prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd from texthero import representation from texthero import preprocessing from . import PandasTestCase import doctest import unittest import string """ Test doctest """ def load_tests(loader, tests, ignore): tests.addTests(doctest.DocTestSuite(representation)) return tests class TestRepresentation(PandasTestCase): """ Term Frequency. """ def test_term_frequency_single_document(self): s = pd.Series("a b c c") s_true = pd.Series([[1, 1, 2]]) self.assertEqual(representation.term_frequency(s), s_true) def test_term_frequency_multiple_documents(self): s = pd.Series(["doc_one", "doc_two"]) s_true = pd.Series([[1, 0], [0, 1]]) self.assertEqual(representation.term_frequency(s), s_true) def test_term_frequency_not_lowercase(self): s = pd.Series(["one ONE"]) s_true = pd.Series([[1, 1]]) self.assertEqual(representation.term_frequency(s), s_true) def test_term_frequency_punctuation_are_kept(self): s = pd.Series(["one !"]) s_true = pd.Series([[1, 1]]) self.assertEqual(representation.term_frequency(s), s_true) """ TF-IDF """ def test_idf_single_document(self): s = pd.Series("a") s_true = pd.Series([[1]]) self.assertEqual(representation.tfidf(s), s_true) def test_idf_single_not_lowercase(self): tfidf_single_smooth = 0.7071067811865475 # TODO s = pd.Series("ONE one") s_true = pd.Series([[tfidf_single_smooth, tfidf_single_smooth]]) self.assertEqual(representation.tfidf(s), s_true) """ Word2Vec """ def test_word2vec(self): s = pd.Series(["today is a beautiful day", "today is not that beautiful"]) df_true = pd.DataFrame( [[0.0] * 300] * 7, index=["a", "beautiful", "day", "is", "not", "that", "today"], ) s = preprocessing.tokenize(s) df_embedding = representation.word2vec(s, min_count=1, seed=1) self.assertEqual(type(df_embedding), pd.DataFrame) self.assertEqual(df_embedding.shape, df_true.shape) def test_most_similar_simple(self): s = pd.Series(["one one one"]) s = preprocessing.tokenize(s) df_embeddings = representation.word2vec(s, min_count=1, seed=1) to = "one" most_similar = representation.most_similar(df_embeddings, to) self.assertEqual(most_similar.shape, (1,)) def test_most_similar_raise_with_series(self): s_embed =
pd.Series({"one": 1})
pandas.Series
import numpy as np import pandas as pd import datetime as dt import pickle import bz2 from .analyzer import summarize_returns DATA_PATH = '../backtest/' class Portfolio(): """ Portfolio is the core class for event-driven backtesting. It conducts the backtesting in the following order: 1. Initialization: Set the capital base we invest and the securities we want to trade. 2. Receive the price information with .receive_price(): Insert the new price information of each securities so that the Portfolio class will calculated and updated the relevant status such as the portfolio value and position weights. 3. Rebalance with .rebalance(): Depending on the signal, we can choose to change the position on each securities. 4. Keep position with .keep_position(): If we don't rebalance the portfolio, we need to tell it to keep current position at the end of the market. Example ------- see Vol_MA.ipynb, Vol_MA_test_robustness.ipynb Parameters ---------- capital: numeric capital base we put into the porfolio inception: datetime.datetime the time when we start backtesting components: list of str tikers of securities to trade, such as ['AAPL', 'MSFT', 'AMZN] name: str name of the portfolio is_share_integer: boolean If true, the shares of securities will be rounded to integers. """ def __init__(self, capital, inception, components, name='portfolio', is_share_integer=False): # ----------------------------------------------- # initialize parameters # ----------------------------------------------- self.capital = capital # initial money invested if isinstance(components, str): components = [components] # should be list self.components = components # equities in the portfolio # self.commission_rate = commission_rate self.inception = inception self.component_prices =
pd.DataFrame(columns=self.components)
pandas.DataFrame
import unittest from unittest import mock from unittest.mock import MagicMock import numpy as np import pandas as pd from matplotlib.axes import Axes from matplotlib.figure import Figure from pandas.util.testing import assert_frame_equal import tests.test_data as td from shift_detector.checks.statistical_checks import numerical_statistical_check, categorical_statistical_check from shift_detector.checks.statistical_checks.categorical_statistical_check import CategoricalStatisticalCheck from shift_detector.checks.statistical_checks.numerical_statistical_check import NumericalStatisticalCheck from shift_detector.checks.statistical_checks.text_metadata_statistical_check import TextMetadataStatisticalCheck from shift_detector.detector import Detector from shift_detector.precalculations.store import Store from shift_detector.precalculations.text_metadata import NumCharsMetadata, NumWordsMetadata, \ DistinctWordsRatioMetadata, LanguagePerParagraph, UnknownWordRatioMetadata, StopwordRatioMetadata, LanguageMetadata from shift_detector.utils.visualization import PlotData class TestTextMetadataStatisticalCheck(unittest.TestCase): def setUp(self): self.poems = td.poems self.phrases = td.phrases def test_significant_metadata(self): pvalues = pd.DataFrame([[0.001, 0.2]], columns=['num_chars', 'distinct_words_ratio'], index=['pvalue']) result = TextMetadataStatisticalCheck(significance=0.01).significant_metadata_names(pvalues) self.assertIn('num_chars', result) self.assertNotIn('distinct_words_ratio', result) def test_not_significant(self): df1 = pd.DataFrame.from_dict({'text': self.poems}) df2 = pd.DataFrame.from_dict({'text': list(reversed(self.poems))}) store = Store(df1, df2) result = TextMetadataStatisticalCheck().run(store) self.assertEqual(1, len(result.examined_columns)) self.assertEqual(0, len(result.shifted_columns)) self.assertEqual(0, len(result.explanation)) def test_significant(self): df1 = pd.DataFrame.from_dict({'text': self.poems}) df2 = pd.DataFrame.from_dict({'text': self.phrases}) store = Store(df1, df2) result = TextMetadataStatisticalCheck([NumCharsMetadata(), NumWordsMetadata(), DistinctWordsRatioMetadata(), LanguagePerParagraph()] ).run(store) self.assertEqual(1, len(result.examined_columns)) self.assertEqual(1, len(result.shifted_columns)) self.assertEqual(1, len(result.explanation)) def test_compliance_with_detector(self): df1 = pd.DataFrame.from_dict({'text': ['This is a very important text.', 'It contains information.', 'Brilliant ideas are written down.', 'Read it.', 'You will become a lot smarter.', 'Or you will waste your time.', 'Come on, figure it out!', 'Perhaps it will at least entertain you.', 'Do not be afraid.', 'Be brave!']}) df2 = pd.DataFrame.from_dict({'text': ['This is a very important text.', 'It contains information.', 'Brilliant ideas are written down.', 'Read it.', 'You will become a lot smarter.', 'Or you will waste your time.', 'Come on, figure it out!', 'Perhaps it will at least entertain you.', 'Do not be afraid.', 'Be brave!']}) detector = Detector(df1=df1, df2=df2, log_print=False) detector.run(TextMetadataStatisticalCheck()) column_index = pd.MultiIndex.from_product([['text'], ['distinct_words', 'num_chars', 'num_words']], names=['column', 'metadata']) solution = pd.DataFrame([[1.0, 1.0, 1.0]], columns=column_index, index=['pvalue']) self.assertEqual(1, len(detector.check_reports[0].examined_columns)) self.assertEqual(0, len(detector.check_reports[0].shifted_columns)) self.assertEqual(0, len(detector.check_reports[0].explanation)) assert_frame_equal(solution, detector.check_reports[0].information['test_results']) def test_language_can_be_set(self): check = TextMetadataStatisticalCheck([UnknownWordRatioMetadata(), StopwordRatioMetadata()], language='fr') md_with_lang = [mdtype for mdtype in check.metadata_precalculation.text_metadata_types if type(mdtype) in [UnknownWordRatioMetadata, StopwordRatioMetadata]] for mdtype in md_with_lang: self.assertEqual('fr', mdtype.language) def test_infer_language_is_set(self): check = TextMetadataStatisticalCheck([UnknownWordRatioMetadata(), StopwordRatioMetadata()], infer_language=True) md_with_lang = [mdtype for mdtype in check.metadata_precalculation.text_metadata_types if type(mdtype) in [UnknownWordRatioMetadata, StopwordRatioMetadata]] for mdtype in md_with_lang: self.assertTrue(mdtype.infer_language) def test_figure_function_is_collected(self): df1 = pd.DataFrame.from_dict({'text': ['blub'] * 10}) df2 = pd.DataFrame.from_dict({'text': ['blub'] * 10}) metadata_names = ['num_chars', 'num_words'] cols = pd.MultiIndex.from_product([df1.columns, metadata_names], names=['column', 'metadata']) check = TextMetadataStatisticalCheck() pvalues = pd.DataFrame(columns=cols, index=['pvalue']) for solution, num_sig_metadata in [(1, 2), (1, 1), (0, 0)]: p = [0.001] * num_sig_metadata + [0.05] * (2 - num_sig_metadata) pvalues[('text', 'num_chars')] = p[0] pvalues[('text', 'num_words')] = p[1] with self.subTest(solution=solution, pvalues=pvalues): result = check.metadata_figure(pvalues=pvalues, df1=df1, df2=df2) self.assertEqual(solution, len(result)) @mock.patch('shift_detector.checks.statistical_checks.text_metadata_statistical_check.plt') def test_all_plot_functions_are_called_and_plot_is_shown(self, mock_plt): plot_data = [PlotData(MagicMock(), 1), PlotData(MagicMock(), 2), PlotData(MagicMock(), 3)] TextMetadataStatisticalCheck.plot_all_metadata(plot_data) mock_plt.figure.assert_called_with(figsize=(12.0, 30.0), tight_layout=True) for func, rows in plot_data: self.assertTrue(func.called) mock_plt.show.assert_called_with() def test_column_tuples_are_handled_by_numerical_visualization(self): columns = ['text'] metadata_names = ['num_chars'] cols = pd.MultiIndex.from_product([columns, metadata_names], names=['column', 'metadata']) df1 =
pd.DataFrame(columns=cols)
pandas.DataFrame
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1":
pandas.StringDtype()
pandas.StringDtype
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd from datetime import datetime, timedelta import numpy as np import matplotlib #matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.ticker as tck import matplotlib.font_manager as fm import math as m import matplotlib.dates as mdates id import itertools import datetime import matplotlib.colors as colors import matplotlib.cm as cm import os import statistics import pysolar #----------------------------------------------------------------------------- # Motivación codigo ----------------------------------------------------------- 'Codigo para la relación y análisis de los indices de cielo despejado (Kt*) y el indice de claridad (Kt).' 'Se incluye tambien un análisis de su tasa de cambio para evaluar su variabilidad y junto con la fracción' 'de cobertura de nubes. Se hace sobre los datos historicos porque se quiere analizar la variabilidad.' Theoric_Model = 'GIS' ##---> 'GIS' para que coja el de Gis o 'Piranometro' para que tome el de el piranometro ############################################################################## #----------------------------------------------------------------------------- # Rutas para las fuentes ----------------------------------------------------- ############################################################################## prop = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Heavy.otf' ) prop_1 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Book.otf') prop_2 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Black.otf') ########################################################################################################## ##-----------------------------------LECTURA DE LOS DATOS DE PIRANOMETRO-------------------------------## ########################################################################################################## df_pira_TS =
pd.read_table('/home/nacorreasa/Maestria/Datos_Tesis/Piranometro/60012018_2019.txt', parse_dates=[2])
pandas.read_table
import os import bisect import shutil import argparse import pandas as pd from deepface import DeepFace """ 按年龄区间划分 年龄维度:[0-8],[8-16],[16-24],[24-32],[32-40],[40-48],[48-56],[56-64],[64-] 按角度划分 角度区间:[00, 22, 40, 55, 75] pip install deepface error: Support for codec 'lz4' not build mamba uninstall pyarrow mamba install -c anaconda lz4 pip install pyarrow mamba install pandas """ age_range = [8, 16, 24, 32, 40, 48, 56, 64] pose_range = ["00", "22", "40", "55", "75"] record_file = "../data/unique_face_record.ftr" record_class_file = "../data/face_class_record.ftr" df_record = None try: df_record =
pd.read_feather(record_file)
pandas.read_feather
import gc import warnings import numpy as np import pandas as pd warnings.simplefilter(action='ignore', category=FutureWarning) # One-hot encoding for categorical columns with get_dummies def one_hot_encoder(df, nan_as_category=True): original_columns = list(df.columns) categorical_columns = [col for col in df.columns if df[col].dtype == 'object'] df =
pd.get_dummies(df, columns=categorical_columns, dummy_na=nan_as_category)
pandas.get_dummies
import pandas as pd import os import subprocess from pathlib import Path import numpy as np import datetime import json def summary_of_files(): job_list = ["oct20_aa_fix1", "oct20_aa_fix2", "oct20_aa_fix3", "oct20_group_b","oct20_sub_0","oct20_sub_1", "oct20_sub_2", "oct20_sub_3", "oct20_sub_4","oct20_sub_5","oct20_sub_6","oct20_sub_7","oct20_sub_8",] summary_df = pd.DataFrame() c = 0 for job in job_list: df = pd.read_csv(os.path.join("node_encode", job + ".csv")) for index, row in df.iterrows(): # check hdf5 folder for sta.csv and sta.hdf5 flags = { "sta": row.sta, "job_name":row.job_name, "sac_csv": os.path.exists(os.path.join(row.hdf5_folder, row.sta + ".csv")), "sac_hdf5": os.path.exists(os.path.join(row.hdf5_folder, row.sta + ".hdf5")), "prediction_made": os.path.exists(row.prediction_output_folder), "merge_filtered": os.path.exists(os.path.join(row.merge_output_folder, "merge_filtered.csv")), "merge_filtered_snr": os.path.exists(os.path.join(row.merge_output_folder, "merge_filtered_snr.csv")), "merge_filtered_snr_customfilter": os.path.exists(os.path.join(row.merge_output_folder, "merge_filtered_snr_customfilter.csv")), "n_lines": 0, "sac_pick_files":0, } if flags["merge_filtered_snr_customfilter"]: flags["n_lines"] = int(subprocess.check_output(["wc", "-l", os.path.join(row.merge_output_folder, "merge_filtered_snr_customfilter.csv")]).decode("utf8").split()[0]) - 1 flags["sac_pick_files"] = len(os.listdir(os.path.join(row.merge_output_folder, "sac_picks"))) checks = { "non_zero_files": flags["sac_csv"] and flags["sac_hdf5"], "all_plotted": flags["n_lines"] * 4 == flags["sac_pick_files"], } for k,v in flags.items(): summary_df.at[c, k] = v for k,v in checks.items(): summary_df.at[c, k] = v c += 1 summary_df.to_csv("oct20_summary.csv", index = False) def infer_actual_uptime(): # read through all the generated .csv files and like parse them with open("station/all_stations.txt", "r") as f: station_list = [line.strip() for line in f if line.strip != ""] station_dict = {station: {} for station in station_list} for index, row in df.iterrows(): # open the .csv file with aLL the trace names csv_path = os.path.join(row.hdf5_folder, row.sta + ".csv") if os.path.exists(csv_path): _df = pd.read_csv(csv_path) _df["hours"] = _df["start_time"].str.slice(stop = 13) unique_hours = _df["hours"].unique() for dayhr in unique_hours: day = datetime.datetime.strftime(datetime.datetime.strptime(dayhr[:10], "%Y-%m-%d"), "%j") hr = dayhr[-2:] if day not in station_dict[row.sta]: station_dict[row.sta][day] = [hr] else: station_dict[row.sta][day].append(hr) with open('08jul_aceh.json', 'w') as f: json.dump(station_dict,f) #print(station_dict) # then summarise findings df_list = [] summary_df =
pd.DataFrame()
pandas.DataFrame
from __future__ import division from datetime import datetime import sys if sys.version_info < (3, 3): import mock else: from unittest import mock import pandas as pd import numpy as np from nose.tools import assert_almost_equal as aae import bt import bt.algos as algos def test_algo_name(): class TestAlgo(algos.Algo): pass actual = TestAlgo() assert actual.name == 'TestAlgo' class DummyAlgo(algos.Algo): def __init__(self, return_value=True): self.return_value = return_value self.called = False def __call__(self, target): self.called = True return self.return_value def test_algo_stack(): algo1 = DummyAlgo(return_value=True) algo2 = DummyAlgo(return_value=False) algo3 = DummyAlgo(return_value=True) target = mock.MagicMock() stack = bt.AlgoStack(algo1, algo2, algo3) actual = stack(target) assert not actual assert algo1.called assert algo2.called assert not algo3.called def test_run_once(): algo = algos.RunOnce() assert algo(None) assert not algo(None) assert not algo(None) def test_run_period(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunPeriod() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index target.now = None assert not algo(target) # run on first date target.now = dts[0] assert not algo(target) # run on first supplied date target.now = dts[1] assert algo(target) # run on last date target.now = dts[len(dts) - 1] assert not algo(target) algo = algos.RunPeriod( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index # run on first date target.now = dts[0] assert not algo(target) # first supplied date target.now = dts[1] assert not algo(target) # run on last date target.now = dts[len(dts) - 1] assert algo(target) # date not in index target.now = datetime(2009, 2, 15) assert not algo(target) def test_run_daily(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunDaily() # adds the initial day backtest = bt.Backtest( bt.Strategy('',[algo]), data ) target.data = backtest.data target.now = dts[1] assert algo(target) def test_run_weekly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunWeekly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert not algo(target) # new week target.now = dts[3] assert algo(target) algo = algos.RunWeekly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert algo(target) # new week target.now = dts[3] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8),datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_monthly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunMonthly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert not algo(target) # new month target.now = dts[31] assert algo(target) algo = algos.RunMonthly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert algo(target) # new month target.now = dts[31] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_quarterly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunQuarterly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert not algo(target) # new quarter target.now = dts[90] assert algo(target) algo = algos.RunQuarterly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert algo(target) # new quarter target.now = dts[90] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_yearly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunYearly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert not algo(target) # new year target.now = dts[365] assert algo(target) algo = algos.RunYearly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert algo(target) # new year target.now = dts[365] assert not algo(target) def test_run_on_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunOnDate('2010-01-01', '2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) def test_rebalance(): algo = algos.Rebalance() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c1 = s['c1'] assert c1.value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000 assert c2.position == 10 assert c2.weight == 1. def test_rebalance_with_commissions(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 999 assert s.capital == 99 c1 = s['c1'] assert c1.value == 900 assert c1.position == 9 assert c1.weight == 900 / 999. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 997 assert s.capital == 97 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 900 assert c2.position == 9 assert c2.weight == 900. / 997 def test_rebalance_with_cash(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data =
pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100)
pandas.DataFrame
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290: pd.Timestamp("2013-02-16 00:00:00"), 291: pd.Timestamp("2013-02-17 00:00:00"), 292: pd.Timestamp("2013-02-18 00:00:00"), 293: pd.Timestamp("2013-02-19 00:00:00"), 294: pd.Timestamp("2013-02-20 00:00:00"), 295: pd.Timestamp("2013-02-21 00:00:00"), 296: pd.Timestamp("2013-02-22 00:00:00"), 297: pd.Timestamp("2013-02-23 00:00:00"), 298: pd.Timestamp("2013-02-24 00:00:00"), 299: pd.Timestamp("2013-02-25 00:00:00"), 300: pd.Timestamp("2013-02-26 00:00:00"), 301: pd.Timestamp("2013-02-27 00:00:00"), 302: pd.Timestamp("2013-02-28 00:00:00"), 303: pd.Timestamp("2013-03-01 00:00:00"), 304: pd.Timestamp("2013-03-02 00:00:00"), 305: pd.Timestamp("2013-03-03 00:00:00"), 306: pd.Timestamp("2013-03-04 00:00:00"), 307: pd.Timestamp("2013-03-05 00:00:00"), 308: pd.Timestamp("2013-03-06 00:00:00"), 309: pd.Timestamp("2013-03-07 00:00:00"), 310: pd.Timestamp("2013-03-08 00:00:00"), 311: pd.Timestamp("2013-03-09 00:00:00"), 312: pd.Timestamp("2013-03-10 00:00:00"), 313: pd.Timestamp("2013-03-11 00:00:00"), 314: pd.Timestamp("2013-03-12 00:00:00"), 315: pd.Timestamp("2013-03-13 00:00:00"), 316: pd.Timestamp("2013-03-14 00:00:00"), 317: pd.Timestamp("2013-03-15 00:00:00"), 318: pd.Timestamp("2013-03-16 00:00:00"), 319: pd.Timestamp("2013-03-17 00:00:00"), 320: pd.Timestamp("2013-03-18 00:00:00"), 321: pd.Timestamp("2013-03-19 00:00:00"), 322: pd.Timestamp("2013-03-20 00:00:00"), 323: pd.Timestamp("2013-03-21 00:00:00"), 324: pd.Timestamp("2013-03-22 00:00:00"), 325: pd.Timestamp("2013-03-23 00:00:00"), 326: pd.Timestamp("2013-03-24 00:00:00"), 327: pd.Timestamp("2013-03-25 00:00:00"), 328: pd.Timestamp("2013-03-26 00:00:00"), 329: pd.Timestamp("2013-03-27 00:00:00"), 330: pd.Timestamp("2013-03-28 00:00:00"), 331: pd.Timestamp("2013-03-29 00:00:00"), 332: pd.Timestamp("2013-03-30 00:00:00"), 333: pd.Timestamp("2013-03-31 00:00:00"), 334: pd.Timestamp("2013-04-01 00:00:00"), 335: pd.Timestamp("2013-04-02 00:00:00"), 336: pd.Timestamp("2013-04-03 00:00:00"), 337: pd.Timestamp("2013-04-04 00:00:00"), 338: pd.Timestamp("2013-04-05 00:00:00"), 339: pd.Timestamp("2013-04-06 00:00:00"), 340: pd.Timestamp("2013-04-07 00:00:00"), 341: pd.Timestamp("2013-04-08 00:00:00"), 342: pd.Timestamp("2013-04-09 00:00:00"), 343: pd.Timestamp("2013-04-10 00:00:00"), 344: pd.Timestamp("2013-04-11 00:00:00"), 345: pd.Timestamp("2013-04-12 00:00:00"), 346: pd.Timestamp("2013-04-13 00:00:00"), 347: pd.Timestamp("2013-04-14 00:00:00"), 348: pd.Timestamp("2013-04-15 00:00:00"), 349: pd.Timestamp("2013-04-16 00:00:00"), 350: pd.Timestamp("2013-04-17 00:00:00"), 351: pd.Timestamp("2013-04-18 00:00:00"), 352: pd.Timestamp("2013-04-19 00:00:00"), 353: pd.Timestamp("2013-04-20 00:00:00"), 354: pd.Timestamp("2013-04-21 00:00:00"), 355: pd.Timestamp("2013-04-22 00:00:00"), 356: pd.Timestamp("2013-04-23 00:00:00"), 357: pd.Timestamp("2013-04-24 00:00:00"), 358: pd.Timestamp("2013-04-25 00:00:00"), 359: pd.Timestamp("2013-04-26 00:00:00"), 360: pd.Timestamp("2013-04-27 00:00:00"), 361: pd.Timestamp("2013-04-28 00:00:00"), 362: pd.Timestamp("2013-04-29 00:00:00"), 363: pd.Timestamp("2013-04-30 00:00:00"), 364: pd.Timestamp("2013-05-01 00:00:00"), 365: pd.Timestamp("2013-05-02 00:00:00"), 366: pd.Timestamp("2013-05-03 00:00:00"), 367: pd.Timestamp("2013-05-04 00:00:00"), 368: pd.Timestamp("2013-05-05 00:00:00"), 369: pd.Timestamp("2013-05-06 00:00:00"), 370: pd.Timestamp("2013-05-07 00:00:00"), 371: pd.Timestamp("2013-05-08 00:00:00"), 372: pd.Timestamp("2013-05-09 00:00:00"), 373: pd.Timestamp("2013-05-10 00:00:00"), 374: pd.Timestamp("2013-05-11 00:00:00"), 375: pd.Timestamp("2013-05-12 00:00:00"), 376: pd.Timestamp("2013-05-13 00:00:00"), 377: pd.Timestamp("2013-05-14 00:00:00"), 378: pd.Timestamp("2013-05-15 00:00:00"), 379: pd.Timestamp("2013-05-16 00:00:00"), 380: pd.Timestamp("2013-05-17 00:00:00"), 381: pd.Timestamp("2013-05-18 00:00:00"), 382: pd.Timestamp("2013-05-19 00:00:00"), 383: pd.Timestamp("2013-05-20 00:00:00"), 384: pd.Timestamp("2013-05-21 00:00:00"), 385: pd.Timestamp("2013-05-22 00:00:00"), 386: pd.Timestamp("2013-05-23 00:00:00"), 387: pd.Timestamp("2013-05-24 00:00:00"), 388: pd.Timestamp("2013-05-25 00:00:00"), 389: pd.Timestamp("2013-05-26 00:00:00"), 390: pd.Timestamp("2013-05-27 00:00:00"), 391: pd.Timestamp("2013-05-28 00:00:00"), 392: pd.Timestamp("2013-05-29 00:00:00"), 393: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.348604308646497, 1: 8.348964254851197, 2: 8.349324201055898, 3: 8.349684147260598, 4: 8.350044093465298, 5: 8.350404039669998, 6: 8.3507639858747, 7: 8.3511239320794, 8: 8.3514838782841, 9: 8.351843824488801, 10: 8.352203770693501, 11: 8.352563716898201, 12: 8.352923663102903, 13: 8.353283609307603, 14: 8.353643555512303, 15: 8.354003501717003, 16: 8.354363447921704, 17: 8.354723394126404, 18: 8.355083340331104, 19: 8.355443286535806, 20: 8.355803232740506, 21: 8.356163178945206, 22: 8.356523125149906, 23: 8.356883071354607, 24: 8.357243017559307, 25: 8.357602963764007, 26: 8.357962909968709, 27: 8.358322856173409, 28: 8.358682802378109, 29: 8.35904274858281, 30: 8.35940269478751, 31: 8.35976264099221, 32: 8.36012258719691, 33: 8.360482533401612, 34: 8.360842479606312, 35: 8.361202425811012, 36: 8.361562372015714, 37: 8.361922318220413, 38: 8.362282264425113, 39: 8.362642210629813, 40: 8.363002156834515, 41: 8.363362103039215, 42: 8.363722049243915, 43: 8.364081995448617, 44: 8.364441941653316, 45: 8.364801887858016, 46: 8.365161834062716, 47: 8.365521780267418, 48: 8.365881726472118, 49: 8.366241672676818, 50: 8.36660161888152, 51: 8.36696156508622, 52: 8.36732151129092, 53: 8.367681457495621, 54: 8.368041403700321, 55: 8.368401349905021, 56: 8.36876129610972, 57: 8.369121242314423, 58: 8.369481188519122, 59: 8.369841134723822, 60: 8.370201080928524, 61: 8.370561027133224, 62: 8.370920973337924, 63: 8.371280919542624, 64: 8.371640865747326, 65: 8.372000811952026, 66: 8.372360758156725, 67: 8.372720704361427, 68: 8.373080650566127, 69: 8.373440596770827, 70: 8.373800542975529, 71: 8.374160489180229, 72: 8.374520435384929, 73: 8.374880381589628, 74: 8.37524032779433, 75: 8.37560027399903, 76: 8.37596022020373, 77: 8.376320166408432, 78: 8.376680112613132, 79: 8.377040058817832, 80: 8.377400005022531, 81: 8.377759951227233, 82: 8.378119897431933, 83: 8.378479843636633, 84: 8.378839789841335, 85: 8.379199736046035, 86: 8.379559682250735, 87: 8.379919628455436, 88: 8.380279574660136, 89: 8.380639520864836, 90: 8.380999467069536, 91: 8.381359413274238, 92: 8.381719359478938, 93: 8.382079305683638, 94: 8.38243925188834, 95: 8.38279919809304, 96: 8.38315914429774, 97: 8.383519090502439, 98: 8.38387903670714, 99: 8.38423898291184, 100: 8.38459892911654, 101: 8.384958875321242, 102: 8.385318821525942, 103: 8.385678767730642, 104: 8.386038713935344, 105: 8.386398660140044, 106: 8.386758606344744, 107: 8.387118552549444, 108: 8.387478498754145, 109: 8.387838444958845, 110: 8.388198391163545, 111: 8.388558337368247, 112: 8.388918283572947, 113: 8.389278229777647, 114: 8.389638175982347, 115: 8.389998122187048, 116: 8.390358068391748, 117: 8.390718014596448, 118: 8.39107796080115, 119: 8.39143790700585, 120: 8.39179785321055, 121: 8.392157799415251, 122: 8.392517745619951, 123: 8.392877691824651, 124: 8.393237638029351, 125: 8.393597584234053, 126: 8.393957530438753, 127: 8.394317476643453, 128: 8.394677422848154, 129: 8.395037369052854, 130: 8.395397315257554, 131: 8.395757261462254, 132: 8.396117207666956, 133: 8.396477153871656, 134: 8.396837100076356, 135: 8.397197046281057, 136: 8.397556992485757, 137: 8.397916938690457, 138: 8.398276884895157, 139: 8.398636831099859, 140: 8.398996777304559, 141: 8.399356723509259, 142: 8.39971666971396, 143: 8.40007661591866, 144: 8.40043656212336, 145: 8.400796508328062, 146: 8.401156454532762, 147: 8.401516400737462, 148: 8.401876346942162, 149: 8.402236293146863, 150: 8.402596239351563, 151: 8.402956185556263, 152: 8.403316131760965, 153: 8.403676077965665, 154: 8.404036024170365, 155: 8.404395970375065, 156: 8.404755916579767, 157: 8.405115862784466, 158: 8.405475808989166, 159: 8.405835755193868, 160: 8.406195701398568, 161: 8.406555647603268, 162: 8.40691559380797, 163: 8.40727554001267, 164: 8.40763548621737, 165: 8.40799543242207, 166: 8.408355378626771, 167: 8.408715324831471, 168: 8.409075271036171, 169: 8.409435217240873, 170: 8.409795163445573, 171: 8.410155109650272, 172: 8.410515055854972, 173: 8.410875002059674, 174: 8.411234948264374, 175: 8.411594894469074, 176: 8.411954840673776, 177: 8.412314786878476, 178: 8.412674733083175, 179: 8.413034679287877, 180: 8.413394625492577, 181: 8.413754571697277, 182: 8.414114517901977, 183: 8.414474464106679, 184: 8.414834410311379, 185: 8.415194356516078, 186: 8.41555430272078, 187: 8.41591424892548, 188: 8.41627419513018, 189: 8.41663414133488, 190: 8.416994087539582, 191: 8.417354033744282, 192: 8.417713979948982, 193: 8.418073926153683, 194: 8.418433872358383, 195: 8.418793818563083, 196: 8.419153764767785, 197: 8.419513710972485, 198: 8.419873657177185, 199: 8.420233603381885, 200: 8.420593549586586, 201: 8.420953495791286, 202: 8.421313441995986, 203: 8.421673388200688, 204: 8.422033334405388, 205: 8.422393280610088, 206: 8.422753226814788, 207: 8.42311317301949, 208: 8.42347311922419, 209: 8.423833065428889, 210: 8.42419301163359, 211: 8.42455295783829, 212: 8.42491290404299, 213: 8.42527285024769, 214: 8.425632796452392, 215: 8.425992742657092, 216: 8.426352688861792, 217: 8.426712635066494, 218: 8.427072581271194, 219: 8.427432527475894, 220: 8.427792473680595, 221: 8.428152419885295, 222: 8.428512366089995, 223: 8.428872312294695, 224: 8.429232258499397, 225: 8.429592204704097, 226: 8.429952150908797, 227: 8.430312097113498, 228: 8.430672043318198, 229: 8.431031989522898, 230: 8.431391935727598, 231: 8.4317518819323, 232: 8.432111828137, 233: 8.4324717743417, 234: 8.432831720546401, 235: 8.433191666751101, 236: 8.433551612955801, 237: 8.433911559160503, 238: 8.434271505365203, 239: 8.434631451569903, 240: 8.434991397774603, 241: 8.435351343979304, 242: 8.435711290184004, 243: 8.436071236388704, 244: 8.436431182593406, 245: 8.436791128798106, 246: 8.437151075002806, 247: 8.437511021207506, 248: 8.437870967412207, 249: 8.438230913616907, 250: 8.438590859821607, 251: 8.438950806026309, 252: 8.439310752231009, 253: 8.439670698435709, 254: 8.44003064464041, 255: 8.44039059084511, 256: 8.44075053704981, 257: 8.44111048325451, 258: 8.441470429459212, 259: 8.441830375663912, 260: 8.442190321868612, 261: 8.442550268073314, 262: 8.442910214278013, 263: 8.443270160482713, 264: 8.443630106687413, 265: 8.443990052892115, 266: 8.444349999096815, 267: 8.444709945301515, 268: 8.445069891506217, 269: 8.445429837710916, 270: 8.445789783915616, 271: 8.446149730120318, 272: 8.446509676325018, 273: 8.446869622529718, 274: 8.447229568734418, 275: 8.44758951493912, 276: 8.44794946114382, 277: 8.44830940734852, 278: 8.448669353553221, 279: 8.449029299757921, 280: 8.449389245962621, 281: 8.449749192167321, 282: 8.450109138372023, 283: 8.450469084576723, 284: 8.450829030781422, 285: 8.451188976986124, 286: 8.451548923190824, 287: 8.451908869395524, 288: 8.452268815600226, 289: 8.452628761804926, 290: 8.452988708009626, 291: 8.453348654214325, 292: 8.453708600419027, 293: 8.454068546623727, 294: 8.454428492828427, 295: 8.454788439033129, 296: 8.455148385237829, 297: 8.455508331442529, 298: 8.455868277647228, 299: 8.45622822385193, 300: 8.45658817005663, 301: 8.45694811626133, 302: 8.457308062466032, 303: 8.457668008670732, 304: 8.458027954875432, 305: 8.458387901080131, 306: 8.458747847284833, 307: 8.459107793489533, 308: 8.459467739694233, 309: 8.459827685898935, 310: 8.460187632103635, 311: 8.460547578308335, 312: 8.460907524513036, 313: 8.461267470717736, 314: 8.461627416922436, 315: 8.461987363127136, 316: 8.462347309331838, 317: 8.462707255536538, 318: 8.463067201741238, 319: 8.46342714794594, 320: 8.46378709415064, 321: 8.46414704035534, 322: 8.464506986560039, 323: 8.46486693276474, 324: 8.46522687896944, 325: 8.46558682517414, 326: 8.465946771378842, 327: 8.466306717583542, 328: 8.466666663788242, 329: 8.467026609992944, 330: 8.467386556197644, 331: 8.467746502402344, 332: 8.468106448607044, 333: 8.468466394811745, 334: 8.468826341016445, 335: 8.469186287221145, 336: 8.469546233425847, 337: 8.469906179630547, 338: 8.470266125835247, 339: 8.470626072039947, 340: 8.470986018244648, 341: 8.471345964449348, 342: 8.471705910654048, 343: 8.47206585685875, 344: 8.47242580306345, 345: 8.47278574926815, 346: 8.473145695472851, 347: 8.473505641677551, 348: 8.473865587882251, 349: 8.474225534086951, 350: 8.474585480291653, 351: 8.474945426496353, 352: 8.475305372701053, 353: 8.475665318905754, 354: 8.476025265110454, 355: 8.476385211315154, 356: 8.476745157519854, 357: 8.477105103724556, 358: 8.477465049929256, 359: 8.477824996133956, 360: 8.478184942338657, 361: 8.478544888543357, 362: 8.478904834748057, 363: 8.479264780952759, 364: 8.479624727157459, 365: 8.479984673362159, 366: 8.480344619566859, 367: 8.48070456577156, 368: 8.48106451197626, 369: 8.48142445818096, 370: 8.481784404385662, 371: 8.482144350590362, 372: 8.482504296795062, 373: 8.482864242999762, 374: 8.483224189204464, 375: 8.483584135409163, 376: 8.483944081613863, 377: 8.484304027818565, 378: 8.484663974023265, 379: 8.485023920227965, 380: 8.485383866432667, 381: 8.485743812637367, 382: 8.486103758842066, 383: 8.486463705046766, 384: 8.486823651251468, 385: 8.487183597456168, 386: 8.487543543660868, 387: 8.48790348986557, 388: 8.48826343607027, 389: 8.48862338227497, 390: 8.48898332847967, 391: 8.489343274684371, 392: 8.489703220889071, 393: 8.490063167093771, }, "fcst_lower": { 0: -np.inf, 1: -np.inf, 2: -np.inf, 3: -np.inf, 4: -np.inf, 5: -np.inf, 6: -np.inf, 7: -np.inf, 8: -np.inf, 9: -np.inf, 10: -np.inf, 11: -np.inf, 12: -np.inf, 13: -np.inf, 14: -np.inf, 15: -np.inf, 16: -np.inf, 17: -np.inf, 18: -np.inf, 19: -np.inf, 20: -np.inf, 21: -np.inf, 22: -np.inf, 23: -np.inf, 24: -np.inf, 25: -np.inf, 26: -np.inf, 27: -np.inf, 28: -np.inf, 29: -np.inf, 30: -np.inf, 31: -np.inf, 32: -np.inf, 33: -np.inf, 34: -np.inf, 35: -np.inf, 36: -np.inf, 37: -np.inf, 38: -np.inf, 39: -np.inf, 40: -np.inf, 41: -np.inf, 42: -np.inf, 43: -np.inf, 44: -np.inf, 45: -np.inf, 46: -np.inf, 47: -np.inf, 48: -np.inf, 49: -np.inf, 50: -np.inf, 51: -np.inf, 52: -np.inf, 53: -np.inf, 54: -np.inf, 55: -np.inf, 56: -np.inf, 57: -np.inf, 58: -np.inf, 59: -np.inf, 60: -np.inf, 61: -np.inf, 62: -np.inf, 63: -np.inf, 64: -np.inf, 65: -np.inf, 66: -np.inf, 67: -np.inf, 68: -np.inf, 69: -np.inf, 70: -np.inf, 71: -np.inf, 72: -np.inf, 73: -np.inf, 74: -np.inf, 75: -np.inf, 76: -np.inf, 77: -np.inf, 78: -np.inf, 79: -np.inf, 80: -np.inf, 81: -np.inf, 82: -np.inf, 83: -np.inf, 84: -np.inf, 85: -np.inf, 86: -np.inf, 87: -np.inf, 88: -np.inf, 89: -np.inf, 90: -np.inf, 91: -np.inf, 92: -np.inf, 93: -np.inf, 94: -np.inf, 95: -np.inf, 96: -np.inf, 97: -np.inf, 98: -np.inf, 99: -np.inf, 100: -np.inf, 101: -np.inf, 102: -np.inf, 103: -np.inf, 104: -np.inf, 105: -np.inf, 106: -np.inf, 107: -np.inf, 108: -np.inf, 109: -np.inf, 110: -np.inf, 111: -np.inf, 112: -np.inf, 113: -np.inf, 114: -np.inf, 115: -np.inf, 116: -np.inf, 117: -np.inf, 118: -np.inf, 119: -np.inf, 120: -np.inf, 121: -np.inf, 122: -np.inf, 123: -np.inf, 124: -np.inf, 125: -np.inf, 126: -np.inf, 127: -np.inf, 128: -np.inf, 129: -np.inf, 130: -np.inf, 131: -np.inf, 132: -np.inf, 133: -np.inf, 134: -np.inf, 135: -np.inf, 136: -np.inf, 137: -np.inf, 138: -np.inf, 139: -np.inf, 140: -np.inf, 141: -np.inf, 142: -np.inf, 143: -np.inf, 144: -np.inf, 145: -np.inf, 146: -np.inf, 147: -np.inf, 148: -np.inf, 149: -np.inf, 150: -np.inf, 151: -np.inf, 152: -np.inf, 153: -np.inf, 154: -np.inf, 155: -np.inf, 156: -np.inf, 157: -np.inf, 158: -np.inf, 159: -np.inf, 160: -np.inf, 161: -np.inf, 162: -np.inf, 163: -np.inf, 164: -np.inf, 165: -np.inf, 166: -np.inf, 167: -np.inf, 168: -np.inf, 169: -np.inf, 170: -np.inf, 171: -np.inf, 172: -np.inf, 173: -np.inf, 174: -np.inf, 175: -np.inf, 176: -np.inf, 177: -np.inf, 178: -np.inf, 179: -np.inf, 180: -np.inf, 181: -np.inf, 182: -np.inf, 183: -np.inf, 184: -np.inf, 185: -np.inf, 186: -np.inf, 187: -np.inf, 188: -np.inf, 189: -np.inf, 190: -np.inf, 191: -np.inf, 192: -np.inf, 193: -np.inf, 194: -np.inf, 195: -np.inf, 196: -np.inf, 197: -np.inf, 198: -np.inf, 199: -np.inf, 200: -np.inf, 201: -np.inf, 202: -np.inf, 203: -np.inf, 204: -np.inf, 205: -np.inf, 206: -np.inf, 207: -np.inf, 208: -np.inf, 209: -np.inf, 210: -np.inf, 211: -np.inf, 212: -np.inf, 213: -np.inf, 214: -np.inf, 215: -np.inf, 216: -np.inf, 217: -np.inf, 218: -np.inf, 219: -np.inf, 220: -np.inf, 221: -np.inf, 222: -np.inf, 223: -np.inf, 224: -np.inf, 225: -np.inf, 226: -np.inf, 227: -np.inf, 228: -np.inf, 229: -np.inf, 230: -np.inf, 231: -np.inf, 232: -np.inf, 233: -np.inf, 234: -np.inf, 235: -np.inf, 236: -np.inf, 237: -np.inf, 238: -np.inf, 239: -np.inf, 240: -np.inf, 241: -np.inf, 242: -np.inf, 243: -np.inf, 244: -np.inf, 245: -np.inf, 246: -np.inf, 247: -np.inf, 248: -np.inf, 249: -np.inf, 250: -np.inf, 251: -np.inf, 252: -np.inf, 253: -np.inf, 254: -np.inf, 255: -np.inf, 256: -np.inf, 257: -np.inf, 258: -np.inf, 259: -np.inf, 260: -np.inf, 261: -np.inf, 262: -np.inf, 263: -np.inf, 264: -np.inf, 265: -np.inf, 266: -np.inf, 267: -np.inf, 268: -np.inf, 269: -np.inf, 270: -np.inf, 271: -np.inf, 272: -np.inf, 273: -np.inf, 274: -np.inf, 275: -np.inf, 276: -np.inf, 277: -np.inf, 278: -np.inf, 279: -np.inf, 280: -np.inf, 281: -np.inf, 282: -np.inf, 283: -np.inf, 284: -np.inf, 285: -np.inf, 286: -np.inf, 287: -np.inf, 288: -np.inf, 289: -np.inf, 290: -np.inf, 291: -np.inf, 292: -np.inf, 293: -np.inf, 294: -np.inf, 295: -np.inf, 296: -np.inf, 297: -np.inf, 298: -np.inf, 299: -np.inf, 300: -np.inf, 301: -np.inf, 302: -np.inf, 303: -np.inf, 304: -np.inf, 305: -np.inf, 306: -np.inf, 307: -np.inf, 308: -np.inf, 309: -np.inf, 310: -np.inf, 311: -np.inf, 312: -np.inf, 313: -np.inf, 314: -np.inf, 315: -np.inf, 316: -np.inf, 317: -np.inf, 318: -np.inf, 319: -np.inf, 320: -np.inf, 321: -np.inf, 322: -np.inf, 323: -np.inf, 324: -np.inf, 325: -np.inf, 326: -np.inf, 327: -np.inf, 328: -np.inf, 329: -np.inf, 330: -np.inf, 331: -np.inf, 332: -np.inf, 333: -np.inf, 334: -np.inf, 335: -np.inf, 336: -np.inf, 337: -np.inf, 338: -np.inf, 339: -np.inf, 340: -np.inf, 341: -np.inf, 342: -np.inf, 343: -np.inf, 344: -np.inf, 345: -np.inf, 346: -np.inf, 347: -np.inf, 348: -np.inf, 349: -np.inf, 350: -np.inf, 351: -np.inf, 352: -np.inf, 353: -np.inf, 354: -np.inf, 355: -np.inf, 356: -np.inf, 357: -np.inf, 358: -np.inf, 359: -np.inf, 360: -np.inf, 361: -np.inf, 362: -np.inf, 363: -np.inf, 364: -np.inf, 365: -np.inf, 366: -np.inf, 367: -np.inf, 368: -np.inf, 369: -np.inf, 370: -np.inf, 371: -np.inf, 372: -np.inf, 373: -np.inf, 374: -np.inf, 375: -np.inf, 376: -np.inf, 377: -np.inf, 378: -np.inf, 379: -np.inf, 380: -np.inf, 381: -np.inf, 382: -np.inf, 383: -np.inf, 384: -np.inf, 385: -np.inf, 386: -np.inf, 387: -np.inf, 388: -np.inf, 389: -np.inf, 390: -np.inf, 391: -np.inf, 392: -np.inf, 393: -np.inf, }, "fcst_upper": { 0: np.inf, 1: np.inf, 2: np.inf, 3: np.inf, 4: np.inf, 5: np.inf, 6: np.inf, 7: np.inf, 8: np.inf, 9: np.inf, 10: np.inf, 11: np.inf, 12: np.inf, 13: np.inf, 14: np.inf, 15: np.inf, 16: np.inf, 17: np.inf, 18: np.inf, 19: np.inf, 20: np.inf, 21: np.inf, 22: np.inf, 23: np.inf, 24: np.inf, 25: np.inf, 26: np.inf, 27: np.inf, 28: np.inf, 29: np.inf, 30: np.inf, 31: np.inf, 32: np.inf, 33: np.inf, 34: np.inf, 35: np.inf, 36: np.inf, 37: np.inf, 38: np.inf, 39: np.inf, 40: np.inf, 41: np.inf, 42: np.inf, 43: np.inf, 44: np.inf, 45: np.inf, 46: np.inf, 47: np.inf, 48: np.inf, 49: np.inf, 50: np.inf, 51: np.inf, 52: np.inf, 53: np.inf, 54: np.inf, 55: np.inf, 56: np.inf, 57: np.inf, 58: np.inf, 59: np.inf, 60: np.inf, 61: np.inf, 62: np.inf, 63: np.inf, 64: np.inf, 65: np.inf, 66: np.inf, 67: np.inf, 68: np.inf, 69: np.inf, 70: np.inf, 71: np.inf, 72: np.inf, 73: np.inf, 74: np.inf, 75: np.inf, 76: np.inf, 77: np.inf, 78: np.inf, 79: np.inf, 80: np.inf, 81: np.inf, 82: np.inf, 83: np.inf, 84: np.inf, 85: np.inf, 86: np.inf, 87: np.inf, 88: np.inf, 89: np.inf, 90: np.inf, 91: np.inf, 92: np.inf, 93: np.inf, 94: np.inf, 95: np.inf, 96: np.inf, 97: np.inf, 98: np.inf, 99: np.inf, 100: np.inf, 101: np.inf, 102: np.inf, 103: np.inf, 104: np.inf, 105: np.inf, 106: np.inf, 107: np.inf, 108: np.inf, 109: np.inf, 110: np.inf, 111: np.inf, 112: np.inf, 113: np.inf, 114: np.inf, 115: np.inf, 116: np.inf, 117: np.inf, 118: np.inf, 119: np.inf, 120: np.inf, 121: np.inf, 122: np.inf, 123: np.inf, 124: np.inf, 125: np.inf, 126: np.inf, 127: np.inf, 128: np.inf, 129: np.inf, 130: np.inf, 131: np.inf, 132: np.inf, 133: np.inf, 134: np.inf, 135: np.inf, 136: np.inf, 137: np.inf, 138: np.inf, 139: np.inf, 140: np.inf, 141: np.inf, 142: np.inf, 143: np.inf, 144: np.inf, 145: np.inf, 146: np.inf, 147: np.inf, 148: np.inf, 149: np.inf, 150: np.inf, 151: np.inf, 152: np.inf, 153: np.inf, 154: np.inf, 155: np.inf, 156: np.inf, 157: np.inf, 158: np.inf, 159: np.inf, 160: np.inf, 161: np.inf, 162: np.inf, 163: np.inf, 164: np.inf, 165: np.inf, 166: np.inf, 167: np.inf, 168: np.inf, 169: np.inf, 170: np.inf, 171: np.inf, 172: np.inf, 173: np.inf, 174: np.inf, 175: np.inf, 176: np.inf, 177: np.inf, 178: np.inf, 179: np.inf, 180: np.inf, 181: np.inf, 182: np.inf, 183: np.inf, 184: np.inf, 185: np.inf, 186: np.inf, 187: np.inf, 188: np.inf, 189: np.inf, 190: np.inf, 191: np.inf, 192: np.inf, 193: np.inf, 194: np.inf, 195: np.inf, 196: np.inf, 197: np.inf, 198: np.inf, 199: np.inf, 200: np.inf, 201: np.inf, 202: np.inf, 203: np.inf, 204: np.inf, 205: np.inf, 206: np.inf, 207: np.inf, 208: np.inf, 209: np.inf, 210: np.inf, 211: np.inf, 212: np.inf, 213: np.inf, 214: np.inf, 215: np.inf, 216: np.inf, 217: np.inf, 218: np.inf, 219: np.inf, 220: np.inf, 221: np.inf, 222: np.inf, 223: np.inf, 224: np.inf, 225: np.inf, 226: np.inf, 227: np.inf, 228: np.inf, 229: np.inf, 230: np.inf, 231: np.inf, 232: np.inf, 233: np.inf, 234: np.inf, 235: np.inf, 236: np.inf, 237: np.inf, 238: np.inf, 239: np.inf, 240: np.inf, 241: np.inf, 242: np.inf, 243: np.inf, 244: np.inf, 245: np.inf, 246: np.inf, 247: np.inf, 248: np.inf, 249: np.inf, 250: np.inf, 251: np.inf, 252: np.inf, 253: np.inf, 254: np.inf, 255: np.inf, 256: np.inf, 257: np.inf, 258: np.inf, 259: np.inf, 260: np.inf, 261: np.inf, 262: np.inf, 263: np.inf, 264: np.inf, 265: np.inf, 266: np.inf, 267: np.inf, 268: np.inf, 269: np.inf, 270: np.inf, 271: np.inf, 272: np.inf, 273: np.inf, 274: np.inf, 275: np.inf, 276: np.inf, 277: np.inf, 278: np.inf, 279: np.inf, 280: np.inf, 281: np.inf, 282: np.inf, 283: np.inf, 284: np.inf, 285: np.inf, 286: np.inf, 287: np.inf, 288: np.inf, 289: np.inf, 290: np.inf, 291: np.inf, 292: np.inf, 293: np.inf, 294: np.inf, 295: np.inf, 296: np.inf, 297: np.inf, 298: np.inf, 299: np.inf, 300: np.inf, 301: np.inf, 302: np.inf, 303: np.inf, 304: np.inf, 305: np.inf, 306: np.inf, 307: np.inf, 308: np.inf, 309: np.inf, 310: np.inf, 311: np.inf, 312: np.inf, 313: np.inf, 314: np.inf, 315: np.inf, 316: np.inf, 317: np.inf, 318: np.inf, 319: np.inf, 320: np.inf, 321: np.inf, 322: np.inf, 323: np.inf, 324: np.inf, 325: np.inf, 326: np.inf, 327: np.inf, 328: np.inf, 329: np.inf, 330: np.inf, 331: np.inf, 332: np.inf, 333: np.inf, 334: np.inf, 335: np.inf, 336: np.inf, 337: np.inf, 338: np.inf, 339: np.inf, 340: np.inf, 341: np.inf, 342: np.inf, 343: np.inf, 344: np.inf, 345: np.inf, 346: np.inf, 347: np.inf, 348: np.inf, 349: np.inf, 350: np.inf, 351: np.inf, 352: np.inf, 353: np.inf, 354: np.inf, 355: np.inf, 356: np.inf, 357: np.inf, 358: np.inf, 359: np.inf, 360: np.inf, 361: np.inf, 362: np.inf, 363: np.inf, 364: np.inf, 365: np.inf, 366: np.inf, 367: np.inf, 368: np.inf, 369: np.inf, 370: np.inf, 371: np.inf, 372: np.inf, 373: np.inf, 374: np.inf, 375: np.inf, 376: np.inf, 377: np.inf, 378: np.inf, 379: np.inf, 380: np.inf, 381: np.inf, 382: np.inf, 383: np.inf, 384: np.inf, 385: np.inf, 386: np.inf, 387: np.inf, 388: np.inf, 389: np.inf, 390: np.inf, 391: np.inf, 392: np.inf, 393: np.inf, }, } ) PEYTON_FCST_LINEAR_INVALID_NEG_ONE = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188:
pd.Timestamp("2012-11-06 00:00:00")
pandas.Timestamp
# -*- coding: utf-8 -*- import pytest import numpy as np import pandas as pd from pandas import Timestamp def create_dataframe(tuple_data): """Create pandas df from tuple data with a header.""" return pd.DataFrame.from_records(tuple_data[1:], columns=tuple_data[0]) ### REUSABLE FIXTURES -------------------------------------------------------- @pytest.fixture() def indices_3years(): """Three indices over 3 years.""" return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 100.0, 100.0, 100.0), (Timestamp('2012-02-01 00:00:00'), 101.239553643, 96.60525323799999, 97.776838217), (Timestamp('2012-03-01 00:00:00'), 102.03030533, 101.450821724, 96.59101862), (Timestamp('2012-04-01 00:00:00'), 104.432402661, 98.000263617, 94.491213369), (Timestamp('2012-05-01 00:00:00'), 105.122830333, 95.946873831, 93.731891785), (Timestamp('2012-06-01 00:00:00'), 103.976692567, 97.45914568100001, 90.131064035), (Timestamp('2012-07-01 00:00:00'), 106.56768678200001, 94.788761174, 94.53487522), (Timestamp('2012-08-01 00:00:00'), 106.652151036, 98.478217946, 92.56165627700001), (Timestamp('2012-09-01 00:00:00'), 108.97290730799999, 99.986521241, 89.647230903), (Timestamp('2012-10-01 00:00:00'), 106.20124385700001, 99.237117891, 92.27819603799999), (Timestamp('2012-11-01 00:00:00'), 104.11913898700001, 100.993436318, 95.758970985), (Timestamp('2012-12-01 00:00:00'), 107.76600978, 99.60424011299999, 95.697091336), (Timestamp('2013-01-01 00:00:00'), 98.74350698299999, 100.357120656, 100.24073830200001), (Timestamp('2013-02-01 00:00:00'), 100.46305431100001, 99.98213513200001, 99.499007278), (Timestamp('2013-03-01 00:00:00'), 101.943121499, 102.034291064, 96.043392231), (Timestamp('2013-04-01 00:00:00'), 99.358987741, 106.513055039, 97.332012817), (Timestamp('2013-05-01 00:00:00'), 97.128074038, 106.132168479, 96.799806436), (Timestamp('2013-06-01 00:00:00'), 94.42944162, 106.615734964, 93.72086654600001), (Timestamp('2013-07-01 00:00:00'), 94.872365481, 103.069773446, 94.490515359), (Timestamp('2013-08-01 00:00:00'), 98.239415397, 105.458081805, 93.57271149299999), (Timestamp('2013-09-01 00:00:00'), 100.36774827100001, 106.144579258, 90.314524375), (Timestamp('2013-10-01 00:00:00'), 100.660205114, 101.844838294, 88.35136848399999), (Timestamp('2013-11-01 00:00:00'), 101.33948384799999, 100.592230114, 93.02874928899999), (Timestamp('2013-12-01 00:00:00'), 101.74876982299999, 102.709038791, 93.38277933200001), (Timestamp('2014-01-01 00:00:00'), 101.73439491, 99.579700011, 104.755837919), (Timestamp('2014-02-01 00:00:00'), 100.247760523, 100.76732961, 100.197855834), (Timestamp('2014-03-01 00:00:00'), 102.82080245600001, 99.763171909, 100.252537549), (Timestamp('2014-04-01 00:00:00'), 104.469889684, 96.207920184, 98.719797067), (Timestamp('2014-05-01 00:00:00'), 105.268899775, 99.357641836, 99.99786671), (Timestamp('2014-06-01 00:00:00'), 107.41649204299999, 100.844974811, 96.463821506), (Timestamp('2014-07-01 00:00:00'), 110.146087435, 102.01075029799999, 94.332755083), (Timestamp('2014-08-01 00:00:00'), 109.17068484100001, 101.562418115, 91.15410351700001), (Timestamp('2014-09-01 00:00:00'), 109.872892919, 101.471759564, 90.502291475), (Timestamp('2014-10-01 00:00:00'), 108.508436998, 98.801947543, 93.97423224399999), (Timestamp('2014-11-01 00:00:00'), 109.91248118, 97.730489099, 90.50638234200001), (Timestamp('2014-12-01 00:00:00'), 111.19756703600001, 99.734704555, 90.470418612), ], ).set_index(0, drop=True) @pytest.fixture() def weights_3years(): return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2013-01-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2014-01-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), ], ).set_index(0, drop=True) @pytest.fixture() def weights_3years_start_feb(weights_3years): return weights_3years.shift(1, freq='MS') @pytest.fixture() def weight_shares_3years(): return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 0.489537029, 0.21362007800000002, 0.29684289199999997), (Timestamp('2013-01-01 00:00:00'), 0.535477885, 0.147572705, 0.31694941), (Timestamp('2014-01-01 00:00:00'), 0.512055362, 0.1940439, 0.293900738), ], ).set_index(0, drop=True) @pytest.fixture() def weights_shares_start_feb(weight_shares_3years): return weight_shares_3years.shift(1, freq='MS') @pytest.fixture() def indices_1year(indices_3years): return indices_3years.loc['2012', :] @pytest.fixture() def weights_1year(weights_3years): return weights_3years.loc['2012', :] @pytest.fixture() def indices_6months(indices_3years): return indices_3years.loc['2012-Jan':'2012-Jun', :] @pytest.fixture() def weights_6months(weights_3years): return weights_3years.loc['2012', :] @pytest.fixture() def indices_transposed(indices_3years): return indices_3years.T @pytest.fixture() def weights_transposed(weights_3years): return weights_3years.T @pytest.fixture() def indices_missing(indices_3years): indices_missing = indices_3years.copy() change_to_nans = [ ('2012-06', 2), ('2012-12', 3), ('2013-10', 2), ('2014-07', 1), ] for sl in change_to_nans: indices_missing.loc[sl] = np.nan return indices_missing @pytest.fixture() def indices_missing_transposed(indices_missing): return indices_missing.T ### AGGREGATION FIXTURES ----------------------------------------------------- @pytest.fixture() def aggregate_outcome_3years(): return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 100.0), (Timestamp('2012-02-01 00:00:00'), 99.22169156), (Timestamp('2012-03-01 00:00:00'), 100.29190240000001), (Timestamp('2012-04-01 00:00:00'), 100.10739720000001), (Timestamp('2012-05-01 00:00:00'), 99.78134264), (Timestamp('2012-06-01 00:00:00'), 98.47443727), (Timestamp('2012-07-01 00:00:00'), 100.4796172), (Timestamp('2012-08-01 00:00:00'), 100.7233716), (Timestamp('2012-09-01 00:00:00'), 101.31654509999998), (Timestamp('2012-10-01 00:00:00'), 100.5806089), (Timestamp('2012-11-01 00:00:00'), 100.9697697), (Timestamp('2012-12-01 00:00:00'), 102.4399192), (Timestamp('2013-01-01 00:00:00'), 99.45617890000001), (Timestamp('2013-02-01 00:00:00'), 100.08652959999999), (Timestamp('2013-03-01 00:00:00'), 100.0866599), (Timestamp('2013-04-01 00:00:00'), 99.7722843), (Timestamp('2013-05-01 00:00:00'), 98.35278839), (Timestamp('2013-06-01 00:00:00'), 96.00322344), (Timestamp('2013-07-01 00:00:00'), 95.96105198), (Timestamp('2013-08-01 00:00:00'), 97.82558448), (
Timestamp('2013-09-01 00:00:00')
pandas.Timestamp
import requests import pandas as pd import json def load_data(): stations = [{'name': '<NAME>' , 'id': 97280}, {'name': '<NAME>' , 'id': 97100}] df = pd.DataFrame() for station in stations: station_url = "https://opendata-download-metobs.smhi.se/api/version/latest/parameter/14/station/{0}/period/latest-months/data.json".format(station['id']) r = requests.get(url = station_url) data = r.json() station_df = pd.DataFrame(data['value']) station_df['date'] = pd.to_datetime(station_df['date'], unit='ms') station_df = station_df.set_index('date') station_df.index =
pd.to_datetime(station_df.index)
pandas.to_datetime
# coding: utf-8 # In[1]: get_ipython().system('pip install gensim') # In[2]: import pandas as pd import numpy as np # In[3]: from gensim.models import KeyedVectors WORD2VEC_PATH = 'Word2Vec/glove.w2vformat.6B.100d.txt' wordembedding = KeyedVectors.load_word2vec_format(WORD2VEC_PATH) # In[4]: #CELL FOR TESTING DATAFRAME STRUCTURE list = ["this", "that", "man", "woman", "apple", "pear", "C"] new_list = [] #Clean words that are not in vocabulary for word in list: if word in wordembedding.vocab: new_list.append(word) print(list) print(new_list) list = new_list length = len(list) similarities_array = np.zeros(shape=(length, length)) i = 0 for word in list: similarities = [] for word2 in list: similarities.append(wordembedding.similarity(word, word2)) similarities_array[i] = similarities i += 1 similarities_df = pd.DataFrame(similarities_array, columns=list, index=list) print(similarities_df["this"]["woman"]) print(similarities_df) # In[5]: #CELL FOR CHECKING VOCABULARY emotions = ["happy", "sad", "angry", "relaxed"] existing_set = set() not_existing_set = set() for emotion in emotions: emotion_df = pd.read_csv("dataframes/" + emotion + "_unigram_data.csv") # read csv list = emotion_df['word'].tolist() # get words for word in list: if word in wordembedding.vocab: existing_set.add(word) else: not_existing_set.add(word) print(len(existing_set)) print(existing_set) print(len(not_existing_set)) print(not_existing_set) # In[17]: emotions = ["happy", "sad", "angry", "relaxed"] for emotion in emotions: emotion_df =
pd.read_csv("dataframes/" + emotion + "_unigram_data.csv")
pandas.read_csv
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import json import logging import os import pickle import numpy as np import pandas as pd from sklearn.externals import joblib import azureml.automl.core from azureml.automl.core.shared import logging_utilities, log_server from azureml.telemetry import INSTRUMENTATION_KEY from inference_schema.schema_decorators import input_schema, output_schema from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType from inference_schema.parameter_types.pandas_parameter_type import PandasParameterType input_sample = pd.DataFrame({"age": pd.Series(["24"], dtype="int64"), "job": pd.Series(["technician"], dtype="object"), "marital": pd.Series(["single"], dtype="object"), "education": pd.Series(["university.degree"], dtype="object"), "default": pd.Series(["no"], dtype="object"), "housing": pd.Series(["no"], dtype="object"), "loan": pd.Series(["yes"], dtype="object"), "contact": pd.Series(["cellular"], dtype="object"), "month": pd.Series(["jul"], dtype="object"), "duration": pd.Series(["109"], dtype="int64"), "campaign": pd.Series(["3"], dtype="int64"), "pdays": pd.Series(["999"], dtype="int64"), "previous": pd.Series(["0"], dtype="int64"), "poutcome": pd.Series(["nonexistent"], dtype="object"), "emp.var.rate": pd.Series(["1.4"], dtype="float64"), "cons.price.idx": pd.Series(["93.918"], dtype="float64"), "cons.conf.idx":
pd.Series(["-42.7"], dtype="float64")
pandas.Series
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd import mars.dataframe as md import mars.tensor as mt from mars.tests.core import TestBase, ExecutorForTest class Test(TestBase): def setUp(self): super().setUp() self.executor = ExecutorForTest() def testSetIndex(self): df1 = pd.DataFrame([[1, 3, 3], [4, 2, 6], [7, 8, 9]], index=['a1', 'a2', 'a3'], columns=['x', 'y', 'z']) df2 = md.DataFrame(df1, chunk_size=2) expected = df1.set_index('y', drop=True) df3 = df2.set_index('y', drop=True) pd.testing.assert_frame_equal( expected, self.executor.execute_dataframe(df3, concat=True)[0]) expected = df1.set_index('y', drop=False) df4 = df2.set_index('y', drop=False) pd.testing.assert_frame_equal( expected, self.executor.execute_dataframe(df4, concat=True)[0]) def testILocGetItem(self): df1 = pd.DataFrame([[1, 3, 3], [4, 2, 6], [7, 8, 9]], index=['a1', 'a2', 'a3'], columns=['x', 'y', 'z']) df2 = md.DataFrame(df1, chunk_size=2) # plain index expected = df1.iloc[1] df3 = df2.iloc[1] pd.testing.assert_series_equal( expected, self.executor.execute_dataframe(df3, concat=True, check_series_name=False)[0]) # plain index on axis 1 expected = df1.iloc[:2, 1] df4 = df2.iloc[:2, 1] pd.testing.assert_series_equal( expected, self.executor.execute_dataframe(df4, concat=True)[0]) # slice index expected = df1.iloc[:, 2:4] df5 = df2.iloc[:, 2:4] pd.testing.assert_frame_equal( expected, self.executor.execute_dataframe(df5, concat=True)[0]) # plain fancy index expected = df1.iloc[[0], [0, 1, 2]] df6 = df2.iloc[[0], [0, 1, 2]] pd.testing.assert_frame_equal( expected, self.executor.execute_dataframe(df6, concat=True)[0]) # plain fancy index with shuffled order expected = df1.iloc[[0], [1, 2, 0]] df7 = df2.iloc[[0], [1, 2, 0]] pd.testing.assert_frame_equal( expected, self.executor.execute_dataframe(df7, concat=True)[0]) # fancy index expected = df1.iloc[[1, 2], [0, 1, 2]] df8 = df2.iloc[[1, 2], [0, 1, 2]] pd.testing.assert_frame_equal( expected, self.executor.execute_dataframe(df8, concat=True)[0]) # fancy index with shuffled order expected = df1.iloc[[2, 1], [1, 2, 0]] df9 = df2.iloc[[2, 1], [1, 2, 0]] pd.testing.assert_frame_equal( expected, self.executor.execute_dataframe(df9, concat=True)[0]) # one fancy index expected = df1.iloc[[2, 1]] df10 = df2.iloc[[2, 1]] pd.testing.assert_frame_equal( expected, self.executor.execute_dataframe(df10, concat=True)[0]) # plain index expected = df1.iloc[1, 2] df11 = df2.iloc[1, 2] self.assertEqual( expected, self.executor.execute_dataframe(df11, concat=True)[0]) # bool index array expected = df1.iloc[[True, False, True], [2, 1]] df12 = df2.iloc[[True, False, True], [2, 1]] pd.testing.assert_frame_equal( expected, self.executor.execute_dataframe(df12, concat=True)[0]) # bool index array on axis 1 expected = df1.iloc[[2, 1], [True, False, True]] df14 = df2.iloc[[2, 1], [True, False, True]] pd.testing.assert_frame_equal( expected, self.executor.execute_dataframe(df14, concat=True)[0]) # bool index expected = df1.iloc[[True, False, True], [2, 1]] df13 = df2.iloc[md.Series([True, False, True], chunk_size=1), [2, 1]] pd.testing.assert_frame_equal( expected, self.executor.execute_dataframe(df13, concat=True)[0]) # test Series data = pd.Series(np.arange(10)) series = md.Series(data, chunk_size=3).iloc[:3] pd.testing.assert_series_equal( self.executor.execute_dataframe(series, concat=True)[0], data.iloc[:3]) series = md.Series(data, chunk_size=3).iloc[4] self.assertEqual( self.executor.execute_dataframe(series, concat=True)[0], data.iloc[4]) series = md.Series(data, chunk_size=3).iloc[[2, 3, 4, 9]] pd.testing.assert_series_equal( self.executor.execute_dataframe(series, concat=True)[0], data.iloc[[2, 3, 4, 9]]) series = md.Series(data, chunk_size=3).iloc[[4, 3, 9, 2]] pd.testing.assert_series_equal( self.executor.execute_dataframe(series, concat=True)[0], data.iloc[[4, 3, 9, 2]]) series = md.Series(data).iloc[5:] pd.testing.assert_series_equal( self.executor.execute_dataframe(series, concat=True)[0], data.iloc[5:]) # bool index array selection = np.random.RandomState(0).randint(2, size=10, dtype=bool) series = md.Series(data).iloc[selection] pd.testing.assert_series_equal( self.executor.execute_dataframe(series, concat=True)[0], data.iloc[selection]) # bool index series = md.Series(data).iloc[md.Series(selection, chunk_size=4)] pd.testing.assert_series_equal( self.executor.execute_dataframe(series, concat=True)[0], data.iloc[selection]) def testILocSetItem(self): df1 = pd.DataFrame([[1, 3, 3], [4, 2, 6], [7, 8, 9]], index=['a1', 'a2', 'a3'], columns=['x', 'y', 'z']) df2 = md.DataFrame(df1, chunk_size=2) # plain index expected = df1 expected.iloc[1] = 100 df2.iloc[1] = 100 pd.testing.assert_frame_equal( expected, self.executor.execute_dataframe(df2, concat=True)[0]) # slice index expected.iloc[:, 2:4] = 1111 df2.iloc[:, 2:4] = 1111 pd.testing.assert_frame_equal( expected, self.executor.execute_dataframe(df2, concat=True)[0]) # plain fancy index expected.iloc[[0], [0, 1, 2]] = 2222 df2.iloc[[0], [0, 1, 2]] = 2222 pd.testing.assert_frame_equal( expected, self.executor.execute_dataframe(df2, concat=True)[0]) # fancy index expected.iloc[[1, 2], [0, 1, 2]] = 3333 df2.iloc[[1, 2], [0, 1, 2]] = 3333 pd.testing.assert_frame_equal( expected, self.executor.execute_dataframe(df2, concat=True)[0]) # plain index expected.iloc[1, 2] = 4444 df2.iloc[1, 2] = 4444 pd.testing.assert_frame_equal( expected, self.executor.execute_dataframe(df2, concat=True)[0]) # test Series data = pd.Series(np.arange(10)) series = md.Series(data, chunk_size=3) series.iloc[:3] = 1 data.iloc[:3] = 1 pd.testing.assert_series_equal( self.executor.execute_dataframe(series, concat=True)[0], data) series.iloc[4] = 2 data.iloc[4] = 2 pd.testing.assert_series_equal( self.executor.execute_dataframe(series, concat=True)[0], data) series.iloc[[2, 3, 4, 9]] = 3 data.iloc[[2, 3, 4, 9]] = 3 pd.testing.assert_series_equal( self.executor.execute_dataframe(series, concat=True)[0], data) series.iloc[5:] = 4 data.iloc[5:] = 4 pd.testing.assert_series_equal( self.executor.execute_dataframe(series, concat=True)[0], data) def testLocGetItem(self): rs = np.random.RandomState(0) # index and columns are labels raw1 = pd.DataFrame(rs.randint(10, size=(5, 4)), index=['a1', 'a2', 'a3', 'a4', 'a5'], columns=['a', 'b', 'c', 'd']) # columns are labels raw2 = raw1.copy() raw2.reset_index(inplace=True, drop=True) # columns are non unique and monotonic raw3 = raw1.copy() raw3.columns = ['a', 'b', 'b', 'd'] # columns are non unique and non monotonic raw4 = raw1.copy() raw4.columns = ['b', 'a', 'b', 'd'] # index that is timestamp raw5 = raw1.copy() raw5.index = pd.date_range('2020-1-1', periods=5) df1 = md.DataFrame(raw1, chunk_size=2) df2 = md.DataFrame(raw2, chunk_size=2) df3 = md.DataFrame(raw3, chunk_size=2) df4 = md.DataFrame(raw4, chunk_size=2) df5 = md.DataFrame(raw5, chunk_size=2) df = df2.loc[3, 'b'] result = self.executor.execute_tensor(df, concat=True)[0] expected = raw2.loc[3, 'b'] self.assertEqual(result, expected) df = df1.loc['a3', 'b'] result = self.executor.execute_tensor(df, concat=True, check_shape=False)[0] expected = raw1.loc['a3', 'b'] self.assertEqual(result, expected) df = df2.loc[1:4, 'b':'d'] result = self.executor.execute_dataframe(df, concat=True)[0] expected = raw2.loc[1:4, 'b': 'd'] pd.testing.assert_frame_equal(result, expected) df = df2.loc[:4, 'b':] result = self.executor.execute_dataframe(df, concat=True)[0] expected = raw2.loc[:4, 'b':] pd.testing.assert_frame_equal(result, expected) # slice on axis index whose index_value does not have value df = df1.loc['a2':'a4', 'b':] result = self.executor.execute_dataframe(df, concat=True)[0] expected = raw1.loc['a2':'a4', 'b':] pd.testing.assert_frame_equal(result, expected) df = df2.loc[:, 'b'] result = self.executor.execute_dataframe(df, concat=True)[0] expected = raw2.loc[:, 'b'] pd.testing.assert_series_equal(result, expected) # 'b' is non-unique df = df3.loc[:, 'b'] result = self.executor.execute_dataframe(df, concat=True)[0] expected = raw3.loc[:, 'b'] pd.testing.assert_frame_equal(result, expected) # 'b' is non-unique, and non-monotonic df = df4.loc[:, 'b'] result = self.executor.execute_dataframe(df, concat=True)[0] expected = raw4.loc[:, 'b'] pd.testing.assert_frame_equal(result, expected) # label on axis 0 df = df1.loc['a2', :] result = self.executor.execute_dataframe(df, concat=True)[0] expected = raw1.loc['a2', :] pd.testing.assert_series_equal(result, expected) # label-based fancy index df = df2.loc[[3, 0, 1], ['c', 'a', 'd']] result = self.executor.execute_dataframe(df, concat=True)[0] expected = raw2.loc[[3, 0, 1], ['c', 'a', 'd']] pd.testing.assert_frame_equal(result, expected) # label-based fancy index, asc sorted df = df2.loc[[0, 1, 3], ['a', 'c', 'd']] result = self.executor.execute_dataframe(df, concat=True)[0] expected = raw2.loc[[0, 1, 3], ['a', 'c', 'd']] pd.testing.assert_frame_equal(result, expected) # label-based fancy index in which non-unique exists selection = rs.randint(2, size=(5,), dtype=bool) df = df3.loc[selection, ['b', 'a', 'd']] result = self.executor.execute_dataframe(df, concat=True)[0] expected = raw3.loc[selection, ['b', 'a', 'd']] pd.testing.assert_frame_equal(result, expected) df = df3.loc[md.Series(selection), ['b', 'a', 'd']] result = self.executor.execute_dataframe(df, concat=True)[0] expected = raw3.loc[selection, ['b', 'a', 'd']]
pd.testing.assert_frame_equal(result, expected)
pandas.testing.assert_frame_equal
# -*- coding: utf-8 -*- ''' :author <NAME> :licence MIT ''' #load packages import numpy as np import pandas as pd import os from datetime import datetime from collections import defaultdict #for plotting import plotly import plotly.graph_objs as go #pickle for saving - obsolete #import pickle as pkl class Zonar(): def read_raw(self, fname): """ reads in the raw acoustic data from the Zonar dive data Parameters ---------- fname : string Path to Zonar raw file Returns ------- bfile - numpy array of the raw data """ try: print('\nReading file %s...'%os.path.split(fname)[1]) bfile = np.fromfile(fname, dtype='uint8') except FileExistsError: print("No such file") return bfile def read_header(self, bfile, k=1): """ reads in the header data of the raw file. Parameters ---------- bfile : array Numpy array from raw zonar data as created by Zonar.read_raw() k : int, optional Starting position of the header in the file. The default is 1. Returns ------- int PID - Packet ID for the FOLLOWING (!) packet k : int Ending position of the header in the file. head : pandas DataFrame Datatframe containing the header information. Header contains: Name Description Format ---- ----------- ------- ver software version uint8 (1 byte) size header size uint8 (1 byte) pid Packet ID for the following packet uint8 (1 byte) nbytes Size of the following packet i4 (4 bytes) chksum Checksum for the following packet i4 (4 bytes) """ # define the header datatypes to get the information and the # correct size dthead = np.dtype([('ver','uint8'), ('size', 'uint8'), ('pid', 'uint8'), ('nbytes','i4'), ('chksum','i4')]) # reade the header information into pandas dataframe from the buffered # np array head = pd.DataFrame(np.frombuffer(bfile[k:k+dthead.itemsize],dthead)) # define the positon in the file after the header k= k + dthead.itemsize return head['pid'], k, head def read_start(self, bfile, k): """ Reads the Dive Start packet (56 bytes of info). Contains the Configuration of the Zonar for this dive. Parameters ---------- bfile : array Numpy array from raw zonar data as created by Zonar.read_raw() k : int, optional Starting position of Dive info in the file. This position is provided by the previously read in part. Returns ------- k : int Ending position of the Dive configuration information in the file. start : pandas DataFrame Dive Starting information, includes information shared by both frequencies: Name Format Description ---- ------ ----------- ver uint8 packet version diveNo i2 Dive number (from glider) sprayTm i4 Glider Time [s] (from glider) zooTm i4 Zonar Time [s] nPings uint8 Number of pings in each Burst dtBurst uint8 Number of seconds between bursts, if in continuous mode warmup i2 time to warmup the electronics before transmit [ms] tbin i2 time to average data into each bin [ms] barker uint8 TRUE if use barker-code, else straight freq nBit uint8 Number of bits in barker code freqstart : pandas DataFrame Frequency specific Dive Starting information: Name Format Description ---- ------ ----------- freq i2 nominal frequency [kHz] pulse i2 transmit pulse duration [ms] blank i2 time between end of transmit and the first scan [ms] dt i2 period between scans [ms] e.g. dt=200 ms -> 5 kHz sample rate tScan i2 duration to take scans [ms], i.e. tWait = tPing tPing i2 time interval between pings [ms] nScan i2 number of a/d scans taken, i.e. nScan = floor(1000 * tScan / dt) tWait i2 time before next scan [ms], i.e. tWait = tPing - nScan * dt - blank - pulse nBin i2 number of scans to average per bin, i.e. nBin = round(1000 * tBin / dt) gn i2 number of a/d counts per 1 dB re V """ csync = int('aa', 16) # 0xAA = expected sync character sync = bfile[k] #read the sync position k += 1 if sync == csync: #start dtstart = np.dtype([('ver', 'uint8'), ('diveNo','i2'), ('sprayTm', 'i4'), ('zooTm','i4'), ('nPings', 'uint8'), ('dtBurst', 'uint8'), ('warmup', 'i2'), ('tbin', 'i2'), ('barker', 'uint8'), ('nBit', 'uint8')]) start = pd.DataFrame(np.frombuffer(bfile[k:k+dtstart.itemsize],dtstart)) k = k + dtstart.itemsize dtfreq = np.dtype([('freq', 'i2'), ('pulse', 'i2'), ('blank', 'i2'), ('dt', 'i2'), ('tScan', 'i2'), ('tPing', 'i2'), ('nScan', 'i2'), ('tWait', 'i2'), ('nBin', 'i2'), ('gn', 'i2')]) freqstart = pd.DataFrame() for i in range(0,2): freqstart = freqstart.append(pd.DataFrame(np.frombuffer(bfile[k:k+dtfreq.itemsize],dtfreq)), ignore_index=True) k=k+dtfreq.itemsize else: k = -1 start = 0 freqstart = 0 return k, start, freqstart def read_burst(self, bfile, k): """ reads one selected burst header and data Parameters ---------- bfile : array Numpy array from raw zonar data as created by Zonar.read_raw() k : int, optional Starting position of Dive info in the file. This position is provided by the previously read in part. Returns ------- k : int Ending position of the Dive configuration information in the file. burst : pandas DataFrame Burst header data (12 bytes of header data): Name Format Description ---- ------ ----------- ver uint8 Allows for future versions of the data packet, set to 0 beam uint8 Frequency ID with 1 = 200 kHz, 2= 1000 kHz, refer to dive start package for exact frequency nP uint8 Number of pings in the burst nS i2 Number of scans per Ping press i2 pressure from glider [LSB, 0.1 dBar] with 1 LSB = 0.1 dBar zooTm i4 time stamp: can be synched with glider time using dive_start info [s] (unix epoch time) rs : pandas DataFrame Burst data: 2 bytes for each nP * nS. Sequential per ping (nS for ping number 1, nS for ping number 2, ....) """ csync = int('aa', 16) # 0xAA = expected sync character sync = bfile[k] #sync char found k = k + 1 if csync == sync: #read burst header data dtburst = np.dtype([('ver', 'uint8'), ('beam', 'uint8'), ('nP', 'uint8'), ('nS', 'i2'), ('press', 'i2'), ('zooTm', 'i4'),]) #get burst data burst = pd.DataFrame(np.frombuffer(bfile[k : k + dtburst.itemsize], dtburst)) k = k + dtburst.itemsize nB = burst['nP'] * burst['nS'] #total scans over all pings rs = pd.DataFrame(np.frombuffer(bfile[k : int(k + nB[0] * 2)], dtype='i2', count=nB[0])) ping_lst = range(0,burst['nP'][0]) rs['Ping'] = np.repeat(ping_lst, burst['nS'][0]) k = k + nB[0] * 2 else: k = -1 burst = 0 rs = 0 return k, burst, rs def read_avg(self, bfile,k): """ reads the average packet data Parameters ---------- bfile : array Numpy array from raw zonar data as created by Zonar.read_raw() k : int, optional Starting position of average pacet data in the file. This position is provided by the previously read in part. Returns ------- k : int Ending position of the Dive configuration information in the file. burst : pandas DataFrame Burst header data (12 bytes of header data): Name Format Description ---- ------ ----------- ver uint8 Allows for future versions of the data packet, set to 0 beam uint8 Frequency ID with 1 = 200 kHz, 2= 1000 kHz, refer to dive start package for exact frequency nBin uint8 Number of averaged bins = floor(total number of Scans / scans per bin) press i2 pressure from glider [LSB, 0.1 dBar] with 1 LSB = 0.1 dBar zooTm i4 time stamp: can be synched with glider time using dive_start info [s] (unix epoch time) rs : pandas DataFrame Burst data: 2 bytes for each averaged return data """ csync = int('aa', 16) # 0xAA = expected sync character sync = bfile[k]; k += 1 #sync char found if sync == csync: # match!!! continue dtavg = np.dtype([('ver', 'uint8'), ('beam', 'uint8'), ('nBin', 'uint8'), ('press','i2'), ('zooTm','i4')]) avg = pd.DataFrame(np.frombuffer(bfile[k : k + dtavg.itemsize], dtavg)) k = k + dtavg.itemsize rs = np.frombuffer(bfile[k : int(k + avg['nBin'][0] * 2)], dtype='i2', count=avg['nBin'][0]) k = k + avg['nBin'][0] * 2 + 2 else: k = -1 avg = 0 rs = 0 return k, avg, rs def init_cal(self, **kwargs): """ intializes original calibration values !!!These need to be corrected for the latest calibration values!!! Parameters ---------- **kwargs : np array of size 2 Any calibration values can be overwritten: Gain float calibration gain Noise float Noise CalNoise float calibration noise sl float Source level tau float transmit pulse duration [ms] beam_deg float beam angle in degrees alpha float anntenuation coefficient cspeed float sound speed in surrounding medium [m/s] gn int Number of a/d counts per dB re V Returns ------- cal : defaultdict Gain float calibration gain Noise float Noise CalNoise float calibration noise sl float Source level tau float transmit pulse duration [ms] beam_deg float beam angle in degrees alpha float anntenuation coefficient cspeed float sound speed in surrounding medium [m/s] gn int Number of a/d counts per dB re V beam_rad float beam angle in radians """ cal = defaultdict(list) cal["Gain"] = [54, 54] #system gain cal["TS_Gain"] = [0,0] #calibraiton gain cal["Noise"] = [27, 39] #noise cal["CalNoise"] = [31, 37] #calibration noise cal["sl"] = [103, 113] #source elvel cal["tau"] = [0.006, 0.006] #pulse duration [s] cal["beam_deg"] = [9.8, 4] #beam angle cal["alpha"] = [0.054, 0.38] #attenuation coefficient cal["cspeed"] = 1500 #sound speed in surrounding medium cal['gn'] = [40,40] cal.update(kwargs) #update with provided values cal["beam_rad"] = list(np.array(cal["beam_deg"]) * np.pi / 180) #convert beam angle from degrees to radians return cal def update_cal(self, raws, start, cal, **kwargs): """ updates calibration data in the raw output Parameters ---------- raws : pandas DataFrame raw output see read_one_dive() for details start : pandas DataFrame read_start output() cal : defaultdict init_cal output **kwargs : np array of size 2 Any calibration values can be overwritten: Gain float calibration gain Noise float Noise CalNoise float calibration noise sl float Source level tau float transmit pulse duration [ms] beam_deg float beam angle in degrees alpha float anntenuation coefficient cspeed float sound speed in surrounding medium [m/s] gn int Number of a/d counts per dB re V Returns ------- cal : defaultdict Calibration output, see cal_init() for details raws : pandas DataFrame raw data output see read_one_dive() for details """ #update the cal values provided cal.update(kwargs) #update raw data raws['Frequency'] = np.array(start['freq'])[raws['beam']-1] raws['Gain'] = np.array(cal['Gain'])[raws['beam']-1] raws['Noise'] = np.array(cal['Noise'])[raws['beam']-1] raws['CalNoise'] = np.array(cal['CalNoise'])[raws['beam']-1] raws['sl'] = np.array(cal['sl'])[raws['beam']-1] raws['tau'] = np.array(cal['tau'])[raws['beam']-1] raws['beam_deg'] = np.array(cal['beam_deg'])[raws['beam']-1] raws['beam_rad'] = np.array(cal['beam_rad'])[raws['beam']-1] raws['alpha'] = np.array(cal['alpha'])[raws['beam']-1] raws['c'] = cal['cspeed'] raws['nomwl'] = raws['c'] / raws['Frequency'] raws['k'] = 2 * np.pi / raws['nomwl'] raws['a'] = 1.6 / ( raws['k'] * np.sin(raws['beam_rad']/2))#active area raws['psiD'] = 10 * np.log10( 5.78 / ( ( raws['k'] * raws['a'] ) ** 2))#equivalent beam angle in steradians #update depth with new cal data dz,raws = self.add_depth(start, raws) #update Sv with the new claibration data raws = self.get_Sv(start, raws) return cal, raws def read_one_dive(self, bfile, **kwargs): """ reads one full dive Parameters ---------- bfile : array Numpy array from raw zonar data as created by Zonar.read_raw() **kwargs : TYPE kwargs can be calibration values: Gain - calibration gain, defaults 54, 43 Noise, noise defaults to 27, 39 CalNoise, calibration noise defaults to 31, 37 sl, source level, defaults to 103, 113 tau, pulse duration, defaults to 0.006, 0.006 beam_deg, beam angle defaults to 9.8, 4 alpha, attenuation coefficient, defaults to 0.054, 0.38 cspeed, sound speed in surrounding medium, defaults to 1500 gn, number of a/d counts per dB re V, defaults to 40, 40 Returns ------- raws : pandas DataFrame Raw data including header and calibration information: Name Format Description ---- ------ ----------- Raw uint8 Raw count data Ping int Ping number dive i2 Dive number (from glider) beam uint8 Frequency ID with 1 = 200 kHz, 2= 1000 kHz, refer to dive start package for exact frequency nBurst uint8 Number of burst press i2 pressure from glider [LSB, 0.1 dBar] with 1 LSB = 0.1 dBar zooTm i4 time stamp: can be synched with glider time using dive_start info [s] (unix epoch time) sprayTm i4 Glider Time [s] (from glider) nP uint8 Number of pings in the burst nS i2 number of a/d scans taken, i.e. nScan = floor(1000 * tScan / dt) Frequency i2 nominal frequency [kHz] Gain float calibration gain Noise float Noise CalNoise float calibration noise sl float Source level tau float transmit pulse duration [ms] beam_deg float beam angle in degrees beam_rad float beam angle in radians alpha float anntenuation coefficient c float sound speed in surrounding medium [m/s] nomwl float nominal wave length, lambda = c / Frequency [m] k float wave number, 2pi / lambda a float active area 1.6 * (k / sin(beam_rad/2)) psiD float equivalent beam area 10 * log10 (5.78 / ((ka)**2)) nScan i2 number of a/d scans taken, i.e. nScan = floor(1000 * tScan / dt) dt i2 period between scans [ms] e.g. dt=200 ms -> 5 kHz sample rate blank i2 time between end of transmit and the first scan [ms] tScan i2 duration to take scans [ms], i.e. tWait = tPing tPing i2 time interval between pings [ms] tWait i2 time before next scan [ms], i.e. tWait = tPing - nScan * dt - blank - pulse dz float distance from transducer with the center of first scan being z0 = blank + tau * 1000 / 2 * c / 2 / 1000 , dz becomes z0 + nscan * c / 2 / 1000 * dt * 0.001 z float pressure [dBar] or depth [m] with the pressure in dBar zb = press/10, z becomes z = zb + dz * cos(17 * pi / 180), assuming a glider tilt angle of 17 degrees start_time date %Y-%m-%d %H:%M:%S of Glider time, sprayTm dive_time date %Y-%m-%d %H:%M:%S of zooTm, Zonar Time avgRaws : pandas DataFrame Averaged Data: 0 int chksum dive int Dive number beam uint8 Frequency ID with 1 = 200 kHz, 2= 1000 kHz, refer to dive start package for exact frequency nAvg int Number of averaged bin nBin uint8 Number of averaged bins = floor(total number of Scans / scans per bin) zooTm i4 time stamp: can be synched with glider time using dive_start info [s] (unix epoch time) sprayTm i4 Glider Time [s] (from glider) nP uint8 Number of pings in the burst freqstarts : pandas DataFrame Frequency specific information: freq int Nominal Frequency [kHz] pulse int Pulse duration [ms] blank int blanking time [ms] dt int period between scans [ms] e.g. dt=200 ms -> 5 kHz sample rate tPing i2 time interval between pings [ms] tScan i2 duration to take scans [ms], i.e. tWait = tPing tWait i2 time before next scan [ms], i.e. tWait = tPing - nScan * dt - blank - pulse nBin uint8 Number of averaged bins = floor(total number of Scans / scans per bin) gn int Number of a/d counts per dB re V cal : defaultdict Calibration information: Gain float calibration gain Noise float Noise CalNoise float calibration noise sl float Source level tau float transmit pulse duration [ms] beam_deg float beam angle in degrees alpha float anntenuation coefficient cspeed float sound speed in surrounding medium [m/s] gn int Number of a/d counts per dB re V beam_rad float beam angle in radians """ print('Processing dive...') #initialise cal and update with input if any is provided cal = self.init_cal(**kwargs) #start timer t0 = datetime.now() #-- init values ---------------------- id_miss = int('c0', 16) #header id for start-mission (future use). id_start = int('c1', 16) #start-dive info (settings) id_end = int('c2', 16) #end-dive info id_burst = int('c3', 16) #burst raw data id_avg = int('c4', 16) #burst avg data id_EOF = int('ff', 16) #end-of-file #initialise empty dataframes #starts = pd.DataFrame() freqstarts = pd.DataFrame() bursts = pd.DataFrame() raws = pd.DataFrame() avgs =
pd.DataFrame()
pandas.DataFrame
from datetime import timedelta from functools import partial import itertools from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain from zipline.pipeline.loaders.earnings_estimates import ( NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import pytest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, "estimate", "knowledge_date"]) df = df.pivot_table( columns=SID_FIELD_NAME, values="estimate", index="knowledge_date", dropna=False ) df = df.reindex(pd.date_range(start_date, end_date)) # Index name is lost during reindex. df.index = df.index.rename("knowledge_date") df["at_date"] = end_date.tz_localize("utc") df = df.set_index(["at_date", df.index.tz_localize("utc")]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp("2014-12-28", tz="utc") END_DATE = pd.Timestamp("2015-02-04", tz="utc") @classmethod def make_loader(cls, events, columns): raise NotImplementedError("make_loader") @classmethod def make_events(cls): raise NotImplementedError("make_events") @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ "s" + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader( cls.events, {column.name: val for column, val in cls.columns.items()} ) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate1": [1.0, 2.0], "estimate2": [3.0, 4.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def make_expected_out(cls): raise NotImplementedError("make_expected_out") @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp("2015-01-15", tz="utc"), end_date=pd.Timestamp("2015-01-15", tz="utc"), ) assert_frame_equal(results.sort_index(1), self.expected_out.sort_index(1)) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-10"), "estimate1": 1.0, "estimate2": 3.0, FISCAL_QUARTER_FIELD_NAME: 1.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-20"), "estimate1": 2.0, "estimate2": 4.0, FISCAL_QUARTER_FIELD_NAME: 2.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) dummy_df = pd.DataFrame( {SID_FIELD_NAME: 0}, columns=[ SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, "estimate", ], index=[0], ) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = { c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns } p = Pipeline(columns) err_msg = ( r"Passed invalid number of quarters -[0-9],-[0-9]; " r"must pass a number of quarters >= 0" ) with pytest.raises(ValueError, match=err_msg): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with pytest.raises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = [ "split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof", ] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand( itertools.product( ( NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, ), ) ) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } with pytest.raises(ValueError): loader( dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01"), ) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp("2015-01-28", tz="utc") q1_knowledge_dates = [ pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-04"), pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-11"), ] q2_knowledge_dates = [ pd.Timestamp("2015-01-14"), pd.Timestamp("2015-01-17"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-23"), ] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ] # One day late q2_release_dates = [ pd.Timestamp("2015-01-25"), # One day early pd.Timestamp("2015-01-26"), ] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if ( q1e1 < q1e2 and q2e1 < q2e2 # All estimates are < Q2's event, so just constrain Q1 # estimates. and q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0] ): sid_estimates.append( cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid) ) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26"), ], "estimate": [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid, } ) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, "estimate": [0.1, 0.2, 0.3, 0.4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, } ) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert sid_estimates.isnull().all().all() else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [ self.get_expected_estimate( q1_knowledge[ q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], q2_knowledge[ q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index ], axis=0, ) sid_estimates.index = all_expected.index.copy() assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q2_knowledge.iloc[-1:] elif ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate": [1.0, 2.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame( columns=[cls.columns[col] + "1" for col in cls.columns] + [cls.columns[col] + "2" for col in cls.columns], index=cls.trading_days, ) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ("1", "2") ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime(expected[expected_name]) else: expected[expected_name] = expected[expected_name].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge( [ {c.name + "1": c.latest for c in dataset1.columns}, {c.name + "2": c.latest for c in dataset2.columns}, ] ) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + "1" for col in self.columns] q2_columns = [col.name + "2" for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal( sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values) ) assert_equal( self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1), ) class NextEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp( "2015-01-11", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp("2015-01-11", tz="UTC") : pd.Timestamp( "2015-01-20", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ["estimate", "event_date"]: expected.loc[ pd.Timestamp("2015-01-06", tz="UTC") : pd.Timestamp( "2015-01-10", tz="UTC" ), col_name + "2", ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-09", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 2 expected.loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 3 expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_YEAR_FIELD_NAME + "2", ] = 2015 return expected class PreviousEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp( "2015-01-19", tz="UTC" ) ] = cls.events[raw_name].iloc[0] expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ["estimate", "event_date"]: expected[col_name + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[col_name].iloc[0] expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 4 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 2014 expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 1 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 2015 return expected class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), ] * 2, EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-20"), ], "estimate": [11.0, 12.0, 21.0] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6, } ) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError("assert_compute") def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=pd.Timestamp("2015-01-13", tz="utc"), # last event date we have end_date=pd.Timestamp("2015-01-14", tz="utc"), ) class PreviousVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp("2015-02-10", tz="utc") window_test_start_date = pd.Timestamp("2015-01-05") critical_dates = [ pd.Timestamp("2015-01-09", tz="utc"), pd.Timestamp("2015-01-15", tz="utc"), pd.Timestamp("2015-01-20", tz="utc"), pd.Timestamp("2015-01-26", tz="utc"), pd.Timestamp("2015-02-05", tz="utc"), pd.Timestamp("2015-02-10", tz="utc"), ] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-02-10"), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp("2015-01-18"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-04-01"), ], "estimate": [100.0, 101.0] + [200.0, 201.0] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, } ) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame( { TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-22"), pd.Timestamp("2015-01-22"), pd.Timestamp("2015-02-05"), pd.Timestamp("2015-02-05"), ], "estimate": [110.0, 111.0] + [310.0, 311.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10, } ) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-07"), cls.window_test_start_date, pd.Timestamp("2015-01-17"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), ], "estimate": [120.0, 121.0] + [220.0, 221.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20, } ) concatted = pd.concat( [sid_0_timeline, sid_10_timeline, sid_20_timeline] ).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [ sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i + 1]) ] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids(), ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries( self, start_date, num_announcements_out ): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = ( timelines[num_announcements_out] .loc[today] .reindex(trading_days[: today_idx + 1]) .values ) timeline_start_idx = len(today_timeline) - window_len assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp("2015-02-10", tz="utc"), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-20"), ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-21"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111, pd.Timestamp("2015-01-22")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-02-04") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 311, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-02-05", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 201, pd.Timestamp("2015-02-10")), (10, 311, pd.Timestamp("2015-02-05")), (20, 221, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_previous = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-02-09") ] # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. + [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-02-10")), (10, np.NaN, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ) ] ) return {1: oneq_previous, 2: twoq_previous} class NextEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-09"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (0, 101, pd.Timestamp("2015-01-20")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-20"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-01-22") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 310, pd.Timestamp("2015-01-09")), (10, 311, pd.Timestamp("2015-01-15")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-23", "2015-02-05") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-02-06", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (0, 201, pd.Timestamp("2015-02-10")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-11") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-16") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-01-20"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-02-10") ] ) return {1: oneq_next, 2: twoq_next} class WithSplitAdjustedWindows(WithEstimateWindows): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows and with split adjustments. """ split_adjusted_asof_date = pd.Timestamp("2015-01-14") @classmethod def make_events(cls): # Add an extra sid that has a release before the split-asof-date in # order to test that we're reversing splits correctly in the previous # case (without an overwrite) and in the next case (with an overwrite). sid_30 = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-09"), # For Q2, we want it to start early enough # that we can have several adjustments before # the end of the first quarter so that we # can test un-adjusting & readjusting with an # overwrite. cls.window_test_start_date, # We want the Q2 event date to be enough past # the split-asof-date that we can have # several splits and can make sure that they # are applied correctly. pd.Timestamp("2015-01-20"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), ], "estimate": [130.0, 131.0, 230.0, 231.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 30, } ) # An extra sid to test no splits before the split-adjusted-asof-date. # We want an event before and after the split-adjusted-asof-date & # timestamps for data points also before and after # split-adjsuted-asof-date (but also before the split dates, so that # we can test that splits actually get applied at the correct times). sid_40 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [140.0, 240.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 40, } ) # An extra sid to test all splits before the # split-adjusted-asof-date. All timestamps should be before that date # so that we have cases where we un-apply and re-apply splits. sid_50 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [150.0, 250.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 50, } ) return pd.concat( [ # Slightly hacky, but want to make sure we're using the same # events as WithEstimateWindows. cls.__base__.make_events(), sid_30, sid_40, sid_50, ] ) @classmethod def make_splits_data(cls): # For sid 0, we want to apply a series of splits before and after the # split-adjusted-asof-date we well as between quarters (for the # previous case, where we won't see any values until after the event # happens). sid_0_splits = pd.DataFrame( { SID_FIELD_NAME: 0, "ratio": (-1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100), "effective_date": ( pd.Timestamp("2014-01-01"), # Filter out # Split before Q1 event & after first estimate pd.Timestamp("2015-01-07"), # Split before Q1 event pd.Timestamp("2015-01-09"), # Split before Q1 event pd.Timestamp("2015-01-13"), # Split before Q1 event pd.Timestamp("2015-01-15"), # Split before Q1 event pd.Timestamp("2015-01-18"), # Split after Q1 event and before Q2 event pd.Timestamp("2015-01-30"), # Filter out - this is after our date index pd.Timestamp("2016-01-01"), ), } ) sid_10_splits = pd.DataFrame( { SID_FIELD_NAME: 10, "ratio": (0.2, 0.3), "effective_date": ( # We want a split before the first estimate and before the # split-adjusted-asof-date but within our calendar index so # that we can test that the split is NEVER applied. pd.Timestamp("2015-01-07"), # Apply a single split before Q1 event. pd.Timestamp("2015-01-20"), ), } ) # We want a sid with split dates that collide with another sid (0) to # make sure splits are correctly applied for both sids. sid_20_splits = pd.DataFrame( { SID_FIELD_NAME: 20, "ratio": ( 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, ), "effective_date": ( pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-15"), pd.Timestamp("2015-01-18"), pd.Timestamp("2015-01-30"), ), } ) # This sid has event dates that are shifted back so that we can test # cases where an event occurs before the split-asof-date. sid_30_splits = pd.DataFrame( { SID_FIELD_NAME: 30, "ratio": (8, 9, 10, 11, 12), "effective_date": ( # Split before the event and before the # split-asof-date. pd.Timestamp("2015-01-07"), # Split on date of event but before the # split-asof-date. pd.Timestamp("2015-01-09"), # Split after the event, but before the # split-asof-date. pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-15"), pd.Timestamp("2015-01-18"), ), } ) # No splits for a sid before the split-adjusted-asof-date. sid_40_splits = pd.DataFrame( { SID_FIELD_NAME: 40, "ratio": (13, 14), "effective_date": ( pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-22"), ), } ) # No splits for a sid after the split-adjusted-asof-date. sid_50_splits = pd.DataFrame( { SID_FIELD_NAME: 50, "ratio": (15, 16), "effective_date": ( pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ), } ) return pd.concat( [ sid_0_splits, sid_10_splits, sid_20_splits, sid_30_splits, sid_40_splits, sid_50_splits, ] ) class PreviousWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=["estimate"], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), # Undo all adjustments that haven't happened yet. (30, 131 * 1 / 10, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-12") ] ), cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0 * 1 / 16, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-13"), ), cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-14"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131 * 11, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-15", "2015-01-16") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-20", "2015-01-21") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111 * 0.3, pd.Timestamp("2015-01-22")), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-01-29") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-01-20")), (10, 111 * 0.3, pd.Timestamp("2015-01-22")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-30", "2015-02-04") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-01-20")), (10, 311 * 0.3, pd.Timestamp("2015-02-05")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-02-05", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 201, pd.Timestamp("2015-02-10")), (10, 311 * 0.3, pd.Timestamp("2015-02-05")), (20, 221 * 0.8 * 0.9, pd.Timestamp("2015-02-10")), (30, 231, pd.Timestamp("2015-01-20")), (40, 240.0 * 13 * 14, pd.Timestamp("2015-02-10")), (50, 250.0, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_previous = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-19") ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131 * 11 * 12, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-01-20", "2015-02-09") ] # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. + [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-02-10")), (10, np.NaN, pd.Timestamp("2015-02-05")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-02-10")), (30, 131 * 11 * 12, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-02-10")), (50, 150.0, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ) ] ) return {1: oneq_previous, 2: twoq_previous} class NextWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=["estimate"], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100 * 1 / 4, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (20, 120 * 5 / 3, cls.window_test_start_date), (20, 121 * 5 / 3, pd.Timestamp("2015-01-07")), (30, 130 * 1 / 10, cls.window_test_start_date), (30, 131 * 1 / 10, pd.Timestamp("2015-01-09")), (40, 140, pd.Timestamp("2015-01-09")), (50, 150.0 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-09"), ), cls.create_expected_df_for_factor_compute( [ (0, 100 * 1 / 4, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120 * 5 / 3, cls.window_test_start_date), (20, 121 * 5 / 3, pd.Timestamp("2015-01-07")), (30, 230 * 1 / 10, cls.window_test_start_date), (40, np.NaN, pd.Timestamp("2015-01-10")), (50, 250.0 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-12"), ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), (30, 230, cls.window_test_start_date), (40, np.NaN, pd.Timestamp("2015-01-10")), (50, 250.0 * 1 / 16, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-13"), ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), (30, 230, cls.window_test_start_date), (40, np.NaN, pd.Timestamp("2015-01-10")), (50, 250.0, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-14"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100 * 5, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120 * 0.7, cls.window_test_start_date), (20, 121 * 0.7, pd.Timestamp("2015-01-07")), (30, 230 * 11, cls.window_test_start_date), (40, 240, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], end_date, ) for end_date in pd.date_range("2015-01-15", "2015-01-16") ] ), cls.create_expected_df_for_factor_compute( [ (0, 100 * 5 * 6, cls.window_test_start_date), (0, 101, pd.Timestamp("2015-01-20")), (10, 110 * 0.3, pd.Timestamp("2015-01-09")), (10, 111 * 0.3, pd.Timestamp("2015-01-12")), (20, 120 * 0.7 * 0.8, cls.window_test_start_date), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-07")), (30, 230 * 11 * 12, cls.window_test_start_date), (30, 231, pd.Timestamp("2015-01-20")), (40, 240 * 13, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-20"), ), cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6, pd.Timestamp("2015-01-12")), (10, 110 * 0.3, pd.Timestamp("2015-01-09")), (10, 111 * 0.3, pd.Timestamp("2015-01-12")), (20, 220 * 0.7 * 0.8, cls.window_test_start_date), (20, 221 * 0.8, pd.Timestamp("2015-01-17")), (40, 240 * 13, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-21"), ), cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6, pd.Timestamp("2015-01-12")), (10, 110 * 0.3, pd.Timestamp("2015-01-09")), (10, 111 * 0.3, pd.Timestamp("2015-01-12")), (20, 220 * 0.7 * 0.8, cls.window_test_start_date), (20, 221 * 0.8, pd.Timestamp("2015-01-17")), (40, 240 * 13 * 14, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-22"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6, pd.Timestamp("2015-01-12")), (10, 310 * 0.3, pd.Timestamp("2015-01-09")), (10, 311 * 0.3, pd.Timestamp("2015-01-15")), (20, 220 * 0.7 * 0.8, cls.window_test_start_date), (20, 221 * 0.8, pd.Timestamp("2015-01-17")), (40, 240 * 13 * 14, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], end_date, ) for end_date in pd.date_range("2015-01-23", "2015-01-29") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6 * 7, pd.Timestamp("2015-01-12")), (10, 310 * 0.3, pd.Timestamp("2015-01-09")), (10, 311 * 0.3, pd.Timestamp("2015-01-15")), (20, 220 * 0.7 * 0.8 * 0.9, cls.window_test_start_date), (20, 221 * 0.8 * 0.9, pd.Timestamp("2015-01-17")), (40, 240 * 13 * 14, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], end_date, ) for end_date in pd.date_range("2015-01-30", "2015-02-05") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6 * 7, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220 * 0.7 * 0.8 * 0.9, cls.window_test_start_date), (20, 221 * 0.8 * 0.9, pd.Timestamp("2015-01-17")), (40, 240 * 13 * 14, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], end_date, ) for end_date in pd.date_range("2015-02-06", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6 * 7, pd.Timestamp("2015-01-12")), (0, 201, pd.Timestamp("2015-02-10")), (10, np.NaN, cls.window_test_start_date), (20, 220 * 0.7 * 0.8 * 0.9, cls.window_test_start_date), (20, 221 * 0.8 * 0.9, pd.Timestamp("2015-01-17")), (40, 240 * 13 * 14, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220 * 5 / 3, cls.window_test_start_date), (30, 230 * 1 / 10, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), (50, np.NaN, cls.window_test_start_date), ], pd.Timestamp("2015-01-09"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 1 / 4, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220 * 5 / 3, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), ], pd.Timestamp("2015-01-12"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-13", "2015-01-14") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 5, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220 * 0.7, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-15", "2015-01-16") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220 * 0.7 * 0.8, cls.window_test_start_date), (20, 221 * 0.8, pd.Timestamp("2015-01-17")), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), ], pd.Timestamp("2015-01-20"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-02-10") ] ) return {1: oneq_next, 2: twoq_next} class WithSplitAdjustedMultipleEstimateColumns(WithEstimates): """ ZiplineTestCase mixin for having multiple estimate columns that are split-adjusted to make sure that adjustments are applied correctly. Attributes ---------- test_start_date : pd.Timestamp The start date of the test. test_end_date : pd.Timestamp The start date of the test. split_adjusted_asof : pd.Timestamp The split-adjusted-asof-date of the data used in the test, to be used to create all loaders of test classes that subclass this mixin. Methods ------- make_expected_timelines_1q_out -> dict[pd.Timestamp -> dict[str -> np.array]] The expected array of results for each date of the date range for each column. Only for 1 quarter out. make_expected_timelines_2q_out -> dict[pd.Timestamp -> dict[str -> np.array]] The expected array of results for each date of the date range. For 2 quarters out, so only for the column that is requested to be loaded with 2 quarters out. Tests ----- test_adjustments_with_multiple_adjusted_columns Tests that if you have multiple columns, we still split-adjust correctly. test_multiple_datasets_different_num_announcements Tests that if you have multiple datasets that ask for a different number of quarters out, and each asks for a different estimates column, we still split-adjust correctly. """ END_DATE = pd.Timestamp("2015-02-10", tz="utc") test_start_date = pd.Timestamp("2015-01-06", tz="utc") test_end_date = pd.Timestamp("2015-01-12", tz="utc") split_adjusted_asof = pd.Timestamp("2015-01-08") @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): sid_0_events = pd.DataFrame( { # We only want a stale KD here so that adjustments # will be applied. TS_FIELD_NAME: [pd.Timestamp("2015-01-05"), pd.Timestamp("2015-01-05")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), ], "estimate1": [1100.0, 1200.0], "estimate2": [2100.0, 2200.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, } ) # This is just an extra sid to make sure that we apply adjustments # correctly for multiple columns when we have multiple sids. sid_1_events = pd.DataFrame( { # We only want a stale KD here so that adjustments # will be applied. TS_FIELD_NAME: [pd.Timestamp("2015-01-05"), pd.Timestamp("2015-01-05")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-08"), pd.Timestamp("2015-01-11"), ], "estimate1": [1110.0, 1210.0], "estimate2": [2110.0, 2210.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 1, } ) return pd.concat([sid_0_events, sid_1_events]) @classmethod def make_splits_data(cls): sid_0_splits = pd.DataFrame( { SID_FIELD_NAME: 0, "ratio": (0.3, 3.0), "effective_date": ( pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-09"), ), } ) sid_1_splits = pd.DataFrame( { SID_FIELD_NAME: 1, "ratio": (0.4, 4.0), "effective_date": ( pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-09"), ), } ) return pd.concat([sid_0_splits, sid_1_splits]) @classmethod def make_expected_timelines_1q_out(cls): return {} @classmethod def make_expected_timelines_2q_out(cls): return {} @classmethod def init_class_fixtures(cls): super(WithSplitAdjustedMultipleEstimateColumns, cls).init_class_fixtures() cls.timelines_1q_out = cls.make_expected_timelines_1q_out() cls.timelines_2q_out = cls.make_expected_timelines_2q_out() def test_adjustments_with_multiple_adjusted_columns(self): dataset = MultipleColumnsQuartersEstimates(1) timelines = self.timelines_1q_out window_len = 3 class SomeFactor(CustomFactor): inputs = [dataset.estimate1, dataset.estimate2] window_length = window_len def compute(self, today, assets, out, estimate1, estimate2): assert_almost_equal(estimate1, timelines[today]["estimate1"]) assert_almost_equal(estimate2, timelines[today]["estimate2"]) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=self.test_start_date, # last event date we have end_date=self.test_end_date, ) def test_multiple_datasets_different_num_announcements(self): dataset1 = MultipleColumnsQuartersEstimates(1) dataset2 = MultipleColumnsQuartersEstimates(2) timelines_1q_out = self.timelines_1q_out timelines_2q_out = self.timelines_2q_out window_len = 3 class SomeFactor1(CustomFactor): inputs = [dataset1.estimate1] window_length = window_len def compute(self, today, assets, out, estimate1): assert_almost_equal(estimate1, timelines_1q_out[today]["estimate1"]) class SomeFactor2(CustomFactor): inputs = [dataset2.estimate2] window_length = window_len def compute(self, today, assets, out, estimate2): assert_almost_equal(estimate2, timelines_2q_out[today]["estimate2"]) engine = self.make_engine() engine.run_pipeline( Pipeline({"est1": SomeFactor1(), "est2": SomeFactor2()}), start_date=self.test_start_date, # last event date we have end_date=self.test_end_date, ) class PreviousWithSplitAdjustedMultipleEstimateColumns( WithSplitAdjustedMultipleEstimateColumns, ZiplineTestCase ): @classmethod def make_loader(cls, events, columns): return PreviousSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=["estimate1", "estimate2"], split_adjusted_asof=cls.split_adjusted_asof, ) @classmethod def make_expected_timelines_1q_out(cls): return { pd.Timestamp("2015-01-06", tz="utc"): { "estimate1": np.array([[np.NaN, np.NaN]] * 3), "estimate2": np.array([[np.NaN, np.NaN]] * 3), }, pd.Timestamp("2015-01-07", tz="utc"): { "estimate1": np.array([[np.NaN, np.NaN]] * 3), "estimate2": np.array([[np.NaN, np.NaN]] * 3), }, pd.Timestamp("2015-01-08", tz="utc"): { "estimate1": np.array([[np.NaN, np.NaN]] * 2 + [[np.NaN, 1110.0]]), "estimate2": np.array([[np.NaN, np.NaN]] * 2 + [[np.NaN, 2110.0]]), }, pd.Timestamp("2015-01-09", tz="utc"): { "estimate1": np.array( [[np.NaN, np.NaN]] + [[np.NaN, 1110.0 * 4]] + [[1100 * 3.0, 1110.0 * 4]] ), "estimate2": np.array( [[np.NaN, np.NaN]] + [[np.NaN, 2110.0 * 4]] + [[2100 * 3.0, 2110.0 * 4]] ), }, pd.Timestamp("2015-01-12", tz="utc"): { "estimate1": np.array( [[np.NaN, np.NaN]] * 2 + [[1200 * 3.0, 1210.0 * 4]] ), "estimate2": np.array( [[np.NaN, np.NaN]] * 2 + [[2200 * 3.0, 2210.0 * 4]] ), }, } @classmethod def make_expected_timelines_2q_out(cls): return {
