units_factor = food_units_row['mishkal'].values[0] / 100 val = food[feature] * food_units_factor if units == 0: res = "ב-%s של %s יש %.2f %s" % (food_units, food['shmmitzrach'], float(val), x) else: res = "" if not is_food_units_match: res = "לא הצלחתי למצוא נתונים במאגר על היחידה %s עליה שאלת\n" % food_units res += "היחידות הבאות קיימות במאגר, עבור %s:\n" % food['shmmitzrach'] res += ', '.join(db_dict['food_units'][db_dict['food_units']['smlmitzrach'] == int(food['smlmitzrach'])][ 'shmmida'].to_list()) res += "\n" food_units = "100 גרם" res += "ב-%s של %s יש %.2f %s %s" % (food_units, food['shmmitzrach'], float(val), units, x) rda_val, rda_units, rda_text, rda_status, nutrient = get_rda(name, tracker) if rda_val > 0 and units not in ['יחב"ל']: # FIXME: unsupported units rda = 100 * float(val) / rda_val res += "\n" res += "שהם כ-%d אחוז מהקצובה היומית המומלצת %s" % (int(rda), get_personal_str(rda_status, tracker)) if rda_text and rda_text != '0': res += '\n' + rda_text return val, res # ------------------------------------------------------------------ # ____ _ _ _ __ __ _ # | __ ) _ _(_) | __| | | \/ | ___ __ _| | # | _ \| | | | | |/ _` | | |\/| |/ _ \/ _` | | # | |_) | |_| | | | (_| | | | | | __/ (_| | | # |____/ \__,_|_|_|\__,_| |_| |_|\___|\__,_|_| # Dictionary that is equivalent to user inputs and filters the df_noa Database based on the inputs def arrayToString(s): return ' '.join([str(elem) for elem in s]) def checkDoublePattern(sentence, pattern): temp = sentence.count(pattern) if temp == 2: return sentence[:sentence.find(pattern) + len(pattern)] return sentence def update_budgets(daily_budget, meals_num, snacks_num, weights): '''Takes total budget, number of meals and snacks, and weights as paramters. Returns budget for each category for every meal''' # change 0.3 to a user params budgets = {} div = (meals_num + inputs.get( 'budget_var') * snacks_num) # Is this supposed to be budget_var(0.3) times snacks num or budget_var times meals_num if div > 0: budgets['meal'] = round(daily_budget / div, 1) budgets['snack'] = round(inputs.get('budget_var') * daily_budget / div, 1) budgets['Carbs'] = round(weights[0] * budgets['meal'], 1) budgets['Protein'] = round(weights[1] * budgets['meal'], 1) budgets['Vegetables'] = round(weights[2] * budgets['meal'], 1) budgets['Fruits'] = round(weights[3] * budgets['snack'], 1) budgets['Fat'] = round(weights[4] * budgets['snack'], 1) budgets['Fat_meal'] = round(weights[4] * budgets['meal'], 1) budgets['Savoury_Snacks'] = round(weights[5] * budgets['snack'], 1) budgets['Sweets'] = round(weights[6] * budgets['snack'], 1) budgets['all'] = round(daily_budget, 1) return budgets def filter_meals_by_features(user_params, df_feature): '''Takes user inputs and a Dataframe as parameters and returns a DataFrame filtered by the user inputs''' for k, v in user_params.items(): if (v == 'Yes') and (debug['debug_en']): df_feature = df_feature.loc[df_feature[k] == v] return df_feature def filter_meals_by_meal_type(df, meal_type): '''Filters the DataFrame by the meal type to be used in making a scoreboard for each meal like breakfast, lunch etc.''' if debug: return df.loc[(df['il_' + meal_type] == 'Yes')] def candidate_units_amounts(item, sn, items_type): '''Returns the different options for mida amount and servings for each amount''' sn_1 = int(item['sn_1'].values[0]) df_max_meal = df_tzameret_food_group.loc[df_tzameret_food_group['ספרה ראשונה בקוד'] == sn_1] units_intersection = [] amounts_intersection = [] if items_type != 'snack': df_max_meal = df_tzameret_food_group.loc[df_tzameret_food_group['ספרה ראשונה בקוד'] == sn_1] max_amount_meal = df_max_meal['mida_maxAmount_meal'].values[0].replace(' ', '').split(',') df_weights_list = df_weights[df_weights['smlmitzrach'] == sn] weights_list = df_weights_list['mida'].tolist() max_amount_meal_units = [int(value.split('_')[0]) for value in max_amount_meal] max_amount_meal_amounts = [list(range(1, int(value.split('_')[1]) + 1)) for value in max_amount_meal] for k, value in enumerate(max_amount_meal_units): if value in weights_list: units_intersection.append(value) amounts_intersection.append(max_amount_meal_amounts[k]) else: max_amount_snack = df_max_meal['mida_maxAmount_snack'].values[0].replace(' ', '').split(',') df_weights_list = df_weights[df_weights['smlmitzrach'] == sn] weights_list = df_weights_list['mida'].tolist() max_amount_snack_units = [int(value.split('_')[0]) for value in max_amount_snack] max_amount_snack_amounts = [list(range(1, int(value.split('_')[1]) + 1)) for value in max_amount_snack] for k, value in enumerate(max_amount_snack_units): if value in weights_list: units_intersection.append(value) amounts_intersection.append(max_amount_snack_amounts[k]) return units_intersection, amounts_intersection def get_item_property(sn, grams, serving): '''Returns the total item calories for each item''' # if the mida is 700 then multiply by 100, if any other number divide by 100 weights = df_weights[(df_weights['smlmitzrach'] == sn) & (df_weights['mida'] == grams)] mishkal = weights.iloc[0]['mishkal'] if mishkal == 700: mishkal = mishkal * 100 else: mishkal = mishkal / 100 attribute = df_nutrition.loc[df_nutrition['smlmitzrach'] == str(int(sn))] attribute_total = attribute.iloc[0]['food_energy'] total = attribute_total * mishkal * serving return total, weights.iloc[0]['shmmida'], weights.iloc[0]['mishkal'], weights, serving def update_calorie_budgets(candidate_calories, item_type, bud): '''Updates the calories budget based on how many calories were already used''' bud[item_type] = bud[item_type] - candidate_calories return bud def build_meal(meals_bank, meal_type, budget): # make histogram without penalty score of runnning the simulator 50 times and picking the winners. Run it again with the penalty score '''Builds a meal taking a DataFrame, meal type and budget as parameters. Meal takes item from each category (Carbs, Protein etc.) and returns the meal, weighted average score and total meal calories''' budget_weights = {**budget_weights_meals, **budget_weights_snacks_fruits_fat, **budget_weights_savoury_snacks, **budget_weights_sweets} bud = {} meal_similarity_list = [] df_health = df_nutrition.iloc[1:] max_meal_items = inputs.get('max_items_snack') if meal_type == 'snack' else inputs.get('max_items_meal') nutrition_density_list = [] energy_density_list = [] meal_score = 0 score_list = [] uti_score = [] ind_score = [] score = 0 meals = [] meal_cals = 0 types = [] total_budget = budget.copy() item_types = {'breakfast': ['Carbs', 'Protein', 'Vegetables'], 'lunch': ['Carbs', 'Protein', 'Vegetables'], 'dinner': ['Carbs', 'Protein', 'Vegetables'], 'snack': ['Fat']} if (snacks.get('sweets') == 'Yes') & (len(meals_bank.loc[meals_bank['food_category'] == 'Sweets']) > 0): item_types['snack'].append('Sweets') if (snacks.get('Savoury_Snacks') == 'Yes') & ( len(meals_bank.loc[meals_bank['food_category'] == 'Savoury_Snacks']) > 0): item_types['snack'].append('Savoury_Snacks') if (user_params.get('fruits') == 'No') & (len(meals_bank.loc[meals_bank['food_category'] == 'Fruits']) > 0): item_types['snack'].append('Fruits') for k in range(max_meal_items): for item_type in item_types[meal_type]: success = False if (len(meals_bank.loc[meals_bank['food_category'] == item_type]) > 0): df = meals_bank.loc[meals_bank['food_category'] == item_type].sample() candidate_units = candidate_units_amounts(df, int(df['primary_sn'].values[0]), item_type) candidate_grams = candidate_units[0] for can_grams in candidate_grams: sn = float(df['primary_sn'].values[0]) for candidate_amount in candidate_units[1]: for amount in reversed(candidate_amount): calories, weight, grams, x, y = get_item_property(sn, can_grams, amount) can_cals = getattr(calories, "tolist", lambda: candidate_calories)() if can_cals < budget[item_type]: success = True if success: if success: sn_int = int(df['primary_sn'].astype(str).str[:1]) sn1 = float(df['primary_sn'].values[0]) calories1, weight, grams, x, y = get_item_property(sn1, can_grams, amount) bud[item_type] = getattr(calories1, "tolist", lambda: candidate_calories)() units_priority = candidate_grams.index(can_grams) + 1 meal_score += 1 / units_priority df_sn1 = df_tzameret_food_group.loc[ df_tzameret_food_group['ספרה ראשונה בקוד'] == sn_int] df_fish = df_noa.loc[df_noa['primary_sn'] == sn1] food_group = df_sn1['קבוצת המזון'] if sn_int == 2: if df_fish['fish_free'].iloc[0] == 'Yes': meal_similarity_list.append(2.1) else: meal_similarity_list.append(2.2) else: meal_similarity_list.append(sn_int) item_score = (bud[item_type]) / (budget[item_type]) df['score'] = item_score score_list.append(item_score) types.append(df['food_category']) nutrition_density_normalized = df_nutrition.loc[ df_nutrition['smlmitzrach'] == str( int(sn1)), 'Nutrition density normalized'] energy_density = df_health.loc[ df_health['smlmitzrach'] == str(int(sn1)), 'Energy density'] nutrition_density_normalized = nutrition_density_normalized.astype(float) energy_density = energy_density.astype(float) dataframe = df[['food_name', 'primary_sn']] dataframe.insert(2, 'Weight', [grams]) dataframe.insert(3, 'Unit', [weight]) dataframe.insert(4, 'Amount', [amount]) meals.append(dataframe) nutrition_density_list.append(nutrition_density_normalized.values.tolist()) energy_density_list.append(energy_density.values.tolist()) meal_cals = meal_cals + calories1 budget = update_calorie_budgets(can_cals, item_type, budget) break if success or budget[item_type] < units_thr[item_type] or len(meals) >= max_meal_items: break if success or budget[item_type] < type_thr[item_type] or len(meals) >= max_meal_items: break if budget['all'] < inputs['item_thr'] or len(meals) >= max_meal_items: break if len(meals) >= max_meal_items: break types_list_no_duplicates = np.unique([x.values[0] for x in types]).tolist() for each_type in reversed(types_list_no_duplicates): each_score = (float(total_budget.get(each_type)) - float(budget.get(each_type))) / float( total_budget.get(each_type)) ind_score.append(each_score) uti_score.append(budget_weights.get(each_type)) if (len(ind_score) < len(item_types[meal_type])): ind_score.append(0.000001) uti_score.append(.35) if (min(ind_score) < 0.7) and (meal_type != 'snack'): extra_penalty = inputs.get('extra_penalty') else: extra_penalty = 0 if (len(meals)) > 4: meal_penalty_length = (len(meals) - 4) * inputs.get('meal_penalty_length') else: meal_penalty_length = 0 total_utilization = sum(x * y for x, y in zip(ind_score, uti_score)) / sum(uti_score) if len(meal_similarity_list) != len(set(meal_similarity_list)): meal_similarity_penalty = inputs.get('meal_similarity_penalty') else: meal_similarity_penalty = 0 nutrition_density_list = [float(x) for [x] in nutrition_density_list] try: avg_nutrition = round(mean(nutrition_density_list), 4) except: avg_nutrition = nutrition_density_list energy_density_list = [float(x) for [x] in energy_density_list] avg_energy = round(mean(energy_density_list), 4) penalty_score = 1 - meal_score / len(meals) nutrition_boost = avg_nutrition * inputs.get('nutrition_bonus') energy_boost = avg_energy * inputs.get('energy_bonus') if scoring.get('legacy'): score = total_utilization - ( penalty_score * inputs.get('penalty_weight')) - extra_penalty - meal_penalty_length elif scoring.get('legacy_nut'): score = total_utilization - (penalty_score * inputs.get( 'penalty_weight')) - extra_penalty - meal_penalty_length + nutrition_boost elif scoring.get('legacy_ene'): total_utilization - ( penalty_score * inputs.get('penalty_weight')) - extra_penalty - meal_penalty_length + energy_boost else: score = total_utilization - (penalty_score * inputs.get( 'penalty_weight')) - extra_penalty - meal_penalty_length + energy_boost + nutrition_boost return meals, score, meal_cals, ind_score, meal_penalty_length, avg_nutrition, avg_energy, meal_similarity_penalty, meal_similarity_list def build_meal_wrapper(): energy_density_listy = 0.0 meal_similarity_listy = [] nutrition_density_listy = [] meal_similarity_penaltyy = [] nutrition_density_listx = [] energy_density_listx = 0.0 meal_similarity_penaltyx = [] meal_similarity_listx = [] penalty_lengthy = [] # Builds and populates a scoreboard that sorts the meals based on their score x = -3 pd.set_option('precision', 2) max_iterations = inputs.get('max_iter') budget_weights = {**budget_weights_meals, **budget_weights_snacks_fruits_fat, **budget_weights_savoury_snacks, **budget_weights_sweets} budget_weights_list = [] for k, v in budget_weights.items(): budget_weights_list.append(v) score_tracker = -2 total_cals = 0 meals = {} user_meals_num = inputs.get('meals_num') user_snacks_num = inputs.get('snacks_num') filler = [] meal_types = ['breakfast', 'lunch', 'dinner'] for k in range(inputs.get('snacks_num')): meal_types.append('snack') features = filter_meals_by_features(user_params, df_noa) for meal_type in meal_types: bank = filter_meals_by_meal_type(features, meal_type) x += 1 scoreboard = {} for k in range(inputs.get('max_iter')): budgets_dynamic = update_budgets(inputs.get('total_cals'), inputs.get('meals_num'), inputs.get('snacks_num'), budget_weights_list) meal_budget = update_budgets(inputs.get('total_cals'), inputs.get('meals_num'), inputs.get('snacks_num'), budget_weights_list) if meal_type != 'snack': mealy, scorey, calsy, ut_scorey, penalty_lengthy, nutrition_density_listy, energy_density_listy, meal_similarity_penaltyy, meal_similarity_listy = build_meal( bank, meal_type, budgets_dynamic) if mealy and scorey and min(ut_scorey) > 0: scoreboard[meal_type] = mealy, scorey, calsy if scoreboard[meal_type][1] > score_tracker: score_tracker = scoreboard[meal_type][1] total_cals = scoreboard[meal_type][2] else: mealx, scorex, calsx, ut_scorex, penalty_lengthx, nutrition_density_listx, energy_density_listx, meal_similarity_penaltyx, meal_similarity_listx = build_meal( bank, meal_type, meal_budget) if mealx: scoreboard[ meal_type] = mealx, scorex, calsx, nutrition_density_listx, energy_density_listx, meal_similarity_penaltyx, meal_similarity_listx if scoreboard: meals[meal_type] = scoreboard[meal_type] for meal_name, whole_meal in scoreboard.items(): df = pd.concat(whole_meal[0]) df = pd.DataFrame(df.values.reshape(1, -1)) df['score'] = float(scoreboard[meal_type][1]) df['meal_cals'] = scoreboard[meal_type][2] if meal_name != 'snack': df['name'] = meal_name df['budget per meal'] = meal_budget.get('meal') df['meal budget utilization'] = (df['meal_cals'] / df['budget per meal']) df['average nutrtition'] = nutrition_density_listy df['average energy'] = energy_density_listy df['meal_similarity_penalty'] = meal_similarity_penaltyy df['meal_similarity_list'] = pd.Series([meal_similarity_listy]) df.set_index('name', drop=True, inplace=True) else: df['name'] = meal_name + " " + str(x) df['budget per snack'] = budgets_dynamic.get('snack') df['snack budget utilization'] = (df['meal_cals'] / df['budget per snack']) df['average nutrtition'] = nutrition_density_listx df['average energy'] = energy_density_listx df['meal_similarity_penalty'] = meal_similarity_penaltyx df['meal_similarity_list'] = pd.Series([meal_similarity_listx]) df.set_index('name', drop=True, inplace=True) if meal_name != 'snack': # rename all the budget as budget leftover so its carbs budget leftover etc. df['meal penalty length'] = penalty_lengthy df['carb budget per meal'] = int(meal_budget.get('Carbs')) df['carbs budget remaining'] = budgets_dynamic.get('Carbs') df['carb budget utilization'] = (meal_budget.get('Carbs') - budgets_dynamic.get( 'Carbs')) / meal_budget.get('Carbs') df['protein budget per meal'] = meal_budget.get('Protein') df['protein budget remaining'] = budgets_dynamic.get('Protein') df['protein budget utilization'] = (meal_budget.get('Protein') - budgets_dynamic.get( 'Protein')) / meal_budget.get('Protein') df['vegetable budget per meal'] = meal_budget.get('Vegetables') df['vegetable budget remaining'] = budgets_dynamic.get('Vegetables') df['vegetable budget utilization'] = (meal_budget.get('Vegetables') - budgets_dynamic.get( 'Vegetables')) / meal_budget.get('Vegetables') df['fat budget per meal'] = meal_budget.get('Fat_meal') df['fat budget remaining'] = budgets_dynamic.get('Fat_meal') df['fat budget utilization'] = (meal_budget.get('Fat_meal') - budgets_dynamic.get( 'Fat_meal')) / meal_budget.get('Fat_meal') else: if snacks.get('sweets') == "Yes": df['sweets budget per snack'] = meal_budget.get('Sweets') df['sweets budget remaining'] = budgets_dynamic.get('Sweets') df['sweets budget utilization'] = (meal_budget.get('Sweets') - budgets_dynamic.get( 'Sweets')) / meal_budget.get('Sweets') if snacks.get('Savoury_Snacks') == 'Yes': df['savoury budget per snack'] = meal_budget.get('Savoury_Snacks') df['savoury budget remaining'] = budgets_dynamic.get('Savoury_Snacks') df['savoury budget utilization'] = (meal_budget.get('Savoury_Snacks') - budgets_dynamic.get( 'Savoury_Snacks')) / meal_budget.get('Savoury_Snacks') if user_params.get('fruits') == 'No': df['fruits budget per snack'] = meal_budget.get('Fruits') df['fruits budget remaining'] = budgets_dynamic.get('Fruits') df['fruits budget utilization'] = (meal_budget.get('Fruits') - budgets_dynamic.get( 'Fruits')) / meal_budget.get('Fruits') df['fat budget per snack'] = meal_budget.get('Fat') df['fat budget remaining'] = budgets_dynamic.get('Fat') df['fat budget utilization'] = (meal_budget.get('Fat') - budgets_dynamic.get( 'Fat')) / meal_budget.get('Fat') filler.append(df) if meal_type == 'snack': user_snacks_num -= 1 else: user_meals_num -= 1 budgets_dynamic = update_budgets(float(inputs.get('total_cals') - total_cals), user_meals_num, user_snacks_num, budget_weights_list) df_meals = pd.concat(filler) df_final = df_meals.sort_values(by=['name', 'score'], ascending=[True, False]) df_final.rename(columns={0: "Item 1", 1: "Primary SN 1", 2: "Weight", 3: "Unit1", 4: "Amount1", 5: "Item 2", 6: "Primary SN 2", 7: "Weight", 8: "Unit2", 9: "Amount2", 10: "Item 3", 11: "Primary SN 3", 12: "Weight", 13: "Unit3", 14: "Amount3", 15: "Item 4", 16: "Primary SN 4", 17: "Weight", 18: "Unit4", 19: "Amount4"} , inplace=True) return df_final def displayMeal(data, mealType, items_meal_number, sncack_numbers): menu = "" calories = 0 # hole day menu carbs = 0 protein = 0 vegetable = 0 if len(mealType) > 1: for meal in mealType: items, temp_calories, temp_carbs, temp_protein, temp_vegetable = getMeal(data, meal, items_meal_number) calories += temp_calories menu = menu + items carbs = carbs + temp_carbs protein = protein + temp_protein vegetable = vegetable + temp_vegetable # one meal for the user else: menu, calories, carbs, protein, vegetable = getMeal(data, mealType[0], items_meal_number) return menu, carbs, protein, vegetable snacks, calories_sn = getSnack(data, sncack_numbers) menu = menu + snacks calories += calories_sn menu = menu + "סך הכל קלוריות -> " + arrayToString(str(calories)) return menu, carbs, protein, vegetable def getMeal(data, meal_type, meal_items_nubmer): # item[0]-> food name # item[1]-> unit # item[2]-> amount dic = {'breakfast': 'ארוחת בוקר', 'lunch': 'ארוחת צהריים', 'dinner': 'ארוחת ערב'} temp_meal = data[data.index == meal_type] items = get_items(temp_meal, meal_items_nubmer) calories = temp_meal['meal_cals'].head(1).values # calulate the Nutritional values of the meal carbs = temp_meal['carb budget per meal'].head(1).values * temp_meal['carb budget utilization'].head(1).values protein = temp_meal['protein budget per meal'].head(1).values * temp_meal['protein budget utilization'].head( 1).values vegetables = temp_meal['vegetable budget per meal'].head(1).values * temp_meal['vegetable budget utilization'].head( 1).values carbs = int(carbs) protein = int(protein) vegetables = int(vegetables) calories = int(calories) if meal_items_nubmer == 4: return "*" + dic[meal_type] + "*:\n1. " + buildItem(items['item1']) + "\n2. " + buildItem( items["item2"]) + "\n3. " + buildItem( items['item3']) + "\n4. " + buildItem( items['item4']) + "\nכמות קלוריות ->" + str(calories) + "\n\n", calories, carbs, protein, vegetables return "*" + dic[meal_type] + "*:\n1. " + buildItem(items['item1']) + "\n2. " + buildItem( items["item2"]) + "\n3. " + buildItem( items['item3']) + "\nכמות קלוריות ->" + str(calories) + "\n\n", calories, carbs, protein, vegetables def get_items(temp_meal, items_number): meal = {} for index in range(1, items_number + 1): meal['item' + str(index)] = [temp_meal['Item ' + str(index)].head(1).values, temp_meal['Unit' + str(index)].head(1).values, temp_meal['Amount' + str(index)].head(1).values] return meal def getSnack(snackData, snack_number): # get the line of each snack snack1 = snackData[snackData.index == "snack 1"] snack2 = snackData[snackData.index == "snack 2"] # get the items snack1_ = get_items(snack1, snack_number) snack2_ = get_items(snack2, snack_number) snack1_calories = snack1['meal_cals'].head(1).values snack2_calories = snack2['meal_cals'].head(1).values snack1_calories = int(snack1_calories) snack2_calories = int(snack2_calories) if snack_number == 2: return "*ארוחות ביניים 1*:\n1. " + buildItem(snack1_['item1']) + "\n2. " + buildItem( snack1_['item2']) + "\n*ארוחות ביניים 2*:\n1." + buildItem(snack2_['item1']) + "\n2. " + buildItem( snack2_['item2']) + "\nכמות קלוריות -> " + str( snack1_calories + snack2_calories) + "\n\n", snack1_calories + snack2_calories return "*ארוחות ביניים *:\n1. " + buildItem(snack1_['item1']) + "\n2. " + buildItem( snack2_['item1']) + "\nכמות קלוריות -> " + str( snack1_calories + snack2_calories) + "\n\n", snack1_calories + snack2_calories def buildItem(item): if item[0] is not 'NaN' and item[2] is not 'Nan': return arrayToString(item[0]) + " " + arrayToString(item[2]) + " " + arrayToString( unitHebrew(arrayToString(item[1]), item[2])) def unitHebrew(unit, amount): unit_dic = {"כף": 'כפות', "מנה": 'מנות', "יחידה קטנה": 'יחידות קטנות', "פרח": 'פרחים', "פרוסה בינונית": 'פרוסות בינונוית', "יחידה": 'יחידות', "כף גדושה": 'כפות גדושות', "פרוסה": 'פרוסות', "מנה קטנה": 'מנות קטנות', "יחידה בינונית": 'יחידות בינונוית', "כפית": 'כפיות', "כוס": 'כוסות', "כוס קצוץ": 'כוסות'} if unit not in unit_dic: return unit if amount > 1: unit_temp = unit_dic[unit].strip() if unit_temp.count(' ') == 1: return unit_temp unit_temp = unit_temp.replace(' ', '') unit_temp = unit_temp[:unit_temp.find('ת') + 1] + ' ' + unit_temp[unit_temp.find('ת') + 1:] # one word if unit_temp.count('ת') == 1: return unit_temp.strip() return unit_temp return unit def core_fun(meal_type, title=""): global snacks, user_params, units_thr, type_thr, budget_weights_meals, budget_weights_snacks_fruits_fat, budget_weights_savoury_snacks, budget_weights_sweets, inputs, display_user_parameter, debug global user_meals_num, total_cals, user_snacks_num, candidate_calories, scoring global df_noa, df_tzameret_food_group, df_weights, df_nutrition pd.set_option("display.precision", 2) warnings.filterwarnings("ignore") # Dictionary that is equivalent to user inputs and filters the df_noa Database based on the inputs user_params = {'eggs': 'No', # If eggs = Yes, filters out all the meals with eggs 'vegetables': 'No', # If vegetables = Yes, fiters out all meals with vegetables 'fruits': 'No', # If fruits = Yes, filters out all snacks and meals with fruits and snacks don't have fruits as a category 'dairy': 'No', # If dairy = Yes, filters out all the dairy items 'beef_chicken_fish': 'No', # If beef_chicken_fish = Yes, filters out all the meals with beef chicken or fish # For remaining if Yes, filters only the food its for (i.e if kosher = Yes, only shows kosher food) 'kosher': 'Yes', 'halal': 'Yes', 'vegetarian': 'No', 'vegan': 'No', 'ketogenic': 'No', 'paleo': 'No', 'mediterranean': 'No', 'lactose_free': 'No', 'gluten_free': 'No', 'milk_free': 'No', 'wheat_free': 'No', 'egg_free': 'No', 'soy_free': 'No', 'tree_nut_free': 'No', 'peanut_free': 'No', 'fish_free': 'No', 'shellfish_free': 'No'} # Dictionary to see if want to add certain snack elements to the snacks on the scoreboard snacks = {'sweets': 'No', 'Savoury_Snacks': 'Yes'} # Threshold for the build meal to stop looking for another item (If there are only 20 Carb calories left the meal exits the Carb code and moves to Protein): units_thr = {'Carbs': 25, 'Protein': 10, 'Vegetables': 10, 'Fat': 25, 'Fruits': 25, 'Sweets': 25, 'Savoury_Snacks': 25} # Another threshold for build meal to stop looking for another item in the category if there is less budget than the threshold: type_thr = {'Carbs': 25, 'Protein': 10, 'Vegetables': 10, 'Fat': 25, 'Fruits': 25, 'Sweets': 25, 'Savoury_Snacks': 25} # For snacks its either fruits and fat or savoury or sweets budget_weights_meals = {'Carbs': 0.4, 'Protein': 0.5, 'Vegetables': 0.2} budget_weights_snacks_fruits_fat = {'Fruits': 0.7, 'Fat': 0.4} budget_weights_savoury_snacks = {'Savoury_Snacks': 1.1} budget_weights_sweets = {'Sweets': 1.1} scoring = {'legacy': False, # legacy scoring system composed of budget utilization 'legacy_nut': True, # legacy scoring system with a bonus based on average nutritional density 'legacy_ene': False, # legacy scroing system with a bonus based on higher energy density 'legacy_nut_ene': False # legacy scoring system with a bonus based on nutrtion density and energy density with higher density the better } # User inputs that control different variables: inputs = {'for_noa_gid': 2106834268, # Gid that controls which for noa tab is shown, to switch just paste another Gid 'budget_var': 0.3, # Budget variable to see the weighting for snacks and individual meals 'item_thr': 4, # Threshold used to decided when to break code if there is less than 5 total budget left 'max_items_meal': 4, # Max amount of items per meal 'max_items_snack': 2, # Max amount of items per snack 'penalty_weight': 1, # Penalty weight for the meal score if the meal doesnt take the first option at the intersection of mida max amount meal 'nutrition_bonus': 0.1, # Bonus multiplier for the average nutrition density 'energy_bonus': 0.2, # Bonus multiplier for the average energy density 'meal_similarity_penalty': 0.3, # Penalty for having mutliple of the same category of meal items in the same meal 'max_iter': 7, # Number of meals for each meal type in the scoreboard 'meals_num': 3, # Number of different meal types and meals - will always be 3 'snacks_num': 2, # number of snacks in the final scoreboard 'meat_egg_same_day_penalty': 0.2, # Peanlty if the top meal has eggs or meat and another meal the same day also has eggs and meat 'extra_penalty': 0.2, # Penalty if there is less than 0.7 of each category for the budget is used 'meal_penalty_length': 0.1, # Penalty given if a meal is longer than 4 items and this is the weighting 'total_cals': 2000 # total calories in the budget for the day } debug = {'debug_en': True} # Used for finding bugs in code. Set to True for code to run properly # Toggle to show the user values in a DataFrame display_user_parameter = {'display_user_parameter': False} df_noa, df_tzameret_food_group, df_weights, df_nutrition = import_sheets(False) df_main = build_meal_wrapper() items, carbs, protein, vegetable = displayMeal(df_main, meal_type, inputs['max_items_meal'], inputs['max_items_snack']) data = {'חלבון': protein, 'פחמימות': carbs, 'ירקות': vegetable} url = iniliatize_Diagram(title, data) return items, url # ------------------------------------------------------------------ class Actionhowmanyxyinz(Action): def name(self) -> Text: return "action_nutrition_howmanyxyinz" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: user_msg = tracker.latest_message.get('text') two_nutrient = None z = None db_dict = load_db(0x293) prediction = tracker.latest_message two_nutrient = prediction['entities'][0]['value'] x, y = two_nutrient.split(' ו') x = x.strip() y = y.strip() regex_res = re.search('כמה (.*) יש ב(.*)', user_msg.replace('?', '')) if regex_res: if two_nutrient is None: x, y = regex_res.group(1) x = x.strip() y = y.strip() z = regex_res.group(2) regex_res = re.search('כמה (.*) ב(.*)', user_msg.replace('?', '')) if regex_res: if two_nutrient is None: x, y = regex_res.group(1) x = x.strip() y = y.strip() z = regex_res.group(2) regex_res = re.search('מה הכמות של (.*) ב(.*)', user_msg.replace('?', '')) if regex_res: if two_nutrient is None: x, y = regex_res.group(1) x = x.strip() y = y.strip() z = regex_res.group(2) y = y[:len(y)] # get the units from the user message user_msg_temp = user_msg[user_msg.find(two_nutrient) + len(two_nutrient) + 1:len(user_msg)].replace('?', '') food1_units = "100 גרם" regex_units_res1 = re.search('ב(.*) של', user_msg_temp) regex_units_res2 = re.search(' (.*) של', user_msg_temp) if regex_units_res1: food1_units = regex_units_res1.group(1) elif regex_units_res2: food1_units = regex_units_res2.group(1) if food1_units in db_dict['food_units_aliases']['Unit Alias'].values: food1_units = db_dict['food_units_aliases'][db_dict['food_units_aliases']['Unit Alias'] == food1_units][ 'Zameret unit'].values[0] if True: val1, res1 = how_many_x_in_y_core(x, z, food1_units, self.name(), tracker) val2, res2 = how_many_x_in_y_core(y, z, food1_units, self.name(), tracker) res1 = checkDoublePattern(res1, 'קלוריות') res2 = checkDoublePattern(res2, 'קלוריות') res = '' res += res1 res += "\n" res += res2 else: res = "אין לי מושג כמה, מצטער!" dispatcher.utter_message(res) # ------------------------------------------------------------------ class Actioncompartiontwofoods(Action): def name(self) -> Text: return "action_nutrition_compare_foods" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: user_msg = tracker.latest_message.get('text') entities = tracker.latest_message.get('entities') x = None y1 = None y2 = None more_or_less = 'יותר' if 'יותר' in user_msg else 'פחות' db_dict = load_db(0x293) for ent in entities: if ent['entity'] in db_dict['lut']["action_nutrition_compare_foods"].values: x = ent['value'] elif ent['entity'] in db_dict['lut']["action_nutrition_compare_foods"].values: y1, y2 = ent['value'].split('או') y1 = y1.strip() y2 = y2.strip() if not y1 or not y2: y1, y2 = user_msg[user_msg.find(x) + len(x):len(user_msg)].split('או') y1 = y1.strip() y1 = y1[1:len(y1)] y2 = y2.strip() if 'בב' in y1: y1 = y1[1:len(y1)] if not y1 or not y2: regex_res = re.search('במה יש (פחות|יותר) .