pd.Timestamp("2015-01-06", tz="utc")
pandas.Timestamp
import datetime import random import re from typing import List, Text import pandas as pd import numpy as np from tqdm import tqdm from transformers import AutoTokenizer ''' ''' class PreprocessFirewall(object): def __init__(self, logs: List[Text]) -> None: self.logs = logs @staticmethod def _cleanTimelineMessage(l: Text): l = re.sub(r'^.*?%ASA-\w+-\d-\d+:', '', l) # OR l = re.sub(r'^.*?%ASA--\d-\d+:', '', l) # OR #l = re.sub(r'^.*?%ASA--\d-\d+:', '', l) # %ASA-bridge-6-1100 # there are some messages # started with %ASA--4-733: # started with %ASA-session-\d-\d+:: # manually omitted return l @staticmethod def _cleanParanthesis(l: Text): '''for cleaning extra IP information ''' l = re.sub(r'\(([^()]*)\)', '', l) return l @staticmethod def _info_bracket_fix(l: Text): ''' clean bracket around information ''' xxx_match = [xxx.group() for xxx in re.finditer(r"(\[)[a-z ]+(\])",l)] xxx_bound = [xxx.groups() for xxx in re.finditer(r"(\[)[a-z ]+(\])",l)] xxx_out = l if len(xxx_match)>0: for xxxx in xxx_bound[0]: xxx_out = xxx_out.replace(xxxx,"") return xxx_out @staticmethod def _clean_HEX(l: Text): xxx = re.sub(r"((?<=[^A-Za-z0-9])|^)(0x[a-f0-9A-F]+)((?=[^A-Za-z0-9])|$)","",l) xxx = re.sub("\[, \]","",xxx) return xxx @staticmethod def _augment_some_special_chars(l: Text): xx = re.sub("\B_\B"," ",l) xx = re.sub("->","to",xx) return xx @staticmethod def _cleanlefovers(l: Text): '''for cleaning extra brackets for hexadecimal number ''' l = re.sub(r'[\[\],]', '', l) return l @staticmethod def _fix_missing_IP(l: Text): ''' if there is x in it, attain some number to IT ''' # ^ start of the line # $ end of the line REGEX_parts = r"(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z])" R = re.compile(REGEX_parts, re.S) set_x = random.randrange(1, 256, 1) l_edited = R.sub(lambda m: m.group().replace('.x', str(set_x), 1), l) return l_edited @staticmethod def _fix_range_IP(l: Text): ''' if there is range in it, attain some number to IT ''' # ^ start of the line # $ end of the line REGEX_parts = r"(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.((\d|\d\d+|1\d\d+|2[0-4]\d)\-(1\d\d*|2[0-4]\d|250))" R = re.compile(REGEX_parts, re.S) l_edited = R.sub(lambda m: m.group().replace( m[4], str(random.randrange(int(m[5]), int(m[6]), 1)), 1), l) return l_edited @staticmethod def _fix_emptystrings(l: Text): ''' removes extra empty lines ''' xx = re.sub(r"^[ \t\r\n]+|[ \t\r\n]+$","",l) xx = re.sub(r"\s{2,}"," ",l) return xx #@staticmethod #def _getTime(l: Text): # ''' extracts time from log line ''' # found = re.findall( # "((00|[0-9]|1[0-9]|2[0-3]):([0-9]*|[0-5][0-9]):([0-9]*|[0-5][0-9]))", l.strip()) # foundTime = datetime.time( # int(found[0][1]), int(found[0][2]), int(found[0][3])) # return foundTime def clean(self, l: Text): # line edited - le le = self._cleanTimelineMessage(l) le = self._cleanParanthesis(le) le = le.lower() le = self._clean_HEX(le) le = self._info_bracket_fix(le) le = self._augment_some_special_chars(le) le = self._fix_missing_IP(le) le = self._fix_range_IP(le) le = self._fix_emptystrings(le) return le def save(self): ''' save log file as csv ''' try: import pandas as pd from tqdm import tqdm except ImportError: raise print('Saving the file...') df = {'time': [], 'log': []} # For every sentence... tn = self.__len__() # total number of logs print(f'Total number of logs: {tn}') stride = 1 # a step for tqdm # checking up file through a file viewer is important so we limit row length with 1M LIMIT = 1000000 startTime = datetime.datetime.now().strftime("%H_%M_%S") parts = int(tn/LIMIT) residual = tn % LIMIT parts = parts+1 if residual > 0 else parts for part in range(0, parts, stride): df = {'time': [], 'log': []} start = part*LIMIT end = start+LIMIT if tn-start > LIMIT else start+residual print(f'Part-{part+1} working...') for i in tqdm(range(start, end, stride)): line = self.logs[i] # if there is a match foundTime = self._getTime(line) # line edited - le le = self.clean(line) df['log'].append(le) df['time'].append(foundTime) df = pd.DataFrame(data=df, columns=['time', 'log']) df.to_csv("data/firewall/anomaly-log-part-" + str(part+1) + "-" + startTime+".csv", index=False, header=True) del(df) def __getitem__(self, idx): #time = self._getTime(self.logs[idx]) text = self.clean(self.logs[idx]) #return (time, text) return text def __len__(self): return len(self.logs) def main(): #bids_logs = PreprocessFirewall(out['log'].tolist()) # DAY1 p1 = pd.read_csv("data/firewall/anomaly/day1-labeled-part1.csv", sep=',') p2 = pd.read_csv("data/firewall/anomaly/day1-labeled-part2.csv", sep=',') p3 = pd.read_csv("data/firewall/anomaly/day1-labeled-part3.csv", sep=',') p4 = pd.read_csv("data/firewall/anomaly/day1-labeled-part4.csv", sep=',') p5 = pd.read_csv("data/firewall/anomaly/day1-labeled-part5.csv", sep=',') p6 = pd.read_csv("data/firewall/anomaly/day1-labeled-part6.csv", sep=',') p7 = pd.read_csv("data/firewall/anomaly/day1-labeled-part7.csv", sep=',') p8 = pd.read_csv("data/firewall/anomaly/day1-labeled-part8.csv", sep=',') p9 = pd.read_csv("data/firewall/anomaly/day1-labeled-part9.csv", sep=',') p10 = pd.read_csv("data/firewall/anomaly/day1-labeled-part10.csv", sep=',') p11 = pd.read_csv("data/firewall/anomaly/day1-labeled-part11.csv", sep=',') p12 = pd.read_csv("data/firewall/anomaly/day1-labeled-part12.csv", sep=',') whole_day1 = [p1, p2, p3, p4, p5, p6, p7, p8, p9,p10,p11,p12] df_day1 = pd.concat(whole_day1) #df_day1.info() #df_day1['atype'] = np.where(df_day1.label == 1, 'Collective','-') df_day1['type'] = np.where(df_day1.label == 1, 'DDOS','NORMAL') # DAY 2 p1 = pd.read_csv("data/firewall/anomaly/day2-labeled-part1.csv", sep=',') p2 = pd.read_csv("data/firewall/anomaly/day2-labeled-part2.csv", sep=',') p3 = pd.read_csv("data/firewall/anomaly/day2-labeled-part3.csv", sep=',') whole_day2 = [p1, p2, p3] df_day2 = pd.concat(whole_day2) #df_day2['atype'] = np.where(df_day2.log.str.contains(r"192.168.2.175/55892|192.168.2.175/55891|10.200.150.201"), 'Collective','-')#conditional df_day2['type'] = np.where(df_day2.log.str.contains(r"192.168.2.175/55892|192.168.2.175/55891"), 'PS','NORMAL') df_day2.loc[df_day2.log.str.contains(r"10.200.150.201"), 'type'] = 'RD' #df_day2.loc[df_day2.log.str.contains(r"10.200.150.201"), 'atype'] = 'Point' #df_day2.info() # DAY 3 df_day3 = pd.read_csv("data/firewall/anomaly/day3-labeled.csv", sep=',') df_day3['type'] = np.where(df_day3.log.str.contains("192.168.2.251"), 'RD','NORMAL') #df_day3['atype'] = np.where(df_day3.log.str.contains("192.168.2.251"), 'Point','-') # Concat data first days = [df_day1, df_day2, df_day3] whole_data = pd.concat(days) # lets init tokenizer here tokenizer = AutoTokenizer.from_pretrained('roberta-base') # get groups grouped = whole_data.groupby(["type"]) types = ['DDOS','PS','RD','NORMAL'] # new adict={'log':[],'label':[],'type':[],'time':[]} def add_row(arow,alabel,atype,atime): adict['log'].append(arow) adict['label'].append(alabel) adict['type'].append(atype) adict['time'].append(atime) for t in types: print(f'TYPE: {t} \n') # anomaly group if t != 'DDOS': if t == 'PS': ag = grouped.get_group(t).sample(frac=0.1, random_state=666) else: ag = grouped.get_group(t) else: ag = grouped.get_group(t).sample(frac=0.01, random_state=666) # preproces and get all logs ag_logs = PreprocessFirewall(ag['log'].tolist()) ag_time = ag['time'].tolist() # gel label ag_label = ag['label'].tolist()[0] # arow = "" # expecting to create max or less 512 token length log and its label count=0 for i in tqdm(range(len(ag_logs))): alog = ag_logs[i] atime = ag_time[i] if t != 'RD': input_ids = tokenizer.encode(alog, add_special_tokens=False) count += len(input_ids) if count <= 512: arow += alog +" "+tokenizer.sep_token+" " if i == len(ag_logs)-1: add_row(arow[:-1],ag_label,t,atime) count = 0 else: add_row(arow,ag_label,t,atime) # re-init count = 0 arow = alog +" "+tokenizer.sep_token+" " input_ids = tokenizer.encode(alog, add_special_tokens=False) count += len(input_ids) else: arow = alog +" "+tokenizer.sep_token add_row(arow,ag_label,t,atime) adf =
pd.DataFrame(adict)
pandas.DataFrame
from ..feature_types import primary_feature, log from ..raw.gps import gps from sklearn.cluster import KMeans import pandas as pd import numpy as np import math from sklearn.cluster import DBSCAN import LAMP @primary_feature( name='cortex.significant_locations', dependencies=[gps], attach=False ) def significant_locations(k_max=10, eps=1e-5, **kwargs): """ Get the coordinates of significant locations visited by the participant in the specified timeframe using the KMeans clustering method. NOTE: Via DBSCan, this algorithm first reduces the amount of gps readings used to generate significant locations. If there is a large amount of new gps data to reduce, this step can take a long time NOTE: DBScan uses O(n*k) memory. If you run it on a large GPS dataframe (>100k points), a memory crash could occur NOTE: This algorithm does NOT return the centroid radius and thus cannot be used to coalesce multiple SigLocs into one. :param k_max (int): The maximum KMeans clusters to test (FIXME). :return latitude (float): The latitude of the SigLoc centroid. :return longitude (float): The longitude of the SigLoc centroid. :return radius (float): The radius of the SigLoc centroid (in meters). :return proportion (float): The proportion of GPS events located within this centeroid compared to all GPS events over the entire time window. :return duration (int): The duration of time spent by the participant in the centroid. """ # Calculates straight-line (not great-circle) distance between two GPS points on # Earth in kilometers; equivalent to roughly ~55% - 75% of the Haversian (great-circle) # distance. 110.25 is conversion metric marking the length of a spherical degree. # # https://jonisalonen.com/2014/computing-distance-between-coordinates-can-be-simple-and-fast/ def euclid(g0, g1): def _euclid(lat, lng, lat0, lng0): # degrees -> km return 110.25 * ((((lat - lat0) ** 2) + (((lng - lng0) * np.cos(lat0)) ** 2)) ** 0.5) return _euclid(g0[0], g0[1], g1[0], g1[1]) #Get DB scan metadata fir try: reduced_data = LAMP.Type.get_attachment(kwargs['id'], 'cortex.significant_locations.reduced')['data']#['data'] except: reduced_data = {'end':0, 'data':[]} reduced_data_end = reduced_data['end'] new_reduced_data = reduced_data['data'].copy() if reduced_data_end < kwargs['end']: #update reduced data by getting new gps data and running dbscan ### DBSCAN ### _gps = gps(**{**kwargs, 'start':reduced_data_end})['data'] df =
pd.DataFrame.from_dict(_gps)
pandas.DataFrame.from_dict
from os.path import abspath, dirname, join from unittest import TestCase import numpy as np import pandas as pd from nose_parameterized import parameterized from pandas import Timedelta, read_csv from pandas.util.testing import assert_index_equal from pytz import UTC from trading_calendars import all_trading_minutes, get_calendar from trading_calendars.exchange_calendar_xshg import XSHGExchangeCalendar def T(x): return pd.Timestamp(x, tz=UTC) class XSHGCalendarTestCase(TestCase): # Override in subclasses. answer_key_filename = 'xshg' calendar_class = XSHGExchangeCalendar # Affects tests that care about the empty periods between sessions. Should # be set to False for 24/7 calendars. GAPS_BETWEEN_SESSIONS = True # Affects tests that care about early closes. Should be set to False for # calendars that don't have any early closes. HAVE_EARLY_CLOSES = True # Affects tests that care about late opens. Since most do not, defaulting # to False. HAVE_LATE_OPENS = False # Affects test_sanity_check_session_lengths. Should be set to the largest # number of hours that ever appear in a single session. MAX_SESSION_HOURS = 0 # Affects test_minute_index_to_session_labels. # Change these if the start/end dates of your test suite don't contain the # defaults. MINUTE_INDEX_TO_SESSION_LABELS_START = pd.Timestamp('2011-01-04', tz=UTC) MINUTE_INDEX_TO_SESSION_LABELS_END = pd.Timestamp('2011-04-04', tz=UTC) # Affects tests around daylight savings. If possible, should contain two # dates that are not both in the same daylight savings regime. DAYLIGHT_SAVINGS_DATES = ["2004-04-05", "2004-11-01"] # Affects test_start_end. Change these if your calendar start/end # dates between 2010-01-03 and 2010-01-10 don't match the defaults. TEST_START_END_FIRST = pd.Timestamp('2010-01-03', tz=UTC) TEST_START_END_LAST = pd.Timestamp('2010-01-10', tz=UTC) TEST_START_END_EXPECTED_FIRST = pd.Timestamp('2010-01-04', tz=UTC) TEST_START_END_EXPECTED_LAST = pd.Timestamp('2010-01-08', tz=UTC) MAX_SESSION_HOURS = 5.5 HALF_SESSION_HOURS = 2.0 HAVE_EARLY_CLOSES = False MINUTE_INDEX_TO_SESSION_LABELS_END = pd.Timestamp('2011-04-07', tz=UTC) @staticmethod def load_answer_key(filename): """ Load a CSV from tests/resources/{filename}.csv """ fullpath = join( dirname(abspath(__file__)), './resources', filename + '.csv', ) return read_csv( fullpath, index_col=0, # NOTE: Merely passing parse_dates=True doesn't cause pandas to set # the dtype correctly, and passing all reasonable inputs to the # dtype kwarg cause read_csv to barf. parse_dates=[0, 1, 2], date_parser=lambda x: pd.Timestamp(x, tz=UTC) ) def setUp(self): self.answers = self.load_answer_key(self.answer_key_filename) self.start_date = self.answers.index[0] self.end_date = self.answers.index[-1] self.calendar = self.calendar_class(self.start_date, self.end_date) self.one_minute = pd.Timedelta(minutes=1) self.one_hour = pd.Timedelta(hours=1) def tearDown(self): self.calendar = None self.answers = None def test_sanity_check_session_lengths(self): # make sure that no session is longer than self.MAX_SESSION_HOURS hours for session in self.calendar.all_sessions: o, c = self.calendar.open_and_close_for_session(session) delta = c - o self.assertLessEqual(delta.seconds / 3600, self.MAX_SESSION_HOURS) def test_sanity_check_am_session_lengths(self): # make sure that no session is longer than self.HALF_SESSION_HOURS hours for session in self.calendar.all_sessions: o, c = self.calendar.am_open_and_close_for_session(session) delta = c - o self.assertLessEqual(delta.seconds / 3600, self.HALF_SESSION_HOURS) def test_sanity_check_pm_session_lengths(self): # make sure that no session is longer than self.HALF_SESSION_HOURS hours for session in self.calendar.all_sessions: o, c = self.calendar.pm_open_and_close_for_session(session) delta = c - o self.assertLessEqual(delta.seconds / 3600, self.HALF_SESSION_HOURS) def test_calculated_against_csv(self): assert_index_equal(self.calendar.schedule.index, self.answers.index) def test_is_open_on_minute(self): one_minute = pd.Timedelta(minutes=1) for market_minute in self.answers.market_open: market_minute_utc = market_minute # The exchange should be classified as open on its first minute self.assertTrue(self.calendar.is_open_on_minute(market_minute_utc)) if self.GAPS_BETWEEN_SESSIONS: # Decrement minute by one, to minute where the market was not # open pre_market = market_minute_utc - one_minute self.assertFalse(self.calendar.is_open_on_minute(pre_market)) for market_minute in self.answers.market_close: close_minute_utc = market_minute # should be open on its last minute self.assertTrue(self.calendar.is_open_on_minute(close_minute_utc)) if self.GAPS_BETWEEN_SESSIONS: # increment minute by one minute, should be closed post_market = close_minute_utc + one_minute self.assertFalse(self.calendar.is_open_on_minute(post_market)) def _verify_minute(self, calendar, minute, next_open_answer, prev_open_answer, next_close_answer, prev_close_answer): self.assertEqual( calendar.next_open(minute), next_open_answer ) self.assertEqual( self.calendar.previous_open(minute), prev_open_answer ) self.assertEqual( self.calendar.next_close(minute), next_close_answer ) self.assertEqual( self.calendar.previous_close(minute), prev_close_answer ) def test_next_prev_open_close(self): # for each session, check: # - the minute before the open (if gaps exist between sessions) # - the first minute of the session # - the second minute of the session # - the minute before the close # - the last minute of the session # - the first minute after the close (if gaps exist between sessions) opens = self.answers.market_open.iloc[1:-2] closes = self.answers.market_close.iloc[1:-2] previous_opens = self.answers.market_open.iloc[:-1] previous_closes = self.answers.market_close.iloc[:-1] next_opens = self.answers.market_open.iloc[2:] next_closes = self.answers.market_close.iloc[2:] for (open_minute, close_minute, previous_open, previous_close, next_open, next_close) in zip(opens, closes, previous_opens, previous_closes, next_opens, next_closes): minute_before_open = open_minute - self.one_minute # minute before open if self.GAPS_BETWEEN_SESSIONS: self._verify_minute( self.calendar, minute_before_open, open_minute, previous_open, close_minute, previous_close ) # open minute self._verify_minute( self.calendar, open_minute, next_open, previous_open, close_minute, previous_close ) # second minute of session self._verify_minute( self.calendar, open_minute + self.one_minute, next_open, open_minute, close_minute, previous_close ) # minute before the close self._verify_minute( self.calendar, close_minute - self.one_minute, next_open, open_minute, close_minute, previous_close ) # the close self._verify_minute( self.calendar, close_minute, next_open, open_minute, next_close, previous_close ) # minute after the close if self.GAPS_BETWEEN_SESSIONS: self._verify_minute( self.calendar, close_minute + self.one_minute, next_open, open_minute, next_close, close_minute ) def test_next_prev_minute(self): all_minutes = self.calendar.all_minutes # test 20,000 minutes because it takes too long to do the rest. for idx, minute in enumerate(all_minutes[1:20000]): self.assertEqual( all_minutes[idx + 2], self.calendar.next_minute(minute) ) self.assertEqual( all_minutes[idx], self.calendar.previous_minute(minute) ) # test a couple of non-market minutes if self.GAPS_BETWEEN_SESSIONS: for open_minute in self.answers.market_open[1:]: hour_before_open = open_minute - self.one_hour self.assertEqual( open_minute, self.calendar.next_minute(hour_before_open) ) for close_minute in self.answers.market_close[1:]: hour_after_close = close_minute + self.one_hour self.assertEqual( close_minute, self.calendar.previous_minute(hour_after_close) ) def test_minute_to_session_label(self): for idx, info in enumerate(self.answers[1:-2].iterrows()): session_label = info[1].name open_minute = info[1].iloc[0] close_minute = info[1].iloc[1] hour_into_session = open_minute + self.one_hour minute_before_session = open_minute - self.one_minute minute_after_session = close_minute + self.one_minute next_session_label = self.answers.iloc[idx + 2].name previous_session_label = self.answers.iloc[idx].name # verify that minutes inside a session resolve correctly minutes_that_resolve_to_this_session = [ self.calendar.minute_to_session_label(open_minute), self.calendar.minute_to_session_label(open_minute, direction="next"), self.calendar.minute_to_session_label(open_minute, direction="previous"), self.calendar.minute_to_session_label(open_minute, direction="none"), self.calendar.minute_to_session_label(hour_into_session), self.calendar.minute_to_session_label(hour_into_session, direction="next"), self.calendar.minute_to_session_label(hour_into_session, direction="previous"), self.calendar.minute_to_session_label(hour_into_session, direction="none"), self.calendar.minute_to_session_label(close_minute), self.calendar.minute_to_session_label(close_minute, direction="next"), self.calendar.minute_to_session_label(close_minute, direction="previous"), self.calendar.minute_to_session_label(close_minute, direction="none"), session_label ] if self.GAPS_BETWEEN_SESSIONS: minutes_that_resolve_to_this_session.append( self.calendar.minute_to_session_label( minute_before_session ) ) minutes_that_resolve_to_this_session.append( self.calendar.minute_to_session_label( minute_before_session, direction="next" ) ) minutes_that_resolve_to_this_session.append( self.calendar.minute_to_session_label( minute_after_session, direction="previous" ) ) self.assertTrue(all(x == minutes_that_resolve_to_this_session[0] for x in minutes_that_resolve_to_this_session)) minutes_that_resolve_to_next_session = [ self.calendar.minute_to_session_label(minute_after_session), self.calendar.minute_to_session_label(minute_after_session, direction="next"), next_session_label ] self.assertTrue(all(x == minutes_that_resolve_to_next_session[0] for x in minutes_that_resolve_to_next_session)) self.assertEqual( self.calendar.minute_to_session_label(minute_before_session, direction="previous"), previous_session_label ) if self.GAPS_BETWEEN_SESSIONS: # Make sure we use the cache correctly minutes_that_resolve_to_different_sessions = [ self.calendar.minute_to_session_label(minute_after_session, direction="next"), self.calendar.minute_to_session_label( minute_after_session, direction="previous" ), self.calendar.minute_to_session_label(minute_after_session, direction="next"), ] self.assertEqual( minutes_that_resolve_to_different_sessions, [next_session_label, session_label, next_session_label] ) # make sure that exceptions are raised at the right time with self.assertRaises(ValueError): self.calendar.minute_to_session_label(open_minute, "asdf") if self.GAPS_BETWEEN_SESSIONS: with self.assertRaises(ValueError): self.calendar.minute_to_session_label( minute_before_session, direction="none" ) @parameterized.expand([ (1, 0), (2, 0), (2, 1), ]) def test_minute_index_to_session_labels(self, interval, offset): minutes = self.calendar.minutes_for_sessions_in_range( self.MINUTE_INDEX_TO_SESSION_LABELS_START, self.MINUTE_INDEX_TO_SESSION_LABELS_END, ) minutes = minutes[range(offset, len(minutes), interval)] np.testing.assert_array_equal( pd.DatetimeIndex( minutes.map(self.calendar.minute_to_session_label) ), self.calendar.minute_index_to_session_labels(minutes), ) def test_next_prev_session(self): session_labels = self.answers.index[1:-2] max_idx = len(session_labels) - 1 # the very first session first_session_label = self.answers.index[0] with self.assertRaises(ValueError): self.calendar.previous_session_label(first_session_label) # all the sessions in the middle for idx, session_label in enumerate(session_labels): if idx < max_idx: self.assertEqual( self.calendar.next_session_label(session_label), session_labels[idx + 1] ) if idx > 0: self.assertEqual( self.calendar.previous_session_label(session_label), session_labels[idx - 1] ) # the very last session last_session_label = self.answers.index[-1] with self.assertRaises(ValueError): self.calendar.next_session_label(last_session_label) @staticmethod def _find_full_session(calendar): for session_label in calendar.schedule.index: if session_label not in calendar.early_closes: return session_label return None def test_minutes_for_period(self): # full session # find a session that isn't an early close. start from the first # session, should be quick. full_session_label = self._find_full_session(self.calendar) if full_session_label is None: raise ValueError("Cannot find a full session to test!") minutes = self.calendar.minutes_for_session(full_session_label) am_open, am_close = self.calendar.am_open_and_close_for_session( full_session_label ) pm_open, pm_close = self.calendar.pm_open_and_close_for_session( full_session_label ) np.testing.assert_array_equal( minutes, all_trading_minutes(am_open, pm_close) ) # early close period if self.HAVE_EARLY_CLOSES: early_close_session_label = self.calendar.early_closes[0] minutes_for_early_close = \ self.calendar.minutes_for_session(early_close_session_label) _open, _close = self.calendar.open_and_close_for_session( early_close_session_label ) np.testing.assert_array_equal( minutes_for_early_close, pd.date_range(start=_open, end=_close, freq="min") ) # late open period if self.HAVE_LATE_OPENS: late_open_session_label = self.calendar.late_opens[0] minutes_for_late_open = \ self.calendar.minutes_for_session(late_open_session_label) _open, _close = self.calendar.open_and_close_for_session( late_open_session_label ) np.testing.assert_array_equal( minutes_for_late_open,
pd.date_range(start=_open, end=_close, freq="min")
pandas.date_range
from random import uniform import numpy as np from global_land_mask import globe from pandas import DataFrame import pandas as pd # If you are using Sentinel-1 and Sentinel-2 data please use the default values def new_point(latitude_from=-56, latitude_to=84, longitude_from=-180, longitude_to=180): ''' It generates randomly a geo point ''' latitude = uniform(latitude_from, latitude_to) longitude = uniform(longitude_from, longitude_to) return latitude, longitude def get_land_coordinates(number = 500, gui=False): ''' It generates a list of points distributed on the Earth land ''' i = 0 points = np.zeros((3,number)) while i<number: lat, lon = new_point() # If the generated point is on land, it will be added to the list # otherwise a new point will be generated if globe.is_land(lat, lon): points[0, i] = lat points[1, i] = lon i = i + 1 print(' # Points generated') return points def save_points(points, path = './points.csv'): ''' It saves the generated points into a csv file ''' lat = points[0,:] lon = points[1,:] state = points[2,:] points_to_save = {'Latitude':lat, 'Longitude':lon, 'State':state} globe_points = DataFrame(data = points_to_save) globe_points.to_csv(path) print(' # Points saved') def load_points(path = './points.csv'): ''' It loads the preaviously generated points from a csv file ''' data_frame =
pd.read_csv(path, index_col=0)
pandas.read_csv
# # Copyright (c) 2020 IBM Corp. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # aggregate.py # # Gremlin traversal steps that perform aggregation from abc import ABC from typing import * import pandas as pd from text_extensions_for_pandas.gremlin.traversal.base import GraphTraversal,\ UnaryTraversal from text_extensions_for_pandas.gremlin.traversal.format import ValuesTraversal from text_extensions_for_pandas.gremlin.traversal.underscore import __ class AggregateTraversal(UnaryTraversal, ABC): """ Base class for all traversals that implement aggregation and return a single scalar value. """ def pandas_agg_name(self) -> str: """ :return: The name of the equivalent Pandas aggregation type """ raise NotImplementedError("Subclasses must implement this method") class SumTraversal(AggregateTraversal): """ Gremlin `sum()` step. If applied to a span-valued input, combines the spans into a minimal span that covers all inputs. """ def __init__(self, parent): UnaryTraversal.__init__(self, parent) def compute_impl(self) -> None: tail_type = self.parent.step_types[-1] if tail_type != "p": raise NotImplementedError(f"Sum of step type '{tail_type}' not " f"implemented") input_series = self.parent.last_step() self._set_attrs( paths=pd.DataFrame({0: [input_series.sum()]}), step_types=["p"], aliases={} ) def pandas_agg_name(self) -> str: return "sum" #################################################### # syntactic sugar to allow aggregates without __ def sum_(): return __.sum() # end syntactic sugar #################################################### class GroupTraversal(UnaryTraversal): """ Gremlin `group` step, usually modulated by one or more 'by` modulators. """ def __init__(self, parent): UnaryTraversal.__init__(self, parent) self._key = None # Type: str self._value = None # Type: AggregateTraversal def by(self, key_or_value: Union[str, AggregateTraversal]) -> \ "GroupTraversal": """ `by` modulator to `group()`, for adding a key or value to the group step. Modifies this object in place. :param key_or_value: If a string, name of the field to group by; if an `AggregateTraversal`, subquery to run for each group. :returns: A pointer to this object (after modification) to enable operation chaining. """ if isinstance(key_or_value, str): if self._key is not None: raise ValueError("Tried to set key of group() step twice") self._key = key_or_value elif isinstance(key_or_value, AggregateTraversal): if self._value is not None: raise ValueError("Tried to set value of group() step twice") self._value = key_or_value else: raise ValueError(f"Object '{str(key_or_value)}' passed to " f"group().by() is of type '{type(key_or_value)}'," f"which is not a supported type.") return self def compute_impl(self) -> None: tail_type = self.parent.step_types[-1] if tail_type != "v": raise NotImplementedError(f"Grouping on a path that ends in step " f"type '{tail_type}' not implemented") if (self._key is not None and self._value is not None # TODO: Parent must be values and isinstance(self._value.parent, ValuesTraversal) and self._value.parent.parent == __): # Fast path for the common case group().by(key).by(values.().agg()) # Runs a direct Pandas aggregate over the selected vertices from the # last step, then translates the results into the format that # a Gremlin group step is supposed to use (key->value pairs) values_field = self._value.parent.field_name flat_aggs = ( self.parent.last_vertices() .groupby([self._key]) .aggregate({self._key: "first", values_field: self._value.pandas_agg_name()}) ) # flat_aggs is a 2-column dataframe of key and value. Convert to # a record. result_record = { r[0]: r[1] for r in flat_aggs.itertuples(index=False) } self._set_attrs( paths=
pd.DataFrame({0: [result_record]})
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 22 10:04:24 2019 @author: nsde """ #%% import pandas as pd import numpy as np from ..base import Dataset #%% class wine_quality(Dataset): def _create_dataframe(self): for f in self.files: if 'winequality-red.csv' in f: df_red =
pd.read_csv(f, sep=';')
pandas.read_csv
import pytest import pandas as pd import numpy as np import pyarrow as pa from ray.air.constants import TENSOR_COLUMN_NAME from ray.air.util.data_batch_conversion import convert_batch_type_to_pandas from ray.air.util.data_batch_conversion import convert_pandas_to_batch_type from ray.air.util.data_batch_conversion import DataType from ray.air.util.tensor_extensions.pandas import TensorArray from ray.air.util.tensor_extensions.arrow import ArrowTensorArray def test_pandas_pandas(): input_data = pd.DataFrame({"x": [1, 2, 3]}) expected_output = input_data actual_output = convert_batch_type_to_pandas(input_data) assert expected_output.equals(actual_output) assert convert_pandas_to_batch_type(actual_output, type=DataType.PANDAS).equals( input_data ) def test_numpy_pandas(): input_data = np.array([1, 2, 3]) expected_output = pd.DataFrame({TENSOR_COLUMN_NAME: TensorArray([1, 2, 3])}) actual_output = convert_batch_type_to_pandas(input_data) assert expected_output.equals(actual_output) assert np.array_equal( convert_pandas_to_batch_type(actual_output, type=DataType.NUMPY), input_data ) def test_numpy_multi_dim_pandas(): input_data = np.arange(12).reshape((3, 2, 2)) expected_output = pd.DataFrame({TENSOR_COLUMN_NAME: TensorArray(input_data)}) actual_output = convert_batch_type_to_pandas(input_data) assert expected_output.equals(actual_output) assert np.array_equal( convert_pandas_to_batch_type(actual_output, type=DataType.NUMPY), input_data ) def test_numpy_object_pandas(): input_data = np.array([[1, 2, 3], [1]], dtype=object) expected_output = pd.DataFrame({TENSOR_COLUMN_NAME: TensorArray(input_data)}) actual_output = convert_batch_type_to_pandas(input_data) assert expected_output.equals(actual_output) assert np.array_equal( convert_pandas_to_batch_type(actual_output, type=DataType.NUMPY), input_data ) def test_dict_fail(): input_data = {"x": "y"} with pytest.raises(ValueError): convert_batch_type_to_pandas(input_data) def test_dict_pandas(): input_data = {"x": np.array([1, 2, 3])} expected_output = pd.DataFrame({"x": TensorArray(input_data["x"])}) actual_output = convert_batch_type_to_pandas(input_data) assert expected_output.equals(actual_output) output_array = convert_pandas_to_batch_type(actual_output, type=DataType.NUMPY) assert np.array_equal(output_array, input_data["x"]) def test_dict_multi_dim_to_pandas(): tensor = np.arange(12).reshape((3, 2, 2)) input_data = {"x": tensor} expected_output = pd.DataFrame({"x": TensorArray(tensor)}) actual_output = convert_batch_type_to_pandas(input_data) assert expected_output.equals(actual_output) output_array = convert_pandas_to_batch_type(actual_output, type=DataType.NUMPY) assert np.array_equal(output_array, input_data["x"]) def test_dict_pandas_multi_column(): array_dict = {"x": np.array([1, 2, 3]), "y": np.array([4, 5, 6])} expected_output = pd.DataFrame({k: TensorArray(v) for k, v in array_dict.items()}) actual_output = convert_batch_type_to_pandas(array_dict) assert expected_output.equals(actual_output) output_dict = convert_pandas_to_batch_type(actual_output, type=DataType.NUMPY) for k, v in output_dict.items(): assert np.array_equal(v, array_dict[k]) def test_arrow_pandas(): df =
pd.DataFrame({"x": [1, 2, 3]})
pandas.DataFrame
import pandas as pd import numpy as np import lightgbm as lgb import time train_1 = pd.read_csv("dataset/validation_2/train_complete.csv") train_2 = pd.read_csv("dataset/validation_3/train_complete.csv") val = pd.read_csv("dataset/validation/train_complete.csv") evaluation = False if evaluation: train = pd.concat([train_1, train_2]) eval_group = val.groupby('queried_record_id').size().values else: train =
pd.concat([train_1, train_2, val])
pandas.concat
"""Tests for the sdv.constraints.tabular module.""" import numpy as np import pandas as pd import pytest from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ( ColumnFormula, CustomConstraint, GreaterThan, UniqueCombinations) def dummy_transform(): pass def dummy_reverse_transform(): pass def dummy_is_valid(): pass class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid' # Run instance = CustomConstraint( transform=dummy_transform, reverse_transform=dummy_reverse_transform, is_valid=is_valid_fqn ) # Assert assert instance.transform == dummy_transform assert instance.reverse_transform == dummy_reverse_transform assert instance.is_valid == dummy_is_valid class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test__valid_separator_valid(self): """Test ``_valid_separator`` for a valid separator. If the separator and data are valid, result is ``True``. Input: - Table data (pandas.DataFrame) Output: - True (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data, instance._separator, columns) # Assert assert is_valid def test__valid_separator_non_valid_separator_contained(self): """Test ``_valid_separator`` passing a column that contains the separator. If any of the columns contains the separator string, result is ``False``. Input: - Table data (pandas.DataFrame) with a column that contains the separator string ('#') Output: - False (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', '#', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data, instance._separator, columns) # Assert assert not is_valid def test__valid_separator_non_valid_name_joined_exists(self): """Test ``_valid_separator`` passing a column whose name is obtained after joining the column names using the separator. If the column name obtained after joining the column names using the separator already exists, result is ``False``. Input: - Table data (pandas.DataFrame) with a column name that will be obtained by joining the column names and the separator. Output: - False (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'b#c': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data, instance._separator, columns) # Assert assert not is_valid def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = pd.DataFrame({ 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) assert instance._separator == '#' assert instance._joint_column == 'b#c' pd.testing.assert_frame_equal(instance._combinations, expected_combinations) def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``UniqueCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b#c': ['d#g', 'e#h', 'f#i'] }) pd.testing.assert_frame_equal(expected_out, out) def test_transform_not_all_columns_provided(self): """Test the ``UniqueCombinations.transform`` method. If some of the columns needed for the transform are missing, and ``fit_columns_model`` is False, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns, fit_columns_model=False) instance.fit(table_data) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def reverse_transform(self): """Test the ``UniqueCombinations.reverse_transform`` method. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup transformed_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b#c': ['d#g', 'e#h', 'f#i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(transformed_data) # Run out = instance.reverse_transform(transformed_data) # Assert expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) pd.testing.assert_frame_equal(expected_out, out) class TestGreaterThan(): def test___init___strict_false(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' Side effects: - instance._low == 'a' - instance._high == 'b' - instance._strict == False """ # Run instance = GreaterThan(low='a', high='b') # Asserts assert instance._low == 'a' assert instance._high == 'b' assert instance._strict is False def test___init___strict_true(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' - strict = True Side effects: - instance._low == 'a' - instance._high == 'b' - instance._stric == True """ # Run instance = GreaterThan(low='a', high='b', strict=True) # Asserts assert instance._low == 'a' assert instance._high == 'b' assert instance._strict is True def test_fit_int(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with the high one being made of integers. Side Effect: - The _dtype attribute gets `int` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'i' def test_fit_float(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with the high one being made of float values. Side Effect: - The _dtype attribute gets `float` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'f' def test_fit_datetime(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns of datetimes. Side Effect: - The _dtype attribute gets `datetime` as the value. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01']), 'b': pd.to_datetime(['2020-01-02']) }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'M' def test_is_valid_strict_false(self): """Test the ``GreaterThan.is_valid`` method with strict False. If strict is False, equal values should count as valid Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - False should be returned for the strictly invalid row and True for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_strict_true(self): """Test the ``GreaterThan.is_valid`` method with strict True. If strict is True, equal values should count as invalid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - True should be returned for the strictly valid row and False for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=False) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False]) pd.testing.assert_series_equal(expected_out, out) def test_transform_int_drop_none(self): """Test the ``GreaterThan.transform`` method passing a high column of type int. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], '#a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_int_drop_high(self): """Test the ``GreaterThan.transform`` method passing a high column of type int. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the high column. Setup: - ``_drop`` is set to ``high``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the high column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], '#a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_int_drop_low(self): """Test the ``GreaterThan.transform`` method passing a high column of type int. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the low column. Setup: - ``_drop`` is set to ``low``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the low column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], '#a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_float_drop_none(self): """Test the ``GreaterThan.transform`` method passing a high column of type float. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], '#a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_datetime_drop_none(self): """Test the ``GreaterThan.transform`` method passing a high column of type datetime. If the columns are of type datetime, ``transform`` is expected to convert the timedelta distance into numeric before applying the +1 and logarithm. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with values at a distance of exactly 1 second. Output: - Same table with a diff column of the logarithms of the dinstance in nanoseconds + 1, which is np.log(1_000_000_001). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], '#a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_not_all_columns_provided(self): """Test the ``GreaterThan.transform`` method. If some of the columns needed for the transform are missing, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, fit_columns_model=False) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(
pd.DataFrame({'a': ['a', 'b', 'c']})
pandas.DataFrame
import time import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from matplotlib.ticker import (MultipleLocator, AutoMinorLocator) from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler,StandardScaler from sklearn.metrics import accuracy_score,top_k_accuracy_score, mean_squared_error, mean_absolute_error from multiprocessing import Pool from functools import partial from sklearn.multioutput import MultiOutputRegressor from sklearn.neural_network import MLPRegressor def prediction_plot(real_val,predic_val,ax_lim_low,ax_lim_high,majr_tick,mnr_tick,ax_label): #Plot estiamted vs real values df=
pd.DataFrame({'actual':real_val, 'predicted':predic_val})
pandas.DataFrame
"""Test numpy engine.""" import hypothesis.strategies as st import pandas as pd import pytest from hypothesis import given from pandera.engines import pandas_engine from pandera.errors import ParserError @pytest.mark.parametrize( "data_type", list(pandas_engine.Engine.get_registered_dtypes()) ) def test_pandas_data_type(data_type): """Test numpy engine DataType base class.""" if data_type.type is None: # don't test data types that require parameters e.g. Category return pandas_engine.Engine.dtype(data_type) pandas_engine.Engine.dtype(data_type.type) pandas_engine.Engine.dtype(str(data_type.type)) with pytest.warns(UserWarning): pd_dtype = pandas_engine.DataType(data_type.type) with pytest.warns(UserWarning): pd_dtype_from_str = pandas_engine.DataType(str(data_type.type)) assert pd_dtype == pd_dtype_from_str assert not pd_dtype.check("foo") @pytest.mark.parametrize( "data_type", list(pandas_engine.Engine.get_registered_dtypes()) ) def test_pandas_data_type_coerce(data_type): """ Test that pandas data type coercion will raise a ParserError. on failure. """ if data_type.type is None: # don't test data types that require parameters e.g. Category return try: data_type().try_coerce(
pd.Series(["1", "2", "a"])
pandas.Series
import re import os import time import logging from tqdm import tqdm import pandas as pd import numpy as np from glob import glob import torch from transformers import BertTokenizer from torch.utils.tensorboard import SummaryWriter from torch.utils.data import TensorDataset, DataLoader from ignite.engine import Engine, Events from ignite.metrics import RunningAverage from ignite.handlers import ModelCheckpoint, EarlyStopping, global_step_from_engine from ignite.contrib.handlers import ProgressBar from model import NER_Model from utils import cmed_ner_metric logger = logging.getLogger(__name__) # Setup logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) import random def set_seed(seed: int): """ Helper function for reproducible behavior to set the seed in ``random``, ``numpy``, ``torch`` and/or ``tf`` (if installed). Args: seed (:obj:`int`): The seed to set. """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) class cMedNER: def __init__(self, dataset, max_split_len=120, max_seq_len=128, model_name_or_path="bert-base-chinese",per_gpu_batch_size=8, embed_size=300, no_cuda=False, dense_layer_type="linear", dropout=0.5, embed_type="random", vector_file="", bert_lr=1e-5, crf_lr=1e-3, patience=3, output_dir="results/cmt_ner", n_saved=3, max_epochs=100): set_seed(42) self.train_path = os.path.join(dataset, "train.txt") self.dev_path = os.path.join(dataset, "dev.txt") self.test_path = os.path.join(dataset, "test.txt") self.max_split_len = max_split_len self.max_seq_len = max_seq_len self.bert_tokenizer = BertTokenizer.from_pretrained(model_name_or_path) self.en_list = ["bod", "dis", "sym", "pro", "dru", "ite", "mic", "equ", "dep"] self.label_list = ['<pad>', '<start>', '<end>', "O"] for en in self.en_list: for pre in ["B-", "I-", "E-", "S-"]: self.label_list.append(pre + en) self.per_gpu_batch_size = per_gpu_batch_size self.embed_size = embed_size self.no_cuda = no_cuda self.dense_layer_type = dense_layer_type self.dropout = dropout self.embed_type = embed_type self.model_name_or_path = model_name_or_path self.vector_file = vector_file self.bert_lr = bert_lr self.crf_lr = crf_lr self.patience = patience self.output_dir = output_dir self.n_saved = n_saved self.max_epochs = max_epochs device = torch.device("cuda" if torch.cuda.is_available() and not self.no_cuda else "cpu") self.n_gpu = max(torch.cuda.device_count() if not self.no_cuda else 1, 1) self.device = device if 'bert' not in self.embed_type: model_name = "{}_{}_crf".format(self.embed_type, self.dense_layer_type) else: embed_type = os.path.split(self.model_name_or_path)[-1] model_name = "{}_{}_crf".format(embed_type, self.dense_layer_type) self.model_name = model_name self.output_dir = "{}/{}".format(output_dir, model_name) def evaluation(self, gold_file, start_time, train_time): predix = os.path.split(gold_file)[-1].replace(".txt", "") pre_file = os.path.join(self.output_dir, '{}_{}.txt'.format(predix, self.model_name)) score_file = os.path.join(self.output_dir, 'score_{}_{}.txt'.format(predix, self.model_name)) with open(score_file, 'w', encoding="utf-8") as w: res = cmed_ner_metric(pre_file, gold_file, self.en_list) w.write("overall_s:\t{}".format(res['overall_s'])) w.write("\n") w.write("{}".format(res['detial_s'])) w.write("\n") w.write("message:\n{}".format(res['message'])) w.write("\n") w.write("train time cost:\t {:.2f} s".format(train_time)) w.write("\n") w.write("time cost:\t {:.2f} s".format(time.time() - start_time - train_time)) w.write("\n") w.write("args:\n{}".format('\n'.join(['%s:%s' % item for item in self.__dict__.items()]))) def export_results(self, unlabel_path): X, cut_his, originalTexts = self.get_X(unlabel_path) y_pred = self.predict(X) entity_data = [] predix = os.path.split(unlabel_path)[-1].replace(".txt", "") X_align, y_align = originalTexts, self.alignment_X_y(originalTexts, cut_his, y_pred) for i, (text, y) in enumerate(tqdm(zip(X_align, y_align), desc="Decoding")): entities = [] for k, label in enumerate(y): if "-" in label: tag_1 = label.split("-")[0] tag_2 = label.split("-")[1] ## Single if tag_1 == "S": start_pos = k end_pos = k + 1 entity = text[start_pos: end_pos] en_line = "{} {} {}".format(start_pos, end_pos-1, tag_2) entities.append(en_line) entity_data.append((i + 1, entity, tag_2, start_pos, end_pos)) if tag_1 == "B": start_pos = k end_pos = k + 1 for j in range(start_pos + 1, len(y)): if y[j] == "I-" + tag_2: end_pos += 1 elif y[j] == 'E-' + tag_2: end_pos += 1 break else: break entity = text[start_pos: end_pos] en_line = "{} {} {}".format(start_pos, end_pos - 1, tag_2) entities.append(en_line) entity_data.append((i + 1, entity, tag_2, start_pos, end_pos)) with open(os.path.join(self.output_dir, '{}_{}.txt'.format(predix, self.model_name)), 'a', encoding="utf-8") as f: entity_text = "|||".join(entities) s = "{}|||{}|||".format(text, entity_text) f.write(s) f.write("\n") tempDF = pd.DataFrame(data=entity_data, columns=['text_id', 'entity', 'label_type', 'start_pos', 'end_pos']) tempDF.to_csv(os.path.join(self.output_dir, "tmp_entities_{}_{}.csv".format(predix, self.model_name)), index=False) def alignment_X_y(self, originalTexts, cut_his, y_pred): y_align = [] for i, X in enumerate(originalTexts): cut_index = cut_his[i] if isinstance(cut_index, int): y_ = y_pred[cut_index] else: y_ =[] for index in cut_index: y_.extend(y_pred[index]) assert len(X) == len(y_), 'i:{};text_len:{};while label_len:{}'.format(i, len(X), len(y_)) y_align.append(y_) assert len(originalTexts) == len(y_align) return y_align def train(self): ## train data train_X, train_y, _ = self.get_X_y(self.train_path) train_input_ids, train_input_mask_ids, train_label_ids, train_label_mask_ids = self.get_X_y_ids(train_X, train_y) ## dev data dev_X, dev_y, _ = self.get_X_y(self.dev_path) dev_input_ids, dev_input_mask_ids, dev_label_ids, dev_label_mask_ids = self.get_X_y_ids(dev_X, dev_y) train_ds = TensorDataset(train_input_ids, train_input_mask_ids, train_label_ids, train_label_mask_ids) dev_ds = TensorDataset(dev_input_ids, dev_input_mask_ids, dev_label_ids, dev_label_mask_ids) batch_size = self.n_gpu * self.per_gpu_batch_size train_iter = DataLoader(train_ds, batch_size=batch_size, shuffle=True, drop_last=True) dev_iter = DataLoader(dev_ds, batch_size=batch_size, shuffle=True, drop_last=True) model = NER_Model(vocab_size=self.bert_tokenizer.vocab_size, embed_size=self.embed_size, num_tags=len(self.label_list), max_len=self.max_seq_len, device=self.device, dense_layer_type=self.dense_layer_type, dropout=self.dropout, embed_type=self.embed_type, model_name_or_path=self.model_name_or_path, vector_file=self.vector_file) model.to(self.device) if self.n_gpu > 1: model = torch.nn.DataParallel(model) logger.info("model.named_parameters()") for n, p in model.named_parameters(): logger.info(n) parameters = [{ "params": [p for n, p in model.named_parameters() if "bert" in n], "lr": self.bert_lr }, { "params": [p for n, p in model.named_parameters() if "bert" not in n], "lr": self.crf_lr }] optimizer = torch.optim.AdamW(parameters, lr=self.crf_lr) tb_writer = SummaryWriter() def train_fn(engine, batch): model.train() optimizer.zero_grad() batch = tuple(t.to(self.device) for t in batch) labels = batch[2] inputs = { "token_ids": batch[0], "input_masks": batch[1], "label_ids": labels, } loss, sequence_tags = model(**inputs) score = (sequence_tags == labels).float().detach().cpu().numpy() condition_1 = (labels != self.label_list.index("O")).detach().cpu().numpy() condition_2 = (labels != self.label_list.index("<pad>")).detach().cpu().numpy() patten = np.logical_and(condition_1, condition_2) score = score[patten].mean() if self.n_gpu > 1: loss = loss.mean() ## tensorboard global_step = global_step_from_engine(engine)(engine, engine.last_event_name) # tb_writer.add_scalar('learning_rate', scheduler.get_lr()[0], global_step) tb_writer.add_scalar('train_loss', loss.item(), global_step) tb_writer.add_scalar('train_score', score.item(), global_step) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 3.0) optimizer.step() return loss.item(), score trainer = Engine(train_fn) RunningAverage(output_transform=lambda x: x[0]).attach(trainer, 'loss') RunningAverage(output_transform=lambda x: x[1]).attach(trainer, 'score') def dev_fn(engine, batch): model.eval() optimizer.zero_grad() with torch.no_grad(): batch = tuple(t.to(self.device) for t in batch) labels = batch[2] inputs = { "token_ids": batch[0], "input_masks": batch[1], "label_ids": labels, } loss, sequence_tags = model(**inputs) score = (sequence_tags == labels).float().detach().cpu().numpy() condition_1 = (labels != self.label_list.index("O")).detach().cpu().numpy() condition_2 = (labels != self.label_list.index("<pad>")).detach().cpu().numpy() patten = np.logical_and(condition_1, condition_2) score = score[patten].mean() if self.n_gpu > 1: loss = loss.mean() ## tensorboard global_step = global_step_from_engine(engine)(engine, engine.last_event_name) # tb_writer.add_scalar('learning_rate', scheduler.get_lr()[0], global_step) tb_writer.add_scalar('dev_loss', loss.item(), global_step) tb_writer.add_scalar('dev_score', score.item(), global_step) return loss.item(), score dev_evaluator = Engine(dev_fn) RunningAverage(output_transform=lambda x: x[0]).attach(dev_evaluator, 'loss') RunningAverage(output_transform=lambda x: x[1]).attach(dev_evaluator, 'score') pbar = ProgressBar(persist=True, bar_format="") pbar.attach(trainer, ['loss', 'score']) pbar.attach(dev_evaluator, ['loss', 'score']) def score_fn(engine): loss = engine.state.metrics['loss'] score = engine.state.metrics['score'] ''' if score < 0.5: logger.info("Too low to learn!") trainer.terminate() ''' return score / (loss + 1e-12) handler = EarlyStopping(patience=self.patience, score_function=score_fn, trainer=trainer) dev_evaluator.add_event_handler(Events.COMPLETED, handler) @trainer.on(Events.EPOCH_COMPLETED) def log_dev_results(engine): dev_evaluator.run(dev_iter) dev_metrics = dev_evaluator.state.metrics avg_score = dev_metrics['score'] avg_loss = dev_metrics['loss'] logger.info( "Validation Results - Epoch: {} Avg score: {:.2f} Avg loss: {:.2f}" .format(engine.state.epoch, avg_score, avg_loss)) def model_score(engine): score = engine.state.metrics['score'] return score checkpointer = ModelCheckpoint(self.output_dir, "cmed_ner", n_saved=self.n_saved, create_dir=True, score_name="model_score", score_function=model_score, global_step_transform=global_step_from_engine(trainer), require_empty=False) dev_evaluator.add_event_handler(Events.COMPLETED, checkpointer, {self.model_name: model.module if hasattr(model, 'module') else model}) # Clear cuda cache between training/testing def empty_cuda_cache(engine): torch.cuda.empty_cache() import gc gc.collect() trainer.add_event_handler(Events.EPOCH_COMPLETED, empty_cuda_cache) dev_evaluator.add_event_handler(Events.COMPLETED, empty_cuda_cache) trainer.run(train_iter, max_epochs=self.max_epochs) def predict(self, X): all_input_ids, all_input_mask_ids, all_label_ids, all_label_mask_ids = self.get_X_y_ids(X) dataset = TensorDataset(all_input_ids, all_input_mask_ids, all_label_ids) batch_size = self.n_gpu * self.per_gpu_batch_size dataloader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=False) model = NER_Model(vocab_size=self.bert_tokenizer.vocab_size, embed_size=self.embed_size, num_tags=len(self.label_list), max_len=self.max_seq_len, device=self.device, dense_layer_type=self.dense_layer_type, dropout=self.dropout, embed_type=self.embed_type, model_name_or_path=self.model_name_or_path, vector_file=self.vector_file) model.to(self.device) y_preds = [] for model_state_path in glob(os.path.join(self.output_dir, '*{}*.pt*'.format(self.model_name))): model.load_state_dict(torch.load(model_state_path)) y_pred = self.single_predict(model, dataloader) y_preds.append(y_pred) y_preds = torch.tensor(y_preds) y_pred = torch.mode(y_preds, dim=0).values y_pred = y_pred.numpy() preds_list = [[] for _ in range(all_label_mask_ids.shape[0])] for i in range(all_label_mask_ids.shape[0]): for j in range(all_label_mask_ids.shape[1]): if all_label_mask_ids[i, j] != -100: preds_list[i].append(self.label_list[y_pred[i][j]]) return preds_list def single_predict(self, model, dataloader): if self.n_gpu > 1: model = torch.nn.DataParallel(model) model.eval() preds = None with torch.no_grad(): for batch in tqdm(dataloader, desc="Predicting"): batch = tuple(t.to(self.device) for t in batch) inputs = { "token_ids": batch[0], "input_masks": batch[1], } _, sequence_tags = model(**inputs) sequence_tags = sequence_tags.detach().cpu().numpy() if preds is None: preds = sequence_tags else: preds = np.append(preds, sequence_tags, axis=0) return preds def get_X_y_ids(self, X, y=None): all_input_ids = [] all_label_ids = [] all_input_mask_ids = [] all_label_mask_ids = [] for i, X_ in enumerate(tqdm(X, desc="Tokens to ids")): text = list(map(str.lower, X_)) input_ids = self.bert_tokenizer.encode(text=text) input_mask_ids = [1] * len(input_ids) padding_len = self.max_seq_len - len(input_ids) input_ids += [self.bert_tokenizer.pad_token_id] * padding_len input_mask_ids += [0] * padding_len try: y_ = ['<start>'] + y[i] + ['<end>'] y_ += ['<pad>'] * padding_len label_mask_id = [-100] + [100] * len(y[i]) + [-100] label_mask_id += [-100] * padding_len except: y_ = ['<start>', '<end>'] + ['<pad>'] * (self.max_seq_len - 2) label_mask_id = [-100 if idx in [ self.bert_tokenizer.pad_token_id, self.bert_tokenizer.cls_token_id, self.bert_tokenizer.sep_token_id] else 100 for idx in input_ids] label_ids = list(map(self.label_list.index, y_)) assert len(input_ids) == len(input_mask_ids) == len(label_ids) == len(label_mask_id) == self.max_seq_len all_input_ids.append(input_ids) all_input_mask_ids.append(input_mask_ids) all_label_ids.append(label_ids) all_label_mask_ids.append(label_mask_id) if i == 0: logger.info("tokens:\n{}".format(text)) logger.info("token_ids: \n{}".format(input_ids)) logger.info("labels:\n{}".format(y_)) logger.info("label_ids: \n{}".format(label_ids)) all_input_ids = torch.tensor(all_input_ids, dtype=torch.long) all_input_mask_ids = torch.tensor(all_input_mask_ids, dtype=torch.long) all_label_ids = torch.tensor(all_label_ids, dtype=torch.long) all_label_mask_ids = torch.tensor(all_label_mask_ids, dtype=torch.long) return all_input_ids, all_input_mask_ids, all_label_ids, all_label_mask_ids def get_X_y(self, file_path): X = [] y = [] flag = 0 entity_data = [] with open(file_path, 'r', encoding="utf-8") as reader: for i, line in enumerate(tqdm(reader.readlines(), desc="Read {}".format(file_path))): line_list = line.split("|||") line_list.pop() originalText = line_list.pop(0) text = self.clean_text(originalText) entities = line_list if len(text) < self.max_split_len: X_ = list(text) y_ = ['O'] * len(X_) for entity in entities: en_list = entity.split(" ") start_pos = int(en_list[0]) end_pos = int(en_list[1]) + 1 tag = en_list[2] if end_pos - start_pos > 1: y_[start_pos] = 'B-' + tag for i in range(start_pos+1, end_pos-1): y_[i] = 'I-' + tag y_[end_pos - 1] = 'E-' + tag else: y_[start_pos] = 'S-' + tag entity_data.append((text[start_pos: end_pos], tag)) X.append(X_) y.append(y_) else: # split text dot_index_list = self.get_dot_index(text) X_list, y_list, entity_data_ = self.get_short_text_label(text, dot_index_list, entities) assert len(text) == sum(map(len, X_list)) if flag < 3: logger.info("full text:\n{}".format(text)) X_list_str = list(map("".join, X_list)) logger.info("short texts:\n{}".format("\n".join(X_list_str))) flag += 1 X.extend(X_list) y.extend(y_list) entity_data.extend(entity_data_) vocab_df = pd.DataFrame(data=entity_data, columns=['entity', 'label_type']) vocab_df.drop_duplicates(inplace=True, ignore_index=True) assert len(X) == len(y) return X, y, vocab_df def get_X(self, unlabeled_file): X = [] cut_his = {} originalTexts = [] print_flag = 0 with open(unlabeled_file, 'r', encoding='utf-8') as f: for text_id, line in enumerate(tqdm(f.readlines(), desc="Reading {}".format(unlabeled_file))): line_list = line.split("|||") originalText = line_list.pop(0) originalTexts.append(originalText) text = self.clean_text(originalText) if len(text) < self.max_split_len: X.append(list(text)) cut_his[text_id] = len(X) - 1 else: # split text dot_index_list = self.get_dot_index(text) flag = 0 text_id_list = [] if print_flag < 3: logger.info("full text:\n{}".format(text)) for i, do_index in enumerate(dot_index_list): short_text = text[flag: do_index + 1] if print_flag < 3: logger.info("short texts:\n{}".format(short_text)) # print("Short text:{}".format(short_text)) X_ = list(short_text) X.append(X_) text_id_list.append(len(X) - 1) flag = do_index + 1 print_flag += 1 cut_his[text_id] = text_id_list return X, cut_his, originalTexts def get_short_text_label(self, text, dot_index_list, entities): X = [] y = [] flag = 0 entity_data = [] for i, dot_index in enumerate(dot_index_list): short_text = text[flag : dot_index+1] X_ = list(short_text) y_ = ["O"] * len(X_) for entity in entities: en_list = entity.split(" ") start_pos = int(en_list[0]) end_pos = int(en_list[1]) + 1 tag = en_list[2] k = start_pos - flag en_list = [] if end_pos - start_pos > 1: if k >= 0 and k < len(y_): y_[k] = 'B-' + tag en_list.append(X_[k]) for j in range(start_pos + 1, end_pos - 1): j = j - flag if j >= 0 and j < len(y_): y_[j] = 'I-' + tag en_list.append(X_[j]) e = end_pos - 1 - flag if e >= 0 and e < len(y_): y_[e] = 'E-' + tag en_list.append(X_[e]) else: if k >= 0 and k < len(y_): y_[k] = 'S-' + tag en_list.append(X_[k]) if len(en_list) > 0: entity_data.append(("".join(en_list), tag)) flag = dot_index + 1 X.append(X_) y.append(y_) return X, y, entity_data def get_dot_index(self, text): flag = 0 text_ = text dot_index_list = [] while (len(text_) > self.max_split_len): text_ = text_[:self.max_split_len] index_list = [] for match in re.finditer("[,|,|;|;|。|、]", text_): index_list.append(match.span()[0]) index_list.sort() if len(index_list) > 1: last_dot = index_list.pop() else: last_dot = len(text_) dot_index_list.append(last_dot + flag) text_ = text[(last_dot + flag) :] flag += last_dot dot_index_list.append(len(text)) return dot_index_list def clean_text(self, text): def special2n(string): string = string.replace(r"\n", "") return re.sub("[ |\t|\r|\n|\\\|\u0004]", "_", string) def strQ2B(ustr): "全角转半角" rstr = "" for uchar in ustr: inside_code = ord(uchar) # 全角空格直接转换 if inside_code == 12288: inside_code = 32 # 全角字符(除空格)根据关系转化 elif (inside_code >= 65281 and inside_code <= 65374): inside_code -= 65248 rstr += chr(inside_code) return rstr return strQ2B(special2n(text)).lower() def explore_dataset(self, file_path): text_list = [] entity_list = [] with open(file_path, 'r', encoding="utf8") as reader: for i, line in enumerate(tqdm(reader.readlines(), desc="Read {}".format(file_path))): line_list = line.split("|||") line_list.pop() text = line_list.pop(0) text_list.append(text) for en_l in line_list: en_l = en_l.split(" ") try: start_pos = int(en_l[0]) except ValueError: print(i+1, line) end_pos = int(en_l[1]) + 1 label_type = en_l[2] entity_list.append((label_type, text[start_pos: end_pos])) text_df = pd.DataFrame(data=text_list, columns=['text']) entity_df =
pd.DataFrame(data=entity_list, columns=['label_type', 'entity'])
pandas.DataFrame
import json import requests from typing import List import pandas as pd from utils import request_to_json, get_repo_names class GitHubUsers: """ Get information about contributors and contributions. """ def get_repo_contributors(self, repo: str = None) -> json: """ Get specific repository contributors. Args: repo (str, optional): Repository name. Defaults to None. Returns: json: json with all information about contributors. """ url = f"https://api.github.com/repos/dyvenia/{repo}/contributors" req = requests.get(url) if req.status_code != 200: return {} return request_to_json(url) def get_all_contributions(self, repos: List[str] = None) -> pd.DataFrame: """ Get all contributions for list of repos for all contributors. Args: repos (List[str], optional): List of repository names. Defaults to None. Returns: pd.DataFrame: DF """ dfs = [] for repo in repos: contributors = self.get_repo_contributors(repo=repo) contrib_dict = {} contributor_list = [] for contrib in contributors: if "[bot]" not in contrib["login"]: contrib_dict = { "repo": repo, "login": contrib["login"], "contributions": contrib["contributions"], } contributor_list.append(contrib_dict) df_dict =
pd.DataFrame(contributor_list)
pandas.DataFrame
import pandas as pd import numpy as np import json import csv import argparse import re from collections import OrderedDict if __name__ == "__main__": parser = argparse.ArgumentParser(description="Converts Covid-19 Data \ Tabels provided by the RKI to a simpler format \ to fit the model") parser.add_argument( "--source", nargs=1, dest="input_csv", default="../data/raw/COVID19.csv", help="provide the source csv table") parser.add_argument( "--destination", nargs=1, dest="output_csv", default="../data/diseases/covid19.csv", help="provide the destination file") args = parser.parse_args() counties = OrderedDict() with open("../data/raw/germany_county_shapes.json", "r") as data_file: shape_data = json.load(data_file) for idx, val in enumerate(shape_data["features"]): id_current = val["properties"]["RKI_ID"] name_current = val["properties"]["RKI_NameDE"] counties[name_current] = id_current covid19_data = pd.read_csv(args.input_csv, sep=',') # this complicated procedure removes timezone information. regex = re.compile(r"([0-9]+)-([0-9]+)-([0-9]+)T.*") start_year, start_month, start_day = regex.search( covid19_data['Meldedatum'].min()).groups() end_year, end_month, end_day = regex.search( covid19_data['Meldedatum'].max()).groups() start_date = pd.Timestamp( int(start_year), int(start_month), int(start_day)) end_date = pd.Timestamp(int(end_year), int(end_month), int(end_day)) dates = [day for day in
pd.date_range(start_date, end_date)
pandas.date_range
# Copyright (c) 2018-2022, NVIDIA CORPORATION. import numpy as np import pandas as pd import pytest from pandas.api import types as ptypes import cudf from cudf.api import types as types @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, True), (pd.CategoricalDtype, True), # Pandas objects. (
pd.Series(dtype="bool")
pandas.Series
#! /user/bin/evn python # -*- coding:utf8 -*- """ @Author : <NAME> @Contact : <EMAIL> @Project : MVLSTM @File : preprocess.py @Time : 18-11-13 上午11:14 @Software : PyCharm @Copyright: "Copyright (c) 2018 <NAME>. All Rights Reserved" """ import pandas as pd import random import codecs import json excel_path = './question.xls' question_bd = './paragraph_column.txt' qq_path_bd = 'q2q_pair_bd.txt' qq_path_tk = './q2q_pair_tk.txt' question_tk = './question.csv' test_path = './testset.txt' primary_question_dict_path_tk = './primary_question_dict_tk.json' primary_question_dict_path_bd = './primary_question_dict_bd.json' front_noise = './front_noise.txt' end_noise = './end_noise.txt' def load_noise(front_path, end_path): """ Load the front and end noise :param front_path: :param end_path: :return: List: front_list, end_list """ front_list = [] end_list = [] with open(front_path, 'r', encoding='utf-8') as front_f: while True: line = front_f.readline() if not line: print('Front noise phrase load finished!') break front_list.append(line.replace('\n', '')) with open(end_path, 'r', encoding='utf-8') as end_f: while True: line = end_f.readline() if not line: print('End noise phrase load finished!') return front_list, end_list end_list.append(line.replace('\n', '')) def txt2QQpair_tune(path, out_path, front_path='./front_noise.txt', end_path='./end_noise.txt'): """ input: csv files: 问题ID 问题 主问题ID transform the txt data to Question-Question pairs :return: Tag 问题 问题 """ # load noise prefix and end_fix front_list, end_list = load_noise(front_path, end_path) # load primary question primary_question_dict = {} with open(path, 'r', encoding='utf-8') as bd_f: while True: line = bd_f.readline() if not line: print('Primary question dict construct successfully!') break try: temp_data = (line.replace('\n', '')).strip().split('\t') if len(temp_data) != 3: continue temp_id = int(temp_data[0]) temp_context = temp_data[1] temp_pid = int(temp_data[2]) if not temp_context.strip(): continue if temp_pid == 0: primary_question_dict[temp_id] = temp_context.replace('\n', '') # key: id, value: question except Exception as e: print(line) print(e) primary_question_dict_json = json.dumps(primary_question_dict, ensure_ascii=False) with open(primary_question_dict_path_bd, 'w', encoding='utf-8') as pqd_f: pqd_f.write(primary_question_dict_json) # end of load primary question # construct question to question pair questions1 = [] questions2 = [] flags = [] with open(path, 'r', encoding='utf-8') as bd_f: while True: line = bd_f.readline() # print(len(flags)) if len(flags) >= 200000: break if not line: print('question to question matching data construct successfully') break try: temp_data = (line.replace('\n', '')).strip().split('\t') if len(temp_data) != 3: continue temp_id = int(temp_data[0]) temp_context = temp_data[1] temp_pid = int(temp_data[2]) if not temp_context.strip(): continue if temp_pid != 0: if len(flags) < 150000: temp_context_noise = random.choice(front_list) + temp_context + random.choice(end_list) questions1.append(temp_context_noise.replace('\n', '')) questions2.append(primary_question_dict[temp_pid]) flags.append(1) # else: # temp_context_noise = temp_context # questions1.append((temp_context.replace('\n', ''))) # add unnoise data questions1.append(temp_context.replace('\n', '')) questions2.append(primary_question_dict[temp_pid]) flags.append(1) temp_dict = primary_question_dict.copy() primary_id_raw = list(temp_dict.keys()) # negative sample: 2:2 primary_id_raw.remove(temp_pid) fake_id = random.choice(primary_id_raw) questions1.append(temp_context.replace('\n', '')) questions2.append(primary_question_dict[fake_id]) flags.append(0) primary_id_raw.remove(fake_id) fake_id = random.choice(primary_id_raw) questions1.append(temp_context.replace('\n', '')) questions2.append(primary_question_dict[fake_id]) flags.append(0) primary_id_raw.remove(fake_id) fake_id = random.choice(primary_id_raw) questions1.append(temp_context.replace('\n', '')) questions2.append(primary_question_dict[fake_id]) flags.append(0) questions1.append(temp_context.replace('\n', '')) questions2.append(temp_context.replace('\n', '')) flags.append(1) except Exception as e: print(line) print(e) with codecs.open(out_path, 'w', encoding='utf-8') as qq: for flag, q1, q2 in zip(flags, questions1, questions2): if q1 and q2: qq.write(str(flag) + '\t' + str(q1) + '\t' + str(q2) + '\n') def csv2QQpair_tune(path, out_path, front_path='./front_noise.txt', end_path='./end_noise.txt'): """ input: csv files: 问题ID 问题 主问题ID transform the csv data to Question-Question pairs :return: Tag 问题 问题 """ # load noise prefix and end_fix front_list, end_list = load_noise(front_path, end_path) primary_question_dict = {} # suitable for csv file only csv_data = pd.read_csv(path, sep='\t', header=None, index_col=0) for key, data in csv_data.iterrows(): if not (data[1].strip() or data[2].strip()): continue if data[2] == 0: primary_question_dict[key] = (data[1]).replace('\n', '') # key: id, value: question primary_question_dict_json = json.dumps(primary_question_dict, ensure_ascii=False) with open(primary_question_dict_path_tk, 'w', encoding='utf-8') as pqd_f: pqd_f.write(primary_question_dict_json) questions1 = [] questions2 = [] flags = [] # suitable for csv file only for key, data in csv_data.iterrows(): if not (data[1].strip() or data[2].strip()): continue temp_context = (data[1]).replace("\n", "") if data[2] != 0: if len(flags) < 100000: temp_context_noise = random.choice(front_list) + temp_context + random.choice(end_list) # True questions1.append(temp_context_noise) questions2.append(primary_question_dict[data[2]]) flags.append(1) # else: # temp_context_noise = temp_context # add unnoise data questions1.append(temp_context.replace('\n', '')) questions2.append(primary_question_dict[data[2]]) flags.append(1) temp_dict = primary_question_dict.copy() # 浅拷贝,避免修改主问题列表 # dict.keys() 返回dict_keys类型,其性质类似集合(set)而不是列表(list),因此不能使用索引获取其元素 primary_id_raw = list(temp_dict.keys()) # negative sample ratio: 2:2 primary_id_raw.remove(data[2]) # 先去除该问题主问题id,再随机负采样 fake_id = random.choice(primary_id_raw) questions1.append(temp_context) questions2.append(primary_question_dict[fake_id]) flags.append(0) primary_id_raw.remove(fake_id) fake_id = random.choice(primary_id_raw) questions1.append(temp_context) questions2.append(primary_question_dict[fake_id]) flags.append(0) primary_id_raw.remove(fake_id) fake_id = random.choice(primary_id_raw) questions1.append(temp_context) questions2.append(primary_question_dict[fake_id]) flags.append(0) questions1.append(temp_context.replace('\n', '')) questions2.append(temp_context.replace('\n', '')) flags.append(1) with codecs.open(out_path, 'w', encoding='utf-8') as qq: for flag, q1, q2 in zip(flags, questions1, questions2): if q1 and q2: qq.write(str(flag) + '\t' + str(q1) + '\t' + str(q2) + '\n') def excel2csv(path, out_path): """ Multi-Sheets excel file, needs to be convert to one file :param path: str :param out_path: str :return: """ io = pd.io.excel.ExcelFile(path) excel_data = pd.read_excel(io, sheet_name=['question', 'question(2)', 'question(3)'], # sheet_name=['Sheet1', 'Sheet2', 'Sheet3'], usecols=[0, 1, 2], # 0: id, 1: question, 2:parent_id index_col=0, header=None) csv_df =
pd.concat([excel_data['question'], excel_data['question(2)'], excel_data['question(3)']])
pandas.concat
#!/usr/bin/env python3 import sys import os import argparse import subprocess import readline import pandas as pd import numpy as np from plio.io.io_bae import read_gpf, save_gpf from appl_tools.pedr import pedrtab2df from appl_tools.surfacefit import run_pc_align, update_gpf, ascii_dtm2csv def parse_args(): parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, description = """This script aligns Tie Points from a Socet Set/Socet GXP Ground Point File (GPF) to a reference elevation data set by acting as a thin wrapper around the 'pc_align' program from the NASA Ames Stereo Pipeline. Typically, Tie Points are too sparse to be reliably aligned to a reference using the iterative closest points algorithm in pc_align. Therefore, this script allows pc_align to first be applied to a (potentially low-resolution) digital terrain model derived from the stereopair that corresponds to the GPF file. The resulting transformation matrix is applied to the Tie Points during a second call to pc_align. The transformed latitude, longitude, and height values from the Tie Points are then written to a new GPF with their sigmas set equal to 1 and the "known" flag changed from "1" (Tie Point) to "3" (XYZ Control). Non-Tie Points from the original GPF are written to the new GPF with their "known" flags changed to "1." Tie Points from the original GPF that were not active ("stat" = 0) are copied "as-is" into the new GPF. The output GPF preserves the order of the ground points from the original GPF. If it is desired to update all active points in the input GPF, use the '--all-points' flag. The modified points will still have their "known" flag set to "3" (XYZ Control) in the output GPF. The Ames Stereo Pipeline program pc_align must be available in the user's path or somewhere else where Python can find it. More information about the Ames Stereo Pipeline is available on the project's Git repository: https://github.com/NeoGeographyToolkit/StereoPipeline""", epilog = """EXAMPLES: Align Tie Points from a HiRISE DTM in Socet's ASCII DTM format to a reference DTM in GeoTIFF format. The Socet ASCII DTM will be automatically converted to a pc_align-compatible CSV, but the user should specify either the datum or planetary radii that describe the surface that the Socet DTM's heights are referenced to. In the following example, the Socet DTM is referenced to the Mars 2000 ellipsoid. %(prog)s --radii 3396190 3376000 --max-displacement 50 CTX_reference_dtm.tif HiRISE_Gale_low_res.asc HiRISE_Gale.gpf output_HiRISE_Gale.gpf This script can be used to simulate the behavior of the legacy SurfaceFit Perl script wherein Socet Tie Points from a Mars DTM referenced to an ellipsoid are aligned to MOLA shot data referenced to the geoid, the "--max-displacement" parameter was fixed at 300 meters and the datum was set to the IAU sphere ("D_MARS"): %(prog)s --max-displacement 300 --datum D_MARS MOLA_reference.tab CTX_NE_Syrtis_low_res_aate.asc CTX_NE_Syrtis.gpf tfm_CTX_NE_Syrtis.gpf \n """) parser.add_argument("ref_dtm", help="The name of the file that contains the reference elevation data.") parser.add_argument("socet_dtm", help = "The name of the file containing the Socet Set or GXP DTM to be aligned. Must be in ASCII format.") parser.add_argument("socet_gpf", help = "The name of the Socet Ground Point File that will be updated using the transform that was calculated for socet_dtm.") parser.add_argument("tfm_socet_gpf", help = """Name to use for the output (transformed) ground point file. Must include ".gpf" extension.""") parser.add_argument("--all-points", action='store_true', help = "This flag will force updating of all active (stat = 1) points in socet_gpf, not just tie points (known = 0).") parser.add_argument("--s_srs", help = """PROJ string describing the projected spatial reference system of the input GPF. If omitted, script assumes a geographic SRS with shape defined by --datum or --radius. If ref_dtm is CSV, it must use same SRS as the GPF file.""", nargs='?', type=str) parser.add_argument("--gxp", action='store_true', help = "Flag to indicate input GPF is in Socet GXP format. Output GPF will be in legacy Socet Set format.") parser.add_argument("--max-displacement", type=float, nargs=1, help="Maximum expected displacement of source points as result of alignment, in meters (after the initial guess transform is applied to the source points). Used for removing gross outliers in the source (movable) pointcloud.") refshape = parser.add_mutually_exclusive_group(required=True) refshape.add_argument("--datum", nargs=1, choices=['D_MARS', 'D_MOON', 'MOLA', 'NAD27', 'NAD83', 'WGS72', 'WGS_1984'], help = """Use this datum for heights in the input GPF file and any other input CSV files.""") refshape.add_argument("--radii", nargs=2, metavar=('semi-major-axis','semi-minor-axis'), type=float, help="""Semi-major and semi-minor axes, expressed in meters, that define the ellipsoid that heights in the input GPF file and any other input CSV files are referenced to.""") parser.add_argument('pc_align_args', nargs = argparse.REMAINDER, help = """Additional arguments that will be passed directly to pc_align.""") args = parser.parse_args() return args def main(user_args): ref_dtm = user_args.ref_dtm socet_dtm = user_args.socet_dtm socet_gpf = user_args.socet_gpf tfm_socet_gpf = user_args.tfm_socet_gpf all_points = user_args.all_points datum = user_args.datum radii = user_args.radii max_displacement = user_args.max_displacement pc_align_args = user_args.pc_align_args s_srs = user_args.s_srs gxp = user_args.gxp if os.path.splitext(tfm_socet_gpf)[1] != ".gpf": print("""USER ERROR: Output file name must use ".gpf" extension""") sys.exit(1) ref_basename = os.path.splitext(ref_dtm)[0] ref_ext = os.path.splitext(ref_dtm)[1] socet_dtm_basename = os.path.splitext(socet_dtm)[0] src_ext = os.path.splitext(socet_dtm)[1] if ref_ext.lower() == '.tab': print("\n\n *** WARNING: Using MOLA heights above geoid ***\n\n") ref_dtm_pc_align = (ref_basename + "_RefPC.csv") pedr_df = pedrtab2df(ref_dtm) # Assume ographic lat, lon, topo columns exist pedr_df.to_csv(path_or_buf=(ref_dtm_pc_align), header=False, index=False, columns=['areod_lat','long_East','topography']) elif ref_ext.lower() == '.asc': ref_dtm_pc_align = (ref_basename + "_RefPC.csv") ascii_dtm2csv(ref_dtm, ref_dtm_pc_align) elif ref_ext.lower() == '.csv': ref_dtm_pc_align = ref_dtm else: # assume raster and let pc_align complain if it's not ref_dtm_pc_align = ref_dtm if src_ext.lower() == '.asc': socet_dtm_pc_align = (socet_dtm_basename + ".csv") ascii_dtm2csv(socet_dtm,socet_dtm_pc_align) else: # assume raster and let pc_align complain if it's not socet_dtm_pc_align = socet_dtm # Read in the Socet ground point file using plio's read_gpf() if gxp: gpf_df = read_gpf(socet_gpf, gxp=True) # Modify DataFrame to resemble legacy Socet Set format # Rename "use" and "point_type" to their Socet Set equivalents gpf_df.rename(columns={'use':'stat', 'point_type':'known'}, inplace=True) if not s_srs: gpf_df.lat_Y_North = np.radians(gpf_df['lat_Y_North']) gpf_df.long_X_East = np.radians(((gpf_df['long_X_East'] + 180) % 360) - 180) else: gpf_df = read_gpf(socet_gpf) # Set the index of the GPF dataframe to be the point_id column gpf_df.set_index('point_id', drop=False, inplace=True) # If user passed "--all-points" option, copy *all active* points to new data frame # Otherwise, copy active tie points (point_type == 0) only # Note that DataFrame is named "tp_df" regardless of whether it includes only tiepoints or not if all_points: tp_df = gpf_df[(gpf_df.stat == 1)].copy() else: tp_df = gpf_df[(gpf_df.known == 0) & (gpf_df.stat == 1)].copy() if not s_srs: tp_df.lat_Y_North = np.degrees(tp_df.lat_Y_North) tp_df.long_X_East = ((360 + np.degrees(tp_df.long_X_East)) % 360) align_prefix = (socet_dtm_basename + '_pcAligned_DTM') gpf_align_prefix = (socet_dtm_basename + '_pcAligned_gpfTies') # Build arguments list and perform alignment with pc_align align_args = ["--max-displacement", str(max_displacement[0]), "--save-inv-transformed-reference-points", "-o", align_prefix] # Extend the list of arguments for pc_align to include the datum or radii as necessary if datum is not None: align_args.extend(["--datum", str(datum[0])]) elif radii is not None: align_args.extend(["--semi-major-axis", str(radii[0]), "--semi-minor-axis", str(radii[1])]) # If the user passed additional arguments for pc_align, extend align_args to include them if pc_align_args: align_args.extend(pc_align_args) # Extend the list to place point clouds at the end of the list of arguments for pc_align align_args.extend([socet_dtm_pc_align, ref_dtm_pc_align]) print("Aligning " + socet_dtm_pc_align + " to " + ref_dtm_pc_align) try: run_align = run_pc_align(align_args) except subprocess.CalledProcessError as e: print(e) sys.exit(1) # Write out CSV (compatible with pc_align) containing lat/long/height of points to be updated socet_gpf_csv = ((os.path.splitext(socet_gpf)[0]) + '.csv') tp_df.to_csv(path_or_buf=socet_gpf_csv, header=False, index=False, columns=['lat_Y_North','long_X_East','ht']) # Build arguments list and apply transformation to selected points from GPF using pc_align # Set num-iterations = 0 because only going to apply existing transform transform_matrix = (align_prefix + '-inverse-transform.txt') apply_tfm_args = ["--initial-transform",transform_matrix, "--num-iterations","0", "--max-displacement", str(max_displacement[0]), "--save-transformed-source-points", "-o", gpf_align_prefix ] # Extend the list of arguments for pc_align to include the datum or radii as necessary if datum is not None: apply_tfm_args.extend(["--datum", str(datum[0])]) elif radii is not None: apply_tfm_args.extend(["--semi-major-axis", str(radii[0]), "--semi-minor-axis", str(radii[1])]) if s_srs: apply_tfm_args.extend(["--csv-proj4", str(s_srs)]) apply_tfm_args.extend(["--csv-format", str('''2:easting 1:northing 3:height_above_datum''')]) # Extend the list to place point clouds at the end of the list of arguments for pc_align apply_tfm_args.extend([ref_dtm_pc_align,socet_gpf_csv]) # Apply transform from previous pc_align run to tie points CSV print("Calling pc_align with 0 iterations to apply transform from previous run to Tie Points from GPF") try: run_align = run_pc_align(apply_tfm_args) except subprocess.CalledProcessError as e: print(e) sys.exit(1) # mergeTransformedGPFTies # Convert the transformed tie points from CSV to a pandas DataFrame t = np.genfromtxt((gpf_align_prefix + '-trans_source.csv'),delimiter=',', skip_header=3,dtype='unicode') id_list = tp_df['point_id'].tolist() tfm_index =
pd.Index(id_list)
pandas.Index
# -*- coding: utf-8 -*- """ Created on Thu Feb 16 23:11:56 2017 @author: Flamingo """ import pandas as pd import numpy as np import datetime import copy import sys sys.path.append('../TOOLS') from IJCAI2017_TOOL import * #%% readin shop data HOLI = pd.read_csv('../additional/HOLI.csv') HOLI = HOLI.set_index(['DATE'],drop = True) HOLI_TAB = HOLI.transpose() HOLI_TAB.columns = [str((datetime.datetime.strptime('20150626','%Y%m%d') + datetime.timedelta(days=x)).date()) for x in range( HOLI_TAB.shape[1])] #%% readin shop data PAYNW = pd.read_csv('../data/user_pay_new.csv') VIENW = pd.read_csv('../data/user_view_new.csv') PAYNW_SHOP_DATE = PAYNW.groupby(['SHOP_ID','DATE'],as_index = False).sum() PAYNW_SHOP_DATE = PAYNW_SHOP_DATE[['SHOP_ID','DATE','Num_post']] #PAYNW_TAB_FIX = pd.read_csv('FillOctober.csv') #PAYNW_TAB_FIX['DATE'] = [ (lambda x:str(datetime.datetime.strptime('2015/06/26','%Y/%m/%d').date() ) ) (x) for x in PAYNW_TAB_FIX['DATE']] # #PAYNW_SHOP_DATE = pd.concat([PAYNW_SHOP_DATE ,PAYNW_TAB_FIX],axis = 0) # # #PAYNW_SHOP_DATE = PAYNW_SHOP_DATE.drop_duplicates(subset = ['SHOP_ID','DATE'], keep = 'last') #PAYNW_SHOP_DATE = PAYNW_SHOP_DATE.sort_values(by = ['SHOP_ID','DATE']) PAYNW_SHOP_DATE.reset_index(level=0) PAYNW_TAB = pd.pivot_table(PAYNW_SHOP_DATE, values=['Num_post'], index=['SHOP_ID'],columns=['DATE'], aggfunc=np.sum) #PAYNW_TAB = pd.pivot_table(PAYNW, values=['Num_post'], index=['SHOP_ID'],columns=['DATE'], aggfunc=np.sum) PAYNW_TAB = pd.concat( [PAYNW_TAB[PAYNW_TAB.columns[0:169:1]], pd.DataFrame({'A':[np.nan],},index=np.arange(1,2001)),PAYNW_TAB[PAYNW_TAB.columns[169::1]] ], axis = 1) PAYNW_TAB.columns = [str((datetime.datetime.strptime('20150626','%Y%m%d') + datetime.timedelta(days=x)).date()) for x in range( PAYNW_TAB.shape[1])] PAYNW_TAB['2015-12-12'] = PAYNW_TAB['2015-12-13'] PAYNW_TAB_T = PAYNW_TAB.transpose() #%% shop_related_features SHOP_INFO = pd.read_csv("../external/SHOP_FEATURES_0221.csv",low_memory=False) SHOP_SC = ['SC00'] SHOP_SD = map(lambda x:'SD'+ str(x).zfill(2), np.arange(5)) SHOP_SE = map(lambda x:'SE'+ str(x).zfill(2), np.arange(1)) SHOP_SF = map(lambda x:'SF'+ str(x).zfill(2), np.arange(1)) SHOP_SG = map(lambda x:'SG'+ str(x).zfill(2), np.arange(4)) SHOP_SH = map(lambda x:'SH'+ str(x).zfill(2), np.arange(2)) SHOP_SI = [(lambda x:('SI'+ str(x).zfill(2))) (x) for x in range(10)] SHOP_SJ = map(lambda x:'SJ'+ str(x).zfill(2), np.arange(15)) SHOP_columns = SHOP_SC + SHOP_SD + SHOP_SE + SHOP_SF + SHOP_SG + SHOP_SH + SHOP_SI + SHOP_SJ #%% TRN_N = 21 TST_N = 14 TST_PAD_N = 14 + 4 end_date = datetime.datetime.strptime('2016-10-31','%Y-%m-%d') day_N = 494 date_list = [str((end_date- datetime.timedelta(days=x)).date()) for x in range(day_N)] date_list.reverse() #%% TRAIN = pd.DataFrame() train_date_zip = zip(date_list[0:day_N-(TRN_N+TST_N)+1],date_list[TRN_N-1:day_N-TST_N+1],date_list[TRN_N:day_N-TST_N+2], date_list[TRN_N+TST_N-1:day_N]) train_date_zip_df = pd.DataFrame(train_date_zip) train_date_zip_df.columns = ['TRN_STA','TRN_END','TST_STA','TST_END'] for TRN_STA,TRN_END,TST_STA,TST_END in train_date_zip: TRAIN_temp = PAYNW_TAB.loc[:,TRN_STA:TST_END] TRAIN_temp.columns = np.arange(TRAIN_temp.shape[1]) TRAIN_temp.reset_index(level=0, inplace=True) TRAIN_temp.loc[:,'TRN_STA'] = str(TRN_STA) TRAIN_temp.loc[:,'TRN_END'] = str(TRN_END) TRAIN_temp.loc[:,'TST_STA'] = str(TST_STA) TRAIN_temp.loc[:,'TST_END'] = str(TST_END) TRAIN = pd.concat( [TRAIN,TRAIN_temp],) #%% TRAIN = TRAIN.reset_index(np.arange(len(TRAIN)),drop = True) TRAIN_TRN_C = map(lambda x:'SA'+ str(x).zfill(2), np.arange(TRN_N)) TRAIN_TST_C = map(lambda x:'SB'+ str(x).zfill(2), np.arange(TST_N)) TRAIN.columns = ['SHOP_ID'] + TRAIN_TRN_C + TRAIN_TST_C + ['TRN_STA','TRN_END','TST_STA','TST_END'] #%% #TEST= pd.DataFrame() #TRN_END = datetime.datetime.strptime('2016-10-31','%Y-%m-%d') #TRN_STA = (TRN_END - datetime.timedelta(days=(TRN_N-1)) ) #TST_STA = (TRN_END + datetime.timedelta(days=(1)) ) #TST_END = (TRN_END + datetime.timedelta(days=(TST_N)) ) #test_date_zip = zip([str(TRN_STA.date())],[str(TRN_END.date())],[str(TST_STA.date())], [str(TST_END.date()) ]) #TEST = PAYNW_TAB.loc[:,str(TRN_STA.date()):str(TRN_END.date())] #TEST.reset_index(level=0, inplace=True) #end_date = datetime.datetime.strptime('2016-10-31','%Y-%m-%d') #TEST.loc[:,'TRN_STA'] = str(TRN_STA.date()) #TEST.loc[:,'TRN_END'] = str(TRN_END.date()) #TEST.loc[:,'TST_STA'] = str(TST_STA.date()) #TEST.loc[:,'TST_END'] = str(TST_END.date()) #TEST_TRN_C = map(lambda x:'SA'+ str(x).zfill(2), np.arange(TRN_N)) #TEST.columns = ['SHOP_ID'] + TEST_TRN_C + ['TRN_STA','TRN_END','TST_STA','TST_END'] TEST = pd.read_csv('../dataclean/TEST_cor_0313.csv') #%% result_fix = pd.read_csv('../generateXY_table/sub_011_last6weeks_removenan_m105.csv',header=None,names =['SHOP_ID'] + range(14)) result_fmed = pd.DataFrame() result_fmed['SHOP_ID'] = result_fix['SHOP_ID'] result_fmed['VALUE'] = result_fix.loc[:,np.arange(0,14)].median(axis = 1) result_fmed.to_csv('0215_fix.csv',index = False) TRAIN_OK = TRAIN[TRAIN.loc[:,TRAIN_TST_C].isnull().sum(axis = 1)==0] TRAIN_OK = TRAIN_OK[TRAIN_OK.loc[:,TRAIN_TRN_C].isnull().sum(axis = 1)<=(TRN_N-21)] TRAIN_OK = pd.merge(TRAIN_OK ,result_fmed,on='SHOP_ID',how = 'left') TEST = pd.merge(TEST ,result_fmed,on='SHOP_ID',how = 'left') TRAIN_OK =
pd.merge(TRAIN_OK ,SHOP_INFO,on='SHOP_ID',how = 'left')
pandas.merge
from functools import partial import json import numpy as np import pandas as pd import pandas.testing as pdt import pytest from solarforecastarbiter.io import utils # data for test Dataframe TEST_DICT = {'value': [2.0, 43.9, 338.0, -199.7, 0.32], 'quality_flag': [1, 1, 9, 5, 2]} DF_INDEX = pd.date_range(start=pd.Timestamp('2019-01-24T00:00'), freq='1min', periods=5, tz='UTC', name='timestamp') DF_INDEX.freq = None TEST_DATA = pd.DataFrame(TEST_DICT, index=DF_INDEX) EMPTY_SERIES = pd.Series(dtype=float) EMPTY_TIMESERIES = pd.Series([], name='value', index=pd.DatetimeIndex( [], name='timestamp', tz='UTC'), dtype=float) EMPTY_DATAFRAME = pd.DataFrame(dtype=float) EMPTY_TIME_DATAFRAME = pd.DataFrame([], index=pd.DatetimeIndex( [], name='timestamp', tz='UTC'), dtype=float) TEST_DATAFRAME = pd.DataFrame({ '25.0': [0.0, 1, 2, 3, 4, 5], '50.0': [1.0, 2, 3, 4, 5, 6], '75.0': [2.0, 3, 4, 5, 6, 7]}, index=pd.date_range(start='20190101T0600', end='20190101T1100', freq='1h', tz='America/Denver', name='timestamp')).tz_convert('UTC') @pytest.mark.parametrize('dump_quality,default_flag,flag_value', [ (False, None, 1), (True, 2, 2) ]) def test_obs_df_to_json(dump_quality, default_flag, flag_value): td = TEST_DATA.copy() if dump_quality: del td['quality_flag'] converted = utils.observation_df_to_json_payload(td, default_flag) converted_dict = json.loads(converted) assert 'values' in converted_dict values = converted_dict['values'] assert len(values) == 5 assert values[0]['timestamp'] == '2019-01-24T00:00:00Z' assert values[0]['quality_flag'] == flag_value assert isinstance(values[0]['value'], float) def test_obs_df_to_json_no_quality(): td = TEST_DATA.copy() del td['quality_flag'] with pytest.raises(KeyError): utils.observation_df_to_json_payload(td) def test_obs_df_to_json_no_values(): td = TEST_DATA.copy().rename(columns={'value': 'val1'}) with pytest.raises(KeyError): utils.observation_df_to_json_payload(td) def test_forecast_series_to_json(): series = pd.Series([0, 1, 2, 3, 4], index=pd.date_range( start='2019-01-01T12:00Z', freq='5min', periods=5)) expected = [{'value': 0.0, 'timestamp': '2019-01-01T12:00:00Z'}, {'value': 1.0, 'timestamp': '2019-01-01T12:05:00Z'}, {'value': 2.0, 'timestamp': '2019-01-01T12:10:00Z'}, {'value': 3.0, 'timestamp': '2019-01-01T12:15:00Z'}, {'value': 4.0, 'timestamp': '2019-01-01T12:20:00Z'}] json_out = utils.forecast_object_to_json(series) assert json.loads(json_out)['values'] == expected def test_json_payload_to_observation_df(observation_values, observation_values_text): out = utils.json_payload_to_observation_df( json.loads(observation_values_text)) pdt.assert_frame_equal(out, observation_values) def test_json_payload_to_forecast_series(forecast_values, forecast_values_text): out = utils.json_payload_to_forecast_series( json.loads(forecast_values_text)) pdt.assert_series_equal(out, forecast_values) def test_empty_payload_to_obsevation_df(): out = utils.json_payload_to_observation_df({'values': []}) assert set(out.columns) == {'value', 'quality_flag'} assert isinstance(out.index, pd.DatetimeIndex) def test_empty_payload_to_forecast_series(): out = utils.json_payload_to_forecast_series({'values': []}) assert isinstance(out.index, pd.DatetimeIndex) def test_null_json_payload_to_observation_df(): observation_values_text = b""" { "_links": { "metadata": "" }, "observation_id": "OBSID", "values": [ { "quality_flag": 1, "timestamp": "2019-01-01T12:00:00-0700", "value": null }, { "quality_flag": 1, "timestamp": "2019-01-01T12:05:00-0700", "value": null } ] }""" ind = pd.DatetimeIndex([ pd.Timestamp("2019-01-01T19:00:00Z"), pd.Timestamp("2019-01-01T19:05:00Z") ], name='timestamp') observation_values = pd.DataFrame({ 'value': pd.Series([None, None], index=ind, dtype=float), 'quality_flag': pd.Series([1, 1], index=ind) }) out = utils.json_payload_to_observation_df( json.loads(observation_values_text)) pdt.assert_frame_equal(out, observation_values) def test_null_json_payload_to_forecast_series(): forecast_values_text = b""" { "_links": { "metadata": "" }, "forecast_id": "OBSID", "values": [ { "timestamp": "2019-01-01T12:00:00-0700", "value": null }, { "timestamp": "2019-01-01T12:05:00-0700", "value": null } ] }""" ind = pd.DatetimeIndex([ pd.Timestamp("2019-01-01T19:00:00Z"), pd.Timestamp("2019-01-01T19:05:00Z") ], name='timestamp') forecast_values = pd.Series([None, None], index=ind, dtype=float, name='value') out = utils.json_payload_to_forecast_series( json.loads(forecast_values_text)) pdt.assert_series_equal(out, forecast_values) @pytest.mark.parametrize('label,exp,start,end', [ ('instant', TEST_DATA, None, None), (None, TEST_DATA, None, None), ('ending', TEST_DATA.iloc[1:], None, None), ('beginning', TEST_DATA.iloc[:-1], None, None), pytest.param('er', TEST_DATA, None, None, marks=pytest.mark.xfail(raises=ValueError)), # start/end outside data ('ending', TEST_DATA, pd.Timestamp('20190123T2300Z'), None), ('beginning', TEST_DATA, None, pd.Timestamp('20190124T0100Z')), # more limited ('ending', TEST_DATA.iloc[2:], pd.Timestamp('20190124T0001Z'), None), ('beginning', TEST_DATA.iloc[:-2], None, pd.Timestamp('20190124T0003Z')), ('instant', TEST_DATA.iloc[1:-1], pd.Timestamp('20190124T0001Z'), pd.Timestamp('20190124T0003Z')), ]) def test_adjust_timeseries_for_interval_label(label, exp, start, end): start = start or pd.Timestamp('2019-01-24T00:00Z') end = end or pd.Timestamp('2019-01-24T00:04Z') out = utils.adjust_timeseries_for_interval_label( TEST_DATA, label, start, end) pdt.assert_frame_equal(exp, out) def test_adjust_timeseries_for_interval_label_no_tz(): test_data = TEST_DATA.tz_localize(None) label = None start = pd.Timestamp('2019-01-24T00:00Z') end = pd.Timestamp('2019-01-24T00:04Z') with pytest.raises(ValueError): utils.adjust_timeseries_for_interval_label( test_data, label, start, end) def test_adjust_timeseries_for_interval_label_no_tz_empty(): test_data = pd.DataFrame() label = None start = pd.Timestamp('2019-01-24T00:00Z') end = pd.Timestamp('2019-01-24T00:04Z') out = utils.adjust_timeseries_for_interval_label( test_data, label, start, end) pdt.assert_frame_equal(test_data, out) @pytest.mark.parametrize('label,exp', [ ('instant', TEST_DATA['value']), ('ending', TEST_DATA['value'].iloc[1:]), ('beginning', TEST_DATA['value'].iloc[:-1]) ]) def test_adjust_timeseries_for_interval_label_series(label, exp): start = pd.Timestamp('2019-01-24T00:00Z') end = pd.Timestamp('2019-01-24T00:04Z') out = utils.adjust_timeseries_for_interval_label( TEST_DATA['value'], label, start, end) pdt.assert_series_equal(exp, out) @pytest.mark.parametrize('inp,exp', [ (TEST_DATA['value'], '{"schema":{"version": 1, "orient": "records", "timezone": "UTC", "column": "value", "index": "timestamp", "dtype": "float64", "objtype": "Series"},"data":[{"timestamp":"2019-01-24T00:00:00Z","value":2.0},{"timestamp":"2019-01-24T00:01:00Z","value":43.9},{"timestamp":"2019-01-24T00:02:00Z","value":338.0},{"timestamp":"2019-01-24T00:03:00Z","value":-199.7},{"timestamp":"2019-01-24T00:04:00Z","value":0.32}]}'), # NOQA: E501 (EMPTY_TIMESERIES, '{"schema":{"version": 1, "orient": "records", "timezone": "UTC", "column": "value", "index": "timestamp", "dtype": "float64", "objtype": "Series"},"data":[]}'), # NOQA: E501 pytest.param(EMPTY_SERIES, '', marks=[ pytest.mark.xfail(strict=True, type=TypeError)]), pytest.param(pd.Series([], dtype=float, index=pd.DatetimeIndex([])), '', marks=[pytest.mark.xfail(strict=True, type=TypeError)]), (TEST_DATAFRAME, '{"schema":{"version": 1, "orient": "records", "timezone": "UTC", "column": ["25.0", "50.0", "75.0"], "index": "timestamp", "dtype": ["float64", "float64", "float64"], "objtype": "DataFrame"},"data":[{"timestamp":"2019-01-01T13:00:00Z","25.0":0.0,"50.0":1.0,"75.0":2.0},{"timestamp":"2019-01-01T14:00:00Z","25.0":1.0,"50.0":2.0,"75.0":3.0},{"timestamp":"2019-01-01T15:00:00Z","25.0":2.0,"50.0":3.0,"75.0":4.0},{"timestamp":"2019-01-01T16:00:00Z","25.0":3.0,"50.0":4.0,"75.0":5.0},{"timestamp":"2019-01-01T17:00:00Z","25.0":4.0,"50.0":5.0,"75.0":6.0},{"timestamp":"2019-01-01T18:00:00Z","25.0":5.0,"50.0":6.0,"75.0":7.0}]}'), # NOQA: E501 (EMPTY_TIME_DATAFRAME, '{"schema":{"version": 1, "orient": "records", "timezone": "UTC", "column": [], "index": "timestamp", "dtype": [], "objtype": "DataFrame"},"data":[]}'), # NOQA: E501 pytest.param(EMPTY_DATAFRAME, '', marks=[ pytest.mark.xfail(strict=True, type=TypeError)]), ]) def test_serialize_timeseries(inp, exp): out = utils.serialize_timeseries(inp) outd = json.loads(out) assert 'schema' in outd assert 'data' in outd assert out == exp @pytest.mark.parametrize('inp,exp', [ ('{"schema": {"version": 0, "orient": "records", "timezone": "UTC", "column": "value", "index": "timestamp", "dtype": "float64"}, "data": []}', # NOQA EMPTY_TIMESERIES), ('{"schema": {"version": 0, "orient": "records", "timezone": "US/Arizona", "column": "value", "index": "timestamp", "dtype": "float64"}, "data": []}', # NOQA pd.Series([], name='value', index=pd.DatetimeIndex( [], tz='US/Arizona', name='timestamp'), dtype=float)), ('{"schema": {"version": 0, "orient": "records", "timezone": "UTC", "column": "value", "index": "timestamp", "dtype": "float64"}, "data": [], "other_stuff": {}}', # NOQA EMPTY_TIMESERIES), ('{"schema": {"version": 0, "orient": "records", "timezone": "UTC", "column": "alue", "index": "timestamp", "dtype": "float64"}, "more": [], "data": []}', # NOQA pd.Series([], name='alue', index=pd.DatetimeIndex( [], tz='UTC', name='timestamp'), dtype=float)), ('{"schema": {"version": 0, "orient": "records", "timezone": "UTC", "column": "value", "index": "timestamp", "dtype": "float64"}, "more": [], "data": [], "other": []}', # NOQA EMPTY_TIMESERIES), ('{"schema": {"version": 0, "orient": "records", "timezone": "UTC", "column": "value", "index": "timestamp", "dtype": "float64"}, "data": [{"timestamp": "2019-01-01T00:00:00Z", "value": 1.0}], "other_stuff": {}}', # NOQA pd.Series([1.0], index=pd.DatetimeIndex(["2019-01-01T00:00:00"], tz='UTC', name='timestamp'), name='value')), ('{"schema": {"version": 0, "orient": "records", "timezone": "UTC", "column": "value", "index": "timestamp", "dtype": "float64"}, "data": [{"timestamp": "2019-01-01T00:00:00", "value": 1.0}], "other_stuff": {}}', # NOQA pd.Series([1.0], index=pd.DatetimeIndex(["2019-01-01T00:00:00"], tz='UTC', name='timestamp'), name='value')), ('{"schema": {"version": 0, "orient": "records", "timezone": "Etc/GMT+8", "column": "value", "index": "timestamp", "dtype": "float64"}, "data": [{"timestamp": "2019-01-01T00:00:00", "value": 1.0}], "other_stuff": {}}', # NOQA pd.Series([1.0], index=pd.DatetimeIndex(["2019-01-01T00:00:00"], tz='Etc/GMT+8', name='timestamp'), name='value')), pytest.param( '{"data": [], "other_stuff": {}}', EMPTY_SERIES, marks=[pytest.mark.xfail(strict=True, type=ValueError)]), pytest.param( '{"schema": {"version": 0, "orient": "records", "timezone": "UTC", "column": "value", "index": "timestamp", "dtype": "float64"}, "other_stuff": {}}', # NOQA EMPTY_SERIES, marks=[pytest.mark.xfail(strict=True, type=ValueError)]), pytest.param( '{"schema": {"version": 0, "timezone": "UTC", "column": "value", "index": "timestamp", "dtype": "float64"}, "data": []}', # NOQA EMPTY_SERIES, marks=[pytest.mark.xfail(strict=True, type=KeyError)]), ('{"schema": {"version": 1, "objtype": "Series", "orient": "records", "timezone": "UTC", "column": "value", "index": "timestamp", "dtype": "float64"}, "data": []}', # NOQA EMPTY_TIMESERIES) ]) def test_deserialize_timeseries(inp, exp): out = utils.deserialize_timeseries(inp) pdt.assert_series_equal(out, exp) @pytest.mark.parametrize('inp,exp', [ ('{"schema":{"version": 1, "orient": "records", "timezone": "UTC", "column": [], "index": "timestamp", "dtype": [], "objtype": "DataFrame"},"data":[]}', # NOQA EMPTY_TIME_DATAFRAME), ('{"schema": {"version": 1, "objtype": "DataFrame", "orient": "records", "timezone": "UTC", "column": [], "index": "timestamp", "dtype": ["float64"]}, "data": []}', # NOQA EMPTY_TIME_DATAFRAME), ('{"schema": {"version": 1, "objtype": "DataFrame", "orient": "records", "timezone": "UTC", "column": ["25.0"], "index": "timestamp", "dtype": ["float64"]}, "data": [{"timestamp": "2019-01-01T00:00:00", "25.0": 1.0}], "other_stuff": {}}', # NOQA pd.DataFrame({'25.0': 1.0}, index=pd.DatetimeIndex( ["2019-01-01T00:00:00"], tz='UTC', name='timestamp'))), ('{"schema": {"version": 1, "objtype": "DataFrame", "orient": "records", "timezone": "Etc/GMT+8", "column": ["25.0"], "index": "timestamp", "dtype": ["float64"]}, "data": [{"timestamp": "2019-01-01T00:00:00", "25.0": 1.0}], "other_stuff": {}}', # NOQA pd.DataFrame({'25.0': 1.0}, index=pd.DatetimeIndex( ["2019-01-01T00:00:00"], tz='Etc/GMT+8', name='timestamp'))), ]) def test_deserialize_timeseries_frame(inp, exp): out = utils.deserialize_timeseries(inp) pdt.assert_frame_equal(out, exp) def test_serialize_roundtrip(): ser = utils.serialize_timeseries(TEST_DATA['value']) out = utils.deserialize_timeseries(ser) pdt.assert_series_equal(out, TEST_DATA['value']) # use the conftest.py dataframe for security against refactoring def test_serialize_roundtrip_frame(prob_forecast_values): ser = utils.serialize_timeseries(prob_forecast_values) out = utils.deserialize_timeseries(ser)
pdt.assert_frame_equal(out, prob_forecast_values)
pandas.testing.assert_frame_equal
import datetime import hashlib import os import time from warnings import ( catch_warnings, simplefilter, ) import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, MultiIndex, Series, Timestamp, concat, date_range, timedelta_range, ) import pandas._testing as tm from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, safe_close, ) _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) from pandas.io.pytables import ( HDFStore, read_hdf, ) pytestmark = pytest.mark.single_cpu def test_context(setup_path): with tm.ensure_clean(setup_path) as path: try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass with tm.ensure_clean(setup_path) as path: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame def test_no_track_times(setup_path): # GH 32682 # enables to set track_times (see `pytables` `create_table` documentation) def checksum(filename, hash_factory=hashlib.md5, chunk_num_blocks=128): h = hash_factory() with open(filename, "rb") as f: for chunk in iter(lambda: f.read(chunk_num_blocks * h.block_size), b""): h.update(chunk) return h.digest() def create_h5_and_return_checksum(track_times): with ensure_clean_path(setup_path) as path: df = DataFrame({"a": [1]}) with HDFStore(path, mode="w") as hdf: hdf.put( "table", df, format="table", data_columns=True, index=None, track_times=track_times, ) return checksum(path) checksum_0_tt_false = create_h5_and_return_checksum(track_times=False) checksum_0_tt_true = create_h5_and_return_checksum(track_times=True) # sleep is necessary to create h5 with different creation time time.sleep(1) checksum_1_tt_false = create_h5_and_return_checksum(track_times=False) checksum_1_tt_true = create_h5_and_return_checksum(track_times=True) # checksums are the same if track_time = False assert checksum_0_tt_false == checksum_1_tt_false # checksums are NOT same if track_time = True assert checksum_0_tt_true != checksum_1_tt_true def test_iter_empty(setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[df.index[3:6], ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @pytest.mark.filterwarnings("ignore:object name:tables.exceptions.NaturalNameWarning") def test_contains(setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None msg = "'NoneType' object has no attribute 'startswith'" with pytest.raises(Exception, match=msg): store.select("df2") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(where, expected): # GH10143 objs = { "df1": DataFrame([1, 2, 3]), "df2": DataFrame([4, 5, 6]), "df3": DataFrame([6, 7, 8]), "df4": DataFrame([9, 10, 11]), "s1": Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: msg = f"'HDFStore' object has no attribute '{x}'" with pytest.raises(AttributeError, match=msg): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, f"_{x}") def test_store_dropna(setup_path): df_with_missing = DataFrame( {"col1": [0.0, np.nan, 2.0], "col2": [1.0, np.nan, np.nan]}, index=list("abc"), ) df_without_missing = DataFrame( {"col1": [0.0, 2.0], "col2": [1.0, np.nan]}, index=list("ac") ) # # Test to make sure defaults are to not drop. # # Corresponding to Issue 9382 with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df", format="table") reloaded = read_hdf(path, "df") tm.assert_frame_equal(df_with_missing, reloaded) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df", format="table", dropna=False) reloaded = read_hdf(path, "df") tm.assert_frame_equal(df_with_missing, reloaded) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df", format="table", dropna=True) reloaded = read_hdf(path, "df") tm.assert_frame_equal(df_without_missing, reloaded) def test_to_hdf_with_min_itemsize(setup_path): with ensure_clean_path(setup_path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index("C") df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") df2.to_hdf(path, "ss3", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "ss3"), concat([df, df2])) # same as above, with a Series df["B"].to_hdf(path, "ss4", format="table", min_itemsize={"index": 6}) df2["B"].to_hdf(path, "ss4", append=True, format="table") tm.assert_series_equal(read_hdf(path, "ss4"), concat([df["B"], df2["B"]])) @pytest.mark.parametrize("format", ["fixed", "table"]) def test_to_hdf_errors(format, setup_path): data = ["\ud800foo"] ser = Series(data, index=Index(data)) with ensure_clean_path(setup_path) as path: # GH 20835 ser.to_hdf(path, "table", format=format, errors="surrogatepass") result = read_hdf(path, "table", errors="surrogatepass") tm.assert_series_equal(result, ser) def test_create_table_index(setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string", "string2"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True assert col("f", "string2").is_indexed is True # specify index=columns store.append("f2", df, index=["string"], data_columns=["string", "string2"]) assert col("f2", "index").is_indexed is False assert col("f2", "string").is_indexed is True assert col("f2", "string2").is_indexed is False # try to index a non-table _maybe_remove(store, "f2") store.put("f2", df) msg = "cannot create table index on a Fixed format store" with pytest.raises(TypeError, match=msg): store.create_table_index("f2") def test_create_table_index_data_columns_argument(setup_path): # GH 28156 with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True msg = "'Cols' object has no attribute 'string2'" with pytest.raises(AttributeError, match=msg): col("f", "string2").is_indexed # try to index a col which isn't a data_column msg = ( "column string2 is not a data_column.\n" "In order to read column string2 you must reload the dataframe \n" "into HDFStore and include string2 with the data_columns argument." ) with pytest.raises(AttributeError, match=msg): store.create_table_index("f", columns=["string2"]) def test_mi_data_columns(setup_path): # GH 14435 idx = MultiIndex.from_arrays( [date_range("2000-01-01", periods=5), range(5)], names=["date", "id"] ) df = DataFrame({"a": [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=True) actual = store.select("df", where="id == 1") expected = df.iloc[[1], :] tm.assert_frame_equal(actual, expected) def test_table_mixed_dtypes(setup_path): # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[df.index[3:6], ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: store.append("df1_mixed", df) tm.assert_frame_equal(store.select("df1_mixed"), df) def test_calendar_roundtrip_issue(setup_path): # 8591 # doc example from tseries holiday section weekmask_egypt = "Sun Mon Tue Wed Thu" holidays = [ "2012-05-01", datetime.datetime(2013, 5, 1), np.datetime64("2014-05-01"), ] bday_egypt = pd.offsets.CustomBusinessDay( holidays=holidays, weekmask=weekmask_egypt ) dt = datetime.datetime(2013, 4, 30) dts = date_range(dt, periods=5, freq=bday_egypt) s = Series(dts.weekday, dts).map(Series("Mon Tue Wed Thu Fri Sat Sun".split())) with ensure_clean_store(setup_path) as store: store.put("fixed", s) result = store.select("fixed") tm.assert_series_equal(result, s) store.append("table", s) result = store.select("table") tm.assert_series_equal(result, s) def test_remove(setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeDataFrame() store["a"] = ts store["b"] = df _maybe_remove(store, "a") assert len(store) == 1 tm.assert_frame_equal(df, store["b"]) _maybe_remove(store, "b") assert len(store) == 0 # nonexistence with pytest.raises( KeyError, match="'No object named a_nonexistent_store in the file'" ): store.remove("a_nonexistent_store") # pathing store["a"] = ts store["b/foo"] = df _maybe_remove(store, "foo")
_maybe_remove(store, "b/foo")
pandas.tests.io.pytables.common._maybe_remove
# import numpy as np import pandas as pd class PandasUtil(): def __init__(self, datetime_format=None): self.datetime_format = datetime_format def fix_string(self, series): return series.astype(str) def fix_bool(self, series): return series.astype(bool) def fix_float(self, series): return
pd.to_numeric(series)
pandas.to_numeric
import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.generic import ABCIndexClass import pandas as pd import pandas._testing as tm from pandas.api.types import is_float, is_float_dtype, is_integer, is_scalar from pandas.core.arrays import IntegerArray, integer_array from pandas.core.arrays.integer import ( Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ) from pandas.tests.extension.base import BaseOpsUtil def make_data(): return list(range(8)) + [np.nan] + list(range(10, 98)) + [np.nan] + [99, 100] @pytest.fixture( params=[ Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ] ) def dtype(request): return request.param() @pytest.fixture def data(dtype): return integer_array(make_data(), dtype=dtype) @pytest.fixture def data_missing(dtype): return integer_array([np.nan, 1], dtype=dtype) @pytest.fixture(params=["data", "data_missing"]) def all_data(request, data, data_missing): """Parametrized fixture giving 'data' and 'data_missing'""" if request.param == "data": return data elif request.param == "data_missing": return data_missing def test_dtypes(dtype): # smoke tests on auto dtype construction if dtype.is_signed_integer: assert np.dtype(dtype.type).kind == "i" else: assert np.dtype(dtype.type).kind == "u" assert dtype.name is not None @pytest.mark.parametrize( "dtype, expected", [ (Int8Dtype(), "Int8Dtype()"), (Int16Dtype(), "Int16Dtype()"), (Int32Dtype(), "Int32Dtype()"), (Int64Dtype(), "Int64Dtype()"), (UInt8Dtype(), "UInt8Dtype()"), (UInt16Dtype(), "UInt16Dtype()"), (UInt32Dtype(), "UInt32Dtype()"), (UInt64Dtype(), "UInt64Dtype()"), ], ) def test_repr_dtype(dtype, expected): assert repr(dtype) == expected def test_repr_array(): result = repr(integer_array([1, None, 3])) expected = "<IntegerArray>\n[1, <NA>, 3]\nLength: 3, dtype: Int64" assert result == expected def test_repr_array_long(): data = integer_array([1, 2, None] * 1000) expected = ( "<IntegerArray>\n" "[ 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>, 1,\n" " ...\n" " <NA>, 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>]\n" "Length: 3000, dtype: Int64" ) result = repr(data) assert result == expected class TestConstructors: def test_uses_pandas_na(self): a = pd.array([1, None], dtype=pd.Int64Dtype()) assert a[1] is pd.NA def test_from_dtype_from_float(self, data): # construct from our dtype & string dtype dtype = data.dtype # from float expected = pd.Series(data) result = pd.Series( data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype) ) tm.assert_series_equal(result, expected) # from int / list expected = pd.Series(data) result = pd.Series(np.array(data).tolist(), dtype=str(dtype)) tm.assert_series_equal(result, expected) # from int / array expected = pd.Series(data).dropna().reset_index(drop=True) dropped = np.array(data.dropna()).astype(np.dtype((dtype.type))) result = pd.Series(dropped, dtype=str(dtype)) tm.assert_series_equal(result, expected) class TestArithmeticOps(BaseOpsUtil): def _check_divmod_op(self, s, op, other, exc=None): super()._check_divmod_op(s, op, other, None) def _check_op(self, s, op_name, other, exc=None): op = self.get_op_from_name(op_name) result = op(s, other) # compute expected mask = s.isna() # if s is a DataFrame, squeeze to a Series # for comparison if isinstance(s, pd.DataFrame): result = result.squeeze() s = s.squeeze() mask = mask.squeeze() # other array is an Integer if isinstance(other, IntegerArray): omask = getattr(other, "mask", None) mask = getattr(other, "data", other) if omask is not None: mask |= omask # 1 ** na is na, so need to unmask those if op_name == "__pow__": mask = np.where(~s.isna() & (s == 1), False, mask) elif op_name == "__rpow__": other_is_one = other == 1 if isinstance(other_is_one, pd.Series): other_is_one = other_is_one.fillna(False) mask = np.where(other_is_one, False, mask) # float result type or float op if ( is_float_dtype(other) or is_float(other) or op_name in ["__rtruediv__", "__truediv__", "__rdiv__", "__div__"] ): rs = s.astype("float") expected = op(rs, other) self._check_op_float(result, expected, mask, s, op_name, other) # integer result type else: rs = pd.Series(s.values._data, name=s.name) expected = op(rs, other) self._check_op_integer(result, expected, mask, s, op_name, other) def _check_op_float(self, result, expected, mask, s, op_name, other): # check comparisons that are resulting in float dtypes expected[mask] = np.nan if "floordiv" in op_name: # Series op sets 1//0 to np.inf, which IntegerArray does not do (yet) mask2 = np.isinf(expected) & np.isnan(result) expected[mask2] = np.nan tm.assert_series_equal(result, expected) def _check_op_integer(self, result, expected, mask, s, op_name, other): # check comparisons that are resulting in integer dtypes # to compare properly, we convert the expected # to float, mask to nans and convert infs # if we have uints then we process as uints # then convert to float # and we ultimately want to create a IntArray # for comparisons fill_value = 0 # mod/rmod turn floating 0 into NaN while # integer works as expected (no nan) if op_name in ["__mod__", "__rmod__"]: if is_scalar(other): if other == 0: expected[s.values == 0] = 0 else: expected = expected.fillna(0) else: expected[ (s.values == 0).fillna(False) & ((expected == 0).fillna(False) | expected.isna()) ] = 0 try: expected[ ((expected == np.inf) | (expected == -np.inf)).fillna(False) ] = fill_value original = expected expected = expected.astype(s.dtype) except ValueError: expected = expected.astype(float) expected[ ((expected == np.inf) | (expected == -np.inf)).fillna(False) ] = fill_value original = expected expected = expected.astype(s.dtype) expected[mask] = pd.NA # assert that the expected astype is ok # (skip for unsigned as they have wrap around) if not s.dtype.is_unsigned_integer: original = pd.Series(original) # we need to fill with 0's to emulate what an astype('int') does # (truncation) for certain ops if op_name in ["__rtruediv__", "__rdiv__"]: mask |= original.isna() original = original.fillna(0).astype("int") original = original.astype("float") original[mask] = np.nan tm.assert_series_equal(original, expected.astype("float")) # assert our expected result tm.assert_series_equal(result, expected) def test_arith_integer_array(self, data, all_arithmetic_operators): # we operate with a rhs of an integer array op = all_arithmetic_operators s = pd.Series(data) rhs = pd.Series([1] * len(data), dtype=data.dtype) rhs.iloc[-1] = np.nan self._check_op(s, op, rhs) def test_arith_series_with_scalar(self, data, all_arithmetic_operators): # scalar op = all_arithmetic_operators s = pd.Series(data) self._check_op(s, op, 1, exc=TypeError) def test_arith_frame_with_scalar(self, data, all_arithmetic_operators): # frame & scalar op = all_arithmetic_operators df = pd.DataFrame({"A": data}) self._check_op(df, op, 1, exc=TypeError) def test_arith_series_with_array(self, data, all_arithmetic_operators): # ndarray & other series op = all_arithmetic_operators s = pd.Series(data) other = np.ones(len(s), dtype=s.dtype.type) self._check_op(s, op, other, exc=TypeError) def test_arith_coerce_scalar(self, data, all_arithmetic_operators): op = all_arithmetic_operators s = pd.Series(data) other = 0.01 self._check_op(s, op, other) @pytest.mark.parametrize("other", [1.0, np.array(1.0)]) def test_arithmetic_conversion(self, all_arithmetic_operators, other): # if we have a float operand we should have a float result # if that is equal to an integer op = self.get_op_from_name(all_arithmetic_operators) s = pd.Series([1, 2, 3], dtype="Int64") result = op(s, other) assert result.dtype is np.dtype("float") def test_arith_len_mismatch(self, all_arithmetic_operators): # operating with a list-like with non-matching length raises op = self.get_op_from_name(all_arithmetic_operators) other = np.array([1.0]) s = pd.Series([1, 2, 3], dtype="Int64") with pytest.raises(ValueError, match="Lengths must match"): op(s, other) @pytest.mark.parametrize("other", [0, 0.5]) def test_arith_zero_dim_ndarray(self, other): arr = integer_array([1, None, 2]) result = arr + np.array(other) expected = arr + other tm.assert_equal(result, expected) def test_error(self, data, all_arithmetic_operators): # invalid ops op = all_arithmetic_operators s = pd.Series(data) ops = getattr(s, op) opa = getattr(data, op) # invalid scalars msg = ( r"(:?can only perform ops with numeric values)" r"|(:?IntegerArray cannot perform the operation mod)" ) with pytest.raises(TypeError, match=msg): ops("foo") with pytest.raises(TypeError, match=msg): ops(pd.Timestamp("20180101")) # invalid array-likes with pytest.raises(TypeError, match=msg): ops(pd.Series("foo", index=s.index)) if op != "__rpow__": # TODO(extension) # rpow with a datetimelike coerces the integer array incorrectly msg = ( "can only perform ops with numeric values|" "cannot perform .* with this index type: DatetimeArray|" "Addition/subtraction of integers and integer-arrays " "with DatetimeArray is no longer supported. *" ) with pytest.raises(TypeError, match=msg): ops(pd.Series(pd.date_range("20180101", periods=len(s)))) # 2d result = opa(pd.DataFrame({"A": s})) assert result is NotImplemented msg = r"can only perform ops with 1-d structures" with pytest.raises(NotImplementedError, match=msg): opa(np.arange(len(s)).reshape(-1, len(s))) @pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)]) def test_divide_by_zero(self, zero, negative): # https://github.com/pandas-dev/pandas/issues/27398 a = pd.array([0, 1, -1, None], dtype="Int64") result = a / zero expected = np.array([np.nan, np.inf, -np.inf, np.nan]) if negative: expected *= -1 tm.assert_numpy_array_equal(result, expected) def test_pow_scalar(self): a = pd.array([-1, 0, 1, None, 2], dtype="Int64") result = a ** 0 expected = pd.array([1, 1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** 1 expected = pd.array([-1, 0, 1, None, 2], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** pd.NA expected = pd.array([None, None, 1, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** np.nan expected = np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) # reversed a = a[1:] # Can't raise integers to negative powers. result = 0 ** a expected = pd.array([1, 0, None, 0], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = 1 ** a expected = pd.array([1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = pd.NA ** a expected = pd.array([1, None, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = np.nan ** a expected = np.array([1, np.nan, np.nan, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) def test_pow_array(self): a = integer_array([0, 0, 0, 1, 1, 1, None, None, None]) b = integer_array([0, 1, None, 0, 1, None, 0, 1, None]) result = a ** b expected = integer_array([1, 0, None, 1, 1, 1, 1, None, None]) tm.assert_extension_array_equal(result, expected) def test_rpow_one_to_na(self): # https://github.com/pandas-dev/pandas/issues/22022 # https://github.com/pandas-dev/pandas/issues/29997 arr = integer_array([np.nan, np.nan]) result = np.array([1.0, 2.0]) ** arr expected = np.array([1.0, np.nan]) tm.assert_numpy_array_equal(result, expected) class TestComparisonOps(BaseOpsUtil): def _compare_other(self, data, op_name, other): op = self.get_op_from_name(op_name) # array result = pd.Series(op(data, other)) expected = pd.Series(op(data._data, other), dtype="boolean") # fill the nan locations expected[data._mask] = pd.NA tm.assert_series_equal(result, expected) # series s = pd.Series(data) result = op(s, other) expected = op(pd.Series(data._data), other) # fill the nan locations expected[data._mask] = pd.NA expected = expected.astype("boolean") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("other", [True, False, pd.NA, -1, 0, 1]) def test_scalar(self, other, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([1, 0, None], dtype="Int64") result = op(a, other) if other is pd.NA: expected = pd.array([None, None, None], dtype="boolean") else: values = op(a._data, other) expected = pd.arrays.BooleanArray(values, a._mask, copy=True) tm.assert_extension_array_equal(result, expected) # ensure we haven't mutated anything inplace result[0] = pd.NA tm.assert_extension_array_equal(a, pd.array([1, 0, None], dtype="Int64")) def test_array(self, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([0, 1, 2, None, None, None], dtype="Int64") b = pd.array([0, 1, None, 0, 1, None], dtype="Int64") result = op(a, b) values = op(a._data, b._data) mask = a._mask | b._mask expected = pd.arrays.BooleanArray(values, mask) tm.assert_extension_array_equal(result, expected) # ensure we haven't mutated anything inplace result[0] = pd.NA tm.assert_extension_array_equal( a, pd.array([0, 1, 2, None, None, None], dtype="Int64") ) tm.assert_extension_array_equal( b, pd.array([0, 1, None, 0, 1, None], dtype="Int64") ) def test_compare_with_booleanarray(self, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([True, False, None] * 3, dtype="boolean") b = pd.array([0] * 3 + [1] * 3 + [None] * 3, dtype="Int64") other = pd.array([False] * 3 + [True] * 3 + [None] * 3, dtype="boolean") expected = op(a, other) result = op(a, b) tm.assert_extension_array_equal(result, expected) def test_no_shared_mask(self, data): result = data + 1 assert np.shares_memory(result._mask, data._mask) is False def test_compare_to_string(self, any_nullable_int_dtype): # GH 28930 s = pd.Series([1, None], dtype=any_nullable_int_dtype) result = s == "a" expected = pd.Series([False, pd.NA], dtype="boolean") self.assert_series_equal(result, expected) def test_compare_to_int(self, any_nullable_int_dtype, all_compare_operators): # GH 28930 s1 = pd.Series([1, None, 3], dtype=any_nullable_int_dtype) s2 = pd.Series([1, None, 3], dtype="float") method = getattr(s1, all_compare_operators) result = method(2) method = getattr(s2, all_compare_operators) expected = method(2).astype("boolean") expected[s2.isna()] = pd.NA self.assert_series_equal(result, expected) class TestCasting: @pytest.mark.parametrize("dropna", [True, False]) def test_construct_index(self, all_data, dropna): # ensure that we do not coerce to Float64Index, rather # keep as Index all_data = all_data[:10] if dropna: other = np.array(all_data[~all_data.isna()]) else: other = all_data result = pd.Index(integer_array(other, dtype=all_data.dtype)) expected = pd.Index(other, dtype=object) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("dropna", [True, False]) def test_astype_index(self, all_data, dropna): # as an int/uint index to Index all_data = all_data[:10] if dropna: other = all_data[~all_data.isna()] else: other = all_data dtype = all_data.dtype idx = pd.Index(np.array(other)) assert isinstance(idx, ABCIndexClass) result = idx.astype(dtype) expected = idx.astype(object).astype(dtype) tm.assert_index_equal(result, expected) def test_astype(self, all_data): all_data = all_data[:10] ints = all_data[~all_data.isna()] mixed = all_data dtype = Int8Dtype() # coerce to same type - ints s = pd.Series(ints) result = s.astype(all_data.dtype) expected = pd.Series(ints) tm.assert_series_equal(result, expected) # coerce to same other - ints s = pd.Series(ints) result = s.astype(dtype) expected = pd.Series(ints, dtype=dtype) tm.assert_series_equal(result, expected) # coerce to same numpy_dtype - ints s = pd.Series(ints) result = s.astype(all_data.dtype.numpy_dtype) expected = pd.Series(ints._data.astype(all_data.dtype.numpy_dtype)) tm.assert_series_equal(result, expected) # coerce to same type - mixed s = pd.Series(mixed) result = s.astype(all_data.dtype) expected = pd.Series(mixed) tm.assert_series_equal(result, expected) # coerce to same other - mixed s = pd.Series(mixed) result = s.astype(dtype) expected = pd.Series(mixed, dtype=dtype) tm.assert_series_equal(result, expected) # coerce to same numpy_dtype - mixed s = pd.Series(mixed) msg = r"cannot convert to .*-dtype NumPy array with missing values.*" with pytest.raises(ValueError, match=msg): s.astype(all_data.dtype.numpy_dtype) # coerce to object s = pd.Series(mixed) result = s.astype("object") expected = pd.Series(np.asarray(mixed)) tm.assert_series_equal(result, expected) def test_astype_to_larger_numpy(self): a = pd.array([1, 2], dtype="Int32") result = a.astype("int64") expected = np.array([1, 2], dtype="int64") tm.assert_numpy_array_equal(result, expected) a = pd.array([1, 2], dtype="UInt32") result = a.astype("uint64") expected = np.array([1, 2], dtype="uint64") tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [Int8Dtype(), "Int8", UInt32Dtype(), "UInt32"]) def test_astype_specific_casting(self, dtype): s = pd.Series([1, 2, 3], dtype="Int64") result = s.astype(dtype) expected = pd.Series([1, 2, 3], dtype=dtype) tm.assert_series_equal(result, expected) s = pd.Series([1, 2, 3, None], dtype="Int64") result = s.astype(dtype) expected = pd.Series([1, 2, 3, None], dtype=dtype) tm.assert_series_equal(result, expected) def test_construct_cast_invalid(self, dtype): msg = "cannot safely" arr = [1.2, 2.3, 3.7] with pytest.raises(TypeError, match=msg): integer_array(arr, dtype=dtype) with pytest.raises(TypeError, match=msg): pd.Series(arr).astype(dtype) arr = [1.2, 2.3, 3.7, np.nan] with pytest.raises(TypeError, match=msg): integer_array(arr, dtype=dtype) with pytest.raises(TypeError, match=msg): pd.Series(arr).astype(dtype) @pytest.mark.parametrize("in_series", [True, False]) def test_to_numpy_na_nan(self, in_series): a = pd.array([0, 1, None], dtype="Int64") if in_series: a = pd.Series(a) result = a.to_numpy(dtype="float64", na_value=np.nan) expected = np.array([0.0, 1.0, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) result = a.to_numpy(dtype="int64", na_value=-1) expected = np.array([0, 1, -1], dtype="int64") tm.assert_numpy_array_equal(result, expected) result = a.to_numpy(dtype="bool", na_value=False) expected = np.array([False, True, False], dtype="bool") tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("in_series", [True, False]) @pytest.mark.parametrize("dtype", ["int32", "int64", "bool"]) def test_to_numpy_dtype(self, dtype, in_series): a = pd.array([0, 1], dtype="Int64") if in_series: a = pd.Series(a) result = a.to_numpy(dtype=dtype) expected = np.array([0, 1], dtype=dtype) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", ["float64", "int64", "bool"]) def test_to_numpy_na_raises(self, dtype): a = pd.array([0, 1, None], dtype="Int64") with pytest.raises(ValueError, match=dtype): a.to_numpy(dtype=dtype) def test_astype_str(self): a = pd.array([1, 2, None], dtype="Int64") expected = np.array(["1", "2", "<NA>"], dtype=object) tm.assert_numpy_array_equal(a.astype(str), expected) tm.assert_numpy_array_equal(a.astype("str"), expected) def test_astype_boolean(self): # https://github.com/pandas-dev/pandas/issues/31102 a = pd.array([1, 0, -1, 2, None], dtype="Int64") result = a.astype("boolean") expected = pd.array([True, False, True, True, None], dtype="boolean") tm.assert_extension_array_equal(result, expected) def test_frame_repr(data_missing): df = pd.DataFrame({"A": data_missing}) result = repr(df) expected = " A\n0 <NA>\n1 1" assert result == expected def test_conversions(data_missing): # astype to object series df = pd.DataFrame({"A": data_missing}) result = df["A"].astype("object") expected = pd.Series(np.array([np.nan, 1], dtype=object), name="A") tm.assert_series_equal(result, expected) # convert to object ndarray # we assert that we are exactly equal # including type conversions of scalars result = df["A"].astype("object").values expected = np.array([pd.NA, 1], dtype=object) tm.assert_numpy_array_equal(result, expected) for r, e in zip(result, expected): if pd.isnull(r): assert pd.isnull(e) elif is_integer(r): assert r == e assert is_integer(e) else: assert r == e assert type(r) == type(e) def test_integer_array_constructor(): values = np.array([1, 2, 3, 4], dtype="int64") mask = np.array([False, False, False, True], dtype="bool") result = IntegerArray(values, mask) expected = integer_array([1, 2, 3, np.nan], dtype="int64") tm.assert_extension_array_equal(result, expected) msg = r".* should be .* numpy array. Use the 'integer_array' function instead" with pytest.raises(TypeError, match=msg): IntegerArray(values.tolist(), mask) with pytest.raises(TypeError, match=msg): IntegerArray(values, mask.tolist()) with pytest.raises(TypeError, match=msg): IntegerArray(values.astype(float), mask) msg = r"__init__\(\) missing 1 required positional argument: 'mask'" with pytest.raises(TypeError, match=msg): IntegerArray(values) @pytest.mark.parametrize( "a, b", [ ([1, None], [1, np.nan]), ([None], [np.nan]), ([None, np.nan], [np.nan, np.nan]), ([np.nan, np.nan], [np.nan, np.nan]), ], ) def test_integer_array_constructor_none_is_nan(a, b): result = integer_array(a) expected = integer_array(b) tm.assert_extension_array_equal(result, expected) def test_integer_array_constructor_copy(): values = np.array([1, 2, 3, 4], dtype="int64") mask = np.array([False, False, False, True], dtype="bool") result = IntegerArray(values, mask) assert result._data is values assert result._mask is mask result = IntegerArray(values, mask, copy=True) assert result._data is not values assert result._mask is not mask @pytest.mark.parametrize( "values", [ ["foo", "bar"], ["1", "2"], "foo", 1, 1.0, pd.date_range("20130101", periods=2), np.array(["foo"]), [[1, 2], [3, 4]], [np.nan, {"a": 1}], ], ) def test_to_integer_array_error(values): # error in converting existing arrays to IntegerArrays msg = ( r"(:?.* cannot be converted to an IntegerDtype)" r"|(:?values must be a 1D list-like)" ) with pytest.raises(TypeError, match=msg): integer_array(values) def test_to_integer_array_inferred_dtype(): # if values has dtype -> respect it result = integer_array(np.array([1, 2], dtype="int8")) assert result.dtype == Int8Dtype() result = integer_array(np.array([1, 2], dtype="int32")) assert result.dtype == Int32Dtype() # if values have no dtype -> always int64 result = integer_array([1, 2]) assert result.dtype == Int64Dtype() def test_to_integer_array_dtype_keyword(): result = integer_array([1, 2], dtype="int8") assert result.dtype == Int8Dtype() # if values has dtype -> override it result = integer_array(np.array([1, 2], dtype="int8"), dtype="int32") assert result.dtype == Int32Dtype() def test_to_integer_array_float(): result = integer_array([1.0, 2.0]) expected = integer_array([1, 2]) tm.assert_extension_array_equal(result, expected) with pytest.raises(TypeError, match="cannot safely cast non-equivalent"): integer_array([1.5, 2.0]) # for float dtypes, the itemsize is not preserved result = integer_array(np.array([1.0, 2.0], dtype="float32")) assert result.dtype == Int64Dtype() @pytest.mark.parametrize( "bool_values, int_values, target_dtype, expected_dtype", [ ([False, True], [0, 1], Int64Dtype(), Int64Dtype()), ([False, True], [0, 1], "Int64", Int64Dtype()), ([False, True, np.nan], [0, 1, np.nan], Int64Dtype(), Int64Dtype()), ], ) def test_to_integer_array_bool(bool_values, int_values, target_dtype, expected_dtype): result = integer_array(bool_values, dtype=target_dtype) assert result.dtype == expected_dtype expected = integer_array(int_values, dtype=target_dtype) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize( "values, to_dtype, result_dtype", [ (np.array([1], dtype="int64"), None, Int64Dtype), (np.array([1, np.nan]), None, Int64Dtype), (np.array([1, np.nan]), "int8", Int8Dtype), ], ) def test_to_integer_array(values, to_dtype, result_dtype): # convert existing arrays to IntegerArrays result = integer_array(values, dtype=to_dtype) assert result.dtype == result_dtype() expected = integer_array(values, dtype=result_dtype()) tm.assert_extension_array_equal(result, expected) def test_cross_type_arithmetic(): df = pd.DataFrame( { "A": pd.Series([1, 2, np.nan], dtype="Int64"), "B": pd.Series([1, np.nan, 3], dtype="UInt8"), "C": [1, 2, 3], } ) result = df.A + df.C expected = pd.Series([2, 4, np.nan], dtype="Int64") tm.assert_series_equal(result, expected) result = (df.A + df.C) * 3 == 12 expected = pd.Series([False, True, None], dtype="boolean") tm.assert_series_equal(result, expected) result = df.A + df.B expected = pd.Series([2, np.nan, np.nan], dtype="Int64") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("op", ["sum", "min", "max", "prod"]) def test_preserve_dtypes(op): # TODO(#22346): preserve Int64 dtype # for ops that enable (mean would actually work here # but generally it is a float return value) df = pd.DataFrame( { "A": ["a", "b", "b"], "B": [1, None, 3], "C": integer_array([1, None, 3], dtype="Int64"), } ) # op result = getattr(df.C, op)() assert isinstance(result, int) # groupby result = getattr(df.groupby("A"), op)() expected = pd.DataFrame( {"B": np.array([1.0, 3.0]), "C": integer_array([1, 3], dtype="Int64")}, index=pd.Index(["a", "b"], name="A"), ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("op", ["mean"]) def test_reduce_to_float(op): # some reduce ops always return float, even if the result # is a rounded number df = pd.DataFrame( { "A": ["a", "b", "b"], "B": [1, None, 3], "C": integer_array([1, None, 3], dtype="Int64"), } ) # op result = getattr(df.C, op)() assert isinstance(result, float) # groupby result = getattr(df.groupby("A"), op)() expected = pd.DataFrame( {"B": np.array([1.0, 3.0]), "C": integer_array([1, 3], dtype="Int64")}, index=pd.Index(["a", "b"], name="A"), ) tm.assert_frame_equal(result, expected) def test_astype_nansafe(): # see gh-22343 arr = integer_array([np.nan, 1, 2], dtype="Int8") msg = "cannot convert to 'uint32'-dtype NumPy array with missing values." with pytest.raises(ValueError, match=msg): arr.astype("uint32") @pytest.mark.parametrize("ufunc", [np.abs, np.sign]) # np.sign emits a warning with nans, <https://github.com/numpy/numpy/issues/15127> @pytest.mark.filterwarnings("ignore:invalid value encountered in sign") def test_ufuncs_single_int(ufunc): a = integer_array([1, 2, -3, np.nan]) result = ufunc(a) expected = integer_array(ufunc(a.astype(float))) tm.assert_extension_array_equal(result, expected) s = pd.Series(a) result = ufunc(s) expected = pd.Series(integer_array(ufunc(a.astype(float)))) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("ufunc", [np.log, np.exp, np.sin, np.cos, np.sqrt]) def test_ufuncs_single_float(ufunc): a = integer_array([1, 2, -3, np.nan]) with np.errstate(invalid="ignore"): result = ufunc(a) expected = ufunc(a.astype(float)) tm.assert_numpy_array_equal(result, expected) s = pd.Series(a) with np.errstate(invalid="ignore"): result = ufunc(s) expected = ufunc(s.astype(float)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("ufunc", [np.add, np.subtract]) def test_ufuncs_binary_int(ufunc): # two IntegerArrays a = integer_array([1, 2, -3, np.nan]) result = ufunc(a, a) expected = integer_array(ufunc(a.astype(float), a.astype(float))) tm.assert_extension_array_equal(result, expected) # IntegerArray with numpy array arr = np.array([1, 2, 3, 4]) result = ufunc(a, arr) expected = integer_array(ufunc(a.astype(float), arr)) tm.assert_extension_array_equal(result, expected) result = ufunc(arr, a) expected = integer_array(ufunc(arr, a.astype(float))) tm.assert_extension_array_equal(result, expected) # IntegerArray with scalar result = ufunc(a, 1) expected = integer_array(ufunc(a.astype(float), 1)) tm.assert_extension_array_equal(result, expected) result = ufunc(1, a) expected = integer_array(ufunc(1, a.astype(float)))
tm.assert_extension_array_equal(result, expected)
pandas._testing.assert_extension_array_equal
# -*- coding: utf-8 -*- ''' Created on Jul 28 2019 Last large update on Jun 22 2020 @author: <NAME> @supervisor: <NAME> It's (will be) a Python3.6 or higher program that perform massive search and classification of variable stars into VVV data. ''' import os import sys import math import numpy as np import pandas as pd from astropy.io import ascii from astropy.table import Table from astropy.stats import sigma_clip from scipy.optimize import curve_fit from scipy import optimize, signal import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec #from matplotlib import rc #rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']}) ## for Palatino and other serif fonts use: #rc('font',**{'family':'serif','serif':['Palatino']}) #rc('text', usetex=True) import time sys.path.append('/home/botan/OneDrive/Doutorado/VVV_DATA/my_modules/') import clean_match_tables as cmt import fit_sin_series as fitSin import periodogram as pg import variability_indicator as vi import star_classificator_tools as sct import status class PeriodSearch(object): def __init__(self, path, tile, minP, maxP, varIndex='chi2'): ''' tile: tile name as b293 it deppends of your folder architecture. minP: minimum period (float) maxP: maximum period (float) varIndex: uncorrelated variable index: std or chi2 ''' self.tile = tile self.varIndex = varIndex self.minP = minP self.maxP = maxP self.path = f'{path}/{tile}' os.makedirs(f'{self.path}/figures',exist_ok=True) os.makedirs(f'{self.path}/output',exist_ok=True) self.chips = [fn[:-3] for fn in sorted(os.listdir(f'{self.path}/chips/')) if fn.endswith('ts')] self.tiles = sorted(os.listdir('/home/botan/OneDrive/Doutorado/VVV_DATA/data/psf_ts/')) def organize_tables(self): org = cmt.CreateTable(path=self.path, tile=self.tile, min_sample=25, raw_files=True) #org.plot_chips(show=False) def select_candidates(self): select = vi.Variability(path=self.path, tile=self.tile, method=self.varIndex, maxMag=11.5, stdRatio=1.5, minChi2=2, savePlot=True) select.do_selection() def _read_tables(self,chip): self.data_table = pd.read_csv(f'{self.path}/chips/{chip}.ts',index_col=0,sep=',',low_memory=False) self.obs_time = np.loadtxt(f'{self.path}/chips/{chip}.mjd') self.mag_cols = [col for col in self.data_table.columns if col.split('_')[0] == 'MAG'] self.err_cols = [col for col in self.data_table.columns if col.split('_')[0] == 'ERR'] self.color_cols = [col for col in self.data_table.columns if col.split('_')[0] == 'mag'] self.ks_mag = self.data_table[self.mag_cols] self.ks_err = self.data_table[self.err_cols] self.star_ids = self.data_table.index if self.varIndex == 'chi2': self.candidates = np.genfromtxt(f'{self.path}/var_data/{chip}.chi2cand', dtype=str) if self.varIndex == 'std': self.candidates = np.genfromtxt(f'{self.path}/var_data/{chip}.stdcand', dtype=str) def _freq_agreement(self,f1,f2,h=4): '''check if PDM and LSG frequencies are in agreement till 4 harmonics''' n = 1 while n <= h: m = 1 while m <= h: if abs(f1/f2 - n/m) < 0.01: bol = True break else: bol = False m+=1 if bol: break n+=1 return bol def do_periodogram(self, exists=True): j=1 for chip in self.chips: if exists: chips_done = [fn[:-19] for fn in os.listdir(f'{self.path}/var_data/') if fn.endswith('pdm_parameters.csv')] else: chips_done = [] if not chip in chips_done: self._read_tables(chip) lsg_pgram_params = [] pdm_pgram_params = [] i=1 for star in self.candidates: status._print(prefix=f'Periodogram of chip {chip}', iter1=j, length1=len(self.chips), iter2=i, length2=len(self.candidates), sufix='%') lc = self.ks_mag.loc[star].values err = self.ks_err.loc[star].values t = self.obs_time pgram = pg.Periodogram(t, lc, err, self.minP, self.maxP, normalization='psd', method='scargle', samples_per_peak=10, false=0.001, nbins=10, covers=3, mode=False) lsg_freq, lsg_power, lsg_false_alarm, lsg_best_freq, lsg_fap, lsg_sig_level, lsg_all_freq = pgram.LSG() #lomg Scargle is much faster than PDM, so, PDM stars only if LSG identify a true Frequency if lsg_best_freq > 0: pdm_freq, pdm_theta, pdm_best_freq, pdm_fap, pdm_sig_level, pdm_all_freq = pgram.CyPDM() if pdm_best_freq > 0: # comparison with PDM period (inside 1% and harmonics until n = 4): if self._freq_agreement(f1=lsg_best_freq, f2=pdm_best_freq, h=4): #coords: ra = self.data_table.loc[star]['RA'] dec = self.data_table.loc[star]['DEC'] # J and Ks aper mag for color classification j_mag = self.data_table.loc[star]['J'] j_err = self.data_table.loc[star]['JERR'] k_mag = self.data_table.loc[star]['K'] k_err = self.data_table.loc[star]['KERR'] EJK = self.data_table.loc[star]['EJK'] EJKERR = self.data_table.loc[star]['EJKERR'] # ZYJHKs psf mag for color classification color_cols = [col for col in self.data_table.columns if col.split('_')[0] == 'mag' or col.split('_')[0] == 'er'] color_vals = [self.data_table.loc[star][col] for col in color_cols] # amplitude from light curve (95 - 5 percentile) amplitude = np.nanpercentile(lc,q=95) - np.nanpercentile(lc,q=5) lsg_params = [star, chip, ra, dec] + color_vals + [j_mag, j_err, k_mag, k_err, EJK, EJKERR, lsg_best_freq, amplitude, lsg_fap, lsg_sig_level] pdm_params = [star, chip, ra, dec] + color_vals + [j_mag, j_err, k_mag, k_err, EJK, EJKERR, pdm_best_freq, amplitude, pdm_fap, pdm_sig_level] lsg_pgram_params.append(lsg_params) pdm_pgram_params.append(pdm_params) i+=1 # save periodogram data to files colnames = ['ID','chip','RA','DEC'] + color_cols + ['APER_J', 'APER_JERR', 'APER_K','APER_KERR','APER_EJK', 'APER_EJKERR','best_freq','amplitude','fap','sig_level'] lsg_pgram_params =
pd.DataFrame(lsg_pgram_params, columns=colnames)
pandas.DataFrame
import requests from glob import glob from bs4 import BeautifulSoup import pandas as pd from datetime import datetime from time import sleep # http://www.networkinghowtos.com/howto/common-user-agent-list/ HEADERS = ({'User-Agent': 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5'}) def search_product_list(interval_count=1, interval_hours=6): """ This function lods a csv file named TRACKER_PRODUCTS.csv, with headers: [url, code, buy_below] It looks for the file under in ./trackers It also requires a file called SEARCH_HISTORY.xslx under the folder ./search_history to start saving the results. An empty file can be used on the first time using the script. Both the old and the new results are then saved in a new file named SEARCH_HISTORY_{datetime}.xlsx This is the file the script will use to get the history next time it runs. Parameters ---------- interval_count : TYPE, optional DESCRIPTION. The default is 1. The number of iterations you want the script to run a search on the full list. interval_hours : TYPE, optional DESCRIPTION. The default is 6. Returns ------- New .xlsx file with previous search history and results from current search """ prod_tracker = pd.read_csv('trackers/TRACKER_PRODUCTS.csv', sep=';') prod_tracker_URLS = prod_tracker.url tracker_log =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 """script that generates source data csvs for searchstims experiment figures""" from argparse import ArgumentParser from pathlib import Path import pandas as pd import pyprojroot import searchnets def main(results_gz_root, source_data_root, all_csv_filename, err_effect_csv_filename, net_names, methods, modes, alexnet_split_csv_path, VGG16_split_csv_path, learning_rate=1e-3, ): """generate .csv files used as source data for figures corresponding to experiments carried out with stimuli generated by searchstims library Parameters ---------- results_gz_root : str, Path path to root of directory that has results.gz files created by `searchnets test` command source_data_root : str, path path to root of directory where csv files that are the source data for figures should be saved. all_csv_filename : str filename for .csv saved that contains results from **all** results.gz files. Saved in source_data_root. err_effect_csv_filename : str filename for .csv should be saved that contains group analysis derived from all results, with a measure of set size effect. Saved in source_data_root. net_names : list of str, neural network architecture names methods : list of str, training "methods". Valid values are {"transfer", "initialize"}. modes : list of str, training "modes". Valid values are {"classify","detect"}. alexnet_split_csv_path : str, Path path to .csv that contains dataset splits for "alexnet-sized" searchstim images VGG16_split_csv_path : str, Path path to .csv that contains dataset splits for "VGG16-sized" searchstim images learning_rate float, learning rate value for all experiments. Default is 1e-3. """ results_gz_root = Path(results_gz_root) source_data_root = Path(source_data_root) if not source_data_root.exists(): raise NotADirectoryError( f'directory specified as source_data_root not found: {source_data_root}' ) df_list = [] for net_name in net_names: for method in methods: if method not in METHODS: raise ValueError( f'invalid method: {method}, must be one of: {METHODS}' ) for mode in modes: results_gz_path = sorted(results_gz_root.glob(f'**/*{net_name}*{method}*gz')) if mode == 'classify': results_gz_path = [results_gz for results_gz in results_gz_path if 'detect' not in str(results_gz)] elif mode == 'detect': results_gz_path = [results_gz for results_gz in results_gz_path if 'detect' in str(results_gz)] else: raise ValueError( f'invalid mode: {mode}, must be one of: {MODES}' ) if len(results_gz_path) != 1: raise ValueError(f'found more than one results.gz file: {results_gz_path}') results_gz_path = results_gz_path[0] if net_name == 'alexnet' or 'CORnet' in net_name: csv_path = alexnet_split_csv_path elif net_name == 'VGG16': csv_path = VGG16_split_csv_path else: raise ValueError(f'no csv path defined for net_name: {net_name}') df = searchnets.analysis.searchstims.results_gz_to_df(results_gz_path, csv_path, net_name, method, mode, learning_rate) df_list.append(df) df_all = pd.concat(df_list) df_all.to_csv(source_data_root.joinpath(all_csv_filename), index=False) # For each "method" ('transfer' or 'initialize'), # group by network, stimulus, and set size, # and compute the mean accuracy for each set size. for method in methods: df_method = df_all[ (df_all['method'] == method) & (df_all['target_condition'] == 'both') ] # Make `DataFrame` # where variable is difference of accuracies on set size 1 and set size 8. records = [] df_method.groupby(['net_name', 'net_number', 'stimulus']) for net_name in df_method['net_name'].unique(): df_net = df_method[df_method['net_name'] == net_name] for net_number in df_net['net_number'].unique(): df_net_number = df_net[df_net['net_number'] == net_number] for stimulus in df_net_number['stimulus'].unique(): df_stimulus = df_net_number[df_net_number['stimulus'] == stimulus] set_size_1_acc = df_stimulus[df_stimulus['set_size'] == 1]['accuracy'].values.item() * 100 set_size_8_acc = df_stimulus[df_stimulus['set_size'] == 8]['accuracy'].values.item() * 100 set_size_1_err = (100. - set_size_1_acc) set_size_effect = set_size_1_acc - set_size_8_acc records.append( { 'net_name': net_name, 'net_number': net_number, 'stimulus': stimulus, 'set_size_1_acc': set_size_1_acc, 'set_size_8_acc': set_size_8_acc, 'set_size_1_err': set_size_1_err, 'set_size_effect': set_size_effect, 'set_size_1_err_plus_effect': set_size_1_err + set_size_effect } ) df_acc_diff =
pd.DataFrame.from_records(records)
pandas.DataFrame.from_records
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Sep 12 17:13:29 2018 @author: pamelaanderson """ from difflib import SequenceMatcher import json import numpy as np import os import operator import pandas as pd def load_adverse_events(path, year, q): """ Loading adverse drug events while performing basic pre-processing""" path_w_year = path + year + '/' + q + '/' json_files = os.listdir(path_w_year) df_adverse_ev = pd.DataFrame() file_tot = [file for file in json_files if file not in ['.DS_Store']] ind = 0 for file in file_tot: print(file) adverse_ev_data = json.load(open(path_w_year + file)) df_adverse_ev_json = pd.DataFrame(adverse_ev_data['results']) df_adverse_ev = pd.concat([df_adverse_ev, df_adverse_ev_json]) del adverse_ev_data, df_adverse_ev_json ind += 1 df_adverse_ev = df_adverse_ev.reset_index(drop=True) # Change data types to correct format df_adverse_ev = format_kept_cells(df_adverse_ev) # Find drug application number from nested dictionary df_adverse_ev = extract_drug_app_num_from_ad_ev(df_adverse_ev) # Find patient features from nested dictionary df_adverse_ev = extract_patient_features(df_adverse_ev) # Find drug info from nested dictionary df_adverse_ev = extract_drug_features(df_adverse_ev) # Find who submitted report info as column in df df_adverse_ev = extract_source_info(df_adverse_ev) # Drop columns that will not be included as features df_adverse_ev = drop_unneeded_cols(df_adverse_ev) return df_adverse_ev def drop_unneeded_cols(df_adverse_ev): """ Drop the columns that will not be used as features """ drop_cols = ['companynumb','duplicate', 'occurcountry', 'patient', 'primarysourcecountry', 'receiptdateformat', 'receiver', 'receivedate', 'receivedateformat', 'reportduplicate', 'reporttype','safetyreportid', 'safetyreportversion', 'sender', 'transmissiondate','transmissiondateformat'] df_adverse_ev = df_adverse_ev.drop(drop_cols, axis=1) return df_adverse_ev def format_kept_cells(df_adverse_ev): """ Correct data types (to numeric or datetime) """ df_adverse_ev['fulfillexpeditecriteria'] = pd.to_numeric(df_adverse_ev['fulfillexpeditecriteria']) df_adverse_ev['serious'] = pd.to_numeric(df_adverse_ev['serious']) df_adverse_ev['seriousnesscongenitalanomali'] = pd.to_numeric(df_adverse_ev['seriousnesscongenitalanomali']) df_adverse_ev['seriousnessdeath'] = pd.to_numeric(df_adverse_ev['seriousnessdeath']) df_adverse_ev['seriousnessdisabling'] = pd.to_numeric(df_adverse_ev['seriousnessdisabling']) df_adverse_ev['seriousnesshospitalization'] =
pd.to_numeric(df_adverse_ev['seriousnesshospitalization'])
pandas.to_numeric
# Copyright (c) 2019-2021 - for information on the respective copyright owner # see the NOTICE file and/or the repository # https://github.com/boschresearch/pylife # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __author__ = "<NAME>" __maintainer__ = __author__ import pytest import numpy as np import pandas as pd from pylife.core.broadcaster import Broadcaster foo_bar_series = pd.Series({'foo': 1.0, 'bar': 2.0}) foo_bar_series_twice_in_frame = pd.DataFrame([foo_bar_series, foo_bar_series]) series_named_index = foo_bar_series.copy() series_named_index.index.name = 'idx1' foo_bar_frame = pd.DataFrame({'foo': [1.0, 1.5], 'bar': [2.0, 1.5]}) def test_broadcast_series_to_array(): param, obj = Broadcaster(foo_bar_series).broadcast([1.0, 2.0]) pd.testing.assert_series_equal(param, pd.Series([1.0, 2.0])) pd.testing.assert_frame_equal(foo_bar_series_twice_in_frame, obj) def test_broadcast_frame_to_array_match(): param, obj = Broadcaster(foo_bar_frame).broadcast([1.0, 2.0]) np.testing.assert_array_equal(param, [1.0, 2.0]) pd.testing.assert_frame_equal(foo_bar_frame, obj) def test_broadcast_frame_to_array_mismatch(): with pytest.raises(ValueError, match=r"Dimension mismatch. " "Cannot map 3 value array-like to a 2 element DataFrame signal."): Broadcaster(foo_bar_frame).broadcast([1.0, 2.0, 3.0]) def test_broadcast_series_to_scalar(): param, obj = Broadcaster(foo_bar_series).broadcast(1.0) assert param == 1.0 pd.testing.assert_series_equal(foo_bar_series, obj) def test_broadcast_frame_to_scalar(): param, obj = Broadcaster(foo_bar_frame).broadcast(1.0) expected_param = pd.Series([1.0, 1.0], index=foo_bar_frame.index) pd.testing.assert_series_equal(expected_param, param) pd.testing.assert_frame_equal(foo_bar_frame, obj) def test_broadcast_series_index_named_to_series_index_named(): series = pd.Series([5.0, 6.0], index=pd.Index(['x', 'y'], name='idx2')) param, obj = Broadcaster(series_named_index).broadcast(series) expected_param = pd.Series({ ('foo', 'x'): 5.0, ('foo', 'y'): 6.0, ('bar', 'x'): 5.0, ('bar', 'y'): 6.0 }) expected_obj = pd.Series({ ('foo', 'x'): 1.0, ('foo', 'y'): 1.0, ('bar', 'x'): 2.0, ('bar', 'y'): 2.0 }) expected_obj.index.names = ['idx1', 'idx2'] expected_param.index.names = ['idx1', 'idx2'] pd.testing.assert_series_equal(expected_param, param) pd.testing.assert_series_equal(expected_obj, obj) def test_broadcast_series_index_named_to_series_index_none(): series = pd.Series([5.0, 6.0], index=
pd.Index([3, 4])
pandas.Index
#!/usr/bin/env python # coding: utf-8 # # Import Base Packages # In[ ]: import pandas as pd import numpy as np import warnings warnings.filterwarnings('ignore') # # Interface function to feature engineering data # In[ ]: from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import PolynomialFeatures column_names = [ 'age', 'workclass', 'fnlwgt', 'education', 'educational-num', 'marital-status', 'occupation', 'relationship', 'race', 'gender', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'income' ] columns_to_encoding = [ 'workclass', 'marital-status', 'occupation', 'relationship', 'race', 'gender' ] columns_to_normalize = [ 'age', 'educational-num', 'hours-per-week', 'capital-gain', 'capital-loss' ] le = LabelEncoder() scaler = StandardScaler() pl = PolynomialFeatures(2, include_bias=False) def feature_engineering(filename, train=True): df = pd.read_csv(filename, index_col=False) df.drop(['fnlwgt', 'education', 'native-country'], axis=1, inplace=True) df = pd.get_dummies(df, columns=columns_to_encoding) df["income"] = le.fit_transform(df['income']) if train: X_temp = pl.fit_transform(df[columns_to_normalize]) X_temp = scaler.fit_transform(X_temp) df.drop(columns_to_normalize, axis=1, inplace=True) X_train = np.hstack((df.values, X_temp)) y_train = df['income'] columns_names = pl.get_feature_names(df.columns) return np.hstack((df.columns.values, columns_names)), X_train, y_train else: X_temp = pl.transform(df[columns_to_normalize]) X_temp = scaler.transform(X_temp) df.drop(columns_to_normalize, axis=1, inplace=True) X_test = np.hstack((df.values, X_temp)) y_test = df['income'] columns_names = pl.get_feature_names(df.columns) return np.hstack((df.columns.values, columns_names)), X_test, y_test # # Load Data # In[ ]: columns_names, X, y = feature_engineering("../../../input/wenruliu_adult-income-dataset/adult.csv", train=True) # In[ ]: from sklearn.model_selection import train_test_split def rmnan(X, y): X_, y_ = [], [] for x, yt in zip(X, y): if np.isnan(x).any() or np.isnan(yt).any(): continue X_.append(x) y_.append(yt) return np.array(X_), np.array(y_) X, y = rmnan(X, y) # In[ ]: X, X_test, y, y_test = train_test_split(X, y, test_size=0.30, random_state=42) y.shape, y_test.shape # # Find Best number of components to PCA # In[ ]: from sklearn.tree import DecisionTreeClassifier from sklearn.decomposition import PCA from sklearn.model_selection import RandomizedSearchCV from sklearn.metrics import make_scorer from sklearn.metrics import fbeta_score from sklearn.metrics import accuracy_score from sklearn.model_selection import RepeatedStratifiedKFold param_distribution = { 'max_depth': np.arange(1, 15), } scoring = { 'Accuracy': make_scorer(accuracy_score), 'F1_Score': make_scorer(fbeta_score, beta=1, average='micro'), } # In[ ]: result = [] kf = RepeatedStratifiedKFold(n_splits=2, n_repeats=2) for fold, (train_index, test_index) in enumerate(kf.split(X, y)): X_tr, X_tst = X[train_index], X[test_index] y_tr, y_tst = y[train_index], y[test_index] for i in range(1, 20): # train pca = PCA(i) X_t = pca.fit_transform(X_tr) search_cv = RandomizedSearchCV(DecisionTreeClassifier(), param_distribution, scoring=scoring, n_jobs=-1, cv=RepeatedStratifiedKFold(n_splits=2, n_repeats=2), refit='F1_Score') search_cv.fit(X_t, y_tr) model = search_cv.best_estimator_ # test X_t = pca.transform(X_tst) y_pred = model.predict(X_t) # model evaluation f1 = fbeta_score(y_tst, y_pred, beta=1) acc = accuracy_score(y_tst, y_pred) print(f"fold: {fold} - cp:{i} train: {search_cv.best_score_} test: f1={f1}, acc={acc}") result.append((fold, i, acc, f1, pca, model)) # In[ ]: best_f1 = 0 best_model = None for fold, n, acc, f1, pca, model in result: if best_f1 < f1: best_f1 = f1 best_model=(fold, n, acc, f1, pca, model) pca_components = best_model[1] pca_components # # Get best model with best pca_components number # In[ ]: result, metrics_ = [], [] kf = RepeatedStratifiedKFold(n_splits=10, n_repeats=1) for fold, (train_index, test_index) in enumerate(kf.split(X, y)): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] # train pca = PCA(pca_components) X_t = pca.fit_transform(X_train) search_cv = RandomizedSearchCV(DecisionTreeClassifier(), param_distribution, scoring=scoring, n_jobs=-1, cv=RepeatedStratifiedKFold(n_splits=10, n_repeats=1), refit='F1_Score') search_cv.fit(X_t, y_train) model = search_cv.best_estimator_ # test X_t = pca.transform(X_test) y_pred = model.predict(X_t) # model evaluation f1 = fbeta_score(y_test, y_pred, beta=1) acc = accuracy_score(y_test, y_pred) print(f"fold: {fold} - cp:{pca_components} train: {search_cv.best_score_} test: f1={f1}, acc={acc}") result.append((X_train, y_train, X_test, y_test, fold, i, acc, f1, pca, model)) metrics_.append((f1, acc)) # In[ ]: best_f1 = 0 best_model = None for X_train, y_train, X_test, y_test, fold, n, acc, f1, pca, model in result: if best_f1 < f1: best_f1 = f1 best_model=(X_train, y_train, X_test, y_test, fold, n, acc, f1, pca, model) X_train, y_train, X_test, y_test = X, y, X_test, y_test #best_model[:4] # # Analyse Model Result # In[ ]: from sklearn import metrics pca, model = best_model[-2], best_model[-1] probs = model.predict_proba(pca.transform(X_test)) preds = probs[:,1] fpr, tpr, threshold = metrics.roc_curve(y_test, preds) roc_auc = metrics.auc(fpr, tpr) # method I: plt import matplotlib.pyplot as plt plt.title('Receiver Operating Characteristic') plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc) plt.legend(loc = 'lower right') plt.plot([0, 1], [0, 1],'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') print() # In[ ]: f1_r, acc_r = [], [] for f1, acc in metrics_: f1_r.append(f1) acc_r.append(acc) f1_r, acc_r = np.array(f1_r), np.array(acc_r) l = f1_r.shape[0] plt.title(f'F1 Score in Folds(PCA components = {pca_components})') plt.plot(range(l), f1_r, 'r', label = 'F1 Score') plt.plot(range(l), acc_r, 'b', label = 'Accuracy') plt.legend(loc = 'lower right') plt.xticks(range(l)) plt.xlim([0, l - 1]) plt.ylim([0.95, 1]) plt.ylabel('F1 Score') plt.xlabel('Fold') plt.grid() print() # ## Plot feature importances # In[ ]: def plot_feature_importances(clf, X_train, y_train=None, top_n=10, figsize=(8,8), print_table=False, title="Feature Importances"): # https://www.kaggle.com/grfiv4/plotting-feature-importances __name__ = "plot_feature_importances" import pandas as pd import numpy as np import matplotlib.pyplot as plt X_train = pd.DataFrame(data=X_train, columns=[f"PC{i}" for i in range(1, X_train.shape[1] + 1)]) feat_imp =
pd.DataFrame({'importance':clf.feature_importances_})
pandas.DataFrame
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df =
pd.concat([df1, df2], axis=1)
pandas.concat
import base64 import json from datetime import datetime from typing import Tuple import matplotlib as mpl import matplotlib.pyplot as plt import mplcyberpunk import numpy as np import pandas as pd import pushover import pytz import requests from config import (dbConfig, electricalSupplier, pushNotifications) from db import db from logger import create_logger logger = create_logger('octopus_tariff_app') def get_tariff(productCode: str) -> pd.DataFrame: try: url = f"{electricalSupplier['API_URL']}/products/{productCode}/electricity-tariffs/E-1R-{productCode}-L/standard-unit-rates/" agileProduct = requests.get(url) except requests.urllib3.exceptions.MaxRetryError: logger.error(f'API attempt failed: {url}') return tariff = pd.DataFrame.from_records( json.loads(agileProduct.text)['results']) # default times are UTC tariff['valid_from'] = pd.to_datetime( tariff['valid_from']).dt.tz_convert('Europe/London') tariff['valid_to'] = pd.to_datetime( tariff['valid_to']).dt.tz_convert('Europe/London') return tariff def get_usage(): return get_usage_base(electricalSupplier["MPAN"]) def get_export(): return get_usage_base(electricalSupplier["MPAN_export"]) def get_usage_base(MPAN) -> pd.DataFrame: token = base64.b64encode(electricalSupplier['key'].encode()).decode() response = requests.get( f'{electricalSupplier["API_URL"]}/electricity-meter-points/{MPAN}/meters/{electricalSupplier["serialNo"]}/consumption/', headers={"Authorization": f'Basic {token}'}) usage = pd.DataFrame.from_records(json.loads(response.text)['results']) # default times are UTC usage['interval_start'] = pd.to_datetime( usage['interval_start']).dt.tz_convert('Europe/London') usage['interval_end'] = pd.to_datetime( usage['interval_end']).dt.tz_convert('Europe/London') return usage def get_cheapest_period(n: int = 1): tariff = get_tariff(electricalSupplier['productRef']) if tariff is None: return tariff = tariff[tariff['valid_to'] > datetime.now(pytz.timezone('Europe/London'))] return tariff.sort_values('value_inc_vat', ascending=True).head(n) def create_actions(df: pd.DataFrame, start: str = 'From', end: str = 'To', start_action: str = 'on', end_action: str = 'off') -> pd.DataFrame: """Transform table with From and To fields to actions Args: df (pd.DataFrame): Dataframe with schema which includes start and end time fields for actions start (str, optional): name of start time field. Defaults to 'From'. end (str, optional): name of end time field. Defaults to 'To'. start_action (str, optional): Action at start. None results in no action set. Defaults to 'on'. end_action (str, optional): As start_action. Defaults to 'off'. Returns: pd.DataFrame: [description] """ # Discard unneeded fields df = df[[start, end]] action =
pd.melt(df)
pandas.melt
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = '<NAME>' from pathlib import Path import warnings import pandas as pd warnings.filterwarnings('ignore') DATA_DIR = Path('..', '..', 'data') idx = pd.IndexSlice def create_split_table(): with pd.HDFStore('stooq.h5') as store: store.put('jp/splits', pd.DataFrame(columns=['sid', 'effective_date', 'ratio'], data=[[1, pd.to_datetime('2010-01-01'), 1.0]]), format='t') def load_prices(): df =
pd.read_hdf(DATA_DIR / 'assets.h5', 'stooq/jp/tse/stocks/prices')
pandas.read_hdf
import pandas as pd import matplotlib.pyplot as plt import matplotlib import numpy as np import time import random import datetime from datetime import date from datetime import timedelta from dateutil.relativedelta import relativedelta from google.cloud import bigquery import os os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="data/ironia-data-dfc6335a0abe.json" client = bigquery.Client() def generate_df(ids,working_dates,period=1,risk=0.05): pd.options.mode.chained_assignment = None main_df =
pd.DataFrame(columns=["Ironia_id","Name","MDD","DaR","CDaR","RF","VaR", "CVaR", "MAD"])
pandas.DataFrame
# -*- coding: utf-8 -*- import datetime as dt import pandas as pd import pytest from snl_d3d_cec_verify.report import (_Line, _WrappedLine, _Paragraph, _WrappedParagraph, _MetaLine, Content, Report) @pytest.fixture def text(): return "a" * 24 + " " + "a" * 24 def test_Line(text): test = _Line(text, 25) result = test() lines = result.split("\n") assert len(lines) == 1 assert len(lines[0]) == 49 def test_WrappedLine(text): test = _WrappedLine(text, 25) result = test() lines = result.split("\n") assert len(lines) == 2 assert len(lines[0]) == 24 def test_WrappedLine_width_none(text): test = _WrappedLine(text) result = test() lines = result.split("\n") assert len(lines) == 1 assert len(lines[0]) == 49 def test_Paragraph(text): test = _Paragraph(text, 25) result = test() lines = result.split("\n") assert len(lines) == 2 assert len(lines[0]) == 49 def test_WrappedParagraph(text): test = _WrappedParagraph(text, 25) result = test() lines = result.split("\n") assert len(lines) == 3 assert len(lines[0]) == 24 def test_WrappedParagraph_width_none(text): test = _WrappedParagraph(text) result = test() lines = result.split("\n") assert len(lines) == 2 assert len(lines[0]) == 49 @pytest.fixture def metaline(): return _MetaLine() def test_MetaLine_defined_false(metaline): assert not metaline.defined def test_MetaLine_defined_true(metaline, text): metaline.add_line(text) assert metaline.defined def test_MetaLine_add_line(metaline, text): metaline.add_line(text) assert metaline.defined assert isinstance(metaline.line, _Line) metaline.add_line(None) assert not metaline.defined def test_MetaLine_call_empty(metaline): assert metaline() == "%" def test_MetaLine_call_text(metaline, text): metaline.add_line(text) assert metaline() == "% " + text @pytest.fixture def content(): return Content() def test_content_add_text(content, text): content.add_text(text) assert len(content._body) == 1 assert content._body[0][0] == text assert content._body[0][1] is _WrappedParagraph def test_content_add_text_no_wrap(content, text): content.add_text(text, wrapped=False) assert len(content._body) == 1 assert content._body[0][0] == text assert content._body[0][1] is _Paragraph def test_content_add_heading(content): title = "Test" level = 2 content.add_heading(title, level=level) assert len(content._body) == 1 assert content._body[0][1] is _Paragraph text = content._body[0][0] assert text == '#' * level + ' ' + title def test_content_add_heading_label_error(content): title = "Test" level = 2 label = "mock" with pytest.raises(ValueError) as excinfo: content.add_heading(title, level=level, label=label) assert "must start with 'sec:'" in str(excinfo) assert len(content._body) == 0 def test_content_add_heading_label(content): title = "Test" level = 2 label = "sec:mock" content.add_heading(title, level=level, label=label) assert len(content._body) == 1 assert content._body[0][1] is _Paragraph text = content._body[0][0] assert text == '#' * level + ' ' + title + ' ' + f'{{#{label}}}' def test_content_add_table(content): data = {"a": [1, 2, 3], "b": [4, 5, 6]} df = pd.DataFrame(data) caption = "test" content.add_table(df, caption=caption) assert len(content._body) == 2 assert content._body[0][1] is _Paragraph assert content._body[1][1] is _Paragraph table_text = content._body[0][0] assert table_text == df.to_markdown(index=True) caption_text = content._body[1][0] assert caption_text == "Table: " + caption def test_content_add_table_label_error(content): df = "mock" caption = "test" label = "mock" with pytest.raises(ValueError) as excinfo: content.add_table(df, caption=caption, label=label) assert "must start with 'tbl:'" in str(excinfo) assert len(content._body) == 0 def test_content_add_table_label_no_caption(content): data = {"a": [1, 2, 3], "b": [4, 5, 6]} df =
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd import math import astropy as ast import numpy as np from astropy.time import Time import matplotlib.pylab as plt from astropy import units as u from astropy.io import fits import warnings from lstchain.reco.utils import get_effective_time,add_delta_t_key from lstchain.io.io import dl2_params_lstcam_key,dl2_params_src_dep_lstcam_key, get_srcdep_params import os class ReadFermiFile(): def __init__(self, file): if 'fits' not in file: raise ValueError('No FITS file provided for Fermi-LAT data') else: self.fname=file def read_file(self): f=fits.open(self.fname) fits_table=f[1].data return(fits_table) def create_df_from_info(self,fits_table): time=fits_table['BARYCENTRIC_TIME'].byteswap().newbyteorder() phases=fits_table['PULSE_PHASE'].byteswap().newbyteorder() energies=fits_table['ENERGY'].byteswap().newbyteorder() dataframe = pd.DataFrame({"mjd_time":time,"pulsar_phase":phases,"dragon_time":time*3600*24,"energy":energies/1000}) dataframe=dataframe.sort_values(by=['mjd_time']) self.info=dataframe return(self.info) def calculate_tobs(self): diff=np.array(self.info['mjd_time'].to_list()[1:])-np.array(self.info['mjd_time'].to_list()[0:-1]) diff[diff>5/24]=0 return(sum(diff)*24) def run(self): print(' Reading Fermi-LAT data file') ftable=self.read_file() self.create_df_from_info(ftable) self.tobs=self.calculate_tobs() print(' Finishing reading. Total time is '+str(self.tobs)+' h'+'\n') class ReadLSTFile(): def __init__(self, file=None, directory=None,src_dependent=False): if file==None and directory==None: raise ValueError('No file provided') elif file is not None and directory is not None: raise ValueError('Can only provide file or directory, but not both') elif file is not None: if 'h5' not in file: raise ValueError('No hdf5 file provided for LST data') else: self.fname=file elif directory is not None: self.direc=directory self.fname=[] for x in os.listdir(self.direc): rel_dir = os.path.relpath(self.direc) rel_file = os.path.join(rel_dir, x) if 'h5' in rel_file: self.fname.append(rel_file) self.fname.sort() self.info=None self.src_dependent=src_dependent def read_LSTfile(self,fname,df_type='short'): if self.src_dependent==False: df=pd.read_hdf(fname,key=dl2_params_lstcam_key) elif self.src_dependent==True: srcindep_df=pd.read_hdf(fname,key=dl2_params_lstcam_key,float_precision=20) on_df_srcdep=get_srcdep_params(fname,'on') if 'reco_energy' in srcindep_df.keys(): srcindep_df.drop(['reco_energy']) if 'gammaness' in srcindep_df.keys(): srcindep_df.drop(['gammaness']) df = pd.concat([srcindep_df, on_df_srcdep], axis=1) if df_type=='short': if 'alpha' in df and 'theta2' in df: df_filtered=df[["mjd_time","pulsar_phase", "dragon_time","gammaness","alpha","theta2","alt_tel"]] elif 'alpha' in df and 'theta2' not in df: df_filtered=df[["mjd_time","pulsar_phase", "dragon_time","gammaness","alpha","alt_tel"]] elif 'theta2' in df and 'alpha' not in df: df_filtered=df[["mjd_time","pulsar_phase", "dragon_time","gammaness","theta2","alt_tel"]] else: df_filtered=df[["mjd_time","pulsar_phase", "dragon_time","gammaness","alt_tel"]] try: df_filtered['energy']=df['reco_energy'] except: df_filtered['energy']=df['energy'] else: df_filtered = df df_filtered['energy']=df['reco_energy'] df_filtered=add_delta_t_key(df_filtered) return(df_filtered) def calculate_tobs(self): dataframe=add_delta_t_key(self.info) return(get_effective_time(dataframe)[1].value/3600) def run(self,pulsarana,df_type='long'): print(' Reading LST-1 data file') if isinstance(self.fname,list): info_list=[] for name in self.fname: try: info_file=self.read_LSTfile(name,df_type) self.info=info_file self.tobs=self.calculate_tobs() pulsarana.cuts.apply_fixed_cut(self) if pulsarana.cuts.energy_binning_cut is not None: pulsarana.cuts.apply_energydep_cuts(self) info_list.append(self.info) except: raise ValueError('Failing when reading:'+ str(name)) self.info=pd.concat(info_list) self.tobs=self.calculate_tobs() else: self.info=self.read_LSTfile(self.fname,df_type) self.tobs=self.calculate_tobs() print(' Finishing reading. Total time is '+str(self.tobs)+' h') pulsarana.cuts.apply_fixed_cut(self) if pulsarana.cuts.energy_binning_cut is not None: pulsarana.cuts.apply_energydep_cuts(self) print(' Finishing filtering events:') print(' gammaness cut:'+str(pulsarana.cuts.gammaness_cut)) print(' alpha cut:'+str(pulsarana.cuts.alpha_cut)) print(' theta2 cut:'+str(pulsarana.cuts.theta2_cut)) print(' zd cut:'+str(pulsarana.cuts.zd_cut)) print(' energy binning for the cuts:'+str(pulsarana.cuts.energy_binning_cut)) print('\n') class ReadtxtFile(): def __init__(self, file,format_txt): self.fname=file self.format=format_txt def read_file(self): data = pd.read_csv(file, sep=" ", header=None) return(data) def check_format(self): for name in ['t','p']: if name not in self.format: raise ValueError(' No valid format') def create_df_from_info(self,df): for i in range(0,len(self.format)): if self.format[i]=='t': times=df.iloc[:, i] elif self.format[i]=='e': energies=df.iloc[:, i] elif self.format[i]=='p': phases=df.iloc[:, i] elif self.format[i]=='g': gammaness=df.iloc[:, i] elif self.format[i]=='a': alphas=df.iloc[:, i] elif self.format[i]=='t2': theta2=df.iloc[:, i] elif self.format[i]=='at': alt_tel=df.iloc[:, i] dataframe =
pd.DataFrame({"mjd_time":times,"pulsar_phase":phases,"dragon_time":times*3600*24,"energy":energies})
pandas.DataFrame
import logging import os import re import time import zipfile import paramiko from collections import OrderedDict import numpy as np import pandas as pd from sqlalchemy.exc import IntegrityError from dataactcore.config import CONFIG_BROKER from dataactcore.models.domainModels import DUNS from dataactvalidator.health_check import create_app from dataactvalidator.scripts.loader_utils import clean_data, insert_dataframe from dataactbroker.helpers.uri_helper import RetrieveFileFromUri logger = logging.getLogger(__name__) REMOTE_SAM_DUNS_DIR = '/current/SAM/2_FOUO/UTF-8/' REMOTE_SAM_EXEC_COMP_DIR = '/current/SAM/6_EXECCOMP/UTF-8' BUSINESS_TYPES_SEPARATOR = '~' def get_client(ssh_key=None): """ Connects to the SAM client and returns a usable object for interaction Arguments: ssh_key: private ssh key to connect to the secure API Returns: client object to interact with the SAM service """ sam_config = CONFIG_BROKER.get('sam_duns') if not sam_config: return None host = sam_config.get('host') if not ssh_key else sam_config.get('host_ssh') port = sam_config.get('port') username = sam_config.get('username') password = sam_config.get('password') pkey = None if ssh_key: with RetrieveFileFromUri(ssh_key, binary_data=False).get_file_object() as key_obj: pkey = paramiko.RSAKey.from_private_key(key_obj, password=password) if None in (host, port, username, password): raise Exception("Missing config elements for connecting to SAM") client = paramiko.SSHClient() client.load_system_host_keys() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) client.connect( hostname=host, port=port, username=username, password=password, pkey=pkey ) return client def get_relevant_models(data, sess, benchmarks=False, table=DUNS): """ Get a list of the duns we're gonna work off of to prevent multiple calls to the database Args: data: dataframe representing the original list of duns we have available sess: the database connection benchmarks: whether or not to log times table: the table to work from (could be DUNS/HistoricParentDuns) Returns: A list of models, models which have been activatated """ if benchmarks: get_models = time.time() logger.info("Getting relevant models") duns_found = [duns.strip().zfill(9) for duns in list(data["awardee_or_recipient_uniqu"].unique())] dun_objects_found = sess.query(table).filter(table.awardee_or_recipient_uniqu.in_(duns_found)) models = {duns.awardee_or_recipient_uniqu: duns for duns in dun_objects_found} logger.info("Getting models with activation dates already set") activated_models = {duns_num: duns for duns_num, duns in models.items() if duns.activation_date is not None} if benchmarks: logger.info("Getting models took {} seconds".format(time.time() - get_models)) return models, activated_models def load_duns_by_row(data, sess, models, activated_models, benchmarks=False, table=DUNS): """ Updates the DUNS in the database that match to the models provided Args: data: dataframe representing the original list of duns we have available sess: the database connection models: the DUNS objects representing the updated data activated_models: the DUNS objects that have been activated benchmarks: whether or not to log times table: the table to work from (could be DUNS/HistoricParentDuns) Returns: tuple of added and updated duns lists """ # Disabling activation_check as we're using registration_date # data = activation_check(data, activated_models, benchmarks).where(pd.notnull(data), None) added, updated = update_duns(models, data, benchmarks=benchmarks, table=table) sess.add_all(models.values()) return added, updated # Removed this function when adding registration_date # def activation_check(data, activated_models, benchmarks=False): # # if activation_date's already set, keep it, otherwise update it (default) # logger.info("going through activation check") # if benchmarks: # activation_check_start = time.time() # lambda_func = (lambda duns_num: pd.Series([activated_models[duns_num].activation_date # if duns_num in activated_models else np.nan])) # data = data.assign(old_activation_date=data["awardee_or_recipient_uniqu"].apply(lambda_func)) # data.loc[pd.notnull(data["old_activation_date"]), "activation_date"] = data["old_activation_date"] # del data["old_activation_date"] # if benchmarks: # logger.info("Activation check took {} seconds".format(time.time()-activation_check_start)) # return data def update_duns(models, new_data, benchmarks=False, table=DUNS): """ Modify existing models or create new ones Args: models: the DUNS objects representing the updated data new_data: the new data to update benchmarks: whether or not to log times table: the table to work from (could be DUNS/HistoricParentDuns) Returns: tuple of added and updated duns lists """ added = [] updated = [] logger.info("Updating duns") if benchmarks: update_duns_start = time.time() for _, row in new_data.iterrows(): awardee_or_recipient_uniqu = row['awardee_or_recipient_uniqu'] if awardee_or_recipient_uniqu not in models: models[awardee_or_recipient_uniqu] = table() added.append(awardee_or_recipient_uniqu) else: updated.append(awardee_or_recipient_uniqu) for field, value in row.items(): if value: setattr(models[awardee_or_recipient_uniqu], field, value) if benchmarks: logger.info("Updating duns took {} seconds".format(time.time() - update_duns_start)) return added, updated def clean_sam_data(data, table=DUNS): """ Wrapper around clean_data with the DUNS context Args: data: the dataframe to be cleaned table: the table to work from (could be DUNS/HistoricParentDuns) Returns: a cleaned/updated dataframe to be imported """ return clean_data(data, table, { "awardee_or_recipient_uniqu": "awardee_or_recipient_uniqu", "activation_date": "activation_date", "deactivation_date": "deactivation_date", "registration_date": "registration_date", "expiration_date": "expiration_date", "last_sam_mod_date": "last_sam_mod_date", "sam_extract_code": "sam_extract_code", "legal_business_name": "legal_business_name", "dba_name": "dba_name", "address_line_1": "address_line_1", "address_line_2": "address_line_2", "city": "city", "state": "state", "zip": "zip", "zip4": "zip4", "country_code": "country_code", "congressional_district": "congressional_district", "entity_structure": "entity_structure", "business_types_codes": "business_types_codes", "ultimate_parent_legal_enti": "ultimate_parent_legal_enti", "ultimate_parent_unique_ide": "ultimate_parent_unique_ide" }, {}) def parse_duns_file(file_path, sess, monthly=False, benchmarks=False, table=DUNS, year=None, metrics=None): """ Takes in a DUNS file and adds the DUNS data to the database Args: file_path: the path to the SAM file sess: the database connection monthly: whether it's a monthly file benchmarks: whether to log times table: the table to work from (could be DUNS/HistoricParentDuns) year: the year associated with the data (primarily for HistoricParentDUNS loads) metrics: dictionary representing metrics data for the load """ if not metrics: metrics = { 'files_processed': [], 'records_received': 0, 'adds_received': 0, 'updates_received': 0, 'deletes_received': 0, 'records_ignored': 0, 'added_duns': [], 'updated_duns': [] } parse_start_time = time.time() logger.info("Starting file " + str(file_path)) dat_file_name = os.path.splitext(os.path.basename(file_path))[0]+'.dat' sam_file_type = "MONTHLY" if monthly else "DAILY" dat_file_date = re.findall(".*{}_(.*).dat".format(sam_file_type), dat_file_name)[0] with create_app().app_context(): column_header_mapping = { "awardee_or_recipient_uniqu": 0, "sam_extract_code": 4, "registration_date": 6, "expiration_date": 7, "last_sam_mod_date": 8, "activation_date": 9, "legal_business_name": 10, "dba_name": 11, "address_line_1": 14, "address_line_2": 15, "city": 16, "state": 17, "zip": 18, "zip4": 19, "country_code": 20, "congressional_district": 21, "entity_structure": 27, "business_types_raw": 31, "ultimate_parent_legal_enti": 186, "ultimate_parent_unique_ide": 187 } column_header_mapping_ordered = OrderedDict(sorted(column_header_mapping.items(), key=lambda c: c[1])) # Initial sweep of the file to see rows and possibly what DUNS we're updating if benchmarks: initial_sweep = time.time() nrows = 0 with zipfile.ZipFile(file_path) as zip_file: with zip_file.open(dat_file_name) as dat_file: nrows = len(dat_file.readlines()) if benchmarks: logger.info("Initial sweep took {} seconds".format(time.time() - initial_sweep)) block_size = 10000 batches = (nrows-1)//block_size # skip the first line again if the last batch is also the first batch skiplastrows = 2 if batches == 0 else 1 last_block_size = ((nrows % block_size) or block_size)-skiplastrows batch = 0 rows_received = 0 adds_received = 0 updates_received = 0 deletes_received = 0 records_ignored = 0 added_duns = [] updated_duns = [] while batch <= batches: skiprows = 1 if batch == 0 else (batch*block_size) nrows = (((batch+1)*block_size)-skiprows) if (batch < batches) else last_block_size logger.info('Loading rows %s to %s', skiprows+1, nrows+skiprows) with zipfile.ZipFile(file_path) as zip_file: with zip_file.open(dat_file_name) as dat_file: csv_data = pd.read_csv(dat_file, dtype=str, header=None, skiprows=skiprows, nrows=nrows, sep='|', usecols=column_header_mapping_ordered.values(), names=column_header_mapping_ordered.keys(), quoting=3) # add deactivation_date column for delete records lambda_func = (lambda sam_extract: pd.Series([dat_file_date if sam_extract == "1" else np.nan])) csv_data = csv_data.assign(deactivation_date=pd.Series([np.nan], name='deactivation_date') if monthly else csv_data["sam_extract_code"].apply(lambda_func)) # convert business types string to array bt_func = (lambda bt_raw: pd.Series([[str(code) for code in str(bt_raw).split('~') if isinstance(bt_raw, str)]])) csv_data = csv_data.assign(business_types_codes=csv_data["business_types_raw"].apply(bt_func)) del csv_data["business_types_raw"] # removing rows where DUNS number isn't even provided csv_data = csv_data.where(csv_data["awardee_or_recipient_uniqu"].notnull()) # cleaning and replacing NaN/NaT with None's csv_data = clean_sam_data(csv_data.where(
pd.notnull(csv_data)
pandas.notnull
import ntpath import os import logging import argparse from datetime import datetime from pypgrest import Postgrest import pandas as pd import boto3 from dotenv import load_dotenv import utils # Envrioment variables AWS_ACCESS_ID = os.getenv("AWS_ACCESS_ID") AWS_PASS = os.getenv("AWS_PASS") BUCKET_NAME = os.getenv("BUCKET_NAME") POSTGREST_TOKEN = os.getenv("POSTGREST_TOKEN") POSTGREST_ENDPOINT = os.getenv("POSTGREST_ENDPOINT") def handle_year_month_args(year, month, lastmonth, aws_s3_client, user): """ Parameters ---------- year : Int Argument provided value for year. month : Int Argument provided value for month. lastmonth : Bool Argument that determines if the previous month should also be queried. aws_s3_client : boto3 client object For sending on to get_csv_list Returns ------- csv_file_list : List A list of the csv files to be downloaded and upsert to Postgres. """ # If args are missing, default to current month and/or year if not year: f_year = datetime.now().year else: f_year = year if not month: f_month = datetime.now().month else: f_month = month csv_file_list = get_csv_list(f_year, f_month, aws_s3_client, user) if not month and not year: if lastmonth == True: prev_month = f_month - 1 prev_year = f_year if prev_month == 0: prev_year = prev_year - 1 prev_month = 12 logger.debug( f"Getting data from folders: {prev_month}-{prev_year} and {f_month}-{f_year}" ) prev_list = get_csv_list(prev_year, prev_month, aws_s3_client, user) csv_file_list.extend(prev_list) else: logger.debug(f"Getting data from folders: {f_month}-{f_year}") csv_file_list = [f for f in csv_file_list if f.endswith(".csv")] return csv_file_list def get_file_name(file_key): """ Returns the name of an email file based on the full s3 file path :param file_key: the file path :return: string """ return ntpath.basename(file_key) def get_csv_list(year, month, client, user): """ Returns an array of files parsed into an actual array (as opposed to an object) :return: array of strings """ csv_file_list = [] pending_csv_list = aws_list_files(year, month, client, user) for csv_file in pending_csv_list: csv_file_list.append(csv_file) # Finally return the final list return csv_file_list def aws_list_files(year, month, client, user): """ Returns a list of email files. :return: object """ subdir = "archipel_transactionspub" if user == "pard": subdir = f"{subdir}-PARD" response = client.list_objects( Bucket=BUCKET_NAME, Prefix=f"meters/prod/{subdir}/{str(year)}/{str(month)}", ) for content in response.get("Contents", []): yield content.get("Key") def get_invoice_id(banking_id, terminal_code): """Create the Inovice ID which is a concatention of the banking ID and device ID Args: banking_id (int): whatever this is terminal_code (int): whatever this is Returns: int: The formatted invoice ID """ if
pd.isna(banking_id)
pandas.isna