* ב(.*)', user_msg.replace('?', '')) if regex_res: more_or_less = regex_res.group(1) y1, y2 = regex_res.group(2).split('או') y1 = y1.strip() y2 = y2.strip() food1_units = "100 גרם" food2_units = "100 גרם" for k, y in enumerate([y1, y2]): regex_units_res = re.search('(.*) של (.*)', y) if regex_units_res: if k == 0: food1_units = regex_units_res.group(1) y1 = regex_units_res.group(2) else: food2_units = regex_units_res.group(1) y2 = regex_units_res.group(2) if food1_units in db_dict['food_units_aliases']['Unit Alias'].values: food1_units = db_dict['food_units_aliases'][db_dict['food_units_aliases']['Unit Alias'] == food1_units][ 'Zameret unit'].values[0] if food2_units in db_dict['food_units_aliases']['Unit Alias'].values: food2_units = db_dict['food_units_aliases'][db_dict['food_units_aliases']['Unit Alias'] == food2_units][ 'Zameret unit'].values[0] try: val1, res1 = how_many_x_in_y_core(x, y1, food1_units, self.name(), tracker) val2, res2 = how_many_x_in_y_core(x, y2, food1_units, self.name(), tracker) ys = (y1, y2) vals = (val1, val2) res = 'ב%s יש %s %s' % (ys[np.argmax(vals) if more_or_less == 'יותר' else np.argmin(vals)], more_or_less, x) res += "\n" res += res1 res += "\n" res += res2 except: res = "אין לי מושג כמה, מצטער!" dispatcher.utter_message(res) # ------------------------------------------------------------------ class Actionwhataboutx(Action): def name(self) -> Text: return "action_nutrition_and_what_about_x" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: # get the right actions according to the intent intens_dict = {"nutrition_howmanyxiny": "action_nutrition_howmanyxiny", "nutrition_meal_question": "action_nutrition_meal_question", "nutrition_is_food_healthy": "action_nutrition_is_food_healthy", "nutrition_get_rda": "action_nutrition_get_rda", "nutrition_get_upper_limit": "action_nutrition_get_rda"} user_messge = tracker.latest_message.get('text') previous_intent = tracker.get_slot('previous_intent') try: next_action = intens_dict[previous_intent] # meal question if previous_intent == "nutrition_meal_question": return [FollowupAction(next_action), SlotSet("y", ""), SlotSet("x", user_messge), SlotSet("previous_intent", previous_intent)] # ------------------------------------------------ # how many x in y if previous_intent == "nutrition_howmanyxiny": db_dict = load_db(0x2) lut_df = db_dict['lut'] action_name = "action_nutrition_howmanyxiny" y = None x = None # get the values from the slots food = tracker.get_slot('y') if tracker.get_slot('y') else None nutriet = tracker.get_slot('x') if tracker.get_slot('x') else None # get the entities from the question for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[action_name + "_x"].values: x = ent['value'] elif ent['entity'] in lut_df[action_name + "_y"].values: y = ent['value'] if x is None or x == "": x = nutriet if y is None or y == "": y = food return [FollowupAction(next_action), SlotSet("x", x), SlotSet("y", y), SlotSet("previous_intent", previous_intent)] # ------------------------------------------------ # is x healthy if previous_intent == "nutrition_is_food_healthy": prediction = tracker.latest_message entity_value = prediction['entities'][0]['value'] return [FollowupAction(next_action), SlotSet("x", entity_value), SlotSet("y", ""), SlotSet("previous_intent", previous_intent)] # ------------------------------------------------ # nutrition_get_rda if previous_intent == "nutrition_get_rda": prediction = tracker.latest_message entity_value = prediction['entities'][0]['value'] return [FollowupAction(next_action), SlotSet("x", entity_value), SlotSet("y", ""), SlotSet("previous_intent", "nutrition_get_rda")] # ------------------------------------------------ # nutrition_get_upper_limit if previous_intent == "nutrition_get_upper_limit": prediction = tracker.latest_message entity_value = prediction['entities'][0]['value'] return [FollowupAction(next_action), SlotSet("x", entity_value), SlotSet("y", ""), SlotSet("previous_intent", "nutrition_get_upper_limit")] except: dispatcher.utter_message(text="אין למושג, מצטער!") return [] # ------------------------------------------------------------------ class Actionxcaniny(Action): def name(self) -> Text: return "action_nutrition_what_xcanbeiny" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: meal = "" # loading data frame db_dict = load_db(0x402) lut = db_dict['lut'] df_noa = db_dict['food_units_features'] # get the meal type message = tracker.latest_message.get('text') if 'בוקר' in message: meal = "IL_Breakfast" if 'צהריים' in message: meal = "IL_Lunch" if 'ערב' in message: meal = 'IL_Dinner' # get the entity value from the bot prediction = tracker.latest_message entity_value = prediction['entities'][0]['value'] if entity_value == 'צמחוני': entity = "Vegetarian" elif entity_value == 'טבעוני': entity = "Vegan" elif entity_value == 'פלאו': entity = "Vegan" else: # get the alias entity from the data frame entity_temp = lut[lut.index == entity_value] entity = str(entity_temp['Entity'].values[0]) entity2 = "" for i in entity: if (i >= 'a' and i <= 'z') or (i >= 'A' and i <= 'Z') or i == '_': entity2 += i if entity2[0].islower(): entity = entity2.capitalize() # get the items by ranmdom 5 of them items = df_noa.loc[((df_noa[entity] == 'Yes') & (df_noa[meal] == 'Yes')), ['Food_Name', entity, meal]] indeX = items.index.tolist() y = "" for i in range(1, 6): temp = random.randint(0, len(items) - 1) y += str(i) + ". " + str(items[items.index == indeX[temp]]['Food_Name'].values[0]) + "\n" dispatcher.utter_message(y) except: dispatcher.utter_message(text="אין למושג, מצטער!") # ------------------------------------------------------------------ class ActionMealQuestion(Action): def name(self) -> Text: return "action_nutrition_meal_question" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: meal = [] previous_intent = "" message = tracker.latest_message.get('text') if tracker.latest_message.get('text') else None title = 'תפריט יומי' # get the question from the slot if message is None: message = tracker.get_slot('x') if tracker.get_slot('x') else None if 'בוקר' in message: previous_intent = "nutrition_meal_question" meal = ['breakfast'] title = 'ארוחת בוקר' elif 'צהריים' in message: previous_intent = "nutrition_meal_question" meal = ['lunch'] title = 'ארוחת צהריים' elif 'ערב' in message: previous_intent = "nutrition_meal_question" meal = ['dinner'] title = 'ארוחת ערב' else: meal = ['breakfast', 'lunch', 'dinner'] if True: res, url = core_fun(meal, title) dispatcher.utter_message(text="%s" % res, image=url) else: dispatcher.utter_message(text="אין למושג, מצטער!") return [SlotSet("x", ""), SlotSet("y", ""), SlotSet("previous_intent", previous_intent)] # ------------------------------------------------------------------ class ActionSimpleQuestion(Action): def name(self) -> Text: return "action_simple_question" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: db_dict = load_db(0x6) lut_df = db_dict['lut'] custom_df = db_dict['nutrients_qna'] user_intent = tracker.latest_message.get('intent').get('name') for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[self.name()].values and ent['value'] in lut_df['Entity']: simple_entity = ent['value'] try: feature = lut_df['Entity'][simple_entity] if feature in custom_df.index: res = custom_df.loc[feature][user_intent] else: res = custom_df[[str(s) in feature for s in custom_df.index.tolist()]][user_intent][0] if 'slot#' in res: res_list = res.split(' ') for k, el in enumerate(res_list): if 'slot#' in el: res_list[k] = tracker.get_slot(el.split('#')[1]) res = ' '.join(res_list) res_list = re.findall('\{.*?\}', res) for match in res_list: res = res.replace(match, str(eval(match[1:-1]))) dispatcher.utter_message(text="%s" % res) except: dispatcher.utter_message(text="אין לי מושג, מצטער!") return [] # ------------------------------------------------------------------ class ActionGetRDAQuestion(Action): def name(self) -> Text: return "action_nutrition_get_rda" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: user_intent = tracker.latest_message.get('intent').get('name') intent_upper = user_intent == 'nutrition_get_upper_limit' previous_intent = tracker.get_slot('previous_intent') if tracker.get_slot('previous_intent') else None if previous_intent == "nutrition_get_upper_limit" or previous_intent == "nutrition_get_rda": intent = previous_intent else: intent = user_intent rda_val, rda_units, rda_text, rda_status, nutrient = get_rda(self.name(), tracker, intent_upper) if rda_val > 0: intent_upper_str = "המקסימלית" if intent_upper else "המומלצת" res = "הקצובה היומית %s של %s %s היא\r %.2f %s" % \ (intent_upper_str, nutrient, get_personal_str(rda_status, tracker), rda_val, rda_units) res += "\r" res += rda_text if rda_text else "" else: if rda_text: res = rda_text else: res = "אין לי מושג, מצטער!" dispatcher.utter_message(text="%s" % res) return [SlotSet("previous_intent", intent), SlotSet("x", ""), SlotSet("y", "")] # ------------------------------------------------------------------ class ActionNutritionHowManyXinY(Action): def name(self) -> Text: return "action_nutrition_howmanyxiny" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: db_dict = load_db(0x293) db_df = db_dict['tzameret'] lut_df = db_dict['lut'] common_df = db_dict['common_food'] units_df = db_dict['food_units'] units_aliases_df = db_dict['food_units_aliases'] user_msg = tracker.latest_message.get('text') user_intent = tracker.latest_message.get('intent').get('name') intent_upper = user_intent == 'nutrition_get_upper_limit' # -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- # Fetch X and Y (from slots, from entities or from regex): y = None x = tracker.get_slot('x') if tracker.get_slot('x') else None if tracker.latest_message.get('entities'): y = tracker.get_slot('y') if tracker.get_slot('y') else None name_xy = self.name() + "_x" for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[self.name() + "_x"].values: x = ent['value'] name_xy = self.name() + "_x" elif ent['entity'] in lut_df[self.name() + "_y"].values: y = ent['value'] name_xy = self.name() + "_y" regex_res = re.search('כמה (.*) יש ב(.*)', user_msg.replace('?', '')) if regex_res: x = regex_res.group(1) y = regex_res.group(2).strip() if not y: regex_res = re.search('.* ב(.*)', user_msg.replace('?', '')) if regex_res: y = regex_res.group(1).strip() food_units = "100 גרם" regex_units_res = re.search('(.*) של (.*)', y) if y else None if regex_units_res: food_units = regex_units_res.group(1) y = regex_units_res.group(2) if food_units in units_aliases_df['Unit Alias'].values: food_units = units_aliases_df[units_aliases_df['Unit Alias'] == food_units]['Zameret unit'].values[0] # -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- try: y_common = y if y in common_df.index: y_common = common_df[common_df.index == y]['shmmitzrach'][0] else: y_food = ' '.join(y.split(' ')[1:]) food_units = units_aliases_df[units_aliases_df['Unit Alias'] == y.split(' ')[0]]['Zameret unit'] if food_units.empty: food_units = y.split(' ')[0] else: food_units = food_units.values[0] if y_food in common_df.index: y_common = common_df[common_df.index == y_food]['shmmitzrach'][0] else: y_common = y_food food = db_df[db_df['shmmitzrach'].str.contains(y_common)].iloc[0, :] feature = lut_df[lut_df.index == x]["Entity"][0] units = lut_df[lut_df.index == x]["Units"][0] food_units_row = pd.Series() if food_units: food_units_row = units_df[(units_df['smlmitzrach'] == int(food['smlmitzrach'])) & (units_df['shmmida'] == food_units)] is_food_units_match = not food_units_row.empty or food_units == "100 גרם" food_units_factor = 1.0 if not food_units_row.empty: food_units_factor = food_units_row['mishkal'].values[0] / 100 val = food[feature] * food_units_factor # calculating the cake diagram feature # 1 gram fat is 9 calories # 1 gram protein is 4 calories # 1 gram carb is 4 calories fat_calories = int(food['total_fat'] * food_units_factor * 9) protein_calories = int(food['protein'] * food_units_factor * 4) carbs_calories = int(food['carbohydrates'] * food_units_factor * 4) title = "ב" + y_common data = {'שומן': fat_calories, 'פחמימות': carbs_calories, 'חלבונים': protein_calories} url = iniliatize_Diagram(title, data) if units == 0: res = "ב-%s של %s יש %.2f %s" % (food_units, food['shmmitzrach'], float(val), x) else: res = "" if not is_food_units_match: res = "לא הצלחתי למצוא נתונים במאגר על היחידה %s עליה שאלת\r" % food_units res += "היחידות הבאות קיימות במאגר, עבור %s:\r" % food['shmmitzrach'] res += ', '.join( units_df[units_df['smlmitzrach'] == int(food['smlmitzrach'])]['shmmida'].to_list()) res += "\r" food_units = "100 גרם" res += "ב-%s של %s יש %.2f %s %s" % (food_units, food['shmmitzrach'], float(val), units, x) rda_val, rda_units, rda_text, rda_status, nutrient = get_rda(name_xy, tracker, intent_upper) if rda_val > 0 and units not in ['יחב"ל']: rda = 100 * float(val) / rda_val intent_upper_str = "המקסימלית" if intent_upper else "המומלצת" res += "\r" res += "שהם כ-%d אחוז מהקצובה היומית %s %s" % ( int(rda), intent_upper_str, get_personal_str(rda_status, tracker)) res += "\r" res += rda_text if rda_text else "" dispatcher.utter_message(text="%s" % res, image=url) except: dispatcher.utter_message(text="אין לי מושג כמה, מצטער!") return [SlotSet("x", x), SlotSet("y", y), SlotSet("previous_intent", "nutrition_howmanyxiny")] # ------------------------------------------------------------------ class ActionIsFoodHealthyQuestion(Action): def name(self) -> Text: return "action_nutrition_is_food_healthy" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: db_dict = load_db(0x33) db_df = db_dict['tzameret'] lut_df = db_dict['lut'] common_df = db_dict['common_food'] food_ranges_df = db_dict['food_ranges'] food = "" food_entity = "" x = tracker.get_slot('x') if tracker.get_slot('x') else None if x is not None and x is not "": food = x food_entity = x else: for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[self.name()].values: food_entity = ent['value'] food = food_entity break try: if food in common_df.index: food = common_df[common_df.index == food]['shmmitzrach'][0] food = db_df[db_df['shmmitzrach'].str.contains(food)].iloc[0, :] _, nutrition_density_res = get_food_nutrition_density(food, food_ranges_df) advantages = [] disadvantages = [] for idx, row in food_ranges_df.iterrows(): if row["tzameret_name"]: if row["good_or_bad"] == "good": value = float(food[row["tzameret_name"]]) if idx == "Protein": threshold = 250 else: threshold = float(row["Medium - threshold per 100gr"]) if value > threshold: advantages.append(row["hebrew_name"]) elif row["good_or_bad"] == "bad": value = float(food[row["tzameret_name"]]) if idx == "Protein": threshold = 250 else: threshold = float(row["High - threshold per 100gr"]) if value > threshold: disadvantages.append(row["hebrew_name"]) nutrition_density_normalized = float(food["Nutrition density normalized"]) if nutrition_density_res == "low": res = "ב%s יש צפיפות תזונתית (רכיבים תזונתיים טובים ביחס לקלוריות) נמוכה" % food_entity elif nutrition_density_res == "med": res = "ב%s יש צפיפות תזונתית (רכיבים תזונתיים טובים ביחס לקלוריות) בינונית" % food_entity elif nutrition_density_res == "high": res = "ב%s יש צפיפות תזונתית (רכיבים תזונתיים טובים ביחס לקלוריות) גבוהה" % food_entity if disadvantages: res += ". " res += "החסרונות של %s הם הרבה %s" % (food_entity, ", ".join(disadvantages)) if advantages: res += ". " res += "היתרונות של %s הם הרבה %s" % (food_entity, ", ".join(advantages)) dispatcher.utter_message(text="%s" % res) except: dispatcher.utter_message(text="אין לי מושג, מצטער!") return [SlotSet("previous_intent", "nutrition_is_food_healthy"), SlotSet("x", ""), SlotSet("y", "")] # ------------------------------------------------------------------ class ActionWhatIsHealthierQuestion(Action): def name(self) -> Text: return "action_nutrition_what_is_healthier" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: db_dict = load_db(0x33) db_df = db_dict['tzameret'] lut_df = db_dict['lut'] common_df = db_dict['common_food'] food_ranges_df = db_dict['food_ranges'] user_msg = tracker.latest_message.get('text') food_entity1 = None food_entity2 = None for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[self.name() + "_x"].values: food_entity1 = ent['value'] elif ent['entity'] in lut_df[self.name() + "_y"].values: food_entity2 = ent['value'] if not food_entity2: regex_res = re.search('.* או (.*)', user_msg.replace('?', '')) if regex_res: food_entity2 = regex_res.group(1).strip() try: nutrition_density_cmp = [] advantages_cmp = [] disadvantages_cmp = [] for food_entity in (food_entity1, food_entity2): food = food_entity if food in common_df.index: food = common_df[common_df.index == food]['shmmitzrach'][0] food = db_df[db_df['shmmitzrach'].str.contains(food)].iloc[0, :] nutrition_density, _ = get_food_nutrition_density(food, food_ranges_df) advantages = [] disadvantages = [] for idx, row in food_ranges_df.iterrows(): if row["tzameret_name"]: if row["good_or_bad"] == "good": value = float(food[row["tzameret_name"]]) if idx == "Protein": threshold = 250 else: threshold = float(row["Medium - threshold per 100gr"]) if value > threshold: advantages.append(row["hebrew_name"]) elif row["good_or_bad"] == "bad": value = float(food[row["tzameret_name"]]) if idx == "Protein": threshold = 250 else: threshold = float(row["High - threshold per 100gr"]) if value > threshold: disadvantages.append(row["hebrew_name"]) nutrition_density_cmp.append(float(food["Nutrition density normalized"])) if disadvantages: disadvantages_cmp.append("החסרונות של %s הם הרבה %s" % (food_entity, ", ".join(disadvantages))) if advantages: advantages_cmp.append("היתרונות של %s הם הרבה %s" % (food_entity, ", ".join(advantages))) if nutrition_density_cmp[0] > nutrition_density_cmp[1]: res = "לפי צפיפות תזונתית %s עדיף על פני %s\r" % (food_entity1, food_entity2) elif nutrition_density_cmp[0] < nutrition_density_cmp[1]: res = "לפי צפיפות תזונתית %s עדיף על פני %s\r" % (food_entity2, food_entity1) else: res = "לפי צפיפות תזונתית %s ו-%s שקולים\r" % (food_entity1, food_entity2) if nutrition_density_cmp[0] < nutrition_density_cmp[1]: advantages_cmp.reverse() disadvantages_cmp.reverse() for advantage in advantages_cmp: if advantage: res += "%s\r" % advantage for disadvantage in disadvantages_cmp: if disadvantage: res += "%s\r" % disadvantage dispatcher.utter_message(text="%s" % res) except: dispatcher.utter_message(text="אין לי מושג כמה, מצטער!") return [] # ------------------------------------------------------------------ class ActionWhatIsRecommendedQuestion(Action): def name(self) -> Text: return "action_nutrition_is_food_recommended" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: db_dict = load_db(0x3b) db_df = db_dict['tzameret'] lut_df = db_dict['lut'] food_qna_df = db_dict['food_qna'] common_df = db_dict['common_food'] food_ranges_df = db_dict['food_ranges'] for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[self.name()].values: food_entity = ent['value'] break try: food = food_entity if food in common_df.index: food = common_df[common_df.index == food]['shmmitzrach'][0] food = db_df[db_df['shmmitzrach'].str.contains(food)].iloc[0, :] _, nutrition_density_res = get_food_nutrition_density(food, food_ranges_df) _, nutrition_energy_res = get_food_energy_density(food, food_ranges_df) description_density_row = food_qna_df[(food_qna_df.index == nutrition_density_res) & (food_qna_df.energy_density == nutrition_energy_res)] res = description_density_row['description_density'].values[0] res = res.replace('var#food', food_entity) dispatcher.utter_message(text="%s" % res) except: dispatcher.utter_message(text="אין לי מושג, מצטער!") return [] # ------------------------------------------------------------------ class ActionEatBeforeTrainingQuestion(Action): def name(self) -> Text: return "action_eat_before_training" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: db_dict = load_db(0x10) custom_df = db_dict['common_food'] user_intent = tracker.latest_message.get('intent').get('name') training_type = tracker.get_slot("training_type") training_duration = tracker.get_slot("training_duration") try: if training_type == 'ריצת אינטרוולים': if training_duration: res = custom_df['Entity'][training_type + ' מעל ' + training_duration][0] else: res = custom_df['Entity'][training_type][0] dispatcher.utter_message(text="%s" % res) except: dispatcher.utter_message(text="אין לי מושג, מצטער!") return [] # ------------------------------------------------------------------ class ActionBloodtestGenericQuestion(Action): def name(self) -> Text: return "action_nutrition_bloodtest_generic" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: db_dict = load_db(0x102) lut_df = db_dict['lut'] bloodtest_df = db_dict['bloodtest_vals'] for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[self.name()].values: bloodtest_entity = ent['value'] break try: feature = db_dict['lut']['Entity'][bloodtest_entity] gender_str = "Male" if tracker.get_slot('gender') == "זכר": gender_str = "Male" elif tracker.get_slot('gender') == "נקבה": gender_str = "Female" age = float(tracker.get_slot('age') if tracker.get_slot('age') else "40") bloodtest_row = bloodtest_df[(bloodtest_df['Element'] == feature) & \ ((bloodtest_df['Gender'] == "ANY") | ( bloodtest_df['Gender'] == gender_str)) & \ ((bloodtest_df['Age min'] == "ANY") | ( bloodtest_df['Age min'].replace('ANY', -1).astype(float) <= age)) & \ ((bloodtest_df['Age Max'] == "ANY") | ( bloodtest_df['Age Max'].replace('ANY', -1).astype(float) > age))] bloodtest_type = bloodtest_row['Graph type'].values[0] bloodtest_min = bloodtest_row['Min'].values[0] bloodtest_thr1 = bloodtest_row['Threshold 1'].values[0] bloodtest_thr2 = bloodtest_row['Threshold 2'].values[0] bloodtest_max = bloodtest_row['Max'].values[0] if bloodtest_type == 1: res = 'ערך תקין עבור בדיקת %s בין %.2f ועד %.2f, ערך מעל %.2f נחשב חריג' % ( bloodtest_entity, bloodtest_min, bloodtest_thr1, bloodtest_thr2) elif bloodtest_type == 2: res = 'ערך תקין עבור בדיקת %s בין %.2f ועד %.2f, ערך מתחת %.2f נחשב חריג' % ( bloodtest_entity, bloodtest_thr2, bloodtest_max, bloodtest_thr1) elif bloodtest_type == 3: res = 'ערך תקין עבור בדיקת %s בין %.2f ועד %.2f' % ( bloodtest_entity, bloodtest_thr1, bloodtest_thr2) dispatcher.utter_message(text="%s" % res) except: dispatcher.utter_message(text="אין לי מושג, מצטער!") return [] # ------------------------------------------------------------------ class ActionBloodtestValueQuestion(Action): def name(self) -> Text: return "action_nutrition_bloodtest_value" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: db_dict = load_db(0x102) lut_df = db_dict['lut'] bloodtest_df = db_dict['bloodtest_vals'] user_msg = tracker.latest_message.get('text') for ent in tracker.latest_message.get('entities'): if ent['entity'] in [x for x in lut_df[self.name()].values if x != 0]: if ent['entity'] == 'integer': val = ent['value'] else: bloodtest_entity = ent['value'] if not val: regex_res = re.search('האם (.*) הוא .*', user_msg.replace('?', '')) if regex_res: val = regex_res.group(1).strip() try: if not val: raise Exception() feature = db_dict['lut']['Entity'][bloodtest_entity] gender_str = "Male" if tracker.get_slot('gender') == "זכר": gender_str = "Male" elif tracker.get_slot('gender') == "נקבה": gender_str = "Female" age = float(tracker.get_slot('age') if tracker.get_slot('age') else "40") bloodtest_row = bloodtest_df[(bloodtest_df['Element'] == feature) & \ ((bloodtest_df['Gender'] == "ANY") | ( bloodtest_df['Gender'] == gender_str)) & \ ((bloodtest_df['Age min'] == "ANY") | ( bloodtest_df['Age min'].replace('ANY', -1).astype(float) <= age)) & \ ((bloodtest_df['Age Max'] == "ANY") | ( bloodtest_df['Age Max'].replace('ANY', -1).astype(float) > age))] bloodtest_type = bloodtest_row['Graph type'].values[0] bloodtest_min = bloodtest_row['Min'].values[0] bloodtest_thr1 = bloodtest_row['Threshold 1'].values[0] bloodtest_thr2 = bloodtest_row['Threshold 2'].values[0] bloodtest_max = bloodtest_row['Max'].values[0] if bloodtest_type == 1: if bloodtest_min <= float(val) <= bloodtest_thr1: res = 'כן, זהו ערך תקין עבור בדיקת %s היות והוא נופל בטווח בין %.2f ועד %.2f. ערך מעל %.2f נחשב לחריג' % ( bloodtest_entity, bloodtest_min, bloodtest_thr1, bloodtest_thr2) else: res = 'לא, זהו אינו ערך תקין עבור בדיקת %s. ערך תקין הינו בטווח בין %.2f ועד %.2f. ערך מעל %.2f נחשב לחריג' % ( bloodtest_entity, bloodtest_min, bloodtest_thr1, bloodtest_thr2) elif bloodtest_type == 2: if bloodtest_thr2 <= float(val) <= bloodtest_max: res = 'כן, זהו ערך תקין עבור בדיקת %s היות והוא נופל בטווח בין %.2f ועד %.2f. ערך מתחת %.2f נחשב לחריג' % ( bloodtest_entity, bloodtest_thr2, bloodtest_max, bloodtest_thr1) else: res = 'לא, זהו אינו ערך תקין עבור בדיקת %s. ערך תקין הינו בטווח בין %.2f ועד %.2f. ערך מתחת %.2f נחשב לחריג' % ( bloodtest_entity, bloodtest_thr2, bloodtest_max, bloodtest_thr1) elif bloodtest_type == 3: if bloodtest_thr1 <= float(val) <= bloodtest_thr2: res = 'כן, זהו ערך תקין עבור בדיקת %s היות והוא נופל בטווח בין %.2f ועד %.2f' % ( bloodtest_entity, bloodtest_thr1, bloodtest_thr2) else: res = 'לא, זהו אינו ערך תקין עבור בדיקת %s. ערך תקין הינו בטווח בין %.2f ועד %.2f.' % ( bloodtest_entity, bloodtest_thr1, bloodtest_thr2) else: raise Exception() dispatcher.utter_message(text="%s" % res) except: dispatcher.utter_message(text="אין לי מושג, מצטער!") return [] # ------------------------------------------------------------------ class ActionFoodSubstituteQuestion(Action): def name(self) -> Text: return "action_nutrition_food_substitute" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: db_dict = load_db(0xc33) db_df = db_dict['tzameret'] lut_df = db_dict['lut'] features_df = db_dict['food_units_features'] common_df = db_dict['common_food'] food_ranges_df = db_dict['food_ranges'] subs_tags_alias_df = db_dict['subs_tags_alias'] user_msg = tracker.latest_message.get('text') for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[self.name()].values: food_entity = ent['value'] break tzameret_groups_lut = {} tzameret_groups_lut['1'] = ['1', '4'] # Milk tzameret_groups_lut['2'] = ['1', '2', '3', '4'] # Meat tzameret_groups_lut['3'] = ['1', '2', '3', '4'] # Eggs tzameret_groups_lut['4'] = ['1', '4'] # Dairy tzameret_groups_lut['5'] = ['5', '6', '7', '9'] # Snacks tzameret_groups_lut['6'] = ['5', '6', '7', '9'] # Fruits tzameret_groups_lut['7'] = ['5', '6', '7', '9'] # Vegetables tzameret_groups_lut['8'] = ['8', '4'] # Fat tzameret_groups_lut['9'] = ['5', '6', '7', '9'] # Beverages food_energy_thr = 0.05 def get_advantages(food): advantages = [] for idx, row in food_ranges_df.iterrows(): if row["tzameret_name"] and row["tzameret_name"] in food: if row["good_or_bad"] == "good": value = float(food[row["tzameret_name"]]) if idx == "Protein": threshold = 250 else: threshold = float(row["Medium - threshold per 100gr"]) if value > threshold: advantages.append(row["hebrew_name"]) return advantages def get_advantages_score(food): act = food['advantages'] ref = ast.literal_eval(food['advantages_ref']) intersection = [] if isinstance(act, list) and isinstance(ref, list): intersection = list(set(act) & set(ref)) return len(intersection) try: food = food_entity if food in common_df.index: food = common_df[common_df.index == food]['shmmitzrach'][0] food_tzameret = db_df[db_df['shmmitzrach'].str.contains(food)].iloc[0, :] tzameret_code = int(food_tzameret['smlmitzrach']) tzameret_code_msb = food_tzameret['smlmitzrach'][0] food_energy = food_tzameret['food_energy'] food_features = features_df[features_df['smlmitzrach'].fillna(0).astype(int) == tzameret_code] user_msg_feature_v = [] user_msg_feature_k = list( set(subs_tags_alias_df.index.to_list()) & set(user_msg.replace(',', '').split(" "))) for tag in user_msg_feature_k: tag_df = subs_tags_alias_df[subs_tags_alias_df.index == tag]['Entity'] if tag_df.any: user_msg_feature_v.append(tag_df.values[0]) food_filter_1 = db_df[db_df['smlmitzrach'].str[0].isin(tzameret_groups_lut[tzameret_code_msb])] food_filter_2 = db_df[abs(db_df['food_energy'] - food_energy) / food_energy < food_energy_thr] food_filter_1_2 =
pd.merge(food_filter_1, food_filter_2, how='inner')
pandas.merge