# flake8: noqa: F841 import tempfile from pathlib import Path from typing import List from pandas._typing import Scalar, ArrayLike import pandas as pd import numpy as np from pandas.core.window import ExponentialMovingWindow def test_types_init() -> None: pd.Series(1) pd.Series((1, 2, 3)) pd.Series(np.array([1, 2, 3])) pd.Series(data=[1, 2, 3, 4], name="series") pd.Series(data=[1, 2, 3, 4], dtype=np.int8) pd.Series(data={'row1': [1, 2], 'row2': [3, 4]}) pd.Series(data=[1, 2, 3, 4], index=[4, 3, 2, 1], copy=True) def test_types_any() -> None: res1: bool = pd.Series([False, False]).any() res2: bool = pd.Series([False, False]).any(bool_only=False) res3: bool = pd.Series([np.nan]).any(skipna=False) def test_types_all() -> None: res1: bool = pd.Series([False, False]).all() res2: bool = pd.Series([False, False]).all(bool_only=False) res3: bool = pd.Series([np.nan]).all(skipna=False) def test_types_csv() -> None: s = pd.Series(data=[1, 2, 3]) csv_df: str = s.to_csv() with tempfile.NamedTemporaryFile() as file: s.to_csv(file.name) s2: pd.DataFrame = pd.read_csv(file.name) with tempfile.NamedTemporaryFile() as file: s.to_csv(Path(file.name)) s3: pd.DataFrame = pd.read_csv(Path(file.name)) # This keyword was added in 1.1.0 https://pandas.pydata.org/docs/whatsnew/v1.1.0.html with tempfile.NamedTemporaryFile() as file: s.to_csv(file.name, errors='replace') s4: pd.DataFrame = pd.read_csv(file.name) def test_types_copy() -> None: s = pd.Series(data=[1, 2, 3, 4]) s2: pd.Series = s.copy() def test_types_select() -> None: s = pd.Series(data={'row1': 1, 'row2': 2}) s[0] s[1:] def test_types_iloc_iat() -> None: s = pd.Series(data={'row1': 1, 'row2': 2}) s2 = pd.Series(data=[1, 2]) s.loc['row1'] s.iat[0] s2.loc[0] s2.iat[0] def test_types_loc_at() -> None: s = pd.Series(data={'row1': 1, 'row2': 2}) s2 = pd.Series(data=[1, 2]) s.loc['row1'] s.at['row1'] s2.loc[1] s2.at[1] def test_types_boolean_indexing() -> None: s = pd.Series([0, 1, 2]) s[s > 1] s[s] def test_types_df_to_df_comparison() -> None: s = pd.Series(data={'col1': [1, 2]}) s2 = pd.Series(data={'col1': [3, 2]}) res_gt: pd.Series = s > s2 res_ge: pd.Series = s >= s2 res_lt: pd.Series = s < s2 res_le: pd.Series = s <= s2 res_e: pd.Series = s == s2 def test_types_head_tail() -> None: s = pd.Series([0, 1, 2]) s.head(1) s.tail(1) def test_types_sample() -> None: s = pd.Series([0, 1, 2]) s.sample(frac=0.5) s.sample(n=1) def test_types_nlargest_nsmallest() -> None: s = pd.Series([0, 1, 2]) s.nlargest(1) s.nlargest(1, 'first') s.nsmallest(1, 'last') s.nsmallest(1, 'all') def test_types_filter() -> None: s = pd.Series(data=[1, 2, 3, 4], index=['cow', 'coal', 'coalesce', '']) s.filter(items=['cow']) s.filter(regex='co.*') s.filter(like='al') def test_types_setting() -> None: s = pd.Series([0, 1, 2]) s[3] = 4 s[s == 1] = 5 s[:] = 3 def test_types_drop() -> None: s = pd.Series([0, 1, 2]) res: pd.Series = s.drop(0) res2: pd.Series = s.drop([0, 1]) res3: pd.Series = s.drop(0, axis=0) res4: None = s.drop([0, 1], inplace=True, errors='raise') res5: None = s.drop([0, 1], inplace=True, errors='ignore') def test_types_drop_multilevel() -> None: index = pd.MultiIndex(levels=[['top', 'bottom'], ['first', 'second', 'third']], codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) s = pd.Series(data=[1, 2, 3, 4, 5, 6], index=index) res: pd.Series = s.drop(labels='first', level=1) def test_types_dropna() -> None: s = pd.Series([1, np.nan, np.nan]) res: pd.Series = s.dropna() res2: None = s.dropna(axis=0, inplace=True) def test_types_fillna() -> None: s = pd.Series([1, np.nan, np.nan, 3]) res: pd.Series = s.fillna(0) res2: pd.Series = s.fillna(0, axis='index') res3: pd.Series = s.fillna(method='backfill', axis=0) res4: None = s.fillna(method='bfill', inplace=True) res5: pd.Series = s.fillna(method='pad') res6: pd.Series = s.fillna(method='ffill', limit=1) def test_types_sort_index() -> None: s = pd.Series([1, 2, 3], index=[2, 3, 1]) res: pd.Series = s.sort_index() res2: None = s.sort_index(ascending=False, inplace=True) res3: pd.Series = s.sort_index(kind="mergesort") # This was added in 1.1.0 https://pandas.pydata.org/docs/whatsnew/v1.1.0.html def test_types_sort_index_with_key() -> None: s = pd.Series([1, 2, 3], index=['a', 'B', 'c']) res: pd.Series = s.sort_index(key=lambda k: k.str.lower()) def test_types_sort_values() -> None: s = pd.Series([4, 2, 1, 3]) res: pd.Series = s.sort_values(0) res2: pd.Series = s.sort_values(ascending=False) res3: None = s.sort_values(inplace=True, kind='quicksort') res4: pd.Series = s.sort_values(na_position='last') res5: pd.Series = s.sort_values(ignore_index=True) # This was added in 1.1.0 https://pandas.pydata.org/docs/whatsnew/v1.1.0.html def test_types_sort_values_with_key() -> None: s = pd.Series([1, 2, 3], index=[2, 3, 1]) res: pd.Series = s.sort_values(key=lambda k: -k) def test_types_shift() -> None: s = pd.Series([1, 2, 3]) s.shift() s.shift(axis=0, periods=1) s.shift(-1, fill_value=0) def test_types_rank() -> None: s = pd.Series([1, 1, 2, 5, 6, np.nan, 'milion']) s.rank() s.rank(axis=0, na_option='bottom') s.rank(method="min", pct=True) s.rank(method="dense", ascending=True) s.rank(method="first", numeric_only=True) def test_types_mean() -> None: s = pd.Series([1, 2, 3, np.nan]) f1: float = s.mean() s1: pd.Series = s.mean(axis=0, level=0) f2: float = s.mean(skipna=False) f3: float = s.mean(numeric_only=False) def test_types_median() -> None: s = pd.Series([1, 2, 3, np.nan]) f1: float = s.median() s1: pd.Series = s.median(axis=0, level=0) f2: float = s.median(skipna=False) f3: float = s.median(numeric_only=False) def test_types_sum() -> None: s = pd.Series([1, 2, 3, np.nan]) s.sum() s.sum(axis=0, level=0) s.sum(skipna=False) s.sum(numeric_only=False) s.sum(min_count=4) def test_types_cumsum() -> None: s = pd.Series([1, 2, 3, np.nan]) s.cumsum() s.cumsum(axis=0) s.cumsum(skipna=False) def test_types_min() -> None: s = pd.Series([1, 2, 3, np.nan]) s.min() s.min(axis=0) s.min(level=0) s.min(skipna=False) def test_types_max() -> None: s = pd.Series([1, 2, 3, np.nan]) s.max() s.max(axis=0) s.max(level=0) s.max(skipna=False) def test_types_quantile() -> None: s = pd.Series([1, 2, 3, 10]) s.quantile([0.25, 0.5]) s.quantile(0.75) s.quantile() s.quantile(interpolation='nearest') def test_types_clip() -> None: s = pd.Series([-10, 2, 3, 10]) s.clip(lower=0, upper=5) s.clip(lower=0, upper=5, inplace=True) def test_types_abs() -> None: s = pd.Series([-10, 2, 3, 10]) s.abs() def test_types_var() -> None: s = pd.Series([-10, 2, 3, 10]) s.var() s.var(axis=0, ddof=1) s.var(skipna=True, numeric_only=False) def test_types_std() -> None: s = pd.Series([-10, 2, 3, 10]) s.std() s.std(axis=0, ddof=1) s.std(skipna=True, numeric_only=False) def test_types_idxmin() -> None: s = pd.Series([-10, 2, 3, 10]) s.idxmin() s.idxmin(axis=0) def test_types_idxmax() -> None: s = pd.Series([-10, 2, 3, 10]) s.idxmax() s.idxmax(axis=0) def test_types_value_counts() -> None: s = pd.Series([1, 2]) s.value_counts() def test_types_unique() -> None: s = pd.Series([-10, 2, 2, 3, 10, 10]) s.unique() def test_types_apply() -> None: s = pd.Series([-10, 2, 2, 3, 10, 10]) s.apply(lambda x: x ** 2) s.apply(np.exp) s.apply(str) def test_types_element_wise_arithmetic() -> None: s = pd.Series([0, 1, -10]) s2 = pd.Series([7, -5, 10]) res_add1: pd.Series = s + s2 res_add2: pd.Series = s.add(s2, fill_value=0) res_sub: pd.Series = s - s2 res_sub2: pd.Series = s.sub(s2, fill_value=0) res_mul: pd.Series = s * s2 res_mul2: pd.Series = s.mul(s2, fill_value=0) res_div: pd. Series = s / s2 res_div2: pd. Series = s.div(s2, fill_value=0) res_floordiv: pd.Series = s // s2 res_floordiv2: pd.Series = s.floordiv(s2, fill_value=0) res_mod: pd.Series = s % s2 res_mod2: pd.Series = s.mod(s2, fill_value=0) res_pow: pd.Series = s ** abs(s2) res_pow2: pd.Series = s.pow(abs(s2), fill_value=0) def test_types_scalar_arithmetic() -> None: s =
pd.Series([0,1,-10])
pandas.Series
import torch import torch.nn as nn import data_loader import network1 as network import pandas as pd import matplotlib.pyplot as plt from vgg import vgg16, VGGNormLayer, perceptual_loss from argparse import ArgumentParser torch.backends.cudnn.benchmark = True torch.autograd.set_grad_enabled(False) def save_graph(path, val_losses, counter): ''' Saves average perceptual loss given a certain number of patches ''' plt.figure(figsize=(16, 8)) plt.plot(counter, val_losses, color='blue') plt.scatter(counter, val_losses, color = 'blue') plt.suptitle('Network1 Perceptual Loss vs Number of 32x32 Patches') plt.legend(['Val Loss'], loc='upper right') plt.xlabel('Number of Patches') plt.ylabel('Perceptual loss') plt.savefig(path) def patch_find_sing(net, patch_size, data, target, device, batch_size): ''' With a greedy approach, determine where to place patches such that network can best reconstruct an image Return the centers of the patches and the associated loss ''' points = [set() for _ in range(batch_size)] stored_points = [[] for _ in range(batch_size)] stored_losses = [[] for _ in range(batch_size)] x_crop = patch_size[0] // 2 y_crop = patch_size[1] // 2 # calculate 25 best locations for each image for _ in range(25): best_loss = [float('inf') for _ in range(batch_size)] best_tup = [(0, 0) for _ in range(batch_size)] for x in range(patch_size[0]//2, data.shape[2], patch_size[0]//2): for y in range(patch_size[1]//2, data.shape[3], patch_size[1]//2): old_mask = data[:, :, x - x_crop:x + x_crop, y - y_crop:y + y_crop].clone() new_mask = torch.cat((target[:, :, x - x_crop:x + x_crop, y - y_crop:y + y_crop], torch.ones((batch_size, 1) + patch_size).to(device)), dim=1) data[:, :, x - x_crop:x + x_crop, y - y_crop:y + y_crop] = new_mask loss = net(data, target) #bx1 for i in range(batch_size): if (x, y) in points[i]: continue if loss[i] < best_loss[i]: best_loss[i] = loss[i].item() best_tup[i] = (x, y) data[:, :, x - x_crop:x + x_crop, y - y_crop:y + y_crop] = old_mask for i in range(batch_size): x, y = best_tup[i] new_mask = torch.cat( (target[i:i + 1, :, x - x_crop:x + x_crop, y - y_crop:y + y_crop], torch.ones((1, 1) + patch_size).to(device)), dim=1) data[i:i + 1, :, x - x_crop:x + x_crop, y - y_crop:y + y_crop] = new_mask for i in range(batch_size): stored_points[i].append(best_tup[i]) stored_losses[i].append(best_loss[i]) points[i].add(best_tup[i]) return stored_points, stored_losses if __name__ == '__main__': parser = ArgumentParser() parser.add_argument("--gpus", type=int, nargs='+', default=list(range(torch.cuda.device_count())), help="gpus") parser.add_argument("--psize", type=int, default=32, help="patch size") parser.add_argument("--bvsize", type=int, default=32, help="batch size val") parser.add_argument("--dataset", type=str, default='celeba', help="name of dataset") parser.add_argument("--datapath", type=str, help="path to data set") parser.add_argument("--modelpath", type=str, help="path to pre-trained weights") opt = parser.parse_args() device = torch.device("cuda:{}".format(opt.gpus[0]) if torch.cuda.is_available() else "cpu") device_ids, patch_size, batch_size = opt.gpus, (opt.psize, opt.psize), opt.bvsize # initialize trained network cnet = network.Net() cnet.load_state_dict(torch.load(opt.modelpath, map_location=device)['state_dict']) loss_net = network.FullModel(network.Net(), perceptual_loss, vgg16(), VGGNormLayer()) if torch.cuda.device_count() > 1: loss_net = nn.DataParallel(loss_net, device_ids=device_ids) loss_net.to(device) # data loader if opt.dataset == 'celeba': loader = data_loader.get_celeba_loader elif opt.dataset == 'FFHQ': loader = data_loader.get_ffhq_loader else: loader = data_loader.get_stl_loader val_loader = loader(opt.datapath, patch_size, batch_size, "val") dic = {} results = [] num_patches_loss = [0 for _ in range(25)] # this loop determines finds the optimal locations for patches for every image for ind, (data, target) in enumerate(val_loader): data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True) stored_points, stored_losses = patch_find_sing(loss_net, patch_size, data, target, device, batch_size) for i in range(batch_size): results.append(stored_points[i]) results.append(stored_losses[i]) num_patches_loss = [i + j for i, j in zip(num_patches_loss, stored_losses[i])] dic[1+batch_size * ind + i] = (stored_points[i], stored_losses[i]) print('Loss {}\n'.format(stored_losses[-1][-1])) torch.save(dic, "results/network1/patch_losses60.pickle")
pd.DataFrame(results)
pandas.DataFrame
""" Base IO for all periodic datasets """ import os import pandas as pd from ._base import get_data_home def fetch_health_app(data_home=None, filename="health_app.csv"): """Fetch and return the health app log dataset from github.com/logpai/loghub HealthApp is a mobile application for Android devices. Logs were collected from an Android smartphone after 10+ days of use. This dataset only represents the different types of logs, hence resulting in only 20 different events. ============================== ================================== Number of events 20 Average delta per event Timedelta('0 days 00:53:24.984000') Average nb of points per event 100.0 ======================== =================================== Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit-mine data is stored in `scikit-mine_data`. Returns ------- pd.Series Transactions from the health app dataset, as an in-memory pandas Series. Each unique transaction is represented as a Python list. """ data_home = data_home or get_data_home() p = os.path.join(data_home, filename) kwargs = dict(header=None, index_col=0, squeeze=True, dtype="string") if filename in os.listdir(data_home): s = pd.read_csv(p, index_col=0, squeeze=True) else: s = pd.read_csv( "https://raw.githubusercontent.com/logpai/loghub/master/HealthApp/HealthApp_2k.log", sep="|", error_bad_lines=False, usecols=[0, 1], **kwargs ) s.to_csv(p) s.index.name = "timestamp" s.index =
pd.to_datetime(s.index, format="%Y%m%d-%H:%M:%S:%f")
pandas.to_datetime
import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from .base import BaseExtensionTests class BaseGetitemTests(BaseExtensionTests): """Tests for ExtensionArray.__getitem__.""" def test_iloc_series(self, data): ser = pd.Series(data) result = ser.iloc[:4] expected =
pd.Series(data[:4])
pandas.Series
""" Test output formatting for Series/DataFrame, including to_string & reprs """ from datetime import datetime from io import StringIO import itertools from operator import methodcaller import os from pathlib import Path import re from shutil import get_terminal_size import sys import textwrap import dateutil import numpy as np import pytest import pytz from pandas.compat import ( IS64, is_platform_windows, ) import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, get_option, option_context, read_csv, reset_option, set_option, ) import pandas._testing as tm import pandas.io.formats.format as fmt import pandas.io.formats.printing as printing use_32bit_repr = is_platform_windows() or not IS64 @pytest.fixture(params=["string", "pathlike", "buffer"]) def filepath_or_buffer_id(request): """ A fixture yielding test ids for filepath_or_buffer testing. """ return request.param @pytest.fixture def filepath_or_buffer(filepath_or_buffer_id, tmp_path): """ A fixture yielding a string representing a filepath, a path-like object and a StringIO buffer. Also checks that buffer is not closed. """ if filepath_or_buffer_id == "buffer": buf = StringIO() yield buf assert not buf.closed else: assert isinstance(tmp_path, Path) if filepath_or_buffer_id == "pathlike": yield tmp_path / "foo" else: yield str(tmp_path / "foo") @pytest.fixture def assert_filepath_or_buffer_equals( filepath_or_buffer, filepath_or_buffer_id, encoding ): """ Assertion helper for checking filepath_or_buffer. """ def _assert_filepath_or_buffer_equals(expected): if filepath_or_buffer_id == "string": with open(filepath_or_buffer, encoding=encoding) as f: result = f.read() elif filepath_or_buffer_id == "pathlike": result = filepath_or_buffer.read_text(encoding=encoding) elif filepath_or_buffer_id == "buffer": result = filepath_or_buffer.getvalue() assert result == expected return _assert_filepath_or_buffer_equals def curpath(): pth, _ = os.path.split(os.path.abspath(__file__)) return pth def has_info_repr(df): r = repr(df) c1 = r.split("\n")[0].startswith("<class") c2 = r.split("\n")[0].startswith(r"&lt;class") # _repr_html_ return c1 or c2 def has_non_verbose_info_repr(df): has_info = has_info_repr(df) r = repr(df) # 1. <class> # 2. Index # 3. Columns # 4. dtype # 5. memory usage # 6. trailing newline nv = len(r.split("\n")) == 6 return has_info and nv def has_horizontally_truncated_repr(df): try: # Check header row fst_line = np.array(repr(df).splitlines()[0].split()) cand_col = np.where(fst_line == "...")[0][0] except IndexError: return False # Make sure each row has this ... in the same place r = repr(df) for ix, l in enumerate(r.splitlines()): if not r.split()[cand_col] == "...": return False return True def has_vertically_truncated_repr(df): r = repr(df) only_dot_row = False for row in r.splitlines(): if re.match(r"^[\.\ ]+$", row): only_dot_row = True return only_dot_row def has_truncated_repr(df): return has_horizontally_truncated_repr(df) or has_vertically_truncated_repr(df) def has_doubly_truncated_repr(df): return has_horizontally_truncated_repr(df) and has_vertically_truncated_repr(df) def has_expanded_repr(df): r = repr(df) for line in r.split("\n"): if line.endswith("\\"): return True return False @pytest.mark.filterwarnings("ignore::FutureWarning:.*format") class TestDataFrameFormatting: def test_eng_float_formatter(self, float_frame): df = float_frame df.loc[5] = 0 fmt.set_eng_float_format() repr(df) fmt.set_eng_float_format(use_eng_prefix=True) repr(df) fmt.set_eng_float_format(accuracy=0) repr(df) tm.reset_display_options() def test_show_null_counts(self): df = DataFrame(1, columns=range(10), index=range(10)) df.iloc[1, 1] = np.nan def check(show_counts, result): buf = StringIO() df.info(buf=buf, show_counts=show_counts) assert ("non-null" in buf.getvalue()) is result with option_context( "display.max_info_rows", 20, "display.max_info_columns", 20 ): check(None, True) check(True, True) check(False, False) with option_context("display.max_info_rows", 5, "display.max_info_columns", 5): check(None, False) check(True, False) check(False, False) # GH37999 with tm.assert_produces_warning( FutureWarning, match="null_counts is deprecated.+" ): buf = StringIO() df.info(buf=buf, null_counts=True) assert "non-null" in buf.getvalue() # GH37999 with pytest.raises(ValueError, match=r"null_counts used with show_counts.+"): df.info(null_counts=True, show_counts=True) def test_repr_truncation(self): max_len = 20 with option_context("display.max_colwidth", max_len): df = DataFrame( { "A": np.random.randn(10), "B": [ tm.rands(np.random.randint(max_len - 1, max_len + 1)) for i in range(10) ], } ) r = repr(df) r = r[r.find("\n") + 1 :] adj = fmt.get_adjustment() for line, value in zip(r.split("\n"), df["B"]): if adj.len(value) + 1 > max_len: assert "..." in line else: assert "..." not in line with option_context("display.max_colwidth", 999999): assert "..." not in repr(df) with option_context("display.max_colwidth", max_len + 2): assert "..." not in repr(df) def test_repr_deprecation_negative_int(self): # TODO(2.0): remove in future version after deprecation cycle # Non-regression test for: # https://github.com/pandas-dev/pandas/issues/31532 width = get_option("display.max_colwidth") with tm.assert_produces_warning(FutureWarning): set_option("display.max_colwidth", -1) set_option("display.max_colwidth", width) def test_repr_chop_threshold(self): df = DataFrame([[0.1, 0.5], [0.5, -0.1]]) reset_option("display.chop_threshold") # default None assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" with option_context("display.chop_threshold", 0.2): assert repr(df) == " 0 1\n0 0.0 0.5\n1 0.5 0.0" with option_context("display.chop_threshold", 0.6): assert repr(df) == " 0 1\n0 0.0 0.0\n1 0.0 0.0" with option_context("display.chop_threshold", None): assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" def test_repr_chop_threshold_column_below(self): # GH 6839: validation case df = DataFrame([[10, 20, 30, 40], [8e-10, -1e-11, 2e-9, -2e-11]]).T with option_context("display.chop_threshold", 0): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 -1.000000e-11\n" "2 30.0 2.000000e-09\n" "3 40.0 -2.000000e-11" ) with option_context("display.chop_threshold", 1e-8): assert repr(df) == ( " 0 1\n" "0 10.0 0.000000e+00\n" "1 20.0 0.000000e+00\n" "2 30.0 0.000000e+00\n" "3 40.0 0.000000e+00" ) with option_context("display.chop_threshold", 5e-11): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 0.000000e+00\n" "2 30.0 2.000000e-09\n" "3 40.0 0.000000e+00" ) def test_repr_obeys_max_seq_limit(self): with option_context("display.max_seq_items", 2000): assert len(printing.pprint_thing(list(range(1000)))) > 1000 with option_context("display.max_seq_items", 5): assert len(printing.pprint_thing(list(range(1000)))) < 100 with option_context("display.max_seq_items", 1): assert len(printing.pprint_thing(list(range(1000)))) < 9 def test_repr_set(self): assert printing.pprint_thing({1}) == "{1}" def test_repr_is_valid_construction_code(self): # for the case of Index, where the repr is traditional rather than # stylized idx = Index(["a", "b"]) res = eval("pd." + repr(idx)) tm.assert_series_equal(Series(res), Series(idx)) def test_repr_should_return_str(self): # https://docs.python.org/3/reference/datamodel.html#object.__repr__ # "...The return value must be a string object." # (str on py2.x, str (unicode) on py3) data = [8, 5, 3, 5] index1 = ["\u03c3", "\u03c4", "\u03c5", "\u03c6"] cols = ["\u03c8"] df = DataFrame(data, columns=cols, index=index1) assert type(df.__repr__()) == str # both py2 / 3 def test_repr_no_backslash(self): with option_context("mode.sim_interactive", True): df = DataFrame(np.random.randn(10, 4)) assert "\\" not in repr(df) def test_expand_frame_repr(self): df_small = DataFrame("hello", index=[0], columns=[0]) df_wide = DataFrame("hello", index=[0], columns=range(10)) df_tall = DataFrame("hello", index=range(30), columns=range(5)) with option_context("mode.sim_interactive", True): with option_context( "display.max_columns", 10, "display.width", 20, "display.max_rows", 20, "display.show_dimensions", True, ): with option_context("display.expand_frame_repr", True): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_truncated_repr(df_wide) assert has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert has_expanded_repr(df_tall) with option_context("display.expand_frame_repr", False): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_horizontally_truncated_repr(df_wide) assert not has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert not has_expanded_repr(df_tall) def test_repr_non_interactive(self): # in non interactive mode, there can be no dependency on the # result of terminal auto size detection df = DataFrame("hello", index=range(1000), columns=range(5)) with option_context( "mode.sim_interactive", False, "display.width", 0, "display.max_rows", 5000 ): assert not has_truncated_repr(df) assert not has_expanded_repr(df) def test_repr_truncates_terminal_size(self, monkeypatch): # see gh-21180 terminal_size = (118, 96) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) index = range(5) columns = MultiIndex.from_tuples( [ ("This is a long title with > 37 chars.", "cat"), ("This is a loooooonger title with > 43 chars.", "dog"), ] ) df = DataFrame(1, index=index, columns=columns) result = repr(df) h1, h2 = result.split("\n")[:2] assert "long" in h1 assert "loooooonger" in h1 assert "cat" in h2 assert "dog" in h2 # regular columns df2 = DataFrame({"A" * 41: [1, 2], "B" * 41: [1, 2]}) result = repr(df2) assert df2.columns[0] in result.split("\n")[0] def test_repr_truncates_terminal_size_full(self, monkeypatch): # GH 22984 ensure entire window is filled terminal_size = (80, 24) df = DataFrame(np.random.rand(1, 7)) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) assert "..." not in str(df) def test_repr_truncation_column_size(self): # dataframe with last column very wide -> check it is not used to # determine size of truncation (...) column df = DataFrame( { "a": [108480, 30830], "b": [12345, 12345], "c": [12345, 12345], "d": [12345, 12345], "e": ["a" * 50] * 2, } ) assert "..." in str(df) assert " ... " not in str(df) def test_repr_max_columns_max_rows(self): term_width, term_height = get_terminal_size() if term_width < 10 or term_height < 10: pytest.skip(f"terminal size too small, {term_width} x {term_height}") def mkframe(n): index = [f"{i:05d}" for i in range(n)] return DataFrame(0, index, index) df6 = mkframe(6) df10 = mkframe(10) with option_context("mode.sim_interactive", True): with option_context("display.width", term_width * 2): with option_context("display.max_rows", 5, "display.max_columns", 5): assert not has_expanded_repr(mkframe(4)) assert not has_expanded_repr(mkframe(5)) assert not has_expanded_repr(df6) assert has_doubly_truncated_repr(df6) with option_context("display.max_rows", 20, "display.max_columns", 10): # Out off max_columns boundary, but no extending # since not exceeding width assert not has_expanded_repr(df6) assert not has_truncated_repr(df6) with option_context("display.max_rows", 9, "display.max_columns", 10): # out vertical bounds can not result in expanded repr assert not has_expanded_repr(df10) assert has_vertically_truncated_repr(df10) # width=None in terminal, auto detection with option_context( "display.max_columns", 100, "display.max_rows", term_width * 20, "display.width", None, ): df = mkframe((term_width // 7) - 2) assert not has_expanded_repr(df) df = mkframe((term_width // 7) + 2) printing.pprint_thing(df._repr_fits_horizontal_()) assert has_expanded_repr(df) def test_repr_min_rows(self): df = DataFrame({"a": range(20)}) # default setting no truncation even if above min_rows assert ".." not in repr(df) assert ".." not in df._repr_html_() df = DataFrame({"a": range(61)}) # default of max_rows 60 triggers truncation if above assert ".." in repr(df) assert ".." in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 4): # truncated after first two rows assert ".." in repr(df) assert "2 " not in repr(df) assert "..." in df._repr_html_() assert "<td>2</td>" not in df._repr_html_() with option_context("display.max_rows", 12, "display.min_rows", None): # when set to None, follow value of max_rows assert "5 5" in repr(df) assert "<td>5</td>" in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 12): # when set value higher as max_rows, use the minimum assert "5 5" not in repr(df) assert "<td>5</td>" not in df._repr_html_() with option_context("display.max_rows", None, "display.min_rows", 12): # max_rows of None -> never truncate assert ".." not in repr(df) assert ".." not in df._repr_html_() def test_str_max_colwidth(self): # GH 7856 df = DataFrame( [ { "a": "foo", "b": "bar", "c": "uncomfortably long line with lots of stuff", "d": 1, }, {"a": "foo", "b": "bar", "c": "stuff", "d": 1}, ] ) df.set_index(["a", "b", "c"]) assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably long line with lots of stuff 1\n" "1 foo bar stuff 1" ) with option_context("max_colwidth", 20): assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably lo... 1\n" "1 foo bar stuff 1" ) def test_auto_detect(self): term_width, term_height = get_terminal_size() fac = 1.05 # Arbitrary large factor to exceed term width cols = range(int(term_width * fac)) index = range(10) df = DataFrame(index=index, columns=cols) with option_context("mode.sim_interactive", True): with option_context("display.max_rows", None): with option_context("display.max_columns", None): # Wrap around with None assert has_expanded_repr(df) with option_context("display.max_rows", 0): with option_context("display.max_columns", 0): # Truncate with auto detection. assert has_horizontally_truncated_repr(df) index = range(int(term_height * fac)) df = DataFrame(index=index, columns=cols) with option_context("display.max_rows", 0): with option_context("display.max_columns", None): # Wrap around with None assert has_expanded_repr(df) # Truncate vertically assert has_vertically_truncated_repr(df) with option_context("display.max_rows", None): with option_context("display.max_columns", 0): assert has_horizontally_truncated_repr(df) def test_to_string_repr_unicode(self): buf = StringIO() unicode_values = ["\u03c3"] * 10 unicode_values = np.array(unicode_values, dtype=object) df = DataFrame({"unicode": unicode_values}) df.to_string(col_space=10, buf=buf) # it works! repr(df) idx = Index(["abc", "\u03c3a", "aegdvg"]) ser = Series(np.random.randn(len(idx)), idx) rs = repr(ser).split("\n") line_len = len(rs[0]) for line in rs[1:]: try: line = line.decode(get_option("display.encoding")) except AttributeError: pass if not line.startswith("dtype:"): assert len(line) == line_len # it works even if sys.stdin in None _stdin = sys.stdin try: sys.stdin = None repr(df) finally: sys.stdin = _stdin def test_east_asian_unicode_false(self): # not aligned properly because of east asian width # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あああああ あ\n" "bb い いいい\nc う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\nあああ あああああ あ\n" "いいいいいい い いいい\nうう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n0 あああああ ... さ\n" ".. ... ... ...\n3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\nあああ あああああ ... さ\n" ".. ... ... ...\naaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected def test_east_asian_unicode_true(self): # Enable Unicode option ----------------------------------------- with option_context("display.unicode.east_asian_width", True): # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\n" "a あああああ あ\n" "bb い いいい\n" "c う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\n" "あああ あああああ あ\n" "いいいいいい い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n" "0 あああああ ... さ\n" ".. ... ... ...\n" "3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\n" "あああ あああああ ... さ\n" "... ... ... ...\n" "aaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected # ambiguous unicode df = DataFrame( {"b": ["あ", "いいい", "¡¡", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "¡¡¡"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c ¡¡ 33333\n" "¡¡¡ ええええええ 4" ) assert repr(df) == expected def test_to_string_buffer_all_unicode(self): buf = StringIO() empty = DataFrame({"c/\u03c3": Series(dtype=object)}) nonempty = DataFrame({"c/\u03c3": Series([1, 2, 3])}) print(empty, file=buf) print(nonempty, file=buf) # this should work buf.getvalue() def test_to_string_with_col_space(self): df = DataFrame(np.random.random(size=(1, 3))) c10 = len(df.to_string(col_space=10).split("\n")[1]) c20 = len(df.to_string(col_space=20).split("\n")[1]) c30 = len(df.to_string(col_space=30).split("\n")[1]) assert c10 < c20 < c30 # GH 8230 # col_space wasn't being applied with header=False with_header = df.to_string(col_space=20) with_header_row1 = with_header.splitlines()[1] no_header = df.to_string(col_space=20, header=False) assert len(with_header_row1) == len(no_header) def test_to_string_with_column_specific_col_space_raises(self): df = DataFrame(np.random.random(size=(3, 3)), columns=["a", "b", "c"]) msg = ( "Col_space length\\(\\d+\\) should match " "DataFrame number of columns\\(\\d+\\)" ) with pytest.raises(ValueError, match=msg): df.to_string(col_space=[30, 40]) with pytest.raises(ValueError, match=msg): df.to_string(col_space=[30, 40, 50, 60]) msg = "unknown column" with pytest.raises(ValueError, match=msg): df.to_string(col_space={"a": "foo", "b": 23, "d": 34}) def test_to_string_with_column_specific_col_space(self): df = DataFrame(np.random.random(size=(3, 3)), columns=["a", "b", "c"]) result = df.to_string(col_space={"a": 10, "b": 11, "c": 12}) # 3 separating space + each col_space for (id, a, b, c) assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) result = df.to_string(col_space=[10, 11, 12]) assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) def test_to_string_truncate_indices(self): for index in [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, ]: for column in [tm.makeStringIndex]: for h in [10, 20]: for w in [10, 20]: with option_context("display.expand_frame_repr", False): df = DataFrame(index=index(h), columns=column(w)) with option_context("display.max_rows", 15): if h == 20: assert has_vertically_truncated_repr(df) else: assert not has_vertically_truncated_repr(df) with option_context("display.max_columns", 15): if w == 20: assert has_horizontally_truncated_repr(df) else: assert not (has_horizontally_truncated_repr(df)) with option_context( "display.max_rows", 15, "display.max_columns", 15 ): if h == 20 and w == 20: assert has_doubly_truncated_repr(df) else: assert not has_doubly_truncated_repr(df) def test_to_string_truncate_multilevel(self): arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] df = DataFrame(index=arrays, columns=arrays) with option_context("display.max_rows", 7, "display.max_columns", 7): assert has_doubly_truncated_repr(df) def test_truncate_with_different_dtypes(self): # 11594, 12045 # when truncated the dtypes of the splits can differ # 11594 import datetime s = Series( [datetime.datetime(2012, 1, 1)] * 10 + [datetime.datetime(1012, 1, 2)] + [datetime.datetime(2012, 1, 3)] * 10 ) with option_context("display.max_rows", 8): result = str(s) assert "object" in result # 12045 df = DataFrame({"text": ["some words"] + [None] * 9}) with option_context("display.max_rows", 8, "display.max_columns", 3): result = str(df) assert "None" in result assert "NaN" not in result def test_truncate_with_different_dtypes_multiindex(self): # GH#13000 df = DataFrame({"Vals": range(100)}) frame = pd.concat([df], keys=["Sweep"], names=["Sweep", "Index"]) result = repr(frame) result2 = repr(frame.iloc[:5]) assert result.startswith(result2) def test_datetimelike_frame(self): # GH 12211 df = DataFrame({"date": [Timestamp("20130101").tz_localize("UTC")] + [NaT] * 5}) with option_context("display.max_rows", 5): result = str(df) assert "2013-01-01 00:00:00+00:00" in result assert "NaT" in result assert "..." in result assert "[6 rows x 1 columns]" in result dts = [Timestamp("2011-01-01", tz="US/Eastern")] * 5 + [NaT] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 2011-01-01 00:00:00-05:00 1\n" "1 2011-01-01 00:00:00-05:00 2\n" ".. ... ..\n" "8 NaT 9\n" "9 NaT 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected dts = [NaT] * 5 + [Timestamp("2011-01-01", tz="US/Eastern")] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 NaT 1\n" "1 NaT 2\n" ".. ... ..\n" "8 2011-01-01 00:00:00-05:00 9\n" "9 2011-01-01 00:00:00-05:00 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected dts = [Timestamp("2011-01-01", tz="Asia/Tokyo")] * 5 + [ Timestamp("2011-01-01", tz="US/Eastern") ] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 2011-01-01 00:00:00+09:00 1\n" "1 2011-01-01 00:00:00+09:00 2\n" ".. ... ..\n" "8 2011-01-01 00:00:00-05:00 9\n" "9 2011-01-01 00:00:00-05:00 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected @pytest.mark.parametrize( "start_date", [ "2017-01-01 23:59:59.999999999", "2017-01-01 23:59:59.99999999", "2017-01-01 23:59:59.9999999", "2017-01-01 23:59:59.999999", "2017-01-01 23:59:59.99999", "2017-01-01 23:59:59.9999", ], ) def test_datetimeindex_highprecision(self, start_date): # GH19030 # Check that high-precision time values for the end of day are # included in repr for DatetimeIndex df = DataFrame({"A": date_range(start=start_date, freq="D", periods=5)}) result = str(df) assert start_date in result dti = date_range(start=start_date, freq="D", periods=5) df = DataFrame({"A": range(5)}, index=dti) result = str(df.index) assert start_date in result def test_nonunicode_nonascii_alignment(self): df = DataFrame([["aa\xc3\xa4\xc3\xa4", 1], ["bbbb", 2]]) rep_str = df.to_string() lines = rep_str.split("\n") assert len(lines[1]) == len(lines[2]) def test_unicode_problem_decoding_as_ascii(self): dm = DataFrame({"c/\u03c3": Series({"test": np.nan})}) str(dm.to_string()) def test_string_repr_encoding(self, datapath): filepath = datapath("io", "parser", "data", "unicode_series.csv") df = read_csv(filepath, header=None, encoding="latin1") repr(df) repr(df[1]) def test_repr_corner(self): # representing infs poses no problems df = DataFrame({"foo": [-np.inf, np.inf]}) repr(df) def test_frame_info_encoding(self): index = ["'Til There Was You (1997)", "ldum klaka (Cold Fever) (1994)"] fmt.set_option("display.max_rows", 1) df = DataFrame(columns=["a", "b", "c"], index=index) repr(df) repr(df.T) fmt.set_option("display.max_rows", 200) def test_wide_repr(self): with option_context( "mode.sim_interactive", True, "display.show_dimensions", True, "display.max_columns", 20, ): max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) set_option("display.expand_frame_repr", False) rep_str = repr(df) assert f"10 rows x {max_cols - 1} columns" in rep_str set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 120): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_wide_columns(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): df = DataFrame( np.random.randn(5, 3), columns=["a" * 90, "b" * 90, "c" * 90] ) rep_str = repr(df) assert len(rep_str.splitlines()) == 20 def test_wide_repr_named(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) df.index.name = "DataFrame Index" set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) for line in wide_repr.splitlines()[1::13]: assert "DataFrame Index" in line reset_option("display.expand_frame_repr") def test_wide_repr_multiindex(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10))) max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)), index=midx) df.index.names = ["Level 0", "Level 1"] set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) for line in wide_repr.splitlines()[1::13]: assert "Level 0 Level 1" in line reset_option("display.expand_frame_repr") def test_wide_repr_multiindex_cols(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = get_option("display.max_columns") midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10))) mcols = MultiIndex.from_arrays(tm.rands_array(3, size=(2, max_cols - 1))) df = DataFrame( tm.rands_array(25, (10, max_cols - 1)), index=midx, columns=mcols ) df.index.names = ["Level 0", "Level 1"] set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150, "display.max_columns", 20): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_unicode(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = 20 df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_wide_long_columns(self): with option_context("mode.sim_interactive", True): df = DataFrame({"a": ["a" * 30, "b" * 30], "b": ["c" * 70, "d" * 80]}) result = repr(df) assert "ccccc" in result assert "ddddd" in result def test_long_series(self): n = 1000 s = Series( np.random.randint(-50, 50, n), index=[f"s{x:04d}" for x in range(n)], dtype="int64", ) import re str_rep = str(s) nmatches = len(re.findall("dtype", str_rep)) assert nmatches == 1 def test_index_with_nan(self): # GH 2850 df = DataFrame( { "id1": {0: "1a3", 1: "9h4"}, "id2": {0: np.nan, 1: "d67"}, "id3": {0: "78d", 1: "79d"}, "value": {0: 123, 1: 64}, } ) # multi-index y = df.set_index(["id1", "id2", "id3"]) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "1a3 NaN 78d 123\n9h4 d67 79d 64" ) assert result == expected # index y = df.set_index("id2") result = y.to_string() expected = ( " id1 id3 value\nid2 \n" "NaN 1a3 78d 123\nd67 9h4 79d 64" ) assert result == expected # with append (this failed in 0.12) y = df.set_index(["id1", "id2"]).set_index("id3", append=True) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "1a3 NaN 78d 123\n9h4 d67 79d 64" ) assert result == expected # all-nan in mi df2 = df.copy() df2.loc[:, "id2"] = np.nan y = df2.set_index("id2") result = y.to_string() expected = ( " id1 id3 value\nid2 \n" "NaN 1a3 78d 123\nNaN 9h4 79d 64" ) assert result == expected # partial nan in mi df2 = df.copy() df2.loc[:, "id2"] = np.nan y = df2.set_index(["id2", "id3"]) result = y.to_string() expected = ( " id1 value\nid2 id3 \n" "NaN 78d 1a3 123\n 79d 9h4 64" ) assert result == expected df = DataFrame( { "id1": {0: np.nan, 1: "9h4"}, "id2": {0: np.nan, 1: "d67"}, "id3": {0: np.nan, 1: "79d"}, "value": {0: 123, 1: 64}, } ) y = df.set_index(["id1", "id2", "id3"]) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "NaN NaN NaN 123\n9h4 d67 79d 64" ) assert result == expected def test_to_string(self): # big mixed biggie = DataFrame( {"A": np.random.randn(200), "B": tm.makeStringIndex(200)}, index=np.arange(200), ) biggie.loc[:20, "A"] = np.nan biggie.loc[:20, "B"] = np.nan s = biggie.to_string() buf = StringIO() retval = biggie.to_string(buf=buf) assert retval is None assert buf.getvalue() == s assert isinstance(s, str) # print in right order result = biggie.to_string( columns=["B", "A"], col_space=17, float_format="%.5f".__mod__ ) lines = result.split("\n") header = lines[0].strip().split() joined = "\n".join([re.sub(r"\s+", " ", x).strip() for x in lines[1:]]) recons = read_csv(StringIO(joined), names=header, header=None, sep=" ") tm.assert_series_equal(recons["B"], biggie["B"]) assert recons["A"].count() == biggie["A"].count() assert (np.abs(recons["A"].dropna() - biggie["A"].dropna()) < 0.1).all() # expected = ['B', 'A'] # assert header == expected result = biggie.to_string(columns=["A"], col_space=17) header = result.split("\n")[0].strip().split() expected = ["A"] assert header == expected biggie.to_string(columns=["B", "A"], formatters={"A": lambda x: f"{x:.1f}"}) biggie.to_string(columns=["B", "A"], float_format=str) biggie.to_string(columns=["B", "A"], col_space=12, float_format=str) frame = DataFrame(index=np.arange(200)) frame.to_string() def test_to_string_no_header(self): df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(header=False) expected = "0 1 4\n1 2 5\n2 3 6" assert df_s == expected def test_to_string_specified_header(self): df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(header=["X", "Y"]) expected = " X Y\n0 1 4\n1 2 5\n2 3 6" assert df_s == expected msg = "Writing 2 cols but got 1 aliases" with pytest.raises(ValueError, match=msg): df.to_string(header=["X"]) def test_to_string_no_index(self): # GH 16839, GH 13032 df = DataFrame({"x": [11, 22], "y": [33, -44], "z": ["AAA", " "]}) df_s = df.to_string(index=False) # Leading space is expected for positive numbers. expected = " x y z\n11 33 AAA\n22 -44 " assert df_s == expected df_s = df[["y", "x", "z"]].to_string(index=False) expected = " y x z\n 33 11 AAA\n-44 22 " assert df_s == expected def test_to_string_line_width_no_index(self): # GH 13998, GH 22505 df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 1 \n 2 \n 3 \n\n y \n 4 \n 5 \n 6 " assert df_s == expected df = DataFrame({"x": [11, 22, 33], "y": [4, 5, 6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n11 \n22 \n33 \n\n y \n 4 \n 5 \n 6 " assert df_s == expected df = DataFrame({"x": [11, 22, -33], "y": [4, 5, -6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 11 \n 22 \n-33 \n\n y \n 4 \n 5 \n-6 " assert df_s == expected def test_to_string_float_formatting(self): tm.reset_display_options() fmt.set_option( "display.precision", 5, "display.column_space", 12, "display.notebook_repr_html", False, ) df = DataFrame( {"x": [0, 0.25, 3456.000, 12e45, 1.64e6, 1.7e8, 1.253456, np.pi, -1e6]} ) df_s = df.to_string() if _three_digit_exp(): expected = ( " x\n0 0.00000e+000\n1 2.50000e-001\n" "2 3.45600e+003\n3 1.20000e+046\n4 1.64000e+006\n" "5 1.70000e+008\n6 1.25346e+000\n7 3.14159e+000\n" "8 -1.00000e+006" ) else: expected = ( " x\n0 0.00000e+00\n1 2.50000e-01\n" "2 3.45600e+03\n3 1.20000e+46\n4 1.64000e+06\n" "5 1.70000e+08\n6 1.25346e+00\n7 3.14159e+00\n" "8 -1.00000e+06" ) assert df_s == expected df = DataFrame({"x": [3234, 0.253]}) df_s = df.to_string() expected = " x\n0 3234.000\n1 0.253" assert df_s == expected tm.reset_display_options() assert get_option("display.precision") == 6 df = DataFrame({"x": [1e9, 0.2512]}) df_s = df.to_string() if _three_digit_exp(): expected = " x\n0 1.000000e+009\n1 2.512000e-001" else: expected = " x\n0 1.000000e+09\n1 2.512000e-01" assert df_s == expected def test_to_string_float_format_no_fixed_width(self): # GH 21625 df = DataFrame({"x": [0.19999]}) expected = " x\n0 0.200" assert df.to_string(float_format="%.3f") == expected # GH 22270 df = DataFrame({"x": [100.0]}) expected = " x\n0 100" assert df.to_string(float_format="%.0f") == expected def test_to_string_small_float_values(self): df = DataFrame({"a": [1.5, 1e-17, -5.5e-7]}) result = df.to_string() # sadness per above if _three_digit_exp(): expected = ( " a\n" "0 1.500000e+000\n" "1 1.000000e-017\n" "2 -5.500000e-007" ) else: expected = ( " a\n" "0 1.500000e+00\n" "1 1.000000e-17\n" "2 -5.500000e-07" ) assert result == expected # but not all exactly zero df = df * 0 result = df.to_string() expected = " 0\n0 0\n1 0\n2 -0" def test_to_string_float_index(self): index = Index([1.5, 2, 3, 4, 5]) df = DataFrame(np.arange(5), index=index) result = df.to_string() expected = " 0\n1.5 0\n2.0 1\n3.0 2\n4.0 3\n5.0 4" assert result == expected def test_to_string_complex_float_formatting(self): # GH #25514, 25745 with option_context("display.precision", 5): df = DataFrame( { "x": [ (0.4467846931321966 + 0.0715185102060818j), (0.2739442392974528 + 0.23515228785438969j), (0.26974928742135185 + 0.3250604054898979j), (-1j), ] } ) result = df.to_string() expected = ( " x\n0 0.44678+0.07152j\n" "1 0.27394+0.23515j\n" "2 0.26975+0.32506j\n" "3 -0.00000-1.00000j" ) assert result == expected def test_to_string_ascii_error(self): data = [ ( "0 ", " .gitignore ", " 5 ", " \xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2", ) ] df = DataFrame(data) # it works! repr(df) def test_to_string_int_formatting(self): df = DataFrame({"x": [-15, 20, 25, -35]}) assert issubclass(df["x"].dtype.type, np.integer) output = df.to_string() expected = " x\n0 -15\n1 20\n2 25\n3 -35" assert output == expected def test_to_string_index_formatter(self): df = DataFrame([range(5), range(5, 10), range(10, 15)]) rs = df.to_string(formatters={"__index__": lambda x: "abc"[x]}) xp = """\ 0 1 2 3 4 a 0 1 2 3 4 b 5 6 7 8 9 c 10 11 12 13 14\ """ assert rs == xp def test_to_string_left_justify_cols(self): tm.reset_display_options() df = DataFrame({"x": [3234, 0.253]}) df_s = df.to_string(justify="left") expected = " x \n0 3234.000\n1 0.253" assert df_s == expected def test_to_string_format_na(self): tm.reset_display_options() df = DataFrame( { "A": [np.nan, -1, -2.1234, 3, 4], "B": [np.nan, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 NaN NaN\n" "1 -1.0000 foo\n" "2 -2.1234 foooo\n" "3 3.0000 fooooo\n" "4 4.0000 bar" ) assert result == expected df = DataFrame( { "A": [np.nan, -1.0, -2.0, 3.0, 4.0], "B": [np.nan, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 NaN NaN\n" "1 -1.0 foo\n" "2 -2.0 foooo\n" "3 3.0 fooooo\n" "4 4.0 bar" ) assert result == expected def test_to_string_format_inf(self): # Issue #24861 tm.reset_display_options() df = DataFrame( { "A": [-np.inf, np.inf, -1, -2.1234, 3, 4], "B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 -inf -inf\n" "1 inf inf\n" "2 -1.0000 foo\n" "3 -2.1234 foooo\n" "4 3.0000 fooooo\n" "5 4.0000 bar" ) assert result == expected df = DataFrame( { "A": [-np.inf, np.inf, -1.0, -2.0, 3.0, 4.0], "B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 -inf -inf\n" "1 inf inf\n" "2 -1.0 foo\n" "3 -2.0 foooo\n" "4 3.0 fooooo\n" "5 4.0 bar" ) assert result == expected def test_to_string_decimal(self): # Issue #23614 df = DataFrame({"A": [6.0, 3.1, 2.2]}) expected = " A\n0 6,0\n1 3,1\n2 2,2" assert df.to_string(decimal=",") == expected def test_to_string_line_width(self): df = DataFrame(123, index=range(10, 15), columns=range(30)) s = df.to_string(line_width=80) assert max(len(line) for line in s.split("\n")) == 80 def test_show_dimensions(self): df = DataFrame(123, index=range(10, 15), columns=range(30)) with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", True, ): assert "5 rows" in str(df) assert "5 rows" in df._repr_html_() with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", False, ): assert "5 rows" not in str(df) assert "5 rows" not in df._repr_html_() with option_context( "display.max_rows", 2, "display.max_columns", 2, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", "truncate", ): assert "5 rows" in str(df) assert "5 rows" in df._repr_html_() with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", "truncate", ): assert "5 rows" not in str(df) assert "5 rows" not in df._repr_html_() def test_repr_html(self, float_frame): df = float_frame df._repr_html_() fmt.set_option("display.max_rows", 1, "display.max_columns", 1) df._repr_html_() fmt.set_option("display.notebook_repr_html", False) df._repr_html_() tm.reset_display_options() df = DataFrame([[1, 2], [3, 4]]) fmt.set_option("display.show_dimensions", True) assert "2 rows" in df._repr_html_() fmt.set_option("display.show_dimensions", False) assert "2 rows" not in df._repr_html_() tm.reset_display_options() def test_repr_html_mathjax(self): df = DataFrame([[1, 2], [3, 4]]) assert "tex2jax_ignore" not in df._repr_html_() with option_context("display.html.use_mathjax", False): assert "tex2jax_ignore" in df._repr_html_() def test_repr_html_wide(self): max_cols = 20 df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." not in df._repr_html_() wide_df = DataFrame(tm.rands_array(25, size=(10, max_cols + 1))) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in wide_df._repr_html_() def test_repr_html_wide_multiindex_cols(self): max_cols = 20 mcols = MultiIndex.from_product( [np.arange(max_cols // 2), ["foo", "bar"]], names=["first", "second"] ) df = DataFrame(tm.rands_array(25, size=(10, len(mcols))), columns=mcols) reg_repr = df._repr_html_() assert "..." not in reg_repr mcols = MultiIndex.from_product( (np.arange(1 + (max_cols // 2)), ["foo", "bar"]), names=["first", "second"] ) df = DataFrame(tm.rands_array(25, size=(10, len(mcols))), columns=mcols) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in df._repr_html_() def test_repr_html_long(self): with option_context("display.max_rows", 60): max_rows = get_option("display.max_rows") h = max_rows - 1 df = DataFrame({"A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h)}) reg_repr = df._repr_html_() assert ".." not in reg_repr assert str(41 + max_rows // 2) in reg_repr h = max_rows + 1 df = DataFrame({"A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h)}) long_repr = df._repr_html_() assert ".." in long_repr assert str(41 + max_rows // 2) not in long_repr assert f"{h} rows " in long_repr assert "2 columns" in long_repr def test_repr_html_float(self): with option_context("display.max_rows", 60): max_rows = get_option("display.max_rows") h = max_rows - 1 df = DataFrame( { "idx": np.linspace(-10, 10, h), "A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h), } ).set_index("idx") reg_repr = df._repr_html_() assert ".." not in reg_repr assert f"<td>{40 + h}</td>" in reg_repr h = max_rows + 1 df = DataFrame( { "idx": np.linspace(-10, 10, h), "A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h), } ).set_index("idx") long_repr = df._repr_html_() assert ".." in long_repr assert "<td>31</td>" not in long_repr assert f"{h} rows " in long_repr assert "2 columns" in long_repr def test_repr_html_long_multiindex(self): max_rows = 60 max_L1 = max_rows // 2 tuples = list(itertools.product(np.arange(max_L1), ["foo", "bar"])) idx = MultiIndex.from_tuples(tuples, names=["first", "second"]) df = DataFrame(np.random.randn(max_L1 * 2, 2), index=idx, columns=["A", "B"]) with option_context("display.max_rows", 60, "display.max_columns", 20): reg_repr = df._repr_html_() assert "..." not in reg_repr tuples = list(itertools.product(np.arange(max_L1 + 1), ["foo", "bar"])) idx = MultiIndex.from_tuples(tuples, names=["first", "second"]) df = DataFrame( np.random.randn((max_L1 + 1) * 2, 2), index=idx, columns=["A", "B"] ) long_repr = df._repr_html_() assert "..." in long_repr def test_repr_html_long_and_wide(self): max_cols = 20 max_rows = 60 h, w = max_rows - 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." not in df._repr_html_() h, w = max_rows + 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in df._repr_html_() def test_info_repr(self): # GH#21746 For tests inside a terminal (i.e. not CI) we need to detect # the terminal size to ensure that we try to print something "too big" term_width, term_height = get_terminal_size() max_rows = 60 max_cols = 20 + (max(term_width, 80) - 80) // 4 # Long h, w = max_rows + 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert has_vertically_truncated_repr(df) with option_context("display.large_repr", "info"): assert has_info_repr(df) # Wide h, w = max_rows - 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert has_horizontally_truncated_repr(df) with option_context( "display.large_repr", "info", "display.max_columns", max_cols ): assert has_info_repr(df) def test_info_repr_max_cols(self): # GH #6939 df = DataFrame(np.random.randn(10, 5)) with option_context( "display.large_repr", "info", "display.max_columns", 1, "display.max_info_columns", 4, ): assert has_non_verbose_info_repr(df) with option_context( "display.large_repr", "info", "display.max_columns", 1, "display.max_info_columns", 5, ): assert not has_non_verbose_info_repr(df) # test verbose overrides # fmt.set_option('display.max_info_columns', 4) # exceeded def test_info_repr_html(self): max_rows = 60 max_cols = 20 # Long h, w = max_rows + 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert r"&lt;class" not in df._repr_html_() with option_context("display.large_repr", "info"): assert r"&lt;class" in df._repr_html_() # Wide h, w = max_rows - 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert "<class" not in df._repr_html_() with option_context( "display.large_repr", "info", "display.max_columns", max_cols ): assert "&lt;class" in df._repr_html_() def test_fake_qtconsole_repr_html(self, float_frame): df = float_frame def get_ipython(): return {"config": {"KernelApp": {"parent_appname": "ipython-qtconsole"}}} repstr = df._repr_html_() assert repstr is not None fmt.set_option("display.max_rows", 5, "display.max_columns", 2) repstr = df._repr_html_() assert "class" in repstr # info fallback tm.reset_display_options() def test_pprint_pathological_object(self): """ If the test fails, it at least won't hang. """ class A: def __getitem__(self, key): return 3 # obviously simplified df = DataFrame([A()]) repr(df) # just don't die def test_float_trim_zeros(self): vals = [ 2.08430917305e10, 3.52205017305e10, 2.30674817305e10, 2.03954217305e10, 5.59897817305e10, ] skip = True for line in repr(DataFrame({"A": vals})).split("\n")[:-2]: if line.startswith("dtype:"): continue if _three_digit_exp(): assert ("+010" in line) or skip else: assert ("+10" in line) or skip skip = False @pytest.mark.parametrize( "data, expected", [ (["3.50"], "0 3.50\ndtype: object"), ([1.20, "1.00"], "0 1.2\n1 1.00\ndtype: object"), ([np.nan], "0 NaN\ndtype: float64"), ([None], "0 None\ndtype: object"), (["3.50", np.nan], "0 3.50\n1 NaN\ndtype: object"), ([3.50, np.nan], "0 3.5\n1 NaN\ndtype: float64"), ([3.50, np.nan, "3.50"], "0 3.5\n1 NaN\n2 3.50\ndtype: object"), ([3.50, None, "3.50"], "0 3.5\n1 None\n2 3.50\ndtype: object"), ], ) def test_repr_str_float_truncation(self, data, expected): # GH#38708 series = Series(data) result = repr(series) assert result == expected @pytest.mark.parametrize( "float_format,expected", [ ("{:,.0f}".format, "0 1,000\n1 test\ndtype: object"), ("{:.4f}".format, "0 1000.0000\n1 test\ndtype: object"), ], ) def test_repr_float_format_in_object_col(self, float_format, expected): # GH#40024 df = Series([1000.0, "test"]) with option_context("display.float_format", float_format): result = repr(df) assert result == expected def test_dict_entries(self): df = DataFrame({"A": [{"a": 1, "b": 2}]}) val = df.to_string() assert "'a': 1" in val assert "'b': 2" in val def test_categorical_columns(self): # GH35439 data = [[4, 2], [3, 2], [4, 3]] cols = ["aaaaaaaaa", "b"] df = DataFrame(data, columns=cols) df_cat_cols = DataFrame(data, columns=pd.CategoricalIndex(cols)) assert df.to_string() == df_cat_cols.to_string() def test_period(self): # GH 12615 df = DataFrame( { "A": pd.period_range("2013-01", periods=4, freq="M"), "B": [ pd.Period("2011-01", freq="M"), pd.Period("2011-02-01", freq="D"), pd.Period("2011-03-01 09:00", freq="H"), pd.Period("2011-04", freq="M"), ], "C": list("abcd"), } ) exp = ( " A B C\n" "0 2013-01 2011-01 a\n" "1 2013-02 2011-02-01 b\n" "2 2013-03 2011-03-01 09:00 c\n" "3 2013-04 2011-04 d" ) assert str(df) == exp @pytest.mark.parametrize( "length, max_rows, min_rows, expected", [ (10, 10, 10, 10), (10, 10, None, 10), (10, 8, None, 8), (20, 30, 10, 30), # max_rows > len(frame), hence max_rows (50, 30, 10, 10), # max_rows < len(frame), hence min_rows (100, 60, 10, 10), # same (60, 60, 10, 60), # edge case (61, 60, 10, 10), # edge case ], ) def test_max_rows_fitted(self, length, min_rows, max_rows, expected): """Check that display logic is correct. GH #37359 See description here: https://pandas.pydata.org/docs/dev/user_guide/options.html#frequently-used-options """ formatter = fmt.DataFrameFormatter( DataFrame(np.random.rand(length, 3)), max_rows=max_rows, min_rows=min_rows, ) result = formatter.max_rows_fitted assert result == expected def gen_series_formatting(): s1 = Series(["a"] * 100) s2 = Series(["ab"] * 100) s3 = Series(["a", "ab", "abc", "abcd", "abcde", "abcdef"]) s4 = s3[::-1] test_sers = {"onel": s1, "twol": s2, "asc": s3, "desc": s4} return test_sers class TestSeriesFormatting: def setup_method(self, method): self.ts = tm.makeTimeSeries() def test_repr_unicode(self): s = Series(["\u03c3"] * 10) repr(s) a = Series(["\u05d0"] * 1000) a.name = "title1" repr(a) def test_to_string(self): buf = StringIO() s = self.ts.to_string() retval = self.ts.to_string(buf=buf) assert retval is None assert buf.getvalue().strip() == s # pass float_format format = "%.4f".__mod__ result = self.ts.to_string(float_format=format) result = [x.split()[1] for x in result.split("\n")[:-1]] expected = [format(x) for x in self.ts] assert result == expected # empty string result = self.ts[:0].to_string() assert result == "Series([], Freq: B)" result = self.ts[:0].to_string(length=0) assert result == "Series([], Freq: B)" # name and length cp = self.ts.copy() cp.name = "foo" result = cp.to_string(length=True, name=True, dtype=True) last_line = result.split("\n")[-1].strip() assert last_line == (f"Freq: B, Name: foo, Length: {len(cp)}, dtype: float64") def test_freq_name_separation(self): s = Series( np.random.randn(10), index=date_range("1/1/2000", periods=10), name=0 ) result = repr(s) assert "Freq: D, Name: 0" in result def test_to_string_mixed(self): s = Series(["foo", np.nan, -1.23, 4.56]) result = s.to_string() expected = "0 foo\n" + "1 NaN\n" + "2 -1.23\n" + "3 4.56" assert result == expected # but don't count NAs as floats s = Series(["foo", np.nan, "bar", "baz"]) result = s.to_string() expected = "0 foo\n" + "1 NaN\n" + "2 bar\n" + "3 baz" assert result == expected s = Series(["foo", 5, "bar", "baz"]) result = s.to_string() expected = "0 foo\n" + "1 5\n" + "2 bar\n" + "3 baz" assert result == expected def test_to_string_float_na_spacing(self): s = Series([0.0, 1.5678, 2.0, -3.0, 4.0]) s[::2] = np.nan result = s.to_string() expected = ( "0 NaN\n" + "1 1.5678\n" + "2 NaN\n" + "3 -3.0000\n" + "4 NaN" ) assert result == expected def test_to_string_without_index(self): # GH 11729 Test index=False option s = Series([1, 2, 3, 4]) result = s.to_string(index=False) expected = "1\n" + "2\n" + "3\n" + "4" assert result == expected def test_unicode_name_in_footer(self): s = Series([1, 2], name="\u05e2\u05d1\u05e8\u05d9\u05ea") sf = fmt.SeriesFormatter(s, name="\u05e2\u05d1\u05e8\u05d9\u05ea") sf._get_footer() # should not raise exception def test_east_asian_unicode_series(self): # not aligned properly because of east asian width # unicode index s = Series(["a", "bb", "CCC", "D"], index=["あ", "いい", "ううう", "ええええ"]) expected = "あ a\nいい bb\nううう CCC\nええええ D\ndtype: object" assert repr(s) == expected # unicode values s = Series(["あ", "いい", "ううう", "ええええ"], index=["a", "bb", "c", "ddd"]) expected = "a あ\nbb いい\nc ううう\nddd ええええ\ndtype: object" assert repr(s) == expected # both s = Series(["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"]) expected = ( "ああ あ\nいいいい いい\nう ううう\nえええ ええええ\ndtype: object" ) assert repr(s) == expected # unicode footer s = Series( ["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"], name="おおおおおおお" ) expected = ( "ああ あ\nいいいい いい\nう ううう\n" "えええ ええええ\nName: おおおおおおお, dtype: object" ) assert repr(s) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) s = Series([1, 22, 3333, 44444], index=idx) expected = ( "あ いい 1\n" "う え 22\n" "おおお かかかか 3333\n" "き くく 44444\ndtype: int64" ) assert repr(s) == expected # object dtype, shorter than unicode repr s = Series([1, 22, 3333, 44444], index=[1, "AB", np.nan, "あああ"]) expected = ( "1 1\nAB 22\nNaN 3333\nあああ 44444\ndtype: int64" ) assert repr(s) == expected # object dtype, longer than unicode repr s = Series( [1, 22, 3333, 44444], index=[1, "AB", Timestamp("2011-01-01"), "あああ"] ) expected = ( "1 1\n" "AB 22\n" "2011-01-01 00:00:00 3333\n" "あああ 44444\ndtype: int64" ) assert repr(s) == expected # truncate with option_context("display.max_rows", 3): s = Series(["あ", "いい", "ううう", "ええええ"], name="おおおおおおお") expected = ( "0 あ\n ... \n" "3 ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected s.index = ["ああ", "いいいい", "う", "えええ"] expected = ( "ああ あ\n ... \n" "えええ ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected # Enable Unicode option ----------------------------------------- with option_context("display.unicode.east_asian_width", True): # unicode index s = Series(["a", "bb", "CCC", "D"], index=["あ", "いい", "ううう", "ええええ"]) expected = ( "あ a\nいい bb\nううう CCC\n" "ええええ D\ndtype: object" ) assert repr(s) == expected # unicode values s = Series(["あ", "いい", "ううう", "ええええ"], index=["a", "bb", "c", "ddd"]) expected = ( "a あ\nbb いい\nc ううう\n" "ddd ええええ\ndtype: object" ) assert repr(s) == expected # both s = Series(["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"]) expected = ( "ああ あ\n" "いいいい いい\n" "う ううう\n" "えええ ええええ\ndtype: object" ) assert repr(s) == expected # unicode footer s = Series( ["あ", "いい", "ううう", "ええええ"], index=["ああ", "いいいい", "う", "えええ"], name="おおおおおおお", ) expected = ( "ああ あ\n" "いいいい いい\n" "う ううう\n" "えええ ええええ\n" "Name: おおおおおおお, dtype: object" ) assert repr(s) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) s = Series([1, 22, 3333, 44444], index=idx) expected = ( "あ いい 1\n" "う え 22\n" "おおお かかかか 3333\n" "き くく 44444\n" "dtype: int64" ) assert repr(s) == expected # object dtype, shorter than unicode repr s = Series([1, 22, 3333, 44444], index=[1, "AB", np.nan, "あああ"]) expected = ( "1 1\nAB 22\nNaN 3333\n" "あああ 44444\ndtype: int64" ) assert repr(s) == expected # object dtype, longer than unicode repr s = Series( [1, 22, 3333, 44444], index=[1, "AB", Timestamp("2011-01-01"), "あああ"], ) expected = ( "1 1\n" "AB 22\n" "2011-01-01 00:00:00 3333\n" "あああ 44444\ndtype: int64" ) assert repr(s) == expected # truncate with option_context("display.max_rows", 3): s = Series(["あ", "いい", "ううう", "ええええ"], name="おおおおおおお") expected = ( "0 あ\n ... \n" "3 ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected s.index = ["ああ", "いいいい", "う", "えええ"] expected = ( "ああ あ\n" " ... \n" "えええ ええええ\n" "Name: おおおおおおお, Length: 4, dtype: object" ) assert repr(s) == expected # ambiguous unicode s = Series( ["¡¡", "い¡¡", "ううう", "ええええ"], index=["ああ", "¡¡¡¡いい", "¡¡", "えええ"] ) expected = ( "ああ ¡¡\n" "¡¡¡¡いい い¡¡\n" "¡¡ ううう\n" "えええ ええええ\ndtype: object" ) assert repr(s) == expected def test_float_trim_zeros(self): vals = [ 2.08430917305e10, 3.52205017305e10, 2.30674817305e10, 2.03954217305e10, 5.59897817305e10, ] for line in repr(Series(vals)).split("\n"): if line.startswith("dtype:"): continue if _three_digit_exp(): assert "+010" in line else: assert "+10" in line def test_datetimeindex(self): index = date_range("20130102", periods=6) s = Series(1, index=index) result = s.to_string() assert "2013-01-02" in result # nat in index s2 = Series(2, index=[Timestamp("20130111"), NaT]) s = s2.append(s) result = s.to_string() assert "NaT" in result # nat in summary result = str(s2.index) assert "NaT" in result @pytest.mark.parametrize( "start_date", [ "2017-01-01 23:59:59.999999999", "2017-01-01 23:59:59.99999999", "2017-01-01 23:59:59.9999999", "2017-01-01 23:59:59.999999", "2017-01-01 23:59:59.99999", "2017-01-01 23:59:59.9999", ], ) def test_datetimeindex_highprecision(self, start_date): # GH19030 # Check that high-precision time values for the end of day are # included in repr for DatetimeIndex s1 = Series(date_range(start=start_date, freq="D", periods=5)) result = str(s1) assert start_date in result dti = date_range(start=start_date, freq="D", periods=5) s2 = Series(3, index=dti) result = str(s2.index) assert start_date in result def test_timedelta64(self): from datetime import ( datetime, timedelta, ) Series(np.array([1100, 20], dtype="timedelta64[ns]")).to_string() s = Series(date_range("2012-1-1", periods=3, freq="D")) # GH2146 # adding NaTs y = s - s.shift(1) result = y.to_string() assert "1 days" in result assert "00:00:00" not in result assert "NaT" in result # with frac seconds o = Series([datetime(2012, 1, 1, microsecond=150)] * 3) y = s - o result = y.to_string() assert "-1 days +23:59:59.999850" in result # rounding? o = Series([datetime(2012, 1, 1, 1)] * 3) y = s - o result = y.to_string() assert "-1 days +23:00:00" in result assert "1 days 23:00:00" in result o = Series([datetime(2012, 1, 1, 1, 1)] * 3) y = s - o result = y.to_string() assert "-1 days +22:59:00" in result assert "1 days 22:59:00" in result o = Series([datetime(2012, 1, 1, 1, 1, microsecond=150)] * 3) y = s - o result = y.to_string() assert "-1 days +22:58:59.999850" in result assert "0 days 22:58:59.999850" in result # neg time td = timedelta(minutes=5, seconds=3) s2 = Series(date_range("2012-1-1", periods=3, freq="D")) + td y = s - s2 result = y.to_string() assert "-1 days +23:54:57" in result td = timedelta(microseconds=550) s2 = Series(date_range("2012-1-1", periods=3, freq="D")) + td y = s - td result = y.to_string() assert "2012-01-01 23:59:59.999450" in result # no boxing of the actual elements td = Series(pd.timedelta_range("1 days", periods=3)) result = td.to_string() assert result == "0 1 days\n1 2 days\n2 3 days" def test_mixed_datetime64(self): df = DataFrame({"A": [1, 2], "B": ["2012-01-01", "2012-01-02"]}) df["B"] = pd.to_datetime(df.B) result = repr(df.loc[0]) assert "2012-01-01" in result def test_period(self): # GH 12615 index = pd.period_range("2013-01", periods=6, freq="M") s = Series(np.arange(6, dtype="int64"), index=index) exp = ( "2013-01 0\n" "2013-02 1\n" "2013-03 2\n" "2013-04 3\n" "2013-05 4\n" "2013-06 5\n" "Freq: M, dtype: int64" ) assert str(s) == exp s = Series(index) exp = ( "0 2013-01\n" "1 2013-02\n" "2 2013-03\n" "3 2013-04\n" "4 2013-05\n" "5 2013-06\n" "dtype: period[M]" ) assert str(s) == exp # periods with mixed freq s = Series( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02-01", freq="D"), pd.Period("2011-03-01 09:00", freq="H"), ] ) exp = ( "0 2011-01\n1 2011-02-01\n" "2 2011-03-01 09:00\ndtype: object" ) assert str(s) == exp def test_max_multi_index_display(self): # GH 7101 # doc example (indexing.rst) # multi-index arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] tuples = list(zip(*arrays)) index = MultiIndex.from_tuples(tuples, names=["first", "second"]) s = Series(np.random.randn(8), index=index) with option_context("display.max_rows", 10): assert len(str(s).split("\n")) == 10 with option_context("display.max_rows", 3): assert len(str(s).split("\n")) == 5 with option_context("display.max_rows", 2): assert len(str(s).split("\n")) == 5 with option_context("display.max_rows", 1): assert len(str(s).split("\n")) == 4 with option_context("display.max_rows", 0): assert len(str(s).split("\n")) == 10 # index s = Series(np.random.randn(8), None) with option_context("display.max_rows", 10): assert len(str(s).split("\n")) == 9 with option_context("display.max_rows", 3): assert len(str(s).split("\n")) == 4 with option_context("display.max_rows", 2): assert len(str(s).split("\n")) == 4 with option_context("display.max_rows", 1): assert len(str(s).split("\n")) == 3 with option_context("display.max_rows", 0): assert len(str(s).split("\n")) == 9 # Make sure #8532 is fixed def test_consistent_format(self): s = Series([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9999, 1, 1] * 10) with option_context("display.max_rows", 10, "display.show_dimensions", False): res = repr(s) exp = ( "0 1.0000\n1 1.0000\n2 1.0000\n3 " "1.0000\n4 1.0000\n ... \n125 " "1.0000\n126 1.0000\n127 0.9999\n128 " "1.0000\n129 1.0000\ndtype: float64" ) assert res == exp def chck_ncols(self, s): with option_context("display.max_rows", 10): res = repr(s) lines = res.split("\n") lines = [ line for line in repr(s).split("\n") if not re.match(r"[^\.]*\.+", line) ][:-1] ncolsizes = len({len(line.strip()) for line in lines}) assert ncolsizes == 1 def test_format_explicit(self): test_sers = gen_series_formatting() with option_context("display.max_rows", 4, "display.show_dimensions", False): res = repr(test_sers["onel"]) exp = "0 a\n1 a\n ..\n98 a\n99 a\ndtype: object" assert exp == res res = repr(test_sers["twol"]) exp = "0 ab\n1 ab\n ..\n98 ab\n99 ab\ndtype: object" assert exp == res res = repr(test_sers["asc"]) exp = ( "0 a\n1 ab\n ... \n4 abcde\n5 " "abcdef\ndtype: object" ) assert exp == res res = repr(test_sers["desc"]) exp = ( "5 abcdef\n4 abcde\n ... \n1 ab\n0 " "a\ndtype: object" ) assert exp == res def test_ncols(self): test_sers = gen_series_formatting() for s in test_sers.values(): self.chck_ncols(s) def test_max_rows_eq_one(self): s = Series(range(10), dtype="int64") with option_context("display.max_rows", 1): strrepr = repr(s).split("\n") exp1 = ["0", "0"] res1 = strrepr[0].split() assert exp1 == res1 exp2 = [".."] res2 = strrepr[1].split() assert exp2 == res2 def test_truncate_ndots(self): def getndots(s): return len(re.match(r"[^\.]*(\.*)", s).groups()[0]) s = Series([0, 2, 3, 6]) with option_context("display.max_rows", 2): strrepr = repr(s).replace("\n", "") assert getndots(strrepr) == 2 s = Series([0, 100, 200, 400]) with option_context("display.max_rows", 2): strrepr = repr(s).replace("\n", "") assert getndots(strrepr) == 3 def test_show_dimensions(self): # gh-7117 s = Series(range(5)) assert "Length" not in repr(s) with option_context("display.max_rows", 4): assert "Length" in repr(s) with option_context("display.show_dimensions", True): assert "Length" in repr(s) with option_context("display.max_rows", 4, "display.show_dimensions", False): assert "Length" not in repr(s) def test_repr_min_rows(self): s = Series(range(20)) # default setting no truncation even if above min_rows assert ".." not in repr(s) s = Series(range(61)) # default of max_rows 60 triggers truncation if above assert ".." in repr(s) with option_context("display.max_rows", 10, "display.min_rows", 4): # truncated after first two rows assert ".." in repr(s) assert "2 " not in repr(s) with option_context("display.max_rows", 12, "display.min_rows", None): # when set to None, follow value of max_rows assert "5 5" in repr(s) with option_context("display.max_rows", 10, "display.min_rows", 12): # when set value higher as max_rows, use the minimum assert "5 5" not in repr(s) with option_context("display.max_rows", None, "display.min_rows", 12): # max_rows of None -> never truncate assert ".." not in repr(s) def test_to_string_name(self): s = Series(range(100), dtype="int64") s.name = "myser" res = s.to_string(max_rows=2, name=True) exp = "0 0\n ..\n99 99\nName: myser" assert res == exp res = s.to_string(max_rows=2, name=False) exp = "0 0\n ..\n99 99" assert res == exp def test_to_string_dtype(self): s = Series(range(100), dtype="int64") res = s.to_string(max_rows=2, dtype=True) exp = "0 0\n ..\n99 99\ndtype: int64" assert res == exp res = s.to_string(max_rows=2, dtype=False) exp = "0 0\n ..\n99 99" assert res == exp def test_to_string_length(self): s = Series(range(100), dtype="int64") res = s.to_string(max_rows=2, length=True) exp = "0 0\n ..\n99 99\nLength: 100" assert res == exp def test_to_string_na_rep(self): s = Series(index=range(100), dtype=np.float64) res = s.to_string(na_rep="foo", max_rows=2) exp = "0 foo\n ..\n99 foo" assert res == exp def test_to_string_float_format(self): s = Series(range(10), dtype="float64") res = s.to_string(float_format=lambda x: f"{x:2.1f}", max_rows=2) exp = "0 0.0\n ..\n9 9.0" assert res == exp def test_to_string_header(self): s = Series(range(10), dtype="int64") s.index.name = "foo" res = s.to_string(header=True, max_rows=2) exp = "foo\n0 0\n ..\n9 9" assert res == exp res = s.to_string(header=False, max_rows=2) exp = "0 0\n ..\n9 9" assert res == exp def test_to_string_multindex_header(self): # GH 16718 df = DataFrame({"a": [0], "b": [1], "c": [2], "d": [3]}).set_index(["a", "b"]) res = df.to_string(header=["r1", "r2"]) exp = " r1 r2\na b \n0 1 2 3" assert res == exp def test_to_string_empty_col(self): # GH 13653 s = Series(["", "Hello", "World", "", "", "Mooooo", "", ""]) res = s.to_string(index=False) exp = " \n Hello\n World\n \n \nMooooo\n \n " assert re.match(exp, res) class TestGenericArrayFormatter: def test_1d_array(self): # GenericArrayFormatter is used on types for which there isn't a dedicated # formatter. np.bool_ is one of those types. obj = fmt.GenericArrayFormatter(np.array([True, False])) res = obj.get_result() assert len(res) == 2 # Results should be right-justified. assert res[0] == " True" assert res[1] == " False" def test_2d_array(self): obj = fmt.GenericArrayFormatter(np.array([[True, False], [False, True]])) res = obj.get_result() assert len(res) == 2 assert res[0] == " [True, False]" assert res[1] == " [False, True]" def test_3d_array(self): obj = fmt.GenericArrayFormatter( np.array([[[True, True], [False, False]], [[False, True], [True, False]]]) ) res = obj.get_result() assert len(res) == 2 assert res[0] == " [[True, True], [False, False]]" assert res[1] == " [[False, True], [True, False]]" def test_2d_extension_type(self): # GH 33770 # Define a stub extension type with just enough code to run Series.__repr__() class DtypeStub(pd.api.extensions.ExtensionDtype): @property def type(self): return np.ndarray @property def name(self): return "DtypeStub" class ExtTypeStub(pd.api.extensions.ExtensionArray): def __len__(self): return 2 def __getitem__(self, ix): return [ix == 1, ix == 0] @property def dtype(self): return DtypeStub() series = Series(ExtTypeStub()) res = repr(series) # This line crashed before #33770 was fixed. expected = "0 [False True]\n" + "1 [ True False]\n" + "dtype: DtypeStub" assert res == expected def _three_digit_exp(): return f"{1.7e8:.4g}" == "1.7e+008" class TestFloatArrayFormatter: def test_misc(self): obj = fmt.FloatArrayFormatter(np.array([], dtype=np.float64)) result = obj.get_result() assert len(result) == 0 def test_format(self): obj = fmt.FloatArrayFormatter(np.array([12, 0], dtype=np.float64)) result = obj.get_result() assert result[0] == " 12.0" assert result[1] == " 0.0" def test_output_display_precision_trailing_zeroes(self): # Issue #20359: trimming zeros while there is no decimal point # Happens when display precision is set to zero with option_context("display.precision", 0): s = Series([840.0, 4200.0]) expected_output = "0 840\n1 4200\ndtype: float64" assert str(s) == expected_output def test_output_significant_digits(self): # Issue #9764 # In case default display precision changes: with option_context("display.precision", 6): # DataFrame example from issue #9764 d = DataFrame( { "col1": [ 9.999e-8, 1e-7, 1.0001e-7, 2e-7, 4.999e-7, 5e-7, 5.0001e-7, 6e-7, 9.999e-7, 1e-6, 1.0001e-6, 2e-6, 4.999e-6, 5e-6, 5.0001e-6, 6e-6, ] } ) expected_output = { (0, 6): " col1\n" "0 9.999000e-08\n" "1 1.000000e-07\n" "2 1.000100e-07\n" "3 2.000000e-07\n" "4 4.999000e-07\n" "5 5.000000e-07", (1, 6): " col1\n" "1 1.000000e-07\n" "2 1.000100e-07\n" "3 2.000000e-07\n" "4 4.999000e-07\n" "5 5.000000e-07", (1, 8): " col1\n" "1 1.000000e-07\n" "2 1.000100e-07\n" "3 2.000000e-07\n" "4 4.999000e-07\n" "5 5.000000e-07\n" "6 5.000100e-07\n" "7 6.000000e-07", (8, 16): " col1\n" "8 9.999000e-07\n" "9 1.000000e-06\n" "10 1.000100e-06\n" "11 2.000000e-06\n" "12 4.999000e-06\n" "13 5.000000e-06\n" "14 5.000100e-06\n" "15 6.000000e-06", (9, 16): " col1\n" "9 0.000001\n" "10 0.000001\n" "11 0.000002\n" "12 0.000005\n" "13 0.000005\n" "14 0.000005\n" "15 0.000006", } for (start, stop), v in expected_output.items(): assert str(d[start:stop]) == v def test_too_long(self): # GH 10451 with option_context("display.precision", 4): # need both a number > 1e6 and something that normally formats to # having length > display.precision + 6 df = DataFrame({"x": [12345.6789]}) assert str(df) == " x\n0 12345.6789" df = DataFrame({"x": [2e6]}) assert str(df) == " x\n0 2000000.0" df = DataFrame({"x": [12345.6789, 2e6]}) assert str(df) == " x\n0 1.2346e+04\n1 2.0000e+06" class TestRepr_timedelta64: def test_none(self): delta_1d = pd.to_timedelta(1, unit="D") delta_0d = pd.to_timedelta(0, unit="D") delta_1s = pd.to_timedelta(1, unit="s") delta_500ms = pd.to_timedelta(500, unit="ms") drepr = lambda x: x._repr_base() assert drepr(delta_1d) == "1 days" assert drepr(-delta_1d) == "-1 days" assert drepr(delta_0d) == "0 days" assert drepr(delta_1s) == "0 days 00:00:01" assert drepr(delta_500ms) == "0 days 00:00:00.500000" assert drepr(delta_1d + delta_1s) == "1 days 00:00:01" assert drepr(-delta_1d + delta_1s) == "-1 days +00:00:01" assert drepr(delta_1d + delta_500ms) == "1 days 00:00:00.500000" assert drepr(-delta_1d + delta_500ms) == "-1 days +00:00:00.500000" def test_sub_day(self): delta_1d = pd.to_timedelta(1, unit="D") delta_0d = pd.to_timedelta(0, unit="D") delta_1s = pd.to_timedelta(1, unit="s") delta_500ms = pd.to_timedelta(500, unit="ms") drepr = lambda x: x._repr_base(format="sub_day") assert drepr(delta_1d) == "1 days" assert drepr(-delta_1d) == "-1 days" assert drepr(delta_0d) == "00:00:00" assert drepr(delta_1s) == "00:00:01" assert drepr(delta_500ms) == "00:00:00.500000" assert drepr(delta_1d + delta_1s) == "1 days 00:00:01" assert drepr(-delta_1d + delta_1s) == "-1 days +00:00:01" assert drepr(delta_1d + delta_500ms) == "1 days 00:00:00.500000" assert drepr(-delta_1d + delta_500ms) == "-1 days +00:00:00.500000" def test_long(self): delta_1d = pd.to_timedelta(1, unit="D") delta_0d =
pd.to_timedelta(0, unit="D")
pandas.to_timedelta
# Author: <NAME> # Feel free to use, copy, distribute or modify the Python Script, licensed under MIT License. # Please ensure to provide proper credit for the same. import streamlit as st import pandas as pd from csv import DictWriter from datetime import datetime import states_data st.header('India Fights Covid-19') st.write("Let's save our families and friends together!") st.write("") st.info("Click the TOP LEFT BAR / PANE to view the options.") states = states_data.states_data() def state_data(key): states_list = list(states.keys()) state_selection = st.selectbox('States & Union Territories', options=states_list, key=key) district_lists = list(states[state_selection].keys()) district_selection = st.selectbox('District', options=district_lists, key=key) cities = st.selectbox('Cities', options=list(states[state_selection][district_selection]), key=key) return state_selection, district_selection, cities # 1. STATES IMPORTANT LINKS st.write("---") st.sidebar.subheader("Links & Helpline Number") states_imp_links = { "": "", "National Links": { "Links": { "Cipla Med Access": "https://www.cipla.com/", "Dr. Reddy's COVID-19 Med Access": "https://readytofightcovid.in/", "Pan India Plasma Resources": "https://covidplasma.online/", "COVID-19 Resources Citizen's Compiled Data- 1": "https://docs.google.com/spreadsheets/d/1mrlaZg8jvduKcxvCWs" "-phAdltgBmY3lTOFTgH4-SLzY/edit#gid=2047572279", "COVID-19 Resources Citizen's Compiled Data- 2": "https://docs.google.com/spreadsheets/d" "/1fHiBtzxBC_3Q7I5SXr_GpNA4ivT73w4W4hjK6IkGDBY/edit#gid" "=1482732175", "COVID-19 Resources Citizen's Compiled Data- 3": "https://shubhamkarjos.github.io/WebDev/Covid/Covid-Help" "/main.html " }, "COVID Helpline Number": "+911123978046", }, "Andaman & Nicobar Islands": { # "Links": { # # }, "COVID Helpline Number": "03192232102", }, "Andhra Pradesh": { "Links": { "COVID-19 AP": "http://dashboard.covid19.ap.gov.in/ims/hospbed_reports/", }, "COVID Helpline Number": "08662410978", }, "Arunachal Pradesh": { # "Links": { # # }, "COVID Helpline Number": "9436055743", }, "Assam": { # "Links": { # # }, "COVID Helpline Number": "6913347770", }, "Bihar": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Chandigarh": { # "Links": { # # }, "COVID Helpline Number": "9779558282", }, "Chhattisgarh": { "Links": { "COVID-19 Chattisgarh": "https://cg.nic.in/health/covid19/RTPBedAvailable.aspx", }, "COVID Helpline Number": "07712235091, 104", }, "Dadra & Nagar Haveli & Daman & Diu": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Delhi": { "Links": { "COVID-19 Delhi": "https://coronabeds.jantasamvad.org/beds.html", }, "COVID Helpline Number": "01122307145", }, "Goa": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Gujarat": { "Links": { "COVID-19 GandhiNagar": "https://vmc.gov.in/HospitalModuleGMC/BedDetails.aspx?HOSP_ID=HOS00041", "COVID-19 Vadodara": "https://vmc.gov.in/Covid19VadodaraApp/HospitalBedsDetails.aspx?tid=1", "COVID-19 Resources Citizen's Compiled Data- 1": "https://docs.google.com/spreadsheets/d" "/1ZyrYsowjk6PdC9N5yKBxMslI7FypoeIqDvlAYrqprL8/edit#gid=0 " }, "COVID Helpline Number": "104", }, "Haryana": { "Links": { "COVID-19 Haryana": "https://coronaharyana.in/", }, "COVID Helpline Number": "8558893911", }, "Himachal Pradesh": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Jammu & Kashmir": { # "Links": { # # }, "COVID Helpline Number": "01912520982", }, "Jharkhand": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Karnataka": { "Links": { "COVID-19 Bangalore": "https://docs.google.com/spreadsheets/u/1/d/e/2PACX-1vS-ipQLaCHZ8id4t4_NHf1FM4vQmBGQrGHAPFzNzJeuuGKsY_It6Tdb0Un_bC9gmig5G2dVxlXHoaEp/pubhtml?gid=1381543057&single=true", }, "COVID Helpline Number": "104", }, "Kerala": { # "Links": { # # }, "COVID Helpline Number": "04712552056", }, "Ladakh": { # "Links": { # # }, "COVID Helpline Number": "01982256462", }, "Lakshadweep": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Madhya Pradesh": { # "Links": { # # }, "COVID Helpline Number": "07552527177", }, "Maharashtra": { "Links": { "COVID-19 Nagpur": "http://nsscdcl.org/covidbeds/AvailableHospitals.jsp", "COVID-19 Panvel": "https://covidbedpanvel.in/HospitalInfo/showindex", "COVID-19 Pune": "https://covidpune.com/", "COVID-19 UlhasNagar": "https://umccovidbed.in/HospitalInfo/showindex", "COVID-19 Thane": "https://covidbedthane.in/HospitalInfo/showindex", }, "COVID Helpline Number": "02026127394", }, "Manipur": { # "Links": { # # }, "COVID Helpline Number": "3852411668", }, "Meghalaya": { # "Links": { # # }, "COVID Helpline Number": "108", }, "Mizoram": { # "Links": { # # }, "COVID Helpline Number": "102", }, "Nagaland": { # "Links": { # # }, "COVID Helpline Number": "7005539653", }, "Odisha (Orissa)": { # "Links": { # # }, "COVID Helpline Number": "9439994859", }, "Puducherry (Pondicherry)": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Punjab": { "Links": { "COVID-19 Ludhiana": "http://hbmsludhiana.in/index_app_detail.php?type=all", } }, "Rajasthan": { "Links": { "COVID-19 Rajasthan": "https://covidinfo.rajasthan.gov.in/covid-isolation-hospital.aspx", }, "COVID Helpline Number": "01412225624", }, "Sikkim": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Tamil Nadu": { "Links": { "COVID-19 TN": "https://stopcorona.tn.gov.in/beds.php", }, "COVID Helpline Number": "04429510500", }, "Telangana": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Tripura": { # "Links": { # # }, "COVID Helpline Number": "03812315879", }, "Uttarakhand (Uttaranchal)": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Uttar Pradesh": { "Links": { "COVID-19 Lucknow": "https://docs.google.com/spreadsheets/d/1roxOi2_Uw4YBzLd5s8vC8cp6lbuM9016tWeWTcx2q5Y" "/edit#gid=0 " }, "COVID Helpline Number": "18001805145", }, "West Bengal": { # "Links": { # # }, "COVID Helpline Number": "3323412600", }, } select_state = st.sidebar.selectbox("", list(states_imp_links.keys())) st.write(states_imp_links[select_state]) st.sidebar.subheader("Offering or Required Assistance? ") person_kind = st.sidebar.selectbox("", ["Please Select", "Providing Help!", "Need Your Help!"]) # 2. PROVIDING HELP if person_kind == "Providing Help!": st.write("------------") st.write("Thank you for being a potential life saver.") st.write("Please provide correct information to the best of your knowledge.") st.write("") st.subheader("Volunteer for or Add a Lead:") requirement = st.selectbox("", ["Please Select", "Ambulance Services", "Child Care", "Home Visit", "Hospital Beds", "Medicine", "Oxygen Cylinders", "Plasma", "Others"]) # 2.1 PROVIDING HELP: AMBULANCE SERVICES if requirement == "Ambulance Services": contact_person = st.text_input('Contact Person: ') st.subheader("Contact Number: Format: 9876543210, PLEASE DO NOT PREFIX +91.") contact_information = st.text_input('Contact Number: ') st.write("---") st.subheader("Provide Pickup Location: ") pickup_location_state, pickup_location_district, pickup_location_city = state_data(key="provider_pickup") st.write("---") st.subheader("Provide Drop Location: ") drop_location_state, drop_location_district, drop_location_city = state_data(key="provider_drop") verified_lead = st.selectbox("Verified: ", ["Yes", "No"]) additional_notes = st.text_input('Additional Notes: ') created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!', key="provider_drop") if submit_info: if not contact_person or not contact_information: st.write("Please provide the necessary information." " Contact Name & Mobile Number Info is necessary!") else: field_names = ["Contact Person", "Contact Mobile Number", "Pickup: State", "Pickup: District", "Pickup: City", "Drop: State", "Drop: District", "Drop: City", "Verified", "Additional Notes", "Created Time", "Updated Time"] dict_data = {"Contact Person": contact_person, "Contact Mobile Number": contact_information, "Pickup: State": pickup_location_state, "Pickup: District": pickup_location_district, "Pickup: City": pickup_location_city, "Drop: State": drop_location_state, "Drop: District": drop_location_district, "Drop: City": drop_location_city, "Verified": verified_lead, "Additional Notes": additional_notes, "Created Time": created_time, "Updated Time": updated_time } with open('./ambulance_service_provider.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Thank you for being a helping hand at this time:)') # 2.2 PROVIDING HELP: CHILD CARE elif requirement == "Child Care": contact_person = st.text_input('Contact Person: ') contact_information = st.text_input('Contact Number: ') state, district, city = state_data("provider_child_care") verified_lead = st.selectbox("Verified: ", ["Yes", "No"]) additional_notes = st.text_input('Additional Notes: ') created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!', key="provider_child_care") if submit_info: if not contact_person or not contact_information: st.write("Please provide the necessary information." " Contact Name & Mobile Number Info is necessary!") else: field_names = ["Contact Person", "Contact Mobile Number", "State", "District", "City", "Verified", "Additional Notes", "Created Time", "Updated Time"] dict_data = {"Contact Person": contact_person, "Contact Mobile Number": contact_information, "State": state, "District": district, "City": city, "Verified": verified_lead, "Additional Notes": additional_notes, "Created Time": created_time, "Updated Time": updated_time } with open('./child_care_provider.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Thank you for being a helping hand at this time:)') # 2.3 PROVIDING HELP: HOME VISIT elif requirement == "Home Visit": contact_person = st.text_input('Contact Person: ') contact_information = st.text_input('Enter Contact Number: ') state, district, city = state_data("provider_home_visit") verified_lead = st.selectbox("Verified: ", ["Yes", "No"]) additional_notes = st.text_input('Additional Notes: ') created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!', key="provider_home_visit") if submit_info: if not contact_person or not contact_information: st.write("Please provide the necessary information." " Contact Name & Mobile Number Info is necessary!") else: field_names = ["Contact Person", "Contact Mobile Number", "State", "District", "City", "Verified", "Additional Notes", "Created Time", "Updated Time"] dict_data = {"Contact Person": contact_person, "Contact Mobile Number": contact_information, "State": state, "District": district, "City": city, "Verified": verified_lead, "Additional Notes": additional_notes, "Created Time": created_time, "Updated Time": updated_time } with open('./home_visit_provider.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Thank you for being a helping hand at this time:)') # 2.4 PROVIDING HELP: HOSPITAL BEDS elif requirement == "Hospital Beds": contact_person = st.text_input('Contact Name or Doctor Name: ') contact_information = st.text_input('Mobile Number: ') hospital_name = st.text_input('Hospital Name: ') hospital_address = st.text_input('Hospital Address: ') state, district, city = state_data("provider_hospital_beds") total_bed_count = st.text_input("Total Bed Count: ") oxygen_bed_count = st.text_input("Oxygen Bed Count: ") icu_bed_count = st.text_input("ICU Bed Count: ") ventilator_bed_count = st.text_input("Ventilator Bed Count: ") verified_lead = st.selectbox("Verified: ", ["Yes", "No"]) additional_notes = st.text_input('Additional Notes: ') created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!', key="provider_hospital_beds") if submit_info: field_names = ["Contact Person", "Contact Mobile Number", "Hospital Name", "Hospital Address", "State", "District", "City", "Total Bed Count", "Oxygen Bed Count", "ICU Bed Count", "Ventilator Bed Count", "Verified", "Additional Notes", "Created Time", "Updated Time"] dict_data = {"Contact Person": contact_person, "Contact Mobile Number": contact_information, "Hospital Name": hospital_name, "Hospital Address": hospital_address, "State": state, "District": district, "City": city, "Total Bed Count": total_bed_count, "Oxygen Bed Count": oxygen_bed_count, "ICU Bed Count": icu_bed_count, "Ventilator Bed Count": ventilator_bed_count, "Verified": verified_lead, "Additional Notes": additional_notes, "Created Time": created_time, "Updated Time": updated_time } with open('./hospital_bed_provider.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Thank you for being a helping hand at this time:)') # 2.5 PROVIDING HELP: MEDICINES elif requirement == "Medicine": contact_person = st.text_input('Distributor / Retailer Name: ') medicine_name = st.text_input('Medicine Name: ') state, district, city = state_data(key="provider_medicine") address = st.text_input('Distributor / Retailer Address: ') contact_information = st.text_input('Contact Mobile Number: ') verified_lead = st.selectbox("Verified: ", ["Yes", "No"]) additional_notes = st.text_input('Additional Notes: ') created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: if not contact_person or not address: st.write("Please provide the necessary information." " Distributor / Retailer Name and Address Info is necessary!") else: field_names = ["Distributor Name", "Medicine Name", "State", "District", "City", "Address", "Contact Number", "Verified", "Additional Notes", "Created Time", "Updated Time"] dict_data = {"Distributor Name": contact_person, "Medicine Name": medicine_name, "State": state, "District": district, "City": city, "Address": address, "Contact Number": contact_information, "Verified": verified_lead, "Additional Notes": additional_notes, "Created Time": created_time, "Updated Time": updated_time } with open('./medicines_provider.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Thank you for being a helping hand at this time:)') # 2.6 PROVIDING HELP: OXYGEN CYLINDERS elif requirement == "Oxygen Cylinders": contact_person = st.text_input('Contact Name: ') contact_information = st.text_input('Contact Mobile Number: ') just_refill = st.selectbox("Just refilling?", ["Yes", "No"]) start_timings = st.time_input('Start Timing: ') end_timings = st.time_input('End Timing: ') availability_for = st.selectbox('Availability for', ["Home", "Hospitals", "Home & Hospitals"]) address = st.text_input('Address: ') state, district, city = state_data(key="provider_oxygen_cylinders") verified_lead = st.selectbox("Verified: ", ["Yes", "No"]) additional_notes = st.text_input('Additional Notes: ') created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: if not contact_person or not contact_information: st.write("Please provide the necessary information so that we can help together!" " Contact Name & Mobile Number Info is necessary!") else: field_names = ["Contact Person", "Contact Mobile Number", "Just Refill", "Start Timings", "End Timings", "Availability for", "Address", "State", "District", "City", "Verified", "Additional Notes", "Created Time", "Updated Time"] dict_data = {"Contact Person": contact_person, "Contact Mobile Number": contact_information, "Just Refill": just_refill, "Start Timings": start_timings, "End Timings": end_timings, "Availability for": availability_for, "Address": address, "State": state, "District": district, "City": city, "Verified": verified_lead, "Additional Notes": additional_notes, "Created Time": created_time, "Updated Time": updated_time } with open('./oxygen_cylinders_provider.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Thank you for being a helping hand at this time:)') # 2.7 PROVIDING HELP: PLASMA elif requirement == "Plasma": contact_person = st.text_input('Donor Name: ') contact_information = st.text_input('Donor Contact Number: ') contact_age = st.text_input("Donor Age: ") blood_group = st.selectbox('Patient Blood Group: ', ['Please Select', 'A+', 'A-', 'B+', 'B-', 'AB+', 'AB-', 'O+', 'O-', 'Bombay Blood Group']) recovered_date = st.date_input('Enter the date of recovery: ') state, district, city = state_data(key="provider_plasma") donated_before = st.selectbox("Have you donated it before?", ["Yes", "No"]) if donated_before == "Yes": last_donated_date = st.date_input("Last Donated Date: ") else: last_donated_date = "" antibodies_test = st.selectbox("Tested for antibodies yet?", ["Yes", "No"]) medical_issues = st.text_input("Any chronic disease such as high B.P., Diabetes etc.: ") verified_lead = st.selectbox("Verified: ", ["Yes", "No"]) additional_notes = st.text_input('Additional Notes: ') created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!', key="provider_plasma") if submit_info: if not contact_person or not contact_information or not blood_group or not contact_age \ or not recovered_date or not donated_before: st.write("Please provide the necessary information so that we can help together!" " Donor Name, Mobile Number, Age, Blood Group, Recovered Date, " "and Donated Before Info is necessary!") else: field_names = ["Donor Name", "Donor Contact Number", "Donor Age", "Donor Blood Group", "Recovered Date", "State", "District", "City", "Donated Before", "Last Donated Date", "Antibodies Test", "Medical Issues", "Verified", "Additional Notes", "Created Time", "Updated Time"] dict_data = {"Donor Name": contact_person, "Donor Contact Number": contact_information, "Donor Age": contact_age, "Donor Blood Group": blood_group, "Recovered Date": recovered_date, "State": state, "District": district, "City": city, "Donated Before": donated_before, "Last Donated Date": last_donated_date, "Antibodies Test": antibodies_test, "Medical Issues": medical_issues, "Verified": verified_lead, "Additional Notes": additional_notes, "Created Time": created_time, "Updated Time": updated_time } with open('./plasma_provider.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Thank you for being a helping hand at this time:)') # 2.8 PROVIDING HELP: OTHERS elif requirement == "Others": text = st.text_input('Write others: ') verified_lead = st.selectbox("Verified: ", ["Yes", "No"]) created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!', key="provider_others") if submit_info: field_names = ["Text", "Verified", "Created Time", "Updated Time"] dict_data = {"Text": text, "Verified": verified_lead, "Created Time": created_time, "Updated Time": updated_time} with open('./others_service_provider.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Thank you for being a helping hand at this time:)') # 3. NEED ASSISTANCE elif person_kind == "Need Your Help!": st.write("------------") st.write("I'm trying my best to keep the webpage updated. Kindly please share with others so more data and " "verified leads can be collected and the resources be made available to the needful people.") requirement = st.selectbox("Need List", ["Ambulance Services", "Child Care", "Home Visit", "Hospital Beds", "Medicine", "Oxygen Cylinders", "Plasma", "Others"]) # 3.1 ASSISTANCE: AMBULANCE SERVICES / HOSPITAL BED / PLASMA if requirement == "Ambulance Services" or requirement == "Hospital Beds" or requirement == "Plasma" \ or requirement == "Oxygen Cylinders": patient_name = st.text_input('Patient Name: ') contact_information = st.text_input('Patient Mobile Number: ') patient_age = st.text_input('Patient Age: ') patient_sex = st.selectbox('Patient Sex: ', ['Male', 'Female', 'Transgender']) patient_condition = st.selectbox('Patient Condition: ', ['Stable', 'SOS']) assistance_for = st.selectbox("Assistance For: ", ["Ambulance Services", "Hospital Beds", "Oxygen Cylinder", "Oxygen Cylinder Refill", "Plasma"]) if assistance_for == "Ambulance Services": facilities = st.selectbox("Facilities: ", ["Normal", "Oxygen without AC", "Oxygen with AC", "Ventilator"]) else: facilities = "" patient_blood_group = st.selectbox('Patient Blood Group: ', ['Please Select', 'A+', 'A-', 'B+', 'B-', 'AB+', 'AB-', 'O+', 'O-', 'Bombay Blood Group']) if assistance_for == "Hospital Beds": bed_type = st.selectbox("Bed Type: ", ["Without Oxygen", "With Oxygen", "Ventilalor Bed"]) else: bed_type = "" patient_oxygen_level = st.text_input("Patient Oxygen Level") state, district, city = state_data(key="assist_ambulance") address = st.text_input('Patient Address: ') additional_notes = st.text_input('Additional Notes: ') status = st.selectbox("Status", ["", "Resolved"]) created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: if not patient_name or not contact_information or not assistance_for: st.write("Please provide the necessary information." " Patient Name, Mobile Number and Assistance For Info is necessary!") else: field_names = ["Patient Name", "Patient Mobile Number", "Patient Age", "Patient Sex", "Patient Condition", "Assistance For", "Facilities", "Bed Type", "Patient Blood Group", "Patient Oxygen Level", "State", "District", "City", "Address", "Additional Notes", "Status", "Created Time", "Updated Time"] dict_data = {"Patient Name": patient_name, "Patient Mobile Number": contact_information, "Patient Age": patient_age, "Patient Sex": patient_sex, "Patient Condition": patient_condition, "Assistance For": assistance_for, "Facilities": facilities, "Bed Type": bed_type, "Patient Blood Group": patient_blood_group, "Patient Oxygen Level": patient_oxygen_level, "State": state, "District": district, "City": city, "Address": address, "Additional Notes": additional_notes, "Status": status, "Created Time": created_time, "Updated Time": updated_time } with open('./critical_assistance.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Please keep rechecking the page:)') # 3.2 ASSISTANCE: MEDICINE elif requirement == "Medicine": state = list(state_data(key="medicine_assistance")) df = pd.read_csv("./medicines_provider.csv") state_retailers_data = df[df["State"] == state[0]] st.table(state_retailers_data) # for iterate in range(retailers_count[0]): # retailer_data = state_retailers_data.iloc[iterate, :] # data_to_df = pd.DataFrame(retailer_data, columns=[0]) # retailer_info = data_to_df.dropna() # st.write(retailer_info) # 3.3 ASSISTANCE: HOME VISIT / CHILD CARE elif requirement == "Home Visit" or requirement == "Child Care": contact_person = st.text_input('Patient Name: ') contact_information = st.text_input('Patient Mobile Number: ') patient_age = st.text_input('Patient Age: ') patient_sex = st.selectbox('Patient Sex: ', ['Male', 'Female', 'Transgender']) patient_condition = st.selectbox('Patient Condition: ', ['Stable', 'SOS']) assistance_for = st.selectbox("Assistance For: ", ["Home Visit", "Child Care"]) state, district, city = state_data(key="assist_home_visit") address = st.text_input('Patient Address: ') additional_notes = st.text_input('Additional Notes: ') status = st.selectbox("Status", ["", "Resolved"]) created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: if not contact_person or not contact_information or not assistance_for: st.write("Please provide the necessary information." " Patient Name, Mobile Number and Assistance For Info is necessary!") else: field_names = ["Patient Name", "Patient Mobile Number", "Patient Age", "Patient Sex", "Patient Condition", "Assistance For", "State", "District", "City", "Address", "Additional Notes", "Status", "Created Time", "Updated Time"] dict_data = {"Patient Name": contact_person, "Patient Mobile Number": contact_information, "Patient Age": patient_age, "Patient Sex": patient_sex, "Patient Condition": patient_condition, "Assistance For": assistance_for, "State": state, "District": district, "City": city, "Address": address, "Additional Notes": additional_notes, "Status": status, "Created Time": created_time, "Updated Time": updated_time } with open('./home_personal_assistance.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Please keep rechecking the page:)') # 2.4 ASSISTANCE: OTHERS elif requirement == "Others": text = st.text_input('Write others: ') status = st.selectbox("Status", ["", "Resolved"]) created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: field_names = ["Text", "Status" "Created Time", "Updated Time"] dict_data = {"Text": text, "Status": status, "Created Time": created_time, "Updated Time": updated_time} with open('./others_service_assistance.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Please keep rechecking the page:)') # 4. UPDATE THE DATA st.sidebar.subheader("Update the Data!") data_type = st.sidebar.selectbox("", ["Please Select", "Need Assistance: Ambulance Services", "Providing Assistance: Ambulance Services", "Need Assistance: Child Care", "Providing Assistance: Child Care", "Need Assistance: Home Visit", "Providing Assistance: Home Visit", "Need Assistance: Hospital Beds", "Providing Assistance: Hospital Beds", "Providing Assistance: Medicine", "Need Assistance: Oxygen Cylinders", "Providing Assistance: Oxygen Cylinders", "Need Assistance: Plasma", "Providing Assistance: Plasma", ]) # 4.1 UPDATE: NEED ASSISTANCE: HOME VISIT AND CHILD CARE if data_type == "Need Assistance: Home Visit" or data_type == "Need Assistance: Child Care": df = pd.read_csv("./home_personal_assistance.csv") patient_name = st.text_input('Patient Name: ') patient_mobile_number = st.text_input('Patient Mobile Number: ') assistance_for = st.selectbox("Assistance For: ", ["Home Visit", "Child Care"]) if patient_name and patient_mobile_number and assistance_for: patient_mobile_number = int(patient_mobile_number) field_names = ["Patient Name", "Patient Mobile Number", "Patient Age", "Patient Sex", "Patient Condition", "Assistance For", "State", "District", "City", "Address", "Additional Notes", "Status"] select_field = st.selectbox("Select Info to be updated:", field_names) updated_data = st.text_input("Updated Info: ") df.loc[(df["Patient Name"] == patient_name) & (df["Patient Mobile Number"] == patient_mobile_number) & (df["Assistance For"] == assistance_for), select_field] = updated_data df.loc[(df["Patient Name"] == patient_name) & (df["Patient Mobile Number"] == patient_mobile_number) & (df["Assistance For"] == assistance_for), "Updated Time"] = datetime.now().strftime( "%d/%m/%Y %H:%M:%S") st.subheader("Verify the details below before submitting the updated data:") submit_info = st.button('Submit the info!') if submit_info: df.to_csv("./home_personal_assistance.csv", index=False) st.success('Information updated successfully. Please keep rechecking the page:)') # 4.2 UPDATE: NEED ASSISTANCE: AMBULANCE SERVICES, HOSPITAL BEDS, PLASMA, OXYGEN CYLINDERS elif data_type == "Need Assistance: Ambulance Services" or data_type == "Need Assistance: Hospital Beds" or \ data_type == "Need Assistance: Plasma" or data_type == "Need Assistance: Oxygen Cylinders": df = pd.read_csv("./critical_assistance.csv") patient_name = st.text_input('Patient Name: ', key="Patient Name") contact_information = st.text_input('Patient Mobile Number: ', key="Contact Info") assistance_option = ["Ambulance Services", "Hospital Beds", "Oxygen Cylinder", "Oxygen Cylinder Refill", "Plasma"] assistance = st.selectbox('Assistance For', options=assistance_option, key="Patient Assistance") if patient_name and contact_information and assistance: contact_information = int(contact_information) fields = ["Patient Name", "Patient Mobile Number", "Patient Age", "Patient Sex", "Patient Condition", "Assistance For", "Facilities", "Bed Type", "Patient Blood Group", "Patient Oxygen Level", "State", "District", "City", "Address", "Additional Notes", "Status"] select_field = st.selectbox("Select Info to be updated:", fields) updated_data = st.text_input("Updated Info: ") df.loc[(df["Patient Name"] == patient_name) & (df["Patient Mobile Number"] == contact_information) & (df["Assistance For"] == assistance), select_field] = updated_data df.loc[(df["Patient Name"] == patient_name) & (df["Patient Mobile Number"] == contact_information) & (df["Assistance For"] == assistance), "Updated Time"] = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: df.to_csv("./critical_assistance.csv", index=False) st.success('Information updated successfully. Please keep rechecking the page:)') # 4.3 UPDATE: VOLUNTEER: CHILD CARE elif data_type == "Providing Assistance: Child Care": df = pd.read_csv("./child_care_provider.csv") contact_person = st.text_input('Enter Contact Name: ') contact_information = st.text_input('Contact Number: ') if contact_person and contact_information: contact_information = int(contact_information) fields = ["Contact Person", "Contact Mobile Number", "State", "District", "City", "Verified", "Additional Notes", ] select_field = st.selectbox("Select Info to be updated:", field_names) updated_data = st.text_input("Updated Info: ") df.loc[(df["Contact Person"] == contact_person) & (df["Contact Mobile Number"] == contact_information) , select_field] = updated_data df.loc[(df["Contact Person"] == contact_person) & (df["Contact Mobile Number"] == contact_information) , "Updated Time"] = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: df.to_csv("./child_care_provider.csv", index=False) st.success('Information updated successfully. :)') # 4.4 UPDATE: VOLUNTEER: AMBULANCE SERVICE PROVIDER elif data_type == "Providing Assistance: Ambulance Services": df = pd.read_csv("./ambulance_service_provider.csv") contact_person = st.text_input('Enter Contact Name: ') contact_information = st.text_input('Contact Mobile Number: ') if contact_person and contact_information: contact_information = int(contact_information) field_names = ["Contact Person", "Contact Mobile Number", "Pickup: State", "Pickup: District", "Pickup: City", "Drop: State", "Drop: District", "Drop: City", "Verified", "Additional Notes", ] select_field = st.selectbox("Select Info to be updated:", field_names) updated_data = st.text_input("Updated Info: ") df.loc[(df["Contact Person"] == contact_person) & (df["Contact Mobile Number"] == contact_information) , select_field] = updated_data df.loc[(df["Contact Person"] == contact_person) & (df["Contact Mobile Number"] == contact_information) , "Updated Time"] = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: df.to_csv("./ambulance_service_provider.csv", index=False) st.success('Information updated successfully. :)') # 3.5 UPDATE: VOLUNTEER: HOSPITAL BED PROVIDER elif data_type == "Providing Assistance: Hospital Beds": df = pd.read_csv("./hospital_bed_provider.csv") hospital_name = st.text_input('Hospital Name: ') hospital_address = st.text_input('Hospital Address: ') if hospital_name and hospital_address: field_names = ["Contact Person", "Contact Mobile Number", "Hospital Name", "Hospital Address", "State", "District", "City", "Total Bed Count", "Oxygen Bed Count", "ICU Bed Count", "Ventilator Bed Count", "Verified", "Additional Notes", ] select_field = st.selectbox("Select Info to be updated:", field_names) updated_data = st.text_input("Updated Info: ") df.loc[(df["Hospital Name"] == hospital_name) & (df["Hospital Address"] == hospital_address) , select_field] = updated_data df.loc[(df["Hospital Name"] == hospital_name) & (df["Hospital Address"] == hospital_address) , "Updated Time"] = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: df.to_csv("./hospital_bed_provider.csv") st.success('Information updated successfully. :)') st.write("----") # 4.5 UPDATE: VOLUNTEER: MEDICINE PROVIDER elif data_type == "Providing Assistance: Medicine": df = pd.read_csv("./medicines_provider.csv") contact_person = st.text_input('Distributor / Retailer Name: ') address = st.text_input('Distributor / Retailer Address:') if contact_person and address: field_names = ["Distributor Name", "Medicine Name", "State", "District", "City", "Address", "Contact Number", "Verified", "Additional Notes", ] select_field = st.selectbox("Select Info to be updated:", field_names) updated_data = st.text_input("Updated Info: ") df.loc[(df["Distributor Name"] == contact_person) & (df["Address"] == address) , select_field] = updated_data df.loc[(df["Distributor Name"] == contact_person) & (df["Address"] == address) , "Updated Time"] = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: df.to_csv("./medicines_provider.csv", index=False) st.success('Information updated successfully. :)') # 4.6 UPDATE: VOLUNTEER: OXYGEN CYLINDERS PROVIDER elif data_type == "Providing Assistance: Oxygen Cylinders": df = pd.read_csv("./oxygen_cylinders_provider.csv") contact_person = st.text_input('Contact Name: ') contact_information = st.text_input('Contact Mobile Number:') if contact_person and contact_information: field_names = ["Contact Person", "Contact Mobile Number", "Just Refill", "Start Timings", "End Timings", "Availability for", "Address", "State", "District", "City", "Verified", "Additional Notes"] select_field = st.selectbox("Select Info to be updated:", field_names) updated_data = st.text_input("Updated Info: ") df.loc[(df["Contact Person"] == contact_person) & (df["Contact Mobile Number"] == contact_information) , select_field] = updated_data df.loc[(df["Contact Person"] == contact_person) & (df["Contact Mobile Number"] == contact_information) , "Updated Time"] = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: df.to_csv("./oxygen_cylinders_provider.csv", index=False) st.success('Information updated successfully. :)') # 4.6 UPDATE: VOLUNTEER: PLASMA PROVIDER elif data_type == "Providing Assistance: Plasma": df = pd.read_csv("./plasma_provider.csv") contact_person = st.text_input('Donor Name: ') contact_information = st.text_input('Donor Contact Number: ') if contact_person and contact_information: field_names = ["Donor Name", "Donor Contact Number", "Donor Age", "Donor Blood Group", "Recovered Date", "State", "District", "City", "Donated Before", "Last Donated Date", "Antibodies Test", "Medical Issues", "Verified", "Additional Notes", ] select_field = st.selectbox("Select Info to be updated:", field_names) updated_data = st.text_input("Updated Info: ") df.loc[(df["Donor Name"] == contact_person) & (df["Donor Contact Number"] == contact_information) , select_field] = updated_data df.loc[(df["Donor Name"] == contact_person) & (df["Donor Contact Number"] == contact_information) , "Updated Time"] = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: df.to_csv("./plasma_provider.csv", index=False) st.success('Information updated successfully. :)') # 4.7 UPDATE: VOLUNTEER: HOME VISIT PROVIDER elif data_type == "Providing Assistance: Home Visit": df = pd.read_csv("./home_visit_provider.csv") contact_person = st.text_input('Contact Person: ') contact_information = st.text_input('Enter Contact Number: ') if contact_person and contact_information: field_names = ["Contact Person", "Contact Mobile Number", "State", "District", "City", "Verified", "Additional Notes", ] select_field = st.selectbox("Select Info to be updated:", field_names) updated_data = st.text_input("Updated Info: ") df.loc[(df["Contact Person"] == contact_person) & (df["Contact Mobile Number"] == contact_information) , select_field] = updated_data df.loc[(df["Contact Person"] == contact_person) & (df["Contact Mobile Number"] == contact_information) , "Updated Time"] = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: df.to_csv("./home_visit_provider.csv", index=False) st.success('Information updated successfully. :)') # 5. TWITTER SEARCH FOR COVID-19 st.sidebar.subheader("Twitter Search for Covid-19") twitter_search = st.sidebar.checkbox("Generate Link") if twitter_search: st.write("---") st.subheader("City Name") city = st.text_input("", "Ghaziabad") st.subheader("Show Posts with #verified") verified = st.selectbox("", ["Yes", "No"]) if verified == "Yes": verified = "verified+" else: verified = "" st.subheader("Specify the Need [Multi-Select Option]") required = { "Bed": "bed+OR+beds", "Ventilator": "ventilator+OR+ventilators", "Oxygen": "oxygen", "ICU": "icu", "Test": "testing+OR+test+tests", "Remdesivir": "remdesivir", "Dexamethasone": "dexamethasone", "Tusq Dx": "tusq+OR+tusq+dx+OR+tusqdx", "Favipiravir": "favipiravir", "Tocilizumab": "tocilizumab", "Fabiflu": "fabiflu", "Plasma": "plasma", "Food": "food+OR+tiffin+OR+lunch" } multi_check = st.multiselect('', list(required.keys())) st.subheader("Additional Keyword, if any: ") other_keyword = st.text_input("") link_1 = "" for iterate, check in enumerate(multi_check): if iterate == 0: link_1 += required[check] else: link_1 += f"+{required[check]}" st.subheader('Include the posts with #not-verified, #needed [BY DEFAULT- EXCLUDED]') exclude_check = st.selectbox("", ["Select", "No"]) if exclude_check == "No": link_2 = '' else: link_2 = "+-%22not+verified+-%22needed+-%22unverified+-%22required+-%22require+-%22nneed+-%22requirement" link_3 = f"+{other_keyword}" link = f"https://twitter.com/search?q={verified}{city}+%28{link_1}{link_3}%29{link_2}&f=live" link_submit_info = st.button('Generate and Copy the Twitter link here!', key="link_generator") if link_submit_info: copy_link =
pd.DataFrame([link])