""" Functions to create candidate data DataFrames """ import pandas as pd pd.options.mode.chained_assignment = None def create_df(dictionary): ''' Functions that converts dictionary into pandas DataFrame Args: dictionary: dictionary to be converted into pandas DataFrame Returns: created_df: pandas DataFrame ''' created_df = pd.DataFrame.from_dict(dictionary, orient='columns') return created_df def merge_df(df1, df2, how='left', merge_on='id'): ''' Function to create candidate activity dictionary Args: df1: left DataFrame to merge df2: right DataFrame to merge how: Type of merge to be performed merge_on: Column or index level names to join on (single label or list) Returns: merged_df: merged DataFrame ''' merged_df = pd.merge(df1, df2, how=how, on=merge_on) return merged_df def transform_df(df_to_trans): ''' Function to transform DataFrame Args: df_transform: DataFrame to be transformed Returns: transformed_df: Transformed DataFrame ''' # Rename duplicate column name to prevent error when creating SQL database df_to_trans = df_to_trans.rename(columns={'sourced': 'is_sourced'}) # Replace and Delete columns change_col = 'Inplannen 1e gesorek' keep_col = 'To schedule' df_to_trans[keep_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] = \ df_to_trans[change_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] df_to_trans.drop(change_col, axis=1, inplace=True) change_col = 'Inplannen 1e gesprek' keep_col = 'To schedule' df_to_trans[keep_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] = \ df_to_trans[change_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] df_to_trans.drop(change_col, axis=1, inplace=True) change_col = 'inplannen 2e gesprek' keep_col = '1st Interview' df_to_trans[keep_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] = \ df_to_trans[change_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] df_to_trans.drop(change_col, axis=1, inplace=True) change_col = '1e gesprek' keep_col = '1st Interview' df_to_trans[keep_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] = \ df_to_trans[change_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] df_to_trans.drop(change_col, axis=1, inplace=True) change_col = 'Interview 1' keep_col = '1st Interview' df_to_trans[keep_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] = \ df_to_trans[change_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] df_to_trans.drop(change_col, axis=1, inplace=True) change_col = 'Interview 2' keep_col = '2nd Interview' df_to_trans[keep_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] = \ df_to_trans[change_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] df_to_trans.drop(change_col, axis=1, inplace=True) change_col = 'Assessment' keep_col = '2nd Interview' df_to_trans[keep_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] = \ df_to_trans[change_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] df_to_trans.drop(change_col, axis=1, inplace=True) change_col = '2e gesprek' keep_col = '2nd Interview' df_to_trans[keep_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] = \ df_to_trans[change_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] df_to_trans.drop(change_col, axis=1, inplace=True) change_col = 'Aanbieding' keep_col = 'Offer' df_to_trans[keep_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] = \ df_to_trans[change_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] df_to_trans.drop(change_col, axis=1, inplace=True) change_col = 'Aangenomen' keep_col = 'Hired' df_to_trans[keep_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] = \ df_to_trans[change_col][(df_to_trans[change_col].notnull()) & (df_to_trans[keep_col].isnull())] df_to_trans.drop(change_col, axis=1, inplace=True) # Delete Columns df_to_trans.drop('Test Fase', axis=1, inplace=True) df_to_trans.drop('intern evalueren', axis=1, inplace=True) df_to_trans.drop('Plan 1', axis=1, inplace=True) df_to_trans.drop('Plan 2', axis=1, inplace=True) df_to_trans.drop('Vergaarbak', axis=1, inplace=True) # Remove only for now (will be used for source of candidate) df_to_trans.drop('tags', axis=1, inplace=True) # Replace np.nan with None, as None is accepted if df is written to a DB using df.to_sql # None will only be converted to NULL in SQL if df.to_sql is used, not using executemany # NaT is converted as None if using to_sql df_to_trans = df_to_trans.where((pd.notnull(df_to_trans)), None) # Convert None to 'nan' if getting errors when inserting into MySQL DB # df.fillna(value='nan', inplace=True) # Convert date columns into DATE columns with specified format date_cols = [ 'hired_at', 'Sourced', 'Applied', 'Shortlisted', 'Talentpool', 'Review', 'To schedule', '1st Interview', '2nd Interview', 'Offer', 'Hired', 'disqualified_at' ] for date_col in date_cols: df_to_trans[date_col] = pd.to_datetime(
pd.to_datetime(df_to_trans[date_col])
pandas.to_datetime
import os import numpy as np import pandas as pd import xgboost as xgb # 统计销售总量 def generate_sales_sum(): items_path = os.path.join(os.path.dirname("__file__"), "data//competitive-data-science-predict-future-sales//items.csv") item_categories_path = os.path.join(os.path.dirname("__file__"), "data//competitive-data-science-predict-future-sales//item_categories.csv") sales_train_path = os.path.join(os.path.dirname("__file__"), "data//competitive-data-science-predict-future-sales//sales_train.csv") shops_path = os.path.join(os.path.dirname("__file__"), "data//competitive-data-science-predict-future-sales//shops.csv") test_path = os.path.join(os.path.dirname("__file__"), "data//competitive-data-science-predict-future-sales//test.csv") my_submission_path = os.path.join(os.path.dirname("__file__"), "data//competitive-data-science-predict-future-sales//my_submission.csv") sample_submission_path = os.path.join(os.path.dirname("__file__"), "data//competitive-data-science-predict-future-sales//sample_submission.csv") sales_train = pd.read_csv(sales_train_path) sales_train = sales_train.drop( sales_train[sales_train.item_price < 0].index | sales_train[sales_train.item_price >= 100000].index) sales_train = sales_train.drop( sales_train[sales_train.item_cnt_day < 0].index | sales_train[sales_train.item_cnt_day >= 1000].index) sales_train_sort = sales_train.sort_values(["shop_id", "item_id", "date_block_num"], inplace=False) sales_train_sort.to_csv(os.path.join(os.path.dirname("__file__"), "data//competitive-data-science-predict-future-sales//123.csv"), index=False) test = pd.read_csv(test_path) test_sort = test.sort_values(["shop_id", "item_id"], inplace=False) test_sort.to_csv(os.path.join(os.path.dirname("__file__"), "data//competitive-data-science-predict-future-sales//1234.csv"), index=False) test_idx = 0 my_submission = pd.read_csv(sample_submission_path) # item cnt item_cnt = 0 date_block = -1 sum_price = 0 X, y = init_x_y() for i in range(0, len(sales_train_sort)): if less(sales_train_sort.iloc[i, 2], test_sort.iloc[test_idx, 1], sales_train_sort.iloc[i, 3], test_sort.iloc[test_idx, 2]): continue # 同一个店铺的所有数据 if same(sales_train_sort.iloc[i, 2], test_sort.iloc[test_idx, 1], sales_train_sort.iloc[i, 3], test_sort.iloc[test_idx, 2]): if date_block == -1: date_block = sales_train_sort.iloc[i, 1] # 同一个月 if sales_train_sort.iloc[i, 1] == date_block: item_cnt += sales_train_sort.iloc[i, 5] sum_price += sales_train_sort.iloc[i, 4] * item_cnt else: X[date_block][2] = sum_price / item_cnt y[date_block] = item_cnt item_cnt = sales_train_sort.iloc[i, 5] sum_price = sales_train_sort.iloc[i, 4] * item_cnt date_block = sales_train_sort.iloc[i, 1] else: if item_cnt != 0: y[date_block] = item_cnt X[date_block][2] = sum_price / item_cnt model = xgb.XGBRegressor(max_depth=4, learning_rate=0.1, n_estimators=32, objective="reg:squarederror") model.fit(X=X, y=y, eval_metric='rmse') pre = round(model.predict([[10, 2, X[date_block][2]]])[0], 2) print(" y=", y, " index=", i, " shop_id=", test_sort.iloc[test_idx, 1], " item_id=", test_sort.iloc[test_idx, 2], "ID=", test_sort.iloc[test_idx, 0], "price=", X[date_block][2], " pre=", pre) if pre > 20: pre = 20 elif pre < 0: pre = 0 my_submission.iloc[test_sort.iloc[test_idx, 0], 1] = pre item_cnt = 0 sum_price = 0 date_block = -1 X, y = init_x_y() test_idx += 1 if test_idx == len(test): break my_submission.to_csv(my_submission_path, index=False) def predictFutureSales(): sales_train_path = os.path.join(os.path.dirname("__file__"), "data//competitive-data-science-predict-future-sales//sales_train.csv") items_path = os.path.join(os.path.dirname("__file__"), "data//competitive-data-science-predict-future-sales//items.csv") test_path = os.path.join(os.path.dirname("__file__"), "data//competitive-data-science-predict-future-sales//test.csv") sales_train = pd.read_csv(sales_train_path) sales_train = sales_train.drop( sales_train[sales_train.item_price < 0].index | sales_train[sales_train.item_price >= 100000].index) sales_train = sales_train.drop( sales_train[sales_train.item_cnt_day < 0].index | sales_train[sales_train.item_cnt_day >= 1000].index) sales_train = pd.pivot_table(sales_train, index=['shop_id', 'item_id', 'date_block_num'], aggfunc={'item_price': np.mean, 'item_cnt_day': np.sum}, fill_value=0).reset_index() sales_train.insert(3, 'month', sales_train['date_block_num'] % 12) sales_train.insert(3, 'year', sales_train['date_block_num'] // 12) item = pd.read_csv(items_path) test = pd.read_csv(test_path) sales_train = pd.merge(sales_train, item.iloc[:, [1, 2]], on=['item_id'], how='left') sales_train =
pd.merge(sales_train, test, on=['shop_id', 'item_id'], how='left')
pandas.merge
#!/usr/bin/env python # # Parses and compiles metrics previously computed by calc_metrics.sh. # # Usage: ./compile_metrics.py FOLDER # # FOLDER should contain subfolders like lddt, trr_score, etc. This will output # a file, combined_metrics.csv, in FOLDER. # import pandas as pd import numpy as np import os, glob, argparse, sys from collections import OrderedDict p = argparse.ArgumentParser() p.add_argument('folder', help='Folder of outputs to process') p.add_argument('--out', help='Output file name.') args = p.parse_args() if args.out is None: args.out = os.path.join(args.folder,'combined_metrics.csv') if not os.path.isdir(args.folder): sys.exit(f'ERROR: Input path {args.folder} not a folder.') def parse_fastdesign_filters(folder): files = glob.glob(os.path.join(folder,'*.pdb')) records = [] for f in files: row = OrderedDict() row['name'] = os.path.basename(f)[:-4] recording = False with open(f) as inf: for line in inf: if recording and len(line)>1: tokens = line.split() if len(tokens) == 2: row[tokens[0]] = float(tokens[1]) if '#END_POSE_ENERGIES_TABLE' in line: recording=True if line.startswith('pose'): row['rosetta_energy'] = float(line.split()[-1]) records.append(row) if len(records)>0: return pd.DataFrame.from_records(records) return pd.DataFrame({'name':[]}) def parse_lddt(folder): data = {'name':[], 'lddt':[]} files = glob.glob(os.path.join(folder,'*.npz')) if len(files)==0: return pd.DataFrame({'name':[]}) for f in files: prefix = os.path.basename(f).replace('.npz','') lddt_data = np.load(f) data['lddt'].append(lddt_data['lddt'].mean()) data['name'].append(prefix) return pd.DataFrame.from_dict(data) def parse_rosetta_energy_from_pdb(folder): files = glob.glob(os.path.join(folder,'*.pdb')) records = [] for pdbfile in files: with open(pdbfile) as inf: name = os.path.basename(pdbfile).replace('.pdb','') rosetta_energy = np.nan for line in inf.readlines(): if line.startswith('pose'): rosetta_energy = float(line.split()[-1]) row = OrderedDict() row['name'] = name row['rosetta_energy'] = rosetta_energy records.append(row) if len(records)==0: return
pd.DataFrame({'name':[]})
pandas.DataFrame
# Plot candlestick chart import os import mplfinance as mpf import matplotlib import datetime import pandas as pd import numpy as np def __clean_index(df, valid_index): # valid_index must be sorted idx_to_drop = df.index[(df.index < valid_index[0]) | (df.index > valid_index[-1])] df.drop(idx_to_drop, inplace=True) def __extend_index(df, target_index): df_ext = df.reindex(target_index) # Align timestamps not exist in target_index unmatched = set(df.index) - set(target_index) for time in unmatched: i = df_ext.index.get_loc(time, method='ffill') # align to the entry time of the bar df_ext.iloc[i] = df[time] # print(f'- align {time} to {df_ext.index[i]}') return df_ext def __add_mark_layer(mark_layer, mark_set, direction, mark_size, is_show_marks, bar_data): if is_show_marks and mark_set is not None: for color, marks in mark_set.items(): split_color = color.split('-') if len(split_color) == 2: color = split_color[0] size = int(split_color[1]) else: size = mark_size __clean_index(marks, bar_data.index) if not marks.empty: marks = __extend_index(marks, bar_data.index) if direction == 'buy': mark_layer.append(mpf.make_addplot(marks, type='scatter', markersize=size, marker='^', color=color)) else: mark_layer.append(mpf.make_addplot(marks, type='scatter', markersize=size, marker='v', color=color)) def candle_plot(bar_data, title, buy_marks=None, sell_marks=None, mark_size=100, show_marks=True, del_nan=False, day_gap=False, save_to=None, bar_type='candle'): """ Works great for jupyter notebook. For other back ends, change "matplotlib.use()" :param save_to: /folder/to/save/example.jpg, non-existent folders will be created :param bar_type: 'candle' or 'line' """ bar_data = bar_data.copy() if del_nan: bar_data.dropna(subset=['Close'], inplace=True) if day_gap: # This works by adding 09:25-09:29 NaN prices, for CN stocks only dates = set(bar_data.index.date) indices = [] for date in dates: indices.extend([datetime.datetime.combine(date, datetime.time(9, i)) for i in range(29, 24, -1)]) gap = pd.DataFrame(np.nan, index=indices, columns=bar_data.columns) bar_data =
pd.concat([bar_data, gap])
pandas.concat
import rdkit.Chem as Chem #from rdkit.Chem import Descriptors import numpy as np from build_encoding import decode # ============================================================================= # import rdkit.Chem.Crippen as Crippen # import rdkit.Chem.rdMolDescriptors as MolDescriptors # ============================================================================= import subprocess import pickle import pandas as pd from collections import OrderedDict from time import sleep import os, shutil import glob import math import xgboost as xgb #A scaling factor for reward const = math.exp(3) # Cache evaluated molecules (rewards are only calculated once) evaluated_mols = {} def modify_fragment(f, swap): f[-(1+swap)] = (f[-(1+swap)] + 1) % 2 return f # Discard molecules which fulfills all targets (used to remove to good lead molecules). def clean_good(X, decodings): X = [X[i] for i in range(X.shape[0]) if not evaluate_mol(X[i], -1, decodings).all()] return np.asarray(X) def get_key(fs): return tuple([np.sum([(int(x)* 2 ** (len(a) - y)) for x,y in zip(a, range(len(a)))]) if a[0] == 1 \ else 0 for a in fs]) # Get initial distribution of rewards among lead molecules def get_init_dist(X, decodings): #arr = np.asarray([evaluate_mol(X[i], -1, decodings) for i in range(X.shape[0])]) arr = np.asarray(bunch_eval(X,-1,decodings)) dist = arr.shape[0] / (1.0 + arr.sum(0)) #sum(0) => sum over all rows for each col return dist #function to get Padel descriptors and store in a csv file def get_padel(mol_folder_path,file_path,max_time='1500'): Padel_path = 'C:\\Users\\HP\\PaDEL-Descriptor\\PaDEL-Descriptor.jar' cmd_list = ['java','-jar',Padel_path, '-dir', mol_folder_path, '-2d','-file', file_path,'-maxruntime', max_time,"-descriptortypes", 'xg_desc3.xml','-usefilenameasmolname'] out = subprocess.Popen(cmd_list, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) stdout,stderr = out.communicate() stdout = stdout.decode('utf-8') with open('./Padel.txt','a') as f: f.write(stdout) def clean_folder(folder_path): folder = folder_path for filename in os.listdir(folder): file_path = os.path.join(folder, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as ex: print('Failed to delete %s. Reason: %s' % (file_path, ex)) #Bunch evaluation def bunch_evaluation(mols): folder_path = "./generated_molecules/" file_path = "./descriptors.csv" f = open(file_path, "w+") f.close() #Cleaning up the older files clean_folder(folder_path) i = 0 SSSR =[] for mol in mols: try: Chem.GetSSSR(mol) print(Chem.MolToMolBlock((mol)),file=open(str(folder_path)+str(i)+'.mol','w')) SSSR.append(True) i = i + 1 except: SSSR.append(False) get_padel(folder_path,file_path) #Reading the descriptors xg_all = pd.read_csv(file_path) names = xg_all['Name'] bad = [] with open('./saved_models/good_columns','rb') as f: cols = pickle.load(f) for col in xg_all.columns: if col not in cols: bad.append(col) xg_all.drop(columns=bad,inplace=True) #Verifying that all the required columns are there assert len(xg_all.columns) == len(cols) xg_all['Name'] = names files = xg_all[pd.isnull(xg_all).any(axis=1)]['Name'] xg_all.dropna(inplace=True) mol= [] if len(files) !=0: uneval_folder = "C:\\Users\\HP\\AZC_Internship\\DeepFMPO\\3.6\\unevalmol\\" clean_folder(uneval_folder) for f in files: m = Chem.MolFromMolFile(folder_path+str(f)+'.mol') print(Chem.MolToMolBlock((m)),file=open(str(uneval_folder)+str(f)+'.mol','w')) get_padel(uneval_folder,'./uneval_desc.csv','-1') unevalmol =
pd.read_csv('./uneval_desc.csv')
pandas.read_csv
from pprint import pprint from ipywidgets import Layout, Tab, Button, Label, Box, VBox, HBox, HTML, Output, Dropdown, BoundedIntText, Textarea from IPython.display import display import numpy as np import pandas as pd from pathlib import Path import os import unicodedata import data.dataframe_preparation as preparation import data.preprocessing as preprocessing # from .. import data # from data import dataframe_preparation as preparation # from data import preprocessing def render_text(text, include_line_no=True, normalize_text=True): """Renders a large text field with line numbers""" if normalize_text: text = ''.join([i if ord(i) < 128 else ' ' for i in text]) # text = unicodedata.normalize('NFKD', text).encode('ascii', 'ignore') style = '' if not include_line_no else """ <style> pre { counter-reset: line;} code { counter-increment: line; } code:before { display: inline-block; content: counter(line); width: 40px; background-color: #E8E8E8;} </style> """ lines = [str(f"<code>{line}</code>\n") for line in text.splitlines()] content = f"<pre>\n{''.join(lines)}</pre>" widget = HTML(value=style+content) return widget int_layout = Layout(width="40px") dropdown_layout = Layout(width="120px") text_layout = Layout(width="500px") comment_layout = Layout(width="300px") cro_options = [('None', ''), ('Physical Risk', 'PR'), ('Transition Risk', 'TR')] cro_sub_type_options = [('None', ''), ('PR - Accute', 'ACUTE'), ('PR - Chronic', 'CHRON'), ('TR - Policy and Legal', 'POLICY'), ('TR - Technology and Market', 'MARKET'), ('TR - Reputation', 'REPUT' ), ] label_options = [('None', ''), ('Positive', True), ('Negative', False)] def handle_cro_sub_type_update(event, row, update_labels, cro_type_field): update_labels('update', row, 'cro_sub_type', event.new) if event.new: index = [option[1] for option in cro_sub_type_options].index(event.new) new_cro_value = cro_sub_type_options[index][0].split(" - ")[0] cro_type_field.value = new_cro_value def get_line(row, update_labels): cro_type = Dropdown(value=row.cro if pd.notna( row.cro) else '', options=cro_options, layout=dropdown_layout) cro_sub_type = Dropdown(value=row.cro_sub_type if pd.notna( row.cro_sub_type) else '', options=cro_sub_type_options, layout=dropdown_layout) page = BoundedIntText( value=row.page if pd.notna(row.page) else '', min=0, max=999, step=1, layout=int_layout, disabled=True ) paragraph_no = BoundedIntText( value=row.paragraph_no if pd.notna(row.paragraph_no) else '', min=0, max=999, step=1, layout=int_layout, disabled=True ) label = Dropdown(value=row.label if pd.notna( row.label) else '', options=label_options, layout=dropdown_layout) text = Textarea( value=row.text if
pd.notna(row.text)
pandas.notna
# ********************************************************************************** # # # # Project: FastClassAI workbecnch # # # # Author: <NAME> # # Contact: <EMAIL> # # # # This notebook is a part of Skin AanaliticAI development kit, created # # for evaluation of public datasets used for skin cancer detection with # # large number of AI models and data preparation pipelines. # # # # License: MIT # # Copyright (C) 2021.01.30 <NAME> # # https://opensource.org/licenses/MIT # # # # ********************************************************************************** # #!/usr/bin/env python # -*- coding: utf-8 -*- import os # allow changing, and navigating files and folders, import sys import re # module to use regular expressions, import glob # lists names in folders that match Unix shell patterns import random # functions that use and generate random numbers import pickle import numpy as np # support for multi-dimensional arrays and matrices import pandas as pd # library for data manipulation and analysis import seaborn as sns # advance plots, for statistics, import matplotlib as mpl # to get some basif functions, heping with plot mnaking import scipy.cluster.hierarchy as sch import matplotlib.pyplot as plt # for making plots, from src.utils.model_summary_plots import visual_model_summary # from src.utils.method_comparison_tools import method_comparison_boxplot # copied here for any potential changes, # Function .......................................................................... def create_class_colors_dict(*, list_of_unique_names, cmap_name="tab20", cmap_colors_from=0, cmap_colors_to=1 ): '''Returns dictionary that maps each class name in list_of_unique_names, to to a distinct RGB color . list_of_unique_names : list with unique, full names of clasesses, group etc.. . cmap_name : standard mpl colormap name. . cmap_colors_from, cmap_colors_to, values between 0 and 1, used to select range of colors in cmap, ''' # create cmap mycmap = plt.cm.get_cmap(cmap_name, len(list_of_unique_names)*10000) newcolors = mycmap(np.linspace(cmap_colors_from, cmap_colors_to, len(list_of_unique_names))) class_color_dict = dict() for i, un in enumerate(list_of_unique_names): class_color_dict[un] = newcolors[i] return class_color_dict # Function ............................................................................. def load_summary_files(*, dataset_name, dataset_variants, module_names, ai_methods, keywords, path_results, verbose=False ): # assure that you have proper datastructures if isinstance(dataset_variants, str): dataset_variants = [dataset_variants] else: pass if isinstance(module_names, str): module_names = [module_names] else: pass if isinstance(ai_methods, str): ai_methods = [ai_methods] else: pass if isinstance(keywords, str): keywords = [keywords] else: pass # collect names of files that will be loaded file_counter=0 for ai_method in ai_methods: for dataset_variant in dataset_variants: for module_name in module_names: if verbose==True: print("Loading files for: ", ai_method, dataset_variant, module_name, "Found: ", end="") else: pass # path rpath = os.path.join(path_results, f"{ai_method}__{dataset_name}__{dataset_variant}") os.chdir(rpath) # find all files in rpath files = [] for file in glob.glob("*"): files.append(file) # select all with keywords, files_s = pd.Series(files) for k in keywords: files_s = files_s.loc[files_s.str.contains(k)] files_l = files_s.values.tolist() # info part 2, if verbose==True: print(len(files_s)>0, "files") else: pass # load files if len(files_s)>0: for file_name in files_l : loaded_df = pd.read_csv(file_name) loaded_df["file_name"]=[file_name]*loaded_df.shape[0] loaded_df["path"]=[rpath]*loaded_df.shape[0] if file_counter==0: summary_df = loaded_df file_counter += 1 else: summary_df = pd.concat([summary_df, loaded_df], axis=0) summary_df.reset_index(inplace=True, drop=True) else: pass # info part 2, if verbose==True: print("----> Final Table has results for ", summary_df.shape[0], " models") else: pass return summary_df # Function ............................................................................. def create_new_df_feature(*, df, new_feature_name, old_features_list, return_full_df=True, verbose=False): ''' create new feature by concatanating corresponsing cells in pd dataframe form any number of other selected features old_features_list: str, or list, with name/s of feature to be concatenated return_full_df : bool, if True entire df is retuned if False, return pd.series only with thenew feature ''' if isinstance(old_features_list, str): old_features_list = [old_features_list] else: pass # check if all feaqtures are available stop_the_function = False for i, feature in enumerate(old_features_list): try: df.loc[:, feature] except: stop_the_function = True if verbose==True: print(f"ERROR: {feature} -- was not found in dataframe") else: pass # concatanate values in each corresponding cell if stop_the_function==True: return None else: for i, feature in enumerate(old_features_list): if i==0: new_feature = df.loc[:, feature].values.tolist() else: another_new_feature = df.loc[:, feature].values.tolist() new_feature = [f"{x}__{y}" for (x,y) in zip(new_feature, another_new_feature)] if return_full_df==True: df[new_feature_name] = new_feature return df else: return pd.Series(new_feature) # Function ............................................................................. def simple_visual_model_summary(*, model_idx_in_sorted_summary_df=0, subset_collection_name, batch_names_list, summary_df, class_labels_configs, path_data, path_results, N_displayed_images ="all", max_img_per_col = 15, fontsize_scale= 1 ): ''' Temporary function used only with FastClassAI pipeline, that will load raw images from all batches in a given subset batch collection, eg batch 1 and 2 for test data, then it will plot 3 figures - 1st figure - images grouped by class assigned with the model and with color boxes showing true class - 2nd/3rd figure - pie charts showing sencsitivity and specificity in pie charts PS: I am working on better version ''' # .... idx_in_df = model_idx_in_sorted_summary_df # *** find names and models to load # sort summary df sorted_summary_df = summary_df.sort_values('model_acc_valid', ascending=False) sorted_summary_df.reset_index(inplace=True, drop=True) # get all variables, method = sorted_summary_df.method.iloc[idx_in_df] dataset_name = sorted_summary_df.dataset_name.iloc[idx_in_df] dataset_variant = sorted_summary_df.dataset_variant.iloc[idx_in_df] model_ID = sorted_summary_df.model_ID.iloc[idx_in_df] # its an ID number given to the model in that dictionary, # *** paths path_to_raw_images_sorted_into_batches = os.path.join(path_data, f'{dataset_name}__{dataset_variant}') path_to_batch_labels = os.path.join(path_data, f'{dataset_name}__{dataset_variant}__extracted_features') path_to_model_predictions = os.path.join(path_results, f'{method}__{dataset_name}__{dataset_variant}') # *** load data # load model predictions, os.chdir(path_to_model_predictions) model_predictions_file_name = re.sub("summary_table.csv", "model_predictions_dict.p", sorted_summary_df.file_name.iloc[idx_in_df]) with open(model_predictions_file_name , 'rb') as file: model_predictions_dict = pickle.load(file) # get class_label colors, class_labels_colors_toUse = class_labels_configs[dataset_variant]['class_labels_colors'] # caulate accuracy results acc_results = f'acc={np.round(sorted_summary_df.loc[:, f"model_acc_{subset_collection_name}"].iloc[idx_in_df],2)}' # display examples from best performing model, visual_model_summary( model_predictions_dict = model_predictions_dict, model_ID = model_ID, # applicable only with a given model_predictions_dict # what predicitons to display, n = N_displayed_images, # use "all" to display all examples_to_plot = "all", # correct and incorrect on the same plot, class_colors = class_labels_colors_toUse, # input data, dataset_name = dataset_name, subset_name = [subset_collection_name], # name used in xy_names eg: train, valid, test test_2 img_batch_subset_names = batch_names_list, # list, batch names that were placed in that collection, path_to_raw_img_batch = path_to_raw_images_sorted_into_batches, # ... settings for main plot, title_prefix = f"{subset_collection_name}, {acc_results}", make_plot_with_img_examples = True, # use False, to have only pie charts with classyfication summary add_proba_values_to_img_name = True, max_img_per_col = max_img_per_col, # ... settings for annot. pie charts, first_pie_title =f"Image Classyfication Results - True Class in pie chart ring\n{subset_collection_name} data", second_pie_title =f"Class Detection Results - True Class in pie chart center \n{subset_collection_name} data", pie_data_for_all_images_in_img_batch=True, pie_charts_in_ne_row = 7, # ... pie chart aestetics added later to tune pie charts PIE_legend_loc = "upper right", PIE_ax_title_fonsize_scale=0.6*fontsize_scale, PIE_legend_fontsize_scale=1.4*fontsize_scale, PIE_wedges_fontsize_scale=1*fontsize_scale, PIE_legend_ncol=4, PIE_tight_lyout=False, PIE_title_ha="right", PIE_figsze_scale=1.5, PIE_subplots_adjust_top=0.75, PIE_ax_title_fontcolor="black" ) # Function ............................................................................. def prepare_summary_df(*, dataset_name, dataset_variants, module_names, ai_methods, keywords, path_results, verbose=False ): ''' helper function that loads results from model evaluation, for all combinaiton of dataset_name, dataset_variants, module_names, ai_methods and keywords, that allow to find one or more csv file names (order of keywords is not important) it will provide only files wiht exact match for all keywords, if nothing is returned, set verbose==True, ai_method, dataset_name, and dataset_variants, are used to build folder names in path_results whereas keywords and module names are used to find files caution, the function load_summary_files requires module names for iteration, but these are not used to find files, it was an error that will be removed, if required results for speciffic module, place it name in keywords, and only files created for that module will be loaded ''' summary_df = load_summary_files( dataset_name = dataset_name, dataset_variants = dataset_variants, module_names = module_names, ai_methods = ai_methods, keywords = keywords, path_results = path_results, verbose = verbose ) summary_df = create_new_df_feature( df = summary_df, new_feature_name = "full_method_name", old_features_list = ["method", "method_variant"], ) summary_df = create_new_df_feature( df = summary_df, new_feature_name = "full_dataset_variant", old_features_list = ["dataset_variant", 'module'], verbose=True ) summary_df = create_new_df_feature( df = summary_df, new_feature_name = "full_results_group_name", old_features_list = ["method", "method_variant", "dataset_variant", 'module'], ) return summary_df # Function .............................................................................. def method_comparison_boxplot(*, title="Accuracy of models created with each method\n", data, # pd.DataFrame with the results, figsize=(10,4), # ... col_with_results, # df colname with values to display, eg: test_accuracy ... col_with_group_names, # df colname with values that will be displayed as names of each box (these do not have to be unique) col_with_group_ID, # df colname with values that will be grouped for separate boxes (must be unieque) col_with_group_colors, # df colname with values that will have different colors (colors can not be mixed within diffeent group_ID) # ... colors cmap="tab10", cmap_colors_from=0, cmap_colors_to=1, # .. legend legend__bbox_to_anchor=(0.9, 1.15), subplots_adjust_top = 0.8, legend_ncols=4, # .. baseline baseline_title="", # "most frequent baseline", baseline_loc = -0.05, baseline = 0.25, top_results = 0.9, # green zone on a plot, # ... fontsize title_fontsize=20, legend_fontsize=10, xticks_fontsize=10, yticks_fontsize=15, axes_labels_fontsize=20, # ... axies labels xaxis_label = "Method", yaxis_label = "Accuracy\n", paint_xticks=False ): """ Nice function to create ngs-like boxplots for comparison of acc of differemnt model groups it is more generic version of the abofe function, """ # ............................................... # managment Stop_Function = False # ............................................... # data preparation - step.1 extraction # ............................................... # - extract unique values that will be searched, unique_group_ID = data.loc[:,col_with_group_ID].unique().tolist() unique_group_color_names = data.loc[:,col_with_group_colors].unique().tolist() # - map colors onto color_groups_names bx_color_dict = create_class_colors_dict( list_of_unique_names=unique_group_color_names, cmap_name=cmap, cmap_colors_from=cmap_colors_from, cmap_colors_to=cmap_colors_to ) # - lists with data for boxes, 'one item for one box in each' bx_data = [] bx_names = [] bx_colors = [] bx_id = [] bx_colors_dict_key = [] # - separate all boxes, and then find out what is the color and data associated with that box for one_group_ID in unique_group_ID: bx_id.append(one_group_ID) # get the data and other columns for one box data_df_for_one_box = data.loc[data.loc[:, col_with_group_ID]==one_group_ID,:] # find out, data, name and color to display # .... num. data .... bx_data.append(data_df_for_one_box.loc[:,col_with_results].values) # np.array # .... labels ..... one_bx_label = data_df_for_one_box.loc[:,col_with_group_names].unique().tolist() if len(one_bx_label)==1: bx_names.append(one_bx_label[0]) # np.array else: if verbose==1: print(f"{one_group_ID} contains more then one group to display wiht different names !") else: Stop_Function = True pass # .... colors .... one_box_color = data_df_for_one_box.loc[:,col_with_group_colors].map(bx_color_dict).iloc[0] color_test_values = data_df_for_one_box.loc[:,col_with_group_colors].unique().tolist() if len(color_test_values)==1: bx_colors.append(one_box_color) # np.array bx_colors_dict_key.append(color_test_values[0]) else: if verbose==1: print(f"{one_group_ID} contains more then one COLOR to display wiht different names !") else: Stop_Function = True pass # - check if everythign is in order if len(bx_colors)!