pandas.DataFrame
# @Date: 2019-08-16T23:31:03+08:00 # @Email: <EMAIL> # @Filename: MMCIF_unit.py # @Last modified time: 2019-08-21T16:02:36+08:00 import pandas as pd import numpy as np import os, re, time, requests, sys from urllib import request, error from retrying import retry from multiprocessing.dummy import Pool from bs4 import BeautifulSoup from Bio.PDB.MMCIF2Dict import MMCIF2Dict sys.path.append('./') from Unit import Unit class MMCIF_unit(Unit): CONFIG = { 'PDB_ID': 'pdb_id', 'MMCIF_OLD_FOLDER': ['/data1/suntt/process0606/cgc_mmcif_file/', '/data1/suntt/CanDriver/Data/PDB_cgc/cgc_mmcif_file/', '/data1/suntt/CanDriver/Data/PDB_NEW/mmcif_file/'], 'MMCIF_FOLDER': '/home/zzf/Work/SIFTS_Plus_Muta_Maps/data/mmcif_file/', 'OUTPUT_FOLDER': '../../data/Mapping_Pipeline/output_files/', 'HEADERS': {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36 Edge/17.17134'}, 'CHAIN_TYPE_FILE_LIST': ('cgc_pdb_chain_type.txt', 'cgc_pdb_chain_type_extra', 'cgc_chain_type_error_pdb.txt', 'output/cgc_pdb_chain_type_all_new.txt'), 'ATOM_SEQRES_FILE_LIST': ('cgc_pdb_atom_seqres.txt', 'cgc_seqres_atom_error_pdb.txt', 'output/cgc_pdb_atom_seqres_add_chain_type_new.txt', 'output/cgc_pdb_coordinates_site_range.txt'), 'LIGAND_FILE_LIST': ('ligand_info0605.txt', 'ligand_info_extra0605.txt', 'ligand_info_error.txt', 'output/ligand_info_final1.txt', 'output/ligand_info_final2.txt'), 'CHAIN_AND_SEQRES_FILE_LIST': ('output/cgc_pdb_atom_seqres_protein_chain_info.txt', 'cgc_protein_chain_id_in_pdb.txt', 'output/cgc_pdb_atom_seqres_info_integration.txt'), 'ADD_MODIFICATION_FILE': 'output/cgc_pdb_atom_seqres_info_integration_new.txt', 'ADD_MISSING_FILE': ('output/cgc_information_statistics1.txt', 'output/cgc_pdb_atom_seqres_info_integration_new_add_coor_site.txt'), 'PDB_MUTATION_FILE': 'output/pdb_mutation_info.txt', 'RESOLUTION_FILE': ('output/resoluton_error.txt', 'output/pdb_resoluton_info.txt'), 'YEAR_INFO_1_FILE': ('../../data/Mapping_Pipeline/output_files/pdb_date_info_newest.txt', '../../data/Mapping_Pipeline/output_files/pdb_date_error_newest.txt'), 'YEAR_INFO_2_FILE': ('../../data/Mapping_Pipeline/output_files/pdb_date_supp_newest.txt', '../../data/Mapping_Pipeline/output_files/pdb_date_error_supp_newest.txt'), 'YEAR_INFO_ALL': '../../data/Mapping_Pipeline/output_files/pdb_date_info_newest_all.txt', 'FINAL_FILE': ('output/cgc_pdb_atom_seqres_info_integration_final.txt', 'PDB_cgc/output/cgc_pdb_atom_seqres_info_integration_final0614.txt'), 'MMICF_USECOLS': ['pdb_id', 'chain_id', 'seqres_len', 'coordinates_len', 'Modification_position', 'ligand_position_in_seqres', 'mis_range', 'mis_index', 'Modification_num', 'mutation_num'], } def set_output_folder(self, path): self.CONFIG['OUTPUT_FOLDER'] = path def download_cif_file(pdbId, path): url = 'https://files.rcsb.org/view/%s.cif' % pdbId html = request.urlopen(url).read() html = html.decode('utf-8') with open(path, 'w') as fw: fw.write(html) time.sleep(2) def get_mmcif_file_path(self, pdbId, download=False): print('get_mmcif_file_path(): Working on [%s]' % pdbId) new_path = '%s%s.cif' % (self.CONFIG['MMCIF_FOLDER'], pdbId) for path in self.CONFIG['MMCIF_OLD_FOLDER']: old_path = '%s%s.cif' % (path, pdbId) if os.path.exists(old_path): return old_path if os.path.exists(new_path): return new_path else: if download: MMCIF_unit.download_cif_file(pdbId, new_path) return False else: return new_path ''' def download_mmcif_file(self): # 暂时不用(zzf) @retry(stop_max_attempt_number=3, wait_fixed=1000) pool = Pool(processes=20) pool.map(download_cif_file, self.pdb_list) ''' def extract_chain_type_info(self): chain_type_file1, chain_type_file2, chain_type_error, chain_type_file_all = MMCIF_unit.CONFIG['CHAIN_TYPE_FILE_LIST'] outpath = self.CONFIG['OUTPUT_FOLDER'] demo_dict_df_list = [] fw = open(outpath + chain_type_file2, 'w') error_pdb_file = open(outpath + chain_type_error, 'w') for pdbId in self.pdb_list: # pdbFileSavePath = '%s%s.cif' % (MMCIF_unit.CONFIG['MMCIF_FOLDER'], pdbId) pdbFileSavePath = self.get_mmcif_file_path(pdbId, True) if not pdbFileSavePath: continue mmcif_dict = MMCIF2Dict(pdbFileSavePath) demo_dict = {} index = ['_entity_poly.type', '_entity_poly.pdbx_strand_id'] try: for i in index: demo_dict[i] = mmcif_dict[i] df = pd.DataFrame(demo_dict) df['pdb_id'] = pdbId demo_dict_df_list.append(df) except: try: fw.write('%s\t%s\t%s\n' % ( pdbId, mmcif_dict['_entity_poly.type'], mmcif_dict['_entity_poly.pdbx_strand_id'])) except: error_pdb_file.write(pdbId + '\n') demo_df = pd.concat(demo_dict_df_list) demo_df.to_csv(outpath + chain_type_file1, sep='\t', index=False) fw.close() error_pdb_file.close() # 将chain_type的信息合并到一起 info = pd.read_csv(outpath + chain_type_file1, sep='\t', dtype=str) info1 = pd.read_csv(outpath + chain_type_file2, sep='\t', dtype=str, names=['pdb_id', '_entity_poly.type', '_entity_poly.pdbx_strand_id']) info2 = pd.concat([info, info1], axis=0) info2.rename(columns={'_entity_poly.pdbx_strand_id': 'chain_id', '_entity_poly.type': 'chain_type_details'}, inplace=True) info2['chain_type'] = info2['chain_type_details'].replace('polypeptide(L)', 'protein').replace('polypeptide(D)', 'protein').replace( 'polydeoxyribonucleotide', 'DNA').replace('polyribonucleotide', 'RNA').replace( 'polydeoxyribonucleotide/polyribonucleotide hybrid', 'RNA+DNA') # info2.to_csv(outpath+'PDB_cgc/cgc_pdb_chain_type_all.txt',sep='\t',index=False) #重新设置索引号,避免同一索引对应不同行,因为两个数据concat时各自文件的索引仍是之前的 info2.index = range(len(info2)) #由于重新设置了索引不会造成混淆,所以可以使用以下方法,比较快 result = info2.drop('chain_id', axis=1).join( info2['chain_id'].str.split(',', expand=True).stack().reset_index(level=1, drop=True).rename('chain_id_new')) info3 = result[['pdb_id', 'chain_type']].drop_duplicates() info4 = info3.sort_values(by=['chain_type']).groupby(['pdb_id'], as_index=False).agg(lambda x: ','.join(x)) info4.rename(columns={'chain_type': 'pdb_contain_chain_type'}, inplace=True) info5 = pd.merge(result, info4, on=['pdb_id'], how='left') info5.to_csv(outpath + chain_type_file_all, sep='\t', index=False) def extract_seqres_and_atom_info(self): atom_seqres_file, atom_seqres_error, atom_seqres_chain_type_oringnal, coordinates_file = MMCIF_unit.CONFIG['ATOM_SEQRES_FILE_LIST'] outpath = self.CONFIG['OUTPUT_FOLDER'] chain_type_file_all = MMCIF_unit.CONFIG['CHAIN_TYPE_FILE_LIST'][3] demo_dict_df_list = [] error_pdb_file = open(outpath + atom_seqres_error, 'w') for pdbId in self.pdb_list: # pdbFileSavePath = '%s%s.cif' % (MMCIF_unit.CONFIG['MMCIF_FOLDER'], pdbId) pdbFileSavePath = self.get_mmcif_file_path(pdbId) if not pdbFileSavePath: continue mmcif_dict = MMCIF2Dict(pdbFileSavePath) demo_dict = {} index = ['_pdbx_poly_seq_scheme.mon_id', '_pdbx_poly_seq_scheme.ndb_seq_num', '_pdbx_poly_seq_scheme.pdb_seq_num', '_pdbx_poly_seq_scheme.auth_seq_num', '_pdbx_poly_seq_scheme.pdb_mon_id', '_pdbx_poly_seq_scheme.auth_mon_id', '_pdbx_poly_seq_scheme.pdb_strand_id', '_pdbx_poly_seq_scheme.pdb_ins_code'] try: for i in index: demo_dict[i] = mmcif_dict[i] df = pd.DataFrame(demo_dict) df['pdb_id'] = pdbId demo_dict_df_list.append(df) except: error_pdb_file.write(pdbId + '\n') demo_df1 = pd.concat(demo_dict_df_list) demo_df1.to_csv(outpath + atom_seqres_file, sep='\t', index=False) error_pdb_file.close() # 将chain_type信息加入seqres和atom部分 file1 = pd.read_csv(outpath + atom_seqres_file, sep='\t', dtype=str) file2 = pd.read_csv(outpath + chain_type_file_all, sep='\t', dtype=str) file2.rename(columns={'chain_id_new': 'chain_id'}, inplace=True) # ? file3 = pd.merge(file1, file2, left_on=['pdb_id', '_pdbx_poly_seq_scheme.pdb_strand_id'], right_on=['pdb_id', 'chain_id'], how='left') # file3.to_csv(outpath+'PDB_cgc/cgc_pdb_atom_seqres_add_chain_type.txt',sep='\t',index=False) file3.rename(columns={'_pdbx_poly_seq_scheme.mon_id': 'SEQRES', '_pdbx_poly_seq_scheme.pdb_mon_id': 'Coordinates', '_pdbx_poly_seq_scheme.ndb_seq_num': 'pdb_index', '_pdbx_poly_seq_scheme.pdb_seq_num': 'position_in_seqres', '_pdbx_poly_seq_scheme.auth_seq_num': 'position_in_coordinates', '_pdbx_poly_seq_scheme.pdb_ins_code': 'inside_code'}, inplace=True) file4 = file3.drop(['_pdbx_poly_seq_scheme.auth_mon_id', '_pdbx_poly_seq_scheme.pdb_strand_id'], axis=1) file4.to_csv(outpath + atom_seqres_chain_type_oringnal, sep='\t', index=False) # 加入coordinates_start和coordinates_end信息 coordinates_range = file4[file4['pdb_contain_chain_type'].notna() & file4['pdb_contain_chain_type'].str.contains('protein')] coordinates_range['pdb_ins_position'] = coordinates_range['position_in_seqres'] + coordinates_range['inside_code'] coordinates_range['pdb_ins_position'] = coordinates_range['pdb_ins_position'].str.replace('.', '') coordinates_range1 = coordinates_range.groupby(['pdb_id', 'chain_id'], as_index=False)['pdb_ins_position'].agg( lambda x: ';'.join(x)) coordinates_range1.to_csv(outpath + coordinates_file, sep='\t', index=False) def extract_pdb_ligand_info(self): outpath = self.CONFIG['OUTPUT_FOLDER'] ligand_file1, ligand_file2, ligand_file_error, ligand_file_final1, ligand_file_final2 = MMCIF_unit.CONFIG['LIGAND_FILE_LIST'] atom_seqres_chain_type_oringnal = MMCIF_unit.CONFIG['ATOM_SEQRES_FILE_LIST'][2] demo_dict_df_list = [] fw = open(outpath + ligand_file2,'w') fp = open(outpath + ligand_file_error,'w') for pdbId in self.pdb_list: # pdbFileSavePath = '%s%s.cif' % (MMCIF_unit.CONFIG['MMCIF_FOLDER'], pdbId) pdbFileSavePath = self.get_mmcif_file_path(pdbId) if not pdbFileSavePath: continue mmcif_dict = MMCIF2Dict(pdbFileSavePath) demo_dict = {} index = ['_struct_conn.conn_type_id','_struct_conn.ptnr1_auth_asym_id','_struct_conn.ptnr1_auth_comp_id','_struct_conn.ptnr1_auth_seq_id', '_struct_conn.ptnr2_auth_asym_id','_struct_conn.ptnr2_auth_comp_id','_struct_conn.ptnr2_auth_seq_id'] try: for i in index: demo_dict[i] = mmcif_dict[i] df = pd.DataFrame(demo_dict) df['pdb_id'] = pdbId demo_dict_df_list.append(df) except: try: fw.write('%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n'%(pdbId,mmcif_dict['_struct_conn.conn_type_id'],mmcif_dict['_struct_conn.ptnr1_auth_asym_id'],mmcif_dict['_struct_conn.ptnr1_auth_comp_id'], mmcif_dict['_struct_conn.ptnr1_auth_seq_id'],mmcif_dict['_struct_conn.ptnr2_auth_asym_id'],mmcif_dict['_struct_conn.ptnr2_auth_comp_id'], mmcif_dict['_struct_conn.ptnr2_auth_seq_id'])) except: fp.write(pdbId+'\n') demo_df = pd.concat(demo_dict_df_list) demo_df.to_csv(outpath + ligand_file1,sep='\t',index=False) fw.close() fp.close() def ligand_count(ligand_ptnr_seq_id): a = len(ligand_ptnr_seq_id.split(';')) return a def metal_check(connection_type): if pd.isnull(connection_type): return '0' else: if connection_type == 'metalc': return '1' else: return '0' # atom_seqres_chain_type_oringnal = 'output/cgc_pdb_atom_seqres_add_chain_type_new.txt' ligand_info1 = pd.read_csv(outpath + ligand_file1, sep='\t', dtype=str, keep_default_na=False) ligand_info2 = pd.read_csv(outpath + ligand_file2, sep='\t', dtype=str, keep_default_na=False, names=['pdb_id', '_struct_conn.conn_type_id', '_struct_conn.ptnr1_auth_asym_id', '_struct_conn.ptnr1_auth_comp_id', '_struct_conn.ptnr1_auth_seq_id', '_struct_conn.ptnr2_auth_asym_id', '_struct_conn.ptnr2_auth_comp_id', '_struct_conn.ptnr2_auth_seq_id']) ligand_info_all = pd.concat([ligand_info1, ligand_info2], axis=0) metal_ligand = ['ZN', 'MG', 'CA', 'FE', 'NA', 'MN', 'K', 'NI', 'CU', 'CO', 'CD', 'HG', 'PT', 'MO', 'BE', 'AL', 'BA', 'RU', 'SR', 'V', 'CS', 'W', 'AU', 'YB', 'LI', 'GD', 'PB', 'Y', 'TL', 'IR', 'RB', 'SM', 'AG', 'OS', 'PR', 'PD', 'EU', 'RH', 'RE', 'TB', 'TA', 'LU', 'HO', 'CR', 'GA', 'LA', 'SN', 'SB', 'CE', 'ZR', 'ER', 'TH', 'TI', 'IN', 'HF', 'SC', 'DY', 'BI', 'PA', 'PU', 'AM', 'CM', 'CF', 'GE', 'NB', 'TC', 'ND', 'PM', 'TM', 'PO', 'FR', 'RA', 'AC', 'NP', 'BK', 'ES', 'FM', 'MD', 'NO', 'LR', 'RF', 'DB', 'SG'] ligand_info_all1 = ligand_info_all[(ligand_info_all['_struct_conn.conn_type_id'] == 'metalc') & ( ligand_info_all['_struct_conn.ptnr1_auth_comp_id'].isin(metal_ligand))] ligand_info_all1.rename( columns={'_struct_conn.conn_type_id': 'connection_type', '_struct_conn.ptnr1_auth_asym_id': 'ligand_chain', '_struct_conn.ptnr1_auth_comp_id': 'ligand_comp', '_struct_conn.ptnr1_auth_seq_id': 'ligand_seq_id', '_struct_conn.ptnr2_auth_asym_id': 'chain_id', '_struct_conn.ptnr2_auth_comp_id': 'ligand_ptnr_comp', '_struct_conn.ptnr2_auth_seq_id': 'position_in_seqres'}, inplace=True) ligand_info_all2 = ligand_info_all[(ligand_info_all['_struct_conn.conn_type_id'] == 'metalc') & ( ligand_info_all['_struct_conn.ptnr2_auth_comp_id'].isin(metal_ligand))] ligand_info_all2.rename( columns={'_struct_conn.conn_type_id': 'connection_type', '_struct_conn.ptnr2_auth_asym_id': 'ligand_chain', '_struct_conn.ptnr2_auth_comp_id': 'ligand_comp', '_struct_conn.ptnr2_auth_seq_id': 'ligand_seq_id', '_struct_conn.ptnr1_auth_asym_id': 'chain_id', '_struct_conn.ptnr1_auth_comp_id': 'ligand_ptnr_comp', '_struct_conn.ptnr1_auth_seq_id': 'position_in_seqres'}, inplace=True) ligand_info_all3 = pd.concat([ligand_info_all1, ligand_info_all2], axis=0) ligand_info_all3.reset_index(drop=True) ligand_info_all3['ismetal'] = ligand_info_all3.apply(lambda x: metal_check(x.connection_type), axis=1) ligand_info_all4 = ligand_info_all3.drop(['ligand_chain', 'ligand_seq_id'], axis=1) ligand_info_all4 = ligand_info_all4.drop_duplicates() data_index_position = pd.read_csv(outpath + atom_seqres_chain_type_oringnal, sep='\t', dtype=str) data_index_position2 = data_index_position[ ['pdb_id', 'chain_id', 'pdb_index', 'position_in_seqres']].drop_duplicates() infomerge = pd.merge(ligand_info_all4, data_index_position2, how='left', on=['pdb_id', 'chain_id', 'position_in_seqres']) infomerge1 = infomerge[infomerge['pdb_index'].notna()] infomerge1.to_csv(outpath + ligand_file_final1, sep='\t', index=False) infomerge2 = infomerge1.groupby(['pdb_id', 'chain_id'], as_index=False)[ 'ligand_comp', 'ligand_ptnr_comp', 'position_in_seqres', 'pdb_index', 'ismetal'].agg(lambda x: ';'.join(x)) infomerge2['ligand_count'] = infomerge2.apply(lambda x: ligand_count(x.position_in_seqres), axis=1) infomerge2.to_csv(outpath + ligand_file_final2, sep='\t', index=False) def deal_with_chain_and_seqres_atom(self): def get_modification(m, k): m1 = str(m).replace('?', '') yes = [i + 1 for i, v in enumerate(m1) if v == 'X'] if yes != []: length = int(len(yes)) if k == '1': yes1 = str(yes).replace('[', '').replace(']', '').replace(' ','') return yes1 elif k == '2': return length def get_modification_seqres_index(m): # print m yes = [i + 1 for i, v in enumerate(m) if v == 'X'] if yes != []: yes1 = str(yes).replace('[', '').replace(']', '').replace(' ','') return yes1 atom_seqres_protein_chain, cgc_protein_chain_id, integration_file = MMCIF_unit.CONFIG['CHAIN_AND_SEQRES_FILE_LIST'] outpath = self.CONFIG['OUTPUT_FOLDER'] atom_seqres_chain_type_oringnal = MMCIF_unit.CONFIG['ATOM_SEQRES_FILE_LIST'][2] multiToOne = MMCIF_unit.MultiToOne() f = pd.read_csv(outpath + atom_seqres_chain_type_oringnal, sep='\t', dtype=str) f['SEQRES'] = f.apply(lambda x: multiToOne.multi_letter_convert_to_one_letter(x.SEQRES), axis=1) f['Coordinates'] = f.apply(lambda x: multiToOne.multi_letter_convert_to_one_letter(x.Coordinates), axis=1) ##以下仅针对蛋白链 f1 = f[f['chain_type'] == 'protein']# .reset_index(drop=True) f1.to_csv(outpath + atom_seqres_protein_chain, sep='\t', index=False) # 将seqres信息放入一行 f2 = f1[['pdb_id', 'chain_id', 'SEQRES', 'inside_code']] # 此处不能去重 f3 = f2.groupby(['pdb_id', 'chain_id'], as_index=False)['SEQRES'].agg(lambda x: ''.join(x)) f3['seqres_len'] = f3['SEQRES'].str.len() # 将coordinates信息放入一行 f4 = f1[['pdb_id', 'chain_id', 'Coordinates', 'inside_code']] # 此处不能去重 f5 = f4.groupby(['pdb_id', 'chain_id'], as_index=False)['Coordinates'].agg(lambda x: ''.join(x)) f5['coordinates_len'] = f5['Coordinates'].str.replace('?', '').str.len() # 合并两部分信息 f6 = pd.merge(f3, f5, on=['pdb_id', 'chain_id'], how='left') # 提取所有蛋白链的chain_id allchain = f6[['pdb_id', 'chain_id']].drop_duplicates() allchain1 = allchain.sort_values(by=['chain_id']).groupby(['pdb_id'], as_index=False).agg(lambda x: ','.join(x)) allchain1.rename(columns={'chain_id': 'pdb_protein_chain_id'}, inplace=True) allchain1.to_csv(outpath + cgc_protein_chain_id, sep='\t', index=False) ##以下针对非蛋白链 ff1 = f[f['chain_type'] != 'protein']# .reset_index(drop=True) if len(ff1) != 0: ff2 = ff1[['pdb_id', 'chain_id', 'SEQRES', 'inside_code']] # 此处不能去重 ff3 = ff2.groupby(['pdb_id', 'chain_id'], as_index=False)['SEQRES'].agg(lambda x: ''.join(x)) ff3['seqres_len'] = ff3['SEQRES'].str.replace('D', '').str.len() # 将coordinates信息放入一行 ff4 = ff1[['pdb_id', 'chain_id', 'Coordinates', 'inside_code']] # 此处不能去重 ff5 = ff4.groupby(['pdb_id', 'chain_id'], as_index=False)['Coordinates'].agg(lambda x: ''.join(x)) ff5['coordinates_len'] = ff5['Coordinates'].str.replace('D', '').str.replace('?', '').str.len() # 合并两部分信息 ff6 = pd.merge(ff3, ff5, on=['pdb_id', 'chain_id'], how='left') ff6['Coordinates'] = ff6['Coordinates'].str.replace('D', '') full = pd.concat([f6, ff6], axis=0) else: full = f6 #将修饰信息加入文件中 full['Modification_position'] = full.apply(lambda x: get_modification(x.Coordinates, '1'), axis=1) full['Modification_num'] = full.apply(lambda x: get_modification(x.Coordinates, '2'), axis=1) full['Modification_position_seqres_index'] = full.apply(lambda x: get_modification_seqres_index(x.Coordinates),axis=1) full.to_csv(outpath + integration_file, sep='\t', index=False) def add_modification_pdb_type_to_integraton_file(self): def modification_type(Modification_position,coordinates_len): if pd.isnull(Modification_position): modification_site='no_modification' else: modification_site=[] modification_list = str(Modification_position).split(',') for i in modification_list: #判断modify的类型,i的类型定义为整型 if int(i) <= 5: modify='start' elif int(i) >= int(coordinates_len)-5: modify='end' else: modify='middle' #如果出现过就不放入list中 if modify not in modification_site: modification_site.append(modify) modification_site = ','.join(modification_site) return modification_site outpath = self.CONFIG['OUTPUT_FOLDER'] integration_file = MMCIF_unit.CONFIG['CHAIN_AND_SEQRES_FILE_LIST'][-1] chain_type_file_all = MMCIF_unit.CONFIG['CHAIN_TYPE_FILE_LIST'][-1] integration_file_new = MMCIF_unit.CONFIG['ADD_MODIFICATION_FILE'] # 将modification_type、chain_type、pdb_type信息加入到integration文件中 ff = pd.read_csv(outpath + integration_file, sep='\t') ff['Modification_position'] = ff.apply(lambda x: x['Modification_position'].replace('[', '').replace(']', '').replace(' ', '') if isinstance(x['Modification_position'], str) else np.nan, axis=1) ff['modification_site'] = ff.apply(lambda x: modification_type(x.Modification_position, x.coordinates_len), axis=1) ''' pdb_type = pd.read_csv(outpath + pdb_and_sifts_protein_chain, sep='\t') pdb_type1 = pdb_type[['pdb_id', 'pdb_type', 'pdb_protein_chain_id']].drop_duplicates() ff1 = pd.merge(ff, pdb_type1, on=['pdb_id'], how='left') ''' chain_type = pd.read_csv(outpath + chain_type_file_all, sep='\t', dtype=str) chain_type.rename(columns={'chain_id_new': 'chain_id'}, inplace=True) ff2 = pd.merge(ff, chain_type, on=['pdb_id', 'chain_id'], how='left') # ff1(before) ff2.to_csv(outpath + integration_file_new, sep='\t', index=False) def add_missing_coordinates_start_end(self): def getmisindex(a): str = a word = '\\?' b = [m.start() + 1 for m in re.finditer(word, str)] if b != []: return b else: return '' def select_UNK(m):# m is the Seqres'content for one line if len(set(m))==1 and '!' in list(set(m)): return 'yes' else: return 'no' def mis_or_not(a): if '?' in a: return 'yes' else: return 'no' outpath = self.CONFIG['OUTPUT_FOLDER'] integration_file_new = MMCIF_unit.CONFIG['ADD_MODIFICATION_FILE'] all_chain_and_length, integration_new_missing_range = MMCIF_unit.CONFIG['ADD_MISSING_FILE'] coordinates_file = MMCIF_unit.CONFIG['ATOM_SEQRES_FILE_LIST'][-1] ff = pd.read_csv(outpath + integration_file_new, sep='\t', dtype=str) ff['chain_and_length'] = ff['chain_id'] + ':' + ff['coordinates_len'] # protein链和长度合并 ff1 = ff[ff['chain_type'] == 'protein'][['pdb_id', 'chain_and_length']] ff1.rename(columns={'chain_and_length': 'protein_chain_and_length'}, inplace=True) protein = ff1.sort_values(by=['protein_chain_and_length']).groupby(['pdb_id'], as_index=False).agg( lambda x: ','.join(x)) # DNA链和长度合并 ff2 = ff[ff['chain_type'] == 'DNA'][['pdb_id', 'chain_and_length']] ff2.rename(columns={'chain_and_length': 'DNA_chain_and_length'}, inplace=True) DNA = ff2.sort_values(by=['DNA_chain_and_length']).groupby(['pdb_id'], as_index=False).agg(lambda x: ','.join(x)) # RNA链和长度合并 ff3 = ff[ff['chain_type'] == 'RNA'][['pdb_id', 'chain_and_length']] ff3.rename(columns={'chain_and_length': 'RNA_chain_and_length'}, inplace=True) RNA = ff3.sort_values(by=['RNA_chain_and_length']).groupby(['pdb_id'], as_index=False).agg(lambda x: ','.join(x)) # mix链和长度合并 ff4 = ff[ff['chain_type'] == 'RNA+DNA'][['pdb_id', 'chain_and_length']] ff4.rename(columns={'chain_and_length': 'mix_chain_and_length'}, inplace=True) mix = ff4.sort_values(by=['mix_chain_and_length']).groupby(['pdb_id'], as_index=False).agg(lambda x: ','.join(x)) # 合并上面四类 all1 = pd.merge(protein, DNA, on=['pdb_id'], how='left') all2 = pd.merge(all1, RNA, on=['pdb_id'], how='left') all3 = pd.merge(all2, mix, on=['pdb_id'], how='left') ''' pdb_type = pd.read_csv(outpath + pdb_and_sifts_protein_chain, sep='\t', dtype=str) pdb_type1 = pdb_type[['pdb_id', 'pdb_type']].drop_duplicates() all4 = pd.merge(all3, pdb_type1, on=['pdb_id'], how='left') ''' all3.to_csv(outpath + all_chain_and_length, sep='\t', index=False) # all4(before) # 添加整条链均为空的注释 ff['UNK_ALL_IN_CHAIN'] = ff.apply(lambda x: select_UNK(x.SEQRES), axis=1) unk_file = ff[ff['UNK_ALL_IN_CHAIN'] == 'yes'] unk_pdb = set(unk_file['pdb_id']) integration_file1 = ff[ff['pdb_id'].isin(unk_pdb)] integration_file1['only_contains_unk_in_chain_pdb'] = 'yes' integration_file2 = ff[~ff['pdb_id'].isin(unk_pdb)] integration_file2['only_contains_unk_in_chain_pdb'] = 'no' integration_file3 = pd.concat([integration_file1, integration_file2], axis=0) # 将统计的信息与整合后的信息合并 statistics = pd.merge(integration_file3, all3, on=['pdb_id'], how='left') # , 'pdb_type'], how='left') # all4(before) # 增加丢失信息 statistics['mis_index'] = statistics.apply(lambda x: getmisindex(x.Coordinates), axis=1) statistics['mis_range'] = statistics.apply(lambda x: MMCIF_unit.getInterval(x.mis_index), axis=1) ''' # statistics['mis_index1'] = statistics['mis_index'].astype(str).str.replace('[','').str.replace('','') statistics['ismis'] = statistics.apply(lambda x: mis_or_not(x.Coordinates), axis=1) statistics['mis_each_len'] = statistics.apply(lambda x: geteachmis_len(x.mis_range), axis=1) statistics['mis_distance_each'] = statistics.apply(lambda x: getdistance_eachmis(x.mis_range), axis=1) statistics['mis_distance_judgeup5'] = statistics.apply(lambda x: judge_distance5(x.mis_distance_each), axis=1) statistics['mis_count'] = statistics.apply(lambda x: miscount(x.Coordinates), axis=1) ''' coordinates_range = pd.read_csv(outpath + coordinates_file, sep='\t', dtype=str) statistics1 = pd.merge(statistics, coordinates_range, on=['pdb_id', 'chain_id'], how='left') statistics1.to_csv(outpath + integration_new_missing_range, sep='\t', index=False) def get_pdb_muta_info(self): @retry(stop_max_attempt_number=3, wait_fixed=1000) def getmutation_poly(pdbid): fw = open(self.CONFIG['OUTPUT_FOLDER'] + MMCIF_unit.CONFIG['PDB_MUTATION_FILE'], 'a') url = 'https://www.rcsb.org/structure/{}'.format(pdbid) r = requests.get(url, headers=MMCIF_unit.CONFIG['HEADERS']) soup = BeautifulSoup(r.text, 'html.parser') s1 = soup.find(id='MacromoleculeTable') table = s1.find_all(class_='table-responsive') table_all = [] for i in table: table2 = i.find(class_='table table-bordered table-condensed') table3 = table2.find('tbody') table4 = table3.find(id=re.compile(r'macromolecule-entityId-')) table5_chain = table4.find(class_='ellipsisToolTip').text table5_mutation_0 = table4.find_all('td')[4] table5_mutation_1 = re.split(r'\xa0', table5_mutation_0.text)[0].split(': ')[1] table_all.append([pdbid, str(table5_chain), str(table5_mutation_1)]) fw.write('\n'.join([str('\t'.join(x)) for x in table_all])) fw.write('\n') fw.close() time.sleep(2) # div id="MacromoleculeTable" # div class="table-responsive" # table class="table table-bordered table-condensed" # tbody # tr id="macromolecule-entityId-3-rowDescription" # 第五个td的第一个strong后面 fw = open(self.CONFIG['OUTPUT_FOLDER'] + MMCIF_unit.CONFIG['PDB_MUTATION_FILE'], 'w') fw.write('pdb_id\tchain_id\tmutation_num\n') fw.close() # 测试 # pdbid = '1a02' # getmutation_poly(pdbid) # 读取我们的突变数据集,获取当前的pdb信息 pool = Pool(processes=10) pool.map(getmutation_poly, self.pdb_list) def get_resolution(self): @retry(stop_max_attempt_number=3, wait_fixed=1000) def getResolution(pdbid): # output infomation of error fw=open(self.CONFIG['OUTPUT_FOLDER'] + MMCIF_unit.CONFIG['RESOLUTION_FILE'][0],'a') # output resolution of pdb fw2=open(self.CONFIG['OUTPUT_FOLDER'] + MMCIF_unit.CONFIG['RESOLUTION_FILE'][1],'a') url = 'https://www.rcsb.org/structure/{}'.format(pdbid) r = requests.get(url, headers=MMCIF_unit.CONFIG['HEADERS']) soup = BeautifulSoup(r.text, 'html.parser') try: s1 = soup.find(id='exp_header_0_diffraction_resolution') # x-ray s2 = soup.find(id='exp_header_0_em_resolution') # ELECTRON MICROSCOPY s3 = soup.find(id='exp_header_0_method') # NMR if s1: resolution = re.split(r'\xa0',s1.text)[1] method = 'x-ray' elif s2: resolution = re.split(r'\xa0',s2.text)[1] method = 'electron' elif s3: resolution = 'none' method = 'nmr' fw2.write(pdbid+'\t'+str(resolution)+'_'+method+'\n') return [pdbid,str(resolution)+'_'+method]#② # return pdbid+'\t'+str(resolution)+'_'+method+'\n'① except Exception as e: # 不属于以上三种情况 fw.write(e) fw.close() fw2.close() time.sleep(2) # use my pdblist to running function fw=open(self.CONFIG['OUTPUT_FOLDER'] + MMCIF_unit.CONFIG['RESOLUTION_FILE'][1],'w') fw.write('pdb_id\tresolution\n') fw.close() # give 10 processes pool=Pool(processes=10) pool.map(getResolution, self.pdb_list) def get_year_info1(self): @retry(stop_max_attempt_number=3, wait_fixed=1000) def get_date1(pdbid): print(pdbid) fw = open(MMCIF_unit.CONFIG['YEAR_INFO_1_FILE'][0], 'a') fp = open(MMCIF_unit.CONFIG['YEAR_INFO_1_FILE'][1], 'a') url = 'https://www.rcsb.org/structure/' + pdbid r = requests.get(url, headers=MMCIF_unit.CONFIG['HEADERS']) soup = BeautifulSoup(r.text, 'html.parser') s1 = soup.findAll("div", {"class": re.compile("col-md-6 col-sm-6 col-xs-12 col-xs-12")}) try: a = str(s1[-1].text.split(':')[1].split('Type')[0].strip(' ')) b = str(s1[-1].text.split(':')[-2].split('Type')[0].strip(' ')) fw.write('%s\t%s\t%s\n' % (pdbid, a, b)) except: fp.write(pdbid + '\n') fw.close() fp.close() time.sleep(2) fw = open(MMCIF_unit.CONFIG['YEAR_INFO_1_FILE'][0], 'w') fw.write('pdb_id\tinitial_version_time\tnewest_version_time\n') fw.close() pool = Pool(processes=20) pool.map(get_date1, self.pdb_list) def get_year_info2(self): @retry(stop_max_attempt_number=3, wait_fixed=1000) def get_date2(pdbid): print(pdbid) fw = open(MMCIF_unit.CONFIG['YEAR_INFO_2_FILE'][0], 'a') fp = open(MMCIF_unit.CONFIG['YEAR_INFO_2_FILE'][1], 'a') url = 'https://www.rcsb.org/structure/' + pdbid r = requests.get(url, headers=MMCIF_unit.CONFIG['HEADERS']) soup = BeautifulSoup(r.text, 'html.parser') s1 = soup.findAll("div", {"class": re.compile("col-md-6 col-sm-6 col-xs-12 col-xs-12")}) try: a = str(s1[-1].text.split(':')[1].split('Type')[0].strip(' ')) b = str(s1[-1].text.split(':')[-2].split('Type')[0].strip(' ')) fw.write('%s\t%s\t%s\n' % (pdbid, a, b)) except: fp.write(pdbid + '\n') fw.close() fp.close() time.sleep(2) fw = open(MMCIF_unit.CONFIG['YEAR_INFO_2_FILE'][0], 'w') fw.write('pdb_id\tinitial_version_time\tnewest_version_time\n') fw.close() pool = Pool(processes=5) data_temp = pd.read_csv(MMCIF_unit.CONFIG['YEAR_INFO_1_FILE'][0], sep='\t', names=['pdb_id']) pdbid = list(set(data_temp['pdb_id'])) pool.map(get_date2, pdbid) def get_year_info_all(self): year1 = pd.read_csv(MMCIF_unit.CONFIG['YEAR_INFO_1_FILE'][0], sep='\t', dtype=str) year2 = pd.read_csv(MMCIF_unit.CONFIG['YEAR_INFO_2_FILE'][0], sep='\t', dtype=str) yearall =
pd.concat([year1, year2], axis=0)
pandas.concat
from datetime import datetime import urllib.request import pandas as pd import zipfile import requests import plotly import plotly.graph_objects as go import folium from branca.element import Template, MacroElement from bs4 import BeautifulSoup from datetime import datetime from dateutil.relativedelta import relativedelta from geopy.geocoders import Nominatim from geopy.extra.rate_limiter import RateLimiter #Plot 1 and 2 start ## Get EPRACCUR data from NHSD url = 'https://files.digital.nhs.uk/assets/ods/current/epraccur.zip' filehandle, _ = urllib.request.urlretrieve(url) zip_file_object = zipfile.ZipFile(filehandle, 'r') first_file = zip_file_object.namelist()[0] file = zip_file_object.open(first_file) content = file.read() csv_file = open('assets/data/epraccur_data.csv', 'wb') csv_file.write(content) csv_file.close() header_list = ["Organisation Code", "Name", "National Grouping", "High Level Health Geography", "Address line 1", "Address line 2", "Address line 3", "Address line 4", "Address line 5","Postcode","Open Date","Close Date","Status Code","Organisation Sub-Type Code","Commissioner","Join Provider/Purchaser Date", "Left Provider/Purchaser Date","Contact Telephone Number", "Null 1", "Null 2", "Null 3", "Amended Record Indicator", "Null 4", "Provider/Purchaser", "Null 5", "Prescribing Setting", "Null 6"] ## Get EPRACCUR data from NHSD end ##EPRACCUR data processing gp_practice_df = pd.read_csv('assets/data/epraccur_data.csv', names=header_list) gp_practice_df.fillna('', inplace=True) gp_practice_df['Partial Address'] = gp_practice_df[['Address line 1', 'Address line 2', 'Address line 3', 'Address line 4',]].agg(', '.join, axis=1) gp_practice_df['Full Address'] = gp_practice_df[['Partial Address', 'Address line 5',]].agg(' '.join, axis=1) gp_practice_df['Full Address'] = gp_practice_df['Full Address'].str.title() gp_practice_df['Name'] = gp_practice_df['Name'].str.title() gp_practice_df_1 = gp_practice_df.drop(columns = {"High Level Health Geography", "Address line 1", "Address line 2", "Address line 3", "Address line 4", "Address line 5", "Open Date", "Close Date", "Organisation Sub-Type Code", "Commissioner", "Join Provider/Purchaser Date", "Left Provider/Purchaser Date", "Null 1", "Null 2", "Null 3", "Amended Record Indicator", "Null 4", "Partial Address", "Provider/Purchaser", "Null 5", "Null 6"}) gp_practice_df_2 = gp_practice_df_1[gp_practice_df_1["Status Code"] == "A"] gp_practice_df_3 = gp_practice_df_2[gp_practice_df_2["Prescribing Setting"] == 4] gp_practice_df_eng = gp_practice_df_3[gp_practice_df_3["National Grouping"].str.contains("YAC|YAD|YAE|YAF|W00")==False] gp_practice_df_eng_1 = gp_practice_df_eng.reset_index(drop = True) gp_practice_df_eng_2 = gp_practice_df_eng_1.copy() gp_practice_df_eng_3 = gp_practice_df_eng_2.drop( columns = {"Status Code", "Prescribing Setting"}) gp_practice_df_ldn = gp_practice_df_eng_3[gp_practice_df_eng_3["National Grouping"].str.contains("Y56")==True] gp_practice_df_ldn['Name'] = gp_practice_df_ldn['Name'].str.replace('Gp', 'GP') gp_practice_df_ldn['Full Address'] = gp_practice_df_ldn['Full Address'].str.replace(' ,', ' ').str.replace(' ', ' ').str.replace('Gp', 'GP').map(lambda x: x.rstrip(', ')) gp_practice_df_ldn_2 = gp_practice_df_ldn[gp_practice_df_ldn["Organisation Code"].str.contains("E85124|Y06487")==False] gp_practice_df_ldn_3 = gp_practice_df_ldn_2.reset_index(drop = True) ##EPRACCUR data processing end ##Get Patients registered at GP practices data from NHSD month_year_variable = datetime.now().strftime('%B-%Y').lower() url = "https://digital.nhs.uk/data-and-information/publications/statistical/patients-registered-at-a-gp-practice/%s" %month_year_variable response = urllib.request.urlopen(url) soup = BeautifulSoup(response.read(), "lxml") data = soup.select_one("a[href*='gp-reg-pat-prac-all.csv']") if data != None: csv_url = data['href'] req = requests.get(csv_url) url_content = req.content csv_file = open('assets/data/gp_pop_data.csv', 'wb') csv_file.write(url_content) csv_file.close() else: last_month = datetime.now() - relativedelta(months=1) last_month_year_variable = last_month.strftime('%B-%Y').lower() url = "https://digital.nhs.uk/data-and-information/publications/statistical/patients-registered-at-a-gp-practice/%s" %last_month_year_variable response = urllib.request.urlopen(url) soup = BeautifulSoup(response.read(), "lxml") data = soup.select_one("a[href*='gp-reg-pat-prac-all.csv']") csv_url = data['href'] req = requests.get(csv_url) url_content = req.content csv_file = open('assets/data/gp_pop_data.csv', 'wb') csv_file.write(url_content) csv_file.close() gp_pop_df = pd.read_csv('assets/data/gp_pop_data.csv') gp_pop_df.rename(columns={'CODE': 'Organisation Code', 'NUMBER_OF_PATIENTS': 'Number of patients registered at GP practices in England'}, inplace=True) gp_pop_df_1 = gp_pop_df.drop(columns = {'PUBLICATION', 'EXTRACT_DATE', 'TYPE', 'CCG_CODE', 'ONS_CCG_CODE', 'SEX', 'AGE', 'POSTCODE'}) gp_pop_df_1 = gp_pop_df_1[gp_pop_df_1 ["Organisation Code"].str.contains("E85124|Y06487")==False] gp_pop_df_1 = gp_pop_df_1.reset_index(drop = True) ##Get Patients registered at GP practices data from NHSD end ##Merge EPRACCUR and patients registered at GP practices data gp_pop_ldn = gp_practice_df_ldn_3.join(gp_pop_df_1, rsuffix='Organisation Code') gp_pop_ldn.rename(columns={'Number of patients registered at GP practices in England': 'Number of patients registered at the GP practice'}, inplace=True) gp_pop_ldn["Address"] = gp_pop_ldn[["Full Address", "Postcode"]].agg(', '.join, axis=1) gp_pop_ldn_1 = gp_pop_ldn.drop(columns={'Organisation CodeOrganisation Code', 'National Grouping', 'Full Address'}) gp_pop_ldn_1 = gp_pop_ldn_1[["Organisation Code", "Name", "Address", "Postcode", "Contact Telephone Number", "Number of patients registered at the GP practice"]] ##Merge EPRACCUR and patients registered at GP practices data end ##Visualization Plot 1 x0 = gp_pop_ldn_1['Number of patients registered at the GP practice'] x1 = gp_pop_df_1['Number of patients registered at GP practices in England'] count_england = gp_pop_df_1['Number of patients registered at GP practices in England'].count() count_london = gp_pop_ldn_1['Number of patients registered at the GP practice'].count() fig_1 = go.Figure() fig_1.add_trace(go.Box(x=x0, boxmean=True, boxpoints= 'all', jitter=0.3, name="London", marker_color ="#0072CE", whiskerwidth=0.5, marker_size=3, line_width=2)) fig_1.add_trace(go.Box(x=x1, boxmean=True, boxpoints= 'all', jitter=0.3, name="England", marker_color = "#003087", whiskerwidth=0.5, marker_size=3, line_width=2)) fig_1.update_layout( {"plot_bgcolor": "rgba(0, 0, 0, 0)", "paper_bgcolor": "rgba(0, 0, 0, 0)"}, font = dict(family = "Arial", size = 16), autosize=True, margin=dict(l=75, r=50, b=160, t=30, pad=4, autoexpand=True), hoverlabel=dict( font_size=12, font_family="Arial" ), xaxis=dict(title='Number of patients registered at individual GP practices', zeroline=False)) fig_1.add_annotation(dict(font=dict(family = "Arial",size=15), x=0.33, y=-0.40, showarrow=False, text="Number of GP practices in England: %s" %count_england, textangle=0, xanchor='right', xref="paper", yref="paper")) fig_1.add_annotation(dict(font=dict(family = "Arial",size=15), x=0.323, y=-0.46, showarrow=False, text="Number of GP practices in London: %s" %count_london, textangle=0, xanchor='right', xref="paper", yref="paper")) ##Visualization Plot 1 end ## Write out to file (.html) Plot 1 config = {"displayModeBar": False, "displaylogo": False} plotly_obj = plotly.offline.plot( fig_1, include_plotlyjs=False, output_type="div", config=config ) with open("_includes/plotly_obj.html", "w") as file: file.write(plotly_obj) ## Write out to file (.html) Plot 1 end #Merge new GP practice data with data from previous timepoint to avoid uncessary Nomatin API requests file_name = 'assets/data/gp_pop_ldn_mapped.csv' old_data = pd.read_csv(file_name, index_col=0) gp_pop_ldn_1 = gp_pop_ldn_1.merge(old_data[['Organisation Code','loc', 'Point', 'Latitude', 'Longitude', 'Altitude']],on='Organisation Code', how = 'left') gp_pop_ldn_1.rename(columns={'loc_x': 'loc', 'Point_x': 'Point', 'Latitude_x': 'Latitude', 'Longitude_x': 'Longitude', 'Altitude_x': 'Altitude' }, inplace=True) #Merge new GP practice data with data from previous timepoint to avoid uncessary Nomatin API requests end ##Get GP practice coordinates using geopy if New GP practcies added to EPRACCUR geolocator = Nominatim(user_agent="open_access_nhs") geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1) if gp_pop_ldn_1['loc'].count() != gp_pop_ldn_1['Organisation Code'].count(): missing_data = pd.isnull(gp_pop_ldn_1["loc"]) missing_data_df = gp_pop_ldn_1[missing_data] missing_data_df["loc"] = missing_data_df["Postcode"].apply(geolocator.geocode) missing_data_df["Point"]= missing_data_df["loc"].apply(lambda loc: tuple(loc.point) if loc else None) missing_data_df[['Latitude', 'Longitude', 'Altitude']] = pd.DataFrame(missing_data_df['Point'].to_list(), index=missing_data_df.index) gp_pop_ldn_1 = gp_pop_ldn_1.dropna() gp_pop_ldn_1 =
pd.concat([gp_pop_ldn_1, missing_data_df], ignore_index=True)
pandas.concat
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import json from datetime import datetime, timedelta def get_data(): # Load json data with open('../data/json_file.json') as data_file: patients = json.load(data_file) print("JSON file loaded") # Features computation print("Features computation launched...") visits = [] for patient in patients.values(): for i in range(1, len(patient['visits']) + 1): visits.append(patient['visits'][str(i)]) n_visits = len(visits) print("n_visits = %s" % n_visits) # Features DataFrame with encounter_nums index encounter_nums = [int(visit.get('encounter_num')) for visit in visits] X = pd.DataFrame(index=encounter_nums) # Time vector & censoring indicator print("Adding labels...", end="") next_visit = [visit.get('next_visit') for visit in visits] T = np.array([1e10 if str(t) == 'none' else t for t in next_visit]).astype( int) end_dates = pd.to_datetime([visit.get('end_date') for visit in visits]) start_dates = pd.to_datetime([visit.get('start_date') for visit in visits]) C =
pd.to_datetime('2016-01-15 00:00:00')
pandas.to_datetime
import os import nibabel as nib from nipype.interfaces.base import TraitedSpec, DynamicTraitedSpec, File, traits, \ BaseInterface, BaseInterfaceInputSpec, isdefined from nipype.utils.filemanip import split_filename from nipype.interfaces.io import add_traits from temporalimage import load as ti_load from temporalimage import Quantity import kineticmodel class KineticModelInputSpec(BaseInterfaceInputSpec): model = traits.Enum(*kineticmodel.KineticModel.model_values, mandatory=True, desc='one of: ' + \ ', '.join(kineticmodel.KineticModel.model_values)) timeSeriesImgFile = File(exists=True, mandatory=True, desc='path to dynamic PET image') frameTimingFile = File(exists=True, mandatory=True, desc=('csv/sif/json file listing the duration of ' 'each time frame in the 4D image')) refRegionMaskFile = File(exists=True, mandatory=True, desc='Reference region mask') startTime = traits.Float(0.0, mandatory=False, desc=('minute into the time series image at which ' 'to start computing the parametric images, inclusive')) endTime = traits.Float(mandatory=False, desc=('minute into the time series image at which ' 'to stop computing the parametric images, exclusive')) startActivity = traits.Enum(*kineticmodel.KineticModel.startActivity_values, mandatory=True, desc='one of: ' + \ ', '.join(kineticmodel.KineticModel.startActivity_values)) weights = traits.Enum(*kineticmodel.KineticModel.weights_values, desc='one of: ' + \ ', '.join(kineticmodel.KineticModel.weights_values), mandatory=True) halflife = traits.Float(mandatory=False, desc=('halflife of the radiotracer, in minutes ' '(required for decay corrected weights)')) fwhm = traits.Float(mandatory=False, desc=('Full width at half max (in mm) for Gaussian ' 'smoothing (required for SRTM_Zhou2003)')) class KineticModel(BaseInterface): """ Kinetic model applied to voxelwise data. """ input_spec = KineticModelInputSpec output_spec = DynamicTraitedSpec def _run_interface(self, runtime): model = self.inputs.model timeSeriesImgFile = self.inputs.timeSeriesImgFile refRegionMaskFile = self.inputs.refRegionMaskFile frameTimingFile = self.inputs.frameTimingFile endTime = self.inputs.endTime ti = ti_load(timeSeriesImgFile, frameTimingFile) if isdefined(self.inputs.startTime): startTime = Quantity(self.inputs.startTime, 'minute') else: startTime = ti.get_startTime() if isdefined(self.inputs.endTime): endTime = Quantity(self.inputs.endTime, 'minute') else: endTime = ti.get_endTime() if isdefined(self.inputs.halflife): halflife = Quantity(self.inputs.halflife, 'minute') else: halflife = None if isdefined(self.inputs.fwhm): fwhm = self.inputs.fwhm else: fwhm = None _, base, _ = split_filename(timeSeriesImgFile) ti = ti.extractTime(startTime, endTime) self.modStartTime = ti.get_startTime().to('min').magnitude self.modEndTime = ti.get_endTime().to('min').magnitude class_ = getattr(kineticmodel, model) results_img = class_.volume_wrapper(ti=ti, refRegionMaskFile=refRegionMaskFile, startActivity=self.inputs.startActivity, weights=self.inputs.weights, halflife=halflife, fwhm=fwhm) for result_name in class_.result_names: res_img = nib.Nifti1Image(results_img[result_name], ti.affine, ti.header) res_fname = base + '_' + '{:02.2f}'.format(self.modEndTime) + \ 'min_'+result_name+'.nii.gz' nib.save(res_img,res_fname) return runtime def _add_output_traits(self, base): class_ = getattr(kineticmodel, self.inputs.model) return add_traits(base, class_.result_names) def _outputs(self): return self._add_output_traits(super(KineticModel, self)._outputs()) def _list_outputs(self): outputs = self._outputs().get() model = self.inputs.model fname = self.inputs.timeSeriesImgFile _, base, _ = split_filename(fname) class_ = getattr(kineticmodel, model) for result_name in class_.result_names: outputs[result_name] = os.path.abspath(base + '_' + \ '{:02.2f}'.format(self.modEndTime)+'min_'+result_name+'.nii.gz') return outputs class KineticModelROIInputSpec(BaseInterfaceInputSpec): model = traits.Enum(*kineticmodel.KineticModel.model_values, mandatory=True, desc='one of: ' + \ ', '.join(kineticmodel.KineticModel.model_values)) roiTACcsvFile = File(exists=True, mandatory=True, desc='csv file containing TACs per ROI') frameTimingFile = File(exists=True, mandatory=True, desc=('csv/sif/json file listing the duration of ' 'each time frame in the 4D image')) refRegion = traits.String(desc=('Name of reference region, ', 'must be included in roiTACcsvfile'), mandatory=True) startTime = traits.Float(0.0, mandatory=False, desc=('minute into the time series image at which ' 'to start computing the parametric images, ' 'inclusive')) endTime = traits.Float(desc=('minute into the time series image at which ' 'to stop computing the parametric images, ' 'exclusive'), mandatory=False) startActivity = traits.Enum(*kineticmodel.KineticModel.startActivity_values, mandatory=True, desc='one of: ' + \ ', '.join(kineticmodel.KineticModel.startActivity_values)) weights = traits.Enum(*kineticmodel.KineticModel.weights_values, desc='one of: ' + \ ', '.join(kineticmodel.KineticModel.weights_values), mandatory=True) halflife = traits.Float(mandatory=False, desc=('halflife of the radiotracer, in minutes ' '(required for decay corrected weights)')) class KineticModelROIOutputSpec(TraitedSpec): csvFile = File(exists=True, desc='csv file') class KineticModelROI(BaseInterface): """ Kinetic model applied to regional data. """ input_spec = KineticModelROIInputSpec output_spec = KineticModelROIOutputSpec def _run_interface(self, runtime): import pandas as pd from temporalimage.t4d import _csvread_frameTiming, \ _sifread_frameTiming, \ _jsonread_frameTiming model = self.inputs.model roiTACcsvFile = self.inputs.roiTACcsvFile refRegion = self.inputs.refRegion frameTimingFile = self.inputs.frameTimingFile endTime = self.inputs.endTime roiTACs = pd.read_csv(roiTACcsvFile) _, timingfileext = os.path.splitext(frameTimingFile) if timingfileext=='.csv': frameStart, frameEnd = _csvread_frameTiming(frameTimingFile) elif timingfileext=='.sif': frameStart, frameEnd, _ = _sifread_frameTiming(frameTimingFile) elif timingfileext=='.json': frameStart, frameEnd, _ = _jsonread_frameTiming(frameTimingFile) # Compute the time mid-way for each time frame t = (frameStart + frameEnd ) / 2 # Compute the duration of each time frame dt = frameEnd - frameStart if isdefined(self.inputs.startTime): startTime = Quantity(self.inputs.startTime, 'minute') else: startTime = frameStart[0] if isdefined(self.inputs.endTime): endTime = Quantity(self.inputs.endTime, 'minute') else: endTime = frameEnd[-1] if isdefined(self.inputs.halflife): halflife = Quantity(self.inputs.halflife, 'minute') else: halflife = None _, base, _ = split_filename(roiTACcsvFile) # find the first time frame with frameStart at or shortest after the specified start time startIndex = next((i for i,t in enumerate(frameStart) if t>=startTime), len(frameStart)-1) # find the first time frame with frameEnd shortest after the specified end time endIndex = next((i for i,t in enumerate(frameEnd) if t>endTime), len(frameStart)) TAC_rownames = roiTACs['ROI'].values isref = TAC_rownames==refRegion if isref.sum()!=1: raise ValueError("Exactly one row should correspond to the reference TAC") # separate reference region TAC from other TACs # we add 1 to startIndex and endIndex because the first column in # roiTACs is ROI names refTAC = roiTACs.iloc[isref,startIndex+1:endIndex+1].values.flatten() TAC = roiTACs.iloc[~isref,startIndex+1:endIndex+1].values TAC_rownames = TAC_rownames[~isref] # subset time vectors t = t[startIndex:endIndex] dt = dt[startIndex:endIndex] class_ = getattr(kineticmodel, model) km = class_(t, dt, TAC, refTAC, startActivity=self.inputs.startActivity, weights=self.inputs.weights, halflife=halflife) km.fit() results =
pd.DataFrame({'ROI': TAC_rownames})
pandas.DataFrame
import numpy as np import pandas as pd import pytest import woodwork as ww from pandas.testing import assert_frame_equal, assert_series_equal from woodwork.logical_types import ( Boolean, Categorical, Double, Integer, NaturalLanguage, ) from evalml.pipelines.components import TargetImputer def test_target_imputer_no_y(X_y_binary): X, y = X_y_binary imputer = TargetImputer() assert imputer.fit_transform(None, None) == (None, None) imputer = TargetImputer() imputer.fit(None, None) assert imputer.transform(None, None) == (None, None) def test_target_imputer_with_X(): X = pd.DataFrame({"some col": [1, 3, np.nan]}) y = pd.Series([np.nan, 1, 3]) imputer = TargetImputer(impute_strategy="median") y_expected = pd.Series([2, 1, 3]) X_expected = pd.DataFrame({"some col": [1, 3, np.nan]}) X_t, y_t = imputer.fit_transform(X, y) assert_series_equal(y_expected, y_t, check_dtype=False) assert_frame_equal(X_expected, X_t, check_dtype=False) def test_target_imputer_median(): y = pd.Series([np.nan, 1, 10, 10, 6]) imputer = TargetImputer(impute_strategy="median") y_expected = pd.Series([8, 1, 10, 10, 6]) _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) def test_target_imputer_mean(): y = pd.Series([np.nan, 2, 0]) imputer = TargetImputer(impute_strategy="mean") y_expected = pd.Series([1, 2, 0]) _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) @pytest.mark.parametrize( "fill_value, y, y_expected", [ (None, pd.Series([np.nan, 0, 5]), pd.Series([0, 0, 5])), ( None, pd.Series([np.nan, "a", "b"]), pd.Series(["missing_value", "a", "b"]).astype("category"), ), (3, pd.Series([np.nan, 0, 5]), pd.Series([3, 0, 5])), (3, pd.Series([np.nan, "a", "b"]), pd.Series([3, "a", "b"]).astype("category")), ], ) def test_target_imputer_constant(fill_value, y, y_expected): imputer = TargetImputer(impute_strategy="constant", fill_value=fill_value) _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) def test_target_imputer_most_frequent(): y = pd.Series([np.nan, "a", "b"]) imputer = TargetImputer(impute_strategy="most_frequent") y_expected = pd.Series(["a", "a", "b"]).astype("category") _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) y = pd.Series([np.nan, 1, 1, 2]) imputer = TargetImputer(impute_strategy="most_frequent") y_expected = pd.Series([1, 1, 1, 2]) _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) def test_target_imputer_col_with_non_numeric_with_numeric_strategy(): y = pd.Series([np.nan, "a", "b"]) imputer = TargetImputer(impute_strategy="mean") with pytest.raises( ValueError, match="Cannot use mean strategy with non-numeric data" ): imputer.fit_transform(None, y) with pytest.raises( ValueError, match="Cannot use mean strategy with non-numeric data" ): imputer.fit(None, y) imputer = TargetImputer(impute_strategy="median") with pytest.raises( ValueError, match="Cannot use median strategy with non-numeric data" ): imputer.fit_transform(None, y) with pytest.raises( ValueError, match="Cannot use median strategy with non-numeric data" ): imputer.fit(None, y) @pytest.mark.parametrize("data_type", ["pd", "ww"]) def test_target_imputer_all_bool_return_original(data_type, make_data_type): y = pd.Series([True, True, False, True, True], dtype=bool) y = make_data_type(data_type, y) y_expected = pd.Series([True, True, False, True, True], dtype=bool) imputer = TargetImputer() imputer.fit(None, y) _, y_t = imputer.transform(None, y) assert_series_equal(y_expected, y_t) @pytest.mark.parametrize("data_type", ["pd", "ww"]) def test_target_imputer_boolean_dtype(data_type, make_data_type): y = pd.Series([True, np.nan, False, np.nan, True], dtype="category") y_expected = pd.Series([True, True, False, True, True], dtype="category") y = make_data_type(data_type, y) imputer = TargetImputer() imputer.fit(None, y) _, y_t = imputer.transform(None, y) assert_series_equal(y_expected, y_t) def test_target_imputer_fit_transform_all_nan_empty(): y = pd.Series([np.nan, np.nan]) imputer = TargetImputer() imputer.fit(None, y) with pytest.raises(RuntimeError, match="Transformed data is empty"): imputer.transform(None, y) imputer = TargetImputer() with pytest.raises(RuntimeError, match="Transformed data is empty"): imputer.fit_transform(None, y) def test_target_imputer_numpy_input(): y = np.array([np.nan, 0, 2]) imputer = TargetImputer(impute_strategy="mean") y_expected = np.array([1, 0, 2]) _, y_t = imputer.fit_transform(None, y) assert np.allclose(y_expected, y_t) np.testing.assert_almost_equal(y, np.array([np.nan, 0, 2])) def test_target_imputer_does_not_reset_index(): y = pd.Series(np.arange(10)) y[5] = np.nan assert y.index.tolist() == list(range(10)) y.drop(0, inplace=True) pd.testing.assert_series_equal( pd.Series( [1, 2, 3, 4, np.nan, 6, 7, 8, 9], dtype=float, index=list(range(1, 10)) ), y, ) imputer = TargetImputer(impute_strategy="mean") imputer.fit(None, y=y) _, y_t = imputer.transform(None, y) pd.testing.assert_series_equal( pd.Series([1.0, 2, 3, 4, 5, 6, 7, 8, 9], dtype=float, index=list(range(1, 10))), y_t, ) @pytest.mark.parametrize( "y, y_expected", [ (pd.Series([1, 0, 5, None]), pd.Series([1, 0, 5, 2])), (pd.Series([0.1, 0.0, 0.5, None]), pd.Series([0.1, 0.0, 0.5, 0.2])), ], ) def test_target_imputer_with_none(y, y_expected): imputer = TargetImputer(impute_strategy="mean") _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) @pytest.mark.parametrize( "y, y_expected", [ ( pd.Series(["b", "a", "a", None], dtype="category"), pd.Series(["b", "a", "a", "a"], dtype="category"), ), ( pd.Series([True, None, False, True], dtype="category"), pd.Series([True, True, False, True], dtype="category"), ), ( pd.Series(["b", "a", "a", None]),
pd.Series(["b", "a", "a", "a"], dtype="category")
pandas.Series
import logging import itertools import pandas as pd import openpathsampling as paths from openpathsampling.netcdfplus import StorableNamedObject # from functools import reduce # not built-in for py3 logger = logging.getLogger(__name__) def _default_state_name(state): return state.name if state.is_named else str(state) def _name_unnamed_states(unnamed_states, all_names): name_index = 0 for state in unnamed_states: while index_to_string(name_index) in all_names: name_index += 1 state = state.named(index_to_string(name_index)) name_index += 1 def _or_bar_namer(volumes): return "|".join([v.name for v in volumes]) # TODO: this should be moved into a general tools module def listify(obj): try: _ = iter(obj) except TypeError: obj = [obj] return obj def index_to_string(index): n_underscore = index // 26 letter_value = index % 26 mystr = "_"*n_underscore + chr(65 + letter_value) return mystr # TODO: this will be removed when we start using the analysis.tis methods # for the network.rate_matrix def _set_hist_args(transition, hist_args): for histname in hist_args.keys(): trans_hist = transition.ensemble_histogram_info[histname] if trans_hist.hist_args == {}: trans_hist.hist_args = hist_args[histname] class TransitionNetwork(StorableNamedObject): """ Subclasses of TransitionNetwork are the main way to set up calculations Attributes ---------- sampling_ensembles all_ensembles sampling_transitions """ def __init__(self): super(TransitionNetwork, self).__init__() # self.transitions = {} # self.special_ensembles = {} @property def sampling_ensembles(self): """ Ensembles from the sampling transitions, excluding special ensembles. """ return sum([t.ensembles for t in self.sampling_transitions], []) @property def analysis_ensembles(self): """ Ensembles from the analysis transitions, excluding special ensembles. """ return sum([t.ensembles for t in self.transitions.values()], []) @property def all_ensembles(self): """ All ensembles in the sampling transitions, including special ensembles. """ all_ens = self.sampling_ensembles for special_dict in self.special_ensembles.values(): all_ens.extend(list(special_dict.keys())) return all_ens @property def sampling_transitions(self): """The transitions used in sampling""" try: return self._sampling_transitions except AttributeError: return None class GeneralizedTPSNetwork(TransitionNetwork): """General class for TPS-based method. The main differences between fixed-length and flexible-length TPS is a small change in the ensemble. In implementation, this means that they use different transition classes, and that they have slightly different function signatures (fixed-length requires a length argument). To simplify this, and to make the docstrings readable, we make each class into a simple subclass of this GeneralizedTPSNetwork, which acts as an abstract class that manages most of the relevant code. Parameters ---------- initial_states : list of :class:`.Volume` acceptable initial states final_states : list of :class:`.Volume` acceptable final states allow_self_transitions : bool whether self-transitions (A->A) are allowed; default is False Attributes ---------- TransitionType : :class:`paths.Transition` Type of transition used here. Sets, for example, fixed or flexible pathlengths. """ TransitionType = NotImplemented def __init__(self, initial_states, final_states, allow_self_transitions=False, **kwargs): # **kwargs gets passed to the transition super(GeneralizedTPSNetwork, self).__init__() self.initial_states = listify(initial_states) self.final_states = listify(final_states) self.special_ensembles = {None: {}} all_initial = paths.join_volumes(self.initial_states, _or_bar_namer) if set(self.initial_states) == set(self.final_states): all_final = all_initial # so we don't create 2 objs for it else: all_final = paths.join_volumes(self.final_states, _or_bar_namer) self._sampling_transitions, self.transitions = \ self._build_transitions(self.initial_states, self.final_states, allow_self_transitions, **kwargs) def _build_transitions(self, initial_states, final_states, allow_self_transitions, **kwargs): sampling_transitions = self._build_sampling_transitions( initial_states, final_states, allow_self_transitions, **kwargs ) transitions = self._build_analysis_transitions( initial_states, final_states, allow_self_transitions, **kwargs ) return sampling_transitions, transitions def _sampling_transitions_from_pairs(self, state_pairs, **kwargs): initial, final = state_pairs[0] sampling_transition = self.TransitionType(initial, final, **kwargs) for initial, final in state_pairs[1:]: sampling_transition.add_transition(initial, final) return [sampling_transition] def _build_sampling_transitions(self, initial_states, final_states, allow_self_transitions, **kwargs): if allow_self_transitions: initial_to_joined_final = { initial: paths.join_volumes(final_states, _or_bar_namer) for initial in initial_states } else: initial_to_joined_final = { initial: paths.join_volumes([final for final in final_states if initial != final], _or_bar_namer) for initial in initial_states } sampling_transitions = self._sampling_transitions_from_pairs( state_pairs=list(initial_to_joined_final.items()), **kwargs ) return sampling_transitions def _build_analysis_transitions(self, initial_states, final_states, allow_self_transitions, **kwargs): transitions = { (initial, final): self.TransitionType(initial, final, **kwargs) for (initial, final) in itertools.product(initial_states, final_states) if initial != final } return transitions def to_dict(self): ret_dict = { 'transitions': self.transitions, 'x_sampling_transitions': self._sampling_transitions, 'special_ensembles': self.special_ensembles } try: ret_dict['initial_states'] = self.initial_states ret_dict['final_states'] = self.final_states except AttributeError: # pragma: no cover # DEPRECATED: remove for 2.0 from openpathsampling.deprecations import \ SAVE_RELOAD_OLD_TPS_NETWORK SAVE_RELOAD_OLD_TPS_NETWORK.warn() pass # backward compatibility return ret_dict @property def all_states(self): """list of all initial and final states""" return list(set(self.initial_states + self.final_states)) @classmethod def from_dict(cls, dct): network = cls.__new__(cls) super(GeneralizedTPSNetwork, network).__init__() network._sampling_transitions = dct['x_sampling_transitions'] network.transitions = dct['transitions'] try: network.initial_states = dct['initial_states'] network.final_states = dct['final_states'] except KeyError: # pragma: no cover # DEPRECATED: remove for 2.0 pass # backward compatibility try: network.special_ensembles = dct['special_ensembles'] except KeyError: # pragma: no cover # DEPRECATED: remove for 2.0 network.special_ensembles = {None: {}} # default behavior for backward compatibility return network @classmethod def from_state_pairs(cls, state_pairs, **kwargs): # TODO: redo this to use the new _sampling_transitions_from_pairs # method sampling = [] transitions = {} initial_states = [] final_states = [] for (initial, final) in state_pairs: initial_states += [initial] final_states += [final] if len(sampling) == 1: sampling[0].add_transition(initial, final) elif len(sampling) == 0: sampling = [cls.TransitionType(initial, final, **kwargs)] else: raise RuntimeError("More than one sampling transition for TPS?") transitions[(initial, final)] = cls.TransitionType(initial, final, **kwargs) dict_result = { 'x_sampling_transitions': sampling, 'transitions': transitions } dict_result.update(kwargs) network = cls.from_dict(dict_result) network.initial_states = initial_states network.final_states = final_states return network @classmethod def from_states_all_to_all(cls, states, allow_self_transitions=False, **kwargs): return cls(states, states, allow_self_transitions=allow_self_transitions, **kwargs) class TPSNetwork(GeneralizedTPSNetwork): """ Class for flexible pathlength TPS networks (2-state or multiple state). """ TransitionType = paths.TPSTransition # we implement these functions entirely to fix the signature (super's # version allow arbitrary kwargs) so the documentation can read them. def __init__(self, initial_states, final_states, allow_self_transitions=False): super(TPSNetwork, self).__init__(initial_states, final_states, allow_self_transitions) @classmethod def from_state_pairs(cls, state_pairs, allow_self_transitions=False): return super(TPSNetwork, cls).from_state_pairs(state_pairs) @classmethod def from_states_all_to_all(cls, states, allow_self_transitions=False): return super(TPSNetwork, cls).from_states_all_to_all( states, allow_self_transitions ) class FixedLengthTPSNetwork(GeneralizedTPSNetwork): """ Class for fixed pathlength TPS networks (2-states or multiple states). """ TransitionType = paths.FixedLengthTPSTransition # as with TPSNetwork, we don't really need to add these functions. # However, without them, we need to explicitly name `length` as # length=value in these functions. This frees us of that, and gives us # clearer documentation. def __init__(self, initial_states, final_states, length, allow_self_transitions=False): super(FixedLengthTPSNetwork, self).__init__( initial_states, final_states, allow_self_transitions=allow_self_transitions, length=length ) @classmethod def from_state_pairs(cls, state_pairs, length): return super(FixedLengthTPSNetwork, cls).from_state_pairs( state_pairs, length=length ) @classmethod def from_states_all_to_all(cls, states, length, allow_self_transitions=False): return super(FixedLengthTPSNetwork, cls).from_states_all_to_all( states=states, allow_self_transitions=allow_self_transitions, length=length ) class TISNetwork(TransitionNetwork): # NOTE: this is an abstract class with several properties used by many # TIS-based networks # TODO: most of the analysis stuff should end up in here; the bigger # differences are in setup, not analysis def __init__(self, trans_info, ms_outers): self.trans_info = trans_info try: ms_outers = list(ms_outers) except TypeError: if ms_outers is not None: ms_outers = [ms_outers] self.ms_outer_objects = ms_outers self._sampling_to_analysis = None self._analysis_to_sampling = None self._sampling_ensemble_for = None super(TISNetwork, self).__init__() @property def sampling_to_analysis(self): """dict mapping sampling transitions to analysis transitions""" if self._sampling_to_analysis is None: self._sampling_to_analysis = { sampling_t: [t for t in self.transitions.values() if sampling_t.interfaces == t.interfaces] for sampling_t in self.sampling_transitions } return self._sampling_to_analysis @property def analysis_to_sampling(self): """dict mapping analysis transitions to sampling transitions""" # in current examples, the result list here is always length 1, but # perhaps future methods will use multiple sampling transitions # (different order parameters?) to describe one physical transition if self._analysis_to_sampling is None: self._analysis_to_sampling = { t: [sampling_t for sampling_t in self.sampling_to_analysis if t in self.sampling_to_analysis[sampling_t]] for t in self.transitions.values() } return self._analysis_to_sampling @property def sampling_ensemble_for(self): """dict mapping ensembles (incl. sampling) to sampling ensemble""" if self._sampling_ensemble_for is None: self._sampling_ensemble_for = {ens: ens for ens in self.sampling_ensembles} for ens in self.analysis_ensembles: analysis_transitions = [t for t in self.transitions.values() if ens in t.ensembles] analysis_trans = analysis_transitions[0] # could use any ens_idx = analysis_trans.ensembles.index(ens) sampling_trans = self.analysis_to_sampling[analysis_trans] assert len(sampling_trans) == 1 # this only works in this case sampling_ens = sampling_trans[0].ensembles[ens_idx] self._sampling_ensemble_for[ens] = sampling_ens return self._sampling_ensemble_for def set_fluxes(self, flux_dictionary): """ Parameters ---------- flux_dictionary : dict of 2-tuple to float keys are in the form (state, interface), and values are the associated flux Raises ------ KeyError If the flux for one of the transitions isn't in the dictionary. """ # for now, if you don't have all the fluxes needed, it raises a # KeyError for trans in self.transitions.values(): trans._flux = flux_dictionary[(trans.stateA, trans.interfaces[0])] @property def minus_ensembles(self): return list(self.special_ensembles['minus'].keys()) @property def ms_outers(self): return list(self.special_ensembles['ms_outer'].keys()) def add_ms_outer_interface(self, ms_outer, transitions, forbidden=None): relevant = ms_outer.relevant_transitions(transitions) ensemble = ms_outer.make_ensemble(relevant, forbidden) # TODO: this should use defaultdict, I think dct = {ensemble: relevant} try: self.special_ensembles['ms_outer'].update(dct) except KeyError: self.special_ensembles['ms_outer'] = dct @property def all_states(self): return list(set(self.initial_states + self.final_states)) def get_state(self, snapshot): """ Find which core state a snapshot is in, if any Parameters ---------- snapshot : `openpathsampling.engines.BaseSnapshot` the snapshot to be tested Returns ------- `openpathsampling.Volume` the volume object defining the state """ for state in self.all_states: if state(snapshot): return state return None class MSTISNetwork(TISNetwork): """ Multiple state transition interface sampling network. The way this works is that it sees two effective sets of transitions. First, there are sampling transitions. These are based on ensembles which go to any final state. Second, there are analysis transitions. These are based on ensembles which go to a specific final state. Sampling is done using the sampling transitions. Sampling transitions are stored in the `from_state[state]` dictionary. For MSTIS, the flux and total crossing probabilities are independent of the final state, and so the analysis calculates them in the sampling transitions, and copies the results into the analysis transitions. This way flux and total crossing probably are only calculated once per interface set. The conditional transition probability depends on the final state, so it (and the rate) are calculated using the analysis transitions. The analysis transitions are obtained using `.transition[(stateA, stateB)]`. """ def to_dict(self): ret_dict = { 'from_state': self.from_state, 'states': self.states, 'special_ensembles': self.special_ensembles, 'trans_info': self.trans_info, 'ms_outer_objects': self.ms_outer_objects } return ret_dict @classmethod def from_dict(cls, dct): network = cls.__new__(cls) # replace automatically created attributes with stored ones network.from_state = dct['from_state'] network.special_ensembles = dct['special_ensembles'] network.states = dct['states'] network.__init__( trans_info=dct['trans_info'], ms_outers=dct['ms_outer_objects'] ) return network def __init__(self, trans_info, ms_outers=None): """ Creates MSTISNetwork, including interfaces. Parameters ---------- trans_info : list of tuple Details of each state-based ensemble set. 2-tuple in the order (state, interface_set) where state is a Volume, and interface_set is an InterfaceSet (with associated CollectiveVariable) ms_outers : MSOuterTISInterface or list of MSOuterTISInterface mutliple state outer interfaces for this network """ super(MSTISNetwork, self).__init__(trans_info, ms_outers) # build sampling transitions states, interfaces = zip(*trans_info) self.states = states if not hasattr(self, "from_state"): self.special_ensembles = {} self.from_state = {} self._build_fromstate_transitions(trans_info) if self.ms_outer_objects is not None: for ms_outer in self.ms_outer_objects: all_transitions = list(self.from_state.values()) self.add_ms_outer_interface(ms_outer, all_transitions) self._sampling_transitions = list(self.from_state.values()) # by default, we set assign these values to all ensembles self.hist_args = {} self.transitions = self._build_analysis_transitions() @property def all_states(self): return self.states def _build_transitions(self, trans_info, ms_outers, special_ensembles): sampling_ensembles = self._build_sampling_ensembles(trans_info) return sampling_transitions, transitions, special_ensembles @staticmethod def _build_analysis_transition_for_sampling(sampling_transition, all_states): local_transitions = {} state_A = sampling_transition.stateA other_states = set(all_states) - set([state_A]) str_A = _default_state_name(state_A) for state_B in other_states: str_B = _default_state_name(state_B) trans = paths.TISTransition( stateA=state_A, stateB=state_B, interfaces=sampling_transition.interfaces, name=str_A + "->" + str_B, orderparameter=sampling_transition.orderparameter ) # override created stuff trans.ensembles = sampling_transition.ensembles for i in range(len(trans.ensembles)): trans.ensembles[i].named(trans.name + "[" + str(i) + "]") trans.minus_ensemble = sampling_transition.minus_ensemble local_transitions[(state_A, state_B)] = trans return local_transitions def _build_analysis_transitions(self): # set up analysis transitions (not to be saved) transitions = {} for from_A in self.from_state.values(): local_transitions = self._build_analysis_transition_for_sampling( sampling_transition=from_A, all_states=self.all_states ) transitions.update(local_transitions) return transitions @staticmethod def build_one_state_sampling_transition(state, interfaces, all_states): other_states = list(set(all_states) - set([state])) union_others = paths.join_volumes( volume_list=other_states, name="all states except " + str(state.name) ) this_trans = paths.TISTransition( stateA=state, stateB=union_others, interfaces=interfaces, name="Out " + state.name, orderparameter=interfaces.cv ) return this_trans def _build_fromstate_transitions(self, trans_info): """ Builds the sampling transitions (the self.from_state dictionary). This also sets self.states (list of states volumes), self.outers (list of interface volumes making the MS-outer interface), and self.outer_ensembles (list of TISEnsembles associated with the self.outers interfaces). Additionally, it gives default names volumes, interfaces, and transitions. Parameters ---------- trans_info : list of 2-tuples See description in __init__. """ states, interfaces = zip(*trans_info) orderparams = [iface_set.cv for iface_set in interfaces] # NAMING STATES (give default names) all_states = paths.join_volumes(states).named("all states") all_names = list(set([s.name for s in states])) unnamed_states = [s for s in states if not s.is_named] _name_unnamed_states(unnamed_states, all_names) # BUILDING ENSEMBLES self.states = states for (state, ifaces) in trans_info: this_trans = self.build_one_state_sampling_transition( state=state, interfaces=ifaces, all_states=states ) # op = ifaces.cv # state_index = states.index(state) # other_states = states[:state_index]+states[state_index+1:] # other_states = list(set(states) - set([state])) # union_others = paths.join_volumes( # volume_list=other_states, # name="all states except " + str(state.name) # ) # union_others = paths.volume.join_volumes(other_states) # union_others.named("all states except " + str(state.name)) # out_others = paths.AllOutXEnsemble(union_others) # this_trans = paths.TISTransition( # stateA=state, # stateB=union_others, # interfaces=ifaces, # name="Out " + state.name, # orderparameter=op # ) self.from_state[state] = this_trans this_minus = self.from_state[state].minus_ensemble #& out_others this_inner = self.from_state[state].ensembles[0] # TODO: this should use defaultdict, I think try: self.special_ensembles['minus'][this_minus] = [this_trans] except KeyError: self.special_ensembles['minus'] = {this_minus : [this_trans]} def __str__(self): mystr = "Multiple State TIS Network:\n" for state in self.from_state.keys(): mystr += str(self.from_state[state]) return mystr def rate_matrix(self, steps, force=False): """ Calculate the matrix of all rates. Parameters ---------- steps : iterable of :class:`.MCStep` steps to be analyzed force : bool (False) if True, cached results are overwritten Returns ------- pandas.DataFrame Rates from row_label to column_label. Diagonal is NaN. """ # for each transition in from_state: # 1. Calculate the flux and the TCP names = [s.name for s in self.states] self._rate_matrix =
pd.DataFrame(columns=names, index=names)
pandas.DataFrame
import numpy as np import pandas as pd from scipy.sparse import csr_matrix, csgraph import scipy import igraph as ig import leidenalg import time import hnswlib import matplotlib import matplotlib.pyplot as plt import math import multiprocessing from scipy.sparse.csgraph import minimum_spanning_tree from scipy import sparse from sklearn.metrics.pairwise import euclidean_distances import umap import phate import scanpy as sc from scipy.sparse.csgraph import connected_components import pygam as pg import matplotlib.colors as colors import matplotlib.cm as cm from termcolor import colored import seaborn as sns from matplotlib.path import get_path_collection_extents #April 6 2021,upload this version to github/pypip def prob_reaching_terminal_state1( terminal_state, all_terminal_states, A, root, pt, num_sim, q, cumstateChangeHist, cumstateChangeHist_all, seed): #this function is defined outside the VIA class to enable smooth parallel processing in Windows np.random.seed(seed) n_states = A.shape[0] A = A / (np.max(A)) jj = 0 for row in A: if np.all(row == 0): A[jj, jj] = 1 jj = jj + 1 P = A / A.sum(axis=1).reshape((n_states, 1)) n_steps = int(2 * n_states) # 2 currentState = root state = np.zeros((1, n_states)) state[0, currentState] = 1 currentState = root state = np.zeros((1, n_states)) state[0, currentState] = 1 state_root = state.copy() neigh_terminal = np.where(A[:, terminal_state] > 0)[0] non_nn_terminal_state = [] for ts_i in all_terminal_states: if pt[ts_i] > pt[terminal_state]: non_nn_terminal_state.append(ts_i) for ts_i in all_terminal_states: if np.all(neigh_terminal != ts_i): non_nn_terminal_state.append(ts_i) count_reach_terminal_state = 0 count_r = 0 for i in range(num_sim): stateChangeHist = np.zeros((n_states, n_states)) stateChangeHist[root, root] = 1 state = state_root currentState = root stateHist = state terminal_state_found = False x = 0 while (x < n_steps) & ( (terminal_state_found == False)): # & (non_neighbor_terminal_state_reached == False)): currentRow = np.ma.masked_values((P[currentState]), 0.0) nextState = simulate_multinomial(currentRow) # print('next state', nextState) if nextState == terminal_state: terminal_state_found = True count_r = count_r + 1 # Keep track of state changes stateChangeHist[currentState, nextState] += 1 # Keep track of the state vector itself state = np.zeros((1, n_states)) state[0, nextState] = 1.0 # Keep track of state history stateHist = np.append(stateHist, state, axis=0) currentState = nextState x = x + 1 if (terminal_state_found == True): cumstateChangeHist = cumstateChangeHist + np.any( stateChangeHist > 0, axis=0) count_reach_terminal_state = count_reach_terminal_state + 1 cumstateChangeHist_all = cumstateChangeHist_all + np.any( stateChangeHist > 0, axis=0) # avoid division by zero on states that were never reached (e.g. terminal states that come after the target terminal state) cumstateChangeHist_all[cumstateChangeHist_all == 0] = 1 # prob_ = cumstateChangeHist / cumstateChangeHist_all np.set_printoptions(precision=3) q.append([cumstateChangeHist, cumstateChangeHist_all]) def simulate_markov_sub( A, num_sim, hitting_array, q, root): n_states = A.shape[0] P = A / A.sum(axis=1).reshape((n_states, 1)) # hitting_array = np.ones((P.shape[0], 1)) * 1000 hitting_array_temp = np.zeros((P.shape[0], 1)).astype('float64') n_steps = int(2 * n_states) hitting_array_final = np.zeros((1, n_states)) currentState = root state = np.zeros((1, n_states)) state[0, currentState] = 1 state_root = state.copy() for i in range(num_sim): dist_list = [] # print(i, 'th simulation in Markov') # if i % 10 == 0: print(i, 'th simulation in Markov', time.ctime()) state = state_root currentState = root stateHist = state for x in range(n_steps): currentRow = np.ma.masked_values((P[currentState]), 0.0) nextState = simulate_multinomial(currentRow) dist = A[currentState, nextState] dist = (1 / ((1 + math.exp((dist - 1))))) dist_list.append(dist) # print('next state', nextState) # Keep track of state changes # stateChangeHist[currentState,nextState]+=1 # Keep track of the state vector itself state = np.zeros((1, n_states)) state[0, nextState] = 1.0 currentState = nextState # Keep track of state history stateHist = np.append(stateHist, state, axis=0) for state_i in range(P.shape[0]): first_time_at_statei = np.where(stateHist[:, state_i] == 1)[0] if len(first_time_at_statei) == 0: hitting_array_temp[state_i, 0] = n_steps + 1 else: total_dist = 0 for ff in range(first_time_at_statei[0]): total_dist = dist_list[ff] + total_dist hitting_array_temp[state_i, 0] = total_dist # first_time_at_statei[0] hitting_array = np.append(hitting_array, hitting_array_temp, axis=1) hitting_array = hitting_array[:, 1:] q.append(hitting_array) def getbb(sc, ax): """ Function to return a list of bounding boxes in data coordinates for a scatter plot. Directly taken from https://stackoverflow.com/questions/55005272/ """ ax.figure.canvas.draw() # need to draw before the transforms are set. transform = sc.get_transform() transOffset = sc.get_offset_transform() offsets = sc._offsets paths = sc.get_paths() transforms = sc.get_transforms() if not transform.is_affine: paths = [transform.transform_path_non_affine(p) for p in paths] transform = transform.get_affine() if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() if isinstance(offsets, np.ma.MaskedArray): offsets = offsets.filled(np.nan) bboxes = [] if len(paths) and len(offsets): if len(paths) < len(offsets): # for usual scatters you have one path, but several offsets paths = [paths[0]] * len(offsets) if len(transforms) < len(offsets): # often you may have a single scatter size, but several offsets transforms = [transforms[0]] * len(offsets) for p, o, t in zip(paths, offsets, transforms): result = get_path_collection_extents( transform.frozen(), [p], [t], [o], transOffset.frozen() ) # bboxes.append(result.inverse_transformed(ax.transData)) bboxes.append(result.transformed(ax.transData.inverted())) return bboxes def plot_sc_pb(ax, embedding, prob, ti, cmap_name='viridis'): # threshold = #np.percentile(prob, 95)#np.mean(prob) + 3 * np.std(prob) # print('thresold', threshold, np.max(prob)) # prob = [x if x < threshold else threshold for x in prob] prob = np.sqrt(prob) # scale values to improve visualization of colors cmap = matplotlib.cm.get_cmap('plasma') norm = matplotlib.colors.Normalize(vmin=0, vmax=np.max(prob)) prob = np.asarray(prob) # print('prob plot stats (min, max, mean)', min(prob), max(prob), np.mean(prob)) # changing the alpha transapency parameter for plotting points c = cmap(norm(prob)) c = c.reshape(-1, 4) loc_c = np.where(prob <= 0.3)[0] c[loc_c, 3] = 0.2 loc_c = np.where((prob > 0.3) & (prob <= 0.5))[0] c[loc_c, 3] = 0.5 loc_c = np.where((prob > 0.5) & (prob <= 0.7))[0] c[loc_c, 3] = 0.8 loc_c = np.where((prob > 0.7))[0] c[loc_c, 3] = 0.8 if embedding.shape[0]>10000: size_point = 10 else: size_point = 30 ax.scatter(embedding[:, 0], embedding[:, 1], c=c, s=size_point, cmap=cmap_name, edgecolors='none') ax.set_title('Target: ' + str(ti)) def get_loc_terminal_states(via0, X_input): # we need the location of terminal states from first iteration (Via0) to pass onto the second iterations of Via (Via1) # this will allow identification of the terminal-cluster in fine-grained Via1 that best captures the terminal state from coarse Via0 tsi_list = [] # find the single-cell which is nearest to the average-location of a terminal cluster in PCA space ( for tsi in via0.terminal_clusters: loc_i = np.where(np.asarray(via0.labels) == tsi)[0] val_pt = [via0.single_cell_pt_markov[i] for i in loc_i] th_pt = np.percentile(val_pt, 50) # 50 loc_i = [loc_i[i] for i in range(len(val_pt)) if val_pt[i] >= th_pt] temp = np.mean(X_input[loc_i], axis=0) labelsq, distances = via0.knn_struct.knn_query(temp, k=1) #print(labelsq[0]) tsi_list.append(labelsq[0][0]) return tsi_list def simulate_multinomial(vmultinomial): # used in Markov Simulations r = np.random.uniform(0.0, 1.0) CS = np.cumsum(vmultinomial) CS = np.insert(CS, 0, 0) m = (np.where(CS < r))[0] nextState = m[len(m) - 1] return nextState def sc_loc_ofsuperCluster_PCAspace(p0, p1, idx): # ci_list first finds location in unsampled PCA space of the location of the super-cluster or sub-terminal-cluster and root # Returns location (index) of cell nearest to the ci_list in the downsampled space print("dict of terminal state pairs, Super: sub: ", p1.dict_terminal_super_sub_pairs) p0_labels = np.asarray(p0.labels) p1_labels = np.asarray(p1.labels) p1_sc_markov_pt = p1.single_cell_pt_markov ci_list = [] for ci in range(len(list(set(p0.labels)))): if ci in p1.revised_super_terminal_clusters: # p0.terminal_clusters: loc_i = np.where(p1_labels == p1.dict_terminal_super_sub_pairs[ci])[0] # loc_i = np.where(p0_labels == ci)[0] # val_pt = [p1.single_cell_pt_markov[i] for i in loc_i] val_pt = [p1_sc_markov_pt[i] for i in loc_i] th_pt = np.percentile(val_pt, 0) # 80 loc_i = [loc_i[i] for i in range(len(val_pt)) if val_pt[i] >= th_pt] temp = np.mean(p0.data[loc_i], axis=0) labelsq, distances = p0.knn_struct.knn_query(temp, k=1) ci_list.append(labelsq[0][0]) elif (ci in p0.root) & (len(p0.root) == 1): loc_root = np.where(np.asarray(p0.root) == ci)[0][0] p1_root_label = p1.root[loc_root] loc_i = np.where(np.asarray(p1_labels) == p1_root_label)[0] # loc_i = np.where(p0.labels == ci)[0] val_pt = [p1_sc_markov_pt[i] for i in loc_i] th_pt = np.percentile(val_pt, 20) # 50 loc_i = [loc_i[i] for i in range(len(val_pt)) if val_pt[i] <= th_pt] temp = np.mean(p0.data[loc_i], axis=0) labelsq, distances = p0.knn_struct.knn_query(temp, k=1) ci_list.append(labelsq[0][0]) else: loc_i = np.where(p0_labels == ci)[0] temp = np.mean(p0.data[loc_i], axis=0) labelsq, distances = p0.knn_struct.knn_query(temp, k=1) ci_list.append(labelsq[0][0]) X_ds = p0.data[idx] p_ds = hnswlib.Index(space='l2', dim=p0.data.shape[1]) p_ds.init_index(max_elements=X_ds.shape[0], ef_construction=200, M=16) p_ds.add_items(X_ds) p_ds.set_ef(50) new_superclust_index_ds = {} for en_item, item in enumerate(ci_list): labelsq, distances = p_ds.knn_query(p0.data[item, :], k=1) # new_superclust_index_ds.append(labelsq[0][0]) new_superclust_index_ds.update({en_item: labelsq[0][0]}) # print('new_superclust_index_ds',new_superclust_index_ds) return new_superclust_index_ds def sc_loc_ofsuperCluster_embeddedspace(embedding, p0, p1, idx): # ci_list: single cell location of average location of supercluster based on embedded space hnsw # idx is the indices of the subsampled elements print("dict of terminal state pairs, Super: sub: ", p1.dict_terminal_super_sub_pairs) knn_hnsw = hnswlib.Index(space='l2', dim=embedding.shape[1]) knn_hnsw.init_index(max_elements=embedding.shape[0], ef_construction=200, M=16) knn_hnsw.add_items(embedding) knn_hnsw.set_ef(50) p0_labels = np.asarray(p0.labels)[idx] p1_labels = np.asarray(p1.labels)[idx] p1_sc_markov_pt = list(np.asarray(p1.single_cell_pt_markov)[idx]) p0_sc_markov_pt = list(np.asarray(p0.single_cell_pt_markov)[idx]) ci_list = [] ci_dict = {} for ci in list(set(p0_labels)): if ci in p1.revised_super_terminal_clusters: print('ci is in ', ci, 'terminal clus') loc_i = np.where(p1_labels == p1.dict_terminal_super_sub_pairs[ci])[0] val_pt = [p1_sc_markov_pt[i] for i in loc_i] th_pt = np.percentile(val_pt, 80) loc_i = [loc_i[i] for i in range(len(val_pt)) if val_pt[i] >= th_pt] x = [embedding[xi, 0] for xi in loc_i] y = [embedding[yi, 1] for yi in loc_i] elif ci in p0.root: if len(p0.root) > 1: print('ci is in ', ci, 'Root') loc_i = np.where(p0_labels == ci)[0] val_pt = [p0_sc_markov_pt[i] for i in loc_i] else: loc_root = np.where(np.asarray(p0.root) == ci)[0][0] p1_root_label = p1.root[loc_root] loc_i = np.where(np.asarray(p1_labels) == p1_root_label)[0] val_pt = [p1_sc_markov_pt[i] for i in loc_i] th_pt = np.percentile(val_pt, 20) loc_i = [loc_i[i] for i in range(len(val_pt)) if val_pt[i] <= th_pt] x = [embedding[xi, 0] for xi in loc_i] y = [embedding[yi, 1] for yi in loc_i] else: print('ci is in ', ci, 'not root , not terminal clus') loc_i = np.where(p0_labels == ci)[0] x = [embedding[xi, 0] for xi in loc_i] y = [embedding[yi, 1] for yi in loc_i] labelsq, distancesq = knn_hnsw.knn_query(np.array([np.mean(x), np.mean(y)]), k=1) ci_list.append(labelsq[0][0]) ci_dict[ci] = labelsq[0][0] print('sc_loc nn clusterp0', ci, np.mean(x), np.mean(y)) print(embedding[labelsq[0][0], 0], embedding[labelsq[0][0], 1]) return knn_hnsw, ci_dict def make_knn_embeddedspace(embedding): # knn struct built in the embedded space to be used for drawing the lineage trajectories onto the 2D plot knn_hnsw = hnswlib.Index(space='l2', dim=embedding.shape[1]) knn_hnsw.init_index(max_elements=embedding.shape[0], ef_construction=200, M=16) knn_hnsw.add_items(embedding) knn_hnsw.set_ef(50) return knn_hnsw def draw_sc_evolution_trajectory_dijkstra(p1, embedding, knn_hnsw, G, idx, cmap_name='plasma'): # G is the igraph knn (low K) used for shortest path in high dim space. no idx needed as it's made on full sample # knn_hnsw is the knn made in the embedded space used for query to find the nearest point in the downsampled embedding # that corresponds to the single cells in the full graph # embedding is the full or downsampled 2D representation of the full dataset. idx is the list of indices of the full dataset for which the embedding is available # idx is the selected indices of the downsampled samples used in the visualization y_root = [] x_root = [] root1_list = [] p1_sc_bp = p1.single_cell_bp[idx, :] p1_labels = np.asarray(p1.labels)[idx] p1_sc_pt_markov = list(np.asarray(p1.single_cell_pt_markov)[idx]) p1_cc = p1.connected_comp_labels X_data = p1.data # the input data (sometimes this is the PCA space) with all samples X_ds = X_data[idx, :] p_ds = hnswlib.Index(space='l2', dim=X_ds.shape[1]) p_ds.init_index(max_elements=X_ds.shape[0], ef_construction=200, M=16) p_ds.add_items(X_ds) p_ds.set_ef(50) for ii, r_i in enumerate(p1.root): loc_i = np.where(p1_labels == p1.root[ii])[0] x = [embedding[xi, 0] for xi in loc_i] y = [embedding[yi, 1] for yi in loc_i] labels_root, distances_root = knn_hnsw.knn_query(np.array([np.mean(x), np.mean(y)]), k=1) # sc location in embedded space of root cell x_root.append(embedding[labels_root, 0][0]) y_root.append(embedding[labels_root, 1][0]) labelsroot1, distances1 = p1.knn_struct.knn_query(X_ds[labels_root[0][0], :], k=1) # index of sc-root-cell in the full-PCA space. Need for path root1_list.append(labelsroot1[0][0]) # single-cell branch probability evolution probability for i, ti in enumerate(p1.terminal_clusters): fig, ax = plt.subplots() plot_sc_pb(ax, embedding, p1_sc_bp[:, i], ti, cmap_name=cmap_name) loc_i = np.where(p1_labels == ti)[0] val_pt = [p1_sc_pt_markov[i] for i in loc_i] th_pt = np.percentile(val_pt, 50) # 50 loc_i = [loc_i[i] for i in range(len(val_pt)) if val_pt[i] >= th_pt] x = [embedding[xi, 0] for xi in loc_i] # location of sc nearest to average location of terminal clus in the EMBEDDED space y = [embedding[yi, 1] for yi in loc_i] labels, distances = knn_hnsw.knn_query(np.array([np.mean(x), np.mean(y)]), k=1) # knn_hnsw is knn of embedded space x_sc = embedding[labels[0], 0] # terminal sc location in the embedded space y_sc = embedding[labels[0], 1] start_time = time.time() labelsq1, distances1 = p1.knn_struct.knn_query(X_ds[labels[0][0], :], k=1) # find the nearest neighbor in the PCA-space full graph path = G.get_shortest_paths(root1_list[p1_cc[ti]], to=labelsq1[0][0]) # weights='weight') # G is the knn of all sc points path_idx = [] # find the single-cell which is nearest to the average-location of a terminal cluster # get the nearest-neighbor in this downsampled PCA-space graph. These will make the new path-way points path = path[0] # clusters of path cluster_path = [] for cell_ in path: cluster_path.append(p1.labels[cell_]) # print(colored('cluster_path', 'green'), colored('terminal state: ', 'blue'), ti, cluster_path) revised_cluster_path = [] revised_sc_path = [] for enum_i, clus in enumerate(cluster_path): num_instances_clus = cluster_path.count(clus) if (clus == cluster_path[0]) | (clus == cluster_path[-1]): revised_cluster_path.append(clus) revised_sc_path.append(path[enum_i]) else: if num_instances_clus > 1: revised_cluster_path.append(clus) revised_sc_path.append(path[enum_i]) print(colored('Cluster-path', 'green'), colored('terminal state: ', 'blue'), ti, revised_cluster_path) path = revised_sc_path # (based on hi-dim PCA KNN) #find the single-cells in the original high-dimensional path that correspond to the closest single-cells in the downsampled space for pii in path: labelsq, distances = p_ds.knn_query(X_data[pii, :], k=1) path_idx.append(labelsq[0][0]) ## for the cells in the downsampled path, find the corresponding clusters downsampled_cluster_idx = [] for clus_ in path_idx: downsampled_cluster_idx.append(p1_labels[clus_]) print(colored('Cluster-path in downsampled embedded space (if visualization is performed on downsampled input)', 'green'), colored('terminal state: ', 'blue'), ti,downsampled_cluster_idx) path = path_idx n_orange = len(path) orange_m = np.zeros((n_orange, 3)) for enum_point, point in enumerate(path): # ax.text(embedding[point, 0], embedding[point, 1], 'D ' + str(enum_point), color='blue', fontsize=8) orange_m[enum_point, 0] = embedding[point, 0] orange_m[enum_point, 1] = embedding[point, 1] orange_m[enum_point, 2] = p1_sc_pt_markov[point] from sklearn.neighbors import NearestNeighbors k_orange = min(3, n_orange) # increasing can smoothen in simple trajectories (Toy) nbrs = NearestNeighbors(n_neighbors=k_orange, algorithm='ball_tree').fit( orange_m[:, 0:]) # make a knn in low-dim space using points of path in embedded space distances, indices = nbrs.kneighbors(orange_m[:, 0:]) row_list = [] col_list = [] dist_list = [] for i_or in range(n_orange): for j_or in range(1, k_orange): row_list.append(i_or) col_list.append(indices[i_or, j_or]) dist_list.append(distances[i_or, j_or]) print('target number ' + str(ti)) orange_adjacency_knn = csr_matrix((np.array(dist_list), (np.array(row_list), np.array(col_list))), shape=(n_orange, n_orange)) n_mst, comp_labels_mst = connected_components(csgraph=orange_adjacency_knn, directed=False, return_labels=True) for enum_point, point in enumerate(path): # [0]): orange_m[enum_point, 2] = p1_sc_pt_markov[point] * p1_sc_pt_markov[ point] * 2 while n_mst > 1: comp_root = comp_labels_mst[0] min_ed = 9999999 loc_comp_i = np.where(comp_labels_mst == comp_root)[0] loc_comp_noti = np.where(comp_labels_mst != comp_root)[0] orange_pt_val = [orange_m[cc, 2] for cc in loc_comp_i] loc_comp_i_revised = [loc_comp_i[cc] for cc in range(len(orange_pt_val)) if orange_pt_val[cc] >= np.percentile(orange_pt_val, 70)] if len(loc_comp_i_revised)<3: loc_comp_i_revised = loc_comp_i #print('len loc_compi and loc_notcompi',len(loc_comp_i_revised), len(loc_comp_noti)) for nn_i in loc_comp_i_revised: ed = euclidean_distances(orange_m[nn_i, :].reshape(1, -1), orange_m[loc_comp_noti]) if np.min(ed) < min_ed: ed_where_min = np.where(ed[0] == np.min(ed))[0][0] min_ed = np.min(ed) ed_loc_end = loc_comp_noti[ed_where_min] ed_loc_start = nn_i #print('Connecting components before sc-bp-GAM: the closest pair of points', ed_loc_start, ed_loc_end) orange_adjacency_knn[ed_loc_start, ed_loc_end] = min_ed n_mst, comp_labels_mst = connected_components(csgraph=orange_adjacency_knn, directed=False, return_labels=True) if n_mst == 1: # if no disconnected components in the graph #now draw the shortest path along the knn of embedding points along the path (orange_sources, orange_targets) = orange_adjacency_knn.nonzero() orange_edgelist = list(zip(orange_sources.tolist(), orange_targets.tolist())) G_orange = ig.Graph(n=orange_adjacency_knn.shape[0], edges=orange_edgelist, edge_attrs={'weight': orange_adjacency_knn.data.tolist()}, ) path_orange = G_orange.get_shortest_paths(0, to=orange_adjacency_knn.shape[0] - 1, weights='weight')[0] len_path_orange = len(path_orange) for path_i in range(len_path_orange - 1): path_x_start = orange_m[path_orange[path_i], 0] path_x_end = orange_m[path_orange[path_i + 1], 0] orange_x = [orange_m[path_orange[path_i], 0], orange_m[path_orange[path_i + 1], 0]] orange_minx = min(orange_x) orange_maxx = max(orange_x) orange_y = [orange_m[path_orange[path_i], 1], orange_m[path_orange[path_i + 1], 1]] orange_miny = min(orange_y) orange_maxy = max(orange_y) orange_embedding_sub = embedding[ ((embedding[:, 0] <= orange_maxx) & (embedding[:, 0] >= orange_minx)) & ( (embedding[:, 1] <= orange_maxy) & ((embedding[:, 1] >= orange_miny)))] if (orange_maxy - orange_miny > 5) | (orange_maxx - orange_minx > 5): orange_n_reps = 150 else: orange_n_reps = 100 or_reps = np.repeat(np.array([[orange_x[0], orange_y[0]]]), orange_n_reps, axis=0) orange_embedding_sub = np.concatenate((orange_embedding_sub, or_reps), axis=0) or_reps = np.repeat(np.array([[orange_x[1], orange_y[1]]]), orange_n_reps, axis=0) orange_embedding_sub = np.concatenate((orange_embedding_sub, or_reps), axis=0) orangeGam = pg.LinearGAM(n_splines=8, spline_order=3, lam=10, verbose=False).fit(orange_embedding_sub[:, 0], orange_embedding_sub[:, 1]) nx_spacing = 100 orange_GAM_xval = np.linspace(orange_minx, orange_maxx, nx_spacing * 2) yg_orange = orangeGam.predict(X=orange_GAM_xval) ax.plot(orange_GAM_xval, yg_orange, color='dimgrey', linewidth=2, zorder=3, linestyle=(0, (5, 2, 1, 2)), dash_capstyle='round') cur_x1 = orange_GAM_xval[-1] cur_y1 = yg_orange[-1] cur_x2 = orange_GAM_xval[0] cur_y2 = yg_orange[0] if path_i >= 1: for mmddi in range(2): xy11 = euclidean_distances(np.array([cur_x1, cur_y1]).reshape(1, -1), np.array([prev_x1, prev_y1]).reshape(1, -1)) xy12 = euclidean_distances(np.array([cur_x1, cur_y1]).reshape(1, -1), np.array([prev_x2, prev_y2]).reshape(1, -1)) xy21 = euclidean_distances(np.array([cur_x2, cur_y2]).reshape(1, -1), np.array([prev_x1, prev_y1]).reshape(1, -1)) xy22 = euclidean_distances(np.array([cur_x2, cur_y2]).reshape(1, -1), np.array([prev_x2, prev_y2]).reshape(1, -1)) mmdd_temp_array = np.asarray([xy11, xy12, xy21, xy22]) mmdd_loc = np.where(mmdd_temp_array == np.min(mmdd_temp_array))[0][0] if mmdd_loc == 0: ax.plot([cur_x1, prev_x1], [cur_y1, prev_y1], color='black', linestyle=(0, (5, 2, 1, 2)), dash_capstyle='round') if mmdd_loc == 1: ax.plot([cur_x1, prev_x2], [cur_y1, prev_y2], color='black', linestyle=(0, (5, 2, 1, 2)), dash_capstyle='round') if mmdd_loc == 2: ax.plot([cur_x2, prev_x1], [cur_y2, prev_y1], color='black', linestyle=(0, (5, 2, 1, 2)), dash_capstyle='round') if mmdd_loc == 3: ax.plot([cur_x2, prev_x2], [cur_y2, prev_y2], color='black', linestyle=(0, (5, 2, 1, 2)), dash_capstyle='round') if (path_x_start > path_x_end): direction_arrow_orange = -1 # going LEFT if (path_x_start <= path_x_end): direction_arrow_orange = 1 # going RIGHT if (abs( path_x_start - path_x_end) > 2.5): # |(abs(orange_m[path_i, 2] - orange_m[path_i + 1, 1]) > 1)): if (direction_arrow_orange == -1): # & : ax.arrow(orange_GAM_xval[nx_spacing], yg_orange[nx_spacing], orange_GAM_xval[nx_spacing - 1] - orange_GAM_xval[nx_spacing], yg_orange[nx_spacing - 1] - yg_orange[nx_spacing], shape='full', lw=0, length_includes_head=True, head_width=0.5, color='dimgray', zorder=3) if (direction_arrow_orange == 1): # &(abs(orange_m[path_i,0]-orange_m[path_i+1,0])>0.5): ax.arrow(orange_GAM_xval[nx_spacing], yg_orange[nx_spacing], orange_GAM_xval[nx_spacing + 1] - orange_GAM_xval[nx_spacing], yg_orange[nx_spacing + 1] - yg_orange[nx_spacing], shape='full', lw=0, length_includes_head=True, head_width=0.5, color='dimgray', zorder=3) prev_x1 = cur_x1 prev_y1 = cur_y1 prev_x2 = cur_x2 prev_y2 = cur_y2 ax.scatter(x_sc, y_sc, color='pink', zorder=3, label=str(ti), s=22) return def get_biased_weights(edgelist, weights, pt, round_no=1): # small nu means less biasing (0.5 is quite mild) # larger nu (in our case 1/nu) means more aggressive biasing https://en.wikipedia.org/wiki/Generalised_logistic_function bias_weight = [] if round_no == 1: # using the pseudotime calculated from lazy-jumping walk b = 1 else: # using the refined MCMC Psuedotimes before calculating lineage likelihood paths b = 20 K = 1 c = 0 C = 1 nu = 1 high_weights_th = np.mean(weights) high_pt_th = np.percentile(np.asarray(pt), 80) loc_high_weights = np.where(weights > high_weights_th)[0] loc_high_pt = np.where(np.asarray(pt) > high_pt_th)[0] for i in loc_high_weights: start = edgelist[i][0] end = edgelist[i][1] if (start in loc_high_pt) | (end in loc_high_pt): weights[i] = 0.5 * np.mean(weights) upper_lim = np.percentile(weights, 90) # 80 lower_lim = np.percentile(weights, 10) # 20 weights = [i if i <= upper_lim else upper_lim for i in weights] weights = [i if i >= lower_lim else lower_lim for i in weights] for i, (start, end) in enumerate(edgelist): Pt_a = pt[start] Pt_b = pt[end] P_ab = weights[i] t_ab = Pt_a - Pt_b Bias_ab = K / ((C + math.exp(b * (t_ab + c)))) ** nu new_weight = (Bias_ab * P_ab) bias_weight.append(new_weight) return list(bias_weight) def expected_num_steps(start_i, N): n_t = N.shape[0] N_steps = np.dot(N, np.ones(n_t)) n_steps_i = N_steps[start_i] return n_steps_i def absorption_probability(N, R, absorption_state_j): M = np.dot(N, R) vec_prob_end_in_j = M[:, absorption_state_j] return M, vec_prob_end_in_j def draw_trajectory_gams(X_dimred, sc_supercluster_nn, cluster_labels, super_cluster_labels, super_edgelist, x_lazy, alpha_teleport, projected_sc_pt, true_label, knn, ncomp, final_super_terminal, sub_terminal_clusters, title_str="hitting times", super_root=[0], draw_all_curves = True,arrow_width_scale_factor=15): X_dimred=X_dimred*1./np.max(X_dimred, axis=0) x = X_dimred[:, 0] y = X_dimred[:, 1] max_x = np.percentile(x, 90) noise0 = max_x / 1000 df = pd.DataFrame({'x': x, 'y': y, 'cluster': cluster_labels, 'super_cluster': super_cluster_labels, 'projected_sc_pt': projected_sc_pt}, columns=['x', 'y', 'cluster', 'super_cluster', 'projected_sc_pt']) df_mean = df.groupby('cluster', as_index=False).mean() sub_cluster_isin_supercluster = df_mean[['cluster', 'super_cluster']] sub_cluster_isin_supercluster = sub_cluster_isin_supercluster.sort_values(by='cluster') sub_cluster_isin_supercluster['int_supercluster'] = sub_cluster_isin_supercluster['super_cluster'].round(0).astype( int) df_super_mean = df.groupby('super_cluster', as_index=False).mean() pt = df_super_mean['projected_sc_pt'].values pt_int = [int(i) for i in pt] pt_str = [str(i) for i in pt_int] pt_sub = [str(int(i)) for i in df_mean['projected_sc_pt'].values] f, (ax1, ax2) = plt.subplots(1, 2, sharey=True,figsize=[20, 10]) num_true_group = len(set(true_label)) num_cluster = len(set(super_cluster_labels)) line = np.linspace(0, 1, num_true_group) for color, group in zip(line, sorted(set(true_label))): where = np.where(np.array(true_label) == group)[0] ax1.scatter(X_dimred[where, 0], X_dimred[where, 1], label=group, c=np.asarray(plt.cm.jet(color)).reshape(-1, 4), alpha=0.5, s=10) # 0.5 and 4 ax1.legend(fontsize=6) ax1.set_title('true labels, ncomps:' + str(ncomp) + '. knn:' + str(knn)) G_orange = ig.Graph(n=num_cluster, edges=super_edgelist) ll_ = [] #this can be activated if you intend to simplify the curves for fst_i in final_super_terminal: #print('draw traj gams:', G_orange.get_shortest_paths(super_root[0], to=fst_i)) path_orange = G_orange.get_shortest_paths(super_root[0], to=fst_i)[0] len_path_orange = len(path_orange) for enum_edge, edge_fst in enumerate(path_orange): if enum_edge < (len_path_orange - 1): ll_.append((edge_fst, path_orange[enum_edge + 1])) if draw_all_curves == True: edges_to_draw = super_edgelist #default is drawing all super-edges else: edges_to_draw = list(set(ll_)) for e_i, (start, end) in enumerate(edges_to_draw): # enumerate(list(set(ll_))):# : use the ll_ if you want to simplify the curves #for e_i, (start, end) in enumerate(list(set(ll_))):# : use the ll_ if you want to simplify the curves if pt[start] >= pt[end]: temp = end end = start start = temp x_i_start = df[df['super_cluster'] == start]['x'].values y_i_start = df[df['super_cluster'] == start]['y'].values x_i_end = df[df['super_cluster'] == end]['x'].values y_i_end = df[df['super_cluster'] == end]['y'].values direction_arrow = 1 super_start_x = X_dimred[sc_supercluster_nn[start], 0] super_end_x = X_dimred[sc_supercluster_nn[end], 0] super_start_y = X_dimred[sc_supercluster_nn[start], 1] super_end_y = X_dimred[sc_supercluster_nn[end], 1] if super_start_x > super_end_x: direction_arrow = -1 ext_maxx = False minx = min(super_start_x, super_end_x) maxx = max(super_start_x, super_end_x) miny = min(super_start_y, super_end_y) maxy = max(super_start_y, super_end_y) x_val = np.concatenate([x_i_start, x_i_end]) y_val = np.concatenate([y_i_start, y_i_end]) idx_keep = np.where((x_val <= maxx) & (x_val >= minx))[ 0] idy_keep = np.where((y_val <= maxy) & (y_val >= miny))[ 0] idx_keep = np.intersect1d(idy_keep, idx_keep) x_val = x_val[idx_keep] y_val = y_val[idx_keep] super_mid_x = (super_start_x + super_end_x) / 2 super_mid_y = (super_start_y + super_end_y) / 2 from scipy.spatial import distance very_straight = False if abs(minx - maxx) <= 1: very_straight = True straight_level = 10 noise = noise0 x_super = np.array( [super_start_x, super_end_x, super_start_x, super_end_x, super_start_x, super_end_x, super_start_x, super_end_x, super_start_x + noise, super_end_x + noise, super_start_x - noise, super_end_x - noise, super_mid_x]) y_super = np.array( [super_start_y, super_end_y, super_start_y, super_end_y, super_start_y, super_end_y, super_start_y, super_end_y, super_start_y + noise, super_end_y + noise, super_start_y - noise, super_end_y - noise, super_mid_y]) else: straight_level = 3 noise = noise0 x_super = np.array( [super_start_x, super_end_x, super_start_x, super_end_x, super_start_x, super_end_x, super_start_x, super_end_x, super_start_x + noise, super_end_x + noise, super_start_x - noise, super_end_x - noise]) y_super = np.array( [super_start_y, super_end_y, super_start_y, super_end_y, super_start_y, super_end_y, super_start_y, super_end_y, super_start_y + noise, super_end_y + noise, super_start_y - noise, super_end_y - noise]) for i in range(straight_level): # DO THE SAME FOR A MIDPOINT TOO y_super = np.concatenate([y_super, y_super]) x_super = np.concatenate([x_super, x_super]) list_selected_clus = list(zip(x_val, y_val)) if (len(list_selected_clus) >= 1) & (very_straight == True): dist = distance.cdist([(super_mid_x, super_mid_y)], list_selected_clus, 'euclidean') if len(list_selected_clus) >= 2: k = 2 else: k = 1 midpoint_loc = dist[0].argsort()[:k] midpoint_xy = [] for i in range(k): midpoint_xy.append(list_selected_clus[midpoint_loc[i]]) noise = noise0 * 2 if k == 1: mid_x = np.array([midpoint_xy[0][0], midpoint_xy[0][0] + noise, midpoint_xy[0][ 0] - noise]) mid_y = np.array([midpoint_xy[0][1], midpoint_xy[0][1] + noise, midpoint_xy[0][ 1] - noise]) if k == 2: mid_x = np.array( [midpoint_xy[0][0], midpoint_xy[0][0] + noise, midpoint_xy[0][0] - noise, midpoint_xy[1][0], midpoint_xy[1][0] + noise, midpoint_xy[1][0] - noise]) mid_y = np.array( [midpoint_xy[0][1], midpoint_xy[0][1] + noise, midpoint_xy[0][1] - noise, midpoint_xy[1][1], midpoint_xy[1][1] + noise, midpoint_xy[1][1] - noise]) for i in range(3): mid_x = np.concatenate([mid_x, mid_x]) mid_y = np.concatenate([mid_y, mid_y]) x_super = np.concatenate([x_super, mid_x]) y_super = np.concatenate([y_super, mid_y]) x_val = np.concatenate([x_val, x_super]) y_val = np.concatenate([y_val, y_super]) x_val = x_val.reshape((len(x_val), -1)) y_val = y_val.reshape((len(y_val), -1)) xp = np.linspace(minx, maxx, 500) gam50 = pg.LinearGAM(n_splines=4, spline_order=3, lam=10).gridsearch(x_val, y_val) XX = gam50.generate_X_grid(term=0, n=500) preds = gam50.predict(XX) if ext_maxx == False: idx_keep = np.where((xp <= (maxx)) & (xp >= (minx)))[0] else: idx_keep = np.where((xp <= (maxx)) & (xp >= (minx)))[0] ax2.plot(XX, preds, linewidth=3.5, c='#323538')#1.5 mean_temp = np.mean(xp[idx_keep]) closest_val = xp[idx_keep][0] closest_loc = idx_keep[0] for i, xp_val in enumerate(xp[idx_keep]): if abs(xp_val - mean_temp) < abs(closest_val - mean_temp): closest_val = xp_val closest_loc = idx_keep[i] step = 1 head_width = noise * arrow_width_scale_factor #arrow_width needs to be adjusted sometimes # 40#30 ##0.2 #0.05 for mESC #0.00001 (#for 2MORGAN and others) # 0.5#1 if direction_arrow == 1: ax2.arrow(xp[closest_loc], preds[closest_loc], xp[closest_loc + step] - xp[closest_loc], preds[closest_loc + step] - preds[closest_loc], shape='full', lw=0, length_includes_head=False, head_width=head_width, color='#323538') # , head_starts_at_zero = direction_arrow ) else: ax2.arrow(xp[closest_loc], preds[closest_loc], xp[closest_loc - step] - xp[closest_loc], preds[closest_loc - step] - preds[closest_loc], shape='full', lw=0, length_includes_head=False, head_width=head_width, color='#323538') # dimgray head_width=head_width c_edge = [] width_edge = [] pen_color = [] super_cluster_label = [] terminal_count_ = 0 dot_size = [] for i in sc_supercluster_nn: if i in final_super_terminal: print('super cluster', i, 'is a super terminal with sub_terminal cluster', sub_terminal_clusters[terminal_count_]) width_edge.append(2) c_edge.append('yellow') # ('yellow') pen_color.append('black') super_cluster_label.append('TS' + str(sub_terminal_clusters[terminal_count_])) # +'('+str(i)+')') dot_size.append(60) terminal_count_ = terminal_count_ + 1 else: width_edge.append(0) c_edge.append('black') pen_color.append('red') super_cluster_label.append(str(' ')) # i dot_size.append(00) # 20 ax2.set_title('lazy:' + str(x_lazy) + ' teleport' + str(alpha_teleport) + 'super_knn:' + str(knn)) ax2.scatter(X_dimred[:, 0], X_dimred[:, 1], c=projected_sc_pt, cmap='viridis_r', alpha=0.8, s=12) # alpha=0.6, s=10 count_ = 0 loci = [sc_supercluster_nn[key] for key in sc_supercluster_nn] for i, c, w, pc, dsz in zip(loci, c_edge, width_edge, pen_color, dot_size): # sc_supercluster_nn ax2.scatter(X_dimred[i, 0], X_dimred[i, 1], c='black', s=dsz, edgecolors=c, linewidth=w) count_ = count_ + 1 plt.title(title_str) return def csr_mst(adjacency_matrix): # return minimum spanning tree from adjacency matrix (csr) Tcsr = adjacency_matrix.copy() n_components_mst, comp_labels_mst = connected_components(csgraph=Tcsr, directed=False, return_labels=True) # print('number of components before mst', n_components_mst) # print('len Tcsr data', len(Tcsr.data)) Tcsr.data = -1 * Tcsr.data Tcsr.data = Tcsr.data - np.min(Tcsr.data) Tcsr.data = Tcsr.data + 1 # print('len Tcsr data', len(Tcsr.data)) Tcsr = minimum_spanning_tree(Tcsr) # adjacency_matrix) n_components_mst, comp_labels_mst = connected_components(csgraph=Tcsr, directed=False, return_labels=True) # print('number of components after mst', n_components_mst) Tcsr = (Tcsr + Tcsr.T) * 0.5 # make symmetric # print('number of components after symmetric mst', n_components_mst) # print('len Tcsr data', len(Tcsr.data)) return Tcsr def connect_all_components(MSTcsr, cluster_graph_csr, adjacency_matrix): # connect forest of MSTs (csr) n_components, comp_labels = connected_components(csgraph=cluster_graph_csr, directed=False, return_labels=True) while n_components > 1: sub_td = MSTcsr[comp_labels == 0, :][:, comp_labels != 0] # print('minimum value of link connecting components', np.min(sub_td.data)) locxy = scipy.sparse.find(MSTcsr == np.min(sub_td.data)) for i in range(len(locxy[0])): if (comp_labels[locxy[0][i]] == 0) & (comp_labels[locxy[1][i]] != 0): x = locxy[0][i] y = locxy[1][i] minval = adjacency_matrix[x, y] cluster_graph_csr[x, y] = minval n_components, comp_labels = connected_components(csgraph=cluster_graph_csr, directed=False, return_labels=True) #print('number of connected components after reconnecting ', n_components) return cluster_graph_csr def pruning_clustergraph(adjacency_matrix, global_pruning_std=1, max_outgoing=30, preserve_disconnected=True, preserve_disconnected_after_pruning=False): # neighbors in the adjacency matrix (neighbor-matrix) are not listed in in any order of proximity # larger pruning_std factor means less pruning # the mst is only used to reconnect components that become disconnect due to pruning #print('global pruning std', global_pruning_std, 'max outoing', max_outgoing) from scipy.sparse.csgraph import minimum_spanning_tree Tcsr = csr_mst(adjacency_matrix) initial_links_n = len(adjacency_matrix.data) n_components_0, comp_labels_0 = connected_components(csgraph=adjacency_matrix, directed=False, return_labels=True) print('number of components before pruning', n_components_0)#, comp_labels_0) adjacency_matrix = scipy.sparse.csr_matrix.todense(adjacency_matrix) row_list = [] col_list = [] weight_list = [] n_cells = adjacency_matrix.shape[0] rowi = 0 for i in range(adjacency_matrix.shape[0]): row = np.asarray(adjacency_matrix[i, :]).flatten() n_nonz = np.sum(row > 0) n_nonz = min(n_nonz, max_outgoing) to_keep_index = np.argsort(row)[::-1][0:n_nonz] # np.where(row>np.mean(row))[0]# # print('to keep', to_keep_index) updated_nn_weights = list(row[to_keep_index]) for ik in range(len(to_keep_index)): row_list.append(rowi) col_list.append(to_keep_index[ik]) dist = updated_nn_weights[ik] weight_list.append(dist) rowi = rowi + 1 final_links_n = len(weight_list) cluster_graph_csr = csr_matrix((np.array(weight_list), (np.array(row_list), np.array(col_list))), shape=(n_cells, n_cells)) sources, targets = cluster_graph_csr.nonzero() mask = np.zeros(len(sources), dtype=bool) cluster_graph_csr.data = cluster_graph_csr.data / (np.std(cluster_graph_csr.data)) # normalize threshold_global = np.mean(cluster_graph_csr.data) - global_pruning_std * np.std(cluster_graph_csr.data) # print('threshold global', threshold_global, ' mean:', np.mean(cluster_graph_csr.data)) mask |= (cluster_graph_csr.data < (threshold_global)) # smaller Jaccard weight means weaker edge cluster_graph_csr.data[mask] = 0 cluster_graph_csr.eliminate_zeros() # print('shape of cluster graph', cluster_graph_csr.shape) n_components, comp_labels = connected_components(csgraph=cluster_graph_csr, directed=False, return_labels=True) #print('number of connected components after pruning', n_components) #print('number of connected components after pruning', comp_labels) # print('n_components_0', n_components_0) n_components_preserve = n_components_0 if preserve_disconnected_after_pruning == True: n_components_preserve = n_components # if (n_components > n_components_0): print('n_components > n_components_0',n_components ,'is bigger than', n_components_0) if (preserve_disconnected == True) & (n_components > n_components_0): # preserve initial disconnected components Td = Tcsr.todense() Td[Td == 0] = 999.999 n_components_ = n_components while n_components_ > n_components_preserve: for i in range(n_components_preserve): loc_x = np.where(comp_labels_0 == i)[0] len_i = len(set(comp_labels[loc_x])) while len_i > 1: s = list(set(comp_labels[loc_x])) loc_notxx = np.intersect1d(loc_x, np.where((comp_labels != s[0]))[0]) loc_xx = np.intersect1d(loc_x, np.where((comp_labels == s[0]))[0]) sub_td = Td[loc_xx, :][:, loc_notxx] locxy = np.where(Td == np.min(sub_td)) for i in range(len(locxy[0])): if (comp_labels[locxy[0][i]] != comp_labels[locxy[1][i]]): x = locxy[0][i] y = locxy[1][i] minval = adjacency_matrix[x, y] cluster_graph_csr[x, y] = minval n_components_, comp_labels = connected_components(csgraph=cluster_graph_csr, directed=False, return_labels=True) loc_x = np.where(comp_labels_0 == i)[0] len_i = len(set(comp_labels[loc_x])) print('number of connected componnents after reconnecting ', n_components_) if (n_components > 1) & (preserve_disconnected == False): cluster_graph_csr = connect_all_components(Tcsr, cluster_graph_csr, adjacency_matrix) n_components, comp_labels = connected_components(csgraph=cluster_graph_csr, directed=False, return_labels=True) sources, targets = cluster_graph_csr.nonzero() edgelist = list(zip(sources, targets)) edgeweights = cluster_graph_csr.data / (np.std(cluster_graph_csr.data)) trimmed_n = (initial_links_n - final_links_n) * 100 / initial_links_n trimmed_n_glob = (initial_links_n - len(edgeweights))*100 / initial_links_n if global_pruning_std < 0.5: print("percentage links trimmed from local pruning relative to start {:.1f}".format(trimmed_n)) print("percentage links trimmed from global pruning relative to start {:.1f}".format(trimmed_n_glob)) return edgeweights, edgelist, comp_labels def get_sparse_from_igraph(graph, weight_attr=None): edges = graph.get_edgelist() if weight_attr is None: weights = [1] * len(edges) else: weights = graph.es[weight_attr] if not graph.is_directed(): edges.extend([(v, u) for u, v in edges]) weights.extend(weights) shape = graph.vcount() shape = (shape, shape) if len(edges) > 0: return csr_matrix((weights, zip(*edges)), shape=shape) else: return csr_matrix(shape) class VIA: def __init__(self, data, true_label=None, anndata=None, dist_std_local=2, jac_std_global='median', keep_all_local_dist='auto', too_big_factor=0.4, resolution_parameter=1.0, partition_type="ModularityVP", small_pop=10, jac_weighted_edges=True, knn=30, n_iter_leiden=5, random_seed=42, num_threads=-1, distance='l2', time_smallpop=15, super_cluster_labels=False, super_node_degree_list=False, super_terminal_cells=False, x_lazy=0.95, alpha_teleport=0.99, root_user="root_cluster", preserve_disconnected=True, dataset="humanCD34", super_terminal_clusters=[], do_impute_bool=False, is_coarse=True, csr_full_graph='', csr_array_locally_pruned='', ig_full_graph='', full_neighbor_array='', full_distance_array='', embedding=None, df_annot=None, preserve_disconnected_after_pruning=False, secondary_annotations=None, pseudotime_threshold_TS=30,cluster_graph_pruning_std = 0.15, visual_cluster_graph_pruning = 0.15,neighboring_terminal_states_threshold=2,num_mcmc_simulations=1300): # higher dist_std_local means more edges are kept # highter jac_std_global means more edges are kept if keep_all_local_dist == 'auto': if data.shape[0] > 50000: keep_all_local_dist = True # skips local pruning to increase speed else: keep_all_local_dist = False if resolution_parameter != 1: partition_type = "RBVP" # Reichardt and Bornholdt’s Potts model. Note that this is the same as ModularityVertexPartition when setting 𝛾 = 1 and normalising by 2m self.data = data self.true_label = true_label self.anndata = anndata self.dist_std_local = dist_std_local self.jac_std_global = jac_std_global ##0.15 is also a recommended value performing empirically similar to 'median' self.keep_all_local_dist = keep_all_local_dist self.too_big_factor = too_big_factor ##if a cluster exceeds this share of the entire cell population, then the PARC will be run on the large cluster. at 0.4 it does not come into play self.resolution_parameter = resolution_parameter self.partition_type = partition_type self.small_pop = small_pop # smallest cluster population to be considered a community self.jac_weighted_edges = jac_weighted_edges self.knn = knn self.n_iter_leiden = n_iter_leiden self.random_seed = random_seed # enable reproducible Leiden clustering self.num_threads = num_threads # number of threads used in KNN search/construction self.distance = distance # Euclidean distance 'l2' by default; other options 'ip' and 'cosine' self.time_smallpop = time_smallpop self.super_cluster_labels = super_cluster_labels self.super_node_degree_list = super_node_degree_list self.super_terminal_cells = super_terminal_cells self.x_lazy = x_lazy # 1-x = probability of staying in same node self.alpha_teleport = alpha_teleport # 1-alpha is probability of jumping self.root_user = root_user self.preserve_disconnected = preserve_disconnected self.dataset = dataset self.super_terminal_clusters = super_terminal_clusters self.do_impute_bool = do_impute_bool self.is_coarse = is_coarse self.csr_full_graph = csr_full_graph self.ig_full_graph = ig_full_graph self.csr_array_locally_pruned = csr_array_locally_pruned self.full_neighbor_array = full_neighbor_array self.full_distance_array = full_distance_array self.embedding = embedding self.df_annot = df_annot self.preserve_disconnected_after_pruning = preserve_disconnected_after_pruning self.secondary_annotations = secondary_annotations self.pseudotime_threshold_TS = pseudotime_threshold_TS self.cluster_graph_pruning_std = cluster_graph_pruning_std self.visual_cluster_graph_pruning = visual_cluster_graph_pruning self.neighboring_terminal_states_threshold = neighboring_terminal_states_threshold #number of neighbors of a terminal state has before it is eliminated as a TS self.num_mcmc_simulations = num_mcmc_simulations #number of mcmc simulations in second state of pseudotime computation def knngraph_visual(self, data_visual, knn_umap=15, downsampled=False): k_umap = knn_umap t0 = time.time() # neighbors in array are not listed in in any order of proximity if downsampled == False: self.knn_struct.set_ef(k_umap + 1) neighbor_array, distance_array = self.knn_struct.knn_query(self.data, k=k_umap) else: knn_struct_umap = self.make_knn_struct(visual=True, data_visual=data_visual) knn_struct_umap.set_ef(k_umap + 1) neighbor_array, distance_array = knn_struct_umap.knn_query(data_visual, k=k_umap) row_list = [] n_neighbors = neighbor_array.shape[1] n_cells = neighbor_array.shape[0] print('ncells and neighs', n_cells, n_neighbors) dummy = np.transpose(np.ones((n_neighbors, n_cells)) * range(0, n_cells)).flatten() print('dummy size', dummy.size) row_list.extend(list(np.transpose(np.ones((n_neighbors, n_cells)) * range(0, n_cells)).flatten())) row_min = np.min(distance_array, axis=1) row_sigma = np.std(distance_array, axis=1) distance_array = (distance_array - row_min[:, np.newaxis]) / row_sigma[:, np.newaxis] col_list = neighbor_array.flatten().tolist() distance_array = distance_array.flatten() distance_array = np.sqrt(distance_array) distance_array = distance_array * -1 weight_list = np.exp(distance_array) threshold = np.mean(weight_list) + 2 * np.std(weight_list) weight_list[weight_list >= threshold] = threshold weight_list = weight_list.tolist() print('weight list', len(weight_list)) graph = csr_matrix((np.array(weight_list), (np.array(row_list), np.array(col_list))), shape=(n_cells, n_cells)) graph_transpose = graph.T prod_matrix = graph.multiply(graph_transpose) graph = graph_transpose + graph - prod_matrix return graph def run_umap_hnsw(self, X_input, graph, n_components=2, alpha: float = 1.0, negative_sample_rate: int = 5, gamma: float = 1.0, spread=1.0, min_dist=0.1, init_pos='spectral', random_state=1, ): from umap.umap_ import find_ab_params, simplicial_set_embedding import matplotlib.pyplot as plt a, b = find_ab_params(spread, min_dist) print('a,b, spread, dist', a, b, spread, min_dist) t0 = time.time() X_umap = simplicial_set_embedding(data=X_input, graph=graph, n_components=n_components, initial_alpha=alpha, a=a, b=b, n_epochs=0, metric_kwds={}, gamma=gamma, negative_sample_rate=negative_sample_rate, init=init_pos, random_state=np.random.RandomState(random_state), metric='euclidean', verbose=1, densmap = False, output_dens=False, densmap_kwds={}) return X_umap def get_terminal_clusters(self, A, markov_pt, root_ai): n_ = A.shape[0] #number of states in the graph component if n_ <= 10: n_outlier_std = 3 if (n_ <= 40) & (n_ > 10): n_outlier_std = 2 if n_ >= 40: n_outlier_std = 2 # 1 pop_list = [] # print('get terminal', set(self.labels), np.where(self.labels == 0)) for i in list(set(self.labels)): pop_list.append(len(np.where(self.labels == i)[0])) # we weight the out-degree based on the population of clusters to avoid allowing small clusters to become the terminals based on population alone A_new = A.copy() for i in range(A.shape[0]): for j in range(A.shape[0]): A_new[i, j] = A[i, j] * (pop_list[i] + pop_list[j]) / (pop_list[i] * pop_list[j]) # make an igraph graph to compute the closeness g_dis = ig.Graph.Adjacency( (A_new > 0).tolist()) # need to manually add the weights as igraph treates A>0 as boolean g_dis.es['weights'] = 1 / A_new[A_new.nonzero()] # we want "distances" not weights for closeness and betweeness betweenness_score = g_dis.betweenness(weights='weights') betweenness_score_array = np.asarray(betweenness_score) betweenness_score_takeout_outlier = betweenness_score_array[betweenness_score_array < ( np.mean(betweenness_score_array) + n_outlier_std * np.std(betweenness_score_array))] betweenness_list = [i for i, score in enumerate(betweenness_score) if score < ( np.mean(betweenness_score_takeout_outlier) - 0 * np.std(betweenness_score_takeout_outlier))] closeness_score = g_dis.closeness(mode='ALL', cutoff=None, weights='weights', normalized=True) closeness_score_array = np.asarray(closeness_score) closeness_score_takeout_outlier = closeness_score_array[ closeness_score_array < (np.mean(closeness_score_array) + n_outlier_std * np.std(closeness_score_array))] closeness_list = [i for i, score in enumerate(closeness_score) if score < (np.mean(closeness_score_takeout_outlier) - 0 * np.std( closeness_score_takeout_outlier))] out_deg = A_new.sum(axis=1) out_deg = np.asarray(out_deg) outdegree_score_takeout_outlier = out_deg[out_deg < (np.mean(out_deg) + n_outlier_std * np.std(out_deg))] loc_deg = [i for i, score in enumerate(out_deg) if score < (np.mean(outdegree_score_takeout_outlier) - 0 * np.std(outdegree_score_takeout_outlier))] print('closeness shortlist', closeness_list) print('betweeness shortlist', betweenness_list) print('out degree shortlist', loc_deg) markov_pt = np.asarray(markov_pt) if n_ <= 10: loc_pt = np.where(markov_pt >= np.percentile(markov_pt, 50))[0] if (n_ <= 40) & (n_ > 10): loc_pt = np.where(markov_pt >= np.percentile(markov_pt, 10))[0] if n_ > 40: loc_pt = np.where(markov_pt >= np.percentile(markov_pt, 30))[0] terminal_clusters_1 = list(set(closeness_list) & set(betweenness_list)) terminal_clusters_2 = list(set(closeness_list) & set(loc_deg)) terminal_clusters_3 = list(set(betweenness_list) & set(loc_deg)) terminal_clusters = list(set(terminal_clusters_1) | set(terminal_clusters_2)) terminal_clusters = list(set(terminal_clusters) | set(terminal_clusters_3)) terminal_clusters = list(set(terminal_clusters) & set(loc_pt)) terminal_org = terminal_clusters.copy() #print('original terminal clusters', terminal_org) for terminal_i in terminal_org: if terminal_i in terminal_clusters: removed_terminal_i = False else: removed_terminal_i = True # print('terminal state', terminal_i) count_nn = 0 ts_neigh = [] neigh_terminal = np.where(A[:, terminal_i] > 0)[0] if neigh_terminal.size > 0: for item in neigh_terminal: if item in terminal_clusters: ts_neigh.append(item) count_nn = count_nn + 1 if n_ >= 10: if item == root_ai: # if the terminal state is a neighbor of if terminal_i in terminal_clusters: terminal_clusters.remove(terminal_i) print('we removed cluster', terminal_i, 'from the shortlist of terminal states ') removed_terminal_i = True if count_nn >=self.neighboring_terminal_states_threshold: #2 if removed_terminal_i == False: temp_remove = terminal_i temp_time = markov_pt[terminal_i] for to_remove_i in ts_neigh: if markov_pt[to_remove_i] < temp_time: temp_remove = to_remove_i temp_time = markov_pt[to_remove_i] terminal_clusters.remove(temp_remove) print('TS', terminal_i, 'had', self.neighboring_terminal_states_threshold,'or more neighboring terminal states, namely', ts_neigh, ' and so we removed,', temp_remove) #print('terminal_clusters', terminal_clusters) return terminal_clusters def compute_hitting_time(self, sparse_graph, root, x_lazy, alpha_teleport, number_eig=0): # 1- alpha is the probabilty of teleporting # 1- x_lazy is the probability of staying in current state (be lazy) beta_teleport = 2 * (1 - alpha_teleport) / (2 - alpha_teleport) N = sparse_graph.shape[0] print('start computing lazy-teleporting Expected Hitting Times') A = scipy.sparse.csr_matrix.todense(sparse_graph) # A is the adjacency matrix #print('is undirected graph symmetric', (A.transpose() == A).all()) lap = csgraph.laplacian(sparse_graph, normed=False) # compute regular laplacian (normed = False) to infer the degree matrix where D = L+A # see example and definition in the SciPy ref https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.laplacian.html A = scipy.sparse.csr_matrix.todense(lap) #print('is laplacian symmetric', (A.transpose() == A).all()) deg = sparse_graph + lap # Recall that L=D-A (modified for weighted where D_ii is sum of edge weights and A_ij is the weight of particular edge) deg.data = 1 / np.sqrt(deg.data) ##inv sqrt of degree matrix deg[deg == np.inf] = 0 norm_lap = csgraph.laplacian(sparse_graph, normed=True) # returns symmetric normalized D^-.5 xL x D^-.5 Id = np.zeros((N, N), float) np.fill_diagonal(Id, 1) norm_lap = scipy.sparse.csr_matrix.todense(norm_lap) eig_val, eig_vec = np.linalg.eig( norm_lap) # eig_vec[:,i] is eigenvector for eigenvalue eig_val[i] not eigh as this is only for symmetric. the eig vecs are not in decsending order if number_eig == 0: number_eig = eig_vec.shape[1] Greens_matrix = np.zeros((N, N), float) beta_norm_lap = np.zeros((N, N), float) Xu = np.zeros((N, N)) Xu[:, root] = 1 Id_Xv = np.zeros((N, N), int) np.fill_diagonal(Id_Xv, 1) Xv_Xu = Id_Xv - Xu start_ = 0 if alpha_teleport == 1: start_ = 1 # if there are no jumps (alph_teleport ==1), then the first term in beta-normalized Green's function will have 0 in denominator (first eigenvalue==0) for i in range(start_, number_eig): # 0 instead of 1th eg vec_i = eig_vec[:, i] factor = beta_teleport + 2 * eig_val[i] * x_lazy * (1 - beta_teleport) vec_i = np.reshape(vec_i, (-1, 1)) eigen_vec_mult = vec_i.dot(vec_i.T) Greens_matrix = Greens_matrix + ( eigen_vec_mult / factor) # Greens function is the inverse of the beta-normalized laplacian beta_norm_lap = beta_norm_lap + (eigen_vec_mult * factor) # beta-normalized laplacian deg = scipy.sparse.csr_matrix.todense(deg) temp = Greens_matrix.dot(deg) temp = deg.dot(temp) * beta_teleport hitting_matrix = np.zeros((N, N), float) diag_row = np.diagonal(temp) for i in range(N): hitting_matrix[i, :] = diag_row - temp[i, :] roundtrip_commute_matrix = hitting_matrix + hitting_matrix.T temp = Xv_Xu.dot(temp) final_hitting_times = np.diagonal( temp) ## number_eig x 1 vector of hitting times from root (u) to number_eig of other nodes roundtrip_times = roundtrip_commute_matrix[root, :] return abs(final_hitting_times), roundtrip_times def simulate_branch_probability(self, terminal_state, all_terminal_states, A, root, pt, num_sim=500): n_states = A.shape[0] ncpu = multiprocessing.cpu_count() if (ncpu == 1) | (ncpu == 2): n_jobs = 1 elif ncpu > 2: n_jobs = min(ncpu - 1, 5) # print('njobs', n_jobs) num_sim_pp = int(num_sim / n_jobs) # num of simulations per process jobs = [] manager = multiprocessing.Manager() q = manager.list() seed_list = list(range(n_jobs)) for i in range(n_jobs): cumstateChangeHist = np.zeros((1, n_states)) cumstateChangeHist_all = np.zeros((1, n_states)) process = multiprocessing.Process(target=prob_reaching_terminal_state1, args=( terminal_state, all_terminal_states, A, root, pt, num_sim_pp, q, cumstateChangeHist, cumstateChangeHist_all, seed_list[i])) jobs.append(process) for j in jobs: j.start() for j in jobs: j.join() cumhistory_vec = q[0][0] cumhistory_vec_all = q[0][1] count_reached = cumhistory_vec_all[0, terminal_state] for i in range(1, len(q)): cumhistory_vec = cumhistory_vec + q[i][0] cumhistory_vec_all = cumhistory_vec_all + q[i][1] count_reached = count_reached + q[i][1][0, terminal_state] print('From root', root, ' to Terminal state', terminal_state, 'is found', int(count_reached), ' times.') cumhistory_vec_all[cumhistory_vec_all == 0] = 1 prob_ = cumhistory_vec / cumhistory_vec_all np.set_printoptions(precision=3) if count_reached == 0: prob_[:, terminal_state] = 0 print('never reached state', terminal_state) else: loc_1 = np.where(prob_ == 1) loc_1 = loc_1[1] prob_[0, loc_1] = 0 # print('zerod out prob', prob_) temp_ = np.max(prob_) if temp_ == 0: temp_ = 1 prob_ = prob_ / min(1, 1.1 * temp_) prob_[0, loc_1] = 1 return list(prob_)[0] def simulate_markov(self, A, root): n_states = A.shape[0] P = A / A.sum(axis=1).reshape((n_states, 1)) # print('row normed P',P.shape, P, P.sum(axis=1)) x_lazy = self.x_lazy # 1-x is prob lazy alpha_teleport = self.alpha_teleport # bias_P is the transition probability matrix P = x_lazy * P + (1 - x_lazy) * np.identity(n_states) # print(P, P.sum(axis=1)) P = alpha_teleport * P + ((1 - alpha_teleport) * (1 / n_states) * (np.ones((n_states, n_states)))) # print('check prob of each row sum to one', P.sum(axis=1)) currentState = root state = np.zeros((1, n_states)) state[0, currentState] = 1 num_sim = self.num_mcmc_simulations #1300 # 1000 ncpu = multiprocessing.cpu_count() if (ncpu == 1) | (ncpu == 2): n_jobs = 1 elif ncpu > 2: n_jobs = min(ncpu - 1, 5) #print('njobs', n_jobs) num_sim_pp = int(num_sim / n_jobs) # num of simulations per process n_steps = int(2 * n_states) jobs = [] manager = multiprocessing.Manager() q = manager.list() for i in range(n_jobs): hitting_array = np.ones((P.shape[0], 1)) * 1000 process = multiprocessing.Process(target=simulate_markov_sub, args=(P, num_sim_pp, hitting_array, q, root)) jobs.append(process) for j in jobs: j.start() for j in jobs: j.join() print('ended all multiprocesses, will retrieve and reshape') hitting_array = q[0] for qi in q[1:]: hitting_array = np.append(hitting_array, qi, axis=1) # .get(), axis=1) # print('finished getting from queue', hitting_array.shape) hitting_array_final = np.zeros((1, n_states)) no_times_state_reached_array = np.zeros((1, n_states)) for i in range(n_states): rowtemp = hitting_array[i, :] no_times_state_reached_array[0, i] = np.sum(rowtemp != (n_steps + 1)) for i in range(n_states): rowtemp = hitting_array[i, :] no_times_state_reached = np.sum(rowtemp != (n_steps + 1)) if no_times_state_reached != 0: perc = np.percentile(rowtemp[rowtemp != n_steps + 1], 15) + 0.001 # 15 for Human and Toy # print('state ', i,' has perc' ,perc) hitting_array_final[0, i] = np.mean(rowtemp[rowtemp <= perc]) else: hitting_array_final[0, i] = (n_steps + 1) return hitting_array_final[0] def compute_hitting_time_onbias(self, laplacian, inv_sqr_deg, root, x_lazy, alpha_teleport, number_eig=0): # 1- alpha is the probabilty of teleporting # 1- x_lazy is the probability of staying in current state (be lazy) beta_teleport = 2 * (1 - alpha_teleport) / (2 - alpha_teleport) N = laplacian.shape[0] print('is laplacian of biased symmetric', (laplacian.transpose() == laplacian).all()) Id = np.zeros((N, N), float) np.fill_diagonal(Id, 1) # norm_lap = scipy.sparse.csr_matrix.todense(laplacian) eig_val, eig_vec = np.linalg.eig( laplacian) # eig_vec[:,i] is eigenvector for eigenvalue eig_val[i] not eigh as this is only for symmetric. the eig vecs are not in decsending order print('eig val', eig_val.shape) if number_eig == 0: number_eig = eig_vec.shape[1] print('number of eig vec', number_eig) Greens_matrix = np.zeros((N, N), float) beta_norm_lap = np.zeros((N, N), float) Xu = np.zeros((N, N)) Xu[:, root] = 1 Id_Xv = np.zeros((N, N), int) np.fill_diagonal(Id_Xv, 1) Xv_Xu = Id_Xv - Xu start_ = 0 if alpha_teleport == 1: start_ = 1 # if there are no jumps (alph_teleport ==1), then the first term in beta-normalized Green's function will have 0 in denominator (first eigenvalue==0) for i in range(start_, number_eig): # 0 instead of 1st eg # print(i, 'th eigenvalue is', eig_val[i]) vec_i = eig_vec[:, i] factor = beta_teleport + 2 * eig_val[i] * x_lazy * (1 - beta_teleport) vec_i = np.reshape(vec_i, (-1, 1)) eigen_vec_mult = vec_i.dot(vec_i.T) Greens_matrix = Greens_matrix + ( eigen_vec_mult / factor) # Greens function is the inverse of the beta-normalized laplacian beta_norm_lap = beta_norm_lap + (eigen_vec_mult * factor) # beta-normalized laplacian temp = Greens_matrix.dot(inv_sqr_deg) temp = inv_sqr_deg.dot(temp) * beta_teleport hitting_matrix = np.zeros((N, N), float) diag_row = np.diagonal(temp) for i in range(N): hitting_matrix[i, :] = diag_row - temp[i, :] roundtrip_commute_matrix = hitting_matrix + hitting_matrix.T temp = Xv_Xu.dot(temp) final_hitting_times = np.diagonal( temp) ## number_eig x 1 vector of hitting times from root (u) to number_eig of other nodes roundtrip_times = roundtrip_commute_matrix[root, :] return abs(final_hitting_times), roundtrip_times def project_branch_probability_sc(self, bp_array_clus, pt): print('start single cell projections of pseudotime and lineage likelihood') n_clus = len(list(set(self.labels))) labels = np.asarray(self.labels) n_cells = self.data.shape[0] if self.data.shape[0] > 1000: knn_sc = 3 else: knn_sc = 10 neighbor_array, distance_array = self.knn_struct.knn_query(self.data, k=knn_sc) #print('shape of neighbor in project onto sc', neighbor_array.shape) #print('start initalize coo', time.ctime()) # weight_array = coo_matrix((n_cells, n_clus)).tocsr() # csr_matrix row_list = [] col_list = [] weight_list = [] irow = 0 #print('filling in weight array', time.ctime()) for row in neighbor_array: neighboring_clus = labels[row] for clus_i in set(list(neighboring_clus)): num_clus_i = np.sum(neighboring_clus == clus_i) wi = num_clus_i / knn_sc weight_list.append(wi) row_list.append(irow) col_list.append(clus_i) # weight_array[irow, clus_i] = wi irow = irow + 1 #print('start dot product', time.ctime()) weight_array = csr_matrix((np.array(weight_list), (np.array(row_list), np.array(col_list))), shape=(n_cells, n_clus)) bp_array_sc = weight_array.dot(bp_array_clus) bp_array_sc = bp_array_sc * 1. / np.max(bp_array_sc, axis=0) # divide cell by max value in that column # print('column max:',np.max(bp_array_sc, axis=0)) # print('sc bp array max', np.max(bp_array_sc)) # bp_array_sc = bp_array_sc/np.max(bp_array_sc) for i, label_ts in enumerate(list(self.terminal_clusters)): loc_i = np.where(np.asarray(self.labels) == label_ts)[0] loc_noti = np.where(np.asarray(self.labels) != label_ts)[0] if np.max(bp_array_sc[loc_noti, i]) > 0.8: bp_array_sc[loc_i, i] = 1.2 pt = np.asarray(pt) pt = np.reshape(pt, (n_clus, 1)) pt_sc = weight_array.dot(pt) pt_sc=pt_sc/np.amax(pt_sc) self.single_cell_bp = bp_array_sc self.single_cell_pt_markov = pt_sc.flatten() df_via_pt = pd.DataFrame(self.single_cell_pt_markov) return def project_branch_probability_sc_old(self, bp_array_clus, pt): labels = np.asarray(self.labels) n_cells = self.data.shape[0] if n_cells > 1000: knn_sc = 3 else: knn_sc = 10 neighbor_array, distance_array = self.knn_struct.knn_query(self.data, k=knn_sc) print('shape of neighbor in project onto single cell', neighbor_array.shape) n_clus = len(list(set(labels))) print('initialize csr') weight_array = csr_matrix((n_cells, n_clus)) # np.zeros((len(labels), n_clus)) print('filling in weight array') for irow, row in enumerate(neighbor_array): neighboring_clus = labels[row] for clus_i in set(list(neighboring_clus)): num_clus_i = np.sum(neighboring_clus == clus_i) wi = num_clus_i / knn_sc weight_array[irow, clus_i] = wi print('convert weight array in sc_project_bp to csr_matrix') bp_array_sc = weight_array.dot(bp_array_clus) bp_array_sc = bp_array_sc * 1. / np.max(bp_array_sc, axis=0) # divide cell by max value in that column for i, label_ts in enumerate(list(self.terminal_clusters)): loc_i = np.where(np.asarray(self.labels) == label_ts)[0] loc_noti = np.where(np.asarray(self.labels) != label_ts)[0] if np.max(bp_array_sc[loc_noti, i]) > 0.8: bp_array_sc[loc_i, i] = 1.2 pt = np.asarray(pt) pt = np.reshape(pt, (n_clus, 1)) pt_sc = weight_array.dot(pt) self.single_cell_bp = bp_array_sc self.single_cell_pt_markov = pt_sc.flatten() return def make_knn_struct(self, too_big=False, big_cluster=None, visual=False, data_visual=None): if visual == False: data = self.data else: data = data_visual if self.knn > 190: print(colored('please provide a lower K_in for KNN graph construction', 'red')) ef_query = max(100, self.knn + 1) # ef always should be >K. higher ef, more accuate query if too_big == False: num_dims = data.shape[1] n_elements = data.shape[0] p = hnswlib.Index(space=self.distance, dim=num_dims) # default to Euclidean distance p.set_num_threads(self.num_threads) # allow user to set threads used in KNN construction if n_elements < 10000: ef_param_const = min(n_elements - 10, 500) ef_query = ef_param_const else: ef_param_const = 200 if (num_dims > 30) & (n_elements <= 50000): p.init_index(max_elements=n_elements, ef_construction=ef_param_const, M=48) ## good for scRNA seq where dimensionality is high else: p.init_index(max_elements=n_elements, ef_construction=ef_param_const, M=30) p.add_items(data) if too_big == True: num_dims = big_cluster.shape[1] n_elements = big_cluster.shape[0] p = hnswlib.Index(space='l2', dim=num_dims) p.init_index(max_elements=n_elements, ef_construction=200, M=30) p.add_items(big_cluster) p.set_ef(ef_query) # ef should always be > k return p def make_csrmatrix_noselfloop(self, neighbor_array, distance_array, auto_=True): if auto_ == True: local_pruning_bool = not (self.keep_all_local_dist) #if local_pruning_bool == True: print(colored('commencing local pruning based on l2 (squared) at', 'blue'),colored(str(self.dist_std_local) + 's.dev above mean', 'green')) if auto_ == False: local_pruning_bool = False row_list = [] col_list = [] weight_list = [] neighbor_array = neighbor_array # not listed in in any order of proximity num_neigh = neighbor_array.shape[1] distance_array = np.sqrt(distance_array) n_neighbors = neighbor_array.shape[1] n_cells = neighbor_array.shape[0] rowi = 0 count_0dist = 0 discard_count = 0 if local_pruning_bool == True: # do some local pruning based on distance for row in neighbor_array: distlist = distance_array[rowi, :] to_keep = np.where(distlist <= np.mean(distlist) + self.dist_std_local * np.std(distlist))[0] # 0*std updated_nn_ind = row[np.ix_(to_keep)] updated_nn_weights = distlist[np.ix_(to_keep)] discard_count = discard_count + (num_neigh - len(to_keep)) for ik in range(len(updated_nn_ind)): if rowi != row[ik]: # remove self-loops row_list.append(rowi) col_list.append(updated_nn_ind[ik]) dist = updated_nn_weights[ik] if dist == 0: count_0dist = count_0dist + 1 weight_list.append(dist) rowi = rowi + 1 weight_list = np.asarray(weight_list) weight_list = 1. / (weight_list + 0.01) if local_pruning_bool == False: # dont prune based on distance row_list.extend(list(np.transpose(np.ones((n_neighbors, n_cells)) * range(0, n_cells)).flatten())) col_list = neighbor_array.flatten().tolist() weight_list = (1. / (distance_array.flatten() + 0.01)) weight_list = weight_list * (np.mean(distance_array) ** 2) weight_list = weight_list.tolist() csr_graph = csr_matrix((np.array(weight_list), (np.array(row_list), np.array(col_list))), shape=(n_cells, n_cells)) return csr_graph def func_mode(self, ll): # return MODE of list # If multiple items are maximal, the function returns the first one encountered. return max(set(ll), key=ll.count) def run_toobig_subPARC(self, X_data, jac_std_toobig=1, jac_weighted_edges=True): n_elements = X_data.shape[0] hnsw = self.make_knn_struct(too_big=True, big_cluster=X_data) if self.knn >= 0.8 * n_elements: k = int(0.5 * n_elements) else: k = self.knn neighbor_array, distance_array = hnsw.knn_query(X_data, k=k) csr_array = self.make_csrmatrix_noselfloop(neighbor_array, distance_array) sources, targets = csr_array.nonzero() mask = np.zeros(len(sources), dtype=bool) mask |= (csr_array.data > ( np.mean(csr_array.data) + np.std(csr_array.data) * 5)) # smaller distance means stronger edge csr_array.data[mask] = 0 csr_array.eliminate_zeros() sources, targets = csr_array.nonzero() edgelist = list(zip(sources.tolist(), targets.tolist())) edgelist_copy = edgelist.copy() G = ig.Graph(edgelist, edge_attrs={'weight': csr_array.data.tolist()}) sim_list = G.similarity_jaccard(pairs=edgelist_copy) # list of jaccard weights new_edgelist = [] sim_list_array = np.asarray(sim_list) if jac_std_toobig == 'median': threshold = np.median(sim_list) else: threshold = np.mean(sim_list) - jac_std_toobig * np.std(sim_list) strong_locs = np.where(sim_list_array > threshold)[0] for ii in strong_locs: new_edgelist.append(edgelist_copy[ii]) sim_list_new = list(sim_list_array[strong_locs]) if jac_weighted_edges == True: G_sim = ig.Graph(n=n_elements, edges=list(new_edgelist), edge_attrs={'weight': sim_list_new}) else: G_sim = ig.Graph(n=n_elements, edges=list(new_edgelist)) G_sim.simplify(combine_edges='sum') if jac_weighted_edges == True: if self.partition_type == 'ModularityVP': partition = leidenalg.find_partition(G_sim, leidenalg.ModularityVertexPartition, weights='weight', n_iterations=self.n_iter_leiden, seed=self.random_seed) #print('partition type MVP') else: partition = leidenalg.find_partition(G_sim, leidenalg.RBConfigurationVertexPartition, weights='weight', n_iterations=self.n_iter_leiden, seed=self.random_seed, resolution_parameter=self.resolution_parameter) else: if self.partition_type == 'ModularityVP': #print('partition type MVP') partition = leidenalg.find_partition(G_sim, leidenalg.ModularityVertexPartition, n_iterations=self.n_iter_leiden, seed=self.random_seed) else: print('partition type RBC') partition = leidenalg.find_partition(G_sim, leidenalg.RBConfigurationVertexPartition, n_iterations=self.n_iter_leiden, seed=self.random_seed, resolution_parameter=self.resolution_parameter) PARC_labels_leiden = np.asarray(partition.membership) PARC_labels_leiden = np.reshape(PARC_labels_leiden, (n_elements, 1)) small_pop_list = [] small_cluster_list = [] small_pop_exist = False dummy, PARC_labels_leiden = np.unique(list(PARC_labels_leiden.flatten()), return_inverse=True) for cluster in set(PARC_labels_leiden): population = len(np.where(PARC_labels_leiden == cluster)[0]) if population < 5: small_pop_exist = True small_pop_list.append(list(np.where(PARC_labels_leiden == cluster)[0])) small_cluster_list.append(cluster) for small_cluster in small_pop_list: for single_cell in small_cluster: old_neighbors = neighbor_array[single_cell, :] group_of_old_neighbors = PARC_labels_leiden[old_neighbors] group_of_old_neighbors = list(group_of_old_neighbors.flatten()) available_neighbours = set(group_of_old_neighbors) - set(small_cluster_list) if len(available_neighbours) > 0: available_neighbours_list = [value for value in group_of_old_neighbors if value in list(available_neighbours)] best_group = max(available_neighbours_list, key=available_neighbours_list.count) PARC_labels_leiden[single_cell] = best_group do_while_time = time.time() while (small_pop_exist == True) & (time.time() - do_while_time < 5): small_pop_list = [] small_pop_exist = False for cluster in set(list(PARC_labels_leiden.flatten())): population = len(np.where(PARC_labels_leiden == cluster)[0]) if population < 10: small_pop_exist = True small_pop_list.append(np.where(PARC_labels_leiden == cluster)[0]) for small_cluster in small_pop_list: for single_cell in small_cluster: old_neighbors = neighbor_array[single_cell, :] group_of_old_neighbors = PARC_labels_leiden[old_neighbors] group_of_old_neighbors = list(group_of_old_neighbors.flatten()) best_group = max(set(group_of_old_neighbors), key=group_of_old_neighbors.count) PARC_labels_leiden[single_cell] = best_group dummy, PARC_labels_leiden = np.unique(list(PARC_labels_leiden.flatten()), return_inverse=True) self.labels = PARC_labels_leiden return PARC_labels_leiden def recompute_weights(self, clustergraph_ig, pop_list_raw): sparse_clustergraph = get_sparse_from_igraph(clustergraph_ig, weight_attr='weight') n = sparse_clustergraph.shape[0] sources, targets = sparse_clustergraph.nonzero() edgelist = list(zip(sources, targets)) weights = sparse_clustergraph.data new_weights = [] i = 0 for s, t in edgelist: pop_s = pop_list_raw[s] pop_t = pop_list_raw[t] w = weights[i] nw = w * (pop_s + pop_t) / (pop_s * pop_t) # * new_weights.append(nw) i = i + 1 scale_factor = max(new_weights) - min(new_weights) wmin = min(new_weights) new_weights = [(wi + wmin) / scale_factor for wi in new_weights] sparse_clustergraph = csr_matrix((np.array(new_weights), (sources, targets)), shape=(n, n)) sources, targets = sparse_clustergraph.nonzero() edgelist = list(zip(sources, targets)) return sparse_clustergraph, edgelist def find_root_iPSC(self, graph_dense, PARC_labels_leiden, root_user, true_labels, super_cluster_labels_sub, super_node_degree_list): majority_truth_labels = np.empty((len(PARC_labels_leiden), 1), dtype=object) graph_node_label = [] min_deg = 1000 super_min_deg = 1000 found_super_and_sub_root = False found_any_root = False true_labels = np.asarray(true_labels) deg_list = graph_dense.sum(axis=1).reshape((1, -1)).tolist()[0] for ci, cluster_i in enumerate(sorted(list(set(PARC_labels_leiden)))): cluster_i_loc = np.where(np.asarray(PARC_labels_leiden) == cluster_i)[0] majority_truth = str(self.func_mode(list(true_labels[cluster_i_loc]))) if self.super_cluster_labels != False: super_majority_cluster = self.func_mode(list(np.asarray(super_cluster_labels_sub)[cluster_i_loc])) super_majority_cluster_loc = np.where(np.asarray(super_cluster_labels_sub) == super_majority_cluster)[0] super_majority_truth = self.func_mode(list(true_labels[super_majority_cluster_loc])) super_node_degree = super_node_degree_list[super_majority_cluster] if (str(root_user) == majority_truth) & (str(root_user) == str(super_majority_truth)): if super_node_degree < super_min_deg: found_super_and_sub_root = True root = cluster_i found_any_root = True min_deg = deg_list[ci] super_min_deg = super_node_degree print('new root is', root) majority_truth_labels[cluster_i_loc] = str(majority_truth) + 'c' + str(cluster_i) graph_node_label.append(str(majority_truth) + 'c' + str(cluster_i)) if (self.super_cluster_labels == False) | (found_super_and_sub_root == False): for ic, cluster_i in enumerate(sorted(list(set(PARC_labels_leiden)))): cluster_i_loc = np.where(np.asarray(PARC_labels_leiden) == cluster_i)[0] true_labels = np.asarray(true_labels) majority_truth = str(self.func_mode(list(true_labels[cluster_i_loc]))) if (str(root_user) == str(majority_truth)): if deg_list[ic] < min_deg: root = cluster_i found_any_root = True min_deg = deg_list[ic] print('new root is', root, ' with degree%.2f' % min_deg, majority_truth) if found_any_root == False: print('setting arbitrary root', cluster_i) root = cluster_i return graph_node_label, majority_truth_labels, deg_list, root def find_root_HumanCD34(self, graph_dense, PARC_labels_leiden, root_idx, true_labels): # single cell index given corresponding to user defined root cell majority_truth_labels = np.empty((len(PARC_labels_leiden), 1), dtype=object) graph_node_label = [] true_labels = np.asarray(true_labels) deg_list = graph_dense.sum(axis=1).reshape((1, -1)).tolist()[0] for ci, cluster_i in enumerate(sorted(list(set(PARC_labels_leiden)))): cluster_i_loc = np.where(np.asarray(PARC_labels_leiden) == cluster_i)[0] majority_truth = self.func_mode(list(true_labels[cluster_i_loc])) majority_truth_labels[cluster_i_loc] = str(majority_truth) + 'c' + str(cluster_i) root = PARC_labels_leiden[root_idx] graph_node_label.append(str(majority_truth)[0:5] + 'c' + str(cluster_i)) return graph_node_label, majority_truth_labels, deg_list, root def find_root_bcell(self, graph_dense, PARC_labels_leiden, root_user, true_labels): # root-user is the singlecell index given by the user when running VIA majority_truth_labels = np.empty((len(PARC_labels_leiden), 1), dtype=object) graph_node_label = [] true_labels = np.asarray(true_labels) deg_list = graph_dense.sum(axis=1).reshape((1, -1)).tolist()[0] for ci, cluster_i in enumerate(sorted(list(set(PARC_labels_leiden)))): # print('cluster i', cluster_i) cluster_i_loc = np.where(np.asarray(PARC_labels_leiden) == cluster_i)[0] majority_truth = self.func_mode(list(true_labels[cluster_i_loc])) majority_truth_labels[cluster_i_loc] = str(majority_truth) + 'c' + str(cluster_i) graph_node_label.append(str(majority_truth) + 'c' + str(cluster_i)) root = PARC_labels_leiden[root_user] return graph_node_label, majority_truth_labels, deg_list, root def find_root_2Morgan(self, graph_dense, PARC_labels_leiden, root_idx, true_labels): # single cell index given corresponding to user defined root cell majority_truth_labels = np.empty((len(PARC_labels_leiden), 1), dtype=object) graph_node_label = [] true_labels = np.asarray(true_labels) deg_list = graph_dense.sum(axis=1).reshape((1, -1)).tolist()[0] secondary_annotations = np.asarray(self.secondary_annotations) for ci, cluster_i in enumerate(sorted(list(set(PARC_labels_leiden)))): cluster_i_loc = np.where(np.asarray(PARC_labels_leiden) == cluster_i)[0] majority_truth = self.func_mode(list(true_labels[cluster_i_loc])) majority_truth_secondary = str(self.func_mode(list(secondary_annotations[cluster_i_loc]))) majority_truth_labels[cluster_i_loc] = str(majority_truth) + 'c' + str(cluster_i) # graph_node_label.append(str(majority_truth) + 'c' + str(cluster_i)) root = PARC_labels_leiden[root_idx] graph_node_label.append(str(majority_truth)[0:5] + 'c' + str(cluster_i) + str(majority_truth_secondary)) return graph_node_label, majority_truth_labels, deg_list, root def find_root_toy(self, graph_dense, PARC_labels_leiden, root_user, true_labels, super_cluster_labels_sub, super_node_degree_list): # PARC_labels_leiden is the subset belonging to the component of the graph being considered. graph_dense is a component of the full graph majority_truth_labels = np.empty((len(PARC_labels_leiden), 1), dtype=object) graph_node_label = [] min_deg = 1000 super_min_deg = 1000 found_super_and_sub_root = False found_any_root = False true_labels = np.asarray(true_labels) deg_list = graph_dense.sum(axis=1).reshape((1, -1)).tolist()[0] for ci, cluster_i in enumerate(sorted(list(set(PARC_labels_leiden)))): cluster_i_loc = np.where(np.asarray(PARC_labels_leiden) == cluster_i)[0] majority_truth = str(self.func_mode(list(true_labels[cluster_i_loc]))) if self.super_cluster_labels != False: super_majority_cluster = self.func_mode(list(np.asarray(super_cluster_labels_sub)[cluster_i_loc])) super_majority_cluster_loc = np.where(np.asarray(super_cluster_labels_sub) == super_majority_cluster)[0] super_majority_truth = self.func_mode(list(true_labels[super_majority_cluster_loc])) super_node_degree = super_node_degree_list[super_majority_cluster] if (str(root_user) in majority_truth) & (str(root_user) in str(super_majority_truth)): if super_node_degree < super_min_deg: found_super_and_sub_root = True root = cluster_i found_any_root = True min_deg = deg_list[ci] super_min_deg = super_node_degree print('new root is', root, ' with degree %.2f' % min_deg, 'and super node degree %.2f' % super_min_deg) majority_truth_labels[cluster_i_loc] = str(majority_truth) + 'c' + str(cluster_i) graph_node_label.append(str(majority_truth) + 'c' + str(cluster_i)) if (self.super_cluster_labels == False) | (found_super_and_sub_root == False): #print('self.super_cluster_labels', super_cluster_labels_sub, ' foundsuper_cluster_sub and super root',found_super_and_sub_root) for ic, cluster_i in enumerate(sorted(list(set(PARC_labels_leiden)))): cluster_i_loc = np.where(np.asarray(PARC_labels_leiden) == cluster_i)[0] # print('cluster', cluster_i, 'set true labels', set(true_labels)) true_labels = np.asarray(true_labels) majority_truth = str(self.func_mode(list(true_labels[cluster_i_loc]))) # print('cluster', cluster_i, 'has majority', majority_truth, 'with degree list', deg_list) if (str(root_user) in str(majority_truth)): if deg_list[ic] < min_deg: root = cluster_i found_any_root = True min_deg = deg_list[ic] print('new root is', root, ' with degree %.2f' % min_deg, majority_truth) # print('len graph node label', graph_node_label) if found_any_root == False: print('setting arbitrary root', cluster_i) root = cluster_i return graph_node_label, majority_truth_labels, deg_list, root def full_graph_paths(self, X_data, n_components_original=1): # make igraph object of very low-K KNN using the knn_struct PCA-dimension space made in PARC. # This is later used by find_shortest_path for sc_bp visual # neighbor array is not listed in in any order of proximity print('number of components in the original full graph', n_components_original) print('for downstream visualization purposes we are also constructing a low knn-graph ') neighbor_array, distance_array = self.knn_struct.knn_query(X_data, k=3) csr_array = self.make_csrmatrix_noselfloop(neighbor_array, distance_array, auto_=False) n_comp, comp_labels = connected_components(csr_array, return_labels=True) k_0 = 2 # 3 if n_components_original == 1: while (n_comp > 1): k_0 = k_0 + 1 neighbor_array, distance_array = self.knn_struct.knn_query(X_data, k=k_0) csr_array = self.make_csrmatrix_noselfloop(neighbor_array, distance_array, auto_=False) # do not automatically use the local-pruning of Via n_comp, comp_labels = connected_components(csr_array, return_labels=True) if n_components_original > 1: while (k_0 <= 5) & (n_comp > n_components_original): k_0 = k_0 + 1 neighbor_array, distance_array = self.knn_struct.knn_query(X_data, k=k_0) csr_array = self.make_csrmatrix_noselfloop(neighbor_array, distance_array, auto_=False) # do not automatically use the local-pruning of Via) n_comp, comp_labels = connected_components(csr_array, return_labels=True) row_list = [] print('size neighbor array in low-KNN in pca-space for visualization', neighbor_array.shape) n_neighbors = neighbor_array.shape[1] n_cells = neighbor_array.shape[0] row_list.extend(list(np.transpose(np.ones((n_neighbors, n_cells)) * range(0, n_cells)).flatten())) col_list = neighbor_array.flatten().tolist() weight_list = (distance_array.flatten()).tolist() csr_full_graph = csr_matrix((np.array(weight_list), (np.array(row_list), np.array(col_list))), shape=(n_cells, n_cells)) sources, targets = csr_full_graph.nonzero() edgelist = list(zip(sources.tolist(), targets.tolist())) Gr = ig.Graph(edgelist) # , edge_attrs={'weight': csr_full_graph.data.tolist()}) Gr.simplify(combine_edges='sum') return Gr def get_gene_expression(self, gene_exp, title_gene=""): fig_0, ax = plt.subplots() sc_pt = self.single_cell_pt_markov sc_bp_original = self.single_cell_bp n_terminal_states = sc_bp_original.shape[1] jet = cm.get_cmap('jet', n_terminal_states) cmap_ = jet(range(n_terminal_states)) for i in range(n_terminal_states): # [0]: sc_bp = sc_bp_original.copy() if len(np.where(sc_bp[:, i] > 0.8)[ 0]) > 0: # check in case this terminal state i cannot be reached (sc_bp is all 0) # loc_terminal_i = np.where(np.asarray(self.labels) == self.terminal_clusters[i])[0] loc_i = np.where(sc_bp[:, i] > 0.95)[0] # 0.8 val_pt = [sc_pt[pt_i] for pt_i in loc_i] # TODO, replace with array to speed up max_val_pt = max(val_pt) loc_i_bp = np.where(sc_bp[:, i] > 0.000)[0] # 0.000 loc_i_sc = np.where(np.asarray(sc_pt) <= max_val_pt)[0] loc_ = np.intersect1d(loc_i_bp, loc_i_sc) gam_in = np.asarray(sc_pt)[loc_] gam_in = gam_in/max(gam_in) x = gam_in.reshape(-1, 1) y = np.asarray(gene_exp)[loc_].reshape(-1, 1) weights = np.asarray(sc_bp[:, i])[loc_].reshape(-1, 1) if len(loc_) > 1: geneGAM = pg.LinearGAM(n_splines=10, spline_order=4, lam=10).fit(x, y, weights=weights) nx_spacing = 100 #xval = np.linspace(min(sc_pt), max_val_pt, nx_spacing * 2) xval = np.linspace(min(sc_pt), 1, nx_spacing * 2) yg = geneGAM.predict(X=xval) else: print('loc_ has length zero') ax.plot(xval, yg, color=cmap_[i], linewidth=3.5, zorder=3, label='TS:' + str( self.terminal_clusters[i])) # linestyle=(0, (5, 2, 1, 2)), dash_capstyle='round' plt.legend() plt.title('Trend:' + title_gene) return def get_gene_expression_multi(self, ax, gene_exp, title_gene=""): sc_pt = self.single_cell_pt_markov sc_bp_original = self.single_cell_bp n_terminal_states = sc_bp_original.shape[1] jet = cm.get_cmap('jet', n_terminal_states) cmap_ = jet(range(n_terminal_states)) for i in [0]:#range(n_terminal_states): sc_bp = sc_bp_original.copy() if len(np.where(sc_bp[:, i] > 0.9)[ 0]) > 0: # check in case this terminal state i cannot be reached (sc_bp is all 0) loc_i = np.where(sc_bp[:, i] > 0.9)[0] val_pt = [sc_pt[pt_i] for pt_i in loc_i] # TODO, replace with array to speed up max_val_pt = max(val_pt) loc_i_bp = np.where(sc_bp[:, i] > 0.000)[0] # 0.001 loc_i_sc = np.where(np.asarray(sc_pt) <= max_val_pt)[0] loc_ = np.intersect1d(loc_i_bp, loc_i_sc) gam_in = np.asarray(sc_pt)[loc_] x = gam_in.reshape(-1, 1) y = np.asarray(gene_exp)[loc_].reshape(-1, 1) weights = np.asarray(sc_bp[:, i])[loc_].reshape(-1, 1) if len(loc_) > 1: # geneGAM = pg.LinearGAM(n_splines=20, spline_order=5, lam=10).fit(x, y, weights=weights) # geneGAM = pg.LinearGAM(n_splines=10, spline_order=4, lam=10).fit(x, y, weights=weights) geneGAM = pg.LinearGAM(n_splines=10, spline_order=4, lam=10).fit(x, y, weights=weights) nx_spacing = 100 xval = np.linspace(min(sc_pt), max_val_pt, nx_spacing * 2) yg = geneGAM.predict(X=xval) else: print('loc_ has length zero') # cmap_[i] ax.plot(xval, yg, color='navy', linewidth=3.5, zorder=3, label='TS:' + str(self.terminal_clusters[i])) #plt.legend() ax.set_title(title_gene) return def do_impute(self, df_gene, magic_steps=3, gene_list=[]): # ad_gene is an ann data object from scanpy if self.do_impute_bool == False: print(colored('please re-run Via with do_impute set to True', 'red')) return else: from sklearn.preprocessing import normalize transition_full_graph = normalize(self.csr_full_graph, norm='l1', axis=1) ** magic_steps # normalize across columns to get Transition matrix. print('shape of transition matrix raised to power', magic_steps, transition_full_graph.shape) subset = df_gene[gene_list].values dot_ = transition_full_graph.dot(subset) df_imputed_gene = pd.DataFrame(dot_, index=df_gene.index, columns=gene_list) print('shape of imputed gene matrix', df_imputed_gene.shape) return df_imputed_gene def run_subPARC(self): root_user = self.root_user X_data = self.data too_big_factor = self.too_big_factor small_pop = self.small_pop jac_std_global = self.jac_std_global jac_weighted_edges = self.jac_weighted_edges n_elements = X_data.shape[0] if self.is_coarse == True: # graph for PARC neighbor_array, distance_array = self.knn_struct.knn_query(X_data, k=self.knn) csr_array_locally_pruned = self.make_csrmatrix_noselfloop(neighbor_array, distance_array) # incorporates local distance pruning else: neighbor_array = self.full_neighbor_array distance_array = self.full_distance_array csr_array_locally_pruned = self.csr_array_locally_pruned sources, targets = csr_array_locally_pruned.nonzero() edgelist = list(zip(sources, targets)) edgelist_copy = edgelist.copy() G = ig.Graph(n=X_data.shape[0], edges=edgelist, edge_attrs={'weight': csr_array_locally_pruned.data.tolist()}) # used for PARC # print('average degree of prejacard graph is %.1f'% (np.mean(G.degree()))) # print('computing Jaccard metric') sim_list = G.similarity_jaccard(pairs=edgelist_copy) print('time is', time.ctime()) print('commencing global pruning') sim_list_array = np.asarray(sim_list) edge_list_copy_array = np.asarray(edgelist_copy) if jac_std_global == 'median': threshold = np.median(sim_list) else: threshold = np.mean(sim_list) - jac_std_global * np.std(sim_list) strong_locs = np.where(sim_list_array > threshold)[0] print('Share of edges kept after Global Pruning %.2f' % (len(strong_locs) * 100 / len(sim_list)), '%') new_edgelist = list(edge_list_copy_array[strong_locs]) sim_list_new = list(sim_list_array[strong_locs]) G_sim = ig.Graph(n=n_elements, edges=list(new_edgelist), edge_attrs={'weight': sim_list_new}) G_sim.simplify(combine_edges='sum') if self.is_coarse == True: #### construct full graph that has no pruning to be used for Clustergraph edges, # not listed in in any order of proximity row_list = [] n_neighbors = neighbor_array.shape[1] n_cells = neighbor_array.shape[0] row_list.extend(list(np.transpose(np.ones((n_neighbors, n_cells)) * range(0, n_cells)).flatten())) col_list = neighbor_array.flatten().tolist() distance_array = np.sqrt(distance_array) weight_list = (1. / (distance_array.flatten() + 0.05)) # 0.05 mean_sqrt_dist_array = np.mean(distance_array) weight_list = weight_list * (mean_sqrt_dist_array ** 2) # we scale weight_list by the mean_distance_value because inverting the distances makes the weights range between 0-1 # and hence too many good neighbors end up having a weight near 0 which is misleading and non-neighbors have weight =0 weight_list = weight_list.tolist() # print('distance values', np.percentile(distance_array, 5), np.percentile(distance_array, 95), np.mean(distance_array)) csr_full_graph = csr_matrix((np.array(weight_list), (np.array(row_list), np.array(col_list))), shape=(n_cells, n_cells)) n_original_comp, n_original_comp_labels = connected_components(csr_full_graph, directed=False) sources, targets = csr_full_graph.nonzero() edgelist = list(zip(sources.tolist(), targets.tolist())) G = ig.Graph(edgelist, edge_attrs={'weight': csr_full_graph.data.tolist()}) sim_list = G.similarity_jaccard(pairs=edgelist) # list of jaccard weights ig_fullgraph = ig.Graph(list(edgelist), edge_attrs={'weight': sim_list}) ig_fullgraph.simplify(combine_edges='sum') # self.csr_array_pruned = G_sim # this graph is pruned (locally and globally) for use in PARC self.csr_array_locally_pruned = csr_array_locally_pruned self.ig_full_graph = ig_fullgraph # for VIA we prune the vertex cluster graph *after* making the clustergraph self.csr_full_graph = csr_full_graph self.full_neighbor_array = neighbor_array self.full_distance_array = distance_array if self.is_coarse == True: # knn graph used for making trajectory drawing on the visualization # print('skipping full_graph_shortpath') self.full_graph_shortpath = self.full_graph_paths(X_data, n_original_comp) neighbor_array = self.full_neighbor_array if self.is_coarse == False: ig_fullgraph = self.ig_full_graph # for Trajectory # G_sim = self.csr_array_pruned # for PARC # neighbor_array = self.full_neighbor_array # needed to assign spurious outliers to clusters # print('average degree of SIMPLE graph is %.1f' % (np.mean(G_sim.degree()))) print('commencing community detection') start_leiden = time.time() if jac_weighted_edges == True: if self.partition_type == 'ModularityVP': partition = leidenalg.find_partition(G_sim, leidenalg.ModularityVertexPartition, weights='weight', n_iterations=self.n_iter_leiden, seed=self.random_seed) #print('partition type MVP') else: partition = leidenalg.find_partition(G_sim, leidenalg.RBConfigurationVertexPartition, weights='weight', n_iterations=self.n_iter_leiden, seed=self.random_seed, resolution_parameter=self.resolution_parameter) print('partition type RBC') else: if self.partition_type == 'ModularityVP': #print('partition type MVP') partition = leidenalg.find_partition(G_sim, leidenalg.ModularityVertexPartition, n_iterations=self.n_iter_leiden, seed=self.random_seed) else: #print('partition type RBC') partition = leidenalg.find_partition(G_sim, leidenalg.RBConfigurationVertexPartition, n_iterations=self.n_iter_leiden, seed=self.random_seed, resolution_parameter=self.resolution_parameter) print(round(time.time() - start_leiden), ' seconds for leiden') time_end_PARC = time.time() # print('Q= %.1f' % (partition.quality())) PARC_labels_leiden = np.asarray(partition.membership) PARC_labels_leiden = np.reshape(PARC_labels_leiden, (n_elements, 1)) print('time is', time.ctime()) print(len(set(PARC_labels_leiden.flatten())), ' clusters before handling small/big') pop_list_1 = [] count_big_pops = 0 num_times_expanded = 0 for item in set(list(PARC_labels_leiden.flatten())): count_item = list(PARC_labels_leiden.flatten()).count(item) if count_item > self.too_big_factor * n_elements: count_big_pops = count_big_pops + 1 pop_list_1.append([item, count_item]) print(colored('There are ' + str(count_big_pops) + ' clusters that are too big', 'blue')) too_big = False cluster_i_loc = np.where(PARC_labels_leiden == 0)[ 0] # the 0th cluster is the largest one. so if cluster 0 is not too big, then the others wont be too big either pop_i = len(cluster_i_loc) if pop_i > too_big_factor * n_elements: too_big = True print('too big is', too_big, ' cluster 0 will be Expanded') num_times_expanded = num_times_expanded + 1 cluster_big_loc = cluster_i_loc list_pop_too_bigs = [pop_i] time0_big = time.time() while (too_big == True) & (not ((time.time() - time0_big > 200) & (num_times_expanded >= count_big_pops))): X_data_big = X_data[cluster_big_loc, :] PARC_labels_leiden_big = self.run_toobig_subPARC(X_data_big) num_times_expanded = num_times_expanded + 1 PARC_labels_leiden_big = PARC_labels_leiden_big + 100000 pop_list = [] for item in set(list(PARC_labels_leiden_big.flatten())): pop_list.append([item, list(PARC_labels_leiden_big.flatten()).count(item)]) jj = 0 for j in cluster_big_loc: PARC_labels_leiden[j] = PARC_labels_leiden_big[jj] jj = jj + 1 dummy, PARC_labels_leiden = np.unique(list(PARC_labels_leiden.flatten()), return_inverse=True) pop_list_1 = [] for item in set(list(PARC_labels_leiden.flatten())): pop_list_1.append([item, list(PARC_labels_leiden.flatten()).count(item)]) #print(pop_list_1, set(PARC_labels_leiden)) too_big = False set_PARC_labels_leiden = set(PARC_labels_leiden) PARC_labels_leiden = np.asarray(PARC_labels_leiden) for cluster_ii in set_PARC_labels_leiden: cluster_ii_loc = np.where(PARC_labels_leiden == cluster_ii)[0] pop_ii = len(cluster_ii_loc) not_yet_expanded = pop_ii not in list_pop_too_bigs if (pop_ii > too_big_factor * n_elements) & (not_yet_expanded) == True: too_big = True # print('cluster', cluster_ii, 'is too big and has population', pop_ii) cluster_big_loc = cluster_ii_loc cluster_big = cluster_ii big_pop = pop_ii if too_big == True: list_pop_too_bigs.append(big_pop) print('cluster', cluster_big, 'is too big with population', big_pop, '. It will be expanded') dummy, PARC_labels_leiden = np.unique(list(PARC_labels_leiden.flatten()), return_inverse=True) small_pop_list = [] small_cluster_list = [] small_pop_exist = False for cluster in set(PARC_labels_leiden): population = len(np.where(PARC_labels_leiden == cluster)[0]) if population < small_pop: # 10 small_pop_exist = True small_pop_list.append(list(np.where(PARC_labels_leiden == cluster)[0])) small_cluster_list.append(cluster) for small_cluster in small_pop_list: for single_cell in small_cluster: old_neighbors = neighbor_array[single_cell, :] group_of_old_neighbors = PARC_labels_leiden[old_neighbors] group_of_old_neighbors = list(group_of_old_neighbors.flatten()) available_neighbours = set(group_of_old_neighbors) - set(small_cluster_list) if len(available_neighbours) > 0: available_neighbours_list = [value for value in group_of_old_neighbors if value in list(available_neighbours)] best_group = max(available_neighbours_list, key=available_neighbours_list.count) PARC_labels_leiden[single_cell] = best_group time_smallpop = time.time() while (small_pop_exist) == True & (time.time() - time_smallpop < 15): small_pop_list = [] small_pop_exist = False for cluster in set(list(PARC_labels_leiden.flatten())): population = len(np.where(PARC_labels_leiden == cluster)[0]) if population < small_pop: small_pop_exist = True small_pop_list.append(np.where(PARC_labels_leiden == cluster)[0]) for small_cluster in small_pop_list: for single_cell in small_cluster: old_neighbors = neighbor_array[single_cell, :] group_of_old_neighbors = PARC_labels_leiden[old_neighbors] group_of_old_neighbors = list(group_of_old_neighbors.flatten()) best_group = max(set(group_of_old_neighbors), key=group_of_old_neighbors.count) PARC_labels_leiden[single_cell] = best_group dummy, PARC_labels_leiden = np.unique(list(PARC_labels_leiden.flatten()), return_inverse=True) PARC_labels_leiden = list(PARC_labels_leiden.flatten()) pop_list = [] pop_list_raw = [] for item in range(len(set(PARC_labels_leiden))): pop_item = PARC_labels_leiden.count(item) pop_list.append((item, pop_item)) pop_list_raw.append(pop_item) #print('list of cluster labels and populations', len(pop_list), pop_list) df_temporary_save = pd.DataFrame(PARC_labels_leiden, columns=['parc']) #df_temporary_save.to_csv("/home/shobi/Trajectory/Datasets/2MOrgan/Figures/Parc_.csv") self.labels = PARC_labels_leiden # list n_clus = len(set(self.labels)) ## Make cluster-graph vc_graph = ig.VertexClustering(ig_fullgraph, membership=PARC_labels_leiden) # jaccard weights, bigger is better vc_graph = vc_graph.cluster_graph(combine_edges='sum') reweighted_sparse_vc, edgelist = self.recompute_weights(vc_graph, pop_list_raw) if self.dataset == 'toy': global_pruning_std = 1 print('Toy: global cluster graph pruning level', global_pruning_std) # toy data is usually simpler so we dont need to significantly prune the links as the clusters are usually well separated such that spurious links dont exist elif self.dataset == 'bcell': global_pruning_std = 0.15 print('Bcell: global cluster graph pruning level', global_pruning_std) elif self.dataset == 'iPSC': global_pruning_std = 0.15 print('iPSC: global cluster graph pruning level', global_pruning_std) elif self.dataset == 'EB': global_pruning_std = 0.15 print('EB: global cluster graph pruning level', global_pruning_std) elif self.dataset == 'mESC': global_pruning_std = 0.0 print('mESC: global cluster graph pruning level', global_pruning_std) elif self.dataset == '2M': global_pruning_std = 0.15 # 0 for the knn20ncomp30 and knn30ncomp30 run on Aug 12 and Aug11 print('2M: global cluster graph pruning level', global_pruning_std) elif self.dataset == 'scATAC': global_pruning_std = 0.15 print('scATAC: global cluster graph pruning level', global_pruning_std) elif self.dataset == 'droso': global_pruning_std = 0.15 print('droso: global cluster graph pruning level', global_pruning_std) elif self.dataset == 'faced': global_pruning_std = 1 elif self.dataset == 'pancreas': global_pruning_std = 0 print(self.dataset, ': global cluster graph pruning level', global_pruning_std) elif self.dataset == 'cardiac': global_pruning_std = 0.15 print(self.dataset, ': global cluster graph pruning level', global_pruning_std) elif self.dataset == 'cardiac_merge': global_pruning_std = .6 print(self.dataset, ': global cluster graph pruning level', global_pruning_std) else: global_pruning_std = self.cluster_graph_pruning_std print(self.dataset, ': global cluster graph pruning level', global_pruning_std) edgeweights, edgelist, comp_labels = pruning_clustergraph(reweighted_sparse_vc, global_pruning_std=global_pruning_std, preserve_disconnected=self.preserve_disconnected, preserve_disconnected_after_pruning=self.preserve_disconnected_after_pruning) self.connected_comp_labels = comp_labels locallytrimmed_g = ig.Graph(edgelist, edge_attrs={'weight': edgeweights.tolist()}) locallytrimmed_g = locallytrimmed_g.simplify(combine_edges='sum') locallytrimmed_sparse_vc = get_sparse_from_igraph(locallytrimmed_g, weight_attr='weight') layout = locallytrimmed_g.layout_fruchterman_reingold(weights='weight') ##final layout based on locally trimmed # layout = locallytrimmed_g.layout_kamada_kawai() # layout = locallytrimmed_g.layout_graphopt(niter=500, node_charge=0.001, node_mass=5, spring_length=0, spring_constant=1,max_sa_movement=5, seed=None) # globally trimmed link sources, targets = locallytrimmed_sparse_vc.nonzero() edgelist_simple = list(zip(sources.tolist(), targets.tolist())) edgelist_unique = set(tuple(sorted(l)) for l in edgelist_simple) # keep only one of (0,1) and (1,0) self.edgelist_unique = edgelist_unique # print('edge list unique', edgelist_unique) self.edgelist = edgelist # print('edgelist', edgelist) x_lazy = self.x_lazy alpha_teleport = self.alpha_teleport # number of components n_components, labels_cc = connected_components(csgraph=locallytrimmed_sparse_vc, directed=False, return_labels=True) print('there are ', n_components, 'components in the graph') df_graph = pd.DataFrame(locallytrimmed_sparse_vc.todense()) df_graph['cc'] = labels_cc df_graph['pt'] = float('NaN') df_graph['majority_truth'] = 'maj truth' df_graph['graph_node_label'] = 'node label' set_parc_labels = list(set(PARC_labels_leiden)) set_parc_labels.sort() tsi_list = [] print('root user', root_user) df_graph['markov_pt'] = float('NaN') terminal_clus = [] node_deg_list = [] super_terminal_clus_revised = [] pd_columnnames_terminal = [] dict_terminal_super_sub_pairs = {} self.root = [] large_components = [] for comp_i in range(n_components): loc_compi = np.where(labels_cc == comp_i)[0] if len(loc_compi) > 1: large_components.append(comp_i) for comp_i in large_components: # range(n_components): loc_compi = np.where(labels_cc == comp_i)[0] a_i = df_graph.iloc[loc_compi][loc_compi].values a_i = csr_matrix(a_i, (a_i.shape[0], a_i.shape[0])) cluster_labels_subi = [x for x in loc_compi] # print('cluster_labels_subi', cluster_labels_subi) sc_labels_subi = [PARC_labels_leiden[i] for i in range(len(PARC_labels_leiden)) if (PARC_labels_leiden[i] in cluster_labels_subi)] sc_truelabels_subi = [self.true_label[i] for i in range(len(PARC_labels_leiden)) if (PARC_labels_leiden[i] in cluster_labels_subi)] if ((self.dataset == 'toy') | (self.dataset == 'faced')): if self.super_cluster_labels != False: # find which sub-cluster has the super-cluster root if 'T1_M1' in sc_truelabels_subi: root_user_ = 'T1_M1' elif 'T2_M1' in sc_truelabels_subi: root_user_ = 'T2_M1' else: for ri in root_user: if ri in sc_truelabels_subi:root_user_ = ri super_labels_subi = [self.super_cluster_labels[i] for i in range(len(PARC_labels_leiden)) if (PARC_labels_leiden[i] in cluster_labels_subi)] # print('super node degree', self.super_node_degree_list) # print('component', comp_i, 'has root', root_user[comp_i]) # print('super_labels_subi', super_labels_subi) graph_node_label, majority_truth_labels, node_deg_list_i, root_i = self.find_root_toy(a_i, sc_labels_subi, root_user_, sc_truelabels_subi, super_labels_subi, self.super_node_degree_list) else: if 'T1_M1' in sc_truelabels_subi: root_user_ = 'T1_M1' elif 'T2_M1' in sc_truelabels_subi: root_user_ = 'T2_M1' else: for ri in root_user: if ri in sc_truelabels_subi: root_user_ = ri # print('component', comp_i, 'has root', root_user[comp_i]) graph_node_label, majority_truth_labels, node_deg_list_i, root_i = self.find_root_toy(a_i, sc_labels_subi, root_user_, sc_truelabels_subi, [], []) elif (self.dataset == 'humanCD34'): # | (self.dataset == '2M'): for ri in root_user: if PARC_labels_leiden[ri] in cluster_labels_subi: root_user_ = ri graph_node_label, majority_truth_labels, node_deg_list_i, root_i = self.find_root_HumanCD34(a_i, sc_labels_subi, root_user_, sc_truelabels_subi) elif (self.dataset == '2M'): for ri in root_user: if PARC_labels_leiden[ri] in cluster_labels_subi: root_user_ = ri graph_node_label, majority_truth_labels, node_deg_list_i, root_i = self.find_root_2Morgan(a_i, sc_labels_subi, root_user_, sc_truelabels_subi) elif (self.dataset == 'bcell') | (self.dataset == 'EB'): for ri in root_user: if PARC_labels_leiden[ri] in cluster_labels_subi: root_user_ = ri graph_node_label, majority_truth_labels, node_deg_list_i, root_i = self.find_root_bcell(a_i, sc_labels_subi, root_user_, sc_truelabels_subi) elif ((self.dataset == 'iPSC') | (self.dataset == 'mESC')): for ri in root_user: if PARC_labels_leiden[ri] in cluster_labels_subi: root_user_ = ri if self.super_cluster_labels != False: super_labels_subi = [self.super_cluster_labels[i] for i in range(len(PARC_labels_leiden)) if (PARC_labels_leiden[i] in cluster_labels_subi)] # print('super node degree', self.super_node_degree_list) graph_node_label, majority_truth_labels, node_deg_list_i, root_i = self.find_root_iPSC(a_i, sc_labels_subi, root_user_, sc_truelabels_subi, super_labels_subi, self.super_node_degree_list) else: graph_node_label, majority_truth_labels, node_deg_list_i, root_i = self.find_root_iPSC(a_i, sc_labels_subi, root_user_, sc_truelabels_subi, [], []) else: if comp_i > len(root_user) - 1: root_generic = 0 else: for ri in root_user: if PARC_labels_leiden[ri] in cluster_labels_subi: root_generic = ri #root_generic = root_user[comp_i] graph_node_label, majority_truth_labels, node_deg_list_i, root_i = self.find_root_bcell(a_i, sc_labels_subi, root_generic, sc_truelabels_subi) self.root.append(root_i) for item in node_deg_list_i: node_deg_list.append(item) #print('a_i shape, true labels shape', a_i.shape, len(sc_truelabels_subi), len(sc_labels_subi)) new_root_index_found = False for ii, llabel in enumerate(cluster_labels_subi): if root_i == llabel: new_root_index = ii new_root_index_found = True #print('new root index', new_root_index, ' original root cluster was', root_i) if new_root_index_found == False: print('cannot find the new root index') new_root_index = 0 hitting_times, roundtrip_times = self.compute_hitting_time(a_i, root=new_root_index, x_lazy=x_lazy, alpha_teleport=alpha_teleport) # rescale hitting times very_high = np.mean(hitting_times) + 1.5 * np.std(hitting_times) without_very_high_pt = [iii for iii in hitting_times if iii < very_high] new_very_high = np.mean(without_very_high_pt) + np.std(without_very_high_pt) # print('very high, and new very high', very_high, new_very_high) new_hitting_times = [x if x < very_high else very_high for x in hitting_times] hitting_times = np.asarray(new_hitting_times) scaling_fac = 10 / max(hitting_times) hitting_times = hitting_times * scaling_fac s_ai, t_ai = a_i.nonzero() edgelist_ai = list(zip(s_ai, t_ai)) edgeweights_ai = a_i.data # print('edgelist ai', edgelist_ai) # print('edgeweight ai', edgeweights_ai) biased_edgeweights_ai = get_biased_weights(edgelist_ai, edgeweights_ai, hitting_times) # biased_sparse = csr_matrix((biased_edgeweights, (row, col))) adjacency_matrix_ai = np.zeros((a_i.shape[0], a_i.shape[0])) for i, (start, end) in enumerate(edgelist_ai): adjacency_matrix_ai[start, end] = biased_edgeweights_ai[i] markov_hitting_times_ai = self.simulate_markov(adjacency_matrix_ai, new_root_index) # +adjacency_matrix.T)) # for eee, ttt in enumerate(markov_hitting_times_ai):print('cluster ', eee, ' had markov time', ttt) very_high = np.mean(markov_hitting_times_ai) + 1.5 * np.std(markov_hitting_times_ai) # 1.5 very_high = min(very_high, max(markov_hitting_times_ai)) without_very_high_pt = [iii for iii in markov_hitting_times_ai if iii < very_high] new_very_high = min(np.mean(without_very_high_pt) + np.std(without_very_high_pt), very_high) new_markov_hitting_times_ai = [x if x < very_high else very_high for x in markov_hitting_times_ai] # for eee, ttt in enumerate(new_markov_hitting_times_ai): print('cluster ', eee, ' had markov time', ttt) markov_hitting_times_ai = np.asarray(new_markov_hitting_times_ai) scaling_fac = 10 / max(markov_hitting_times_ai) markov_hitting_times_ai = markov_hitting_times_ai * scaling_fac # for eee, ttt in enumerate(markov_hitting_times_ai):print('cluster ', eee, ' had markov time', ttt) # print('markov hitting times', [(i, j) for i, j in enumerate(markov_hitting_times_ai)]) # print('hitting times', [(i, j) for i, j in enumerate(hitting_times)]) markov_hitting_times_ai = (markov_hitting_times_ai) # + hitting_times)*.5 #consensus adjacency_matrix_csr_ai = sparse.csr_matrix(adjacency_matrix_ai) (sources, targets) = adjacency_matrix_csr_ai.nonzero() edgelist_ai = list(zip(sources, targets)) weights_ai = adjacency_matrix_csr_ai.data bias_weights_2_ai = get_biased_weights(edgelist_ai, weights_ai, markov_hitting_times_ai, round_no=2) adjacency_matrix2_ai = np.zeros((adjacency_matrix_ai.shape[0], adjacency_matrix_ai.shape[0])) for i, (start, end) in enumerate(edgelist_ai): adjacency_matrix2_ai[start, end] = bias_weights_2_ai[i] if self.super_terminal_cells == False: #print('new_root_index', new_root_index, ' before get terminal') terminal_clus_ai = self.get_terminal_clusters(adjacency_matrix2_ai, markov_hitting_times_ai, new_root_index) temp_terminal_clus_ai = [] for i in terminal_clus_ai: if markov_hitting_times_ai[i] > np.percentile(np.asarray(markov_hitting_times_ai), self.pseudotime_threshold_TS): # print(i, markov_hitting_times_ai[i],np.percentile(np.asarray(markov_hitting_times_ai), self.pseudotime_threshold_TS)) terminal_clus.append(cluster_labels_subi[i]) temp_terminal_clus_ai.append(i) terminal_clus_ai = temp_terminal_clus_ai elif len(self.super_terminal_clusters) > 0: # round2 of PARC print('super_terminal_clusters', self.super_terminal_clusters) sub_terminal_clus_temp_ = [] #print('cluster_labels_subi', cluster_labels_subi) terminal_clus_ai = [] super_terminal_clusters_i = [stc_i for stc_i in self.super_terminal_clusters if stc_i in cluster_labels_subi] for i in self.super_terminal_clusters: sub_terminal_clus_temp_loc = np.where(np.asarray(self.super_cluster_labels) == i)[0] true_majority_i = [xx for xx in np.asarray(self.true_label)[sub_terminal_clus_temp_loc]] #print(true_majority_i[0], 'true_majority_i', 'of cluster', i) # 0:1 for single connected structure #when using Toy as true label has T1 or T2 temp_set = set(list(np.asarray(self.labels)[sub_terminal_clus_temp_loc])) #the clusters in second iteration that make up the super clusters in first iteration temp_set = [t_s for t_s in temp_set if t_s in cluster_labels_subi] temp_max_pt = 0 most_likely_sub_terminal = False count_frequency_super_in_sub = 0 # If you have disconnected components and corresponding labels to identify which cell belongs to which components, then use the Toy 'T1_M1' format CHECK_BOOL = False if (self.dataset == 'toy'): if (root_user_[0:2] in true_majority_i[0]) | (root_user_[0:1] == 'M'): CHECK_BOOL = True # Find the sub-terminal cluster in second iteration of VIA that best corresponds to the super-terminal cluster (i)from iteration 1 if (CHECK_BOOL) | ( self.dataset != 'toy'): # 0:1 for single connected structure #when using Toy as true label has T1 or T2 for j in temp_set: loc_j_in_sub_ai = np.where(loc_compi == j)[0] super_cluster_composition_loc = np.where(np.asarray(self.labels) == j)[0] super_cluster_composition = self.func_mode( list(np.asarray(self.super_cluster_labels)[super_cluster_composition_loc])) if (markov_hitting_times_ai[loc_j_in_sub_ai] > temp_max_pt) & ( super_cluster_composition == i): temp_max_pt = markov_hitting_times_ai[loc_j_in_sub_ai] most_likely_sub_terminal = j if most_likely_sub_terminal == False: print('no sub cluster has majority made of super-cluster ', i) for j in temp_set: super_cluster_composition_loc = np.where(np.asarray(self.labels) == j)[0] count_frequency_super_in_sub_temp = list( np.asarray(self.super_cluster_labels)[super_cluster_composition_loc]).count(i) count_frequency_super_in_sub_temp_ratio = count_frequency_super_in_sub_temp / len( super_cluster_composition_loc) if (markov_hitting_times_ai[loc_j_in_sub_ai] > np.percentile( np.asarray(markov_hitting_times_ai), 30)) & ( # 30 count_frequency_super_in_sub_temp_ratio > count_frequency_super_in_sub): count_frequency_super_in_sub = count_frequency_super_in_sub_temp most_likely_sub_terminal = j sub_terminal_clus_temp_.append(most_likely_sub_terminal) if (markov_hitting_times_ai[loc_j_in_sub_ai] > np.percentile( np.asarray(markov_hitting_times_ai), self.pseudotime_threshold_TS)): # 30 dict_terminal_super_sub_pairs.update({i: most_likely_sub_terminal}) super_terminal_clus_revised.append(i) terminal_clus.append(most_likely_sub_terminal) terminal_clus_ai.append( np.where(np.asarray(cluster_labels_subi) == most_likely_sub_terminal)[0][0]) # =i #print('the sub terminal cluster that best captures the super terminal', i, 'is', most_likely_sub_terminal) else: print('the sub terminal cluster that best captures the super terminal', i, 'is', most_likely_sub_terminal, 'but the pseudotime is too low') else: print('super terminal cells', self.super_terminal_cells) temp = [self.labels[ti] for ti in self.super_terminal_cells if self.labels[ti] in cluster_labels_subi] terminal_clus_ai = [] for i in temp: terminal_clus_ai.append(np.where(np.asarray(cluster_labels_subi) == i)[0][0]) terminal_clus.append(i) dict_terminal_super_sub_pairs.update({i: most_likely_sub_terminal}) print('terminal clus in this component', terminal_clus_ai) print('final terminal clus', terminal_clus) for target_terminal in terminal_clus_ai: prob_ai = self.simulate_branch_probability(target_terminal, terminal_clus_ai, adjacency_matrix2_ai, new_root_index, pt=markov_hitting_times_ai, num_sim=500) # 50 ToDO change back to 500 = numsim df_graph['terminal_clus' + str(cluster_labels_subi[target_terminal])] = 0.0000000 pd_columnnames_terminal.append('terminal_clus' + str(cluster_labels_subi[target_terminal])) for k, prob_ii in enumerate(prob_ai): df_graph.at[cluster_labels_subi[k], 'terminal_clus' + str( cluster_labels_subi[target_terminal])] = prob_ii bp_array = df_graph[pd_columnnames_terminal].values bp_array[np.isnan(bp_array)] = 0.00000001 bp_array = bp_array / bp_array.sum(axis=1)[:, None] bp_array[np.isnan(bp_array)] = 0.00000001 for ei, ii in enumerate(loc_compi): df_graph.at[ii, 'pt'] = hitting_times[ei] df_graph.at[ii, 'graph_node_label'] = graph_node_label[ei] df_graph.at[ii, 'majority_truth'] = graph_node_label[ei] df_graph.at[ii, 'markov_pt'] = markov_hitting_times_ai[ei] locallytrimmed_g.vs["label"] = df_graph['graph_node_label'].values hitting_times = df_graph['pt'].values if len(super_terminal_clus_revised) > 0: self.revised_super_terminal_clusters = super_terminal_clus_revised else: self.revised_super_terminal_clusters = self.super_terminal_clusters self.hitting_times = hitting_times self.markov_hitting_times = df_graph['markov_pt'].values # hitting_times# self.terminal_clusters = terminal_clus print('terminal clusters', terminal_clus) self.node_degree_list = node_deg_list print(colored('project onto single cell', 'red')) #self.project_branch_probability_sc(bp_array, df_graph['pt'].values) #testing to see what the effect of not doing MCMC is self.project_branch_probability_sc(bp_array, df_graph['markov_pt'].values) self.dict_terminal_super_sub_pairs = dict_terminal_super_sub_pairs hitting_times = self.markov_hitting_times bias_weights_2_all = get_biased_weights(edgelist, edgeweights, self.markov_hitting_times, round_no=2) row_list = [] col_list = [] for (rowi, coli) in edgelist: row_list.append(rowi) col_list.append(coli) temp_csr = csr_matrix((np.array(bias_weights_2_all), (np.array(row_list), np.array(col_list))), shape=(n_clus, n_clus)) if (self.dataset == '2M') | (self.dataset == 'mESC'): visual_global_pruning_std = 1 max_outgoing = 3 # 4 elif self.dataset == 'scATAC': visual_global_pruning_std = 0.15 max_outgoing = 2 # 4 elif self.dataset == 'faced': visual_global_pruning_std = 1 max_outgoing = 2 # 4 elif self.dataset == 'droso': visual_global_pruning_std = 0.15 # -0.1 # 1 (2-4hrs use 0.15 max_outgoing = 2 # 3 # 4 elif self.dataset == 'pancreas': visual_global_pruning_std = 0.15#0.15#0 # 1 max_outgoing = 3 # 3 # 4 elif self.dataset == 'cardiac': visual_global_pruning_std = .3 # .15 # 1 max_outgoing = 2 # 3 # 4 elif self.dataset == 'cardiac_merge': visual_global_pruning_std = .15 # .15#.15 # 1 max_outgoing = 2 # 3 # 4 elif self.dataset =='toy': visual_global_pruning_std = .5 max_outgoing = 2 else: visual_global_pruning_std = 0.15 # 0.15 # 0.15#1 for 2Morgan # 0.15 in other caseses #0 for human #1 for mESC max_outgoing = 2 # 3 for 2Morgan # 2 Aug12 changing to 3 from 2 # glob_std_pruning =0 and max_out = 2 for HumanCD34 to simplify structure edgeweights_maxout_2, edgelist_maxout_2, comp_labels_2 = pruning_clustergraph(temp_csr, global_pruning_std=visual_global_pruning_std, max_outgoing=max_outgoing, preserve_disconnected=self.preserve_disconnected) row_list = [] col_list = [] for (rowi, coli) in edgelist_maxout_2: row_list.append(rowi) col_list.append(coli) temp_csr = csr_matrix((np.array(edgeweights_maxout_2), (np.array(row_list), np.array(col_list))), shape=(n_clus, n_clus)) temp_csr = temp_csr.transpose().todense() + temp_csr.todense() temp_csr = np.tril(temp_csr, -1) # elements along the main diagonal and above are set to zero temp_csr = csr_matrix(temp_csr) edgeweights_maxout_2 = temp_csr.data scale_factor = max(edgeweights_maxout_2) - min(edgeweights_maxout_2) edgeweights_maxout_2 = [((wi + .1) * 2.5 / scale_factor) + 0.1 for wi in edgeweights_maxout_2] sources, targets = temp_csr.nonzero() edgelist_maxout_2 = list(zip(sources.tolist(), targets.tolist())) self.edgelist_maxout = edgelist_maxout_2 # print('edgelist_maxout_2', edgelist_maxout_2) self.edgeweights_maxout = edgeweights_maxout_2 remove_outliers = hitting_times threshold = np.percentile(remove_outliers, 95) # np.mean(remove_outliers) + 1* np.std(remove_outliers) th_hitting_times = [x if x < threshold else threshold for x in hitting_times] remove_outliers_low = hitting_times[hitting_times < (np.mean(hitting_times) - 0.3 * np.std(hitting_times))] # threshold_low = np.mean(remove_outliers_low) - 0.3 * np.std(remove_outliers_low) if remove_outliers_low.size == 0: threshold_low = 0 else: threshold_low = np.percentile(remove_outliers_low, 5) th_hitting_times = [x if x > threshold_low else threshold_low for x in th_hitting_times] scaled_hitting_times = (th_hitting_times - np.min(th_hitting_times)) scaled_hitting_times = scaled_hitting_times * (1000 / np.max(scaled_hitting_times)) self.scaled_hitting_times = scaled_hitting_times # self.single_cell_pt = self.project_hittingtimes_sc(self.hitting_times) # self.single_cell_pt_stationary_bias = self.project_hittingtimes_sc(self.stationary_hitting_times.flatten()) # self.dijkstra_hitting_times = self.path_length_onbias(edgelist, biased_edgeweights) # print('dijkstra hitting times', [(i,j) for i,j in enumerate(self.dijkstra_hitting_times)]) # self.single_cell_pt_dijkstra_bias = self.project_hittingtimes_sc(self.dijkstra_hitting_times) scaled_hitting_times = scaled_hitting_times.astype(int) pal = ig.drawing.colors.AdvancedGradientPalette(['yellow', 'green', 'blue'], n=1001) all_colors = [] for i in scaled_hitting_times: all_colors.append(pal.get(int(i))[0:3]) locallytrimmed_g.vs['hitting_times'] = scaled_hitting_times locallytrimmed_g.vs['color'] = [pal.get(i)[0:3] for i in scaled_hitting_times] self.group_color = [colors.to_hex(v) for v in locallytrimmed_g.vs['color']] # based on ygb scale viridis_cmap = cm.get_cmap('viridis_r') self.group_color_cmap = [colors.to_hex(v) for v in viridis_cmap(scaled_hitting_times / 1000)] # based on ygb scale self.graph_node_label = df_graph['graph_node_label'].values self.edgeweight = [e['weight'] * 1 for e in locallytrimmed_g.es] # print('self edge weight', len(self.edgeweight), self.edgeweight) # print('self edge list', len(self.edgelist_unique), self.edgelist_unique) self.graph_node_pos = layout.coords f, ((ax, ax1)) = plt.subplots(1, 2, sharey=True,figsize=[20, 10]) self.draw_piechart_graph(ax, ax1) plt.show() # plt.scatter(self.embedding[:, 0], self.embedding[:, 1], c=self.single_cell_pt_markov, cmap='viridis', s=4, alpha=0.5) # plt.scatter(self.embedding[root_user, 0], self.embedding[root_user, 1], c='orange', s=15) # plt.title('root cell' + str(root_user)) # plt.show() import statistics from statistics import mode for tsi in self.terminal_clusters: loc_i = np.where(np.asarray(self.labels) == tsi)[0] val_pt = [self.single_cell_pt_markov[i] for i in loc_i] if self.dataset == '2M': major_traj = [self.df_annot.loc[i, ['Main_trajectory']].values[0] for i in loc_i] major_cell_type = [self.df_annot.loc[i, ['Main_cell_type']].values[0] for i in loc_i] print(tsi, 'has major traj and cell type', mode(major_traj), mode(major_cell_type)) th_pt = np.percentile(val_pt, 50) # 50 loc_i = [loc_i[i] for i in range(len(val_pt)) if val_pt[i] >= th_pt] temp = np.mean(self.data[loc_i], axis=0) labelsq, distances = self.knn_struct.knn_query(temp, k=1) tsi_list.append(labelsq[0][0]) if self.embedding != None: plt.scatter(self.embedding[:, 0], self.embedding[:, 1], c=self.single_cell_pt_markov, cmap='viridis', s=3, alpha=0.5) plt.scatter(self.embedding[root_user, 0], self.embedding[root_user, 1], c='orange', s=20) plt.title('root:' + str(root_user) + 'knn' + str(self.knn) + 'Ncomp' + str(self.ncomp)) for i in tsi_list: # print(i, ' has traj and cell type', self.df_annot.loc[i, ['Main_trajectory', 'Main_cell_type']]) plt.text(self.embedding[i, 0], self.embedding[i, 1], str(i)) plt.scatter(self.embedding[i, 0], self.embedding[i, 1], c='red', s=10) plt.show() return def draw_piechart_graph(self, ax, ax1, type_pt='pt', gene_exp='', title=''): # ax1 is the pseudotime arrow_head_w = 0.4#0.4 edgeweight_scale = 3#1.5 node_pos = self.graph_node_pos edgelist = list(self.edgelist_maxout) edgeweight = self.edgeweights_maxout node_pos = np.asarray(node_pos) graph_node_label = self.graph_node_label if type_pt == 'pt': pt = self.scaled_hitting_times # these are the final MCMC refined pt then slightly scaled title_ax1 = "pseudotime" # if type_pt == 'biased_stationary': pt = self.biased_hitting_times_stationary # if type_pt == 'markov': pt = self.markov_hitting_times if type_pt == 'gene': pt = gene_exp title_ax1 = title import matplotlib.lines as lines n_groups = len(set(self.labels)) # node_pos.shape[0] n_truegroups = len(set(self.true_label)) group_pop = np.zeros([n_groups, 1]) group_frac = pd.DataFrame(np.zeros([n_groups, n_truegroups]), columns=list(set(self.true_label))) for group_i in set(self.labels): loc_i = np.where(self.labels == group_i)[0] group_pop[group_i] = len(loc_i) # np.sum(loc_i) / 1000 + 1 true_label_in_group_i = list(np.asarray(self.true_label)[loc_i]) for ii in set(true_label_in_group_i): group_frac[ii][group_i] = true_label_in_group_i.count(ii) # group_frac = group_frac.div(group_frac.sum(axis=1), axis=0) # print('group frac', group_frac) line_true = np.linspace(0, 1, n_truegroups) color_true_list = [plt.cm.jet(color) for color in line_true] sct = ax.scatter( node_pos[:, 0], node_pos[:, 1], c='white', edgecolors='face', s=group_pop, cmap='jet') # print('draw triangle edgelist', len(edgelist), edgelist) bboxes = getbb(sct, ax) for e_i, (start, end) in enumerate(edgelist): if pt[start] > pt[end]: temp = start start = end end = temp ax.add_line(lines.Line2D([node_pos[start, 0], node_pos[end, 0]], [node_pos[start, 1], node_pos[end, 1]], color='grey', lw=edgeweight[e_i] * edgeweight_scale, alpha=0.2)) z = np.polyfit([node_pos[start, 0], node_pos[end, 0]], [node_pos[start, 1], node_pos[end, 1]], 1) minx = np.min(np.array([node_pos[start, 0], node_pos[end, 0]])) if (node_pos[start, 0] < node_pos[end, 0]): direction_arrow = 1 else: direction_arrow = -1 maxx = np.max(np.array([node_pos[start, 0], node_pos[end, 0]])) xp = np.linspace(minx, maxx, 500) p = np.poly1d(z) smooth = p(xp) step = 1 if direction_arrow == 1: ax.arrow(xp[250], smooth[250], xp[250 + step] - xp[250], smooth[250 + step] - smooth[250], shape='full', lw=0, length_includes_head=True, head_width=arrow_head_w, color='grey') # ax.plot(xp, smooth, linewidth=edgeweight[e_i], c='pink') else: ax.arrow(xp[250], smooth[250], xp[250 - step] - xp[250], smooth[250 - step] - smooth[250], shape='full', lw=0, length_includes_head=True, head_width=arrow_head_w, color='grey') trans = ax.transData.transform bbox = ax.get_position().get_points() ax_x_min = bbox[0, 0] ax_x_max = bbox[1, 0] ax_y_min = bbox[0, 1] ax_y_max = bbox[1, 1] ax_len_x = ax_x_max - ax_x_min ax_len_y = ax_y_max - ax_y_min trans2 = ax.transAxes.inverted().transform pie_axs = [] pie_size_ar = ((group_pop - np.min(group_pop)) / (np.max(group_pop) - np.min(group_pop)) + 0.5) / 10 # print('pie_size_ar', pie_size_ar) for node_i in range(n_groups): pie_size = pie_size_ar[node_i][0] x1, y1 = trans(node_pos[node_i]) # data coordinates xa, ya = trans2((x1, y1)) # axis coordinates xa = ax_x_min + (xa - pie_size / 2) * ax_len_x ya = ax_y_min + (ya - pie_size / 2) * ax_len_y # clip, the fruchterman layout sometimes places below figure if ya < 0: ya = 0 if xa < 0: xa = 0 rect = [xa, ya, pie_size * ax_len_x, pie_size * ax_len_y] frac = np.asarray([ff for ff in group_frac.iloc[node_i].values]) pie_axs.append(plt.axes(rect, frameon=False)) pie_axs[node_i].pie(frac, wedgeprops={'linewidth': 0.0}, colors=color_true_list) pie_axs[node_i].set_xticks([]) pie_axs[node_i].set_yticks([]) pie_axs[node_i].set_aspect('equal') pie_axs[node_i].text(0.5, 0.5, graph_node_label[node_i]) patches, texts = pie_axs[node_i].pie(frac, wedgeprops={'linewidth': 0.0}, colors=color_true_list) labels = list(set(self.true_label)) plt.legend(patches, labels, loc=(-5, -5), fontsize=6) if self.is_coarse == True: # self.too_big_factor >= 0.1: is_sub = ' super clusters' else: is_sub = ' sub clusters' ti = 'Reference Group Membership. K=' + str(self.knn) + '. ncomp = ' + str(self.ncomp) + is_sub ax.set_title(ti) title_list = [title_ax1] # , "PT on undirected original graph"] for i, ax_i in enumerate([ax1]): if type_pt == 'pt': pt = self.markov_hitting_times else: pt = gene_exp for e_i, (start, end) in enumerate(edgelist): if pt[start] > pt[end]: temp = start start = end end = temp ax_i.add_line( lines.Line2D([node_pos[start, 0], node_pos[end, 0]], [node_pos[start, 1], node_pos[end, 1]], color='black', lw=edgeweight[e_i] * edgeweight_scale, alpha=0.5)) z = np.polyfit([node_pos[start, 0], node_pos[end, 0]], [node_pos[start, 1], node_pos[end, 1]], 1) minx = np.min(np.array([node_pos[start, 0], node_pos[end, 0]])) if (node_pos[start, 0] < node_pos[end, 0]): direction_arrow = 1 else: direction_arrow = -1 maxx = np.max(np.array([node_pos[start, 0], node_pos[end, 0]])) xp = np.linspace(minx, maxx, 500) p = np.poly1d(z) smooth = p(xp) step = 1 if direction_arrow == 1: ax_i.arrow(xp[250], smooth[250], xp[250 + step] - xp[250], smooth[250 + step] - smooth[250], shape='full', lw=0, length_includes_head=True, head_width=arrow_head_w, color='grey') else: ax_i.arrow(xp[250], smooth[250], xp[250 - step] - xp[250], smooth[250 - step] - smooth[250], shape='full', lw=0, length_includes_head=True, head_width=arrow_head_w, color='grey') c_edge = [] l_width = [] for ei, pti in enumerate(pt): if ei in self.terminal_clusters: c_edge.append('red') l_width.append(1.5) else: c_edge.append('gray') l_width.append(0.0) gp_scaling = 1000/max(group_pop)#500 / max(group_pop) # print(gp_scaling, 'gp_scaling') group_pop_scale = group_pop * gp_scaling cmap = 'viridis_r' if type_pt == 'gene': cmap = 'coolwarm' # cmap = 'viridis' ax_i.scatter(node_pos[:, 0], node_pos[:, 1], s=group_pop_scale, c=pt, cmap=cmap, edgecolors=c_edge, alpha=1, zorder=3, linewidth=l_width) # for ii in range(node_pos.shape[0]): # ax_i.text(node_pos[ii, 0] + 0.5, node_pos[ii, 1] + 0.5, 'c' + str(ii), color='black', zorder=4) title_pt = title_list[i] ax_i.set_title(title_pt) def accuracy(self, onevsall=1): true_labels = self.true_label Index_dict = {} PARC_labels = self.labels N = len(PARC_labels) n_cancer = list(true_labels).count(onevsall) n_pbmc = N - n_cancer for k in range(N): Index_dict.setdefault(PARC_labels[k], []).append(true_labels[k]) num_groups = len(Index_dict) sorted_keys = list(sorted(Index_dict.keys())) error_count = [] pbmc_labels = [] thp1_labels = [] fp, fn, tp, tn, precision, recall, f1_score = 0, 0, 0, 0, 0, 0, 0 for kk in sorted_keys: vals = [t for t in Index_dict[kk]] majority_val = self.func_mode(vals) #if majority_val == onevsall: print('cluster', kk, ' has majority', onevsall, 'with population', len(vals)) if kk == -1: len_unknown = len(vals) # print('len unknown', len_unknown) if (majority_val == onevsall) and (kk != -1): thp1_labels.append(kk) fp = fp + len([e for e in vals if e != onevsall]) tp = tp + len([e for e in vals if e == onevsall]) list_error = [e for e in vals if e != majority_val] e_count = len(list_error) error_count.append(e_count) elif (majority_val != onevsall) and (kk != -1): pbmc_labels.append(kk) tn = tn + len([e for e in vals if e != onevsall]) fn = fn + len([e for e in vals if e == onevsall]) error_count.append(len([e for e in vals if e != majority_val])) predict_class_array = np.array(PARC_labels) PARC_labels_array = np.array(PARC_labels) number_clusters_for_target = len(thp1_labels) for cancer_class in thp1_labels: predict_class_array[PARC_labels_array == cancer_class] = 1 for benign_class in pbmc_labels: predict_class_array[PARC_labels_array == benign_class] = 0 predict_class_array.reshape((predict_class_array.shape[0], -1)) error_rate = sum(error_count) / N n_target = tp + fn tnr = tn / n_pbmc fnr = fn / n_cancer tpr = tp / n_cancer fpr = fp / n_pbmc if tp != 0 or fn != 0: recall = tp / (tp + fn) # ability to find all positives if tp != 0 or fp != 0: precision = tp / (tp + fp) # ability to not misclassify negatives as positives if precision != 0 or recall != 0: f1_score = precision * recall * 2 / (precision + recall) majority_truth_labels = np.empty((len(true_labels), 1), dtype=object) for cluster_i in set(PARC_labels): cluster_i_loc = np.where(np.asarray(PARC_labels) == cluster_i)[0] true_labels = np.asarray(true_labels) majority_truth = self.func_mode(list(true_labels[cluster_i_loc])) majority_truth_labels[cluster_i_loc] = majority_truth majority_truth_labels = list(majority_truth_labels.flatten()) accuracy_val = [error_rate, f1_score, tnr, fnr, tpr, fpr, precision, recall, num_groups, n_target] return accuracy_val, predict_class_array, majority_truth_labels, number_clusters_for_target def run_VIA(self): print('input data has shape', self.data.shape[0], '(samples) x', self.data.shape[1], '(features)') self.ncomp = self.data.shape[1] pop_list = [] for item in set(list(self.true_label)): pop_list.append([item, list(self.true_label).count(item)]) # print("population composition", pop_list) if self.true_label is None: self.true_label = [1] * self.data.shape[0] list_roc = [] time_start_total = time.time() time_start_knn = time.time() self.knn_struct = self.make_knn_struct() time_end_knn_struct = time.time() - time_start_knn # Query dataset, k - number of closest elements (returns 2 numpy arrays) self.run_subPARC() run_time = time.time() - time_start_total print('time elapsed {:.1f} seconds'.format(run_time)) targets = list(set(self.true_label)) N = len(list(self.true_label)) self.f1_accumulated = 0 self.f1_mean = 0 self.stats_df = pd.DataFrame({'jac_std_global': [self.jac_std_global], 'dist_std_local': [self.dist_std_local], 'runtime(s)': [run_time]}) self.majority_truth_labels = [] if len(targets) > 1: f1_accumulated = 0 f1_acc_noweighting = 0 for onevsall_val in targets: # print('target is', onevsall_val) vals_roc, predict_class_array, majority_truth_labels, numclusters_targetval = self.accuracy( onevsall=onevsall_val) f1_current = vals_roc[1] #print('target', onevsall_val, 'has f1-score of %.2f' % (f1_current * 100)) f1_accumulated = f1_accumulated + f1_current * (list(self.true_label).count(onevsall_val)) / N f1_acc_noweighting = f1_acc_noweighting + f1_current list_roc.append( [self.jac_std_global, self.dist_std_local, onevsall_val] + vals_roc + [numclusters_targetval] + [ run_time]) f1_mean = f1_acc_noweighting / len(targets) #print("f1-score (unweighted) mean %.2f" % (f1_mean * 100), '%') # print('f1-score weighted (by population) %.2f' % (f1_accumulated * 100), '%') df_accuracy = pd.DataFrame(list_roc, columns=['jac_std_global', 'dist_std_local', 'onevsall-target', 'error rate', 'f1-score', 'tnr', 'fnr', 'tpr', 'fpr', 'precision', 'recall', 'num_groups', 'population of target', 'num clusters', 'clustering runtime']) self.f1_accumulated = f1_accumulated self.f1_mean = f1_mean self.stats_df = df_accuracy self.majority_truth_labels = majority_truth_labels return def cellrank_Human(ncomps=80, knn=30, v0_random_seed=7): import scvelo as scv dict_abb = {'Basophils': 'BASO1', 'CD4+ Effector Memory': 'TCEL7', 'Colony Forming Unit-Granulocytes': 'GRAN1', 'Colony Forming Unit-Megakaryocytic': 'MEGA1', 'Colony Forming Unit-Monocytes': 'MONO1', 'Common myeloid progenitors': "CMP", 'Early B cells': "PRE_B2", 'Eosinophils': "EOS2", 'Erythroid_CD34- CD71+ GlyA-': "ERY2", 'Erythroid_CD34- CD71+ GlyA+': "ERY3", 'Erythroid_CD34+ CD71+ GlyA-': "ERY1", 'Erythroid_CD34- CD71lo GlyA+': 'ERY4', 'Granulocyte/monocyte progenitors': "GMP", 'Hematopoietic stem cells_CD133+ CD34dim': "HSC1", 'Hematopoietic stem cells_CD38- CD34+': "HSC2", 'Mature B cells class able to switch': "B_a2", 'Mature B cells class switched': "B_a4", 'Mature NK cells_CD56- CD16- CD3-': "Nka3", 'Monocytes': "MONO2", 'Megakaryocyte/erythroid progenitors': "MEP", 'Myeloid Dendritic Cells': 'mDC', 'Naïve B cells': "B_a1", 'Plasmacytoid Dendritic Cells': "pDC", 'Pro B cells': 'PRE_B3'} string_ = 'ncomp =' + str(ncomps) + ' knn=' + str(knn) + ' randseed=' + str(v0_random_seed) # print('ncomp =', ncomps, ' knn=', knn, ' randseed=', v0_random_seed) print(colored(string_, 'blue')) nover_labels = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/Nover_Cor_PredFine_notLogNorm.csv')[ 'x'].values.tolist() nover_labels = [dict_abb[i] for i in nover_labels] for i in list(set(nover_labels)): print('the population of ', i, 'is ', nover_labels.count(i)) ad = scv.read_loom('/home/shobi/Downloads/Human Hematopoietic Profiling homo_sapiens 2019-11-08 16.12.loom') print(ad) # ad = sc.read('/home/shobi/Trajectory/Datasets/HumanCD34/human_cd34_bm_rep1.h5ad') # ad.obs['nover_label'] = nover_labels print('start cellrank pipeline', time.ctime()) # scv.utils.show_proportions(ad) scv.pl.proportions(ad) scv.pp.filter_and_normalize(ad, min_shared_counts=20, n_top_genes=2000) sc.tl.pca(ad, n_comps=ncomps) n_pcs = ncomps print('npcs', n_pcs, 'knn', knn) sc.pp.neighbors(ad, n_pcs=n_pcs, n_neighbors=knn) sc.tl.louvain(ad, key_added='clusters', resolution=1) scv.pp.moments(ad, n_pcs=n_pcs, n_neighbors=knn) scv.tl.velocity(ad) scv.tl.velocity_graph(ad) scv.pl.velocity_embedding_stream(ad, basis='umap', color='nover_label') def main_Human(ncomps=80, knn=30, v0_random_seed=7, run_palantir_func=False): dict_abb = {'Basophils': 'BASO1', 'CD4+ Effector Memory': 'TCEL7', 'Colony Forming Unit-Granulocytes': 'GRAN1', 'Colony Forming Unit-Megakaryocytic': 'MEGA1', 'Colony Forming Unit-Monocytes': 'MONO1', 'Common myeloid progenitors': "CMP", 'Early B cells': "PRE_B2", 'Eosinophils': "EOS2", 'Erythroid_CD34- CD71+ GlyA-': "ERY2", 'Erythroid_CD34- CD71+ GlyA+': "ERY3", 'Erythroid_CD34+ CD71+ GlyA-': "ERY1", 'Erythroid_CD34- CD71lo GlyA+': 'ERY4', 'Granulocyte/monocyte progenitors': "GMP", 'Hematopoietic stem cells_CD133+ CD34dim': "HSC1", 'Hematopoietic stem cells_CD38- CD34+': "HSC2", 'Mature B cells class able to switch': "B_a2", 'Mature B cells class switched': "B_a4", 'Mature NK cells_CD56- CD16- CD3-': "Nka3", 'Monocytes': "MONO2", 'Megakaryocyte/erythroid progenitors': "MEP", 'Myeloid Dendritic Cells': 'mDC (cDC)', 'Naïve B cells': "B_a1", 'Plasmacytoid Dendritic Cells': "pDC", 'Pro B cells': 'PRE_B3'} #NOTE: Myeloid DCs are now called Conventional Dendritic Cells cDCs string_ = 'ncomp =' + str(ncomps) + ' knn=' + str(knn) + ' randseed=' + str(v0_random_seed) # print('ncomp =', ncomps, ' knn=', knn, ' randseed=', v0_random_seed) print(colored(string_, 'blue')) nover_labels = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/Nover_Cor_PredFine_notLogNorm.csv')[ 'x'].values.tolist() nover_labels = [dict_abb[i] for i in nover_labels] for i in list(set(nover_labels)): print('the population of ', i, 'is ', nover_labels.count(i)) parc53_labels = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/Nover_Cor_Parc53_set1.csv')[ 'x'].values.tolist() parclabels_all = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/parclabels_all_set1.csv')[ 'parc'].values.tolist() parc_dict_nover = {} for i, c in enumerate(parc53_labels): parc_dict_nover[i] = dict_abb[c] parclabels_all = [parc_dict_nover[ll] for ll in parclabels_all] # print('all', len(parclabels_all)) ad = sc.read( '/home/shobi/Trajectory/Datasets/HumanCD34/human_cd34_bm_rep1.h5ad') # 5780 cells x 14651 genes Human Replicate 1. Male african american, 38 years print('h5ad ad size', ad) colors = pd.Series(ad.uns['cluster_colors']) colors['10'] = '#0b128f' ct_colors = pd.Series(ad.uns['ct_colors']) list_var_names = ad.var_names # print(list_var_names) ad.uns['iroot'] = np.flatnonzero(ad.obs_names == ad.obs['palantir_pseudotime'].idxmin())[0] print('iroot', np.flatnonzero(ad.obs_names == ad.obs['palantir_pseudotime'].idxmin())[0]) tsne =
pd.DataFrame(ad.obsm['tsne'], index=ad.obs_names, columns=['x', 'y'])
pandas.DataFrame
# Fundamental libraries import os import re import sys import time import glob import random import datetime import warnings import itertools import numpy as np import pandas as pd import pickle as cp import seaborn as sns import multiprocessing from scipy import stats from pathlib import Path from ast import literal_eval import matplotlib.pyplot as plt from collections import Counter from argparse import ArgumentParser os.environ['CUDA_LAUNCH_BLOCKING'] = "1" warnings.filterwarnings(action="ignore") # PyTorch, PyTorch.Text, and Lightning-PyTorch methods import torch from torch import nn, optim, Tensor import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torchtext.vocab import Vocab import pytorch_lightning as pl from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.callbacks.early_stopping import EarlyStopping # SciKit-Learn methods from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score from sklearn.preprocessing import LabelEncoder, KBinsDiscretizer, OneHotEncoder, StandardScaler from sklearn.model_selection import StratifiedShuffleSplit from sklearn.utils import resample from sklearn.utils.class_weight import compute_class_weight # TQDM for progress tracking from tqdm import tqdm # Custom methods from classes.datasets import CONCISE_PREDICTOR_SET from models.CPM import CPM_deep # Train CPM_deep def train_CPM_deep(TRAINING_SET, VAL_SET, TESTING_SET, TUNE_IDX, REPEAT, FOLD, OUTPUT_DIR, BATCH_SIZE, LEARNING_RATE, LAYERS, NEURONS, DROPOUT, ES_PATIENCE, EPOCHS, CLASS_WEIGHTS, OUTPUT_ACTIVATION): """ Args: TRAINING_SET (pd.DataFrame) VAL_SET (pd.DataFrame) TESTING_SET (pd.DataFrame) TUNE_IDX (str) REPEAT (int) FOLD (int) OUTPUT_DIR (str): directory to save model outputs BATCH_SIZE (int): size of minibatches during training LEARNING_RATE (float): Learning rate for ADAM optimizer LAYERS (int): number of hidden layers in feed forward neural network NEURONS (list of length layers): the number of neurons in each layer DROPOUT (flaot): the proportion of each dense layer dropped out during training ES_PATIENCE (int): patience during early stopping EPOCHS (int): maximum epochs during training CLASS_WEIGHTS (boolean): identifies whether loss should be weighted against class frequency OUTPUT_ACTIVATION (string): 'softmax' for DeepMN or 'sigmoid' for DeepOR """ # Create a directory within current repeat/fold combination to store outputs of current tuning configuration tune_model_dir = os.path.join(OUTPUT_DIR,'tune_'+TUNE_IDX) os.makedirs(tune_model_dir,exist_ok = True) # Create PyTorch Dataset objects train_Dataset = CONCISE_PREDICTOR_SET(TRAINING_SET,OUTPUT_ACTIVATION) val_Dataset = CONCISE_PREDICTOR_SET(VAL_SET,OUTPUT_ACTIVATION) test_Dataset = CONCISE_PREDICTOR_SET(TESTING_SET,OUTPUT_ACTIVATION) # Create PyTorch DataLoader objects curr_train_DL = DataLoader(train_Dataset, batch_size=int(BATCH_SIZE), shuffle=True) curr_val_DL = DataLoader(val_Dataset, batch_size=len(val_Dataset), shuffle=False) curr_test_DL = DataLoader(test_Dataset, batch_size=len(test_Dataset), shuffle=False) # Initialize current model class based on hyperparameter selections model = CPM_deep(train_Dataset.X.shape[1], LAYERS, NEURONS, DROPOUT, OUTPUT_ACTIVATION, LEARNING_RATE, CLASS_WEIGHTS, train_Dataset.y) early_stop_callback = EarlyStopping( monitor='val_AUROC', patience=ES_PATIENCE, mode='max' ) checkpoint_callback = ModelCheckpoint( monitor='val_AUROC', dirpath=tune_model_dir, filename='{epoch:02d}-{val_AUROC:.2f}', save_top_k=1, mode='max' ) csv_logger = pl.loggers.CSVLogger(save_dir=OUTPUT_DIR,name='tune_'+TUNE_IDX) trainer = pl.Trainer(logger = csv_logger, max_epochs = EPOCHS, enable_progress_bar = False, enable_model_summary = False, callbacks=[early_stop_callback,checkpoint_callback]) trainer.fit(model,curr_train_DL,curr_val_DL) best_model = CPM_deep.load_from_checkpoint(checkpoint_callback.best_model_path) best_model.eval() # Save validation set probabilities for i, (x,y) in enumerate(curr_val_DL): yhat = best_model(x) val_true_y = y.cpu().numpy() if OUTPUT_ACTIVATION == 'softmax': curr_val_probs = F.softmax(yhat.detach()).cpu().numpy() curr_val_preds = pd.DataFrame(curr_val_probs,columns=['Pr(GOSE=1)','Pr(GOSE=2/3)','Pr(GOSE=4)','Pr(GOSE=5)','Pr(GOSE=6)','Pr(GOSE=7)','Pr(GOSE=8)']) curr_val_preds['TrueLabel'] = val_true_y elif OUTPUT_ACTIVATION == 'sigmoid': curr_val_probs = F.sigmoid(yhat.detach()).cpu().numpy() curr_val_probs = pd.DataFrame(curr_val_probs,columns=['Pr(GOSE>1)','Pr(GOSE>3)','Pr(GOSE>4)','Pr(GOSE>5)','Pr(GOSE>6)','Pr(GOSE>7)']) curr_val_labels = pd.DataFrame(val_true_y,columns=['GOSE>1','GOSE>3','GOSE>4','GOSE>5','GOSE>6','GOSE>7']) curr_val_preds = pd.concat([curr_val_probs,curr_val_labels],axis = 1) else: raise ValueError("Invalid output layer type. Must be 'softmax' or 'sigmoid'") curr_val_preds.insert(loc=0, column='GUPI', value=VAL_SET.GUPI.values) curr_val_preds['TUNE_IDX'] = TUNE_IDX curr_val_preds.to_csv(os.path.join(tune_model_dir,'val_predictions.csv'),index=False) best_model.eval() # Save testing set probabilities for i, (x,y) in enumerate(curr_test_DL): yhat = best_model(x) test_true_y = y.cpu().numpy() if OUTPUT_ACTIVATION == 'softmax': curr_test_probs = F.softmax(yhat.detach()).cpu().numpy() curr_test_preds = pd.DataFrame(curr_test_probs,columns=['Pr(GOSE=1)','Pr(GOSE=2/3)','Pr(GOSE=4)','Pr(GOSE=5)','Pr(GOSE=6)','Pr(GOSE=7)','Pr(GOSE=8)']) curr_test_preds['TrueLabel'] = test_true_y elif OUTPUT_ACTIVATION == 'sigmoid': curr_test_probs = F.sigmoid(yhat.detach()).cpu().numpy() curr_test_probs = pd.DataFrame(curr_test_probs,columns=['Pr(GOSE>1)','Pr(GOSE>3)','Pr(GOSE>4)','Pr(GOSE>5)','Pr(GOSE>6)','Pr(GOSE>7)']) curr_test_labels = pd.DataFrame(test_true_y,columns=['GOSE>1','GOSE>3','GOSE>4','GOSE>5','GOSE>6','GOSE>7']) curr_test_preds = pd.concat([curr_test_probs,curr_test_labels],axis = 1) else: raise ValueError("Invalid output layer type. Must be 'softmax' or 'sigmoid'") curr_test_preds.insert(loc=0, column='GUPI', value=TESTING_SET.GUPI.values) curr_test_preds['TUNE_IDX'] = TUNE_IDX curr_test_preds.to_csv(os.path.join(tune_model_dir,'test_predictions.csv'),index=False) # Functions to collect validation metrics from files in parallel def collect_val_metrics( csv_file_list, n_cores, progress_bar=True, progress_bar_desc=''): # Establish sizes of files for each core sizes = [len(csv_file_list) // n_cores for _ in range(n_cores)] sizes[:(len(csv_file_list) - sum(sizes))] = [val+1 for val in sizes[:(len(csv_file_list) - sum(sizes))]] end_indices = np.cumsum(sizes) start_indices = np.insert(end_indices[:-1],0,0) # Build arguments for metric sub-functions arg_iterable = [( csv_file_list[start_indices[idx]:end_indices[idx]], progress_bar, progress_bar_desc) for idx in range(len(start_indices))] # Run metric sub-function in parallel with multiprocessing.Pool(n_cores) as pool: result = pool.starmap(_val_metric_par, arg_iterable) return
pd.concat(result, ignore_index=True)
pandas.concat
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt sns.set() class ReportBuilder: def __init__(self, data=None, file_path=None): self.categorical_columns = [] self.numerical_columns = [] if data is not None: self.data = data self.set_categorical_columns() self.set_numerical_columns() if file_path: self.read_csv(file_path) def read_csv(self, file_path=None): self.data =
pd.read_csv(file_path, encoding='iso-8859-1')
pandas.read_csv
from functools import partial import json import numpy as np import pandas as pd import pandas.testing as pdt import pytest from solarforecastarbiter.io import utils # data for test Dataframe TEST_DICT = {'value': [2.0, 43.9, 338.0, -199.7, 0.32], 'quality_flag': [1, 1, 9, 5, 2]} DF_INDEX = pd.date_range(start=pd.Timestamp('2019-01-24T00:00'), freq='1min', periods=5, tz='UTC', name='timestamp') DF_INDEX.freq = None TEST_DATA = pd.DataFrame(TEST_DICT, index=DF_INDEX) EMPTY_SERIES = pd.Series(dtype=float) EMPTY_TIMESERIES = pd.Series([], name='value', index=pd.DatetimeIndex( [], name='timestamp', tz='UTC'), dtype=float) EMPTY_DATAFRAME = pd.DataFrame(dtype=float) EMPTY_TIME_DATAFRAME = pd.DataFrame([], index=pd.DatetimeIndex( [], name='timestamp', tz='UTC'), dtype=float) TEST_DATAFRAME = pd.DataFrame({ '25.0': [0.0, 1, 2, 3, 4, 5], '50.0': [1.0, 2, 3, 4, 5, 6], '75.0': [2.0, 3, 4, 5, 6, 7]}, index=pd.date_range(start='20190101T0600', end='20190101T1100', freq='1h', tz='America/Denver', name='timestamp')).tz_convert('UTC') @pytest.mark.parametrize('dump_quality,default_flag,flag_value', [ (False, None, 1), (True, 2, 2) ]) def test_obs_df_to_json(dump_quality, default_flag, flag_value): td = TEST_DATA.copy() if dump_quality: del td['quality_flag'] converted = utils.observation_df_to_json_payload(td, default_flag) converted_dict = json.loads(converted) assert 'values' in converted_dict values = converted_dict['values'] assert len(values) == 5 assert values[0]['timestamp'] == '2019-01-24T00:00:00Z' assert values[0]['quality_flag'] == flag_value assert isinstance(values[0]['value'], float) def test_obs_df_to_json_no_quality(): td = TEST_DATA.copy() del td['quality_flag'] with pytest.raises(KeyError): utils.observation_df_to_json_payload(td) def test_obs_df_to_json_no_values(): td = TEST_DATA.copy().rename(columns={'value': 'val1'}) with pytest.raises(KeyError): utils.observation_df_to_json_payload(td) def test_forecast_series_to_json(): series = pd.Series([0, 1, 2, 3, 4], index=pd.date_range( start='2019-01-01T12:00Z', freq='5min', periods=5)) expected = [{'value': 0.0, 'timestamp': '2019-01-01T12:00:00Z'}, {'value': 1.0, 'timestamp': '2019-01-01T12:05:00Z'}, {'value': 2.0, 'timestamp': '2019-01-01T12:10:00Z'}, {'value': 3.0, 'timestamp': '2019-01-01T12:15:00Z'}, {'value': 4.0, 'timestamp': '2019-01-01T12:20:00Z'}] json_out = utils.forecast_object_to_json(series) assert json.loads(json_out)['values'] == expected def test_json_payload_to_observation_df(observation_values, observation_values_text): out = utils.json_payload_to_observation_df( json.loads(observation_values_text)) pdt.assert_frame_equal(out, observation_values) def test_json_payload_to_forecast_series(forecast_values, forecast_values_text): out = utils.json_payload_to_forecast_series( json.loads(forecast_values_text)) pdt.assert_series_equal(out, forecast_values) def test_empty_payload_to_obsevation_df(): out = utils.json_payload_to_observation_df({'values': []}) assert set(out.columns) == {'value', 'quality_flag'} assert isinstance(out.index, pd.DatetimeIndex) def test_empty_payload_to_forecast_series(): out = utils.json_payload_to_forecast_series({'values': []}) assert isinstance(out.index, pd.DatetimeIndex) def test_null_json_payload_to_observation_df(): observation_values_text = b""" { "_links": { "metadata": "" }, "observation_id": "OBSID", "values": [ { "quality_flag": 1, "timestamp": "2019-01-01T12:00:00-0700", "value": null }, { "quality_flag": 1, "timestamp": "2019-01-01T12:05:00-0700", "value": null } ] }""" ind = pd.DatetimeIndex([ pd.Timestamp("2019-01-01T19:00:00Z"), pd.Timestamp("2019-01-01T19:05:00Z") ], name='timestamp') observation_values = pd.DataFrame({ 'value': pd.Series([None, None], index=ind, dtype=float), 'quality_flag': pd.Series([1, 1], index=ind) }) out = utils.json_payload_to_observation_df( json.loads(observation_values_text)) pdt.assert_frame_equal(out, observation_values) def test_null_json_payload_to_forecast_series(): forecast_values_text = b""" { "_links": { "metadata": "" }, "forecast_id": "OBSID", "values": [ { "timestamp": "2019-01-01T12:00:00-0700", "value": null }, { "timestamp": "2019-01-01T12:05:00-0700", "value": null } ] }""" ind = pd.DatetimeIndex([ pd.Timestamp("2019-01-01T19:00:00Z"), pd.Timestamp("2019-01-01T19:05:00Z") ], name='timestamp') forecast_values = pd.Series([None, None], index=ind, dtype=float, name='value') out = utils.json_payload_to_forecast_series( json.loads(forecast_values_text)) pdt.assert_series_equal(out, forecast_values) @pytest.mark.parametrize('label,exp,start,end', [ ('instant', TEST_DATA, None, None), (None, TEST_DATA, None, None), ('ending', TEST_DATA.iloc[1:], None, None), ('beginning', TEST_DATA.iloc[:-1], None, None), pytest.param('er', TEST_DATA, None, None, marks=pytest.mark.xfail(raises=ValueError)), # start/end outside data ('ending', TEST_DATA,
pd.Timestamp('20190123T2300Z')
pandas.Timestamp
# -*- coding: utf-8 -*- import unittest import pandas from pipesnake.pipe import SeriesPipe from pipesnake.transformers.imputer import KnnImputer from pipesnake.transformers.imputer import ReplaceImputer from pipesnake.transformers.selector import ColumnSelector class TestImputer(unittest.TestCase): def test_replace_imputer(self): from _data import x_nan from _data import y_nan pipe = SeriesPipe(transformers=[ ColumnSelector(x_cols=['x_1', 'x_2', 'x_3', 'x_4'], y_cols=['y_1', 'y_2']), ReplaceImputer(x_cols='all', y_cols='all'), ]) x_new, y_new = pipe.fit_transform(x_nan, y_nan) self.assertEqual(pandas.isnull(x_new).any().any(), False, 'NaN values has been found in x_new') self.assertEqual(pandas.isnull(y_new).any().any(), False, 'NaN values has been found in y_new') del x_nan, y_nan, x_new, y_new def test_knn_imputer(self): from _data import x_nan from _data import y_nan imputer = KnnImputer(x_cols='all', y_cols='all') x_new, y_new = imputer.fit_transform(x_nan, y_nan) self.assertEqual(
pandas.isnull(x_new)
pandas.isnull
from bs4 import BeautifulSoup import pandas as pd import os folderPath = input( 'Please Paste here the Absolute Path to the Folder not to the HTML File as you done before \n and dont forgot to replace \ with / in the path \n > ') for root, dirs, files in os.walk(folderPath, topdown=True): for fileName in files: if fileName.endswith(".html"): soup = BeautifulSoup( open(os.path.join(root, fileName)).read(), 'lxml') one_list = [] sec_list = [] third_list = [] fourth_list = [] fifth_list = [] sixth_list = [] sev_list = [] eight_list = [] nine_list = [] ten_list = [] elev_list = [] twe_list = [] thir_list = [] fourteen_list = [] fif_list = [] six_list = [] seven_list = [] eighteen_list = [] ninteen_list = [] print('Scraping Required Information Please Wait...') for a in soup.select('.inActiveLink .grayBorder:nth-child(1)'): one = a.text one_list.append(one) for row in soup.select('.inActiveLink .grayBorder:nth-child(4)'): sec = row.text sec_list.append(sec) for b in soup.select('.inActiveLink .grayBorder:nth-child(5)'): third = b.text third_list.append(third) for c in soup.select('.inActiveLink .grayBorder:nth-child(6)'): four = c.text fourth_list.append(four) for d in soup.select('.inActiveLink .grayBorder:nth-child(7)'): five = d.text fifth_list.append(five) for e in soup.select('.inActiveLink .grayBorder:nth-child(8)'): sixth = e.text sixth_list.append(sixth) for f in soup.select('.inActiveLink .grayBorder:nth-child(9)'): sev = f.text sev_list.append(sev) for g in soup.select('.inActiveLink .grayBorder:nth-child(10)'): ei = g.text eight_list.append(ei) for h in soup.select('.inActiveLink .grayBorder:nth-child(11)'): ni = h.text nine_list.append(ni) for i in soup.select('.inActiveLink .grayBorder:nth-child(12)'): te = i.text ten_list.append(te) for j in soup.select('.inActiveLink .grayBorder:nth-child(13)'): el = j.text elev_list.append(el) for k in soup.select('.inActiveLink .grayBorder:nth-child(14)'): twe = k.text twe_list.append(twe) for l in soup.select('.inActiveLink .grayBorder:nth-child(15)'): th = l.text thir_list.append(th) for m in soup.select('.inActiveLink .grayBorder:nth-child(16)'): fo = m.text fourteen_list.append(fo) for n in soup.select('.inActiveLink .grayBorder:nth-child(17)'): fi = n.text fif_list.append(fi) for o in soup.select('.inActiveLink .grayBorder:nth-child(18)'): sixteen = o.text six_list.append(sixteen) for p in soup.select('.inActiveLink .grayBorder:nth-child(19)'): seven = p.text seven_list.append(seven) for q in soup.select('.inActiveLink .grayBorder:nth-child(20)'): eighteen = q.text eighteen_list.append(eighteen) for r in soup.select('.inActiveLink .grayBorder:nth-child(21)'): niniteen = r.text ninteen_list.append(niniteen) print() print('Scraping Done') data = { "'מס": one_list, "פע'": sec_list, "שם": third_list, "ישוב": fourth_list, "שכונה": fifth_list, "כתובת": sixth_list, "חדרים": sev_list, "סוג": eight_list, "שטח": nine_list, "קומה": ten_list, "מחיר": elev_list, "טלפון": twe_list, "תאריך עדכון מערכת": thir_list, "שעת עדכון מערכת": fourteen_list, "ת. עדכון": fif_list, "מדיה": six_list, "מעלית": seven_list, "הערות": eighteen_list, "תאריך רישום במערכת": ninteen_list } print() Output_File = input('Please Enter the Name of File(Output): > ') df =
pd.DataFrame(data)
pandas.DataFrame
import os import torch.nn as nn import torch import warnings import argparse from Logger import * import pickle from Dataset import * warnings.filterwarnings("ignore") from Functions import * from Network import * import pandas as pd def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--gpu_id', type=str, default='0', help='which gpu to use') parser.add_argument('--path', type=str, default='../', help='path of csv file with DNA sequences and labels') parser.add_argument('--epochs', type=int, default=150, help='number of epochs to train') parser.add_argument('--batch_size', type=int, default=24, help='size of each batch during training') parser.add_argument('--weight_decay', type=float, default=0, help='weight dacay used in optimizer') parser.add_argument('--ntoken', type=int, default=4, help='number of tokens to represent DNA nucleotides (should always be 4)') parser.add_argument('--nclass', type=int, default=919, help='number of classes from the linear decoder') parser.add_argument('--ninp', type=int, default=512, help='ninp for transformer encoder') parser.add_argument('--nhead', type=int, default=8, help='nhead for transformer encoder') parser.add_argument('--nhid', type=int, default=2048, help='nhid for transformer encoder') parser.add_argument('--nlayers', type=int, default=6, help='nlayers for transformer encoder') parser.add_argument('--save_freq', type=int, default=1, help='saving checkpoints per save_freq epochs') parser.add_argument('--dropout', type=float, default=.1, help='transformer dropout') parser.add_argument('--warmup_steps', type=int, default=3200, help='training schedule warmup steps') parser.add_argument('--lr_scale', type=float, default=1, help='learning rate scale') parser.add_argument('--nmute', type=int, default=18, help='number of mutations during training') parser.add_argument('--kmers', type=int, nargs='+', default=[7], help='k-mers to be aggregated') #parser.add_argument('--kmer_aggregation', type=bool, default=True, help='k-mers to be aggregated') parser.add_argument('--kmer_aggregation', dest='kmer_aggregation', action='store_true') parser.add_argument('--no_kmer_aggregation', dest='kmer_aggregation', action='store_false') parser.set_defaults(kmer_aggregation=True) parser.add_argument('--nfolds', type=int, default=5, help='number of cross validation folds') parser.add_argument('--fold', type=int, default=0, help='which fold to train') parser.add_argument('--val_freq', type=int, default=1, help='which fold to train') parser.add_argument('--num_workers', type=int, default=1, help='num_workers') opts = parser.parse_args() return opts #def train_fold(): args=get_args() # DECLARE HOW MANY GPUS YOU WISH TO USE. # KAGGLE ONLY HAS 1, BUT OFFLINE, YOU CAN USE MORE os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu_id #0,1,2,3 for four gpu if torch.cuda.device_count() > 1: DATAPARALLEL=True else: DATAPARALLEL=False # print(torch.cuda.device_count()) # # exit() # VERSION FOR SAVING MODEL WEIGHTS VER=26 # IF VARIABLE IS NONE, THEN NOTEBOOK COMPUTES TOKENS # OTHERWISE NOTEBOOK LOADS TOKENS FROM PATH LOAD_TOKENS_FROM = '../../input/py-bigbird-v26' # IF VARIABLE IS NONE, THEN NOTEBOOK TRAINS A NEW MODEL # OTHERWISE IT LOADS YOUR PREVIOUSLY TRAINED MODEL #LOAD_MODEL_FROM = '../input/whitespace' LOAD_MODEL_FROM = None # IF FOLLOWING IS NONE, THEN NOTEBOOK # USES INTERNET AND DOWNLOADS HUGGINGFACE # CONFIG, TOKENIZER, AND MODEL DOWNLOADED_MODEL_PATH = "../../input/deberta-xlarge" if DOWNLOADED_MODEL_PATH is None: DOWNLOADED_MODEL_PATH = 'model' MODEL_NAME = 'microsoft/deberta-xlarge' #MODEL_NAME = "google/bigbird-roberta-large" from torch import cuda config = {'model_name': MODEL_NAME, 'max_length': 1536, 'train_batch_size':2, 'valid_batch_size':1, 'epochs':7, 'learning_rates': [2.5e-5, 2.5e-5, 2.5e-5, 2.5e-6, 2.5e-6, 2.5e-6, 2.5e-7], 'max_grad_norm':1, 'device': 'cuda' if cuda.is_available() else 'cpu'} config['learning_rates']=[lr*args.lr_scale for lr in config['learning_rates']] print('learning_rates:') print(config['learning_rates']) #lr_scale # THIS WILL COMPUTE VAL SCORE DURING COMMIT BUT NOT DURING SUBMIT COMPUTE_VAL_SCORE = True if len( os.listdir('../../input/test') )>5: COMPUTE_VAL_SCORE = False from transformers import * if DOWNLOADED_MODEL_PATH == 'model': os.system('mkdir model') tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, add_prefix_space=True) tokenizer.save_pretrained('model') config_model = AutoConfig.from_pretrained(MODEL_NAME) config_model.num_labels = 15 config_model.save_pretrained('model') backbone = AutoModelForTokenClassification.from_pretrained(MODEL_NAME, config=config_model) backbone.save_pretrained('model') #load data and libraries import numpy as np, os from scipy import stats import pandas as pd, gc from tqdm import tqdm from transformers import AutoTokenizer, AutoModelForTokenClassification from torch.utils.data import Dataset, DataLoader import torch from sklearn.metrics import accuracy_score train_df = pd.read_csv('../../input/train.csv') print( train_df.shape ) train_df.head() # https://www.kaggle.com/raghavendrakotala/fine-tunned-on-roberta-base-as-ner-problem-0-533 test_names, test_texts = [], [] for f in list(os.listdir('../../input/test')): test_names.append(f.replace('.txt', '')) test_texts.append(open('../../input/test/' + f, 'r').read()) test_texts = pd.DataFrame({'id': test_names, 'text': test_texts}) print(test_texts.head()) # https://www.kaggle.com/raghavendrakotala/fine-tunned-on-roberta-base-as-ner-problem-0-533 test_names, train_texts = [], [] for f in tqdm(list(os.listdir('../../input/train'))): test_names.append(f.replace('.txt', '')) train_texts.append(open('../../input/train/' + f, 'r').read()) train_text_df = pd.DataFrame({'id': test_names, 'text': train_texts}) print(train_text_df.head()) #convert train to text labels if not LOAD_TOKENS_FROM: all_entities = [] for ii,i in tqdm(enumerate(train_text_df.iterrows())): if ii%100==0: print(ii,', ',end='') total = i[1]['text'].split().__len__() entities = ["O"]*total for j in train_df[train_df['id'] == i[1]['id']].iterrows(): discourse = j[1]['discourse_type'] list_ix = [int(x) for x in j[1]['predictionstring'].split(' ')] entities[list_ix[0]] = f"B-{discourse}" for k in list_ix[1:]: entities[k] = f"I-{discourse}" all_entities.append(entities) train_text_df['entities'] = all_entities train_text_df.to_csv('train_NER.csv',index=False) else: from ast import literal_eval train_text_df =
pd.read_csv(f'{LOAD_TOKENS_FROM}/train_NER.csv')
pandas.read_csv
import pandas as pd import re def chain(tracks_csv="../data/raw/tracks.csv", features_csv="../data/raw/features.csv"): """ Method chain function to load and process tracks and features data for analysis 1 (Will) """ tracks =
pd.read_csv(tracks_csv, low_memory=False)
pandas.read_csv
#! /usr/bin/env python import pandas as pd import matplotlib.pyplot as plt import glob, os # The only thing that needs to be changed when running this script is the variable 'path_in' # The script will go to that directory, read in all text files with the .txt extension # It will then parse the files, and write out 3 csv files # These files will then be read in by the script, and it will plot the graphs path_in = 'C:/Users\isle132/Desktop/For Python/140 nm Silica Data/173 deg/Cell Center' os.chdir(path_in) # go to the path specified # This will loop over all files with the .txt extension in the directory specified # It will take the prefix for the file, and make a .Diameter.csv, a .correlation.csv and a .residual.csv # These are extracted from the data in the .txt file for file in glob.glob('*.txt'): exp_data_prefix = os.path.splitext(file)[0] exp_data_file = file file_in_name_path = path_in+'/'+exp_data_file file_diameter_out_name_path = path_in+'/'+exp_data_prefix+'.Diameter.csv' file_correlation_out_name_path = path_in+'/'+exp_data_prefix+'.correlation.csv' file_residual_out_name_path = path_in+'/'+exp_data_prefix+'.residual.csv' with open(file_in_name_path, 'r') as f_in, open(file_diameter_out_name_path, 'w') as f_dia_out, \ open(file_residual_out_name_path, 'w') as f_res_out, open(file_correlation_out_name_path, 'w') as f_cor_out: copy_dia = False copy_res = False copy_cor = False for line in f_in: if line.strip() == 'Diameter (nm),Frequency (%),Undersize (%)': copy_dia = True elif line.strip() == '': copy_dia = False copy_res = False copy_cor = False elif line.strip() == 'Delay Time (µs),Residual': copy_res = True elif line.strip() == 'Delay Time (µs),Correlation,Fitting Function': copy_cor = True if copy_dia: f_dia_out.write(line) elif copy_res: f_res_out.write(line) elif copy_cor: f_cor_out.write(line) # Import the data from the .Diameter.csv file # Plot the diameter vs frequency dia_files = glob.glob('*.Diameter.csv') dia_dfs = [pd.read_csv(dia_fp).assign(Data=os.path.splitext(os.path.splitext(dia_fp)[0])[0]) for dia_fp in dia_files] dia_df = pd.concat(dia_dfs, ignore_index=True) dia_groups = dia_df.groupby('Data') fig1, ax1 = plt.subplots() ax1.margins(0.05) ax1.set_xscale('log') ax1.set_xlim(dia_df['Diameter (nm)'].min(), dia_df['Diameter (nm)'].max()) for name, group in dia_groups: ax1.plot(group['Diameter (nm)'], group['Frequency (%)'], label=name) ax1.legend(loc='upper right') # Import the data from the .residual.csv file # Plot the Delay time vs Residual res_files = glob.glob('*.residual.csv') res_dfs = [pd.read_csv(res_fp, encoding="ISO-8859-1").assign(Data=os.path.splitext(os.path.splitext(res_fp)[0])[0]) for res_fp in res_files] res_df =
pd.concat(res_dfs, ignore_index=True)
pandas.concat
# -*- coding: utf-8 -*- # pylint: disable=W0612,E1101 from datetime import datetime import operator import nose from functools import wraps import numpy as np import pandas as pd from pandas import Series, DataFrame, Index, isnull, notnull, pivot, MultiIndex from pandas.core.datetools import bday from pandas.core.nanops import nanall, nanany from pandas.core.panel import Panel from pandas.core.series import remove_na import pandas.core.common as com from pandas import compat from pandas.compat import range, lrange, StringIO, OrderedDict, signature from pandas import SparsePanel from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal, assert_produces_warning, ensure_clean, assertRaisesRegexp, makeCustomDataframe as mkdf, makeMixedDataFrame) import pandas.core.panel as panelm import pandas.util.testing as tm def ignore_sparse_panel_future_warning(func): """ decorator to ignore FutureWarning if we have a SparsePanel can be removed when SparsePanel is fully removed """ @wraps(func) def wrapper(self, *args, **kwargs): if isinstance(self.panel, SparsePanel): with assert_produces_warning(FutureWarning, check_stacklevel=False): return func(self, *args, **kwargs) else: return func(self, *args, **kwargs) return wrapper class PanelTests(object): panel = None def test_pickle(self): unpickled = self.round_trip_pickle(self.panel) assert_frame_equal(unpickled['ItemA'], self.panel['ItemA']) def test_rank(self): self.assertRaises(NotImplementedError, lambda: self.panel.rank()) def test_cumsum(self): cumsum = self.panel.cumsum() assert_frame_equal(cumsum['ItemA'], self.panel['ItemA'].cumsum()) def not_hashable(self): c_empty = Panel() c = Panel(Panel([[[1]]])) self.assertRaises(TypeError, hash, c_empty) self.assertRaises(TypeError, hash, c) class SafeForLongAndSparse(object): _multiprocess_can_split_ = True def test_repr(self): repr(self.panel) @ignore_sparse_panel_future_warning def test_copy_names(self): for attr in ('major_axis', 'minor_axis'): getattr(self.panel, attr).name = None cp = self.panel.copy() getattr(cp, attr).name = 'foo' self.assertIsNone(getattr(self.panel, attr).name) def test_iter(self): tm.equalContents(list(self.panel), self.panel.items) def test_count(self): f = lambda s: notnull(s).sum() self._check_stat_op('count', f, obj=self.panel, has_skipna=False) def test_sum(self): self._check_stat_op('sum', np.sum) def test_mean(self): self._check_stat_op('mean', np.mean) def test_prod(self): self._check_stat_op('prod', np.prod) def test_median(self): def wrapper(x): if isnull(x).any(): return np.nan return np.median(x) self._check_stat_op('median', wrapper) def test_min(self): self._check_stat_op('min', np.min) def test_max(self): self._check_stat_op('max', np.max) def test_skew(self): try: from scipy.stats import skew except ImportError: raise nose.SkipTest("no scipy.stats.skew") def this_skew(x): if len(x) < 3: return np.nan return skew(x, bias=False) self._check_stat_op('skew', this_skew) # def test_mad(self): # f = lambda x: np.abs(x - x.mean()).mean() # self._check_stat_op('mad', f) def test_var(self): def alt(x): if len(x) < 2: return np.nan return np.var(x, ddof=1) self._check_stat_op('var', alt) def test_std(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) self._check_stat_op('std', alt) def test_sem(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt) # def test_skew(self): # from scipy.stats import skew # def alt(x): # if len(x) < 3: # return np.nan # return skew(x, bias=False) # self._check_stat_op('skew', alt) def _check_stat_op(self, name, alternative, obj=None, has_skipna=True): if obj is None: obj = self.panel # # set some NAs # obj.ix[5:10] = np.nan # obj.ix[15:20, -2:] = np.nan f = getattr(obj, name) if has_skipna: def skipna_wrapper(x): nona = remove_na(x) if len(nona) == 0: return np.nan return alternative(nona) def wrapper(x): return alternative(np.asarray(x)) for i in range(obj.ndim): result = f(axis=i, skipna=False) assert_frame_equal(result, obj.apply(wrapper, axis=i)) else: skipna_wrapper = alternative wrapper = alternative for i in range(obj.ndim): result = f(axis=i) if not tm._incompat_bottleneck_version(name): assert_frame_equal(result, obj.apply(skipna_wrapper, axis=i)) self.assertRaises(Exception, f, axis=obj.ndim) # Unimplemented numeric_only parameter. if 'numeric_only' in signature(f).args: self.assertRaisesRegexp(NotImplementedError, name, f, numeric_only=True) class SafeForSparse(object): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def test_get_axis(self): assert (self.panel._get_axis(0) is self.panel.items) assert (self.panel._get_axis(1) is self.panel.major_axis) assert (self.panel._get_axis(2) is self.panel.minor_axis) def test_set_axis(self): new_items = Index(np.arange(len(self.panel.items))) new_major = Index(np.arange(len(self.panel.major_axis))) new_minor = Index(np.arange(len(self.panel.minor_axis))) # ensure propagate to potentially prior-cached items too item = self.panel['ItemA'] self.panel.items = new_items if hasattr(self.panel, '_item_cache'): self.assertNotIn('ItemA', self.panel._item_cache) self.assertIs(self.panel.items, new_items) # TODO: unused? item = self.panel[0] # noqa self.panel.major_axis = new_major self.assertIs(self.panel[0].index, new_major) self.assertIs(self.panel.major_axis, new_major) # TODO: unused? item = self.panel[0] # noqa self.panel.minor_axis = new_minor self.assertIs(self.panel[0].columns, new_minor) self.assertIs(self.panel.minor_axis, new_minor) def test_get_axis_number(self): self.assertEqual(self.panel._get_axis_number('items'), 0) self.assertEqual(self.panel._get_axis_number('major'), 1) self.assertEqual(self.panel._get_axis_number('minor'), 2) def test_get_axis_name(self): self.assertEqual(self.panel._get_axis_name(0), 'items') self.assertEqual(self.panel._get_axis_name(1), 'major_axis') self.assertEqual(self.panel._get_axis_name(2), 'minor_axis') def test_get_plane_axes(self): # what to do here? index, columns = self.panel._get_plane_axes('items') index, columns = self.panel._get_plane_axes('major_axis') index, columns = self.panel._get_plane_axes('minor_axis') index, columns = self.panel._get_plane_axes(0) @ignore_sparse_panel_future_warning def test_truncate(self): dates = self.panel.major_axis start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end, axis='major') expected = self.panel['ItemA'].truncate(start, end) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(before=start, axis='major') expected = self.panel['ItemA'].truncate(before=start) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(after=end, axis='major') expected = self.panel['ItemA'].truncate(after=end) assert_frame_equal(trunced['ItemA'], expected) # XXX test other axes def test_arith(self): self._test_op(self.panel, operator.add) self._test_op(self.panel, operator.sub) self._test_op(self.panel, operator.mul) self._test_op(self.panel, operator.truediv) self._test_op(self.panel, operator.floordiv) self._test_op(self.panel, operator.pow) self._test_op(self.panel, lambda x, y: y + x) self._test_op(self.panel, lambda x, y: y - x) self._test_op(self.panel, lambda x, y: y * x) self._test_op(self.panel, lambda x, y: y / x) self._test_op(self.panel, lambda x, y: y ** x) self._test_op(self.panel, lambda x, y: x + y) # panel + 1 self._test_op(self.panel, lambda x, y: x - y) # panel - 1 self._test_op(self.panel, lambda x, y: x * y) # panel * 1 self._test_op(self.panel, lambda x, y: x / y) # panel / 1 self._test_op(self.panel, lambda x, y: x ** y) # panel ** 1 self.assertRaises(Exception, self.panel.__add__, self.panel['ItemA']) @staticmethod def _test_op(panel, op): result = op(panel, 1) assert_frame_equal(result['ItemA'], op(panel['ItemA'], 1)) def test_keys(self): tm.equalContents(list(self.panel.keys()), self.panel.items) def test_iteritems(self): # Test panel.iteritems(), aka panel.iteritems() # just test that it works for k, v in self.panel.iteritems(): pass self.assertEqual(len(list(self.panel.iteritems())), len(self.panel.items)) @ignore_sparse_panel_future_warning def test_combineFrame(self): def check_op(op, name): # items df = self.panel['ItemA'] func = getattr(self.panel, name) result = func(df, axis='items') assert_frame_equal(result['ItemB'], op(self.panel['ItemB'], df)) # major xs = self.panel.major_xs(self.panel.major_axis[0]) result = func(xs, axis='major') idx = self.panel.major_axis[1] assert_frame_equal(result.major_xs(idx), op(self.panel.major_xs(idx), xs)) # minor xs = self.panel.minor_xs(self.panel.minor_axis[0]) result = func(xs, axis='minor') idx = self.panel.minor_axis[1] assert_frame_equal(result.minor_xs(idx), op(self.panel.minor_xs(idx), xs)) ops = ['add', 'sub', 'mul', 'truediv', 'floordiv'] if not compat.PY3: ops.append('div') # pow, mod not supported for SparsePanel as flex ops (for now) if not isinstance(self.panel, SparsePanel): ops.extend(['pow', 'mod']) else: idx = self.panel.minor_axis[1] with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.pow(self.panel.minor_xs(idx), axis='minor') with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.mod(self.panel.minor_xs(idx), axis='minor') for op in ops: try: check_op(getattr(operator, op), op) except: com.pprint_thing("Failing operation: %r" % op) raise if compat.PY3: try: check_op(operator.truediv, 'div') except: com.pprint_thing("Failing operation: %r" % 'div') raise @ignore_sparse_panel_future_warning def test_combinePanel(self): result = self.panel.add(self.panel) self.assert_panel_equal(result, self.panel * 2) @ignore_sparse_panel_future_warning def test_neg(self): self.assert_panel_equal(-self.panel, self.panel * -1) # issue 7692 def test_raise_when_not_implemented(self): p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5), items=['ItemA', 'ItemB', 'ItemC'], major_axis=pd.date_range('20130101', periods=4), minor_axis=list('ABCDE')) d = p.sum(axis=1).ix[0] ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'div', 'mod', 'pow'] for op in ops: with self.assertRaises(NotImplementedError): getattr(p, op)(d, axis=0) @ignore_sparse_panel_future_warning def test_select(self): p = self.panel # select items result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items') expected = p.reindex(items=['ItemA', 'ItemC']) self.assert_panel_equal(result, expected) # select major_axis result = p.select(lambda x: x >= datetime(2000, 1, 15), axis='major') new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)] expected = p.reindex(major=new_major) self.assert_panel_equal(result, expected) # select minor_axis result = p.select(lambda x: x in ('D', 'A'), axis=2) expected = p.reindex(minor=['A', 'D']) self.assert_panel_equal(result, expected) # corner case, empty thing result = p.select(lambda x: x in ('foo', ), axis='items') self.assert_panel_equal(result, p.reindex(items=[])) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) @ignore_sparse_panel_future_warning def test_abs(self): result = self.panel.abs() result2 = abs(self.panel) expected = np.abs(self.panel) self.assert_panel_equal(result, expected) self.assert_panel_equal(result2, expected) df = self.panel['ItemA'] result = df.abs() result2 = abs(df) expected = np.abs(df) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) s = df['A'] result = s.abs() result2 = abs(s) expected = np.abs(s) assert_series_equal(result, expected) assert_series_equal(result2, expected) self.assertEqual(result.name, 'A') self.assertEqual(result2.name, 'A') class CheckIndexing(object): _multiprocess_can_split_ = True def test_getitem(self): self.assertRaises(Exception, self.panel.__getitem__, 'ItemQ') def test_delitem_and_pop(self): expected = self.panel['ItemA'] result = self.panel.pop('ItemA') assert_frame_equal(expected, result) self.assertNotIn('ItemA', self.panel.items) del self.panel['ItemB'] self.assertNotIn('ItemB', self.panel.items) self.assertRaises(Exception, self.panel.__delitem__, 'ItemB') values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = Panel(values, lrange(3), lrange(3), lrange(3)) # did we delete the right row? panelc = panel.copy() del panelc[0] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[1] assert_frame_equal(panelc[0], panel[0]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[2] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[0], panel[0]) def test_setitem(self): # LongPanel with one item lp = self.panel.filter(['ItemA', 'ItemB']).to_frame() with tm.assertRaises(ValueError): self.panel['ItemE'] = lp # DataFrame df = self.panel['ItemA'][2:].filter(items=['A', 'B']) self.panel['ItemF'] = df self.panel['ItemE'] = df df2 = self.panel['ItemF'] assert_frame_equal(df, df2.reindex(index=df.index, columns=df.columns)) # scalar self.panel['ItemG'] = 1 self.panel['ItemE'] = True self.assertEqual(self.panel['ItemG'].values.dtype, np.int64) self.assertEqual(self.panel['ItemE'].values.dtype, np.bool_) # object dtype self.panel['ItemQ'] = 'foo' self.assertEqual(self.panel['ItemQ'].values.dtype, np.object_) # boolean dtype self.panel['ItemP'] = self.panel['ItemA'] > 0 self.assertEqual(self.panel['ItemP'].values.dtype, np.bool_) self.assertRaises(TypeError, self.panel.__setitem__, 'foo', self.panel.ix[['ItemP']]) # bad shape p = Panel(np.random.randn(4, 3, 2)) with tm.assertRaisesRegexp(ValueError, "shape of value must be \(3, 2\), " "shape of given object was \(4, 2\)"): p[0] = np.random.randn(4, 2) def test_setitem_ndarray(self): from pandas import date_range, datetools timeidx = date_range(start=datetime(2009, 1, 1), end=datetime(2009, 12, 31), freq=datetools.MonthEnd()) lons_coarse = np.linspace(-177.5, 177.5, 72) lats_coarse = np.linspace(-87.5, 87.5, 36) P = Panel(items=timeidx, major_axis=lons_coarse, minor_axis=lats_coarse) data = np.random.randn(72 * 36).reshape((72, 36)) key = datetime(2009, 2, 28) P[key] = data assert_almost_equal(P[key].values, data) def test_set_minor_major(self): # GH 11014 df1 = DataFrame(['a', 'a', 'a', np.nan, 'a', np.nan]) df2 = DataFrame([1.0, np.nan, 1.0, np.nan, 1.0, 1.0]) panel = Panel({'Item1': df1, 'Item2': df2}) newminor = notnull(panel.iloc[:, :, 0]) panel.loc[:, :, 'NewMinor'] = newminor assert_frame_equal(panel.loc[:, :, 'NewMinor'], newminor.astype(object)) newmajor = notnull(panel.iloc[:, 0, :]) panel.loc[:, 'NewMajor', :] = newmajor assert_frame_equal(panel.loc[:, 'NewMajor', :], newmajor.astype(object)) def test_major_xs(self): ref = self.panel['ItemA'] idx = self.panel.major_axis[5] xs = self.panel.major_xs(idx) result = xs['ItemA'] assert_series_equal(result, ref.xs(idx), check_names=False) self.assertEqual(result.name, 'ItemA') # not contained idx = self.panel.major_axis[0] - bday self.assertRaises(Exception, self.panel.major_xs, idx) def test_major_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.major_xs(self.panel.major_axis[0]) self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_minor_xs(self): ref = self.panel['ItemA'] idx = self.panel.minor_axis[1] xs = self.panel.minor_xs(idx) assert_series_equal(xs['ItemA'], ref[idx], check_names=False) # not contained self.assertRaises(Exception, self.panel.minor_xs, 'E') def test_minor_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.minor_xs('D') self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_xs(self): itemA = self.panel.xs('ItemA', axis=0) expected = self.panel['ItemA'] assert_frame_equal(itemA, expected) # get a view by default itemA_view = self.panel.xs('ItemA', axis=0) itemA_view.values[:] = np.nan self.assertTrue(np.isnan(self.panel['ItemA'].values).all()) # mixed-type yields a copy self.panel['strings'] = 'foo' result = self.panel.xs('D', axis=2) self.assertIsNotNone(result.is_copy) def test_getitem_fancy_labels(self): p = self.panel items = p.items[[1, 0]] dates = p.major_axis[::2] cols = ['D', 'C', 'F'] # all 3 specified assert_panel_equal(p.ix[items, dates, cols], p.reindex(items=items, major=dates, minor=cols)) # 2 specified assert_panel_equal(p.ix[:, dates, cols], p.reindex(major=dates, minor=cols)) assert_panel_equal(p.ix[items, :, cols], p.reindex(items=items, minor=cols)) assert_panel_equal(p.ix[items, dates, :], p.reindex(items=items, major=dates)) # only 1 assert_panel_equal(p.ix[items, :, :], p.reindex(items=items)) assert_panel_equal(p.ix[:, dates, :], p.reindex(major=dates)) assert_panel_equal(p.ix[:, :, cols], p.reindex(minor=cols)) def test_getitem_fancy_slice(self): pass def test_getitem_fancy_ints(self): p = self.panel # #1603 result = p.ix[:, -1, :] expected = p.ix[:, p.major_axis[-1], :] assert_frame_equal(result, expected) def test_getitem_fancy_xs(self): p = self.panel item = 'ItemB' date = p.major_axis[5] col = 'C' # get DataFrame # item assert_frame_equal(p.ix[item], p[item]) assert_frame_equal(p.ix[item, :], p[item]) assert_frame_equal(p.ix[item, :, :], p[item]) # major axis, axis=1 assert_frame_equal(p.ix[:, date], p.major_xs(date)) assert_frame_equal(p.ix[:, date, :], p.major_xs(date)) # minor axis, axis=2 assert_frame_equal(p.ix[:, :, 'C'], p.minor_xs('C')) # get Series assert_series_equal(p.ix[item, date], p[item].ix[date]) assert_series_equal(p.ix[item, date, :], p[item].ix[date]) assert_series_equal(p.ix[item, :, col], p[item][col]) assert_series_equal(p.ix[:, date, col], p.major_xs(date).ix[col]) def test_getitem_fancy_xs_check_view(self): item = 'ItemB' date = self.panel.major_axis[5] # make sure it's always a view NS = slice(None, None) # DataFrames comp = assert_frame_equal self._check_view(item, comp) self._check_view((item, NS), comp) self._check_view((item, NS, NS), comp) self._check_view((NS, date), comp) self._check_view((NS, date, NS), comp) self._check_view((NS, NS, 'C'), comp) # Series comp = assert_series_equal self._check_view((item, date), comp) self._check_view((item, date, NS), comp) self._check_view((item, NS, 'C'), comp) self._check_view((NS, date, 'C'), comp) def test_ix_setitem_slice_dataframe(self): a = Panel(items=[1, 2, 3], major_axis=[11, 22, 33], minor_axis=[111, 222, 333]) b = DataFrame(np.random.randn(2, 3), index=[111, 333], columns=[1, 2, 3]) a.ix[:, 22, [111, 333]] = b assert_frame_equal(a.ix[:, 22, [111, 333]], b) def test_ix_align(self): from pandas import Series b = Series(np.random.randn(10), name=0) b.sort() df_orig = Panel(np.random.randn(3, 10, 2)) df = df_orig.copy() df.ix[0, :, 0] = b assert_series_equal(df.ix[0, :, 0].reindex(b.index), b) df = df_orig.swapaxes(0, 1) df.ix[:, 0, 0] = b assert_series_equal(df.ix[:, 0, 0].reindex(b.index), b) df = df_orig.swapaxes(1, 2) df.ix[0, 0, :] = b assert_series_equal(df.ix[0, 0, :].reindex(b.index), b) def test_ix_frame_align(self): p_orig = tm.makePanel() df = p_orig.ix[0].copy() assert_frame_equal(p_orig['ItemA'], df) p = p_orig.copy() p.ix[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA', :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0, [0, 1, 3, 5], -2:] = df out = p.ix[0, [0, 1, 3, 5], -2:] assert_frame_equal(out, df.iloc[[0, 1, 3, 5], [2, 3]]) # GH3830, panel assignent by values/frame for dtype in ['float64', 'int64']: panel = Panel(np.arange(40).reshape((2, 4, 5)), items=['a1', 'a2'], dtype=dtype) df1 = panel.iloc[0] df2 = panel.iloc[1] tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by Value Passes for 'a2' panel.loc['a2'] = df1.values tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df1) # Assignment by DataFrame Ok w/o loc 'a2' panel['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by DataFrame Fails for 'a2' panel.loc['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) def _check_view(self, indexer, comp): cp = self.panel.copy() obj = cp.ix[indexer] obj.values[:] = 0 self.assertTrue((obj.values == 0).all()) comp(cp.ix[indexer].reindex_like(obj), obj) def test_logical_with_nas(self): d = Panel({'ItemA': {'a': [np.nan, False]}, 'ItemB': {'a': [True, True]}}) result = d['ItemA'] | d['ItemB'] expected = DataFrame({'a': [np.nan, True]}) assert_frame_equal(result, expected) # this is autodowncasted here result = d['ItemA'].fillna(False) | d['ItemB'] expected = DataFrame({'a': [True, True]}) assert_frame_equal(result, expected) def test_neg(self): # what to do? assert_panel_equal(-self.panel, -1 * self.panel) def test_invert(self): assert_panel_equal(-(self.panel < 0), ~(self.panel < 0)) def test_comparisons(self): p1 = tm.makePanel() p2 = tm.makePanel() tp = p1.reindex(items=p1.items + ['foo']) df = p1[p1.items[0]] def test_comp(func): # versus same index result = func(p1, p2) self.assert_numpy_array_equal(result.values, func(p1.values, p2.values)) # versus non-indexed same objs self.assertRaises(Exception, func, p1, tp) # versus different objs self.assertRaises(Exception, func, p1, df) # versus scalar result3 = func(self.panel, 0) self.assert_numpy_array_equal(result3.values, func(self.panel.values, 0)) test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis"): self.panel.get_value('a') def test_set_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: self.panel.set_value(item, mjr, mnr, 1.) assert_almost_equal(self.panel[item][mnr][mjr], 1.) # resize res = self.panel.set_value('ItemE', 'foo', 'bar', 1.5) tm.assertIsInstance(res, Panel) self.assertIsNot(res, self.panel) self.assertEqual(res.get_value('ItemE', 'foo', 'bar'), 1.5) res3 = self.panel.set_value('ItemE', 'foobar', 'baz', 5) self.assertTrue(com.is_float_dtype(res3['ItemE'].values)) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis" " plus the value provided"): self.panel.set_value('a') _panel = tm.makePanel() tm.add_nans(_panel) class TestPanel(tm.TestCase, PanelTests, CheckIndexing, SafeForLongAndSparse, SafeForSparse): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def setUp(self): self.panel = _panel.copy() self.panel.major_axis.name = None self.panel.minor_axis.name = None self.panel.items.name = None def test_panel_warnings(self): with tm.assert_produces_warning(FutureWarning): shifted1 = self.panel.shift(lags=1) with tm.assert_produces_warning(False): shifted2 = self.panel.shift(periods=1) tm.assert_panel_equal(shifted1, shifted2) with tm.assert_produces_warning(False): shifted3 = self.panel.shift() tm.assert_panel_equal(shifted1, shifted3) def test_constructor(self): # with BlockManager wp = Panel(self.panel._data) self.assertIs(wp._data, self.panel._data) wp = Panel(self.panel._data, copy=True) self.assertIsNot(wp._data, self.panel._data) assert_panel_equal(wp, self.panel) # strings handled prop wp = Panel([[['foo', 'foo', 'foo', ], ['foo', 'foo', 'foo']]]) self.assertEqual(wp.values.dtype, np.object_) vals = self.panel.values # no copy wp = Panel(vals) self.assertIs(wp.values, vals) # copy wp = Panel(vals, copy=True) self.assertIsNot(wp.values, vals) # GH #8285, test when scalar data is used to construct a Panel # if dtype is not passed, it should be inferred value_and_dtype = [(1, 'int64'), (3.14, 'float64'), ('foo', np.object_)] for (val, dtype) in value_and_dtype: wp = Panel(val, items=range(2), major_axis=range(3), minor_axis=range(4)) vals = np.empty((2, 3, 4), dtype=dtype) vals.fill(val) assert_panel_equal(wp, Panel(vals, dtype=dtype)) # test the case when dtype is passed wp = Panel(1, items=range(2), major_axis=range(3), minor_axis=range(4), dtype='float32') vals = np.empty((2, 3, 4), dtype='float32') vals.fill(1) assert_panel_equal(wp, Panel(vals, dtype='float32')) def test_constructor_cast(self): zero_filled = self.panel.fillna(0) casted = Panel(zero_filled._data, dtype=int) casted2 = Panel(zero_filled.values, dtype=int) exp_values = zero_filled.values.astype(int) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) casted = Panel(zero_filled._data, dtype=np.int32) casted2 = Panel(zero_filled.values, dtype=np.int32) exp_values = zero_filled.values.astype(np.int32) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) # can't cast data = [[['foo', 'bar', 'baz']]] self.assertRaises(ValueError, Panel, data, dtype=float) def test_constructor_empty_panel(self): empty = Panel() self.assertEqual(len(empty.items), 0) self.assertEqual(len(empty.major_axis), 0) self.assertEqual(len(empty.minor_axis), 0) def test_constructor_observe_dtype(self): # GH #411 panel = Panel(items=lrange(3), major_axis=lrange(3), minor_axis=lrange(3), dtype='O') self.assertEqual(panel.values.dtype, np.object_) def test_constructor_dtypes(self): # GH #797 def _check_dtype(panel, dtype): for i in panel.items: self.assertEqual(panel[i].values.dtype.name, dtype) # only nan holding types allowed here for dtype in ['float64', 'float32', 'object']: panel = Panel(items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype=dtype), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype='O'), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.random.randn(2, 10, 5), items=lrange( 2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: df1 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) df2 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) panel = Panel.from_dict({'a': df1, 'b': df2}, dtype=dtype) _check_dtype(panel, dtype) def test_constructor_fails_with_not_3d_input(self): with tm.assertRaisesRegexp(ValueError, "The number of dimensions required is 3"): Panel(np.random.randn(10, 2)) def test_consolidate(self): self.assertTrue(self.panel._data.is_consolidated()) self.panel['foo'] = 1. self.assertFalse(self.panel._data.is_consolidated()) panel = self.panel.consolidate() self.assertTrue(panel._data.is_consolidated()) def test_ctor_dict(self): itema = self.panel['ItemA'] itemb = self.panel['ItemB'] d = {'A': itema, 'B': itemb[5:]} d2 = {'A': itema._series, 'B': itemb[5:]._series} d3 = {'A': None, 'B': DataFrame(itemb[5:]._series), 'C': DataFrame(itema._series)} wp = Panel.from_dict(d) wp2 = Panel.from_dict(d2) # nested Dict # TODO: unused? wp3 = Panel.from_dict(d3) # noqa self.assertTrue(wp.major_axis.equals(self.panel.major_axis)) assert_panel_equal(wp, wp2) # intersect wp = Panel.from_dict(d, intersect=True) self.assertTrue(wp.major_axis.equals(itemb.index[5:])) # use constructor assert_panel_equal(Panel(d), Panel.from_dict(d)) assert_panel_equal(Panel(d2), Panel.from_dict(d2)) assert_panel_equal(Panel(d3), Panel.from_dict(d3)) # a pathological case d4 = {'A': None, 'B': None} # TODO: unused? wp4 = Panel.from_dict(d4) # noqa assert_panel_equal(Panel(d4), Panel(items=['A', 'B'])) # cast dcasted = dict((k, v.reindex(wp.major_axis).fillna(0)) for k, v in compat.iteritems(d)) result = Panel(dcasted, dtype=int) expected = Panel(dict((k, v.astype(int)) for k, v in compat.iteritems(dcasted))) assert_panel_equal(result, expected) result = Panel(dcasted, dtype=np.int32) expected = Panel(dict((k, v.astype(np.int32)) for k, v in compat.iteritems(dcasted))) assert_panel_equal(result, expected) def test_constructor_dict_mixed(self): data = dict((k, v.values) for k, v in self.panel.iteritems()) result = Panel(data) exp_major = Index(np.arange(len(self.panel.major_axis))) self.assertTrue(result.major_axis.equals(exp_major)) result = Panel(data, items=self.panel.items, major_axis=self.panel.major_axis, minor_axis=self.panel.minor_axis) assert_panel_equal(result, self.panel) data['ItemC'] = self.panel['ItemC'] result = Panel(data) assert_panel_equal(result, self.panel) # corner, blow up data['ItemB'] = data['ItemB'][:-1] self.assertRaises(Exception, Panel, data) data['ItemB'] = self.panel['ItemB'].values[:, :-1] self.assertRaises(Exception, Panel, data) def test_ctor_orderedDict(self): keys = list(set(np.random.randint(0, 5000, 100)))[ :50] # unique random int keys d = OrderedDict([(k, mkdf(10, 5)) for k in keys]) p = Panel(d) self.assertTrue(list(p.items) == keys) p = Panel.from_dict(d) self.assertTrue(list(p.items) == keys) def test_constructor_resize(self): data = self.panel._data items = self.panel.items[:-1] major = self.panel.major_axis[:-1] minor = self.panel.minor_axis[:-1] result = Panel(data, items=items, major_axis=major, minor_axis=minor) expected = self.panel.reindex(items=items, major=major, minor=minor) assert_panel_equal(result, expected) result = Panel(data, items=items, major_axis=major) expected = self.panel.reindex(items=items, major=major) assert_panel_equal(result, expected) result = Panel(data, items=items) expected = self.panel.reindex(items=items) assert_panel_equal(result, expected) result = Panel(data, minor_axis=minor) expected = self.panel.reindex(minor=minor) assert_panel_equal(result, expected) def test_from_dict_mixed_orient(self): df = tm.makeDataFrame() df['foo'] = 'bar' data = {'k1': df, 'k2': df} panel = Panel.from_dict(data, orient='minor') self.assertEqual(panel['foo'].values.dtype, np.object_) self.assertEqual(panel['A'].values.dtype, np.float64) def test_constructor_error_msgs(self): def testit(): Panel(np.random.randn(3, 4, 5), lrange(4), lrange(5), lrange(5)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(4, 5, 5\)", testit) def testit(): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(4), lrange(5)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(5, 4, 5\)", testit) def testit(): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(5), lrange(4)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(5, 5, 4\)", testit) def test_conform(self): df = self.panel['ItemA'][:-5].filter(items=['A', 'B']) conformed = self.panel.conform(df) assert (conformed.index.equals(self.panel.major_axis)) assert (conformed.columns.equals(self.panel.minor_axis)) def test_convert_objects(self): # GH 4937 p = Panel(dict(A=dict(a=['1', '1.0']))) expected = Panel(dict(A=dict(a=[1, 1.0]))) result = p._convert(numeric=True, coerce=True) assert_panel_equal(result, expected) def test_dtypes(self): result = self.panel.dtypes expected = Series(np.dtype('float64'), index=self.panel.items) assert_series_equal(result, expected) def test_apply(self): # GH1148 # ufunc applied = self.panel.apply(np.sqrt) self.assertTrue(assert_almost_equal(applied.values, np.sqrt( self.panel.values))) # ufunc same shape result = self.panel.apply(lambda x: x * 2, axis='items') expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis='major_axis') expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis='minor_axis') expected = self.panel * 2 assert_panel_equal(result, expected) # reduction to DataFrame result = self.panel.apply(lambda x: x.dtype, axis='items') expected = DataFrame(np.dtype('float64'), index=self.panel.major_axis, columns=self.panel.minor_axis) assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.dtype, axis='major_axis') expected = DataFrame(np.dtype('float64'), index=self.panel.minor_axis, columns=self.panel.items) assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.dtype, axis='minor_axis') expected = DataFrame(np.dtype('float64'), index=self.panel.major_axis, columns=self.panel.items) assert_frame_equal(result, expected) # reductions via other dims expected = self.panel.sum(0) result = self.panel.apply(lambda x: x.sum(), axis='items') assert_frame_equal(result, expected) expected = self.panel.sum(1) result = self.panel.apply(lambda x: x.sum(), axis='major_axis') assert_frame_equal(result, expected) expected = self.panel.sum(2) result = self.panel.apply(lambda x: x.sum(), axis='minor_axis') assert_frame_equal(result, expected) # pass kwargs result = self.panel.apply(lambda x, y: x.sum() + y, axis='items', y=5) expected = self.panel.sum(0) + 5 assert_frame_equal(result, expected) def test_apply_slabs(self): # same shape as original result = self.panel.apply(lambda x: x * 2, axis=['items', 'major_axis']) expected = (self.panel * 2).transpose('minor_axis', 'major_axis', 'items') assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['major_axis', 'items']) assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['items', 'minor_axis']) expected = (self.panel * 2).transpose('major_axis', 'minor_axis', 'items') assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['minor_axis', 'items']) assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['major_axis', 'minor_axis']) expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['minor_axis', 'major_axis']) assert_panel_equal(result, expected) # reductions result = self.panel.apply(lambda x: x.sum(0), axis=[ 'items', 'major_axis' ]) expected = self.panel.sum(1).T assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.sum(1), axis=[ 'items', 'major_axis' ]) expected = self.panel.sum(0) assert_frame_equal(result, expected) # transforms f = lambda x: ((x.T - x.mean(1)) / x.std(1)).T # make sure that we don't trigger any warnings with tm.assert_produces_warning(False): result = self.panel.apply(f, axis=['items', 'major_axis']) expected = Panel(dict([(ax, f(self.panel.loc[:, :, ax])) for ax in self.panel.minor_axis])) assert_panel_equal(result, expected) result = self.panel.apply(f, axis=['major_axis', 'minor_axis']) expected = Panel(dict([(ax, f(self.panel.loc[ax])) for ax in self.panel.items])) assert_panel_equal(result, expected) result = self.panel.apply(f, axis=['minor_axis', 'items']) expected = Panel(dict([(ax, f(self.panel.loc[:, ax])) for ax in self.panel.major_axis])) assert_panel_equal(result, expected) # with multi-indexes # GH7469 index = MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ( 'two', 'a'), ('two', 'b')]) dfa = DataFrame(np.array(np.arange(12, dtype='int64')).reshape( 4, 3), columns=list("ABC"), index=index) dfb = DataFrame(np.array(np.arange(10, 22, dtype='int64')).reshape( 4, 3), columns=list("ABC"), index=index) p = Panel({'f': dfa, 'g': dfb}) result = p.apply(lambda x: x.sum(), axis=0) # on windows this will be in32 result = result.astype('int64') expected = p.sum(0) assert_frame_equal(result, expected) def test_apply_no_or_zero_ndim(self): # GH10332 self.panel = Panel(np.random.rand(5, 5, 5)) result_int = self.panel.apply(lambda df: 0, axis=[1, 2]) result_float = self.panel.apply(lambda df: 0.0, axis=[1, 2]) result_int64 = self.panel.apply(lambda df: np.int64(0), axis=[1, 2]) result_float64 = self.panel.apply(lambda df: np.float64(0.0), axis=[1, 2]) expected_int = expected_int64 = Series([0] * 5) expected_float = expected_float64 = Series([0.0] * 5) assert_series_equal(result_int, expected_int) assert_series_equal(result_int64, expected_int64) assert_series_equal(result_float, expected_float) assert_series_equal(result_float64, expected_float64) def test_reindex(self): ref = self.panel['ItemB'] # items result = self.panel.reindex(items=['ItemA', 'ItemB']) assert_frame_equal(result['ItemB'], ref) # major new_major = list(self.panel.major_axis[:10]) result = self.panel.reindex(major=new_major) assert_frame_equal(result['ItemB'], ref.reindex(index=new_major)) # raise exception put both major and major_axis self.assertRaises(Exception, self.panel.reindex, major_axis=new_major, major=new_major) # minor new_minor = list(self.panel.minor_axis[:2]) result = self.panel.reindex(minor=new_minor) assert_frame_equal(result['ItemB'], ref.reindex(columns=new_minor)) # this ok result = self.panel.reindex() assert_panel_equal(result, self.panel) self.assertFalse(result is self.panel) # with filling smaller_major = self.panel.major_axis[::5] smaller = self.panel.reindex(major=smaller_major) larger = smaller.reindex(major=self.panel.major_axis, method='pad') assert_frame_equal(larger.major_xs(self.panel.major_axis[1]), smaller.major_xs(smaller_major[0])) # don't necessarily copy result = self.panel.reindex(major=self.panel.major_axis, copy=False) assert_panel_equal(result, self.panel) self.assertTrue(result is self.panel) def test_reindex_multi(self): # with and without copy full reindexing result = self.panel.reindex(items=self.panel.items, major=self.panel.major_axis, minor=self.panel.minor_axis, copy=False) self.assertIs(result.items, self.panel.items) self.assertIs(result.major_axis, self.panel.major_axis) self.assertIs(result.minor_axis, self.panel.minor_axis) result = self.panel.reindex(items=self.panel.items, major=self.panel.major_axis, minor=self.panel.minor_axis, copy=False) assert_panel_equal(result, self.panel) # multi-axis indexing consistency # GH 5900 df = DataFrame(np.random.randn(4, 3)) p = Panel({'Item1': df}) expected = Panel({'Item1': df}) expected['Item2'] = np.nan items = ['Item1', 'Item2'] major_axis = np.arange(4) minor_axis = np.arange(3) results = [] results.append(p.reindex(items=items, major_axis=major_axis, copy=True)) results.append(p.reindex(items=items, major_axis=major_axis, copy=False)) results.append(p.reindex(items=items, minor_axis=minor_axis, copy=True)) results.append(p.reindex(items=items, minor_axis=minor_axis, copy=False)) results.append(p.reindex(items=items, major_axis=major_axis, minor_axis=minor_axis, copy=True)) results.append(p.reindex(items=items, major_axis=major_axis, minor_axis=minor_axis, copy=False)) for i, r in enumerate(results): assert_panel_equal(expected, r) def test_reindex_like(self): # reindex_like smaller = self.panel.reindex(items=self.panel.items[:-1], major=self.panel.major_axis[:-1], minor=self.panel.minor_axis[:-1]) smaller_like = self.panel.reindex_like(smaller) assert_panel_equal(smaller, smaller_like) def test_take(self): # axis == 0 result = self.panel.take([2, 0, 1], axis=0) expected = self.panel.reindex(items=['ItemC', 'ItemA', 'ItemB']) assert_panel_equal(result, expected) # axis >= 1 result = self.panel.take([3, 0, 1, 2], axis=2) expected = self.panel.reindex(minor=['D', 'A', 'B', 'C']) assert_panel_equal(result, expected) # neg indicies ok expected = self.panel.reindex(minor=['D', 'D', 'B', 'C']) result = self.panel.take([3, -1, 1, 2], axis=2) assert_panel_equal(result, expected) self.assertRaises(Exception, self.panel.take, [4, 0, 1, 2], axis=2) def test_sort_index(self): import random ritems = list(self.panel.items) rmajor = list(self.panel.major_axis) rminor = list(self.panel.minor_axis) random.shuffle(ritems) random.shuffle(rmajor) random.shuffle(rminor) random_order = self.panel.reindex(items=ritems) sorted_panel = random_order.sort_index(axis=0) assert_panel_equal(sorted_panel, self.panel) # descending random_order = self.panel.reindex(items=ritems) sorted_panel = random_order.sort_index(axis=0, ascending=False) assert_panel_equal(sorted_panel, self.panel.reindex(items=self.panel.items[::-1])) random_order = self.panel.reindex(major=rmajor) sorted_panel = random_order.sort_index(axis=1) assert_panel_equal(sorted_panel, self.panel) random_order = self.panel.reindex(minor=rminor) sorted_panel = random_order.sort_index(axis=2) assert_panel_equal(sorted_panel, self.panel) def test_fillna(self): filled = self.panel.fillna(0) self.assertTrue(np.isfinite(filled.values).all()) filled = self.panel.fillna(method='backfill') assert_frame_equal(filled['ItemA'], self.panel['ItemA'].fillna(method='backfill')) panel = self.panel.copy() panel['str'] = 'foo' filled = panel.fillna(method='backfill') assert_frame_equal(filled['ItemA'], panel['ItemA'].fillna(method='backfill')) empty = self.panel.reindex(items=[]) filled = empty.fillna(0) assert_panel_equal(filled, empty) self.assertRaises(ValueError, self.panel.fillna) self.assertRaises(ValueError, self.panel.fillna, 5, method='ffill') self.assertRaises(TypeError, self.panel.fillna, [1, 2]) self.assertRaises(TypeError, self.panel.fillna, (1, 2)) # limit not implemented when only value is specified p = Panel(np.random.randn(3, 4, 5)) p.iloc[0:2, 0:2, 0:2] = np.nan self.assertRaises(NotImplementedError, lambda: p.fillna(999, limit=1)) def test_ffill_bfill(self): assert_panel_equal(self.panel.ffill(), self.panel.fillna(method='ffill')) assert_panel_equal(self.panel.bfill(), self.panel.fillna(method='bfill')) def test_truncate_fillna_bug(self): # #1823 result = self.panel.truncate(before=None, after=None, axis='items') # it works! result.fillna(value=0.0) def test_swapaxes(self): result = self.panel.swapaxes('items', 'minor') self.assertIs(result.items, self.panel.minor_axis) result = self.panel.swapaxes('items', 'major') self.assertIs(result.items, self.panel.major_axis) result = self.panel.swapaxes('major', 'minor') self.assertIs(result.major_axis, self.panel.minor_axis) panel = self.panel.copy() result = panel.swapaxes('major', 'minor') panel.values[0, 0, 1] = np.nan expected = panel.swapaxes('major', 'minor') assert_panel_equal(result, expected) # this should also work result = self.panel.swapaxes(0, 1) self.assertIs(result.items, self.panel.major_axis) # this works, but return a copy result = self.panel.swapaxes('items', 'items') assert_panel_equal(self.panel, result) self.assertNotEqual(id(self.panel), id(result)) def test_transpose(self): result = self.panel.transpose('minor', 'major', 'items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # test kwargs result = self.panel.transpose(items='minor', major='major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # text mixture of args result = self.panel.transpose('minor', major='major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) result = self.panel.transpose('minor', 'major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # duplicate axes with tm.assertRaisesRegexp(TypeError, 'not enough/duplicate arguments'): self.panel.transpose('minor', maj='major', minor='items') with tm.assertRaisesRegexp(ValueError, 'repeated axis in transpose'): self.panel.transpose('minor', 'major', major='minor', minor='items') result = self.panel.transpose(2, 1, 0) assert_panel_equal(result, expected) result = self.panel.transpose('minor', 'items', 'major') expected = self.panel.swapaxes('items', 'minor') expected = expected.swapaxes('major', 'minor') assert_panel_equal(result, expected) result = self.panel.transpose(2, 0, 1) assert_panel_equal(result, expected) self.assertRaises(ValueError, self.panel.transpose, 0, 0, 1) def test_transpose_copy(self): panel = self.panel.copy() result = panel.transpose(2, 0, 1, copy=True) expected = panel.swapaxes('items', 'minor') expected = expected.swapaxes('major', 'minor') assert_panel_equal(result, expected) panel.values[0, 1, 1] = np.nan self.assertTrue(notnull(result.values[1, 0, 1])) @ignore_sparse_panel_future_warning def test_to_frame(self): # filtered filtered = self.panel.to_frame() expected = self.panel.to_frame().dropna(how='any') assert_frame_equal(filtered, expected) # unfiltered unfiltered = self.panel.to_frame(filter_observations=False) assert_panel_equal(unfiltered.to_panel(), self.panel) # names self.assertEqual(unfiltered.index.names, ('major', 'minor')) # unsorted, round trip df = self.panel.to_frame(filter_observations=False) unsorted = df.take(np.random.permutation(len(df))) pan = unsorted.to_panel() assert_panel_equal(pan, self.panel) # preserve original index names df = DataFrame(np.random.randn(6, 2), index=[['a', 'a', 'b', 'b', 'c', 'c'], [0, 1, 0, 1, 0, 1]], columns=['one', 'two']) df.index.names = ['foo', 'bar'] df.columns.name = 'baz' rdf = df.to_panel().to_frame() self.assertEqual(rdf.index.names, df.index.names) self.assertEqual(rdf.columns.names, df.columns.names) def test_to_frame_mixed(self): panel = self.panel.fillna(0) panel['str'] = 'foo' panel['bool'] = panel['ItemA'] > 0 lp = panel.to_frame() wp = lp.to_panel() self.assertEqual(wp['bool'].values.dtype, np.bool_) # Previously, this was mutating the underlying index and changing its # name assert_frame_equal(wp['bool'], panel['bool'], check_names=False) # GH 8704 # with categorical df = panel.to_frame() df['category'] = df['str'].astype('category') # to_panel # TODO: this converts back to object p = df.to_panel() expected = panel.copy() expected['category'] = 'foo' assert_panel_equal(p, expected) def test_to_frame_multi_major(self): idx = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) df = DataFrame([[1, 'a', 1], [2, 'b', 1], [3, 'c', 1], [4, 'd', 1]], columns=['A', 'B', 'C'], index=idx) wp = Panel({'i1': df, 'i2': df}) expected_idx = MultiIndex.from_tuples( [ (1, 'one', 'A'), (1, 'one', 'B'), (1, 'one', 'C'), (1, 'two', 'A'), (1, 'two', 'B'), (1, 'two', 'C'), (2, 'one', 'A'), (2, 'one', 'B'), (2, 'one', 'C'), (2, 'two', 'A'), (2, 'two', 'B'), (2, 'two', 'C') ], names=[None, None, 'minor']) expected = DataFrame({'i1': [1, 'a', 1, 2, 'b', 1, 3, 'c', 1, 4, 'd', 1], 'i2': [1, 'a', 1, 2, 'b', 1, 3, 'c', 1, 4, 'd', 1]}, index=expected_idx) result = wp.to_frame() assert_frame_equal(result, expected) wp.iloc[0, 0].iloc[0] = np.nan # BUG on setting. GH #5773 result = wp.to_frame() assert_frame_equal(result, expected[1:]) idx = MultiIndex.from_tuples([(1, 'two'), (1, 'one'), (2, 'one'), ( np.nan, 'two')]) df = DataFrame([[1, 'a', 1], [2, 'b', 1], [3, 'c', 1], [4, 'd', 1]], columns=['A', 'B', 'C'], index=idx) wp = Panel({'i1': df, 'i2': df}) ex_idx = MultiIndex.from_tuples([(1, 'two', 'A'), (1, 'two', 'B'), (1, 'two', 'C'), (1, 'one', 'A'), (1, 'one', 'B'), (1, 'one', 'C'), (2, 'one', 'A'), (2, 'one', 'B'), (2, 'one', 'C'), (np.nan, 'two', 'A'), (np.nan, 'two', 'B'), (np.nan, 'two', 'C')], names=[None, None, 'minor']) expected.index = ex_idx result = wp.to_frame() assert_frame_equal(result, expected) def test_to_frame_multi_major_minor(self): cols = MultiIndex(levels=[['C_A', 'C_B'], ['C_1', 'C_2']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]]) idx = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two'), (3, 'three'), (4, 'four')]) df = DataFrame([[1, 2, 11, 12], [3, 4, 13, 14], ['a', 'b', 'w', 'x'], ['c', 'd', 'y', 'z'], [-1, -2, -3, -4], [-5, -6, -7, -8]], columns=cols, index=idx) wp = Panel({'i1': df, 'i2': df}) exp_idx = MultiIndex.from_tuples( [(1, 'one', 'C_A', 'C_1'), (1, 'one', 'C_A', 'C_2'), (1, 'one', 'C_B', 'C_1'), (1, 'one', 'C_B', 'C_2'), (1, 'two', 'C_A', 'C_1'), (1, 'two', 'C_A', 'C_2'), (1, 'two', 'C_B', 'C_1'), (1, 'two', 'C_B', 'C_2'), (2, 'one', 'C_A', 'C_1'), (2, 'one', 'C_A', 'C_2'), (2, 'one', 'C_B', 'C_1'), (2, 'one', 'C_B', 'C_2'), (2, 'two', 'C_A', 'C_1'), (2, 'two', 'C_A', 'C_2'), (2, 'two', 'C_B', 'C_1'), (2, 'two', 'C_B', 'C_2'), (3, 'three', 'C_A', 'C_1'), (3, 'three', 'C_A', 'C_2'), (3, 'three', 'C_B', 'C_1'), (3, 'three', 'C_B', 'C_2'), (4, 'four', 'C_A', 'C_1'), (4, 'four', 'C_A', 'C_2'), (4, 'four', 'C_B', 'C_1'), (4, 'four', 'C_B', 'C_2')], names=[None, None, None, None]) exp_val = [[1, 1], [2, 2], [11, 11], [12, 12], [3, 3], [4, 4], [13, 13], [14, 14], ['a', 'a'], ['b', 'b'], ['w', 'w'], ['x', 'x'], ['c', 'c'], ['d', 'd'], ['y', 'y'], ['z', 'z'], [-1, -1], [-2, -2], [-3, -3], [-4, -4], [-5, -5], [-6, -6], [-7, -7], [-8, -8]] result = wp.to_frame() expected = DataFrame(exp_val, columns=['i1', 'i2'], index=exp_idx) assert_frame_equal(result, expected) def test_to_frame_multi_drop_level(self): idx = MultiIndex.from_tuples([(1, 'one'), (2, 'one'), (2, 'two')]) df = DataFrame({'A': [np.nan, 1, 2]}, index=idx) wp = Panel({'i1': df, 'i2': df}) result = wp.to_frame() exp_idx = MultiIndex.from_tuples([(2, 'one', 'A'), (2, 'two', 'A')], names=[None, None, 'minor']) expected = DataFrame({'i1': [1., 2], 'i2': [1., 2]}, index=exp_idx) assert_frame_equal(result, expected) def test_to_panel_na_handling(self): df = DataFrame(np.random.randint(0, 10, size=20).reshape((10, 2)), index=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 3, 4, 5, 2, 3, 4, 5]]) panel = df.to_panel() self.assertTrue(isnull(panel[0].ix[1, [0, 1]]).all()) def test_to_panel_duplicates(self): # #2441 df = DataFrame({'a': [0, 0, 1], 'b': [1, 1, 1], 'c': [1, 2, 3]}) idf = df.set_index(['a', 'b']) assertRaisesRegexp(ValueError, 'non-uniquely indexed', idf.to_panel) def test_panel_dups(self): # GH 4960 # duplicates in an index # items data = np.random.randn(5, 100, 5) no_dup_panel = Panel(data, items=list("ABCDE")) panel = Panel(data, items=list("AACDE")) expected = no_dup_panel['A'] result = panel.iloc[0] assert_frame_equal(result, expected) expected = no_dup_panel['E'] result = panel.loc['E'] assert_frame_equal(result, expected) expected = no_dup_panel.loc[['A', 'B']] expected.items = ['A', 'A'] result = panel.loc['A'] assert_panel_equal(result, expected) # major data = np.random.randn(5, 5, 5) no_dup_panel = Panel(data, major_axis=list("ABCDE")) panel = Panel(data, major_axis=list("AACDE")) expected = no_dup_panel.loc[:, 'A'] result = panel.iloc[:, 0] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, 'E'] result = panel.loc[:, 'E'] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, ['A', 'B']] expected.major_axis = ['A', 'A'] result = panel.loc[:, 'A'] assert_panel_equal(result, expected) # minor data = np.random.randn(5, 100, 5) no_dup_panel = Panel(data, minor_axis=list("ABCDE")) panel = Panel(data, minor_axis=list("AACDE")) expected = no_dup_panel.loc[:, :, 'A'] result = panel.iloc[:, :, 0] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, :, 'E'] result = panel.loc[:, :, 'E'] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, :, ['A', 'B']] expected.minor_axis = ['A', 'A'] result = panel.loc[:, :, 'A'] assert_panel_equal(result, expected) def test_filter(self): pass def test_compound(self): compounded = self.panel.compound() assert_series_equal(compounded['ItemA'], (1 + self.panel['ItemA']).product(0) - 1, check_names=False) def test_shift(self): # major idx = self.panel.major_axis[0] idx_lag = self.panel.major_axis[1] shifted = self.panel.shift(1) assert_frame_equal(self.panel.major_xs(idx), shifted.major_xs(idx_lag)) # minor idx = self.panel.minor_axis[0] idx_lag = self.panel.minor_axis[1] shifted = self.panel.shift(1, axis='minor') assert_frame_equal(self.panel.minor_xs(idx), shifted.minor_xs(idx_lag)) # items idx = self.panel.items[0] idx_lag = self.panel.items[1] shifted = self.panel.shift(1, axis='items') assert_frame_equal(self.panel[idx], shifted[idx_lag]) # negative numbers, #2164 result = self.panel.shift(-1) expected = Panel(dict((i, f.shift(-1)[:-1]) for i, f in self.panel.iteritems())) assert_panel_equal(result, expected) # mixed dtypes #6959 data = [('item ' + ch, makeMixedDataFrame()) for ch in list('abcde')] data = dict(data) mixed_panel = Panel.from_dict(data, orient='minor') shifted = mixed_panel.shift(1) assert_series_equal(mixed_panel.dtypes, shifted.dtypes) def test_tshift(self): # PeriodIndex ps = tm.makePeriodPanel() shifted = ps.tshift(1) unshifted = shifted.tshift(-1) assert_panel_equal(unshifted, ps) shifted2 = ps.tshift(freq='B') assert_panel_equal(shifted, shifted2) shifted3 = ps.tshift(freq=bday) assert_panel_equal(shifted, shifted3) assertRaisesRegexp(ValueError, 'does not match', ps.tshift, freq='M') # DatetimeIndex panel = _panel shifted = panel.tshift(1) unshifted = shifted.tshift(-1) assert_panel_equal(panel, unshifted) shifted2 = panel.tshift(freq=panel.major_axis.freq) assert_panel_equal(shifted, shifted2) inferred_ts = Panel(panel.values, items=panel.items, major_axis=Index(np.asarray(panel.major_axis)), minor_axis=panel.minor_axis) shifted = inferred_ts.tshift(1) unshifted = shifted.tshift(-1) assert_panel_equal(shifted, panel.tshift(1)) assert_panel_equal(unshifted, inferred_ts) no_freq = panel.ix[:, [0, 5, 7], :] self.assertRaises(ValueError, no_freq.tshift) def test_pct_change(self): df1 = DataFrame({'c1': [1, 2, 5], 'c2': [3, 4, 6]}) df2 = df1 + 1 df3 = DataFrame({'c1': [3, 4, 7], 'c2': [5, 6, 8]}) wp = Panel({'i1': df1, 'i2': df2, 'i3': df3}) # major, 1 result = wp.pct_change() # axis='major' expected = Panel({'i1': df1.pct_change(), 'i2': df2.pct_change(), 'i3': df3.pct_change()}) assert_panel_equal(result, expected) result = wp.pct_change(axis=1) assert_panel_equal(result, expected) # major, 2 result = wp.pct_change(periods=2) expected = Panel({'i1': df1.pct_change(2), 'i2': df2.pct_change(2), 'i3': df3.pct_change(2)}) assert_panel_equal(result, expected) # minor, 1 result = wp.pct_change(axis='minor') expected = Panel({'i1': df1.pct_change(axis=1), 'i2': df2.pct_change(axis=1), 'i3': df3.pct_change(axis=1)}) assert_panel_equal(result, expected) result = wp.pct_change(axis=2) assert_panel_equal(result, expected) # minor, 2 result = wp.pct_change(periods=2, axis='minor') expected = Panel({'i1': df1.pct_change(periods=2, axis=1), 'i2': df2.pct_change(periods=2, axis=1), 'i3': df3.pct_change(periods=2, axis=1)}) assert_panel_equal(result, expected) # items, 1 result = wp.pct_change(axis='items') expected = Panel({'i1': DataFrame({'c1': [np.nan, np.nan, np.nan], 'c2': [np.nan, np.nan, np.nan]}), 'i2': DataFrame({'c1': [1, 0.5, .2], 'c2': [1. / 3, 0.25, 1. / 6]}), 'i3': DataFrame({'c1': [.5, 1. / 3, 1. / 6], 'c2': [.25, .2, 1. / 7]})}) assert_panel_equal(result, expected) result = wp.pct_change(axis=0) assert_panel_equal(result, expected) # items, 2 result = wp.pct_change(periods=2, axis='items') expected = Panel({'i1': DataFrame({'c1': [np.nan, np.nan, np.nan], 'c2': [np.nan, np.nan, np.nan]}), 'i2': DataFrame({'c1': [np.nan, np.nan, np.nan], 'c2': [np.nan, np.nan, np.nan]}), 'i3': DataFrame({'c1': [2, 1, .4], 'c2': [2. / 3, .5, 1. / 3]})}) assert_panel_equal(result, expected) def test_round(self): values = [[[-3.2, 2.2], [0, -4.8213], [3.123, 123.12], [-1566.213, 88.88], [-12, 94.5]], [[-5.82, 3.5], [6.21, -73.272], [-9.087, 23.12], [272.212, -99.99], [23, -76.5]]] evalues = [[[float(np.around(i)) for i in j] for j in k] for k in values] p = Panel(values, items=['Item1', 'Item2'], major_axis=pd.date_range('1/1/2000', periods=5), minor_axis=['A', 'B']) expected = Panel(evalues, items=['Item1', 'Item2'], major_axis=pd.date_range('1/1/2000', periods=5), minor_axis=['A', 'B']) result = p.round() self.assert_panel_equal(expected, result) def test_multiindex_get(self): ind = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1), ('b', 2)], names=['first', 'second']) wp = Panel(np.random.random((4, 5, 5)), items=ind, major_axis=np.arange(5), minor_axis=np.arange(5)) f1 = wp['a'] f2 = wp.ix['a'] assert_panel_equal(f1, f2) self.assertTrue((f1.items == [1, 2]).all()) self.assertTrue((f2.items == [1, 2]).all()) ind = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1)], names=['first', 'second']) def test_multiindex_blocks(self): ind = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1)], names=['first', 'second']) wp = Panel(self.panel._data) wp.items = ind f1 = wp['a'] self.assertTrue((f1.items == [1, 2]).all()) f1 = wp[('b', 1)] self.assertTrue((f1.columns == ['A', 'B', 'C', 'D']).all()) def test_repr_empty(self): empty = Panel() repr(empty) def test_rename(self): mapper = {'ItemA': 'foo', 'ItemB': 'bar', 'ItemC': 'baz'} renamed = self.panel.rename_axis(mapper, axis=0) exp = Index(['foo', 'bar', 'baz']) self.assertTrue(renamed.items.equals(exp)) renamed = self.panel.rename_axis(str.lower, axis=2) exp = Index(['a', 'b', 'c', 'd']) self.assertTrue(renamed.minor_axis.equals(exp)) # don't copy renamed_nocopy = self.panel.rename_axis(mapper, axis=0, copy=False) renamed_nocopy['foo'] = 3. self.assertTrue((self.panel['ItemA'].values == 3).all()) def test_get_attr(self): assert_frame_equal(self.panel['ItemA'], self.panel.ItemA) # specific cases from #3440 self.panel['a'] = self.panel['ItemA'] assert_frame_equal(self.panel['a'], self.panel.a) self.panel['i'] = self.panel['ItemA'] assert_frame_equal(self.panel['i'], self.panel.i) def test_from_frame_level1_unsorted(self): tuples = [('MSFT', 3), ('MSFT', 2), ('AAPL', 2), ('AAPL', 1), ('MSFT', 1)] midx = MultiIndex.from_tuples(tuples) df = DataFrame(np.random.rand(5, 4), index=midx) p = df.to_panel() assert_frame_equal(p.minor_xs(2), df.xs(2, level=1).sort_index()) def test_to_excel(self): try: import xlwt # noqa import xlrd # noqa import openpyxl # noqa from pandas.io.excel import ExcelFile except ImportError: raise nose.SkipTest("need xlwt xlrd openpyxl") for ext in ['xls', 'xlsx']: path = '__tmp__.' + ext with ensure_clean(path) as path: self.panel.to_excel(path) try: reader = ExcelFile(path) except ImportError: raise nose.SkipTest("need xlwt xlrd openpyxl") for item, df in self.panel.iteritems(): recdf = reader.parse(str(item), index_col=0) assert_frame_equal(df, recdf) def test_to_excel_xlsxwriter(self): try: import xlrd # noqa import xlsxwriter # noqa from pandas.io.excel import ExcelFile except ImportError: raise nose.SkipTest("Requires xlrd and xlsxwriter. Skipping test.") path = '__tmp__.xlsx' with ensure_clean(path) as path: self.panel.to_excel(path, engine='xlsxwriter') try: reader = ExcelFile(path) except ImportError as e: raise nose.SkipTest("cannot write excel file: %s" % e) for item, df in self.panel.iteritems(): recdf = reader.parse(str(item), index_col=0) assert_frame_equal(df, recdf) def test_dropna(self): p = Panel(np.random.randn(4, 5, 6), major_axis=list('abcde')) p.ix[:, ['b', 'd'], 0] = np.nan result = p.dropna(axis=1) exp = p.ix[:, ['a', 'c', 'e'], :]
assert_panel_equal(result, exp)