=len(bx_names) and len(bx_names)!=len(bx_data): if verbose==True: print("Error: some data are missing or belong to different gorups, and can not be displayed as coherent bocplot") else: pass else: # ............................................... # data preparation - step.2 ordering # ............................................... # find memdians and reorder bx_medians = list() for i, d in enumerate(bx_data): bx_medians.append(np.median(d)) # ... ordered_data_df = pd.DataFrame({ "bx_data": bx_data, "bx_medians": bx_medians, "bx_names": bx_names, "bx_colors": bx_colors, "bx_id": bx_id, "bx_colors_dict_key":bx_colors_dict_key }) ordered_data_df = ordered_data_df.sort_values("bx_medians", ascending=True) ordered_data_df = ordered_data_df.reset_index(drop=True) # ............................................... # boxplot # ............................................... # ............................................... # boxplot, - plt.boxplot(ordered_bx_data); fig, ax = plt.subplots(figsize=figsize, facecolor="white") fig.suptitle(title, fontsize=title_fontsize) # add boxes, bx = ax.boxplot(ordered_data_df["bx_data"], showfliers=True, # remove outliers, because we are interested in a general trend, vert=True, # boxes are vertical labels=ordered_data_df["bx_names"], # x-ticks labels patch_artist=True, widths=0.3 ) ax.grid(ls="--") ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.set_xticklabels(ordered_data_df["bx_names"], rotation=45, fontsize=xticks_fontsize, ha="right") ax.set_yticks([0, .2, .4, .6, .8, 1]) ax.set_yticklabels(["0.0", "0.2", "0.4", "0.6", "0.8", "1.0"], fontsize=yticks_fontsize) ax.set_ylabel(yaxis_label, fontsize=axes_labels_fontsize) ax.set_xlabel(xaxis_label, fontsize=axes_labels_fontsize) ax.set_ylim(0,1.02) # add colors to each box individually, for i, j in zip(range(len(bx['boxes'])),range(0, len(bx['caps']), 2)) : median_color ="black" box_color = bx_color_dict[ordered_data_df.loc[:,"bx_colors_dict_key"].iloc[i]] # set properties of items with the same number as boxes, plt.setp(bx['boxes'][i], color=box_color, facecolor=median_color, linewidth=2, alpha=0.8) plt.setp(bx["medians"][i], color=median_color, linewidth=2) plt.setp(bx["fliers"][i], markeredgecolor="black", marker=".") # outliers # set properties of items with the 2x number of features as boxes, plt.setp(bx['caps'][j], color=median_color) plt.setp(bx['caps'][j+1], color=median_color) plt.setp(bx['whiskers'][j], color=median_color) plt.setp(bx['whiskers'][j+1], color=median_color) # ............................................... # set colors for xtick labels, if paint_xticks==True: for i, xtick in enumerate(ax.get_xticklabels()): xtick.set_color(bx_color_dict[ordered_data_df["bx_colors_dict_key"].iloc[i]]) else: pass # ............................................... # legend, if ordered_data_df["bx_names"].shape[0]>0: # create patch for each dataclass, - adapted to even larger number of classes then selected for example images, patch_list_for_legend =[] for i, m_name in enumerate(list(bx_color_dict.keys())): label_text = f"{m_name}" patch_list_for_legend.append(mpl.patches.Patch(color=bx_color_dict[m_name], label=label_text)) # add patches to plot, fig.legend( handles=patch_list_for_legend, frameon=False, scatterpoints=1, ncol=legend_ncols, bbox_to_anchor=legend__bbox_to_anchor, fontsize=legend_fontsize) # ............................................... # create space for the legend fig.subplots_adjust(top=subplots_adjust_top) # ............................................... # ............................................... # add line with baseline ax.axhline(baseline, lw=2, ls="--", color="dimgrey") ax.text(ordered_data_df.shape[0]+0.4, baseline+baseline_loc, baseline_title, ha="right", color="dimgrey", fontsize=yticks_fontsize) # ............................................... # color patches behing boxplots, patch_width = 1 # ie. 1 = grey patch for 1 and 1 break patch_color = "lightgrey" pathces_starting_x = list(range(0, ordered_data_df.shape[0], patch_width*2)) # ... for i, sx in enumerate(pathces_starting_x): rect = plt.Rectangle((sx+0.5, 0), patch_width, 1000, color=patch_color, alpha=0.2, edgecolor=None) ax.add_patch(rect) # color patches for styling the accuracy, rect = plt.Rectangle((0,0), ordered_data_df.shape[0]*100, baseline, color="red", alpha=0.1, edgecolor=None) ax.add_patch(rect) rect = plt.Rectangle((0,baseline), ordered_data_df.shape[0]*100, top_results-baseline, color="orange", alpha=0.1, edgecolor=None) ax.add_patch(rect) rect = plt.Rectangle((0, top_results), ordered_data_df.shape[0]*100, 10, color="forestgreen", alpha=0.1, edgecolor=None) ax.add_patch(rect) return fig # Function ............................................................................. def create_boxplot_with_color_classes(*, summary_df, figsize = (10,6), col_with_results ="model_acc_valid", # df colname with values to display, eg: test_accuracy ... col_with_group_names ="full_method_name", # df colname with values that will be displayed as names of each box (these do not have to be unique) col_with_group_ID ="full_results_group_name", # df colname with values that will be grouped for separate boxes (must be unieque) col_with_group_colors="full_dataset_variant", # df colname with values that will have different colors (colors can not be mixed within diffeent group_ID) baseline = 0.5, fontsize_scale=1, subplots_adjust_top = 0.6, baseline_title ="baseline", legend_ncols=1, legend__bbox_to_anchor=(0.5, 1.1), ): ''' Funtion returns boxplot showing accuracy or other metric displayed for any number of groups of results (eg methods), divided into larger groups shown as different colors of boyes, with color legen above the plot summary_df : summary dataframe created with prepare_summary_df function, col_with_results : str, df colname with values to display, eg: test_accuracy ... col_with_group_names : str, df colname with values that will be displayed as names of each box (these do not have to be unique) col_with_group_ID : str, df colname with values that will be grouped for separate boxes (must be unieque) col_with_group_colors: str, df colname with values that will have different colors (colors can not be mixed within diffeent group_ID) ''' # boxplot fig = method_comparison_boxplot( title=f"Accuracy of models created with each method\n\n", data = summary_df, # pd.DataFrame with the results, figsize=figsize, # ... col_with_results =col_with_results, # df colname with values to display, eg: test_accuracy ... col_with_group_names =col_with_group_names , # df colname with values that will be displayed as names of each box (these do not have to be unique) col_with_group_ID =col_with_group_ID, # df colname with values that will be grouped for separate boxes (must be unieque) col_with_group_colors=col_with_group_colors, # df colname with values that will have different colors (colors can not be mixed within diffeent group_ID) # ... colors cmap="tab10", cmap_colors_from=0, cmap_colors_to=0.5, # .. legend legend__bbox_to_anchor=(0.5, 1.1), subplots_adjust_top = subplots_adjust_top, legend_ncols=legend_ncols, # .. baseline baseline_title =baseline_title, baseline_loc =-0.09, baseline = baseline, top_results = 0.9, # green zone on a plot, # ... fontsize title_fontsize=20*fontsize_scale, legend_fontsize=10*fontsize_scale, xticks_fontsize=10*fontsize_scale, yticks_fontsize=15*fontsize_scale, axes_labels_fontsize=15*fontsize_scale, # ... axies labels xaxis_label = "Method", yaxis_label = "Accuracy\n", paint_xticks=True ) return fig # Function ............................................................................. def preapre_table_with_n_best_results_in_each_group(*, summary_df, n_top_methods = 1, sort_by = "model_acc_valid", feature_used_to_group_models = "full_results_group_name", display_table=False ): ''' Function that takes summary df, selectes max n requested best perfoming models, and return them all in sorted summary df table format, if display_table==True, displays selected columns from that table to show all examples, ''' # unique model group names method_full_name_list = summary_df.loc[:, feature_used_to_group_models].unique().tolist() # collect top methods, for i, method_full_name in enumerate(method_full_name_list): # . subset summary_df summary_df_subset = summary_df.loc[summary_df.loc[:, feature_used_to_group_models]==method_full_name, :] summary_df_subset = summary_df_subset.sort_values(sort_by, ascending=False) # . place in if i==0: best_methods_summary_df = summary_df_subset.iloc[0:n_top_methods,:] else: best_methods_summary_df = pd.concat([best_methods_summary_df, summary_df_subset.iloc[0:n_top_methods,:]]) best_methods_summary_df.reset_index(drop=True, inplace=True) # display examples: # show best model examples features_to_display = ["dataset_variant", "module","method", "method_variant", "model_acc_train", "model_acc_valid", "model_acc_test", "pca_components_used", "run_name"] sorted_best_methods_summary_df = best_methods_summary_df.sort_values("model_acc_valid", ascending=False) sorted_best_methods_summary_df.reset_index(drop=True, inplace=True) if display_table==True: features_to_display = ["dataset_variant", "module","method", "method_variant", "model_acc_train", "model_acc_valid", "model_acc_test", "baseline_acc_test", "pca_components_used", "run_name"] display(sorted_best_methods_summary_df.loc[:, features_to_display]) else: pass return sorted_best_methods_summary_df # Function ............................................................................. def model_summary_plot(*, # input data df, y, boxname, boxcolor, scatterpoints, baseline, # fig, general settings, title=None , figsize=(30,15) , # box colors boxcolor_dict = None, cmap="tab10", cmap_colors_from=0, cmap_colors_to=0.5, # axes xaxis_label = None, yaxis_label = None, # if Noene == ydata_colname grid_dct=dict(lw=1), # scatterpoints, full_model_marker ="*", full_model_markersize=60, full_model_markercolor="black", # legend add_legend=True, subplots_adjust_top = 0.7, legend_title=None, legend__bbox_to_anchor=(0.4, 0.9), legend_ncols=1, # baseline baseline_title = "baseline", baseline_loc =-0.09, use_fixed_baselines = True, baseline_limit_list = [0.5, 0.9, 1.5], # the last one baseline_color_list = ["red", "orange", "forestgreen"], # fontsizes fontsize_scale =1, title_fontsize =30, legend_fontsize=20, xticks_fontsize=20, yticks_fontsize=20, axes_labels_fontsize=25, ): ''' NGS-like boxplot for displaying accuracy, or other results obtained with large number of models # input data df : pd.DataFrame y : str, or list with values, df colname with values to display, eg: test_accuracy ... boxname : str, or list with values, df colname with values that will be displayed as names of each box, if None, (these, do not have to be unique, becaue box colors are also informative, and you may use shorter names to make the plot nicer, ) boxcolor : str, or list with values, if None, all boxes will hae the same colors, and there is no legend displayed, scatterpoints : list, with True/False values, data points in each group used as scatter points, not the part of boxplot, if None, noe will be made, baseline : str, or list with values, df colname with values for baseline thta will be displayed on a bacground, # horizontal patches use_fixed_baselines : bool , if True, three phorizontal patches of the same height will be added to plot, baseline_limit_list : list with 3 floats, eg: [0.5, 0.9, 1.5], each float is the upper limit of the horizontal patch, starting from the plot bottom ''' # setup assert type(df)==pd.DataFrame, "error: df is not pandas DataFrame" # . set plot x/y labels, if xaxis_label is None: if isinstance(boxname, str): xaxis_label=boxname else: xaxis_label="method" if yaxis_label is None: if isinstance(y, str): yaxis_label=y else: yaxis_label="y" # . fontsizes title_fontsize = title_fontsize*fontsize_scale legend_fontsize = legend_fontsize*fontsize_scale xticks_fontsize = xticks_fontsize*fontsize_scale yticks_fontsize = yticks_fontsize*fontsize_scale axes_labels_fontsize = axes_labels_fontsize*fontsize_scale # data preparation # . extract columns, as list if isinstance(y , str): y = df.loc[:, y].values.tolist() else: pass if isinstance(boxname , str): boxname = df.loc[:, boxname].values.tolist() else: pass #. optional values, if boxcolor is not None: if isinstance(boxcolor , str): boxcolor = df.loc[:, boxcolor].values.tolist() else: pass else: boxcolor = ["method"]*len(y) if baseline is not None: if isinstance(baseline , str): baseline = df.loc[:, baseline].values.tolist() else: pass else: baseline = [0.5]*len(y) if scatterpoints is not None: if isinstance(scatterpoints , str): scatterpoints = df.loc[:, scatterpoints].values.tolist() else: pass else: scatterpoints = [False]*len(y) # ie, No data wil be plotted as scatter point, # . create unique boxnames qwith colors and method names, if boxcolor is not None: boxname_full = [f"{x}__{y}" for (x,y) in zip (boxname, boxcolor)] # used to search values, else: boxname_full = boxname # assign colors to each boxcolor name # . define colors for each class in boccolor if boxcolor_dict is None: boxcolor_dict = create_class_colors_dict( list_of_unique_names = pd.Series(boxcolor).unique().tolist(), cmap_name = cmap, cmap_colors_from = cmap_colors_from, cmap_colors_to = cmap_colors_to ) else: pass # . map colors onto boxcolor, that are names boxcolor_value = pd.Series(boxcolor).map(boxcolor_dict) # build pandas df wiht all data boxplotdf = pd.DataFrame({ "y": y, # value on y-axis "boxname_full": boxname_full, # used to separate each box (combines x-axis anme and color) "boxcolor_value": boxcolor_value, # color for bocplot, "boxname":boxname, # displayed on x axis, "boxcolor":boxcolor, # displayed on legend, "baseline": baseline, # displayed as bacground value, "scatterpoints": scatterpoints, # it True, the point is plotted as scatterplot, }) # data preparation - part 2 - prepare array and ncols for plot # . lists with data for boxes, 'one item for one box in each' x_axis_name = [] # xtick labels x_axis_color = [] # xtick label color bx_x = [] bx_y = [] bx_color = [] # box color, (only for boxes) sc_y = [] sc_x = [] baseline_x = [] baseline_y = [] median_y = [] # . fill in values, in proper order with positons on x axis, for i, one_boxname_full in enumerate(pd.Series(boxname_full).unique().tolist()): # find data for boxes boxplotdf_bx_subset = boxplotdf.loc[(boxplotdf.boxname_full==one_boxname_full) & (boxplotdf.scatterpoints==False), :] if boxplotdf_bx_subset.shape[0]>0: bx_x.append(i) bx_y.append(boxplotdf_bx_subset.loc[:,"y"].values.tolist()) bx_color.append(boxplotdf_bx_subset.boxcolor_value.iloc[0]) else: pass # find data for scatter points, boxplotdf_sc_subset = boxplotdf.loc[(boxplotdf.boxname_full==one_boxname_full) & (boxplotdf.scatterpoints==True), :] sc_values = boxplotdf_sc_subset.loc[:,"y"].values.tolist() if len(sc_values)>0: sc_x.extend([i]*len(sc_values)) sc_y.extend(sc_values) else: pass # axis_name, baseline, boxplotdf_group_subset = boxplotdf.loc[boxplotdf.boxname_full==one_boxname_full, :] baseline_x.append(i) baseline_y.append(boxplotdf_group_subset.baseline.max()) median_y.append(boxplotdf_group_subset.y.median()) x_axis_name.append(boxplotdf_group_subset.boxname.iloc[0]) x_axis_color.append(boxplotdf_group_subset.boxcolor_value.iloc[0]) # order items on x axis, # . dict with key == old postion, value == new postion ''' I am using dict, because each item may have different number of elements, and they are not in order, (ie one category may be nmissing and present in sc or bx) that is completely normal ! ''' x_order = dict(zip(pd.Series(median_y).sort_values().index.values.tolist(), list(range(len(median_y))))) bx_x = pd.Series(bx_x).map(x_order).values.tolist() sc_x = pd.Series(sc_x).map(x_order).values.tolist() baseline_x = pd.Series(baseline_x).map(x_order).values.tolist() # . created ordered_xticks_labels tempdf = pd.concat([pd.Series(median_y),
pd.Series(x_axis_color)
pandas.Series
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar = Series([1, 2]) baz = Series([4, 5]) result = concat([foo, bar, baz], axis=1) expected = DataFrame( {"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1] ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, keys=["red", "blue", "yellow"]) expected = DataFrame( {"red": [1, 2], "blue": [1, 2], "yellow": [4, 5]}, columns=["red", "blue", "yellow"], ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, ignore_index=True) expected = DataFrame({0: [1, 2], 1: [1, 2], 2: [4, 5]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_ignore_index(self, sort): frame1 = DataFrame( {"test1": ["a", "b", "c"], "test2": [1, 2, 3], "test3": [4.5, 3.2, 1.2]} ) frame2 = DataFrame({"test3": [5.2, 2.2, 4.3]}) frame1.index = Index(["x", "y", "z"]) frame2.index = Index(["x", "y", "q"]) v1 = concat([frame1, frame2], axis=1, ignore_index=True, sort=sort) nan = np.nan expected = DataFrame( [ [nan, nan, nan, 4.3], ["a", 1, 4.5, 5.2], ["b", 2, 3.2, 2.2], ["c", 3, 1.2, nan], ], index=Index(["q", "x", "y", "z"]), ) if not sort: expected = expected.loc[["x", "y", "z", "q"]] tm.assert_frame_equal(v1, expected) @pytest.mark.parametrize( "name_in1,name_in2,name_in3,name_out", [ ("idx", "idx", "idx", "idx"), ("idx", "idx", None, None), ("idx", None, None, None), ("idx1", "idx2", None, None), ("idx1", "idx1", "idx2", None), ("idx1", "idx2", "idx3", None), (None, None, None, None), ], ) def test_concat_same_index_names(self, name_in1, name_in2, name_in3, name_out): # GH13475 indices = [ Index(["a", "b", "c"], name=name_in1), Index(["b", "c", "d"], name=name_in2), Index(["c", "d", "e"], name=name_in3), ] frames = [ DataFrame({c: [0, 1, 2]}, index=i) for i, c in zip(indices, ["x", "y", "z"]) ] result = pd.concat(frames, axis=1) exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out) expected = DataFrame( { "x": [0, 1, 2, np.nan, np.nan], "y": [np.nan, 0, 1, 2, np.nan], "z": [np.nan, np.nan, 0, 1, 2], }, index=exp_ind, ) tm.assert_frame_equal(result, expected) def test_concat_multiindex_with_keys(self): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) frame = DataFrame( np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp"), ) result = concat([frame, frame], keys=[0, 1], names=["iteration"]) assert result.index.names == ("iteration",) + index.names tm.assert_frame_equal(result.loc[0], frame) tm.assert_frame_equal(result.loc[1], frame) assert result.index.nlevels == 3 def test_concat_multiindex_with_none_in_index_names(self): # GH 15787 index = pd.MultiIndex.from_product([[1], range(5)], names=["level1", None]) df = DataFrame({"col": range(5)}, index=index, dtype=np.int32) result = concat([df, df], keys=[1, 2], names=["level2"]) index = pd.MultiIndex.from_product( [[1, 2], [1], range(5)], names=["level2", "level1", None] ) expected = DataFrame({"col": list(range(5)) * 2}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) result = concat([df, df[:2]], keys=[1, 2], names=["level2"]) level2 = [1] * 5 + [2] * 2 level1 = [1] * 7 no_name = list(range(5)) + list(range(2)) tuples = list(zip(level2, level1, no_name)) index = pd.MultiIndex.from_tuples(tuples, names=["level2", "level1", None]) expected =
DataFrame({"col": no_name}, index=index, dtype=np.int32)
pandas.DataFrame
import matplotlib.pyplot as plt import seaborn as sns import json from bs4 import BeautifulSoup import mwparserfromhell import pandas as pd import re from urllib.request import urlopen from urllib.parse import urlencode API_URL = "https://en.wikipedia.org/w/api.php" wiki_prefix = "https://en.wikipedia.org" wiki_gal = 'https://en.wikipedia.org/wiki/Gal_Gadot' html = urlopen(wiki_gal) soup = BeautifulSoup(html, features='html.parser') films_table = soup.find('table', class_='wikitable sortable').findAll('tr') headers = films_table[0] rows = films_table[1:] headers = [header.get_text().strip() for header in headers.find_all('th')] table = [[cell.get_text().strip() for cell in row.find_all('td')] for row in rows] for i, actor in enumerate(table): if not actor[0].isdigit() and actor[0] != 'TBA': table[i].insert(0, table[i-1][0]) df = pd.DataFrame(data=table, columns=headers) df = df.drop(['Notes'], axis=1)
pd.set_option('display.max_columns', 5)
pandas.set_option
# -*- coding: utf-8 -*- # Arithmetc tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import timedelta import operator import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.compat import long from pandas.core import ops from pandas.errors import NullFrequencyError, PerformanceWarning from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( timedelta_range, Timedelta, Timestamp, NaT, Series, TimedeltaIndex, DatetimeIndex) # ------------------------------------------------------------------ # Fixtures @pytest.fixture def tdser(): """ Return a Series with dtype='timedelta64[ns]', including a NaT. """ return Series(['59 Days', '59 Days', 'NaT'], dtype='timedelta64[ns]') @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=lambda x: type(x).__name__) def delta(request): """ Several ways of representing two hours """ return request.param @pytest.fixture(params=[timedelta(minutes=5, seconds=4), Timedelta('5m4s'), Timedelta('5m4s').to_timedelta64()], ids=lambda x: type(x).__name__) def scalar_td(request): """ Several variants of Timedelta scalars representing 5 minutes and 4 seconds """ return request.param @pytest.fixture(params=[pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def box(request): """ Several array-like containers that should have effectively identical behavior with respect to arithmetic operations. """ return request.param @pytest.fixture(params=[pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(strict=True))], ids=lambda x: x.__name__) def box_df_fail(request): """ Fixture equivalent to `box` fixture but xfailing the DataFrame case. """ return request.param # ------------------------------------------------------------------ # Numeric dtypes Arithmetic with Timedelta Scalar class TestNumericArraylikeArithmeticWithTimedeltaScalar(object): @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="block.eval incorrect", strict=True)) ]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_mul_tdscalar(self, scalar_td, index, box): # GH#19333 if (box is Series and type(scalar_td) is timedelta and index.dtype == 'f8'): raise pytest.xfail(reason="Cannot multiply timedelta by float") expected = timedelta_range('1 days', '10 days') index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = index * scalar_td tm.assert_equal(result, expected) commute = scalar_td * index tm.assert_equal(commute, expected) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 3)), pd.UInt64Index(range(1, 3)), pd.Float64Index(range(1, 3)), pd.RangeIndex(1, 3)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_rdiv_tdscalar(self, scalar_td, index, box): if box is Series and type(scalar_td) is timedelta: raise pytest.xfail(reason="TODO: Figure out why this case fails") if box is pd.DataFrame and isinstance(scalar_td, timedelta): raise pytest.xfail(reason="TODO: Figure out why this case fails") expected = TimedeltaIndex(['1 Day', '12 Hours']) index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = scalar_td / index tm.assert_equal(result, expected) with pytest.raises(TypeError): index / scalar_td # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedeltaArraylikeAddSubOps(object): # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize('op', [operator.add, ops.radd, operator.sub, ops.rsub], ids=lambda x: x.__name__) def test_td64arr_add_sub_float(self, box, op, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdi = tm.box_expected(tdi, box) if box is pd.DataFrame and op in [operator.add, operator.sub]: pytest.xfail(reason="Tries to align incorrectly, " "raises ValueError") with pytest.raises(TypeError): op(tdi, other) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to cast df to " "Period", strict=True, raises=IncompatibleFrequency)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", raises=ValueError, strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box) msg = "cannot subtract a datelike from|Could not operate" with tm.assert_raises_regex(TypeError, msg): idx - Timestamp('2011-01-01') @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx + Timestamp('2011-01-01') tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64_radd_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) # TODO: parametrize over scalar datetime types? result = Timestamp('2011-01-01') + idx tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype " "instead of " "datetime64[ns]", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_sub_timestamp(self, box): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdser = Series(timedelta_range('1 day', periods=3)) expected = Series(pd.date_range('2012-01-02', periods=3)) tdser = tm.box_expected(tdser, box) expected = tm.box_expected(expected, box) tm.assert_equal(ts + tdser, expected) tm.assert_equal(tdser + ts, expected) expected2 = Series(pd.date_range('2011-12-31', periods=3, freq='-1D')) expected2 = tm.box_expected(expected2, box) tm.assert_equal(ts - tdser, expected2) tm.assert_equal(ts + (-tdser), expected2) with pytest.raises(TypeError): tdser - ts def test_tdi_sub_dt64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) - tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with pytest.raises(TypeError): tdi - dtarr # TimedeltaIndex.__rsub__ result = dtarr - tdi tm.assert_equal(result, expected) def test_tdi_add_dt64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) + tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + dtarr tm.assert_equal(result, expected) result = dtarr + tdi tm.assert_equal(result, expected) # ------------------------------------------------------------------ # Operations with int-like others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser + Series([2, 3, 4]) @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="GH#19123 integer " "interpreted as " "nanoseconds", strict=True)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_radd_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): Series([2, 3, 4]) + tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_sub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser - Series([2, 3, 4]) @pytest.mark.xfail(reason='GH#19123 integer interpreted as nanoseconds', strict=True) def test_td64arr_rsub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) with pytest.raises(TypeError): Series([2, 3, 4]) - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_intlike(self, box): # GH#19123 tdi = TimedeltaIndex(['59 days', '59 days', 'NaT']) ser =
tm.box_expected(tdi, box)
pandas.util.testing.box_expected
import pandas as pd import numpy as np import click import h5py import os import logging from array import array from copy import deepcopy from tqdm import tqdm from astropy.io import fits from fact.credentials import create_factdb_engine from zfits import FactFits from scipy.optimize import curve_fit from joblib import Parallel, delayed import drs4Calibration.config as config from drs4Calibration.constants import NRCHID, NRCELL, NRTEMPSENSOR, ROI, ADCCOUNTSTOMILIVOLT from drs4Calibration.tools import safety_stuff import matplotlib.pyplot as plt from time import time def print_delta_time(time, string=""): hours = int(time / 3600) rest = time % 3600 minutes = int(rest / 60) seconds = round(rest % 60, 2) print(string+" deltaTime: ", hours, minutes, seconds) @click.command() @click.argument('drs_file_list_doc_path', default="/net/big-tank/POOL/" + "projects/fact/drs4_calibration_data/" + "calibration/calculation/drsFitsFiles.txt", type=click.Path(exists=False)) def search_drs_fits_files(drs_file_list_doc_path: str): ''' Search through the fact-database and store the path of all drsFiles under the given storePath Args: drs_file_list_doc_path (str): Full path to the storeFile with the extension '.txt' ''' # TODO check safety stuff. maybe remove #safety_stuff(drs_file_list_doc_path) def filename(row): return os.path.join( str(row.date.year), "{:02d}".format(row.date.month), "{:02d}".format(row.date.day), "{}_{:03d}.fits.fz".format(row.fNight, row.fRunID), ) # 40drs4320Bias drs_infos = pd.read_sql( "RunInfo", create_factdb_engine(), columns=[ "fNight", "fRunID", "fRunTypeKey", "fDrsStep", "fNumEvents"]) drs_file_infos = drs_infos.query("fRunTypeKey == 2 &" + "fDrsStep == 2 &" + "fNumEvents == 1000").copy() # fNumEvents == 1000 prevent for unfinished/broken files drs_file_infos["date"] = pd.to_datetime(drs_file_infos.fNight.astype(str), format="%Y%m%d") drs_files = drs_file_infos.apply(filename, axis=1).tolist() pd.DataFrame(drs_files).to_csv(drs_file_list_doc_path, index=False, header=False) @click.command() @click.argument('drs_file_list_doc_path', default="/net/big-tank/POOL/" + "projects/fact/drs4_calibration_data/" + "calibration/calculation/selectedDrsFitsFiles.txt", type=click.Path(exists=True)) @click.argument('store_file_path', default="/net/big-tank/POOL/" + "projects/fact/drs4_calibration_data/" + "calibration/calculation/newBaseline_timeTest.h5", type=click.Path(exists=False)) @click.argument('source_folder_path', default="/net/big-tank/POOL/projects/fact/drs4_calibration_data/", type=click.Path(exists=False)) def store_drs_values(drs_file_list_doc_path, store_file_path, source_folder_path): with h5py.File(store_file_path, 'w') as hf: hf.create_dataset( name="Time", dtype="float32", shape=(0, 1), maxshape=(None, 1), compression="gzip", compression_opts=9, fletcher32=True) hf.create_dataset( name="Temperature", dtype="float32", shape=(0, NRTEMPSENSOR), maxshape=(None, NRTEMPSENSOR), compression="gzip", compression_opts=9, fletcher32=True) hf.create_dataset( name="NewBaseline", dtype="float32", shape=(0, NRCHID*NRCELL*ROI), maxshape=(None, NRCHID*NRCELL*ROI), compression="gzip", compression_opts=9, fletcher32=True) class SourceDataSet: # @resettable run_begin = pd.to_datetime("") run_end = pd.to_datetime("") def __init__(self): type(self).run_begin = pd.to_datetime("") type(self).run_end = pd.to_datetime("") source_data_set = SourceDataSet() drs_file_list = open(drs_file_list_doc_path).read().splitlines() for drs_fits_file_path in tqdm(drs_file_list): drs_fits_file_path = drs_file_list[700] # care!! date_path_part = drs_fits_file_path.split('_')[0] drs_fits_file_path = (source_folder_path+"raw/" + drs_fits_file_path.strip("\n")) drs_file_path = (drs_fits_file_path.strip("fits.fz") + ".drs.fits.gz") temp_file_path = (source_folder_path+"aux/" + date_path_part+".FAD_CONTROL_TEMPERATURE.fits") if(os.path.isfile(drs_fits_file_path) and os.path.isfile(temp_file_path)): time_marker1 = time() with fits.open(drs_file_path, ignoremissing=True, ignore_missing_end=True) as drs_table: source_data_set.run_begin = pd.to_datetime(drs_table[1].header["RUN2-BEG"]) source_data_set.run_end = pd.to_datetime(drs_table[1].header["RUN2-END"]) print(type(source_data_set.run_begin), type(source_data_set.run_end)) time_marker2 = time() print_delta_time(time_marker2 - time_marker1, "open drs_file_path") time_marker3 = time() with fits.open(temp_file_path, mmap=True, mode='denywrite', ignoremissing=True, ignore_missing_end=True) as table: table_time = table[1].data["Time"] table_temperature = table[1].data["temp"] time_marker4 = time() print_delta_time(time_marker4 - time_marker3, "open temp_file_path") print(type(table_time), table_time.shape, type(table_temperature), table_temperature.shape) time_marker5 = time() if table_temperature.shape[1] != NRTEMPSENSOR: temp_filename = temp_file_path.split('/')[-1] message = ( " File not used: Just "+str(table_temperature.shape[1]) + " Temperature Values in File '"+temp_filename+"'") raise Exception(message) table_datetime =
pd.to_datetime(table_time * 24 * 3600 * 1e9)
pandas.to_datetime
#!/usr/bin/env python # -*- coding=utf-8 -*- ########################################################################### # Copyright (C) 2013-2016 by Caspar. All rights reserved. # File Name: txtclf.py # Author: <NAME> # E-mail: <EMAIL> # Created Time: 2016-07-05 14:39:18 ########################################################################### # import os, sys, difflib, itertools from time import time import numpy as np import scipy as sp import scipy.stats as stats import pandas as pd from sklearn.base import clone from sklearn.preprocessing import MinMaxScaler, LabelBinarizer, label_binarize, normalize from sklearn.multiclass import OneVsRestClassifier from sklearn.pipeline import Pipeline from sklearn.model_selection import StratifiedShuffleSplit, StratifiedKFold, KFold, GridSearchCV, RandomizedSearchCV from sklearn import metrics from .util import io, func, plot from .util import math as imath common_cfg = {} def init(plot_cfg={}, plot_common={}): if (len(plot_cfg) > 0 and plot_cfg['MON'] is not None): plot.MON = plot_cfg['MON'] global common_cfg if (len(plot_common) > 0): common_cfg = plot_common def get_featw(pipeline, feat_num): feat_w_dict, sub_feat_w = [{} for i in range(2)] filt_feat_idx = feature_idx = np.arange(feat_num) for component in ('featfilt', 'clf'): if (type(pipeline) != Pipeline): if (component == 'featfilt'): continue else: cmpn = pipeline elif (component in pipeline.named_steps): cmpn = pipeline.named_steps[component] else: continue if (hasattr(cmpn, 'estimators_')): for i, estm in enumerate(cmpn.estimators_): filt_subfeat_idx = feature_idx[:] if (hasattr(estm, 'get_support')): filt_subfeat_idx = feature_idx[estm.get_support()] for measure in ('feature_importances_', 'coef_', 'scores_'): if (hasattr(estm, measure)): filt_subfeat_w = getattr(estm, measure) subfeat_w = (filt_subfeat_w.min() - 1) * np.ones_like(feature_idx) # subfeat_w[filt_subfeat_idx] = normalize(estm.feature_importances_, norm='l1') subfeat_w[filt_subfeat_idx] = filt_subfeat_w # print 'Sub FI shape: (%s)' % ','.join([str(x) for x in filt_subfeat_w.shape]) # print 'Feature Importance inside %s Ensemble Method: %s' % (component, filt_subfeat_w) sub_feat_w[(component, i)] = subfeat_w if (hasattr(component, 'get_support')): filt_feat_idx = feature_idx[component.get_support()] for measure in ('feature_importances_', 'coef_', 'scores_'): if (hasattr(cmpn, measure)): filt_feat_w = getattr(cmpn, measure) # print '*' * 80 + '\n%s\n'%filt_feat_w + '*' * 80 feat_w = (filt_feat_w.min() - 1) * np.ones_like(feature_idx) # feat_w[filt_feat_idx] = normalize(filt_feat_w, norm='l1') feat_w[filt_feat_idx] = filt_feat_w # print '*' * 80 + '\n%s\n'%feat_w + '*' * 80 feat_w_dict[(component, measure)] = feat_w print('FI shape: (%s)' % ','.join([str(x) for x in feat_w_dict[(component, measure)].shape])) print('Sample 10 Feature from %s.%s: %s' % (component, measure, feat_w[feat_w > 0][:10])) # print 'Feature Importance from %s.%s: %s' % (component, measure, feat_w) return feat_w_dict, sub_feat_w def get_score(pipeline, X_test, mltl=False): if ((not isinstance(pipeline, Pipeline) and hasattr(pipeline, 'predict_proba')) or(isinstance(pipeline.named_steps['clf'], OneVsRestClassifier) and hasattr(pipeline.named_steps['clf'].estimators_[0], 'predict_proba')) or (not isinstance(pipeline.named_steps['clf'], OneVsRestClassifier) and hasattr(pipeline, 'predict_proba'))): if (mltl): return pipeline.predict_proba(X_test) else: # return pipeline.predict_proba(X_test)[:, 1] return pipeline.predict_proba(X_test) elif (hasattr(pipeline, 'decision_function')): return pipeline.decision_function(X_test) else: print('Neither probability estimate nor decision function is supported in the classification model!') return [0] * Y_test.shape[0] # Benchmark def benchmark(pipeline, X_train, Y_train, X_test, Y_test, mltl=False, signed=False, average='micro'): print('+' * 80) print('Training Model: ') print(pipeline) t0 = time() pipeline.fit(X_train, Y_train) train_time = time() - t0 print('train time: %0.3fs' % train_time) t0 = time() orig_pred = pred = pipeline.predict(X_test) orig_prob = prob = pipeline.predict_proba(X_test) if hasattr(pipeline, 'predict_proba') else pipeline.decision_function(X_test) test_time = time() - t0 print('+' * 80) print('Testing: ') print('test time: %0.3fs' % test_time) is_mltl = mltl if (signed): Y_test = np.column_stack([np.abs(Y_test).reshape((Y_test.shape[0],-1))] + [label_binarize(lb, classes=[-1,1,0])[:,1] for lb in (np.sign(Y_test).astype('int8').reshape((Y_test.shape[0],-1))).T]) if (len(Y_test.shape) < 2 or Y_test.shape[1] == 1 or np.where(Y_test<0)[0].shape[0]>0) else Y_test pred = np.column_stack([np.abs(pred).reshape((pred.shape[0],-1))] + [label_binarize(lb, classes=[-1,1,0])[:,1] for lb in (np.sign(pred).astype('int8').reshape((pred.shape[0],-1))).T]) if (len(pred.shape) < 2 or pred.shape[1] == 1 or np.where(pred<0)[0].shape[0]>0) else pred is_mltl = True try: accuracy = metrics.accuracy_score(Y_test, pred) except ValueError as e: print(e) Y_test, pred = Y_test.ravel(), pred.ravel() accuracy = metrics.accuracy_score(Y_test, pred) print('accuracy: %0.3f' % accuracy) if (is_mltl and average == 'all'): micro_precision = metrics.precision_score(Y_test, pred, average='micro') print('micro-precision: %0.3f' % micro_precision) micro_recall = metrics.recall_score(Y_test, pred, average='micro') print('micro-recall: %0.3f' % micro_recall) micro_fscore = metrics.fbeta_score(Y_test, pred, beta=1, average='micro') print('micro-fscore: %0.3f' % micro_fscore) macro_precision = metrics.precision_score(Y_test, pred, average='macro') print('macro-precision: %0.3f' % macro_precision) macro_recall = metrics.recall_score(Y_test, pred, average='macro') print('macro-recall: %0.3f' % macro_recall) macro_fscore = metrics.fbeta_score(Y_test, pred, beta=1, average='macro') print('macro-fscore: %0.3f' % macro_fscore) else: precision = metrics.precision_score(Y_test, pred, average=average if is_mltl else 'binary') print('precision: %0.3f' % precision) recall = metrics.recall_score(Y_test, pred, average=average if is_mltl else 'binary') print('recall: %0.3f' % recall) fscore = metrics.fbeta_score(Y_test, pred, beta=1, average=average if is_mltl else 'binary') print('fscore: %0.3f' % fscore) print('classification report:') # print metrics.classification_report(Y_test, pred) metric_df = pd.DataFrame(metrics.classification_report(Y_test, pred, output_dict=True)).T[['precision', 'recall', 'f1-score', 'support']] print(metric_df) print('confusion matrix:') if (is_mltl): pass else: print(metrics.confusion_matrix(Y_test, pred)) print('+' * 80) clf = pipeline.named_steps['clf'] if (type(pipeline) is Pipeline) else pipeline if ((isinstance(clf, OneVsRestClassifier) and hasattr(clf.estimators_[0], 'predict_proba')) or (not isinstance(clf, OneVsRestClassifier) and hasattr(pipeline, 'predict_proba'))): if (mltl): scores = pipeline.predict_proba(X_test) if (type(scores) == list): scores = np.concatenate([score[:, -1].reshape((-1, 1)) for score in scores], axis=1) else: scores = pipeline.predict_proba(X_test)[:, -1] elif (hasattr(pipeline, 'decision_function')): scores = pipeline.decision_function(X_test) else: print('Neither probability estimate nor decision function is supported in the classification model! ROC and PRC figures will be invalid.') scores = [0] * Y_test.shape[0] if (signed and (len(scores.shape) < 2 or scores.shape[1] < pred.shape[1])): scores = np.concatenate([np.abs(scores).reshape((scores.shape[0],-1))] + [label_binarize(lb, classes=[-1,1,0])[:,:2] for lb in (np.sign(scores).astype('int8').reshape((scores.shape[0],-1))).T], axis=1) if (is_mltl): if ((len(Y_test.shape) == 1 or Y_test.shape[1] == 1) and len(np.unique(Y_test)) > 2): lbz = LabelBinarizer() Y_test = lbz.fit_transform(Y_test) def micro(): # Micro-average ROC curve y_true = np.array(Y_test) s_array = np.array(scores) if (len(s_array.shape) == 3): s_array = s_array[:,:,1].reshape((s_array.shape[0],s_array.shape[1],)) if (y_true.shape[0] == s_array.shape[1] and y_true.shape[1] == s_array.shape[0]): s_array = s_array.T return metrics.roc_curve(y_true.ravel(), s_array.ravel()) def macro(): # Macro-average ROC curve n_classes = Y_test.shape[1] fpr, tpr = [dict() for i in range(2)] for i in range(n_classes): fpr[i], tpr[i], _ = metrics.roc_curve(Y_test[:, i], scores[:, i]) # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= n_classes return all_fpr, mean_tpr, _ if (average == 'micro'): roc = micro() elif (average == 'macro'): roc = macro() elif (average == 'all'): micro_roc = micro() macro_roc = macro() if (type(scores) == list): scores = np.array(scores)[:,:,0] prc = metrics.precision_recall_curve(Y_test.ravel(), scores.ravel()) # Only micro-prc is supported else: roc = metrics.roc_curve(Y_test, scores) prc = metrics.precision_recall_curve(Y_test, scores) # print 'ROC:\n%s\n%s' % (roc[0], roc[1]) # print 'PRC:\n%s\n%s' % (prc[0], prc[1]) print('Training and Testing X shape: %s; %s' % (', '.join(['(%s)' % ','.join([str(x) for x in X.shape]) for X in X_train]) if type(X_train) is list else '(%s)' % ','.join([str(x) for x in X_train.shape]), ', '.join(['(%s)' % ','.join([str(x) for x in X.shape]) for X in X_test]) if type(X_test) is list else '(%s)' % ','.join([str(x) for x in X_test.shape]))) feat_w_dict, sub_feat_w = [{} for i in range(2)] filt_feat_idx = feature_idx = np.arange(X_train[0].shape[1] if type(X_train) is list else X_train.shape[1]) for component in ('featfilt', 'clf'): if (type(pipeline) != Pipeline): if (component == 'featfilt'): continue else: cmpn = pipeline elif (component in pipeline.named_steps): cmpn = pipeline.named_steps[component] else: continue if (hasattr(cmpn, 'estimators_')): for i, estm in enumerate(cmpn.estimators_): filt_subfeat_idx = filt_feat_idx[:] if (hasattr(estm, 'get_support')): filt_subfeat_idx = filt_feat_idx[estm.get_support()] for measure in ('feature_importances_', 'coef_', 'scores_'): if (hasattr(estm, measure)): filt_subfeat_w = getattr(estm, measure) subfeat_w = (filt_subfeat_w.min() - 1) * np.ones_like(feature_idx) # subfeat_w[filt_subfeat_idx][:len(estm.feature_importances_)] = normalize(estm.feature_importances_, norm='l1') subfeat_w[filt_subfeat_idx][:len(filt_subfeat_w)] = filt_subfeat_w # print 'Sub FI shape: (%s)' % ','.join([str(x) for x in filt_subfeat_w.shape]) # print 'Feature Importance inside %s Ensemble Method: %s' % (component, filt_subfeat_w) sub_feat_w[(component, i)] = subfeat_w for measure in ('feature_importances_', 'coef_', 'scores_'): if (hasattr(cmpn, measure)): filt_feat_w = getattr(cmpn, measure) # print '*' * 80 + '\n%s\n'%filt_feat_w + '*' * 80 feat_w = (filt_feat_w.min() - 1) * np.ones_like(feature_idx) # feat_w[filt_feat_idx][:filt_feat_w.shape[1] if len(filt_feat_w.shape) > 1 else len(filt_feat_w)] = normalize(filt_feat_w[1,:] if len(filt_feat_w.shape) > 1 else filt_feat_w, norm='l1') feat_w[filt_feat_idx][:filt_feat_w.shape[1] if len(filt_feat_w.shape) > 1 else len(filt_feat_w)] = filt_feat_w[1,:] if len(filt_feat_w.shape) > 1 else filt_feat_w # print '*' * 80 + '\n%s\n'%feat_w + '*' * 80 feat_w_dict[(component, measure)] = feat_w print('FI shape: (%s)' % ','.join([str(x) for x in feat_w_dict[(component, measure)].shape])) print('Sample 10 Feature from %s.%s: %s' % (component, measure, feat_w[feat_w > 0][:10])) # print 'Feature Importance from %s.%s: %s' % (component, measure, feat_w) if (hasattr(cmpn, 'get_support')): filt_feat_idx = filt_feat_idx[cmpn.get_support()] print('\n') if (is_mltl and average == 'all'): return {'accuracy':accuracy, 'micro-precision':micro_precision, 'micro-recall':micro_recall, 'micro-fscore':micro_fscore, 'macro-precision':macro_precision, 'macro-recall':macro_recall, 'macro-fscore':macro_fscore, 'train_time':train_time, 'test_time':test_time, 'micro-roc':micro_roc, 'macro-roc':macro_roc, 'prc':prc, 'feat_w':feat_w_dict, 'sub_feat_w':sub_feat_w, 'pred_lb':orig_pred, 'metrics':metric_df} else: return {'accuracy':accuracy, 'precision':precision, 'recall':recall, 'fscore':fscore, 'train_time':train_time, 'test_time':test_time, 'roc':roc, 'prc':prc, 'feat_w':feat_w_dict, 'sub_feat_w':sub_feat_w, 'pred_lb':orig_pred, 'pred_prob':orig_prob, 'metrics':metric_df} # Calculate the venn digram overlaps def pred_ovl(preds, pred_true=None, axis=1): if (axis == 0): preds = preds.T if (pred_true is not None): pred_true = pred_true.reshape((-1,)) # Row represents feature, column represents instance var_num, dim = preds.shape[0], preds.shape[1] orig_idx = np.arange(var_num) if (len(preds.shape) < 2 or preds.shape[1] == 1): if (pred_true is None): return np.ones(shape=(1,), dtype='int') else: overlap_mt = np.ones(shape=(1,2), dtype='int') overlap_mt[0,1] = orig_idx[preds.reshape((-1,)) == pred_true].shape[0] return overlap_mt # Calculate possible subsets of all the instance indices subset_idx = list(imath.subset(list(range(dim)), min_crdnl=1)) # Initialize result matrix if (pred_true is None): overlap_mt = np.zeros(shape=(len(subset_idx),), dtype='int') else: overlap_mt = np.zeros(shape=(len(subset_idx), 2), dtype='int') # Calculate overlap for each subset for i, idx in enumerate(subset_idx): rmn_idx = set(range(dim)) - set(idx) # Select the positions of the target instance that without any overlap with other instances pred_sum, chsn_sum, rmn_sum = preds.sum(axis=1), preds[:,idx].sum(axis=1), preds[:,list(rmn_idx)].sum(axis=1) condition = np.all([np.logical_or(chsn_sum == 0, chsn_sum == len(idx)), np.logical_or(rmn_sum == 0, rmn_sum == len(rmn_idx)), np.logical_or(pred_sum == len(idx), pred_sum == len(rmn_idx))], axis=0) if (pred_true is None): overlap_mt[i] = orig_idx[condition].shape[0] else: # And the selected positions should be true true_cond = np.logical_and(condition, preds[:,idx[0]] == pred_true) overlap_mt[i,0] = orig_idx[condition].shape[0] overlap_mt[i,1] = orig_idx[true_cond].shape[0] return overlap_mt def save_featw(features, crsval_featw, crsval_subfeatw, cfg_param={}, lbid=''): lbidstr = ('_' + (str(lbid) if lbid != -1 else 'all')) if lbid is not None and lbid != '' else '' for k, v in crsval_featw.items(): measure_str = k.replace(' ', '_').strip('_').lower() feat_w_mt = np.column_stack(v) mms = MinMaxScaler() feat_w_mt = mms.fit_transform(feat_w_mt) feat_w_avg = feat_w_mt.mean(axis=1) feat_w_std = feat_w_mt.std(axis=1) sorted_idx = np.argsort(feat_w_avg, axis=-1)[::-1] # sorted_idx = sorted(range(feat_w_avg.shape[0]), key=lambda k: feat_w_avg[k])[::-1] sorted_feat_w = np.column_stack((features[sorted_idx], feat_w_avg[sorted_idx], feat_w_std[sorted_idx])) feat_w_df = pd.DataFrame(sorted_feat_w, index=sorted_idx, columns=['Feature Name', 'Importance Mean', 'Importance Std']) if (cfg_param.setdefault('save_featw', False)): feat_w_df.to_excel('featw%s_%s.xlsx' % (lbidstr, measure_str)) if (cfg_param.setdefault('save_featw_npz', False)): io.write_df(feat_w_df, 'featw%s_%s' % (lbidstr, measure_str), with_idx=True) if (cfg_param.setdefault('plot_featw', False)): plot.plot_bar(feat_w_avg[sorted_idx[:10]].reshape((1,-1)), feat_w_std[sorted_idx[:10]].reshape((1,-1)), features[sorted_idx[:10]], labels=None, title='Feature importances', fname='fig_featw%s_%s' % (lbidstr, measure_str), plot_cfg=common_cfg) for k, v in crsval_subfeatw.items(): measure_str = k.replace(' ', '_').strip('_').lower() subfeat_w_mt = np.column_stack(v) mms = MinMaxScaler() subfeat_w_mt = mms.fit_transform(subfeat_w_mt) subfeat_w_avg = subfeat_w_mt.mean(axis=1) subfeat_w_std = subfeat_w_mt.std(axis=1) sorted_idx = np.argsort(subfeat_w_avg, axis=-1)[::-1] sorted_subfeat_w = np.column_stack((features[sorted_idx], subfeat_w_avg[sorted_idx], subfeat_w_std[sorted_idx])) subfeat_w_df = pd.DataFrame(sorted_subfeat_w, index=sorted_idx, columns=['Feature Name', 'Importance Mean', 'Importance Std']) if (cfg_param.setdefault('save_subfeatw', False)): subfeat_w_df.to_excel('subfeatw%s_%s.xlsx' % (lbidstr, measure_str)) if (cfg_param.setdefault('save_subfeatw_npz', False)): io.write_df(subfeat_w_df, 'subfeatw%s_%s' % (lbidstr, measure_str), with_idx=True) if (cfg_param.setdefault('plot_subfeatw', False)): plot.plot_bar(subfeat_w_avg[sorted_idx[:10]].reshape((1,-1)), subfeat_w_std[sorted_idx[:10]].reshape((1,-1)), features[sorted_idx[:10]], labels=None, title='Feature importances', fname='fig_subfeatw_%s' % measure_str, plot_cfg=common_cfg) # Classification def classification(X_train, Y_train, X_test, model_iter, model_param={}, cfg_param={}, global_param={}, lbid=''): print('Classifing...') global common_cfg FILT_NAMES, CLF_NAMES, PL_NAMES, PL_SET = model_param['glb_filtnames'], model_param['glb_clfnames'], global_param['pl_names'], global_param['pl_set'] lbidstr = ('_' + (str(lbid) if lbid != -1 else 'all')) if lbid is not None and lbid != '' else '' to_hdf, hdf5_fpath = cfg_param.setdefault('to_hdf', False), '%s' % 'crsval_dataset.h5' if cfg_param.setdefault('hdf5_fpath', 'crsval_dataset.h5') is None else cfg_param['hdf5_fpath'] # Format the data if (type(X_train) == list): assert all([len(x) == len(X_train[0]) for x in X_train[1:]]) X_train = [pd.DataFrame(x) if (type(x) != pd.io.parsers.TextFileReader and type(x) != pd.DataFrame) else x for x in X_train] X_train = [pd.concat(x) if (type(x) == pd.io.parsers.TextFileReader and not to_hdf) else x for x in X_train] else: if (type(X_train) != pd.io.parsers.TextFileReader and type(X_train) != pd.DataFrame): X_train = pd.DataFrame(X_train) X_train = pd.concat(X_train) if (type(X_train) == pd.io.parsers.TextFileReader and not to_hdf) else X_train if (type(X_test) == list): assert all([len(x) == len(X_test[0]) for x in X_test[1:]]) X_test = [pd.DataFrame(x) if (type(x) != pd.io.parsers.TextFileReader and type(x) != pd.DataFrame) else x for x in X_test] X_test = [pd.concat(x) if (type(x) == pd.io.parsers.TextFileReader and not to_hdf) else x for x in X_test] else: if (type(X_test) != pd.io.parsers.TextFileReader and type(X_test) != pd.DataFrame): X_test = pd.DataFrame(X_test) X_test = pd.concat(X_test) if (type(X_test) == pd.io.parsers.TextFileReader and not to_hdf) else X_test if (type(Y_train) != pd.io.parsers.TextFileReader and type(Y_train) != pd.DataFrame): Y_train = pd.DataFrame(Y_train) Y_train_mt = Y_train.values.reshape((Y_train.shape[0],)) if (len(Y_train.shape) == 1 or Y_train.shape[1] == 1) else Y_train.values mltl=True if len(Y_train_mt.shape) > 1 and Y_train_mt.shape[1] > 1 or 2 in Y_train_mt else False print('Classification is starting...') preds, probs, scores = [[] for i in range(3)] crsval_featw, crsval_subfeatw = [{} for i in range(2)] for vars in model_iter(**model_param): if (global_param['comb']): mdl_name, mdl = [vars[x] for x in range(2)] else: filt_name, filter, clf_name, clf= [vars[x] for x in range(4)] print('#' * 80) # Assemble a pipeline if ('filter' in locals() and filter != None): model_name = '%s [Ft Filt] & %s [CLF]' % (filt_name, clf_name) pipeline = Pipeline([('featfilt', clone(filter)), ('clf', clf)]) elif ('clf' in locals() and clf != None): model_name = '%s [CLF]' % clf_name pipeline = Pipeline([('clf', clf)]) else: model_name = mdl_name pipeline = mdl if (type(mdl) is Pipeline) else Pipeline([('clf', mdl)]) if (model_name in PL_SET): continue PL_NAMES.append(model_name) PL_SET.add(model_name) print(model_name) # Build the model print('+' * 80) print('Training Model: ') print(pipeline) t0 = time() pipeline.fit(X_train, Y_train_mt) train_time = time() - t0 print('train time: %0.3fs' % train_time) t0 = time() pred = pipeline.predict(X_test) prob = pipeline.predict_proba(X_test) test_time = time() - t0 print('+' * 80) print('Testing: ') print('test time: %0.3fs' % test_time) preds.append(pred) probs.append(prob) scores.append(get_score(pipeline, X_test, mltl)) # Save predictions and model if (cfg_param.setdefault('save_pred', True)): io.write_npz(dict(pred_lb=pred, pred_prob=prob), 'clf_pred_%s%s' % (model_name.replace(' ', '_').lower(), lbidstr)) if (cfg_param.setdefault('save_model', True)): mdl_name = '%s' % model_name.replace(' ', '_').lower() if (all([hasattr(pipeline.steps[i][1], 'save') for i in range(len(pipeline.steps))])): for sub_mdl_name, mdl in pipeline.steps: mdl.save('%s_%s%s' % (mdl_name, sub_mdl_name.replace(' ', '_').lower(), lbidstr), **global_param.setdefault('mdl_save_kwargs', {})) else: io.write_obj(pipeline, '%s%s' % (mdl_name, lbidstr)) # Feature importances feat_w, sub_feat_w = get_featw(pipeline, X_train[0].shape[1] if (type(X_train) is list) else X_train.shape[1]) for k, v in feat_w.items(): key = '%s_%s_%s' % (model_name, k[0], k[1]) crsval_featw.setdefault(key, []).append(v) for k, v in sub_feat_w.items(): key = '%s_%s_%s' % (model_name, k[0], k[1]) crsval_subfeatw.setdefault(key, []).append(v) print('\n') if (len(preds) > 1): # Prediction overlap preds_mt = np.column_stack([x.ravel() for x in preds]) povl = np.array(pred_ovl(preds_mt)) # Spearman's rank correlation spmnr, spmnr_pval = stats.spearmanr(preds_mt) # Kendall rank correlation # kendalltau = stats.kendalltau(preds_mt)[0] # Pearson correlation # pearson = tats.pearsonr(preds_mt)[0] ## Save performance data povl_idx = [' & '.join(x) for x in imath.subset(PL_NAMES, min_crdnl=1)] povl_df =
pd.DataFrame(povl, index=povl_idx, columns=['pred_ovl'])
pandas.DataFrame
import numpy as np import pandas as pd import os import sys from subprocess import call import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from matplotlib.ticker import LinearLocator import scipy import json from sklearn.decomposition import PCA as skPCA from scipy.spatial import distance from scipy.cluster import hierarchy import seaborn as sns from matplotlib.colors import rgb2hex, colorConverter from pprint import pprint import difflib from operator import itemgetter import itertools from functools import reduce import matplotlib.ticker as ticker import math import matplotlib.patches as patches from collections import defaultdict import collections from sklearn.manifold import TSNE from sklearn.decomposition import TruncatedSVD from sklearn.cluster import KMeans import matplotlib.mlab as mlab def make_new_matrix_gene(org_matrix_by_gene, gene_list_source, exclude_list=""): if isinstance(gene_list_source,str): gene_df = pd.read_csv(open(gene_list_source,'rU'), sep=None, engine='python') try: gene_list = list(set(gene_df['GeneID'].tolist())) if exclude_list != "": gene_list = [g for g in gene_list if g not in exclude_list] except KeyError: sys.exit("Error: Please provide Gene list file with 'GeneID' as header.") try: group_list = gene_df['GroupID'].tolist() except KeyError: sys.exit("Error: Please provide Gene list file with 'GroupID' as header.") try: gmatrix_df = org_matrix_by_gene[gene_list] except KeyError as error_gene: cause1 = error_gene.args[0].strip(' not in index') cause = [v.strip('\n\' ') for v in cause1.strip('[]').split(' ')] absent_gene = cause print(' '.join(absent_gene)+' not in matrix file.') new_list = [x for x in gene_list if x not in absent_gene] gmatrix_df = org_matrix_by_gene[new_list] cmatrix_df = gmatrix_df.transpose() cell_list1 = cmatrix_df.columns.values new_cmatrix_df = cmatrix_df[cell_list1] new_gmatrix_df = new_cmatrix_df.transpose() return new_cmatrix_df, new_gmatrix_df elif isinstance(gene_list_source,list): if exclude_list == "": gene_list = gene_list_source else: gene_list = [g for g in gene_list_source if g not in exclude_list] try: gmatrix_df = org_matrix_by_gene[gene_list] except KeyError as error_gene: cause = error_gene.args[0] absent_gene = cause.split('\'')[1] print(absent_gene+' not in matrix file.') new_list = [x for x in gene_list if x not in [absent_gene]] gmatrix_df = org_matrix_by_gene[new_list] cmatrix_df = gmatrix_df.transpose() cell_list1 = cmatrix_df.columns.values new_cmatrix_df = cmatrix_df[cell_list1] new_gmatrix_df = new_cmatrix_df.transpose() return new_cmatrix_df, new_gmatrix_df else: sys.exit("Error: gene list must be filepath or a list.") def make_new_matrix_cell(org_matrix_by_cell, cell_list_file): cell_df = pd.read_csv(open(cell_list_file,'rU'), sep=None, engine='python') cell_list_new = list(set([cell.strip('\n') for cell in cell_df['SampleID'].tolist()])) cell_list_old = org_matrix_by_cell.columns.tolist() overlap = [c for c in cell_list_new if c in cell_list_old] not_in_matrix = [c for c in cell_list_new if c not in cell_list_old] if not_in_matrix != []: print('These cells were in the cell list provided, but not found in the matrix provided:') print(not_in_matrix) new_cmatrix_df = org_matrix_by_cell[overlap] new_gmatrix_df = new_cmatrix_df.transpose() return new_cmatrix_df, new_gmatrix_df def threshold_genes(by_gene, number_expressed=1, gene_express_cutoff=1.0): by_gene.apply(lambda column: (column >= 1).sum()) return def find_top_common_genes(log2_df_by_cell, num_common=25): top_common_list = [] count = 0 done = False log2_df_by_gene = log2_df_by_cell.transpose() log2_df2_gene = log2_df_by_gene.apply(pd.to_numeric,errors='coerce') log_mean = log2_df2_gene.mean(axis=0).sort_values(ascending=False) try: log2_sorted_gene = log2_df_by_gene.reindex_axis(log2_df_by_gene.mean(axis=0).sort_values(ascending=False).index, axis=1) except ValueError: overlap_list = [item for item, count in collections.Counter(log2_df_by_cell.index).items() if count > 1] print(overlap_list, len(overlap_list)) sys.exit('Error: Duplicate GeneIDs are present.') for gene in log2_sorted_gene.columns.tolist(): if sum(genes < 1 for genes in log2_df_by_gene[gene])<6: if count < num_common: count+=1 top_common_list.append(gene) if count == num_common: done = True break if done: return log2_df_by_gene[top_common_list].transpose() else: return [0] def log2_oulierfilter(df_by_cell, plot=False, already_log2=False): if not already_log2: log2_df = np.log2(df_by_cell+1) else: log2_df = df_by_cell top_log2 = find_top_common_genes(log2_df) if all(top_log2) != 0: log2_df2= log2_df.apply(pd.to_numeric,errors='coerce') log_mean = top_log2.mean(axis=0).sort_values(ascending=False) log2_sorted = top_log2.reindex_axis(top_log2.mean(axis=0).sort_values(ascending=False).index, axis=1) xticks = [] keep_col= [] log2_cutoff = np.average(np.average(log2_sorted))-2*np.average(np.std(log2_sorted)) for col, m in zip(log2_sorted.columns.tolist(),log2_sorted.mean()): if m > log2_cutoff: keep_col.append(col) xticks.append(col+' '+str("%.2f" % m)) excluded_cells = [x for x in log2_sorted.columns.tolist() if x not in keep_col] filtered_df_by_cell = df_by_cell[keep_col] filtered_df_by_gene = filtered_df_by_cell.transpose() if not already_log2: filtered_log2 = np.log2(filtered_df_by_cell[filtered_df_by_cell>0]) else: filtered_log2 = filtered_df_by_cell[filtered_df_by_cell>0] if plot: ax = sns.boxplot(data=filtered_log2, whis= .75, notch=True) ax = sns.stripplot(x=filtered_log2.columns.values, y=filtered_log2.mean(axis=0), size=4, jitter=True, edgecolor="gray") xtickNames = plt.setp(ax, xticklabels=xticks) plt.setp(xtickNames, rotation=90, fontsize=9) plt.show() plt.clf() sns.distplot(filtered_log2.mean()) plt.show() if not already_log2: log2_expdf_cell = np.log2(filtered_df_by_cell+1) else: log2_expdf_cell = filtered_df_by_cell log2_expdf_gene = log2_expdf_cell.transpose() return log2_expdf_cell, log2_expdf_gene else: print("no common genes found") return log2_df, log2_df.transpose() def augmented_dendrogram(*args, **kwargs): plt.clf() ddata = dendrogram(*args, **kwargs) if not kwargs.get('no_plot', False): for i, d in zip(ddata['icoord'], ddata['dcoord'], ): x = 0.5 * sum(i[1:3]) y = d[1] if y >= 200000: plt.plot(x, y, 'ro') plt.annotate("%.3g" % y, (x, y), xytext=(0, -8), textcoords='offset points', va='top', ha='center') plt.show() plt.savefig(os.path.join(new_file,'augmented_dendrogram.png')) def cluster_indices(cluster_assignments): n = cluster_assignments.max() indices = [] for cluster_number in range(1, n + 1): indices.append(np.where(cluster_assignments == cluster_number)[0]) return indices def clust_members(r_link, cutoff): clust = fcluster(r_link,cutoff) num_clusters = clust.max() indices = cluster_indices(clust) return num_clusters, indices def print_clust_membs(indices, cell_list): for k, ind in enumerate(indices): print("cluster", k + 1, "is", [cell_list[x] for x in ind]) def plot_tree(dendr, path_filename, pos=None, save=False): icoord = scipy.array(dendr['icoord']) dcoord = scipy.array(dendr['dcoord']) color_list = scipy.array(dendr['color_list']) xmin, xmax = icoord.min(), icoord.max() ymin, ymax = dcoord.min(), dcoord.max() if pos: icoord = icoord[pos] dcoord = dcoord[pos] for xs, ys, color in zip(icoord, dcoord, color_list): plt.plot(xs, ys, color) plt.xlim(xmin-10, xmax + 0.1*abs(xmax)) plt.ylim(ymin, ymax + 0.1*abs(ymax)) if save: plt.savefig(os.path.join(path_filename,'plot_dendrogram.png')) plt.show() # Create a nested dictionary from the ClusterNode's returned by SciPy def add_node(node, parent): # First create the new node and append it to its parent's children newNode = dict( node_id=node.id, children=[] ) parent["children"].append( newNode ) # Recursively add the current node's children if node.left: add_node( node.left, newNode ) if node.right: add_node( node.right, newNode ) cc = [] # Label each node with the names of each leaf in its subtree def label_tree(n, id2name): # If the node is a leaf, then we have its name if len(n["children"]) == 0: leafNames = [ id2name[n["node_id"]] ] # If not, flatten all the leaves in the node's subtree else: leafNames = reduce(lambda ls, c: ls + label_tree(c,id2name), n["children"], []) cc.append((len(leafNames), [x.strip('\n') for x in leafNames])) cc.sort(key=lambda tup: tup[0], reverse = True) # Delete the node id since we don't need it anymore and # it makes for cleaner JSON del n["node_id"] # Labeling convention: "-"-separated leaf names n["name"] = name = "-".join(sorted(map(str, leafNames))) return leafNames #Makes labeled json tree for visulaization in d3, makes and returns cc object within label_tree def make_tree_json(row_clusters, df_by_gene, path_filename): T= hierarchy.to_tree(row_clusters) # Create dictionary for labeling nodes by their IDs labels = list(df_by_gene.index) id2name = dict(zip(range(len(labels)), labels)) # Initialize nested dictionary for d3, then recursively iterate through tree d3Dendro = dict(children=[], name="Root1") add_node( T, d3Dendro ) label_tree( d3Dendro["children"][0], id2name ) # Output to JSON json.dump(d3Dendro, open(os.path.join(path_filename,"d3-dendrogram.json"), "w"), sort_keys=True, indent=4) return cc #finds significant genes between subclusters def find_twobytwo(cc, df_by_cell, full_by_cell_df, path_filename, cluster_size=20): gene_list = full_by_cell_df.index.tolist() by_gene_df = full_by_cell_df.transpose() pair_dict = {} parent = cc[0][1] p_num = cc[0][0] l_nums = [x[0] for x in cc] c_lists = [c[1] for c in cc[1:]] unique_count = 1 pair_list = [] for i, c in enumerate(c_lists): for i2, c2 in enumerate(c_lists): overlap = [i for i in c if i in c2] if not overlap and len(c)>=cluster_size and len(c2)>=cluster_size: if (c,c2) not in pair_list: pair_list.append((c,c2)) pair_list.append((c2,c)) pair_dict[str(len(c))+'cells_vs_'+str(len(c2))+'cells'+str(unique_count)]= [c, c2] unique_count+=1 for v, k in pair_dict.items(): g_pvalue_dict = {} index_list = [] sig_gene_list = [] cell_list1 = [x.strip('\n') for x in k[0]] cell_list2 = [xx.strip('\n') for xx in k[1]] group1 = str(len(cell_list1)) group2 = str(len(cell_list2)) df_by_cell_1 = full_by_cell_df[cell_list1] df_by_cell_2 = full_by_cell_df[cell_list2] df_by_gene_1 = df_by_cell_1.transpose() df_by_gene_2 = df_by_cell_2.transpose() for g in gene_list: g_pvalue = scipy.stats.f_oneway(df_by_gene_1[g], df_by_gene_2[g]) if g_pvalue[0] > 0 and g_pvalue[1] <= 1: g_pvalue_dict[g] = g_pvalue if g not in [s[0] for s in sig_gene_list]: sig_gene_list.append([g, g_pvalue[1]]) sig_gene_list.sort(key=lambda tup: tup[1]) pvalues = [p[1] for p in sig_gene_list] gene_index = [ge[0] for ge in sig_gene_list] mean_log2_exp_list = [] sig_1_2_list = [] mean1_list = [] mean2_list = [] for sig_gene in gene_index: sig_gene_df = by_gene_df[sig_gene] mean_log2_exp_list.append(sig_gene_df.mean()) sig_cell_df = sig_gene_df.transpose() mean_cell1 = sig_cell_df[cell_list1].mean() mean1_list.append(mean_cell1) mean_cell2 = sig_cell_df[cell_list2].mean() mean2_list.append(mean_cell2) ratio_1_2 = (mean_cell1+1)/(mean_cell2+1) sig_1_2_list.append(ratio_1_2) sig_df = pd.DataFrame({'pvalues':pvalues,'mean_all':mean_log2_exp_list,'mean_group1':mean1_list, 'mean_group2':mean2_list, 'ratio_1_2':sig_1_2_list}, index=gene_index) cell_names_df = pd.DataFrame({'cells1':pd.Series(cell_list1, index=range(len(cell_list1))), 'cells2':pd.Series(cell_list2, index=range(len(cell_list2)))}) sig_df.to_csv(os.path.join(path_filename,'sig_'+v+'_pvalues.txt'), sep = '\t') cell_names_df.to_csv(os.path.join(path_filename,'sig_'+v+'_cells.txt'), sep = '\t') def ellip_enclose(points, color, inc=1, lw=2, nst=2): """ Plot the minimum ellipse around a set of points. Based on: https://github.com/joferkington/oost_paper_code/blob/master/error_ellipse.py """ def eigsorted(cov): vals, vecs = np.linalg.eigh(cov) order = vals.argsort()[::-1] return vals[order], vecs[:,order] x = points[:,0] y = points[:,1] cov = np.cov(x, y) vals, vecs = eigsorted(cov) theta = np.degrees(np.arctan2(*vecs[:,0][::-1])) w, h = 2 * nst * np.sqrt(vals) center = np.mean(points, 0) ell = patches.Ellipse(center, width=inc*w, height=inc*h, angle=theta, facecolor=color, alpha=0.2, lw=0) edge = patches.Ellipse(center, width=inc*w, height=inc*h, angle=theta, facecolor='none', edgecolor=color, lw=lw) return ell, edge def return_top_pca_gene(df_by_gene, num_genes=100): gene_pca = skPCA(n_components=3) np_by_gene = np.asarray(df_by_gene) by_gene_trans = gene_pca.fit_transform(np_by_gene) Pc_df = pd.DataFrame(gene_pca.components_.T, columns=['PC-1', 'PC-2', 'PC-3'], index=df_by_gene.columns.tolist()) pca_rank_df = Pc_df.abs().sum(axis=1) Pc_sort_df = pca_rank_df.nlargest(len(df_by_gene.columns.tolist())) top_pca_list = Pc_sort_df.index.tolist() new_gene_matrix = df_by_gene[top_pca_list[0:num_genes]] return new_gene_matrix, top_pca_list[0:num_genes] def plot_PCA(args, df_by_gene, path_filename, num_genes=100, gene_list_filter=False, title='', plot=False, label_map=False, gene_map = False): gene_list = df_by_gene.columns.tolist() sns.set_palette("RdBu_r", 10, 1) if gene_list_filter: sig_by_gene = df_by_gene[gene_list_filter] sig_by_cell = sig_by_gene.transpose() else: sig_by_gene = df_by_gene sig_by_cell = sig_by_gene.transpose() gene_pca = skPCA(n_components=3) np_by_gene = np.asarray(sig_by_gene) by_gene_trans = gene_pca.fit_transform(np_by_gene) Pc_df = pd.DataFrame(gene_pca.components_.T, columns=['PC-1', 'PC-2', 'PC-3'], index=sig_by_gene.columns.tolist()) pca_rank_df = Pc_df.abs().sum(axis=1) Pc_sort_df = pca_rank_df.nlargest(len(sig_by_gene.columns.tolist())) top_pca_list = Pc_sort_df.index.tolist() top_by_gene = df_by_gene[top_pca_list[0:num_genes]] gene_top = skPCA(n_components=2) cell_pca = skPCA(n_components=2) top_by_cell = top_by_gene.transpose() np_top_gene = np.asarray(top_by_cell) np_top_cell = np.asarray(top_by_gene) top_cell_trans = cell_pca.fit_transform(np_top_cell) top_gene_trans = gene_top.fit_transform(np_top_gene) if not np.isnan(top_cell_trans).any(): fig, (ax_cell, ax_gene) = plt.subplots(2, 1, figsize=(15, 30), sharex=False) rect_cell = ax_cell.patch rect_gene = ax_gene.patch rect_cell.set_facecolor('white') rect_gene.set_facecolor('white') ax_cell.grid(b=True, which='major', color='grey', linestyle='--', linewidth=0.3) ax_gene.grid(b=True, which='major', color='grey', linestyle='--', linewidth=0.3) if label_map: annotate = args.annotate_cell_pca X = [x for x in top_cell_trans[:, 0]] Y = [y for y in top_cell_trans[:, 1]] labels = [label_map[cell][2] for cell in top_by_cell.columns.tolist()] markers = [label_map[cell][1] for cell in top_by_cell.columns.tolist()] colors = [label_map[cell][0] for cell in top_by_cell.columns.tolist()] label_done = [] xy_by_color_dict = {} for c in set(colors): xy_by_color_dict[c] = [] for X_pos, Y_pos, m, color, l in zip(X, Y, markers, colors, labels): if l in label_done: lab = '' else: lab= l label_done.append(l) xy_by_color_dict[color].append([X_pos,Y_pos]) ax_cell.scatter(X_pos, Y_pos, marker=m, c=color, label=lab, s=30) if args.add_ellipse: for c in set(colors): ell, edge = ellip_enclose(np.asarray(xy_by_color_dict[c]), c) ax_cell.add_artist(ell) ax_cell.add_artist(edge) else: ax_cell.scatter(top_cell_trans[:, 0], top_cell_trans[:, 1], alpha=0.75) annotate = args.annotate_cell_pca ax_cell.set_xlim([min(top_cell_trans[:, 0])-1, max(top_cell_trans[:, 0]+1)]) ax_cell.set_ylim([min(top_cell_trans[:, 1])-1, max(top_cell_trans[:, 1]+2)]) ax_cell.set_title(title+'_cell') if label_map: handles, labs = ax_cell.get_legend_handles_labels() # sort both labels and handles by labels labs, handles = zip(*sorted(zip(labs, handles), key=lambda t: t[0])) ax_cell.legend(handles, labs, loc='best', ncol=1, prop={'size':12}, markerscale=1.5, frameon=True) ax_cell.set_xlabel('PC1') ax_cell.set_ylabel('PC2') if annotate: for label, x, y in zip(top_by_cell.columns, top_cell_trans[:, 0], top_cell_trans[:, 1]): ax_cell.annotate(label, (x+0.1, y+0.1)) if gene_map: X = [x for x in top_gene_trans[:, 0]] Y = [y for y in top_gene_trans[:, 1]] labels = top_by_gene.columns.tolist() markers = [gene_map[gene][1] for gene in top_by_gene.columns.tolist()] colors = [gene_map[gene][0] for gene in top_by_gene.columns.tolist()] xy_by_color_dict = {} for c in set(colors): xy_by_color_dict[c] = [] for X_pos, Y_pos, m, color, l in zip(X, Y, markers, colors, labels): xy_by_color_dict[color].append([X_pos,Y_pos]) ax_gene.scatter(X_pos, Y_pos, marker=m, c=color, label = l, s=30) if args.add_ellipse: for c in set(colors): ell, edge = ellip_enclose(np.asarray(xy_by_color_dict[c]), c) ax_gene.add_artist(ell) ax_gene.add_artist(edge) else: ax_gene.scatter(top_gene_trans[:, 0], top_gene_trans[:, 1], alpha=0.75) ax_gene.set_xlim([min(top_gene_trans[:, 0])-1, max(top_gene_trans[:, 0])+1]) ax_gene.set_ylim([min(top_gene_trans[:, 1])-1, max(top_gene_trans[:, 1])+2]) ax_gene.set_title(title+'_gene') ax_gene.set_xlabel('PC1') ax_gene.set_ylabel('PC2') if args.annotate_gene_subset: plot_subset_path = os.path.join(os.path.dirname(args.filepath),args.annotate_gene_subset) genes_plot = pd.read_csv(plot_subset_path, sep='\t', index_col=False) for label, x, y in zip(top_by_gene.columns, top_gene_trans[:, 0], top_gene_trans[:, 1]): if label in genes_plot['GeneID'].tolist(): if '_' in label: label = label.split('_')[0] ax_gene.annotate(label, (x+0.1, y+0.1)) else: for label, x, y in zip(top_by_gene.columns, top_gene_trans[:, 0], top_gene_trans[:, 1]): if '_' in label: label = label.split('_')[0] ax_gene.annotate(label, (x+0.1, y+0.1)) if plot: plt.show() if title != '': save_name = '_'.join(title.split(' ')[0:2]) plt.savefig(os.path.join(path_filename,save_name+'_skpca.pdf'), bbox_inches='tight') else: plt.savefig(os.path.join(path_filename,'Group0_skpca.pdf'), bbox_inches='tight') plt.close('all') return top_pca_list else: return [] def plot_SVD(args,df_by_gene, path_filename, num_genes=100, gene_list_filter=False, title='', plot=False, label_map=False, gene_map = False): gene_list = df_by_gene.columns.tolist() sns.set_palette("RdBu_r", 10, 1) if gene_list_filter: sig_by_gene = df_by_gene[gene_list_filter] sig_by_cell = sig_by_gene.transpose() else: sig_by_gene = df_by_gene sig_by_cell = sig_by_gene.transpose() gene_pca = TruncatedSVD(n_components=3) np_by_gene = np.asarray(sig_by_gene) by_gene_trans = gene_pca.fit_transform(np_by_gene) Pc_df = pd.DataFrame(gene_pca.components_.T, columns=['PC-1', 'PC-2', 'PC-3'], index=sig_by_gene.columns.tolist()) pca_rank_df = Pc_df.abs().sum(axis=1) Pc_sort_df = pca_rank_df.nlargest(len(sig_by_gene.columns.tolist())) top_pca_list = Pc_sort_df.index.tolist() top_by_gene = df_by_gene[top_pca_list[0:num_genes]] gene_top = TruncatedSVD(n_components=2) cell_pca = TruncatedSVD(n_components=2) top_by_cell = top_by_gene.transpose() np_top_gene = np.asarray(top_by_cell) np_top_cell = np.asarray(top_by_gene) top_cell_trans = cell_pca.fit_transform(np_top_cell) top_gene_trans = gene_top.fit_transform(np_top_gene) if not np.isnan(top_cell_trans).any(): fig, (ax_cell, ax_gene) = plt.subplots(2, 1, figsize=(15, 30), sharex=False) rect_cell = ax_cell.patch rect_gene = ax_gene.patch rect_cell.set_facecolor('white') rect_gene.set_facecolor('white') ax_cell.grid(b=True, which='major', color='grey', linestyle='--', linewidth=0.3) ax_gene.grid(b=True, which='major', color='grey', linestyle='--', linewidth=0.3) if label_map: annotate = args.annotate_cell_pca X = [x for x in top_cell_trans[:, 0]] Y = [y for y in top_cell_trans[:, 1]] labels = [label_map[cell][2] for cell in top_by_cell.columns.tolist()] markers = [label_map[cell][1] for cell in top_by_cell.columns.tolist()] colors = [label_map[cell][0] for cell in top_by_cell.columns.tolist()] label_done = [] xy_by_color_dict = {} for c in set(colors): xy_by_color_dict[c] = [] for X_pos, Y_pos, m, color, l in zip(X, Y, markers, colors, labels): if l in label_done: lab = '' else: lab= l label_done.append(l) xy_by_color_dict[color].append([X_pos,Y_pos]) ax_cell.scatter(X_pos, Y_pos, marker=m, c=color, label=lab, s=30) if args.add_ellipse: for c in set(colors): ell, edge = ellip_enclose(np.asarray(xy_by_color_dict[c]), c) ax_cell.add_artist(ell) ax_cell.add_artist(edge) else: ax_cell.scatter(top_cell_trans[:, 0], top_cell_trans[:, 1], alpha=0.75) annotate = args.annotate_cell_pca ax_cell.set_xlim([min(top_cell_trans[:, 0])-1, max(top_cell_trans[:, 0]+1)]) ax_cell.set_ylim([min(top_cell_trans[:, 1])-1, max(top_cell_trans[:, 1]+2)]) ax_cell.set_title(title+'_cell') if label_map: handles, labs = ax_cell.get_legend_handles_labels() # sort both labels and handles by labels labs, handles = zip(*sorted(zip(labs, handles), key=lambda t: t[0])) ax_cell.legend(handles, labs, loc='best', ncol=1, prop={'size':12}, markerscale=1.5, frameon=True) ax_cell.set_xlabel('PC1') ax_cell.set_ylabel('PC2') if annotate: for label, x, y in zip(top_by_cell.columns, top_cell_trans[:, 0], top_cell_trans[:, 1]): ax_cell.annotate(label, (x+0.1, y+0.1)) if gene_map: X = [x for x in top_gene_trans[:, 0]] Y = [y for y in top_gene_trans[:, 1]] labels = top_by_gene.columns.tolist() markers = [gene_map[gene][1] for gene in top_by_gene.columns.tolist()] colors = [gene_map[gene][0] for gene in top_by_gene.columns.tolist()] xy_by_color_dict = {} for c in set(colors): xy_by_color_dict[c] = [] for X_pos, Y_pos, m, color, l in zip(X, Y, markers, colors, labels): xy_by_color_dict[color].append([X_pos,Y_pos]) ax_gene.scatter(X_pos, Y_pos, marker=m, c=color, label = l, s=30) if args.add_ellipse: for c in set(colors): ell, edge = ellip_enclose(np.asarray(xy_by_color_dict[c]), c) ax_gene.add_artist(ell) ax_gene.add_artist(edge) else: ax_gene.scatter(top_gene_trans[:, 0], top_gene_trans[:, 1], alpha=0.75) ax_gene.set_xlim([min(top_gene_trans[:, 0])-1, max(top_gene_trans[:, 0])+1]) ax_gene.set_ylim([min(top_gene_trans[:, 1])-1, max(top_gene_trans[:, 1])+2]) ax_gene.set_title(title+'_gene') ax_gene.set_xlabel('PC1') ax_gene.set_ylabel('PC2') if args.annotate_gene_subset: plot_subset_path = os.path.join(os.path.dirname(args.filepath),args.annotate_gene_subset) genes_plot = pd.read_csv(plot_subset_path, sep='\t', index_col=False) for label, x, y in zip(top_by_gene.columns, top_gene_trans[:, 0], top_gene_trans[:, 1]): if label in genes_plot['GeneID'].tolist(): if '_' in label: label = label.split('_')[0] ax_gene.annotate(label, (x+0.1, y+0.1)) else: for label, x, y in zip(top_by_gene.columns, top_gene_trans[:, 0], top_gene_trans[:, 1]): if '_' in label: label = label.split('_')[0] ax_gene.annotate(label, (x+0.1, y+0.1)) if plot: plt.show() if title != '': save_name = '_'.join(title.split(' ')[0:2]) plt.savefig(os.path.join(path_filename,save_name+'_TruncatedSVD.pdf'), bbox_inches='tight') #plot_url = py.plot_mpl(fig) else: #plot_url = py.plot_mpl(fig) plt.savefig(os.path.join(path_filename,'Group0_TruncatedSVD.pdf'), bbox_inches='tight') plt.close('all') return top_pca_list else: return [] #create cell and gene TSNE scatter plots (one pdf) def plot_TSNE(args,df_by_gene, path_filename, num_genes=100, gene_list_filter=False, title='', plot=False, label_map=False, gene_map = False): gene_list = df_by_gene.columns.tolist() sns.set_palette("RdBu_r", 10, 1) if gene_list_filter: sig_by_gene = df_by_gene[gene_list_filter] sig_by_cell = sig_by_gene.transpose() else: sig_by_gene = df_by_gene sig_by_cell = sig_by_gene.transpose() gene_pca = TruncatedSVD(n_components=3) np_by_gene = np.asarray(sig_by_gene) by_gene_trans = gene_pca.fit_transform(np_by_gene) Pc_df = pd.DataFrame(gene_pca.components_.T, columns=['PC-1', 'PC-2', 'PC-3'], index=sig_by_gene.columns.tolist()) pca_rank_df = Pc_df.abs().sum(axis=1) Pc_sort_df = pca_rank_df.nlargest(len(sig_by_gene.columns.tolist())) top_pca_list = Pc_sort_df.index.tolist() top_by_gene = df_by_gene[top_pca_list[0:num_genes]] gene_top = TSNE(n_components=2, init='pca', random_state=0) cell_pca = TSNE(n_components=2, init='pca', random_state=0) top_by_cell = top_by_gene.transpose() np_top_gene = np.asarray(top_by_cell) np_top_cell = np.asarray(top_by_gene) top_cell_trans = cell_pca.fit_transform(np_top_cell) top_gene_trans = gene_top.fit_transform(np_top_gene) if not np.isnan(top_cell_trans).any(): fig, (ax_cell, ax_gene) = plt.subplots(2, 1, figsize=(15, 30), sharex=False) rect_cell = ax_cell.patch rect_gene = ax_gene.patch rect_cell.set_facecolor('white') rect_gene.set_facecolor('white') ax_cell.grid(b=True, which='major', color='grey', linestyle='--', linewidth=0.3) ax_gene.grid(b=True, which='major', color='grey', linestyle='--', linewidth=0.3) if label_map: annotate = args.annotate_cell_pca X = [x for x in top_cell_trans[:, 0]] Y = [y for y in top_cell_trans[:, 1]] labels = [label_map[cell][2] for cell in top_by_cell.columns.tolist()] markers = [label_map[cell][1] for cell in top_by_cell.columns.tolist()] colors = [label_map[cell][0] for cell in top_by_cell.columns.tolist()] label_done = [] xy_by_color_dict = {} for c in set(colors): xy_by_color_dict[c] = [] for X_pos, Y_pos, m, color, l in zip(X, Y, markers, colors, labels): if l in label_done: lab = '' else: lab= l label_done.append(l) xy_by_color_dict[color].append([X_pos,Y_pos]) ax_cell.scatter(X_pos, Y_pos, marker=m, c=color, label=lab, s=30) if args.add_ellipse: for c in set(colors): ell, edge = ellip_enclose(np.asarray(xy_by_color_dict[c]), c) ax_cell.add_artist(ell) ax_cell.add_artist(edge) else: ax_cell.scatter(top_cell_trans[:, 0], top_cell_trans[:, 1], alpha=0.75) annotate = args.annotate_cell_pca ax_cell.set_xlim([min(top_cell_trans[:, 0])-1, max(top_cell_trans[:, 0]+1)]) ax_cell.set_ylim([min(top_cell_trans[:, 1])-1, max(top_cell_trans[:, 1]+2)]) ax_cell.set_title(title+'_cell') if label_map: handles, labs = ax_cell.get_legend_handles_labels() # sort both labels and handles by labels labs, handles = zip(*sorted(zip(labs, handles), key=lambda t: t[0])) ax_cell.legend(handles, labs, loc='best', ncol=1, prop={'size':12}, markerscale=1.5, frameon=True) ax_cell.set_xlabel('PC1') ax_cell.set_ylabel('PC2') if annotate: for label, x, y in zip(top_by_cell.columns, top_cell_trans[:, 0], top_cell_trans[:, 1]): ax_cell.annotate(label, (x+0.1, y+0.1)) if gene_map: X = [x for x in top_gene_trans[:, 0]] Y = [y for y in top_gene_trans[:, 1]] labels = top_by_gene.columns.tolist() markers = [gene_map[gene][1] for gene in top_by_gene.columns.tolist()] colors = [gene_map[gene][0] for gene in top_by_gene.columns.tolist()] xy_by_color_dict = {} for c in set(colors): xy_by_color_dict[c] = [] for X_pos, Y_pos, m, color, l in zip(X, Y, markers, colors, labels): xy_by_color_dict[color].append([X_pos,Y_pos]) ax_gene.scatter(X_pos, Y_pos, marker=m, c=color, label = l, s=30) if args.add_ellipse: for c in set(colors): ell, edge = ellip_enclose(np.asarray(xy_by_color_dict[c]), c) ax_gene.add_artist(ell) ax_gene.add_artist(edge) else: ax_gene.scatter(top_gene_trans[:, 0], top_gene_trans[:, 1], alpha=0.75) ax_gene.set_xlim([min(top_gene_trans[:, 0])-1, max(top_gene_trans[:, 0])+1]) ax_gene.set_ylim([min(top_gene_trans[:, 1])-1, max(top_gene_trans[:, 1])+2]) ax_gene.set_title(title+'_gene') ax_gene.set_xlabel('PC1') ax_gene.set_ylabel('PC2') if args.annotate_gene_subset: plot_subset_path = os.path.join(os.path.dirname(args.filepath),args.annotate_gene_subset) genes_plot = pd.read_csv(plot_subset_path, sep='\t', index_col=False) for label, x, y in zip(top_by_gene.columns, top_gene_trans[:, 0], top_gene_trans[:, 1]): if label in genes_plot['GeneID'].tolist(): if '_' in label: label = label.split('_')[0] ax_gene.annotate(label, (x+0.1, y+0.1)) else: for label, x, y in zip(top_by_gene.columns, top_gene_trans[:, 0], top_gene_trans[:, 1]): if '_' in label: label = label.split('_')[0] ax_gene.annotate(label, (x+0.1, y+0.1)) if plot: plt.show() if title != '': save_name = '_'.join(title.split(' ')[0:2]) plt.savefig(os.path.join(path_filename,save_name+'_TSNE.pdf'), bbox_inches='tight') else: plt.savefig(os.path.join(path_filename,'Group0_TSNE.pdf'), bbox_inches='tight') plt.close('all') return top_pca_list else: return [] #create cell and gene TSNE scatter plots (one pdf) def plot_kmeans(args, df_by_gene, path_filename, kmeans_range, num_genes=100, gene_list_filter=False, title='', plot=False, label_map=False, gene_map = False, run_sig_test=False): from sklearn.metrics import silhouette_samples, silhouette_score import matplotlib.cm as cm gene_list = df_by_gene.columns.tolist() sns.set_palette("RdBu_r", 10, 1) if gene_list_filter: sig_by_gene = df_by_gene[gene_list_filter] sig_by_cell = sig_by_gene.transpose() else: sig_by_gene = df_by_gene sig_by_cell = sig_by_gene.transpose() gene_pca = TruncatedSVD(n_components=3) np_by_gene = np.asarray(sig_by_gene) by_gene_trans = gene_pca.fit_transform(np_by_gene) Pc_df = pd.DataFrame(gene_pca.components_.T, columns=['PC-1', 'PC-2', 'PC-3'], index=sig_by_gene.columns.tolist()) pca_rank_df = Pc_df.abs().sum(axis=1) Pc_sort_df = pca_rank_df.nlargest(len(sig_by_gene.columns.tolist())) top_pca_list = Pc_sort_df.index.tolist() top_by_gene = df_by_gene[top_pca_list[0:num_genes]] gene_top = TruncatedSVD(n_components=2) cell_pca = TruncatedSVD(n_components=2) top_by_cell = top_by_gene.transpose() np_top_gene = np.asarray(top_by_cell) np_top_cell = np.asarray(top_by_gene) top_cell_trans = cell_pca.fit_transform(np_top_cell) top_gene_trans = gene_top.fit_transform(np_top_gene) range_n_clusters = range(kmeans_range[0],kmeans_range[1]) for n_clusters in range_n_clusters: # Create a subplot with 1 row and 2 columns fig, (ax1, ax2) = plt.subplots(1, 2) fig.set_size_inches(18, 7) ax1.set_xlim([-0.1, 1]) # The (n_clusters+1)*10 is for inserting blank space between silhouette # plots of individual clusters, to demarcate them clearly. ax1.set_ylim([0, len(np_top_cell) + (n_clusters + 1) * 10]) #cluster cell PCA cell_clusterer = KMeans(n_clusters=n_clusters) top_cell_pred = cell_clusterer.fit_predict(top_cell_trans) #cluster gene PCA gene_clusterer = KMeans(n_clusters=n_clusters) top_gene_pred = gene_clusterer.fit_predict(top_gene_trans) pred_dict = {'SampleID':top_by_cell.columns, 'GroupID':['kmeans_'+str(p) for p in top_cell_pred]} df_pred = pd.DataFrame(pred_dict) cell_group_path = os.path.join(path_filename,'kmeans_cell_groups_'+str(n_clusters)+'.txt') df_pred.to_csv(cell_group_path, sep = '\t') #compute silouette averages and values silhouette_avg_cell = silhouette_score(top_cell_trans, top_cell_pred) print("For n_clusters =", n_clusters, "The average silhouette_score is :", silhouette_avg_cell) silhouette_avg_gene = silhouette_score(top_gene_trans, top_gene_pred) sample_silhouette_values_cell = silhouette_samples(top_cell_trans, top_cell_pred) sample_silhouette_values_gene = silhouette_samples(top_gene_trans, top_gene_pred) y_lower = 10 for i in range(n_clusters): # Aggregate the silhouette scores for samples belonging to # cluster i, and sort them ith_cluster_silhouette_values = \ sample_silhouette_values_cell[top_cell_pred == i] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i color = cm.spectral(float(i) / n_clusters) ax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) # Label the silhouette plots with their cluster numbers at the middle ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) # Compute the new y_lower for next plot y_lower = y_upper + 10 # 10 for the 0 samples ax1.set_title("The silhouette plot for the various clusters.") ax1.set_xlabel("The silhouette coefficient values") ax1.set_ylabel("Cluster label") # The vertical line for average silhoutte score of all the values ax1.axvline(x=silhouette_avg_cell, color="red", linestyle="--") ax1.set_yticks([]) # Clear the yaxis labels / ticks ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) # 2nd Plot showing the actual clusters formed colors = cm.spectral(top_cell_pred.astype(float) / n_clusters) ax2.scatter(top_cell_trans[:, 0], top_cell_trans[:, 1], marker='.', s=30, lw=0, alpha=0.7, c=colors) # Labeling the clusters centers = cell_clusterer.cluster_centers_ # Draw white circles at cluster centers ax2.scatter(centers[:, 0], centers[:, 1], marker='o', c="white", alpha=1, s=200) for i, c in enumerate(centers): ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50) ax2.set_title("The visualization of the clustered data.") ax2.set_xlabel("Feature space for the 1st feature") ax2.set_ylabel("Feature space for the 2nd feature") plt.suptitle(("Silhouette analysis for KMeans clustering on sample data " "with n_clusters = %d" % n_clusters), fontsize=14, fontweight='bold') plt.savefig(os.path.join(path_filename,'Group0_kmeans_'+str(n_clusters)+'_clusters.pdf'), bbox_inches='tight') plt.close('all') #use colors to make label map compatable with heatmap color_dict ={} markers = ['o', 'v','D','*','x','h', 's','p','8','^','>','<', 'd','o', 'v','D','*','x','h', 's','p','8','^','>','<', 'd'] color_dict =dict(zip(top_by_cell.columns, zip(colors,[markers[pred] for pred in top_cell_pred],['kmeans_'+str(p) for p in top_cell_pred]))) group_color_dict = dict(zip(['kmeans_'+str(p) for p in top_cell_pred],zip(colors,[markers[pred] for pred in top_cell_pred]))) #run heatmap with kmeans clustering and colors top_pca_by_gene, top_pca = return_top_pca_gene(df_by_gene, num_genes=args.gene_number) top_pca_by_cell = top_pca_by_gene.transpose() cell_linkage, plotted_df_by_gene, col_order = clust_heatmap(args, top_pca, top_pca_by_gene, path_filename, num_to_plot=args.gene_number, title= 'kmeans_label_with_'+str(n_clusters)+'_clusters',label_map=color_dict) if run_sig_test: multi_group_sig(args, df_by_gene.transpose(), cell_group_path, path_filename, group_color_dict, from_kmeans=str(n_clusters)) def clust_heatmap(args, gene_list, df_by_gene, path_filename, num_to_plot, title='', plot=False, label_map=False, gene_map=False, fontsize=18): cell_list = df_by_gene.index.tolist() cell_num =len(cell_list) longest_side = max(num_to_plot,cell_num*2) if longest_side == num_to_plot: sns.set(context= 'poster', font_scale = .4*(num_to_plot/100)) width_heatmap = min(28+round(cell_num/50),42+round(cell_num/40)) len_heatmap = min(43+round(num_to_plot/10),58+round(num_to_plot/30)) title_set = 1.15 else: sns.set(context= 'poster', font_scale = .6*(cell_num/120)) width_heatmap = min(42+round(cell_num/9),68+round(cell_num/40)) len_heatmap = min(47+round(num_to_plot/8),50+round(num_to_plot/30)) title_set = 1.12 font = {'size' : fontsize} plt.rc('font', **font) if len(str(args.z_direction)) > 1: z_choice = str(args.z_direction) if z_choice != 'None': sys.exit('Please enter a valid option (0, 1, or None) for z_direction') else: z_choice = int(args.z_direction) if z_choice != 0 and z_choice != 1: sys.exit('Please enter a valid option (0, 1, or None) for z_direction') cmap = sns.diverging_palette(255, 10, s=99, sep=1, as_cmap=True) cluster_df = df_by_gene[gene_list[0:num_to_plot]].transpose() cluster_df[abs(cluster_df)<3e-12] = 0.0 try: cg = sns.clustermap(cluster_df, method=args.method, metric=args.metric, z_score=z_choice, figsize=(width_heatmap, len_heatmap), cmap =cmap) col_order = cg.dendrogram_col.reordered_ind row_order = cg.dendrogram_row.reordered_ind if label_map and gene_map: Xlabs = [cell_list[i] for i in col_order] Xcolors = [label_map[cell][0] for cell in Xlabs] col_colors = pd.DataFrame({'Cell Groups': Xcolors},index=Xlabs) Xgroup_labels = [label_map[cell][2] for cell in Xlabs] Ylabs = [gene_list[i] for i in row_order] Ycolors = [gene_map[gene][0] for gene in Ylabs] Ygroup_labels= [gene_map[gene][2] for gene in Ylabs] row_colors = pd.DataFrame({'Gene Groups': Ycolors},index=Ylabs) cg = sns.clustermap(cluster_df, method=args.method, metric=args.metric, z_score=z_choice,row_colors=row_colors, col_colors=col_colors, figsize=(width_heatmap, len_heatmap), cmap =cmap) elif label_map: Xlabs = [cell_list[i] for i in col_order] Xcolors = [label_map[cell][0] for cell in Xlabs] Xgroup_labels = [label_map[cell][2] for cell in Xlabs] col_colors = pd.DataFrame({'Cell Groups': Xcolors},index=Xlabs) cg = sns.clustermap(cluster_df, method=args.method, metric=args.metric, z_score=z_choice, col_colors=col_colors, figsize=(width_heatmap, len_heatmap), cmap =cmap) elif gene_map: Ylabs = [gene_list[i] for i in row_order] Ycolors = [gene_map[gene][0] for gene in Ylabs] Ygroup_labels= [gene_map[gene][2] for gene in Ylabs] row_colors = pd.DataFrame({'Gene Groups': Ycolors},index=Ylabs) cg = sns.clustermap(cluster_df, method=args.method, metric=args.metric, z_score=z_choice,row_colors=row_colors, figsize=(width_heatmap, len_heatmap), cmap =cmap) cg.ax_heatmap.set_title(title, y=title_set) cg.cax.set_title('Z-score') if label_map: leg_handles_cell =[] group_seen_cell = [] for xtick, xcolor, xgroup_name in zip(cg.ax_heatmap.get_xticklabels(), Xcolors, Xgroup_labels): xtick.set_color(xcolor) xtick.set_rotation(270) xtick.set_fontsize(fontsize) if xgroup_name not in group_seen_cell: leg_handles_cell.append(patches.Patch(color=xcolor, label=xgroup_name)) group_seen_cell.append(xgroup_name) else: for xtick in cg.ax_heatmap.get_xticklabels(): xtick.set_rotation(270) xtick.set_fontsize(fontsize) if gene_map: leg_handles_gene =[] group_seen_gene = [] for ytick, ycolor, ygroup_name in zip(cg.ax_heatmap.get_yticklabels(), list(reversed(Ycolors)), list(reversed(Ygroup_labels))): ytick.set_color(ycolor) ytick.set_rotation(0) ytick.set_fontsize(fontsize) if ygroup_name not in group_seen_gene: leg_handles_gene.append(patches.Patch(color=ycolor, label=ygroup_name)) group_seen_gene.append(ygroup_name) else: for ytick in cg.ax_heatmap.get_yticklabels(): ytick.set_rotation(0) ytick.set_fontsize(fontsize) if gene_map and label_map: gene_legend = cg.ax_heatmap.legend(handles=leg_handles_gene, loc=2, bbox_to_anchor=(1.04, 0.8), title='Gene groups', prop={'size':fontsize}) plt.setp(gene_legend.get_title(),fontsize=fontsize) cg.ax_heatmap.add_artist(gene_legend) cell_legend = cg.ax_heatmap.legend(handles=leg_handles_cell, loc=2, bbox_to_anchor=(1.04, 1), title='Cell groups', prop={'size':fontsize}) plt.setp(cell_legend.get_title(),fontsize=fontsize) #cg.ax_heatmap.add_artist(cell_legend) elif label_map: cell_legend = cg.ax_heatmap.legend(handles=leg_handles_cell, loc=2, bbox_to_anchor=(1.04, 1), title='Cell groups', prop={'size':fontsize}) plt.setp(cell_legend.get_title(),fontsize=fontsize) elif gene_map: gene_legend = cg.ax_heatmap.legend(handles=leg_handles_gene, loc=2, bbox_to_anchor=(1.04, 0.8), title='Gene groups', prop={'size':fontsize}) plt.setp(gene_legend.get_title(),fontsize=fontsize) if plot: plt.show() cell_linkage = cg.dendrogram_col.linkage link_mat = pd.DataFrame(cell_linkage, columns=['row label 1', 'row label 2', 'distance', 'no. of items in clust.'], index=['cluster %d' %(i+1) for i in range(cell_linkage.shape[0])]) if title != '': save_name = '_'.join(title.split(' ')[0:2]) #plot_url = py.plot_mpl(cg) cg.savefig(os.path.join(path_filename, save_name+'_heatmap.pdf'), bbox_inches='tight') else: #plot_url = py.plot_mpl(cg) cg.savefig(os.path.join(path_filename,'Group0_Heatmap_all_cells.pdf'), bbox_inches='tight') plt.close('all') return cell_linkage, df_by_gene[gene_list[0:num_to_plot]], col_order except FloatingPointError: print('Linkage distance has too many zeros. Filter to remove non-expressed genes in order to produce heatmap. Heatmap with '+ str(len(cell_list))+' will not be created.') return False, False, False def make_subclusters(args, cc, log2_expdf_cell, log2_expdf_cell_full, path_filename, base_name, gene_corr_list, label_map=False, gene_map=False, cluster_size=20, group_colors=False): ''' Walks a histogram branch map 'cc' and does PCA (SVD), heatmap and correlation search for each non-overlapping tree branch. Stops at defined cluster_size (default is 20). ''' #initial cell group is parent parent = cc[0][1] #p_num is the number of cells in the parent group p_num = cc[0][0] #l_nums is number of members of each leaf of tree l_nums = [x[0] for x in cc] #cell list is the list of list of cells in each leaf of tree c_lists = [c[1] for c in cc] #Group ID will increment with each group so that each subcluter has a unique ID group_ID = 0 for num_members, cell_list in zip(l_nums, c_lists): #run all cell groups that are subgroups of the parent and greater than or equal to the cutoff cluster_size if num_members < p_num and num_members >= cluster_size: group_ID+=1 #save name for all files generated within this cluster i.e. 'Group_2_with_105_cells_heatmap.pdf' current_title = 'Group_'+str(group_ID)+'_with_'+str(num_members)+'_cells' cell_subset = log2_expdf_cell[list(set(cell_list))] gene_subset = cell_subset.transpose() gene_subset = gene_subset.loc[:,(gene_subset!=0).any()] full_cell_subset = log2_expdf_cell_full[list(set(cell_list))] full_gene_subset = full_cell_subset.transpose() full_gene_subset = full_gene_subset.loc[:,(full_gene_subset!=0).any()] norm_df_cell1 = np.exp2(full_cell_subset) norm_df_cell = norm_df_cell1 -1 norm_df_cell.to_csv(os.path.join(path_filename, base_name+'_'+current_title+'_matrix.txt'), sep = '\t', index_col=0) if gene_map: top_pca_by_gene, top_pca = return_top_pca_gene(gene_subset, num_genes=args.gene_number) plot_SVD(args,gene_subset, path_filename, num_genes=len(gene_subset.columns.tolist()), title=current_title, plot=False, label_map=label_map, gene_map=gene_map) else: top_pca_by_gene, top_pca = return_top_pca_gene(full_gene_subset, num_genes=args.gene_number) plot_SVD(args,full_gene_subset, path_filename, num_genes=int(args.gene_number), title=current_title, plot=False, label_map=label_map) if len(top_pca)<args.gene_number: plot_num = len(top_pca) else: plot_num = args.gene_number if top_pca != []: top_pca_by_cell = top_pca_by_gene.transpose() #if no_corr flag is provided (False) no correlation plots will be made if args.no_corr: if gene_corr_list != []: top_genes_search = top_pca[0:50] corr_plot(top_genes_search, full_gene_subset, path_filename, num_to_plot=3, gene_corr_list= gene_corr_list, title = current_title, label_map=label_map) else: top_genes_search = top_pca[0:50] corr_plot(top_genes_search, full_gene_subset, path_filename, num_to_plot=3, title = current_title, label_map=label_map) if gene_map: cell_linkage, plotted_df_by_gene, col_order = clust_heatmap(args, top_pca, top_pca_by_gene, path_filename, num_to_plot=plot_num, title=current_title, plot=False, label_map=label_map, gene_map = gene_map) else: cell_linkage, plotted_df_by_gene, col_order = clust_heatmap(args, top_pca, top_pca_by_gene, path_filename,num_to_plot=plot_num, title=current_title, plot=False, label_map=label_map) plt.close('all') else: print('Search for top genes by PCA failed in '+current_title+'. No plots will be generated for this subcluster. ') pass def clust_stability(args, log2_expdf_gene, path_filename, iterations, label_map=False): sns.set(context='poster', font_scale = 1) sns.set_palette("RdBu_r") stability_ratio = [] total_genes = len(log2_expdf_gene.columns.tolist()) end_num = 1000 iter_list = range(100,int(round(end_num)),int(round(end_num/iterations))) for gene_number in iter_list: title= str(gene_number)+' genes plot.' top_pca_by_gene, top_pca = return_top_pca_gene(df_by_gene, num_genes=gene_number) top_pca_by_cell = top_pca_by_gene.transpose() cell_linkage, plotted_df_by_gene, col_order = clust_heatmap(args, top_pca, top_pca_by_gene, num_to_plot=gene_number, title=title, label_map=label_map) if gene_number == 100: s1 = col_order s0 = col_order else: s2= col_order sm_running = difflib.SequenceMatcher(None,s1,s2) sm_first = difflib.SequenceMatcher(None,s0,s2) stability_ratio.append((sm_running.ratio(), sm_first.ratio())) s1=col_order plt.close() x= iter_list[1:] f, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8), sharex=True) y1= [m[0] for m in stability_ratio] y2= [m[1] for m in stability_ratio] sns.barplot(x, y1, palette="RdBu_r", ax=ax1) ax1.set_ylabel('Running ratio (new/last)') sns.barplot(x, y2, palette="RdBu_r", ax=ax2) ax2.set_ylabel('Ratio to 100') plt.savefig(os.path.join(path_filename,'clustering_stability.pdf'), bbox_inches='tight') plt.show() plt.close('all') return stability_ratio #run correlation matrix and save only those above threshold def run_corr(df_by_gene, title, path_filename, method_name='pearson', sig_threshold= 0.5, run_new=True, min_period=3, save_corrs=False): if run_new: if len(df_by_gene.columns.tolist())>5000: df_by_gene, top_pca_list = return_top_pca_gene(df_by_gene, num_genes=5000) if method_name != 'kendall': corr_by_gene = df_by_gene.corr(method=method_name, min_periods=min_period) else: corr_by_gene = df_by_gene.corr(method=method_name) df_by_cell = df_by_gene.transpose() corr_by_cell = df_by_cell.corr() cor = corr_by_gene cor.loc[:,:] = np.tril(cor.values, k=-1) cor = cor.stack() corr_by_gene_pos = cor[cor >=sig_threshold] corr_by_gene_neg = cor[cor <=(sig_threshold*-1)] else: corr_by_g_pos = open(os.path.join(path_filename,'gene_correlations_sig_pos_'+method_name+'.p'), 'rb') corr_by_g_neg = open(os.path.join(path_filename,'gene_correlations_sig_neg_'+method_name+'.p'), 'rb') corr_by_gene_pos = pickle.load(corr_by_g_pos) corr_by_gene_neg = pickle.load(corr_by_g_neg) if save_corrs: with open(os.path.join(path_filename,'gene_correlations_sig_neg_'+method_name+'.p'), 'wb') as fp: pickle.dump(corr_by_gene_neg, fp) with open(os.path.join(path_filename,'gene_correlations_sig_pos_'+method_name+'.p'), 'wb') as fp0: pickle.dump(corr_by_gene_pos, fp0) with open(os.path.join(path_filename,'by_gene_corr.p'), 'wb') as fp1: pickle.dump(corr_by_gene, fp1) with open(os.path.join(path_filename,'by_cell_corr.p'), 'wb') as fp2: pickle.dump(corr_by_cell, fp2) cor_pos_df = pd.DataFrame(corr_by_gene_pos) cor_neg_df = pd.DataFrame(corr_by_gene_neg) sig_corr = cor_pos_df.append(cor_neg_df) sig_corrs = pd.DataFrame(sig_corr[0], columns=["corr"]) if run_new: sig_corrs.to_csv(os.path.join(path_filename, title+'_counts_corr_sig_'+method_name+'.txt'), sep = '\t') return sig_corrs #finds most correlated gene groups that are not overlapping def find_top_corrs(terms_to_search, sig_corrs, num_to_return, gene_corr_list = []): all_corrs_list = [] best_corrs_list = [] for term_to_search in terms_to_search: corr_tup = [(term_to_search, 1)] for index, row in sig_corrs.iterrows(): if term_to_search in index: if index[0]==term_to_search: corr_tup.append((index[1],row['corr'])) else: corr_tup.append((index[0],row['corr'])) all_corrs_list.append(corr_tup) all_corrs_list.sort(key=len, reverse=True) good_count = 0 corr_genes_seen = [] while good_count <= num_to_return: for i, corrs in enumerate(all_corrs_list): if corrs[0][0] not in corr_genes_seen: best_corrs_list.append(corrs) good_count+=1 for g, c in corrs: if g not in corr_genes_seen and '-' not in str(c): corr_genes_seen.append(g) if gene_corr_list != []: search_corrs = [] for term in gene_corr_list: corr_tup = [(term, 1)] for index, row in sig_corrs.iterrows(): if term in index: if index[0]==term: corr_tup.append((index[1],row['corr'])) else: corr_tup.append((index[0],row['corr'])) search_corrs.append(corr_tup) best_corrs_list = search_corrs+best_corrs_list return best_corrs_list[0:num_to_return+len(gene_corr_list)+1] else: return best_corrs_list[0:num_to_return] #corr_plot finds and plots all correlated genes, log turns on log scale, sort plots the genes in the rank order of the gene searched def corr_plot(terms_to_search, df_by_gene_corr, path_filename, title, num_to_plot, gene_corr_list = [], label_map=False, log=False, sort=True, sig_threshold=0.5): size_cells = len(df_by_gene_corr.index.tolist()) figlen=int(size_cells/12) if figlen < 15: figlen = 15 ncol = int(figlen/3.2) if size_cells <100: sig_threshold = -0.137*math.log(size_cells)+1.1322 sig_corrs = run_corr(df_by_gene_corr, title, path_filename, sig_threshold=sig_threshold) corr_list = find_top_corrs(terms_to_search, sig_corrs, num_to_plot, gene_corr_list=gene_corr_list) for corr_tup in corr_list: term_to_search = corr_tup[0][0] corr_tup.sort(key=itemgetter(1), reverse=True) corr_df = pd.DataFrame(corr_tup, columns=['GeneID', 'Correlation']) corr_df.to_csv(os.path.join(path_filename, title+'_Corr_w_'+term_to_search+'_list.txt'), sep = '\t', index=False) to_plot = [x[0] for x in corr_tup] sns.set_palette(sns.cubehelix_palette(len(to_plot), start=1, rot=-.9, reverse=True)) sns.set_context("notebook", font_scale=.8, rc={"lines.linewidth": 1}) try: sorted_df = df_by_gene_corr.sort_values(by=[term_to_search]) log2_df = np.log2(df_by_gene_corr[to_plot]) sorted_log2_df=np.log2(sorted_df[to_plot]) ylabel='Counts (log2)' if sort and log: ax = sorted_log2_df.plot(figsize = (figlen,10)) xlabels = sorted_log2_df[to_plot].index.values elif sort: ax = sorted_df[to_plot].plot(figsize = (figlen,10)) xlabels = sorted_df[to_plot].index.values elif log: ax = log2_df.plot(figsize = (figlen,10)) ylabel= 'log2 FPKM' xlabels = log2_df.index.values else: ax = df_by_gene_corr[to_plot].plot(figsize = (figlen,10)) xlabels = df_by_gene_corr[to_plot].index.values ax.set_xlabel('Cell #') ax.set_ylabel(ylabel) ax.set_title('Correlates with '+term_to_search, loc='right') ax.xaxis.set_minor_locator(LinearLocator(numticks=len(xlabels))) if label_map: ax.set_xticklabels(xlabels, minor=True, rotation='vertical', fontsize=3) Xcolors = [label_map[cell][0] for cell in xlabels] group_labels = [label_map[cell][2] for cell in xlabels] group_seen = [] leg_handles = [] for xtick, xcolor, group_name in zip(ax.get_xticklabels(which='minor'), Xcolors, group_labels): xtick.set_color(xcolor) xtick.set_rotation(90) if group_name not in group_seen: leg_handles.append(patches.Patch(color=xcolor, label=group_name)) group_seen.append(group_name) else: ax.set_xticklabels(xlabels, minor=True, rotation='vertical', fontsize=3) ax.set_ylim([0, df_by_gene_corr[to_plot].values.max()]) ax.xaxis.set_major_formatter(ticker.NullFormatter()) ax.tick_params(axis='x', which ='minor', labelsize=9) #scale bbox anchoring to account for number of correlated genes and plot size if len(corr_tup)>1: bbox_height = float(1E-13)*pow(len(corr_tup),6) - float(7E-11)*pow(len(corr_tup),5) + float(1E-8)*pow(len(corr_tup),4) - float(8E-7)*pow(len(corr_tup),3) - float(3E-5)*pow(len(corr_tup),2) + 0.0086*len(corr_tup) + 1.0042 else: bbox_height = 1.05 l_labels = [str(x[0])+' '+"%.2f" % x[1] for x in corr_tup] if label_map: first_legend = ax.legend(l_labels, loc='upper left', bbox_to_anchor=(0.01, bbox_height), ncol=ncol, prop={'size':10}) ax = plt.gca().add_artist(first_legend) plt.legend(handles=leg_handles, loc='upper right', bbox_to_anchor=(0.9, bbox_height+.1)) else: ax.legend(l_labels, loc='upper left', bbox_to_anchor=(0.01, bbox_height), ncol=ncol, prop={'size':10}) fig = plt.gcf() fig.subplots_adjust(bottom=0.08, top=0.95, right=0.98, left=0.03) plt.savefig(os.path.join(path_filename, title+'_corr_with_'+term_to_search+'.pdf'), bbox_inches='tight') plt.close('all') except KeyError: print(term_to_search+' not in this matrix.') pass '''Compares each defined cell group to each other group and returns all genes with p-value and adjusted p-value. Also creates a best_gene_list with the top genes between each group, by adjusted p-value. Also creates a barplot of top significant genes between groups (can be unique or not). ''' def multi_group_sig(args, full_by_cell_df, cell_group_filename, path_filename, color_dict_cell, sig_to_plot = 20, from_kmeans=''): #create seperate file for all of the significance files if from_kmeans == '': multi_sig_filename = os.path.join(path_filename,'user_defined_group_pairwise_significance_files') else: multi_sig_filename = os.path.join(path_filename,from_kmeans+'_group_pairwise_significance_files') try: os.mkdir(multi_sig_filename) except OSError: print(multi_sig_filename+' already exists. Files will be overwritten.') plot_pvalue = False from rpy2.robjects.packages import importr from rpy2.robjects.vectors import FloatVector stats = importr('stats') cell_groups_df = pd.read_csv(open(cell_group_filename,'rU'), sep=None, engine='python') group_name_list = list(set(cell_groups_df['GroupID'])) group_pairs = list(set(itertools.permutations(group_name_list,2))) gene_list = full_by_cell_df.index.tolist() cell_group_ident_0 = zip(cell_groups_df['SampleID'],cell_groups_df['GroupID']) cell_group_ident= [c for c in cell_group_ident_0] barplot_dict = {} by_gene_df = full_by_cell_df.transpose() best_gene_list = [] best_gene_groups = [] best_vs_list =[] best_pvalue_list = [] for name in group_name_list: barplot_dict[name] = {'genes':[], 'pvalues':[], 'fold_change':[], 'Vs':[]} for gp in group_pairs: index_list = [] sig_gene_list = [] gp_vs_all_seen = [] sig_vs_all_gene_list = [] cell_list1 = [c[0] for c in cell_group_ident if c[1] == gp[0]] cell_list2 = [c[0] for c in cell_group_ident if c[1] == gp[1]] cell1_present = [c for c in set(cell_list1) if c in set(full_by_cell_df.columns.tolist())] cell2_present = [c for c in set(cell_list2) if c in set(full_by_cell_df.columns.tolist())] all_other_cells = [c for c in set(full_by_cell_df.columns.tolist()) if c not in set(cell_list1)] if cell1_present != [] and cell2_present != []: df_by_cell_1 = full_by_cell_df.ix[:,cell1_present] df_by_cell_2 = full_by_cell_df.ix[:,cell2_present] df_by_cell_other = full_by_cell_df.ix[:,all_other_cells] df_by_gene_1 = df_by_cell_1.transpose() df_by_gene_2 = df_by_cell_2.transpose() df_by_gene_other = df_by_cell_other.transpose() for g in gene_list: g_pvalue = scipy.stats.f_oneway(df_by_gene_1[g], df_by_gene_2[g]) if gp[0] not in gp_vs_all_seen: g_pvalue_all = scipy.stats.f_oneway(df_by_gene_1[g], df_by_gene_other[g]) if g_pvalue[0] > 0 and g_pvalue[1] <= 1: if g not in [s[0] for s in sig_gene_list]: sig_gene_list.append([g, g_pvalue[1]]) if gp[0] not in gp_vs_all_seen: sig_vs_all_gene_list.append([g, g_pvalue_all[1]]) sig_gene_list.sort(key=lambda tup: tup[1]) if gp[0] not in gp_vs_all_seen: sig_vs_all_gene_list.sort(key=lambda tup: tup[1]) pvalues_all = [p[1] for p in sig_vs_all_gene_list] p_adjust_all = stats.p_adjust(FloatVector(pvalues_all), method = 'BH') gene_index_all = [ge[0] for ge in sig_vs_all_gene_list] mean_log2_exp_list_all = [] sig_1_2_list_all = [] mean1_list_all = [] mean2_list_all = [] for sig_gene in gene_index_all: sig_gene_df_all = by_gene_df.ix[:,sig_gene] mean_log2_exp_list_all.append(sig_gene_df_all.mean()) sig_cell_df_all = sig_gene_df_all.transpose() mean_cell1_all = sig_cell_df_all[cell1_present].mean() mean1_list_all.append(mean_cell1_all) mean_cell_other = sig_cell_df_all[all_other_cells].mean() mean2_list_all.append(mean_cell_other) ratio_1_other = (mean_cell1_all+1)/(mean_cell_other+1) sig_1_2_list_all.append(ratio_1_other) sig_df_vs_other = pd.DataFrame({'pvalues':pvalues_all,'adjusted_p_values':p_adjust_all,'mean_all':mean_log2_exp_list_all, 'mean_'+gp[0]:mean1_list_all, 'mean_all_other':mean2_list_all, 'ratio '+gp[0]+' to everything':sig_1_2_list_all}, index=gene_index_all) sig_df_vs_other.to_csv(os.path.join(multi_sig_filename,'sig_'+gp[0]+'_VS_all_other_pvalues.txt'), sep = '\t') gp_vs_all_seen.append(gp[0]) pvalues = [p[1] for p in sig_gene_list] p_adjust = stats.p_adjust(FloatVector(pvalues), method = 'BH') gene_index = [ge[0] for ge in sig_gene_list] mean_log2_exp_list = [] sig_1_2_list = [] mean1_list = [] mean2_list = [] for sig_gene in gene_index: sig_gene_df = by_gene_df.ix[:,sig_gene] mean_log2_exp_list.append(sig_gene_df.mean()) sig_cell_df = sig_gene_df.transpose() mean_cell1 = sig_cell_df[cell1_present].mean() mean1_list.append(mean_cell1) mean_cell2 = sig_cell_df[cell2_present].mean() mean2_list.append(mean_cell2) ratio_1_2 = (mean_cell1+1)/(mean_cell2+1) sig_1_2_list.append(ratio_1_2) sig_df = pd.DataFrame({'pvalues':pvalues,'adjusted_p_values':p_adjust,'mean_all':mean_log2_exp_list,'mean_'+gp[0]:mean1_list, 'mean_'+gp[1]:mean2_list, 'ratio '+gp[0]+' to '+gp[1]:sig_1_2_list}, index=gene_index) cell_names_df = pd.DataFrame({gp[0]+'_cells':pd.Series(cell1_present, index=range(len(cell1_present))), gp[1]+'_cells2':pd.Series(cell2_present, index=range(len(cell2_present)))}) sig_df.to_csv(os.path.join(multi_sig_filename,'sig_'+gp[0]+'_VS_'+gp[1]+'_pvalues.txt'), sep = '\t') cell_names_df.to_csv(os.path.join(multi_sig_filename,'sig_'+gp[0]+'_VS_'+gp[1]+'_cells.txt'), sep = '\t') top_fc_df1 = sig_df.loc[(sig_df['ratio '+gp[0]+' to '+gp[1]]>1.3)] new_fc_list = [-1/x if x <0.3 else x for x in top_fc_df1['ratio '+gp[0]+' to '+gp[1]]] top_fc_df1.loc[:,'ratio '+gp[0]+' to '+gp[1]] = new_fc_list top_fc_df = top_fc_df1.sort_values(by='adjusted_p_values',axis=0, ascending=True) genes = top_fc_df.index.tolist() pvalues = top_fc_df['adjusted_p_values'].tolist() fc = top_fc_df['ratio '+gp[0]+' to '+gp[1]].tolist() z = zip(genes,pvalues,fc) z_all = [s for s in z] if args.sig_unique: top_t = [g for g in z_all if g[0] not in barplot_dict[gp[0]]['genes']] else: top_t = [g for g in z_all if g[0]] if args.exclude_genes: hu_cc_gene_df = pd.DataFrame.from_csv(os.path.join(os.path.dirname(args.filepath),args.exclude_genes), sep='\t', header=0, index_col=False) exclude_list = hu_cc_gene_df['GeneID'].tolist() top_t2 = [g for g in top_t if g[0] not in barplot_dict[gp[0]]['genes'] and g[0] not in exclude_list] else: top_t2 = top_t top = [list(t) for t in zip(*top_t2)] sig_to_plot = min(len(top[0]),sig_to_plot) if sig_to_plot != 0: barplot_dict[gp[0]]['genes']= barplot_dict[gp[0]]['genes']+[str(gene.strip(' ')) for gene in top[0][0:sig_to_plot]] barplot_dict[gp[0]]['pvalues']= barplot_dict[gp[0]]['pvalues']+top[1][0:sig_to_plot] barplot_dict[gp[0]]['fold_change']= barplot_dict[gp[0]]['fold_change']+top[2][0:sig_to_plot] barplot_dict[gp[0]]['Vs']= barplot_dict[gp[0]]['Vs']+ ['significance vs '+gp[1] for x in range(0,len(top[0][0:sig_to_plot]))] best_gene_list = best_gene_list+top[0][0:sig_to_plot] best_gene_groups = best_gene_groups+[gp[0] for x in range(0,len(top[0][0:sig_to_plot]))] best_vs_list = best_vs_list + [gp[1] for x in range(0,len(top[0][0:sig_to_plot]))] best_pvalue_list = best_pvalue_list + top[1][0:sig_to_plot] else: if cell1_present == []: print(gp[1], 'not present in cell matrix') else: print(gp[0], 'not present in cell matrix') fig, axs = plt.subplots(1, len(group_name_list), figsize=(23+len(group_name_list),13), sharex=False, sharey=False) axs = axs.ravel() color_map = {} #plot top significant genes for each group compared to all other groups for i, name in enumerate(group_name_list): to_plot= barplot_dict[name] for v in set(to_plot['Vs']): color_map[v] = color_dict_cell[v.split("significance vs ")[-1]][0] if color_map != {}: g = sns.barplot(x='pvalues', y='genes', hue='Vs', data=to_plot, ax = axs[i], palette=color_map) axs[i].set_xscale("log", nonposx='clip') bar_list = [] if plot_pvalue: for p in axs[i].patches: height = p.get_height() width = p.get_width() bar_list.append(width) max_bar = max(bar_list) for p in axs[i].patches: height = p.get_height() width = p.get_width() axs[i].text(max_bar*50,p.get_y()+(height), "{:.2e}".format(width)) rect = axs[i].patch rect.set_facecolor('white') #sns.despine(left=True, bottom=True, top=True) axs[i].invert_xaxis() axs[i].xaxis.set_ticks_position('none') axs[i].yaxis.tick_right() axs[i].set_title(name) axs[i].legend(loc='upper left', bbox_to_anchor=(0.01, 1.11+(0.01*len(group_name_list))), ncol=1, prop={'size':15}) axs[i].set_xlabel('adjusted p-value') for xmaj in axs[i].xaxis.get_majorticklocs(): axs[i].axvline(x=xmaj,ls='--', lw = 0.5, color='grey', alpha=0.3) axs[i].xaxis.grid(True, which="major", linestyle='-') plt.subplots_adjust(left=.08, wspace=.3) if from_kmeans == '': plt.savefig(os.path.join(path_filename,'differential_genes_foldchanges.pdf'), bbox_inches='tight') best_gene_df = pd.DataFrame({'GeneID':best_gene_list, 'GroupID':best_gene_groups, 'Vs':best_vs_list, 'adjusted_pvalue':best_pvalue_list}) best_gene_df.to_csv(os.path.join(path_filename,'Best_Gene_list.txt'), sep = '\t') else: plt.savefig(os.path.join(path_filename,'kmeans_'+from_kmeans+'_differential_genes_foldchanges.pdf'), bbox_inches='tight') best_gene_df = pd.DataFrame({'GeneID':best_gene_list, 'GroupID':best_gene_groups, 'Vs':best_vs_list, 'adjusted_pvalue':best_pvalue_list}) best_gene_df.to_csv(os.path.join(path_filename,'kmeans_'+from_kmeans+'_Best_Gene_list.txt'), sep = '\t') '''takes cell groups and creates dictionay 'label_map' that has attached color and marker if the same cell is assigned to multiple groups it assigns it to the first groupID ''' def cell_color_map(args, cell_group_filename, cell_list, color_dict): cell_groups_df = pd.read_csv(open(os.path.join(os.path.dirname(args.filepath), cell_group_filename),'rU'), sep=None, engine='python') cell_list_1 = list(set(cell_groups_df['SampleID'].tolist())) group_set = list(set(cell_groups_df['GroupID'].tolist())) if len(cell_groups_df['SampleID']) == len(cell_groups_df['GroupID']): group_seen = [] label_map = {} cells_seen = [] for cell, group in list(set(zip(cell_groups_df['SampleID'].tolist(), cell_groups_df['GroupID'].tolist()))): if cell not in cells_seen: group_count = group_set.index(group) label_map[cell] = (color_dict[group][0],color_dict[group][1],group) cells_seen.append(cell) non_group_cells = [c for c in cell_list if c not in cells_seen] if non_group_cells != []: from matplotlib import colors all_color_list = list(colors.cnames.keys()) markers = ['o', 'v','D','*','x','h', 's','p','8','^','>','<', 'd','o', 'v','D','*','x','h', 's','p','8','^','>','<', 'd'] color_list = ['b', 'm', 'r', 'c', 'g', 'orange', 'darkslateblue']+all_color_list for cell in non_group_cells: label_map[cell] = (color_list[group_count+1],markers[group_count+1],'No_Group') else: label_map = False return cell_list_1, label_map #takes cell groups and creates dictionay 'label_map' that has attached color and marker def gene_list_map(args, gene_list_file, gene_list, color_dict, exclude_list = []): gene_df1 = pd.read_csv(open(os.path.join(os.path.dirname(args.filepath), gene_list_file),'rU'), sep=None, engine='python') if exclude_list != []: gene_df1 = gene_df1.ix[~gene_df1['GeneID'].isin(exclude_list)] gene_df = gene_df1.copy() gene_list_1 = [g for g in list(set(gene_df['GeneID'].tolist())) if g in gene_list] if len(gene_df['GeneID']) == len(gene_df['GroupID']): gene_label_map = {} group_pos = 0 group_seen = ['xyz' for i in range(len(set(gene_df['GroupID'].tolist())))] genes_seen = [] for gene, group in zip(gene_df['GeneID'].tolist(), gene_df['GroupID'].tolist()): #if no GroupIDs are provided replace withe empty strings try: if math.isnan(float(group)): group = ' ' except ValueError: pass if gene not in genes_seen: if str(group) in group_seen: pos = group_seen.index(str(group)) else: group_seen[group_pos] = str(group) pos = group_pos group_pos += 1 gene_label_map[gene] = (color_dict[str(group)][0],color_dict[str(group)][1],str(group)) genes_seen.append(gene) non_group_genes = [g for g in gene_list_1 if g not in genes_seen] if non_group_genes != []: all_color_list = list(colors.cnames.keys()) markers = ['o', 'v','D','*','x','h', 's','p','8','^','>','<', 'd','o', 'v','D','*','x','h', 's','p','8','^','>','<', 'd'] color_list = ['b', 'm', 'r', 'c', 'g', 'orange', 'darkslateblue']+all_color_list for cell in non_group_genes: gene_label_map[gene] = (color_list[group_pos+1],markers[group_pos+1],'No_ID') else: gene_label_map = False return gene_list_1, gene_label_map #this script calls qgraph R package using rpy2, for gene or cell qgraph gene or cell groups must be provided (either or both) def run_qgraph(data, cell_group_filename, gene_filename, label_map, gene_map, path_filename, gene_or_cell, minimum = 0.25, cut = 0.4, vsize = 1.5, legend = True, borders = False): from rpy2.robjects import pandas2ri pandas2ri.activate() import rpy2.robjects as robjects from rpy2.robjects.packages import importr robjects.r.setwd(os.path.dirname(path_filename)) qgraph = importr('qgraph') psych = importr('psych') if gene_or_cell=='cell': r_dataframe = pandas2ri.py2ri(data.transpose()) cell_groups_df = pd.read_csv(open(cell_group_filename,'rU'), sep=None, engine='python') cell_list_1 = list(set(cell_groups_df['SampleID'].tolist())) group_set = list(set(cell_groups_df['GroupID'].tolist())) d = defaultdict(list) cell_list_all = data.columns.tolist() for i, cell in enumerate(cell_list_all): group = label_map[cell][2] d[group].append(i+1) label_list = robjects.vectors.StrVector(cell_list_all) elif gene_or_cell=='gene': r_dataframe = pandas2ri.py2ri(data.transpose()) gene_groups_df = pd.read_csv(open(gene_filename,'rU'), sep=None, engine='python') gene_list_1 = list(set(gene_groups_df['GeneID'].tolist())) group_set = list(set(gene_groups_df['GroupID'].tolist())) d = defaultdict(list) d_color = [] #color_dict2 = {'r':'red', 'm':'magenta', 'b':'blue', 'g':'green', 'c':'cyan'} gene_list_all = data.transpose().columns.tolist() for i, gene in enumerate(gene_list_all): group = gene_map[gene][2] color = gene_map[gene][0] d[group].append(i+1) #d_color.append(color_dict2[color]) label_list = robjects.vectors.StrVector(gene_list_all) #d_color_r = robjects.vectors.StrVector(d_color) group_num = len(d) from rpy2.robjects.vectors import FloatVector for colname in d: d[colname] = FloatVector(d[colname]) # data frame from rpy2.robjects.vectors import ListVector group_data = ListVector(d) pca = psych.principal(robjects.r.cor(r_dataframe),group_num, rotate = "promax") robjects.r.setwd(path_filename) qpca = qgraph.qgraph(pca, groups = group_data, layout = "circle", rotation = "promax", minimum = 0.2, cut = 0.4, vsize = FloatVector([1.5, 15]), labels= label_list, borders = False, vTrans = 200,filename='graph_pca_'+gene_or_cell, filetype = "pdf", height = 15, width = 15) if gene_or_cell == 'gene': Q = qgraph.qgraph(robjects.r.cor(r_dataframe), minimum = 0.25, cut = 0.4, vsize = 1.5, groups = group_data, legend = True, borders = False, labels = label_list, filename='graph_'+gene_or_cell, filetype = "pdf", height = 15, width = 15) elif gene_or_cell =='cell': Q = qgraph.qgraph(robjects.r.cor(r_dataframe), minimum = 0.25, cut = 0.4, vsize = 1.5, groups = group_data, legend = True, borders = False, labels = label_list, filename='graph_'+gene_or_cell, filetype = "pdf", height = 15, width = 15) Q = qgraph.qgraph(Q, layout = "spring", overlay=True) robjects.r.setwd(os.path.dirname(path_filename)) def main(args): try: new_file = os.path.join(os.path.dirname(args.filepath),args.base_name+'_scicast') except AttributeError: sys.exit('Please provide a valid path to a file.') if args.verbose: print('Making new folder for results of SCICAST clustering: '+new_file) try: os.mkdir(new_file) except OSError: print(new_file+' already exists. Files will be overwritten.') if args.gene_list_filename: if os.path.isfile(args.gene_list_filename): gene_list_file = args.gene_list_filename elif os.path.isfile(os.path.join(os.path.dirname(args.filepath),args.gene_list_filename)): gene_list_file = os.path.join(os.path.dirname(args.filepath),args.gene_list_filename) else: sys.exit('Error: Cannot find gene list file. Please place the gene list file in the same directory or provide a full path.') if args.cell_list_filename: if os.path.isfile(args.cell_list_filename): cell_file = args.cell_list_filename elif os.path.isfile(os.path.join(os.path.dirname(args.filepath),args.cell_list_filename)): cell_file = os.path.join(os.path.dirname(args.filepath),args.cell_list_filename) else: sys.exit('Error: Cannot find cell list file. Please place the gene list file in the same directory or provide a full path.') try: by_cell = pd.DataFrame.from_csv(args.filepath, sep="\t") except OSError: sys.exit('Please provide a valid path to a file.') dup_gene_list = [item for item, count in collections.Counter(by_cell.index).items() if count > 1] if len(dup_gene_list) >0: by_cell.drop(dup_gene_list, inplace=True) by_gene = by_cell.transpose() #create list of genes gene_list_inital = by_cell.index.tolist() #create cell list cell_list = [x for x in list(by_cell.columns.values)] df_by_gene1 =
pd.DataFrame(by_gene, columns=gene_list_inital, index=cell_list)
pandas.DataFrame
#%% [markdown] # # Fisher's method vs. min (after multiple comparison's correction) #%% from pkg.utils import set_warnings set_warnings() import csv import datetime import time from pathlib import Path import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from giskard.plot import subuniformity_plot from matplotlib.transforms import Bbox from myst_nb import glue as default_glue from pkg.data import load_network_palette, load_node_palette, load_unmatched from pkg.io import savefig from pkg.plot import set_theme from pkg.stats import binom_2samp, stochastic_block_test from scipy.stats import binom, combine_pvalues, ks_1samp, uniform from tqdm import tqdm DISPLAY_FIGS = False FILENAME = "compare_sbm_methods_sim" def gluefig(name, fig, **kwargs): savefig(name, foldername=FILENAME, **kwargs) glue(name, fig, prefix="fig") if not DISPLAY_FIGS: plt.close() def glue(name, var, prefix=None): savename = f"{FILENAME}-{name}" if prefix is not None: savename = prefix + ":" + savename default_glue(savename, var, display=False) t0 = time.time() set_theme() rng = np.random.default_rng(8888) network_palette, NETWORK_KEY = load_network_palette() node_palette, NODE_KEY = load_node_palette() fisher_color = sns.color_palette("Set2")[2] min_color = sns.color_palette("Set2")[3] eric_color = sns.color_palette("Set2")[4] method_palette = {"fisher": fisher_color, "min": min_color, "eric": eric_color} GROUP_KEY = "simple_group" left_adj, left_nodes = load_unmatched(side="left") right_adj, right_nodes = load_unmatched(side="right") left_labels = left_nodes[GROUP_KEY].values right_labels = right_nodes[GROUP_KEY].values #%% stat, pvalue, misc = stochastic_block_test( left_adj, right_adj, labels1=left_labels, labels2=right_labels, method="fisher", combine_method="fisher", ) #%% [markdown] # ## Model for simulations (alternative) # We have fit a stochastic block model to the left and right hemispheres. Say the # probabilities of group-to-group connections *on the left* are stored in the matrix # $B$, so that $B_{kl}$ is the probability of an edge from group $k$ to $l$. # # Let $\tilde{B}$ be a *perturbed* matrix of probabilities. We are interested in testing # $H_0: B = \tilde{B}$ vs. $H_a: ... \neq ...$. To do so, we compare each # $H_0: B_{kl} = \tilde{B}_{kl}$ using Fisher's exact test. This results in p-values for # each $(k,l)$ comparison, $\{p_{1,1}, p_{1,2}...p_{K,K}\}$. # # Now, we still are after an overall test for the equality $B = \tilde{B}$. Thus, we # need a way to combine p-values $\{p_{1,1}, p_{1,2}...p_{K,K}\}$ to get an *overall* # p-value for our test comparing the stochastic block model probabilities. One way is # Fisher's method; another is to take the # minimum p-value out of a collection of p-values which have been corrected for multiple # comparisons (say, via Bonferroni or Holm-Bonferroni). # # To compare how these two alternative methods of combining p-values work, we did the # following simulation: # # - Let $t$ be the number of probabilities to perturb. # - Let $\delta$ represent the strength of the perturbation (see model below). # - For each trial: # - Randomly select $t$ probabilities without replacement from the elements of $B$ # - For each of these elements, $\tilde{B}_{kl} = TN(B_{kl}, \delta B_{kl})$ where # $TN$ is a truncated normal distribution, such that probabilities don't end up # outside of [0, 1]. # - For each element *not* perturbed, $\tilde{B}_{kl} = B_{kl}$ # - Sample the number of edges from each block under each model. In other words, let # $m_{kl}$ be the number of edges in the $(k,l)$-th block, and let $n_k, n_l$ be # the number of edges in the $k$-th and $l$-th blocks, respectively. Then, we have # # $$m_{kl} \sim Binomial(n_k n_l, B_{kl})$$ # # and likewise but with $\tilde{B}_{kl}$ for $\tilde{m}_{kl}$. # - Run Fisher's exact test to generate a $p_{kl}$ for each $(k,l)$. # - Run Fisher's method for combining p-values, or take the minimum p-value after # Bonferroni correction. # - These trials were repeated for $\delta \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$ and # $t \in \{25, 50, 75, 100, 125\}$. For each $(\delta, t)$ we ran 100 replicates of the # model/test above. #%% [markdown] # ## P-values under the null #%% B_base = misc["probabilities1"].values inds = np.nonzero(B_base) base_probs = B_base[inds] n_possible_matrix = misc["possible1"].values ns = n_possible_matrix[inds] n_null_sims = 100 RERUN_NULL = True save_path = Path( "/Users/bpedigo/JHU_code/bilateral/bilateral-connectome/results/" "outputs/compare_sbm_methods_sim/null_results.csv" ) if RERUN_NULL: null_rows = [] for sim in tqdm(range(n_null_sims)): base_samples = binom.rvs(ns, base_probs) perturb_samples = binom.rvs(ns, base_probs) # test on the new data def tester(cell): stat, pvalue = binom_2samp( base_samples[cell], ns[cell], perturb_samples[cell], ns[cell], null_odds=1, method="fisher", ) return pvalue pvalue_collection = np.vectorize(tester)(np.arange(len(base_samples))) n_overall = len(pvalue_collection) pvalue_collection = pvalue_collection[~np.isnan(pvalue_collection)] n_tests = len(pvalue_collection) n_skipped = n_overall - n_tests row = { "sim": sim, "n_tests": n_tests, "n_skipped": n_skipped, } for method in ["fisher", "min", "eric"]: row = row.copy() if method == "min": overall_pvalue = min(pvalue_collection.min() * n_tests, 1) row["pvalue"] = overall_pvalue elif method == "fisher": stat, overall_pvalue = combine_pvalues( pvalue_collection, method="fisher" ) row["pvalue"] = overall_pvalue elif method == "eric": stat, overall_pvalue = ks_1samp( pvalue_collection, uniform(0, 1).cdf, alternative="greater" ) row["pvalue"] = overall_pvalue row["method"] = method null_rows.append(row) null_results = pd.DataFrame(null_rows) null_results.to_csv(save_path) else: null_results =
pd.read_csv(save_path, index_col=0)
pandas.read_csv
""" @author: <NAME> file: main_queue.py """ from __future__ import print_function from scoop import futures import multiprocessing import numpy as np import pandas as pd import timeit import ZIPapliences as A_ZIP class load_generation: """ Class prepares the system for generating load Attributes ---------- START_TIME_Q (pandas datetime): start time to generate load data END_TIME_Q (pandas datetime): end time to generate load data Queue_type (int): 0=inf; 1=C; 2=Ct P_U_B (int): percentage upper boud --> e.g. 2 = 200% from the reference physical_machine (int): 1 = single node 2 = multiple nodes NUM_WORKERS (int): number of workers used when generating load in a single node NUM_HOMES (int): number of homes being generated OUT_PUT_FILE_NAME_pre (str): file path to write output OUT_PUT_FILE_NAME (str): prefix of file name to be writen OUT_PUT_FILE_NAME_end (str): end of file name OUT_PUT_FILE_NAME_summary_pre (str): file path to write output OUT_PUT_FILE_NAME_summary (str): prefix of summary file name to be writen TIME_DELT (pandas datetime): 1 minute TIME_DELT_FH (pandas datetime): 1 hour TIME_DELT_FD (pandas datetime): 1 day base_max (float): rescaling load reference uper bound base_min (float): rescaling load reference lower bound ref_load (pandas series): reference load DF_A (pandas dataframe): appliances characteristics DF_ZIP_summer (pandas dataframe): appliances participation during the summer DF_ZIP_winter (pandas dataframe): appliances participation during the winter DF_ZIP_spring (pandas dataframe): appliances participation during the spring APP_parameter_list (list): input parameters [(float) p.u. percentage of schedulable appliances 0.5=50%, (int) appliance set size, (int) average power rating in Watts, (int) stander power rating in Watts, (float) average duration in hours, (float) stander duration in hours, (float) average duration of the scheduling window in hours, (float) stander duration of the scheduling window in hours] Methods ------- __init__ : create object with the parameters for the load generation read_data : load input data """ def __init__(self,ST,ET,T,P,M,NW,NH): """ Create load_generation object Parameters ---------- ST (str): start time to generate load data e.g. '2014-01-01 00:00:00' ET (str): end time to generate load data T (int): 0=inf; 1=C; 2=Ct P (int): percentage upper boud --> e.g. 2 = 200% from the reference M (int): 1 = single node 2 = multiple nodes NW (int): number of workers used when generating load in a single node NH (int): number of homes being generated """ self.START_TIME_Q = pd.to_datetime(ST) self.END_TIME_Q = pd.to_datetime(ET) self.Queue_type = T self.P_U_B = P self.physical_machine = M self.NUM_WORKERS = NW self.NUM_HOMES = NH self.OUT_PUT_FILE_NAME_pre = 'outputdata/multy/' self.OUT_PUT_FILE_NAME = 'multHDF' self.OUT_PUT_FILE_NAME_end = '.h5' self.OUT_PUT_FILE_NAME_summary_pre = 'outputdata/summary/' self.OUT_PUT_FILE_NAME_summary = 'summaryHDF' #Auxiliary variables self.TIME_DELT = pd.to_timedelta('0 days 00:01:00') self.TIME_DELT_FH = pd.to_timedelta('0 days 01:00:00') self.TIME_DELT_FD = pd.to_timedelta('1 days 00:00:00') self.base_max = 5000.0 self.base_min = 100.0 #From data self.ref_load = None self.DF_A = None self.DF_ZIP_summer = None self.DF_ZIP_winter = None self.DF_ZIP_spring = None #DEFINITIONS APPLIANCES self.APP_parameter_list = [0.5,100,500,100,0.5,0.25,6.0,2.0] def read_data(self,IF='inputdata/'): """ Load reference load and appliance data Parameters ---------- IF (str): folder of input data """ # Reference Energy sys_load = pd.read_hdf(IF+'load_data.h5') sys_load = sys_load['load'] sys_load = sys_load[self.START_TIME_Q:self.END_TIME_Q+self.TIME_DELT_FD]#*1e6 #DATA IS IN HOURS sys_load = sys_load.resample(self.TIME_DELT_FH).max().ffill()#fix empty locations scale_min = sys_load[self.START_TIME_Q:self.END_TIME_Q].min() scale_max = sys_load[self.START_TIME_Q:self.END_TIME_Q].max() ref = sys_load ref = self.base_min+((ref-scale_min)/(scale_max-scale_min))*(self.base_max-self.base_min) ref.name = 'Load [W]' ref = ref.resample(self.TIME_DELT).max().interpolate(method='polynomial', order=0,limit_direction='forward') self.ref_load = ref # ZIP load self.DF_A = pd.read_csv(IF+'ZIP_appliances.csv') self.DF_ZIP_summer = pd.read_csv(IF+'ZIP_summer.csv') self.DF_ZIP_winter = pd.read_csv(IF+'ZIP_winter.csv') self.DF_ZIP_spring = pd.read_csv(IF+'ZIP_spring.csv') ########################################### # save data to file ########################################### def save_HD5(a,b,x): """ Save the generated load to HDF5 files Parameters ---------- a (pandas dataframe): complete dataframe b (pandas dataframe): summary dataframe x (str): string number of the individual home id """ a.to_hdf(LG.OUT_PUT_FILE_NAME_pre+LG.OUT_PUT_FILE_NAME+x+LG.OUT_PUT_FILE_NAME_end, key=x,format='table',mode='w',dropna = True) b.to_hdf(LG.OUT_PUT_FILE_NAME_summary_pre+LG.OUT_PUT_FILE_NAME_summary+x+LG.OUT_PUT_FILE_NAME_end, key=x,format='table',mode='w',dropna = True) return None ########################################### #APLAENCES seasson ########################################### def makeAPP(DF_A,DF_ZIP_summer,DF_ZIP_winter,DF_ZIP_spring,APP_P_L): """ Generate individual appliances set for homes during the season of the year Parameters ---------- DF_A (pandas dataframe): appliances characteristics DF_ZIP_summer (pandas dataframe): appliances participation during the summer DF_ZIP_winter (pandas dataframe): appliances participation during the winter DF_ZIP_spring (pandas dataframe): appliances participation during the spring Returns ---------- APP_L_obj (list of applience objecs): applience objects list for seasons """ strataN=4 #from the ZIP study paper c_index = np.array(DF_ZIP_summer['A_index']) c_winter = np.array(DF_ZIP_winter.iloc[:,strataN]) c_spring = np.array(DF_ZIP_spring.iloc[:,strataN]) c_summer = np.array(DF_ZIP_summer.iloc[:,strataN]) APP_L_obj = [] APP_L_obj.append(A_ZIP.AppSET(DF_A,c_index,c_spring,APP_P_L)) APP_L_obj.append(A_ZIP.AppSET(DF_A,c_index,c_summer,APP_P_L)) APP_L_obj.append(A_ZIP.AppSET(DF_A,c_index,c_winter,APP_P_L)) return APP_L_obj def season(date, HEMISPHERE = 'north'): """ Informe season of the year Parameters ---------- date (pandas datetime): time being generated HEMISPHERE (str): north or south hemisphere Returns ---------- s (int): indicates the season """ md = date.month * 100 + date.day if ((md > 320) and (md < 621)): s = 0 #spring elif ((md > 620) and (md < 923)): s = 1 #summer elif ((md > 922) and (md < 1223)): s = 2 #fall else: s = 3 #winter if not HEMISPHERE == 'north': s = (s + 2) % 3 if s ==2: s=0 #spring and fall have same loads if s == 3: s=2 return s def SeasonUPdate(temp): """ Update appliance characteristics given the change in season Parameters ---------- temp (obj): appliance set object for an individual season Returns ---------- app_expected_load (float): expected load power in Watts app_expected_dur (float): expected duration in hours appliance_set (list of applience objects): applience list for a given season t_delta_exp_dur (pandas datetime): expected appliance duration app_index (array): index for each applience """ app_expected_load = temp.app_expected_load app_expected_dur = temp.app_expected_dur appliance_set = temp.appliance_set t_delta_exp_dur = temp.t_delta_exp_dur app_index = np.arange(0,len(temp.appliance_set)) return app_expected_load,app_expected_dur,appliance_set,t_delta_exp_dur,app_index ########################################### #MAKE QUEUE MODEL C = infinity ########################################### def solverZIPl_inf(x): """ Generate load with C = infinity Parameters ---------- x (str): string number of the individual home id Returns ---------- x (str): string number of the individual home id """ START_TIME_Q = LG.START_TIME_Q END_TIME_Q = LG.END_TIME_Q ref_load = LG.ref_load current_time = START_TIME_Q customer_loads_GL = (ref_load*0.0).copy() customer_loads_GL_VAR = (ref_load*0.0).copy() L1=[];L2=[];L3=[];L4=[];L5=[];L6=[];L7=[];L8=[];L9=[];L10=[];L11=[];L12=[];L13=[];L14=[]; L1=list();L2=list();L3=list();L4=list();L5=list();L6=list();L7=list() L8=list();L9=list();L10=list();L11=list();L12=list();L13=list();L14=list(); APP_L_obj = makeAPP(LG.DF_A,LG.DF_ZIP_summer,LG.DF_ZIP_winter,LG.DF_ZIP_spring,LG.APP_parameter_list) app_expected_load,app_expected_dur,appliance_set,t_delta_exp_dur,app_index = SeasonUPdate(APP_L_obj[season(current_time,'north')]) dates = ref_load.index while current_time < END_TIME_Q: m_t_plus_delta = ref_load.asof(where=current_time+t_delta_exp_dur) lambda_t = m_t_plus_delta / (app_expected_load*app_expected_dur) #lam(t) = m(t + E[D])/(E[D]E[L]) delta_t = np.random.exponential(1.0/lambda_t) #lambda_t is the rate parameter, numpy requires the scale which is the reciprocal of rate. Alternatively can switch the calculation of lambda_t, but this way matches the derived equations. if delta_t < 0.00000003: delta_t = 0.00000003 current_time += pd.to_timedelta('%s s' % (delta_t*3600.0)) #converted to seconds as some delta_t in hours was too small for pandas to parse correctly if current_time < END_TIME_Q: #check after time is updated we are still in sim time ########################################### #Season ########################################### app_expected_load,app_expected_dur,appliance_set,t_delta_exp_dur,app_index = SeasonUPdate(APP_L_obj[season(current_time,'north')]) app = appliance_set[np.random.choice(app_index,size=1,replace=True)[0]] add_time = current_time this_app_endtime = add_time + pd.to_timedelta('%s h' % app.duration) this_app_curtime = add_time customer_loads_GL[dates.asof(this_app_curtime):dates.asof(this_app_endtime)] += app.power customer_loads_GL_VAR[dates.asof(this_app_curtime):dates.asof(this_app_endtime)] += app.reactive L1.append(dates.asof(this_app_curtime))#['start time']=dates.asof(this_app_curtime) L2.append(pd.to_timedelta('%s h' % app.duration).round('1min'))#['duration']=pd.to_timedelta('%s h' % app.duration).round('1min') L3.append(app.power)#['power']=app.power L4.append(app.skedulable)#['skedulable']=app.skedulable L5.append(pd.to_timedelta('%s h' % app.SWn).round('1min'))#['shifting window -']=pd.to_timedelta('%s h' % app.SWn).round('1min') L6.append(pd.to_timedelta('%s h' % app.SWp).round('1min'))#['shifting window +']=pd.to_timedelta('%s h' % app.SWp).round('1min') L7.append(app.reactive)#['reactive']=app.reactive L8.append(app.Zp)#['Zp']=app.Zp L9.append(app.Ip)#['Ip']=app.Ip L10.append(app.Pp)#['Pp']=app.Pp L11.append(app.Zq)#['Zq']=app.Zq L12.append(app.Iq)#['Iq']=app.Iq L13.append(app.Pq)#['Pq']=app.Pq L14.append(app.indeX)#['indeX']=app.indeX sagra = pd.DataFrame({'start time': L1, 'duration': L2, 'power': L3, 'skedulable': L4, 'shifting window -': L5, 'shifting window +': L6, 'reactive': L7, 'Zp': L8, 'Ip': L9, 'Pp': L10, 'Zq': L11, 'Iq': L12, 'Pq': L13, 'indeX': L14 }) sagra = sagra[sagra['start time'] >= START_TIME_Q] sagra = sagra.reset_index(drop=True) sagra = sagra[sagra['start time'] <= END_TIME_Q] sagra = sagra.reset_index(drop=True) customer_loads_GL = customer_loads_GL[START_TIME_Q:END_TIME_Q] customer_loads_GL_VAR = customer_loads_GL_VAR[START_TIME_Q:END_TIME_Q] activeANDreactive =
pd.DataFrame({'W':customer_loads_GL, 'VAR':customer_loads_GL_VAR})
pandas.DataFrame
import string import numpy as np import pandas as pd import pytest from pandas.util import testing as pdt from .. import util @pytest.fixture def test_df(): return pd.DataFrame( {'col1': range(5), 'col2': range(5, 10)}, index=['a', 'b', 'c', 'd', 'e']) @pytest.fixture def choosers(): return pd.DataFrame( {'var1': range(5), 'var2': range(5, 10), 'var3': ['q', 'w', 'e', 'r', 't'], 'building_id': range(100, 105)}, index=['a', 'b', 'c', 'd', 'e']) @pytest.fixture def rates(): return pd.DataFrame( {'var1_min': [np.nan, np.nan, np.nan], 'var1_max': [1, np.nan, np.nan], 'var2_min': [np.nan, 7, np.nan], 'var2_max': [np.nan, 8, np.nan], 'var3': [np.nan, np.nan, 't'], 'probability_of_relocating': [1, 1, 1]}) def test_apply_filter_query(test_df): filters = ['col1 < 3', 'col2 > 6'] filtered = util.apply_filter_query(test_df, filters) expected = pd.DataFrame( {'col1': [2], 'col2': [7]}, index=['c'])
pdt.assert_frame_equal(filtered, expected)
pandas.util.testing.assert_frame_equal
#!/usr/bin/env python3 import time import math import subprocess import sys import random import webbrowser import numpy as np from datetime import datetime from dateutil import tz import pytz import os, sys from influxdb import InfluxDBClient import operator import copy from collections import Counter from scipy.stats import norm from scipy.special import softmax import pandas as pd import matplotlib.pyplot as plt import re import tsfel # get_ipython().system(' pip install tsfel # installing TSFEL for feature extraction') def str2bool(v): return v.lower() in ("true", "1", "https", "load") def mac_to_int(mac): res = re.match('^((?:(?:[0-9a-f]{2}):){5}[0-9a-f]{2})$', mac.lower()) if res is None: raise ValueError('invalid mac address') return int(res.group(0).replace(':', ''), 16) def int_to_mac(macint): # if type(macint) != int: # raise ValueError('invalid integer') newint = int(macint) return ':'.join(['{}{}'.format(a, b) for a, b in zip(*[iter('{:012x}'.format(newint))]*2)]) # This function converts the time string to epoch time xxx.xxx (second.ms). # Example: time = "2020-08-13T02:03:00.200", zone = "UTC" or "America/New_York" # If time = "2020-08-13T02:03:00.200Z" in UTC time, then call timestamp = local_time_epoch(time[:-1], "UTC"), which removes 'Z' in the string end def local_time_epoch(time, zone): local_tz = pytz.timezone(zone) localTime = datetime.strptime(time, "%Y-%m-%dT%H:%M:%S.%f") local_dt = local_tz.localize(localTime, is_dst=None) # utc_dt = local_dt.astimezone(pytz.utc) epoch = local_dt.timestamp() # print("epoch time:", epoch) # this is the epoch time in seconds, times 1000 will become epoch time in milliseconds # print(type(epoch)) # float return epoch # This function converts the epoch time xxx.xxx (second.ms) to time string. # Example: time = "2020-08-13T02:03:00.200", zone = "UTC" or "America/New_York" # If time = "2020-08-13T02:03:00.200Z" in UTC time, then call timestamp = local_time_epoch(time[:-1], "UTC"), which removes 'Z' in the string end def epoch_time_local(epoch, zone): local_tz = pytz.timezone(zone) time = datetime.fromtimestamp(epoch).astimezone(local_tz).strftime("%Y-%m-%dT%H:%M:%S.%f") return time # This function converts the grafana URL time to epoch time. For exmaple, given below URL # https://sensorweb.us:3000/grafana/d/OSjxFKvGk/caretaker-vital-signs?orgId=1&var-mac=b8:27:eb:6c:6e:22&from=1612293741993&to=1612294445244 # 1612293741993 means epoch time 1612293741.993; 1612294445244 means epoch time 1612294445.244 def grafana_time_epoch(time): return time/1000 def influx_time_epoch(time): return time/10e8 def generate_waves(fs, fd, seconds): # fs = 10e3 # N = 1e5 N = fs * seconds amp = 2*np.sqrt(2) # fd = fs/20 noise_power = 0.001 * fs / 2 time = np.arange(N) / fs signal = amp*np.sin(2*np.pi*fd*time) # signal += amp*np.sin(2*np.pi*(fd*1.5)*time) signal += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) return signal, time def select_with_gaussian_distribution(data_name, all_data, label_indexes = [('S', -2)]): ''' label_indexes is one below: [('H', -4)], [('R', -3)], [('S', -2)], [('D', -1)] ''' index = label_indexes[0][1] data = all_data[:,index] values = list(set(data)) num_sample = int(0.8*len(data)) ### Gaussian Distibution mu = np.mean(data) sigma = np.std(data) n, bins = np.histogram(data, bins=len(values)-1, density=1) y = norm.pdf(bins, mu, sigma) ### calculate propability p_table = np.concatenate((np.array(values)[np.newaxis,:],y[np.newaxis,:]),0) p_list = [] for each_ in data: index = np.where(p_table[0,:]==each_)[0][0] p_list.append(p_table[1,index]) # import pdb; pdb.set_trace() p_arr = softmax(p_list) sample_index = np.random.choice(np.arange(data.shape[0]), size=num_sample, p=p_arr) result_data = all_data[sample_index] print(f"\nPerformed data selection with gaussian distribution on {data_name}\n") return result_data def select_with_uniform_distribution(data_name, all_data,label_indexes = [('S', -2)]): ''' label_indexes is one below: [('H', -4)], [('R', -3)], [('S', -2)], [('D', -1)] ''' index = label_indexes[0][1] data = all_data[:,index] minimum_num_sample = int(len(data)/len(list(set(data)))) counter_result = Counter(data) dict_counter = dict(counter_result) result_dict = dict_counter.copy() # we keep them even if they have less than minimum # for item in dict_counter.items(): # if item[1] < minimum_num_sample: # del result_dict[item[0]] keys = list(result_dict.keys()) result_index_list = [] for each_key in keys: result_index_list += list(np.random.choice(np.where(data == each_key)[0], size=minimum_num_sample)) result_data = all_data[result_index_list] print(f"\nPerformed data selection with uniform distribution on {data_name}\n") return result_data def label_index(label_name, labels_list = ['ID', 'Time', 'H', 'R', 'S', 'D']): # print(labels_list.index(label_name)) return labels_list.index(label_name)-len(labels_list) def eval_data_stats(data_set_name, data_set, labels_list = ['ID', 'Time', 'H', 'R', 'S', 'D'], show=False ): num_labels = len(labels_list) time_index = label_index ('Time', labels_list) time_min = epoch_time_local(min(data_set[:, time_index]), "America/New_York") time_max = epoch_time_local(max(data_set[:, time_index]), "America/New_York") print(f"\n{data_set_name} statistics:") print(f"time_min: {time_min}; time_max: {time_max}") print(f"{num_labels} labels are: {labels_list}") for label_name in labels_list[2:]: index = label_index (label_name, labels_list) target_ = data_set[:,index] target_pd =
pd.DataFrame(target_,columns=[label_name])
pandas.DataFrame
""" ############################################################################## # # Calculate motif's activity differences Zscores # # AUTHOR: Maciej_Bak # AFFILIATION: University_of_Basel # AFFILIATION: Swiss_Institute_of_Bioinformatics # CONTACT: <EMAIL> # CREATED: 20-01-2020 # LICENSE: Apache_2.0 # ############################################################################## """ # imports import time import logging import logging.handlers from argparse import ArgumentParser, RawTextHelpFormatter import pandas as pd import numpy as np def parse_arguments(): """Parser of the command-line arguments.""" parser = ArgumentParser(description=__doc__, formatter_class=RawTextHelpFormatter) parser.add_argument( "-v", "--verbosity", dest="verbosity", choices=("DEBUG", "INFO", "WARN", "ERROR", "CRITICAL"), default="ERROR", help="Verbosity/Log level. Defaults to ERROR", ) parser.add_argument( "-l", "--logfile", dest="logfile", help="Store log to this file." ) parser.add_argument( "--activity-table", dest="activity_table", required=True, help="Path to the table with motifs activities and their stds.", ) parser.add_argument( "--design-table", dest="design_table", required=True, help="Path to the design table.", ) parser.add_argument( "--outfile", dest="outfile", required=True, help="Path for the output table with Z-scores.", ) return parser ############################################################################## def calculate_Zscores(A_b, design_table): """ Calculate Zscores as the ratio: Act.Diff / Act.Diff.Std. """ cols_list = [] for s in design_table.index.values: cols_list.append("A_" + s) for s in design_table.index.values: cols_list.append("stdA_" + s) Zscores_df = pd.DataFrame(index=A_b.index.values) for c in cols_list: Zscores_df[c] = A_b[c] # calculate per-sample activity Z-scores for s in design_table.index.values: Zscores_df["zscores_" + s] = Zscores_df["A_" + s] / Zscores_df["stdA_" + s] cols_list.append("zscores_" + s) # calcualte motif Z-scores N_samples = len(design_table.index.values) for s in design_table.index.values: Zscores_df["Z^2_" + s] = Zscores_df["zscores_" + s] * Zscores_df["zscores_" + s] Zscores_df["sum_Z^2"] = 0.0 for s in design_table.index.values: Zscores_df["sum_Z^2"] += Zscores_df["Z^2_" + s] Zscores_df["avg_Z^2"] = Zscores_df["sum_Z^2"] / N_samples Zscores_df["combined.Zscore"] = np.sqrt(Zscores_df["avg_Z^2"]) # rename the columns new_cols_list = [] for c in cols_list: c_prefix = c.split("_")[0] c_suffix = "_".join(c.split("_")[1:]) if c_prefix == "A": new_cols_list.append("activities_" + c_suffix) if c_prefix == "stdA": new_cols_list.append("deltas_" + c_suffix) if c_prefix == "zscores": new_cols_list.append("zscores_" + c_suffix) # select columns for final table: cols_list.append("combined.Zscore") new_cols_list.append("combined.Zscore") Zscores_df = Zscores_df[cols_list].copy() Zscores_df.columns = new_cols_list return Zscores_df def main(): """Main body of the script.""" # read the design table design_table = pd.read_csv(options.design_table, sep="\t", index_col=0) # read the table with activities and their std A_b_table = pd.read_csv(options.activity_table, sep="\t") A_b_table_fraction = A_b_table["fraction"].copy() del A_b_table["fraction"] # select motifs for which the model was not run not_fitted = A_b_table.loc[(A_b_table == 0).all(axis=1)].index.values # select a subtable containing motifs with activities fitted A_b_table = A_b_table.loc[~(A_b_table == 0).all(axis=1)] # calculate Z-scores Zscores_df = calculate_Zscores(A_b_table, design_table) # add the rows for motifs that was not fitted not_fitted_df = pd.DataFrame( np.nan, index=not_fitted, columns=Zscores_df.columns.values ) Zscores_df =
pd.concat([Zscores_df, not_fitted_df], axis=0)
pandas.concat