pandas.util.testing.assert_panel_equal
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from __future__ import division from __future__ import print_function import os import pickle import re import sys import copy import json import yaml import redis import bisect import shutil import difflib import hashlib import warnings import datetime import requests import tempfile import importlib import contextlib import collections import numpy as np import pandas as pd from pathlib import Path from typing import Dict, Union, Tuple, Any, Text, Optional, Callable from types import ModuleType from urllib.parse import urlparse from ..config import C from ..log import get_module_logger, set_log_with_config log = get_module_logger("utils") #################### Server #################### def get_redis_connection(): """get redis connection instance.""" return redis.StrictRedis(host=C.redis_host, port=C.redis_port, db=C.redis_task_db) #################### Data #################### def read_bin(file_path: Union[str, Path], start_index, end_index): file_path = Path(file_path.expanduser().resolve()) with file_path.open("rb") as f: # read start_index ref_start_index = int(np.frombuffer(f.read(4), dtype="<f")[0]) si = max(ref_start_index, start_index) if si > end_index: return pd.Series(dtype=np.float32) # calculate offset f.seek(4 * (si - ref_start_index) + 4) # read nbytes count = end_index - si + 1 data = np.frombuffer(f.read(4 * count), dtype="<f") series = pd.Series(data, index=pd.RangeIndex(si, si + len(data))) return series def np_ffill(arr: np.array): """ forward fill a 1D numpy array Parameters ---------- arr : np.array Input numpy 1D array """ mask = np.isnan(arr.astype(float)) # np.isnan only works on np.float # get fill index idx = np.where(~mask, np.arange(mask.shape[0]), 0) np.maximum.accumulate(idx, out=idx) return arr[idx] #################### Search #################### def lower_bound(data, val, level=0): """multi fields list lower bound. for single field list use `bisect.bisect_left` instead """ left = 0 right = len(data) while left < right: mid = (left + right) // 2 if val <= data[mid][level]: right = mid else: left = mid + 1 return left def upper_bound(data, val, level=0): """multi fields list upper bound. for single field list use `bisect.bisect_right` instead """ left = 0 right = len(data) while left < right: mid = (left + right) // 2 if val >= data[mid][level]: left = mid + 1 else: right = mid return left #################### HTTP #################### def requests_with_retry(url, retry=5, **kwargs): while retry > 0: retry -= 1 try: res = requests.get(url, timeout=1, **kwargs) assert res.status_code in {200, 206} return res except AssertionError: continue except Exception as e: log.warning("exception encountered {}".format(e)) continue raise Exception("ERROR: requests failed!") #################### Parse #################### def parse_config(config): # Check whether need parse, all object except str do not need to be parsed if not isinstance(config, str): return config # Check whether config is file if os.path.exists(config): with open(config, "r") as f: return yaml.safe_load(f) # Check whether the str can be parsed try: return yaml.safe_load(config) except BaseException: raise ValueError("cannot parse config!") #################### Other #################### def drop_nan_by_y_index(x, y, weight=None): # x, y, weight: DataFrame # Find index of rows which do not contain Nan in all columns from y. mask = ~y.isna().any(axis=1) # Get related rows from x, y, weight. x = x[mask] y = y[mask] if weight is not None: weight = weight[mask] return x, y, weight def hash_args(*args): # json.dumps will keep the dict keys always sorted. string = json.dumps(args, sort_keys=True, default=str) # frozenset return hashlib.md5(string.encode()).hexdigest() def parse_field(field): # Following patterns will be matched: # - $close -> Feature("close") # - $close5 -> Feature("close5") # - $open+$close -> Feature("open")+Feature("close") if not isinstance(field, str): field = str(field) return re.sub(r"\$(\w+)", r'Feature("\1")', re.sub(r"(\w+\s*)\(", r"Operators.\1(", field)) def get_module_by_module_path(module_path: Union[str, ModuleType]): """Load module path :param module_path: :return: """ if isinstance(module_path, ModuleType): module = module_path else: if module_path.endswith(".py"): module_name = re.sub("^[^a-zA-Z_]+", "", re.sub("[^0-9a-zA-Z_]", "", module_path[:-3].replace("/", "_"))) module_spec = importlib.util.spec_from_file_location(module_name, module_path) module = importlib.util.module_from_spec(module_spec) sys.modules[module_name] = module module_spec.loader.exec_module(module) else: module = importlib.import_module(module_path) return module def get_callable_kwargs(config: Union[dict, str], default_module: Union[str, ModuleType] = None) -> (type, dict): """ extract class/func and kwargs from config info Parameters ---------- config : [dict, str] similar to config please refer to the doc of init_instance_by_config default_module : Python module or str It should be a python module to load the class type This function will load class from the config['module_path'] first. If config['module_path'] doesn't exists, it will load the class from default_module. Returns ------- (type, dict): the class/func object and it's arguments. """ if isinstance(config, dict): if isinstance(config["class"], str): module = get_module_by_module_path(config.get("module_path", default_module)) # raise AttributeError _callable = getattr(module, config["class" if "class" in config else "func"]) else: _callable = config["class"] # the class type itself is passed in kwargs = config.get("kwargs", {}) elif isinstance(config, str): # a.b.c.ClassName *m_path, cls = config.split(".") m_path = ".".join(m_path) module = get_module_by_module_path(default_module if m_path == "" else m_path) _callable = getattr(module, cls) kwargs = {} else: raise NotImplementedError(f"This type of input is not supported") return _callable, kwargs get_cls_kwargs = get_callable_kwargs # NOTE: this is for compatibility for the previous version def init_instance_by_config( config: Union[str, dict, object], default_module=None, accept_types: Union[type, Tuple[type]] = (), try_kwargs: Dict = {}, **kwargs, ) -> Any: """ get initialized instance with config Parameters ---------- config : Union[str, dict, object] dict example. case 1) { 'class': 'ClassName', 'kwargs': dict, # It is optional. {} will be used if not given 'model_path': path, # It is optional if module is given } case 2) { 'class': <The class it self>, 'kwargs': dict, # It is optional. {} will be used if not given } str example. 1) specify a pickle object - path like 'file:///<path to pickle file>/obj.pkl' 2) specify a class name - "ClassName": getattr(module, "ClassName")() will be used. 3) specify module path with class name - "a.b.c.ClassName" getattr(<a.b.c.module>, "ClassName")() will be used. object example: instance of accept_types default_module : Python module Optional. It should be a python module. NOTE: the "module_path" will be override by `module` arguments This function will load class from the config['module_path'] first. If config['module_path'] doesn't exists, it will load the class from default_module. accept_types: Union[type, Tuple[type]] Optional. If the config is a instance of specific type, return the config directly. This will be passed into the second parameter of isinstance. try_kwargs: Dict Try to pass in kwargs in `try_kwargs` when initialized the instance If error occurred, it will fail back to initialization without try_kwargs. Returns ------- object: An initialized object based on the config info """ if isinstance(config, accept_types): return config if isinstance(config, str): # path like 'file:///<path to pickle file>/obj.pkl' pr = urlparse(config) if pr.scheme == "file": with open(os.path.join(pr.netloc, pr.path), "rb") as f: return pickle.load(f) klass, cls_kwargs = get_callable_kwargs(config, default_module=default_module) try: return klass(**cls_kwargs, **try_kwargs, **kwargs) except (TypeError,): # TypeError for handling errors like # 1: `XXX() got multiple values for keyword argument 'YYY'` # 2: `XXX() got an unexpected keyword argument 'YYY' return klass(**cls_kwargs, **kwargs) @contextlib.contextmanager def class_casting(obj: object, cls: type): """ Python doesn't provide the downcasting mechanism. We use the trick here to downcast the class Parameters ---------- obj : object the object to be cast cls : type the target class type """ orig_cls = obj.__class__ obj.__class__ = cls yield obj.__class__ = orig_cls def compare_dict_value(src_data: dict, dst_data: dict): """Compare dict value :param src_data: :param dst_data: :return: """ class DateEncoder(json.JSONEncoder): # FIXME: This class can only be accurate to the day. If it is a minute, # there may be a bug def default(self, o): if isinstance(o, (datetime.datetime, datetime.date)): return o.strftime("%Y-%m-%d %H:%M:%S") return json.JSONEncoder.default(self, o) src_data = json.dumps(src_data, indent=4, sort_keys=True, cls=DateEncoder) dst_data = json.dumps(dst_data, indent=4, sort_keys=True, cls=DateEncoder) diff = difflib.ndiff(src_data, dst_data) changes = [line for line in diff if line.startswith("+ ") or line.startswith("- ")] return changes def get_or_create_path(path: Optional[Text] = None, return_dir: bool = False): """Create or get a file or directory given the path and return_dir. Parameters ---------- path: a string indicates the path or None indicates creating a temporary path. return_dir: if True, create and return a directory; otherwise c&r a file. """ if path: if return_dir and not os.path.exists(path): os.makedirs(path) elif not return_dir: # return a file, thus we need to create its parent directory xpath = os.path.abspath(os.path.join(path, "..")) if not os.path.exists(xpath): os.makedirs(xpath) else: temp_dir = os.path.expanduser("~/tmp") if not os.path.exists(temp_dir): os.makedirs(temp_dir) if return_dir: _, path = tempfile.mkdtemp(dir=temp_dir) else: _, path = tempfile.mkstemp(dir=temp_dir) return path @contextlib.contextmanager def save_multiple_parts_file(filename, format="gztar"): """Save multiple parts file Implementation process: 1. get the absolute path to 'filename' 2. create a 'filename' directory 3. user does something with file_path('filename/') 4. remove 'filename' directory 5. make_archive 'filename' directory, and rename 'archive file' to filename :param filename: result model path :param format: archive format: one of "zip", "tar", "gztar", "bztar", or "xztar" :return: real model path Usage:: >>> # The following code will create an archive file('~/tmp/test_file') containing 'test_doc_i'(i is 0-10) files. >>> with save_multiple_parts_file('~/tmp/test_file') as filename_dir: ... for i in range(10): ... temp_path = os.path.join(filename_dir, 'test_doc_{}'.format(str(i))) ... with open(temp_path) as fp: ... fp.write(str(i)) ... """ if filename.startswith("~"): filename = os.path.expanduser(filename) file_path = os.path.abspath(filename) # Create model dir if os.path.exists(file_path): raise FileExistsError("ERROR: file exists: {}, cannot be create the directory.".format(file_path)) os.makedirs(file_path) # return model dir yield file_path # filename dir to filename.tar.gz file tar_file = shutil.make_archive(file_path, format=format, root_dir=file_path) # Remove filename dir if os.path.exists(file_path): shutil.rmtree(file_path) # filename.tar.gz rename to filename os.rename(tar_file, file_path) @contextlib.contextmanager def unpack_archive_with_buffer(buffer, format="gztar"): """Unpack archive with archive buffer After the call is finished, the archive file and directory will be deleted. Implementation process: 1. create 'tempfile' in '~/tmp/' and directory 2. 'buffer' write to 'tempfile' 3. unpack archive file('tempfile') 4. user does something with file_path('tempfile/') 5. remove 'tempfile' and 'tempfile directory' :param buffer: bytes :param format: archive format: one of "zip", "tar", "gztar", "bztar", or "xztar" :return: unpack archive directory path Usage:: >>> # The following code is to print all the file names in 'test_unpack.tar.gz' >>> with open('test_unpack.tar.gz') as fp: ... buffer = fp.read() ... >>> with unpack_archive_with_buffer(buffer) as temp_dir: ... for f_n in os.listdir(temp_dir): ... print(f_n) ... """ temp_dir = os.path.expanduser("~/tmp") if not os.path.exists(temp_dir): os.makedirs(temp_dir) with tempfile.NamedTemporaryFile("wb", delete=False, dir=temp_dir) as fp: fp.write(buffer) file_path = fp.name try: tar_file = file_path + ".tar.gz" os.rename(file_path, tar_file) # Create dir os.makedirs(file_path) shutil.unpack_archive(tar_file, format=format, extract_dir=file_path) # Return temp dir yield file_path except Exception as e: log.error(str(e)) finally: # Remove temp tar file if os.path.exists(tar_file): os.unlink(tar_file) # Remove temp model dir if os.path.exists(file_path): shutil.rmtree(file_path) @contextlib.contextmanager def get_tmp_file_with_buffer(buffer): temp_dir = os.path.expanduser("~/tmp") if not os.path.exists(temp_dir): os.makedirs(temp_dir) with tempfile.NamedTemporaryFile("wb", delete=True, dir=temp_dir) as fp: fp.write(buffer) file_path = fp.name yield file_path def remove_repeat_field(fields): """remove repeat field :param fields: list; features fields :return: list """ fields = copy.deepcopy(fields) _fields = set(fields) return sorted(_fields, key=fields.index) def remove_fields_space(fields: [list, str, tuple]): """remove fields space :param fields: features fields :return: list or str """ if isinstance(fields, str): return fields.replace(" ", "") return [i.replace(" ", "") for i in fields if isinstance(i, str)] def normalize_cache_fields(fields: [list, tuple]): """normalize cache fields :param fields: features fields :return: list """ return sorted(remove_repeat_field(remove_fields_space(fields))) def normalize_cache_instruments(instruments): """normalize cache instruments :return: list or dict """ if isinstance(instruments, (list, tuple, pd.Index, np.ndarray)): instruments = sorted(list(instruments)) else: # dict type stockpool if "market" in instruments: pass else: instruments = {k: sorted(v) for k, v in instruments.items()} return instruments def is_tradable_date(cur_date): """judgy whether date is a tradable date ---------- date : pandas.Timestamp current date """ from ..data import D return str(cur_date.date()) == str(D.calendar(start_time=cur_date, future=True)[0].date()) def get_date_range(trading_date, left_shift=0, right_shift=0, future=False): """get trading date range by shift Parameters ---------- trading_date: pd.Timestamp left_shift: int right_shift: int future: bool """ from ..data import D start = get_date_by_shift(trading_date, left_shift, future=future) end = get_date_by_shift(trading_date, right_shift, future=future) calendar = D.calendar(start, end, future=future) return calendar def get_date_by_shift(trading_date, shift, future=False, clip_shift=True, freq="day", align: Optional[str] = None): """get trading date with shift bias will cur_date e.g. : shift == 1, return next trading date shift == -1, return previous trading date ---------- trading_date : pandas.Timestamp current date shift : int clip_shift: bool align : Optional[str] When align is None, this function will raise ValueError if `trading_date` is not a trading date when align is "left"/"right", it will try to align to left/right nearest trading date before shifting when `trading_date` is not a trading date """ from qlib.data import D cal = D.calendar(future=future, freq=freq) trading_date = pd.to_datetime(trading_date) if align is None: if trading_date not in list(cal): raise ValueError("{} is not trading day!".format(str(trading_date))) _index = bisect.bisect_left(cal, trading_date) elif align == "left": _index = bisect.bisect_right(cal, trading_date) - 1 elif align == "right": _index = bisect.bisect_left(cal, trading_date) else: raise ValueError(f"align with value `{align}` is not supported") shift_index = _index + shift if shift_index < 0 or shift_index >= len(cal): if clip_shift: shift_index = np.clip(shift_index, 0, len(cal) - 1) else: raise IndexError(f"The shift_index({shift_index}) of the trading day ({trading_date}) is out of range") return cal[shift_index] def get_next_trading_date(trading_date, future=False): """get next trading date ---------- cur_date : pandas.Timestamp current date """ return get_date_by_shift(trading_date, 1, future=future) def get_pre_trading_date(trading_date, future=False): """get previous trading date ---------- date : pandas.Timestamp current date """ return get_date_by_shift(trading_date, -1, future=future) def transform_end_date(end_date=None, freq="day"): """handle the end date with various format If end_date is -1, None, or end_date is greater than the maximum trading day, the last trading date is returned. Otherwise, returns the end_date ---------- end_date: str end trading date date : pandas.Timestamp current date """ from ..data import D last_date = D.calendar(freq=freq)[-1] if end_date is None or (str(end_date) == "-1") or (pd.Timestamp(last_date) <
pd.Timestamp(end_date)
pandas.Timestamp
import pandas as pd import numpy as np def convert_minutes_to_seconds(time_minutes): """ Convert time expressed in (float) minutes into (float) seconds. :param float time_minutes: Time expressed in minutes. :return: Time expressed in seconds. :rtype: float """ time_seconds = time_minutes * 60 return time_seconds def transform_llimllib_boston_data(df, year): """ Transform 2013-2104 Boston Marathon data from llimllib's Github repo into a standard form for downstream processing. Namely, split times are converted to integer seconds. :param pandas.DataFrame df: DataFrame representing 2013-2014 Boston Marathon data from llimllib's Github repo. :param int year: Year of Boston Marathon :return: DataFrame of transformed marathon data :rtype: pandas.DataFrame """ # Header names for split time field in llimllib marathon data headers_split = ['5k', '10k', '20k', 'half', '25k', '30k', '35k', '40k', 'official'] # Replace nan placeholders with actual nan values for header in headers_split: df[header].replace('-', np.nan, inplace=True) # Cast split times to float dtypes_new = dict(zip(headers_split, [float] * len(headers_split))) df = df.astype(dtypes_new) # Convert split time from decimal minutes to seconds for header in headers_split + ['pace']: df[header] = df[header].apply(convert_minutes_to_seconds) # Add year field df['year'] = year # Add empty columns for 15k split time and gender_place rank df['15k'] = np.nan df['gender_place'] = np.nan df = df.rename(columns={'official': 'official_time', 'ctz': 'citizen'}) return df # at least one row in 2015 had an incomprehensible official finish time: 0.124548611111111 # I believe there was only one, but the try/catch below should handle # missing values, placeholder '-', and bad values def convert_string_to_seconds(time_str): """ Convert time in a string format 'HH:MM:SS' into (int) seconds. :param str time_str: Time in a string format 'HH:MM:SS' :return: Time expressed in seconds :rtype: int """ try: hours_str, minutes_str, seconds_str = time_str.split(':') return int(hours_str) * 3600 + int(minutes_str) * 60 + int(seconds_str) except: return np.nan def transform_rojour_boston_data(df, year): """ Transform 2015-2107 Boston Marathon data from rojour's Github repo into a standard form for downstream processing. Namely, split times are converted to integer seconds. :param pandas.DataFrame df: DataFrame representing 2015-2017 Boston Marathon data from rojour's Github repo. :param int year: Year of Boston Marathon :return: DataFrame of transformed marathon data :rtype: pandas.DataFrame """ # Drop unnecessary columns if year == 2016: df.drop('Proj Time', axis=1) else: df.drop([df.columns[0], 'Proj Time'], axis=1) # The split times in the Kaggle data are formatted as strings hh:mm:ss. We want these times in total seconds. headers_split = ['5K', '10K', '15K', '20K', 'Half', '25K', '30K', '35K', '40K', 'Official Time'] for header in headers_split: df[header] = df[header].apply(convert_string_to_seconds) if year == 2015: df.dropna(subset=['Official Time']) # Create a year field and an empty field for 'genderdiv' df['year'] = year df['genderdiv'] = np.nan # Map of field names to rename headers of df to ensure consistency with transform_llimllib_boston_data headers_map = {'Age': 'age', 'Official Time': 'official_time', 'Bib': 'bib', 'Citizen': 'citizen', 'Overall': 'overall', 'Pace': 'pace', 'State': 'state', 'Country': 'country', 'City': 'city', 'Name': 'name', 'Division': 'division', 'M/F': 'gender', '5K': '5k', '10K': '10k', '15K': '15k', '20K': '20k', 'Half': 'half', '25K': '25k', '30K': '30k', '35K': '35k', '40K': '40k', 'Gender': 'gender_place'} # The rojour data has an unnamed field that varies depending on the year. # We can't drop this field since it's used later to remove certain records. if year == 2016: headers_map.update({'Unnamed: 8': 'para_status'}) else: headers_map.update({'Unnamed: 9': 'para_status'}) df = df.rename(columns=headers_map) # Drop all runners with a 'para' status and then drop the para_status field df = df[df.para_status != 'MI'] df = df[df.para_status != 'VI'] df = df.drop('para_status', axis=1) return df def band_age(age): """ Banding method that maps a Boston Marathon runner's (integer) age to a labeled age band and level. **Note**: The age brackets on the BAA website are as follows: * 14-19*, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-70, 70-74, 75-79, and 80 This places 70 into two brackets. We have assumed this is a typo and use the bands '65-69' and '70-74'. We have also ignored the minimum age in case it has not been the same in every year :param int age: Age of Boston Marathon runner :return: (banded_level, age_banding) where: banded_level is banded level of age for Boston Marathon runner and age_banding is banding of age for Boston Marathon runner in 5 year increments :rtype: (int, str) """ if age <= 19: bid = 1 bstr = '<= 19' elif age <= 24: bid = 2 bstr = '20-24' elif age <= 29: bid = 3 bstr = '25-29' elif age <= 34: bid = 4 bstr = '30-34' elif age <= 39: bid = 5 bstr = '35-39' elif age <= 44: bid = 6 bstr = '40-44' elif age <= 49: bid = 7 bstr = '45-49' elif age <= 54: bid = 8 bstr = '50-54' elif age <= 59: bid = 9 bstr = '55-59' elif age <= 64: bid = 10 bstr = '60-64' elif age <= 69: bid = 11 bstr = '65-69' elif age <= 74: bid = 12 bstr = '70-74' elif age <= 79: bid = 13 bstr = '75-79' else: bid = 14 bstr = '80+' return bid, bstr def append_age_banding(df): """ Method that appends a banding of the age field, which is consistent with the method `band_age`. **Note**: This method assumes that the DataFrame `df` include the (int) field named 'age', which is :param pandas.DataFrame df: DataFrame of transformed marathon data :return: DataFrame of transformed marathon data that includes a banding of age consistent with method `band_age` :rtype: pandas.DataFrame """ return pd.concat(( df, df['age'].apply(lambda cell: pd.Series(band_age(cell), index=['age_bucket', 'age_range'])) ), axis=1) def combine_boston_data(list_dfs): """ Method that takes the union of a list of DataFrames each representing different years of Boston Marathon data. The field named 'age' is also used to append a banding for runners' age. :param list[pandas.DataFrame] list_dfs: List of DataFrames containing transformed marathon data :return: DataFrame of transformed and unioned marathon data that includes a banding of age consistent with method `band_age` :rtype: pandas.DataFrame """ df_combine = pd.concat(list_dfs, sort=True) df_combine = append_age_banding(df_combine) df_combine.drop(['pace', 'Proj Time', 'Unnamed: 0'], axis=1, inplace=True) return df_combine def pipe_reader(input_file): """ Read datasets without pandas read_csv when we have a pipe delimiter dataset with commas inside columns :param str input_file: File path :return: The pipe delimited file as a DataFrame :rtype: pandas.DataFrame """ with open(input_file, 'r') as f: temp_file = f.read() temp_file = temp_file.split('\n') lis = [] for row in temp_file: row = row.split('|') if len(row) == 20: lis.append(row) temp_df = pd.DataFrame(lis, columns=lis[0]) temp_df = temp_df.drop(0, axis=0) return temp_df def process_boston_data(): """ Method to import, transform, and combine Boston Marathon data. :return: DataFrame of transformed and combined Boston Marathon data. :rtype: pandas.DataFrame """ # Read in data llimllib_boston_results_2013 = pd.read_csv('dashathon/data/external_data/llimllib_boston_results_2013.csv', delimiter=',') llimllib_boston_results_2014 = pd.read_csv('dashathon/data/external_data/llimllib_boston_results_2014.csv', delimiter=',') rojour_boston_results_2015 = pd.read_csv('dashathon/data/external_data/rojour_boston_results_2015.csv', delimiter=',') rojour_boston_results_2016 = pd.read_csv('dashathon/data/external_data/rojour_boston_results_2016.csv', delimiter=',') rojour_boston_results_2017 = pd.read_csv('dashathon/data/external_data/rojour_boston_results_2017.csv', delimiter=',') # Transform data boston_results_2013 = transform_llimllib_boston_data(df=llimllib_boston_results_2013, year=2013) boston_results_2014 = transform_llimllib_boston_data(df=llimllib_boston_results_2014, year=2014) boston_results_2015 = transform_rojour_boston_data(df=rojour_boston_results_2015, year=2015) boston_results_2016 = transform_rojour_boston_data(df=rojour_boston_results_2016, year=2016) boston_results_2017 = transform_rojour_boston_data(df=rojour_boston_results_2017, year=2017) # Combine Boston data boston_results = combine_boston_data(list_dfs=[boston_results_2013, boston_results_2014, boston_results_2015, boston_results_2016, boston_results_2017]) # Append host city to distinguish among other marathon results boston_results['host_city'] = 'Boston' # Removing gender 'W' from bib in boston base boston_results.bib = boston_results.bib.str.replace('W', '') return boston_results def process_nyc_data(): """ Method to import, transform, and combine NYC Marathon data. :return: DataFrame of transformed and combine NYC Marathon data. :rtype: pandas.DataFrame """ andreanr_nyc_results_2015 = pd.read_csv('dashathon/data/external_data/andreanr_nyc_results_2015.csv') andreanr_nyc_results_2016 = pd.read_csv('dashathon/data/external_data/andreanr_nyc_results_2016.csv') andreanr_nyc_results_2017 = pd.read_csv('dashathon/data/external_data/andreanr_nyc_results_2017.csv') andreanr_nyc_results_2018 = pd.read_csv('dashathon/data/external_data/andreanr_nyc_results_2018.csv') # Merging all nyc datasets first andreanr_nyc_results = andreanr_nyc_results_2015.append([andreanr_nyc_results_2016, andreanr_nyc_results_2017, andreanr_nyc_results_2018], ignore_index=True) # Removing records with missing split times headers_nyc_splits = ['splint_10k', 'splint_15k', 'splint_20k', 'splint_25k', 'splint_30k', 'splint_35k', 'splint_40k', 'splint_5k', 'splint_half', 'official_time'] andreanr_nyc_results = andreanr_nyc_results.dropna(subset=headers_nyc_splits + ['age']) # Consistent age andreanr_nyc_results.age = andreanr_nyc_results.age.astype('int64') # Converting HH:MM:SS to seconds for header in headers_nyc_splits: andreanr_nyc_results[header] = andreanr_nyc_results[header].apply(convert_string_to_seconds) # Assuming na values for absent columns in nyc data andreanr_nyc_results['citizen'] = None andreanr_nyc_results['division'] = None andreanr_nyc_results['genderdiv'] = None andreanr_nyc_results['age_bucket'] = None andreanr_nyc_results['age_range'] = None # Extracting and renaming relevant columns andreanr_nyc_results = andreanr_nyc_results[['splint_10k', 'splint_15k', 'splint_20k', 'splint_25k', 'splint_30k', 'splint_35k', 'splint_40k', 'splint_5k', 'age', 'bib', 'citizen', 'city', 'country', 'division', 'gender', 'place_gender', 'genderdiv', 'splint_half', 'name', 'official_time', 'place_overall', 'pace_per_mile', 'state', 'year', 'age_range', 'age_bucket']] # Pace_per_mile of NYC data is assumed to be same as pace of Boston data andreanr_nyc_results = andreanr_nyc_results.rename(columns={"splint_10k": "10k", "splint_15k": "15k", "splint_20k": "20k", "splint_25k": "25k", "splint_30k": "30k", "splint_35k": "35k", "splint_40k": "40k", "splint_5k": "5k", "place_gender": "gender_place", "splint_half": "half", "place_overall": "overall", "pace_per_mile": "pace"}) # Adding host city andreanr_nyc_results['host_city'] = 'NYC' return andreanr_nyc_results def process_chicago_data(): """ Method to import, transform, and combine Chicago Marathon data. :return: DataFrame of transformed and combined Chicago Marathon data. :rtype: pandas.DataFrame """ chi14m = pipe_reader('dashathon/data/scraped_data/chicago_marathon_2014_M.csv') chi14w = pipe_reader('dashathon/data/scraped_data/chicago_marathon_2014_W.csv') chi15m = pipe_reader('dashathon/data/scraped_data/chicago_marathon_2015_M.csv') chi15w = pipe_reader('dashathon/data/scraped_data/chicago_marathon_2015_W.csv') chi16m = pipe_reader('dashathon/data/scraped_data/chicago_marathon_2016_M.csv') chi16w = pipe_reader('dashathon/data/scraped_data/chicago_marathon_2016_W.csv') chi17m = pipe_reader('dashathon/data/scraped_data/chicago_marathon_2017_M.csv') chi17w = pipe_reader('dashathon/data/scraped_data/chicago_marathon_2017_W.csv') # Merging all chicago datasets first chicago_results = chi14m.append([chi14w, chi15m, chi15w, chi16m, chi16w, chi17m, chi17w], ignore_index=True) # Bringing around required datatypes chicago_results[['year', 'bib', 'rank_gender', 'rank_age_group', 'overall']] = chicago_results[ ['year', 'bib', 'rank_gender', 'rank_age_group', 'overall']].astype('int64') chicago_results[['5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']] = chicago_results[ ['5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']].astype('float64') chicago_results['age'] = np.nan chicago_results['age_bucket'] = None chicago_results['citizen'] = None chicago_results['division'] = None chicago_results['genderdiv'] = None chicago_results['name'] = None chicago_results['official_time'] = None chicago_results['pace'] = None chicago_results['host_city'] = 'Chicago' chicago_results = chicago_results.rename(columns={'age_group': 'age_range', 'rank_gender': 'gender_place'}) chicago_results = chicago_results.drop(['rank_age_group', 'finish'], axis=1) return chicago_results def process_london_data(): """ Method to import, transform, and combine London Marathon data. :return: DataFrame of transformed and combined London Marathon data. :rtype: pandas.DataFrame """ # Reading in the datasets lon14m = pd.read_csv('dashathon/data/scraped_data/london_marathon_2014_M.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) lon14me = pd.read_csv('dashathon/data/scraped_data/london_marathon_2014_M_elite.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) lon14w = pd.read_csv('dashathon/data/scraped_data/london_marathon_2014_W.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) lon14we = pd.read_csv('dashathon/data/scraped_data/london_marathon_2014_W_elite.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) lon15m = pd.read_csv('dashathon/data/scraped_data/london_marathon_2015_M.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) lon15me = pd.read_csv('dashathon/data/scraped_data/london_marathon_2015_M_elite.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) lon15w = pd.read_csv('dashathon/data/scraped_data/london_marathon_2015_W.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) lon15we = pd.read_csv('dashathon/data/scraped_data/london_marathon_2015_W_elite.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) lon16m = pd.read_csv('dashathon/data/scraped_data/london_marathon_2016_M.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) lon16me = pd.read_csv('dashathon/data/scraped_data/london_marathon_2016_M_elite.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) lon16w = pd.read_csv('dashathon/data/scraped_data/london_marathon_2016_W.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) lon16we = pd.read_csv('dashathon/data/scraped_data/london_marathon_2016_W_elite.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) lon17m = pd.read_csv('dashathon/data/scraped_data/london_marathon_2017_M.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) lon17me = pd.read_csv('dashathon/data/scraped_data/london_marathon_2017_M_elite.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) lon17w = pd.read_csv('dashathon/data/scraped_data/london_marathon_2017_W.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) lon17we = pd.read_csv('dashathon/data/scraped_data/london_marathon_2017_W_elite.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) london_results = lon14m.append([lon14me, lon14w, lon14we, lon15m, lon15me, lon15w, lon15we, lon16m, lon16me, lon16w, lon16we, lon17m, lon17me, lon17w, lon17we], ignore_index=True) london_results['city'] = None london_results['state'] = None london_results['host_city'] = 'London' return london_results def process_berlin_data(): """ Method to import, transform, and combine Berlin Marathon data. :return: DataFrame of transformed and combined Berlin Marathon data. :rtype: pandas.DataFrame """ ber14m = pd.read_csv('dashathon/data/scraped_data/london_marathon_2014_M.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) ber14w = pd.read_csv('dashathon/data/scraped_data/london_marathon_2014_M_elite.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) ber15m = pd.read_csv('dashathon/data/scraped_data/london_marathon_2014_W.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) ber15w = pd.read_csv('dashathon/data/scraped_data/london_marathon_2014_W_elite.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) ber16m = pd.read_csv('dashathon/data/scraped_data/london_marathon_2015_M.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) ber16w = pd.read_csv('dashathon/data/scraped_data/london_marathon_2015_M_elite.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) ber17m = pd.read_csv('dashathon/data/scraped_data/london_marathon_2015_W.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) ber17w = pd.read_csv('dashathon/data/scraped_data/london_marathon_2015_W_elite.csv', sep='|', usecols=['year', 'bib', 'age_group', 'gender', 'country', 'overall', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish']) berlin_results = ber14m.append([ber14w, ber15m, ber15w, ber16m, ber16w, ber17m, ber17w], ignore_index=True) berlin_results['city'] = None berlin_results['state'] = None berlin_results['host_city'] = 'Berlin' return berlin_results def process_all_data(): """ Method to import, transform, and combine all Marathon data. :return: DataFrame of all transformed and combined Marathon data. :rtype: pandas.DataFrame """ boston_results = process_boston_data() nyc_results = process_nyc_data() chicago_results = process_chicago_data() london_results = process_london_data() berlin_results = process_berlin_data() dashathon_data = boston_results.append([nyc_results, chicago_results], ignore_index=True) london_berlin_results = london_results.append(berlin_results, ignore_index=True) london_berlin_results['age'] = pd.np.nan london_berlin_results['age_bucket'] = None london_berlin_results['citizen'] = None london_berlin_results['division'] = None london_berlin_results['genderdiv'] = None london_berlin_results['name'] = None london_berlin_results['official_time'] = None london_berlin_results['pace'] = None london_berlin_results = london_berlin_results.rename(columns={'age_group': 'age_range', 'rank_gender': 'gender_place'}) london_berlin_results = london_berlin_results.drop(['rank_age_group', 'finish'], axis=1) dashathon_data = dashathon_data.append(london_berlin_results, ignore_index=True) # Aggregated changes dashathon_data['genderdiv'] = dashathon_data['genderdiv'].astype('float64') dashathon_data['official_time'] = dashathon_data['official_time'].astype('float64') # Dropping age_bucket dashathon_data = dashathon_data.drop(columns=['age_bucket']) # Creating a new age_range column on basis of age dashathon_data = dashathon_data.drop(columns={'age_range'}) age_map = pd.read_csv('dashathon/merging/age_map.csv') dashathon_data = pd.merge(dashathon_data, age_map, on='age', how='left') # Make gender consistent across all datasets dashathon_data['gender'] = dashathon_data['gender'].replace('W', 'F') # Dropping pace column for now dashathon_data = dashathon_data.drop(columns={'pace'}) # Converting three letter country names to full country names country_code =
pd.read_csv('dashathon/merging/country_code_web.csv', usecols=['country', 'code'], encoding='latin-1')
pandas.read_csv
""" analys module implements analysis functions related to Bioinformatics, Statistics, and Machine learning: High-throughput Bioinformatics data analysis Bioinformatics file handling and parsing Molecular marker analysis Bioinformatics file format conversions Biostatistical analysis Functional enrichment analysis (GenFam) Importing defined datasets """ import pandas as pd import re import os import numpy as np from bioinfokit.visuz import general from bioinfokit import visuz from itertools import groupby, chain import sys import csv import scipy.stats as stats from tabulate import tabulate from statsmodels.stats.multitest import multipletests from textwrap3 import wrap from statsmodels.formula.api import ols import statsmodels.api as sm from sklearn.linear_model import LinearRegression from decimal import Decimal from pathlib import Path from collections import defaultdict from shutil import which from subprocess import check_output, STDOUT, CalledProcessError from statsmodels.stats.libqsturng import psturng, qsturng import collections import glob __all__ = ['Fasta', 'HtsAna', 'fastq', 'analys_general', 'marker', 'format', 'stat', 'gff', 'norm', 'assembly', 'lncrna', 'genfam', 'anot', 'get_data'] def tcsv(file="tab_file"): tab_file = csv.reader(open(file, 'r'), dialect=csv.excel_tab) csv_file = csv.writer(open('out.csv', 'w', newline=''), dialect=csv.excel) for record in tab_file: csv_file.writerow(record) class Fasta: def __init__(self): pass # adapted from https://www.biostars.org/p/710/ @staticmethod def fasta_reader(file="fasta_file"): read_file = open(file, "rU") fasta_iter = (rec[1] for rec in groupby(read_file, lambda line: line[0] == ">")) for record in fasta_iter: fasta_header = record.__next__()[1:].strip() fasta_header = re.split("\s+", fasta_header)[0] seq = "".join(s.strip() for s in fasta_iter.__next__()) yield fasta_header, seq @staticmethod def rev_com(seq=None, file=None): if seq is not None: rev_seq = seq[::-1] rev_seq = rev_seq.translate(str.maketrans("ATGCUN", "TACGAN")) return rev_seq elif file is not None: out_file = open("output_revcom.fasta", 'w') fasta_iter = fasta_reader(file) for record in fasta_iter: fasta_header, seq = record rev_seq = seq[::-1] rev_seq = rev_seq.translate(str.maketrans("ATGCUN", "TACGAN")) out_file.write(">" + fasta_header + "\n" + rev_seq + "\n") out_file.close() @staticmethod def ext_subseq(file="fasta_file", id="chr", st="start", end="end", strand="plus"): fasta_iter = Fasta.fasta_reader(file) for record in fasta_iter: fasta_header, seq = record if id == fasta_header.strip() and strand == "plus": # -1 is necessary as it counts from 0 sub_seq = seq[int(st - 1):int(end)] print(sub_seq) elif id == fasta_header.strip() and strand == "minus": sub_seq = seq[int(st - 1):int(end)] sub_seq_rc = Fasta.rev_com(seq=sub_seq) print(sub_seq_rc) @staticmethod def extract_seq(file='fasta_file', id='id_file_or_pd_dataframe'): # extract seq from fasta file based on id match if isinstance(id, pd.Series): id_list = list(id) else: id_list = [] id_file = open(id, "rU") for line in id_file: id_name = line.rstrip('\n') id_list.append(id_name) out_file = open("output.fasta", 'w') list_len = len(id_list) value = [1] * list_len # id_list converted to dict for faster search dict_list = dict(zip(id_list, value)) fasta_iter = Fasta.fasta_reader(file) for record in fasta_iter: fasta_header, seq = record if fasta_header.strip() in dict_list.keys(): out_file.write(">" + fasta_header + "\n" + '\n'.join(wrap(seq, 60)) + "\n") out_file.close() if not isinstance(id, pd.Series): id_file.close() @staticmethod def extract_seq_nomatch(file="fasta_file", id="id_file"): # remove seqs which match to ids in id file if isinstance(id, pd.Series): id_list = list(id) else: id_list = [] id_file = open(id, "rU") for line in id_file: id_name = line.rstrip('\n') id_list.append(id_name) out_file = open("output.fasta", 'w') list_len = len(id_list) value = [1] * list_len # id_list converted to dict for faster search dict_list = dict(zip(id_list, value)) fasta_iter = Fasta.fasta_reader(file) for record in fasta_iter: fasta_header, seq = record if fasta_header.strip() not in dict_list.keys(): out_file.write(">" + fasta_header + "\n" + seq + "\n") out_file.close() if not isinstance(id, pd.Series): id_file.close() @staticmethod def split_fasta(file="fasta_file", n=2, bases_per_line=60): seq_ids = [] fasta_iter = Fasta.fasta_reader(file) for record in fasta_iter: header, seq = record seq_ids.append(header) split_ids_list = np.array_split(seq_ids, n) for ind, i in enumerate(split_ids_list): out_file = open('output_'+str(ind)+'.fasta', 'w') value = [1] * len(i) dict_list = dict(zip(i, value)) fasta_iter = Fasta.fasta_reader(file) for record in fasta_iter: fasta_header, seq = record if fasta_header.strip() in dict_list.keys(): out_file.write(">" + fasta_header + "\n" + '\n'.join(wrap(seq, bases_per_line)) + "\n") out_file.close() @staticmethod def split_seq(seq=None, seq_size=3, seq_overlap=True, any_cond=False, outfmt='list'): """ Split a nucleotide sequence into smaller chunks Parameters seq: Nucleotide sequence to split seq_size: Sequence chunk size seq_overlap: Split sequence in overlap mode any_cond: any conditions for splitting; not yet defined outfmt: Split sequence ouput format (list or fasta) [default: fasta] """ if outfmt not in ['list', 'fasta']: raise ValueError('Invalid value for outfmt') if seq is None: raise ValueError('Provide the input sequence') chunk_counter = 1 temp_chunks = [] if seq_overlap: seq_chunks = [seq[i:i+seq_size] for i in range(0, len(seq), seq_size-(seq_size-1))] if any_cond: for s in seq_chunks: if s[-1] != 'G': temp_chunks.append(s[:-1]) else: seq_chunks = [seq[i:i+seq_size] for i in range(0, len(seq), seq_size)] if any_cond: seq_chunks = temp_chunks seq_size = seq_size-1 if outfmt == 'fasta': out_fasta_file = open('output_chunks.fasta', 'w') for s in seq_chunks: if len(s) == seq_size: out_fasta_file.write(">" + str(chunk_counter) + "\n" + '\n'.join(wrap(s, 60)) + "\n") chunk_counter += 1 elif outfmt == 'list': print([s for s in seq_chunks if len(s)==seq_size]) class fastq: def __init__(self): pass def fastq_reader(file="fastq_file"): fastq_file = open(file, "r") for line in fastq_file: header_1 = line.rstrip() read = next(fastq_file).rstrip() header_2 = next(fastq_file).rstrip() read_qual_asc = next(fastq_file).rstrip() yield header_1, read, header_2, read_qual_asc def fqreadcounter(file="fastq_file"): read_file = open(file, "rU") num_lines = 0 total_len = 0 for line in read_file: num_lines += 1 header_1 = line.rstrip() read = next(read_file).rstrip() len_read = len(read) total_len += len_read header_2 = next(read_file).rstrip() read_qual = next(read_file).rstrip() read_file.close() num_reads = num_lines / 4 return num_reads, total_len def fastq_format_check(file="fastq_file"): read_file = open(file, 'r') x = 0 for line in read_file: header = line.rstrip() if not header.startswith('@'): x = 1 else: x = 0 break return x def detect_fastq_variant(file="fastq_file"): count = 0 check = [] fastq_file = open(file, 'rU') for line in fastq_file: header_1 = line.rstrip() read = next(fastq_file).rstrip() header_2 = next(fastq_file).rstrip() read_qual_asc = next(fastq_file).rstrip() asc_list = list(read_qual_asc) asc_list = list(map(ord, asc_list)) min_q = min(asc_list) max_q = max(asc_list) check.append(min_q) check.append(max_q) count += 1 if count == 40000: break fastq_file.close() min_q = min(check) max_q = max(check) if 64 > min_q >= 33 and max_q == 74: return 1 elif min_q >= 64 and 74 < max_q <= 104: return 2 elif 64 > min_q >= 33 and max_q <= 73: return 3 def split_fastq(file="fastq_file"): x = fastq.fastq_format_check(file) if x == 1: print("Error: Sequences are not in sanger fastq format") sys.exit(1) fastq_iter = fastq.fastq_reader(file) out_file_name_1 = open(Path(file).stem+'_1.fastq', 'w') out_file_name_2 = open(Path(file).stem+'_2.fastq', 'w') i = 1 for record in fastq_iter: header_1, read, header_2, read_qual_asc = record if (i % 2) == 0: out_file_name_2.write(header_1+'\n'+read+'\n'+header_2+'\n'+read_qual_asc+'\n') else: out_file_name_1.write(header_1+'\n'+read+'\n'+header_2+'\n'+read_qual_asc+'\n') i += 1 out_file_name_1.close() out_file_name_2.close() def sra_bd(file='sra_list_in_file', paired=False, prog='fasterq-dump', t=4, other_opts=None): if which(prog) is None: raise Exception(prog + ' does not exist. Please install sra toolkit and add to system path') if prog not in 'fasterq-dump': raise Exception('Only fasterq-dump program supported') read_f = open(file, 'r') for sra in read_f: print('Donwloading ' + sra.strip() + '\n') if paired: try: if other_opts: cmd = [prog, '-e', str(t), '--split-files'] cmd.extend(other_opts.split()) cmd.extend(sra.strip()) check_output(cmd, stderr=STDOUT) else: check_output([prog, '-e', str(t), '--split-files', sra.strip()], stderr=STDOUT) except CalledProcessError as e: print('Error: there is something wrong with the subprocess command or input fastq already ' 'available\n See detaled error \n') print(e.returncode, e.output, '\n') else: try: if other_opts: cmd = [prog, '-e', str(t)] cmd.extend(other_opts.split()) cmd.extend([sra.strip()]) check_output(cmd, stderr=STDOUT) else: check_output([prog, '-e', str(t), sra.strip()], stderr=STDOUT) except CalledProcessError as e: print('Error: there is something wrong with the subprocess command or input fastq already ' 'available\n See detaled error \n' ) print(e.returncode, e.output, '\n') read_f.close() def seqcov(file="fastq_file", gs="genome_size"): x = fastq.fastq_format_check(file) if x == 1: print("Error: Sequences are not in fastq format") sys.exit(1) num_reads, total_len = fastq.fqreadcounter(file) # haploid genome_size must be in Mbp; convert in bp gs = gs * 1e6 cov = round(float(total_len / gs), 2) print("Sequence coverage for", file, "is", cov) class analys_general: @staticmethod def keep_uniq(_list): uniq_list = [] for ele in _list: if ele not in uniq_list: uniq_list.append(ele) return uniq_list @staticmethod def get_list_from_df(df=None, xfac_var=None, res_var=None, funct=None): group_list = [] mult_group = dict() mult_group_count = dict() df_counts = 0 sample_size_r = None if isinstance(xfac_var, list) and len(xfac_var) == 2: # exclude if same group provided multiple times xfac_var = analys_general.keep_uniq(xfac_var) levels1 = df[xfac_var[0]].unique() levels2 = df[xfac_var[1]].unique() sample_size_r = len(levels1) * len(levels2) for ele1 in levels1: for ele2 in levels2: if funct == 'get_list': group_list.append(list(df[(df[xfac_var[0]] == ele1) & (df[xfac_var[1]] == ele2)][res_var])) df_counts += 1 elif funct == 'get_dict': mult_group[(ele1, ele2)] = df[(df[xfac_var[0]] == ele1) & (df[xfac_var[1]] == ele2)].mean().loc[res_var] mult_group_count[(ele1, ele2)] = df[(df[xfac_var[0]] == ele1) & (df[xfac_var[1]] == ele2)].shape[0] elif isinstance(xfac_var, list) and len(xfac_var) == 3: # exclude if same group provided multiple times xfac_var = analys_general.keep_uniq(xfac_var) levels1 = df[xfac_var[0]].unique() levels2 = df[xfac_var[1]].unique() levels3 = df[xfac_var[2]].unique() sample_size_r = len(levels1) * len(levels2) * len(levels3) for ele1 in levels1: for ele2 in levels2: for ele3 in levels3: if funct == 'get_list': group_list.append(list(df[(df[xfac_var[0]] == ele1) & (df[xfac_var[1]] == ele2) & (df[xfac_var[2]] == ele3)][res_var])) df_counts += 1 elif funct == 'get_dict': mult_group[(ele1, ele2, ele3)] = df[(df[xfac_var[0]] == ele1) & (df[xfac_var[1]] == ele2) & (df[xfac_var[2]] == ele3)].mean().loc[res_var] mult_group_count[(ele1, ele2, ele3)] = df[(df[xfac_var[0]] == ele1) & (df[xfac_var[1]] == ele2) & (df[xfac_var[2]] == ele3)].shape[0] elif isinstance(xfac_var, str): levels = df[xfac_var].unique() sample_size_r = len(levels) for ele in levels: if funct == 'get_list': group_list.append(list(df[df[xfac_var] == ele][res_var])) df_counts += 1 elif funct == 'get_dict': mult_group[ele] = df[df[xfac_var] == ele].mean().loc[res_var] mult_group_count[ele] = df[df[xfac_var] == ele].shape[0] elif isinstance(xfac_var, list) and len(xfac_var) > 3: raise Exception('Only three factors supported') if funct == 'get_list': return group_list, df_counts elif funct == 'get_dict': return mult_group, mult_group_count, sample_size_r class marker: def __init__(self): pass def mergevcf(file="vcf_file_com_sep"): print('mergevcf renamed to concatvcf') def concatvcf(file="vcf_file_com_sep"): vcf_files = file.split(",") merge_vcf = open("concat_vcf.vcf", "w+") file_count = 0 print("concatenating vcf files...") for f in vcf_files: if file_count == 0: read_file = open(f, "rU") for line in read_file: merge_vcf.write(line) read_file.close() elif file_count > 0: read_file = open(f, "rU") for line in read_file: if not line.startswith("#"): merge_vcf.write(line) read_file.close() file_count += 1 merge_vcf.close() def splitvcf(file='vcf_file', id='#CHROM'): read_vcf_file = open(file, 'r') info_lines, headers = [], [] for line in read_vcf_file: if line.startswith(id): headers = line.strip().split('\t') elif line.startswith('##'): info_lines.append(line.strip()) read_vcf_file.close() assert len(headers) != 0, "Non matching id parameter" read_vcf_file_df = pd.read_csv(file, sep='\t', comment='#', header=None) read_vcf_file_df.columns = headers chrom_ids = read_vcf_file_df[id].unique() for r in range(len(chrom_ids)): sub_df = read_vcf_file_df[read_vcf_file_df[id]==chrom_ids[r]] # out_vcf_file = open(chrom_ids[r]+'.vcf' with open(chrom_ids[r]+'.vcf', 'w') as out_vcf_file: for l in info_lines: out_vcf_file.write(l+'\n') sub_df.to_csv(chrom_ids[r]+'.vcf', mode='a', sep='\t', index=False) out_vcf_file.close() def vcfreader(file='vcf_file', id='#CHROM'): read_vcf_file = open(file, 'r') info_lines, headers = [], [] for line in read_vcf_file: if line.startswith(id): headers = line.strip().split('\t') elif line.startswith('##'): info_lines.append(line.strip()) else: var_lines = line.strip().split('\t') yield headers, info_lines, var_lines read_vcf_file.close() assert len(headers) != 0, "Non matching id parameter" def vcf_anot(file='vcf_file', gff_file='gff_file', id='#CHROM', anot_attr=None): gff_iter = gff.gffreader(gff_file) gene_cord = defaultdict(list) cds_cord = defaultdict(list) exon_cord = defaultdict(list) ftr_cord = defaultdict(list) ttr_cord = defaultdict(list) sc_cord = defaultdict(list) st_cord = defaultdict(list) igenic_cord = defaultdict(list) intragenic_cord = defaultdict(list) # also for introns between the exons intragenic_cord_exon = defaultdict(list) gene_id_dict = dict() transcript_name_dict = dict() transcript_strand_dict = dict() chr_list = set([]) for record in gff_iter: chr, gene_id, gene_name, transcript_id, source, feature_type, st, ende, strand, attr = record if feature_type == 'gene': if chr not in chr_list: gene_number_1 = 1 chr_list.add(chr) gene_cord[(chr, gene_id, gene_number_1)]=[st, ende] gene_id_dict[(chr, gene_number_1)] = gene_id gene_number_1 += 1 elif feature_type == 'mRNA' or feature_type == 'transcript': cds_cord[(chr, transcript_id)] = [] exon_cord[(chr, transcript_id)] = [] ftr_cord[transcript_id] = [] ttr_cord[transcript_id] = [] sc_cord[transcript_id] = [] st_cord[transcript_id] = [] transcript_strand_dict[transcript_id] = strand if anot_attr: transcript_name_dict[transcript_id] = re.search(anot_attr+'=(.+?)(;|$)', attr).group(1) elif feature_type == 'CDS': cds_cord[(chr, transcript_id)].append([st, ende]) elif feature_type == 'exon': exon_cord[(chr, transcript_id)].append([st, ende]) elif feature_type == 'five_prime_UTR': ftr_cord[(chr, transcript_id)].append([st, ende]) elif feature_type == 'three_prime_UTR': ttr_cord[(chr, transcript_id)].append([st, ende]) elif feature_type == 'start_codon': sc_cord[(chr, transcript_id)].append([st, ende]) elif feature_type == 'stop_codon': st_cord[(chr, transcript_id)].append([st, ende]) # get intergenic regions for gene, cord in gene_cord.items(): chr, gene_id, gene_number = gene[0], gene[1], gene[2] for x in chr_list: if x == chr and gene_number == 1: igenic_cord[(chr, gene_id)] = [1, int(cord[0])-1] elif x == chr and gene_number != 1: igenic_cord[(chr, gene_id)] = \ [int(gene_cord[(chr, gene_id_dict[(chr, int(gene_number)-1)], int(gene_number)-1)][1])+1, int(cord[0])-1] # get intragenic regions based on CDS for transcript, cord in cds_cord.items(): chr, transcript_id = transcript[0], transcript[1] intragenic_cord[(chr, transcript_id)] = [] for x in chr_list: if x == chr: cord.sort(key=lambda k: k[0]) if len(cord) > 1: for y in range(len(cord)-1): intragenic_cord[(chr, transcript_id)].append([int(cord[y][1])+1, int(cord[y+1][0])-1]) # get intragenic regions based on exon for transcript, cord in exon_cord.items(): chr, transcript_id = transcript[0], transcript[1] intragenic_cord_exon[(chr, transcript_id)] = [] for x in chr_list: if x == chr: cord.sort(key=lambda k: k[0]) if len(cord) > 1: for y in range(len(cord) - 1): intragenic_cord_exon[(chr, transcript_id)].append([int(cord[y][1]) + 1, int(cord[y + 1][0]) - 1]) def var_region_check(_dict, _chr, _region, _anot_attr, _transcript_name_dict, _var_region, _transcript_name, _transcript_id, _transcript_strand): for transcript, cord in _dict.items(): for i in range(len(cord)): if transcript[0] == chr and int(cord[i][0]) <= int(var_pos) <= int(cord[i][1]): _var_region = _region _transcript_id = transcript[1] _transcript_strand = transcript_strand_dict[_transcript_id] if anot_attr: _transcript_name = transcript_name_dict[_transcript_id] break if _var_region: break return _var_region, _transcript_name, _transcript_id, _transcript_strand vcf_iter = marker.vcfreader(file, id) try: # os.remove(Path(file).stem+'_anot.vcf') os.remove(Path(file).stem + '_anot.txt') except OSError: pass # vcf_out_anot = open(Path(file).stem+'_anot.vcf', 'a') vcf_out_anot = open(Path(file).stem + '_anot.txt', 'a') for_info_lines = 1 transcript_id=None transcript_name=None transcript_strand=None transcript_name_return=transcript_name transcript_id_return=transcript_id transcript_strand_return=transcript_strand for record in vcf_iter: headers, info_lines, chr, var_pos = record[0], record[1], record[2][0], record[2][1] if for_info_lines == 1: for_info_lines = 0 # for l in info_lines: # vcf_out_anot.write(l+'\n') headers.extend(['genomic region', 'transcript ID', 'transcript name', 'strand']) vcf_out_anot.write('\t'.join(x for x in headers) + '\n') var_region = None if var_region is None: for transcript, cord in igenic_cord.items(): if transcript[0] == chr and int(cord[0]) <= int(var_pos) <= int(cord[1]): var_region = 'Intergenic' transcript_id_return = None transcript_strand_return = None if anot_attr: transcript_name_return = None break if var_region is None: var_region, transcript_name_return, transcript_id_return, transcript_strand_return = var_region_check(cds_cord, chr, 'CDS', anot_attr, transcript_name_dict, var_region, transcript_name, transcript_id, transcript_strand) if var_region is None: var_region, transcript_name_return, transcript_id_return, transcript_strand_return = var_region_check(ftr_cord, chr, 'five_prime_UTR', anot_attr, transcript_name_dict, var_region, transcript_name, transcript_id, transcript_strand) if var_region is None: var_region, transcript_name_return, transcript_id_return, transcript_strand_return = var_region_check(ttr_cord, chr, 'three_prime_UTR', anot_attr, transcript_name_dict, var_region, transcript_name, transcript_id, transcript_strand) if var_region is None: var_region, transcript_name_return, transcript_id_return, transcript_strand_return = var_region_check(sc_cord, chr, 'start_codon', anot_attr, transcript_name_dict, var_region, transcript_name, transcript_id, transcript_strand) if var_region is None: var_region, transcript_name_return, transcript_id_return, transcript_strand_return = var_region_check(st_cord, chr, 'stop_codon', anot_attr, transcript_name_dict, var_region, transcript_name, transcript_id, transcript_strand) if var_region is None: var_region, transcript_name_return, transcript_id_return, transcript_strand_return = var_region_check(exon_cord, chr, 'exon', anot_attr, transcript_name_dict, var_region, transcript_name, transcript_id, transcript_strand) if var_region is None: for transcript, cord in intragenic_cord.items(): transcript_strand_return = transcript_strand_dict[transcript[1]] transcript_id_return = transcript[1] if len(cord) >= 1: for i in range(len(cord)): if transcript[0] == chr and int(cord[i][0]) <= int(var_pos) <= int(cord[i][1]): var_region = 'Introns' break if var_region: break if var_region is None: for transcript, cord in intragenic_cord_exon.items(): transcript_strand_return = transcript_strand_dict[transcript[1]] transcript_id_return = transcript[1] if len(cord) >= 1: for i in range(len(cord)): if transcript[0] == chr and int(cord[i][0]) <= int(var_pos) <= int(cord[i][1]): var_region = 'Introns' break if var_region: break vcf_out_anot.write('\t'.join(str(x) for x in record[2])+'\t'+str(var_region)+'\t'+str(transcript_id_return)+ '\t'+str(transcript_name_return)+'\t'+str(transcript_strand_return)+'\n') class format: def __init__(self): pass def fqtofa(file="fastq_file"): x = fastq.fastq_format_check(file) if x == 1: print("Error: Sequences are not in sanger fastq format") sys.exit(1) read_file = open(file, "rU") out_file = open("output.fasta", 'w') for line in read_file: header_1 = line.rstrip() read = next(read_file).rstrip() header_2 = next(read_file).rstrip() read_qual = next(read_file).rstrip() out_file.write(header_1+"\n"+'\n'.join(wrap(read, 60))+"\n") read_file.close() def tabtocsv(file="tab_file"): tab_file = csv.reader(open(file, 'r'), dialect=csv.excel_tab) csv_file = csv.writer(open('output.csv', 'w', newline=''), dialect=csv.excel) for record in tab_file: csv_file.writerow(record) def csvtotab(file="csv_file"): csv_file = csv.reader(open(file, 'r'), dialect=csv.excel) tab_file = csv.writer(open('output.txt', 'w', newline=''), dialect=csv.excel_tab) for record in csv_file: tab_file.writerow(record) def hmmtocsv(file="hmm_file"): hmm_file = open(file, "rU") csv_file = open("ouput_hmm.csv", "w") for line in hmm_file: line = line.strip() if not line.startswith("#"): data = re.split(' +', line) if len(data) == 19: data[18] = data[18].replace(',', ' ') csv_file.write(str.join(',', data)) csv_file.write("\n") elif len(data) > 19: ele = list(range(18, len(data))) data[18] = " ".join([e for i, e in enumerate(data) if i in ele]) data[18] = data[18].replace(',', '') csv_file.write(str.join(',', data[0:19])) csv_file.write("\n") hmm_file.close() csv_file.close() # find sanger fastq phred quality encoding format def fq_qual_var(file=None): if file is None: print("Error: No sanger fastq file provided") sys.exit(1) x = fastq.fastq_format_check(file) if x == 1: print("Error: Sequences are not in sanger fastq format") sys.exit(1) qual_format = fastq.detect_fastq_variant(file) if qual_format == 1: print("The fastq quality format is illumina 1.8+ (Offset +33)") elif qual_format == 2: print("The fastq quality format is illumina 1.3/1.4 (Offset +64)") elif qual_format == 3: print("The fastq quality format is Sanger (Offset +33)") else: print("\nError: Wrong quality format\n") sys.exit(1) class HtsAna: def __init__(self): pass @staticmethod def merge_featureCount(pattern='*.txt', gene_column_name='Geneid'): count_files = glob.glob(pattern) iter = 0 for f in count_files: df = pd.read_csv(f, sep='\t', comment='#') if iter == 0: df_count_mat = df.iloc[:, [0, 6]] iter += 1 elif iter > 0: df_temp = df.iloc[:, [0, 6]] df_count_mat = pd.merge(df_count_mat, df_temp, how='left', on=gene_column_name) df_count_mat.to_csv('gene_matrix_count.csv', index=False) class stat: def __init__(self): self.anova_summary = None self.data_summary = None self.tukey_summary = None self.tukey_groups = None # unstack single factor self.unstack_df = None # chi square self.expected_df = None self.summary =None self.bartlett_summary = None self.anova_model_out = None self.levene_summary = None self.anova_std_residuals = None self.reg_metric_df = None self.bin_dict = None @staticmethod def _data_summary(df='dataframe', xfac_var=None, res_var=None): data_summary_dict = dict() data_summary_dict['Group'] = [] data_summary_dict['Count'] = [] data_summary_dict['Mean'] = [] data_summary_dict['Std Dev'] = [] data_summary_dict['Min'] = [] data_summary_dict['25%'] = [] data_summary_dict['50%'] = [] data_summary_dict['75%'] = [] data_summary_dict['Max'] = [] levels = df[xfac_var].unique() for i in levels: temp = df.loc[df[xfac_var] == i, res_var] data_summary_dict['Group'].append(i) data_summary_dict['Count'].append(temp.describe().to_numpy()[0]) data_summary_dict['Mean'].append(temp.describe().to_numpy()[1]) data_summary_dict['Std Dev'].append(temp.describe().to_numpy()[2]) data_summary_dict['Min'].append(temp.describe().to_numpy()[3]) data_summary_dict['25%'].append(temp.describe().to_numpy()[4]) data_summary_dict['50%'].append(temp.describe().to_numpy()[5]) data_summary_dict['75%'].append(temp.describe().to_numpy()[6]) data_summary_dict['Max'].append(temp.describe().to_numpy()[7]) return pd.DataFrame(data_summary_dict) def bartlett(self, df=None, xfac_var=None, res_var=None): # get bartlett test from stacked dataframe df = df.dropna() if xfac_var is None or res_var is None: raise ValueError('Invalid value for xfac_var or res_var') group_list, df_counts = analys_general.get_list_from_df(df, xfac_var, res_var, 'get_list') test_stat, p = stats.bartlett(*group_list) df_counts = df_counts-1 self.bartlett_summary = pd.DataFrame({'Parameter': ['Test statistics (T)', 'Degrees of freedom (Df)', 'p value'], 'Value': [test_stat, df_counts, p]}).round(4) def levene(self, df=None, xfac_var=None, res_var=None, center='median'): # get bartlett test from stacked dataframe df = df.dropna() if xfac_var is None or res_var is None: raise ValueError('Invalid value for xfac_var or res_var') group_list, df_counts = analys_general.get_list_from_df(df, xfac_var, res_var, 'get_list') test_stat, p = stats.levene(*group_list, center=center) df_counts = df_counts-1 self.levene_summary = pd.DataFrame({'Parameter': ['Test statistics (W)', 'Degrees of freedom (Df)', 'p value'], 'Value': [test_stat, df_counts, p]}).round(4) def tukey_hsd(self, df="dataframe", res_var=None, xfac_var=None, anova_model=None, phalpha=0.05, ss_typ=2): df = df.dropna() if xfac_var is None or anova_model is None or res_var is None: raise ValueError('Invalid value for xfac_var or anova_model or res_var') if ss_typ not in [1, 2, 3]: raise ValueError('Invalid SS type') tukey_phoc = dict() tukey_phoc['group1'] = [] tukey_phoc['group2'] = [] tukey_phoc['Diff'] = [] tukey_phoc['Lower'] = [] tukey_phoc['Upper'] = [] tukey_phoc['q-value'] = [] tukey_phoc['p-value'] = [] # group_letter = dict() group_pval = dict() # group_let = dict() # share_let = dict() mult_group, mult_group_count, sample_size_r = analys_general.get_list_from_df(df, xfac_var, res_var, 'get_dict') # self.anova_stat(df, res_var, anova_xfac_var) self.anova_stat(df, anova_model, ss_typ) df_res = self.anova_summary.df.Residual mse = self.anova_summary.sum_sq.Residual / df_res # self.data_summary = stat._data_summary(df, xfac_var, res_var) # q critical q_crit = qsturng(1 - phalpha, sample_size_r, df_res) # t critical tcrit = qcrit /\sqrt 2. # t_crit = q_crit / np.sqrt(2) # tuke_hsd_crit = q_crit * np.sqrt(mse / len(levels)) # let_num = 97 # let_num_list = [] # sharing_letter = dict() comp_pairs = [(ele1, ele2) for i, ele1 in enumerate(list(mult_group)) for ele2 in list(mult_group)[i + 1:]] for p in comp_pairs: mean_diff = max(mult_group[p[0]], mult_group[p[1]]) - min(mult_group[p[0]], mult_group[p[1]]) # count for groups; this is useful when sample size not equal -- Tukey-Kramer group1_count, group2_count = mult_group_count[p[0]], mult_group_count[p[1]] # https://www.uvm.edu/~statdhtx/StatPages/MultipleComparisons/unequal_ns_and_mult_comp.html # also for considering unequal sample size mse_factor = np.sqrt(np.divide(mse, group1_count) + np.divide(mse, group2_count)) q_val = mean_diff / np.divide(mse_factor, np.sqrt(2)) tukey_phoc['group1'].append(p[0]) tukey_phoc['group2'].append(p[1]) tukey_phoc['Diff'].append(mean_diff) # when equal sample size tukey_phoc['Lower'].append(mean_diff - (q_crit * np.sqrt(np.divide(mse, 2) * (np.divide(1, group1_count) + np.divide(1, group2_count))))) tukey_phoc['Upper'].append(mean_diff + (q_crit * np.sqrt(np.divide(mse, 2) * (np.divide(1, group1_count) + np.divide(1, group2_count))))) # tukey_phoc['Significant'].append(np.abs(mean_diff) > tuke_hsd_crit) # t test related to qvalue as q = sqrt(2) t # ref https://www.real-statistics.com/one-way-analysis-of-variance-anova/unplanned-comparisons/tukey-hsd/ tukey_phoc['q-value'].append(q_val) if isinstance(psturng(np.abs(q_val), sample_size_r, df_res), np.ndarray): group_pval[(mult_group[p[0]], mult_group[p[1]])] = psturng(np.abs(q_val), sample_size_r, df_res) tukey_phoc['p-value'].append(psturng(np.abs(q_val), sample_size_r, df_res)[0]) else: group_pval[(mult_group[p[0]], mult_group[p[1]])] = psturng(np.abs(q_val), sample_size_r, df_res) tukey_phoc['p-value'].append(psturng(np.abs(q_val), sample_size_r, df_res)) # group_letter_chars = {m: ''.join(list(map(chr, n))) for m, n in group_let.items()} self.tukey_summary = pd.DataFrame(tukey_phoc) # self.tukey_groups = pd.DataFrame({'': list(group_letter_chars.keys()), 'groups': # list(group_letter_chars.values())}) def anova_stat(self, df="dataframe", anova_model=None, ss_typ=2, res_var=None, xfac_var=None): # x = '{} ~ ' if res_var: x = res_var + '~' # y = 'C({})' z = '+' if isinstance(xfac_var, list) and len(xfac_var) > 1 and anova_model is None: for i in range(len(xfac_var)): x += 'C({})'.format(xfac_var[i]) if i < len(xfac_var) - 1: x += z model = ols(x, data=df).fit() elif isinstance(xfac_var, str) and anova_model is None: # create and run model # model = ols('{} ~ C({})'.format(res_var, xfac_var), data=df).fit() x += 'C({})'.format(xfac_var) model = ols(x, data=df).fit() elif anova_model: model = ols(anova_model, data=df).fit() else: raise TypeError('xfac_var in anova must be string or list') anova_table = sm.stats.anova_lm(model, typ=ss_typ) self.anova_summary = anova_table self.anova_summary.insert(loc=2, column='mean_sq', value=list(anova_table.sum_sq/anova_table.df)) column_names = ['df', 'sum_sq', 'mean_sq', 'F', 'PR(>F)'] self.anova_summary = self.anova_summary.reindex(columns=column_names) # self.anova_summary = anova_table self.anova_model_out = model self.anova_std_residuals = model.resid / np.sqrt(self.anova_summary.loc['Residual', 'mean_sq']) def lin_reg(self, df="dataframe", y=None, x=None): df = df.dropna() assert x and y is not None, "Provide proper column names for X and Y variables" assert type(x) is list or type(y) is list, "X or Y column names should be list" # min data should be 4 or more assert df.shape[0] >= 4, "Very few data" self.X = df[x].to_numpy() self.Y = df[y].to_numpy() # number of independent variables p = len(x) # number of parameter estimates (+1 for intercept and slopes) e = p+1 # number of samples/observations n = len(df[y]) # run regression reg_out = LinearRegression().fit(self.X, self.Y) # coefficient of determination r_sq = round(reg_out.score(self.X, self.Y), 4) # Correlation coefficient (r) # Adjusted r-Squared r_sq_adj = round(1 - (1 - r_sq) * ((n - 1)/(n-p-1)), 4) # RMSE # RMSE = standard deviation of the residuals rmse = round(np.sqrt(1-r_sq) * np.std(self.Y), 4) # intercept and slopes reg_intercept = reg_out.intercept_ reg_slopes = reg_out.coef_ # predicted values self.y_hat = reg_out.predict(self.X) # residuals self.residuals = self.Y - self.y_hat # sum of squares regSS = np.sum((self.y_hat - np.mean(self.Y)) ** 2) # variation explained by linear model residual_sse = np.sum((self.Y - self.y_hat) ** 2) # remaining variation sst = np.sum((self.Y - np.mean(self.Y)) ** 2) # total variation eq = "" for i in range(p): eq = eq+' + '+ '(' + str(round(reg_slopes[0][i], 4))+'*'+x[i] + ')' self.reg_eq = str(round(reg_intercept[0], 4)) + eq # variance and std error # Residual variance = MSE and sqrt of MSE is res stnd error sigma_sq_hat = round(residual_sse/(n-e), 4) # residual std dev res_stdev = round(np.sqrt(sigma_sq_hat)) # standardized residuals self.std_residuals = self.residuals/res_stdev # https://stackoverflow.com/questions/22381497/python-scikit-learn-linear-model-parameter-standard-error # std error X_mat = np.empty(shape=(n, e), dtype=np.float) X_mat[:, 0] = 1 X_mat[:, 1:e] = self.X var_hat = np.linalg.inv(X_mat.T @ X_mat) * sigma_sq_hat standard_error = [] for param in range(e): standard_error.append(round(np.sqrt(var_hat[param, param]), 4)) # t = b1 / SE params = list(chain(*[["Intercept"], x])) estimates = list(chain(*[[reg_intercept[0]], reg_slopes[0]])) tabulate_list = [] for param in range(e): tabulate_list.append([params[param], estimates[param], standard_error[param], estimates[param]/standard_error[param], '%.4E' % Decimal(stats.t.sf(np.abs(estimates[param]/standard_error[param]), n-e)*2) ]) # anova anova_table = [] anova_table.append(["Model", p, regSS, round(regSS/p, 4), round((regSS/p)/(residual_sse/(n-e)), 4), '%.4E' % Decimal(stats.f.sf((regSS/p)/(residual_sse/(n-e)), p, n-e))]) anova_table.append(["Error", n-e, residual_sse, round(residual_sse/(n-e), 4), "", ""]) anova_table.append(["Total", n-1, sst, "", "", ""]) print("\nRegression equation:\n") print(self.reg_eq) print("\nRegression Summary:") print(tabulate([["Dependent variables", x], ["Independent variables", y], ["Coefficient of determination (r-squared)", r_sq], ["Adjusted r-squared", r_sq_adj], ["Root Mean Square Error (RMSE)", rmse], ["Mean of Y", round(np.mean(self.Y), 4)], ["Residual standard error", round(np.sqrt(sigma_sq_hat), 4)], ["No. of Observations", n]], "\n")) print("\nRegression Coefficients:\n") print(tabulate(tabulate_list, headers=["Parameter", "Estimate", "Std Error", "t-value", "P-value Pr(>|t|)"]), "\n") print("\nANOVA Summary:\n") print(tabulate(anova_table, headers=["Source", "Df", "Sum Squares", "Mean Squares", "F", "Pr(>F)"]), "\n") # VIF for MLR # VIF computed as regressing X on remaining X # using correlation if p > 1: vif_table = [] vif_df = df[x] df_corr = vif_df.corr() vif_mat = np.linalg.inv(df_corr) self.vif = vif_mat.diagonal() for i in range(len(self.vif)): vif_table.append([x[i], self.vif[i]]) print("\nVariance inflation factor (VIF)\n") print(tabulate(vif_table, headers=["Variable", "VIF"]), "\n") def ttest(self, df='dataframe', xfac=None, res=None, evar=True, alpha=0.05, test_type=None, mu=None): # drop NaN df = df.dropna() if df.shape[0] < 2: raise Exception("Very few observations to run t-test") if alpha < 0 or alpha > 1: raise Exception("alpha value must be in between 0 and 1") if test_type == 1: if res and mu is None: raise ValueError("res or mu parameter value is missing") if res not in df.columns: raise ValueError("res column is not in dataframe") a_val = df[res].to_numpy() res_out = stats.ttest_1samp(a=a_val, popmean=mu, nan_policy='omit') sem = df[res].sem() if sem == 0: print("\nWarning: the data is constant\n") ci = (1 - alpha) * 100 tcritvar = stats.t.ppf((1 + (1 - alpha)) / 2, len(a_val)-1) # print results self.summary = "\nOne Sample t-test \n" + "\n" + \ tabulate([["Sample size", len(a_val)], ["Mean", df[res].mean()], ["t", res_out[0]], ["Df", len(a_val)-1], ["P-value (one-tail)", res_out[1]/2], ["P-value (two-tail)", res_out[1]], ["Lower " + str(ci) + "%", df[res].mean() - (tcritvar * sem)], ["Upper " + str(ci) + "%", df[res].mean() + (tcritvar * sem)]]) elif test_type == 2: if xfac and res is None: raise Exception("xfac or res variable is missing") if res not in df.columns or xfac not in df.columns: raise ValueError("res or xfac column is not in dataframe") levels = df[xfac].unique() levels.sort() if len(levels) != 2: raise Exception("there must be only two levels") a_val = df.loc[df[xfac] == levels[0], res].to_numpy() b_val = df.loc[df[xfac] == levels[1], res].to_numpy() a_count, b_count = len(a_val), len(b_val) count = [a_count, b_count] mean = [df.loc[df[xfac] == levels[0], res].mean(), df.loc[df[xfac] == levels[1], res].mean()] sem = [df.loc[df[xfac] == levels[0], res].sem(), df.loc[df[xfac] == levels[1], res].sem()] sd = [df.loc[df[xfac] == levels[0], res].std(), df.loc[df[xfac] == levels[1], res].std()] ci = (1-alpha)*100 # degree of freedom # a_count, b_count = np.split(count, 2) dfa = a_count - 1 dfb = b_count - 1 # sample variance with np.errstate(invalid='ignore'): var_a = np.nan_to_num(np.var(a_val, ddof=1)) var_b = np.nan_to_num(np.var(b_val, ddof=1)) mean_diff = mean[0] - mean[1] # variable 95% CI varci_low = [] varci_up = [] tcritvar = [(stats.t.ppf((1 + (1-alpha)) / 2, dfa)), (stats.t.ppf((1 + (1-alpha)) / 2, dfb))] for i in range(len(levels)): varci_low.append(mean[i] - (tcritvar[i] * sem[i])) varci_up.append(mean[i] + (tcritvar[i] * sem[i])) var_test = 'equal' # perform levene to check for equal variances w, pvalue = stats.levene(a_val, b_val) if pvalue < alpha: print("\nWarning: the two group variance are not equal. Rerun the test with evar=False\n") if evar is True: # pooled variance message = 'Two sample t-test with equal variance' p_var = (dfa * var_a + dfb * var_b) / (dfa + dfb) # std error se = np.sqrt(p_var * (1.0 / a_count + 1.0 / b_count)) dfr = dfa + dfb else: # Welch's t-test for unequal variance # calculate se message = 'Two sample t-test with unequal variance (Welch\'s t-test)' if a_count == 1 or b_count == 1: raise Exception('Not enough observation for either levels. The observations should be > 1 for both levels') a_temp = var_a / a_count b_temp = var_b / b_count dfr = ((a_temp + b_temp) ** 2) / ((a_temp ** 2) / (a_count - 1) + (b_temp ** 2) / (b_count - 1)) se = np.sqrt(a_temp + b_temp) var_test = 'unequal' tval = np.divide(mean_diff, se) oneside_pval = stats.t.sf(np.abs(tval), dfr) twoside_pval = oneside_pval * 2 # 95% CI for diff # 2.306 t critical at 0.05 tcritdiff = stats.t.ppf((1 + (1-alpha)) / 2, dfr) diffci_low = mean_diff - (tcritdiff * se) diffci_up = mean_diff + (tcritdiff * se) # print results self.summary = '\n' + message + '\n\n' + tabulate([["Mean diff", mean_diff], ["t", tval], ["Std Error", se], ["df", dfr], ["P-value (one-tail)", oneside_pval], ["P-value (two-tail)", twoside_pval], ["Lower "+str(ci)+"%", diffci_low], ["Upper "+str(ci)+"%", diffci_up]]) + '\n\n' + \ 'Parameter estimates\n\n' + tabulate([[levels[0], count[0], mean[0], sd[0], sem[0], varci_low[0], varci_up[0]], [levels[1], count[1], mean[1], sd[1], sem[1], varci_low[1], varci_up[1]]], headers=["Level", "Number", "Mean", "Std Dev", "Std Error", "Lower "+str(ci)+"%", "Upper "+str(ci)+"%"]) + '\n' elif test_type == 3: if not isinstance(res, (tuple, list)) and len(res) != 2: raise Exception("res should be either list of tuple of length 2") if sorted(res) != sorted(df.columns): raise ValueError("one or all of res columns are not in dataframe") df = df.drop(['diff_betw_res'], axis=1, errors='ignore') df['diff_betw_res'] = df[res[0]]-df[res[1]] a_val = df['diff_betw_res'].to_numpy() res_out = stats.ttest_1samp(a=a_val, popmean=0, nan_policy='omit') sem = df['diff_betw_res'].sem() ci = (1 - alpha) * 100 tcritvar = stats.t.ppf((1 + (1 - alpha)) / 2, len(a_val)-1) # print results self.summary = "\nPaired t-test \n" + "\n" + \ tabulate([["Sample size", len(a_val)], ["Difference Mean", df['diff_betw_res'].mean()], ["t", res_out[0]], ["Df", len(a_val)-1], ["P-value (one-tail)", res_out[1]/2], ["P-value (two-tail)", res_out[1]], ["Lower " + str(ci) + "%", df['diff_betw_res'].mean() - (tcritvar * sem)], ["Upper " + str(ci) + "%", df['diff_betw_res'].mean() + (tcritvar * sem)]]) else: raise ValueError("Provide a value to test_type parameter for appropriate t-test") def chisq(self, df='dataframe', p=None): # d = pd.read_csv(table, index_col=0) tabulate_list = [] if all(i < 0 for i in df.values.flatten()): raise ValueError("The observation counts for each group must be non-negative number") if p is None: # assert df.shape[1] == 2, 'dataframe must 2-dimensional contingency table of observed counts' chi_ps, p_ps, dof_ps, expctd_ps = stats.chi2_contingency(df.to_dict('split')['data']) tabulate_list.append(["Pearson", dof_ps, chi_ps, p_ps]) chi_ll, p_ll, dof_ll, expctd_ll = stats.chi2_contingency(df.to_dict('split')['data'], lambda_="log-likelihood") tabulate_list.append(["Log-likelihood", dof_ll, chi_ll, p_ll]) mosaic_dict = dict() m = df.to_dict('split') for i in range(df.shape[0]): for j in range(df.shape[1]): mosaic_dict[(m['index'][i], m['columns'][j])] = m['data'][i][j] # print("\nChi-squared test\n") # print(tabulate(tabulate_list, headers=["Test", "Df", "Chi-square", "P-value"])) self.summary = '\nChi-squared test for independence\n' + '\n' + \ tabulate(tabulate_list, headers=["Test", "Df", "Chi-square", "P-value"]) + '\n' # print("\nExpected frequency counts\n") # print(tabulate(expctd_ps, headers=df.to_dict('split')['columns'], showindex="always")) self.expected_df = '\nExpected frequency counts\n' + '\n' + \ tabulate(expctd_ps, headers=df.to_dict('split')['columns'], showindex="always") + '\n' # labels = lambda k: "" if mosaic_dict[k] != 0 else "" # mosaic(mosaic_dict, labelizer=labels) # plt.savefig('mosaic.png', format='png', bbox_inches='tight', dpi=300) # goodness of fit test if p: df = df.drop(['expected_counts'], axis=1, errors='ignore') assert df.shape[1] == 1, 'dataframe must one-dimensional contingency table of observed counts' assert len(p) == df.shape[0], 'probability values should be equal to observations' assert isinstance(p, (tuple, list)) and round(sum(p), 10) == 1, 'probabilities must be list or tuple and ' \ 'sum to 1' df['expected_counts'] = [df.sum()[0] * i for i in p] if (df['expected_counts'] < 5).any(): print('Warning: Chi-squared may not be valid as some of expected counts are < 5') if all(i < 0 for i in p): raise ValueError("The probabilities for each group must be non-negative number") dof = df.shape[0] - 1 chi_gf, p_gf = stats.chisquare(f_obs=df[df.columns[0]].to_numpy(), f_exp=df[df.columns[1]].to_numpy()) tabulate_list.append([chi_gf, dof, p_gf, df[df.columns[0]].sum()]) # print('\nChi-squared goodness of fit test\n') # print(tabulate(tabulate_list, headers=["Chi-Square", "Df", "P-value", "Sample size"]), '\n') self.summary = '\nChi-squared goodness of fit test\n' + '\n' + \ tabulate(tabulate_list, headers=["Chi-Square", "Df", "P-value", "Sample size"]) + '\n' self.expected_df = df def unstack_single_factor(self, df='dataframe', xfac=None, res=None): sample_dict = dict((k, 1) for k in df[xfac].unique()) df = df.set_index(xfac) unstack_dict = dict() df_dict = {k: v.to_dict(orient='records') for k, v in df.groupby(level=0)} for k, v in df_dict.items(): if k in sample_dict: unstack_dict[k] = [] for ele in v: unstack_dict[k].append(ele[res]) self.unstack_df = pd.DataFrame(unstack_dict) def unstack_two_factor(self, df='dataframe', row_fac=None, col_fac=None, res=None): sample_row_dict = dict((k, 1) for k in df[row_fac].unique()) sample_col_dict = dict((k, 1) for k in df[col_fac].unique()) df = df.set_index(row_fac) unstack_dict = dict() for k in sample_row_dict: for k1 in sample_col_dict: unstack_dict[(k, k1)] = [] df_dict = {k: v.to_dict(orient='records') for k, v in df.groupby(level=0)} max_rep = 1 for k, v in df_dict.items(): if k in sample_row_dict: for ele in v: if ele[col_fac] in sample_col_dict: unstack_dict[(k, ele[col_fac])].append(ele[res]) for k, v in unstack_dict.items(): if len(v) > max_rep: max_rep = len(v) process_unstack_dict = dict() for k in sample_col_dict: process_unstack_dict[k] = [] sample_row_list = [] for k in sample_row_dict: sample_row_list.extend(max_rep * [k]) # sample_row_list.sort() process_unstack_dict['sample'] = sample_row_list sample_col_list = df[col_fac].unique() sample_row_list_uniq = [] for ele in sample_row_list: if ele not in sample_row_list_uniq: sample_row_list_uniq.append(ele) unstack_dict_sorted = collections.OrderedDict(sorted(unstack_dict.items())) for ele1 in sample_col_list: # for ele in list(set(sample_row_list)): for ele in sample_row_list_uniq: for k, v in unstack_dict_sorted.items(): # print(k, v, ele1, ele, 'jjjjjjj') if k[0] == ele and k[1] == ele1: # print(k, v, ele1, ele) process_unstack_dict[k[1]].extend(v) self.unstack_df = pd.DataFrame(process_unstack_dict) def reg_metric(self, y=None, yhat=None, resid=None): if not all(isinstance(i, np.ndarray) for i in [y, yhat, resid]): raise ValueError('y, residuals, and yhat must be numpy array') if y.shape[0] != yhat.shape[0] != resid.shape[0]: raise ValueError('y, residuals, and yhat must have same shape') rmse = np.sqrt((np.sum((yhat-y)**2) / y.shape[0])) # Mean squared error (MSE) mse = np.mean(resid**2) # Mean absolute error (MAE) mae = np.mean(np.abs(y - yhat)) # Mean absolute percentage error (MAPE) mape = np.mean(np.abs((y - yhat) / y)) self.reg_metric_df = pd.DataFrame({'Metrics': ['Root Mean Square Error (RMSE)', 'Mean Squared Error (MSE)', 'Mean Absolute Error (MAE)', 'Mean Absolute Percentage Error (MAPE)'], 'Value': [rmse, mse, mae, mape]}).round(4) def bin_grouping(self, bin=None, bin_size=None): if not isinstance(bin, (list, np.ndarray)): raise ValueError('bin array must be list or numpy array') bin_sorted = np.sort(bin) incr_bin_size = bin_size self.bin_dict = dict() for i in bin_sorted: if i <= bin_size: if bin_size not in self.bin_dict: self.bin_dict[bin_size] = 1 else: self.bin_dict[bin_size] += 1 elif i > bin_size: bin_size += incr_bin_size if i <= bin_size: if bin_size not in self.bin_dict: self.bin_dict[bin_size] = 1 else: self.bin_dict[bin_size] += 1 else: bin_size += incr_bin_size class gff: def __init__(self): pass def gff_to_gtf(file='gff_file', trn_feature_name=None, parent_attr='Parent'): read_gff_file_cds = open(file, 'r') cds_dict_st, cds_dict_st_phase = dict(), dict() cds_dict_end, cds_dict_end_phase = dict(), dict() cds_ct = 0 for line in read_gff_file_cds: if not line.startswith('#'): line = re.split('\s+', line.strip()) if line[2] == 'mRNA' or line[2] == 'transcript' or line[2] == trn_feature_name: # attr = re.split(';', line[8]) # transcript_id = attr[0].split('=')[1] if 'ID=' in line[8]: transcript_id = re.search('ID=(.+?)(;|$)', line[8]).group(1) else: raise Exception( "ID required in GFF3 file in attribute field for mRNA/transcript" " feature type") cds_dict_st[transcript_id] = [] cds_dict_end[transcript_id] = [] elif line[2] == 'CDS': if parent_attr+'=' in line[8]: transcript_id_cds = re.search('Parent=(.+?)(;|$)', line[8]).group(1) else: raise Exception( "Parent field required in GFF3 file in attribute field for CDS" " feature type") cds_ct += 1 cds_dict_st[transcript_id_cds].append(line[3]) cds_dict_end[transcript_id_cds].append(line[4]) # if CDS phase contains dot values if line[7] == '.': print('Warning: No valid phase values for CDS feature. making phase value to zero') cds_dict_st_phase[(transcript_id_cds, line[3])] = 0 cds_dict_end_phase[(transcript_id_cds, line[4])] = 0 else: cds_dict_st_phase[(transcript_id_cds, line[3])] = line[7] cds_dict_end_phase[(transcript_id_cds, line[4])] = line[7] read_gff_file_cds.close() # check if CDS feature present in GFF3 file if cds_ct == 0: print("Warning: No CDS feature type found in given GFF3 file. GTF file requires CDS feature type\n") read_gff_file = open(file, 'r') out_gtf_file = open(Path(file).stem+'.gtf', 'w') gene_id = '' transcript_id = '' gene_name = '' mirna_id = '' first_cds_present, last_cds_present, start_codon_present, end_codon_present = 0, 0, 0, 0 gene_trn = dict() ttr_i, cds_i, exon_i, ftr_i = dict(), dict(), dict(), dict() for line in read_gff_file: if not line.startswith('#'): line = re.split('\s+', line.strip()) if line[2] == 'gene': # attr = re.split(';', line[8]) if 'ID=' in line[8]: gene_id = re.search('ID=(.+?)(;|$)', line[8]).group(1) if 'Name=' in line[8]: gene_name = re.search('Name=(.+?)(;|$)', line[8]).group(1) elif 'gene_name=' in line[8]: gene_name = re.search('gene_name=(.+?)(;|$)', line[8]).group(1) elif 'gene_id=' in line[8]: gene_name = re.search('gene_id=(.+?)(;|$)', line[8]).group(1) if 'ID=' not in line[8]: raise Exception("ID field required in GFF3 file in attribute field for gene feature type") gene_trn[gene_id] = [] gene_attr_gtf = 'gene_id "' + gene_id + '"; gene_name "' + gene_name + '"; gene_source "' + line[1]+'";' out_gtf_file.write('\t'.join(line[0:8])+'\t'+gene_attr_gtf+'\n') elif line[2] == 'mRNA' or line[2] == 'transcript' or line[2] == trn_feature_name: # cds_i, exon_i, ftr_i, ttr_i = 1, 1, 1, 1 exon_i_int, cds_i_int, ftr_i_int, ttr_i_int = 0, 0, 0, 0 if 'ID=' in line[8]: transcript_id = re.search('ID=(.+?)(;|$)', line[8]).group(1) if 'ID=' not in line[8]: raise Exception("ID field required in GFF3 file in attribute field for mRNA/transcript" " feature type") if line[2] == 'mRNA' or line[2] == trn_feature_name: line[2] = 'transcript' if gene_id != '': gene_trn[gene_id].append(transcript_id) ttr_i[transcript_id] = 0 cds_i[transcript_id] = 0 exon_i[transcript_id] = 0 ftr_i[transcript_id] = 0 gene_attr_gtf = 'gene_id "' + gene_id + '"; transcript_id "' + transcript_id + \ '"; gene_source "' + line[1] + '";' out_gtf_file.write('\t'.join(line[0:8])+'\t'+gene_attr_gtf+'\n') elif line[2] == 'CDS': # attr = re.split(';', line[8]) if parent_attr+'=' in line[8]: transcript_id_temp = re.search('Parent=(.+?)(;|$)', line[8]).group(1) if parent_attr+'=' not in line[8]: raise Exception( "Parent field required in GFF3 file in attribute field for CDS" " feature type") if line[3] == min(cds_dict_st[transcript_id_temp], key=int): first_cds_present = 1 if line[4] == max(cds_dict_end[transcript_id_temp], key=int): last_cds_present = 1 if transcript_id_temp in gene_trn[gene_id]: cds_i[transcript_id_temp] += 1 gene_attr_gtf = 'gene_id "' + gene_id + '"; transcript_id "' + transcript_id_temp + \ '"; cds_number "' + str(cds_i[transcript_id_temp]) + '"; gene_name "' + \ gene_name + '"; gene_source "' + line[1] + '";' # for transcripts with shared CDS elif ',' in transcript_id_temp: gene_attr_gtf = 'gene_id "' + gene_id + '"; transcript_id "' + transcript_id_temp + \ '"; cds_number "' + '""' + '"; gene_name "' + \ gene_name + '"; gene_source "' + line[1] + '";' # cds_i += 1 out_gtf_file.write('\t'.join(line[0:8])+'\t'+gene_attr_gtf+'\n') elif line[2] == 'exon': if parent_attr+'=' in line[8]: transcript_id_temp = re.search('Parent=(.+?)(;|$)', line[8]).group(1) if parent_attr+'=' not in line[8]: raise Exception( "Parent field required in GFF3 file in attribute field for exon" " feature type") if transcript_id_temp in gene_trn[gene_id]: exon_i[transcript_id_temp] += 1 gene_attr_gtf = 'gene_id "' + gene_id + '"; transcript_id "' + transcript_id_temp + \ '"; exon_number "' + str(exon_i[transcript_id_temp]) + '"; gene_name "' + \ gene_name + '"; gene_source "' + line[1] + '";' # for transcripts with shared exons elif ',' in transcript_id_temp: gene_attr_gtf = 'gene_id "' + gene_id + '"; transcript_id "' + transcript_id_temp + \ '"; exon_number "' + '""' + '"; gene_name "' + gene_name + \ '"; gene_source "' + line[1] + '";' out_gtf_file.write('\t'.join(line[0:8])+'\t'+gene_attr_gtf+'\n') elif line[2] == 'five_prime_UTR': if parent_attr+'=' in line[8]: transcript_id_temp = re.search('Parent=(.+?)(;|$)', line[8]).group(1) if 'Parent=' not in line[8]: raise Exception( "Parent field required in GFF3 file in attribute field for five_prime_UTR" " feature type") if transcript_id_temp in gene_trn[gene_id]: ftr_i[transcript_id_temp] += 1 gene_attr_gtf = 'gene_id "' + gene_id + '"; transcript_id "' + transcript_id_temp + \ '"; five_prime_UTR_number "' + str(ftr_i[transcript_id_temp]) + \ '"; gene_name "'+ gene_name + '"; gene_source "' + line[1] + '";' # for transcripts with shared five_prime_UTR elif ',' in transcript_id_temp: gene_attr_gtf = 'gene_id "' + gene_id + '"; transcript_id "' + transcript_id_temp + \ '"; three_prime_UTR_number "' + '""' + \ '"; gene_name "' + gene_name + '"; gene_source "' + line[1] + '";' out_gtf_file.write('\t'.join(line[0:8])+'\t'+gene_attr_gtf+'\n') elif line[2] == 'three_prime_UTR': if parent_attr+'=' in line[8]: transcript_id_temp = re.search('Parent=(.+?)(;|$)', line[8]).group(1) if 'Parent=' not in line[8]: raise Exception( "Parent field required in GFF3 file in attribute field for three_prime_UTR" " feature type") if transcript_id_temp in gene_trn[gene_id]: ttr_i[transcript_id_temp] += 1 gene_attr_gtf = 'gene_id "' + gene_id + '"; transcript_id "' + transcript_id_temp + \ '"; three_prime_UTR_number "' + str(ttr_i[transcript_id_temp]) + \ '"; gene_name "' + gene_name + '"; gene_source "' + line[1] + '";' # for transcripts with shared three_prime_UTR elif ',' in transcript_id_temp: gene_attr_gtf = 'gene_id "' + gene_id + '"; transcript_id "' + transcript_id_temp + \ '"; three_prime_UTR_number "' + "" + '"; gene_name "' + \ gene_name + '"; gene_source "' + line[1] + '";' out_gtf_file.write('\t'.join(line[0:8])+'\t'+gene_attr_gtf+'\n') elif line[2] == 'start_codon': start_codon_present = 1 if parent_attr+'=' in line[8]: transcript_id_temp = re.search('Parent=(.+?)(;|$)', line[8]).group(1) if parent_attr+'=' not in line[8]: raise Exception( "Parent field required in GFF3 file in attribute field for three_prime_UTR" " feature type") if transcript_id_temp == transcript_id: gene_attr_gtf = 'gene_id "' + gene_id + '"; transcript_id "' + transcript_id + '"; gene_name "' + \ gene_name+ '"; gene_source "' + line[1] + '";' out_gtf_file.write('\t'.join(line[0:8])+'\t'+gene_attr_gtf+'\n') elif line[2] == 'stop_codon': end_codon_present = 1 if parent_attr+'=' in line[8]: transcript_id_temp = re.search('Parent=(.+?)(;|$)', line[8]).group(1) if parent_attr+'=' not in line[8]: raise Exception( "Parent field required in GFF3 file in attribute field for three_prime_UTR" " feature type") if transcript_id_temp == transcript_id: gene_attr_gtf = 'gene_id "' + gene_id + '"; transcript_id "' + transcript_id + '"; gene_name "' + \ gene_name+ '"; gene_source "' + line[1] + '";' out_gtf_file.write('\t'.join(line[0:8])+'\t'+gene_attr_gtf+'\n') elif line[2] == 'miRNA': if parent_attr+'=' in line[8]: transcript_id_temp = re.search(parent_attr+'=(.+?)(;|$)', line[8]).group(1) # this is tailored based gff3 files from mirbase elif 'Derives_from=' in line[8]: transcript_id_temp = re.search('Derives_from=(.+?)(;|$)', line[8]).group(1) else: raise Exception( "Parent field required in GFF3 file in attribute field for CDS" " feature type") if 'ID=' in line[8]: mirna_id = re.search('ID=(.+?)(;|$)', line[8]).group(1) # for transcripts with shared CDS gene_attr_gtf = 'gene_id "' + gene_id + '"; transcript_id "' + transcript_id + \ '"; miRNA_id "' + mirna_id + '"; gene_source "' + line[1] + '";' # cds_i += 1 out_gtf_file.write('\t'.join(line[0:8])+'\t'+gene_attr_gtf+'\n') if first_cds_present == 1 and start_codon_present == 0: first_cds_present = 0 if parent_attr+'=' in line[8]: transcript_id_temp = re.search('Parent=(.+?)(;|$)', line[8]).group(1) if parent_attr+'=' not in line[8]: raise Exception( "Parent field required in GFF3 file in attribute field for CDS" " feature type") for k in gene_trn[gene_id]: if k == transcript_id_temp: if line[6] == '+': codon_min_cord = int(min(cds_dict_st[transcript_id_temp], key=int)) cds_phase = int( cds_dict_st_phase[ (transcript_id_temp, min(cds_dict_st[transcript_id_temp], key=int))]) line[2], line[3], line[4] = 'start_codon', codon_min_cord + cds_phase, \ codon_min_cord + cds_phase + 2 elif line[6] == '-': codon_max_cord = int(max(cds_dict_end[transcript_id_temp], key=int)) cds_phase = int( cds_dict_end_phase[ (transcript_id_temp, max(cds_dict_end[transcript_id_temp], key=int))]) line[2], line[3], line[4] = 'start_codon', codon_max_cord - 2 - cds_phase, \ codon_max_cord - cds_phase gene_attr_gtf = 'gene_id "' + gene_id + '"; transcript_id "' + transcript_id_temp + '"; gene_name "' + \ gene_name + '"; gene_source "' + line[1] + '";' out_gtf_file.write('\t'.join(str(x) for x in line[0:8]) + '\t' + gene_attr_gtf + '\n') if last_cds_present == 1 and end_codon_present == 0: last_cds_present = 0 if parent_attr+'=' in line[8]: transcript_id_temp = re.search('Parent=(.+?)(;|$)', line[8]).group(1) if parent_attr+'=' not in line[8]: raise Exception( "Parent field required in GFF3 file in attribute field for CDS" " feature type") for k in gene_trn[gene_id]: if k == transcript_id_temp: if line[6] == '+': codon_max_cord = int(max(cds_dict_end[transcript_id_temp], key=int)) line[2], line[3], line[4] = 'stop_codon', codon_max_cord - 2, codon_max_cord elif line[6] == '-': codon_min_cord = int(min(cds_dict_st[transcript_id_temp], key=int)) line[2], line[3], line[4] = 'stop_codon', codon_min_cord, codon_min_cord + 2 gene_attr_gtf = 'gene_id "' + gene_id + '"; transcript_id "' + transcript_id_temp + \ '"; gene_name "' + gene_name + '"; gene_source "' + line[1] + '";' out_gtf_file.write('\t'.join(str(x) for x in line[0:8]) + '\t' + gene_attr_gtf + '\n') read_gff_file.close() out_gtf_file.close() def gffreader(file='gff_file'): read_gff_file = open(file, 'r') transcript_id = '' for line in read_gff_file: if not line.startswith('#'): line = re.split('\t', line.strip()) if line[2]=='gene': if 'ID=' in line[8]: gene_id = re.search('ID=(.+?)(;|$)', line[8]).group(1) if 'Name=' in line[8]: gene_name = re.search('Name=(.+?)(;|$)', line[8]).group(1) elif 'gene_name=' in line[8]: gene_name = re.search('gene_name=(.+?)(;|$)', line[8]).group(1) elif 'gene_id=' in line[8]: gene_name = re.search('gene_id=(.+?)(;|$)', line[8]).group(1) if 'ID=' not in line[8]: raise Exception("ID field required in GFF3 file in attribute field for gene feature type") yield (line[0], gene_id, gene_name, transcript_id, line[1], line[2], line[3], line[4], line[6], line[8]) elif line[2] == 'mRNA' or line[2] == 'transcript': if 'ID=' in line[8]: transcript_id = re.search('ID=(.+?)(;|$)', line[8]).group(1) else: raise Exception("ID field required in GFF3 file in attribute field for mRNA/transcript" " feature type") yield (line[0], gene_id, gene_name, transcript_id, line[1], line[2], line[3], line[4], line[6], line[8]) elif line[2]=='CDS': if 'Parent=' in line[8]: transcript_id_temp = re.search('Parent=(.+?)(;|$)', line[8]).group(1) else: raise Exception( "Parent field required in GFF3 file in attribute field for CDS" " feature type") if transcript_id_temp == transcript_id: yield (line[0], gene_id, gene_name, transcript_id, line[1], line[2], line[3], line[4], line[6], line[8]) elif line[2]=='exon': if 'Parent=' in line[8]: transcript_id_temp = re.search('Parent=(.+?)(;|$)', line[8]).group(1) else: raise Exception( "Parent field required in GFF3 file in attribute field for exon" " feature type") if transcript_id_temp == transcript_id: yield (line[0], gene_id, gene_name, transcript_id, line[1], line[2], line[3], line[4], line[6], line[8]) elif line[2]=='five_prime_UTR': if 'Parent=' in line[8]: transcript_id_temp = re.search('Parent=(.+?)(;|$)', line[8]).group(1) else: raise Exception( "Parent field required in GFF3 file in attribute field for five_prime_UTR" " feature type") if transcript_id_temp == transcript_id: yield (line[0], gene_id, gene_name, transcript_id, line[1], line[2], line[3], line[4], line[6], line[8]) elif line[2]=='three_prime_UTR': if 'Parent=' in line[8]: transcript_id_temp = re.search('Parent=(.+?)(;|$)', line[8]).group(1) else: raise Exception( "Parent field required in GFF3 file in attribute field for three_prime_UTR" " feature type") if transcript_id_temp == transcript_id: yield (line[0], gene_id, gene_name, transcript_id, line[1], line[2], line[3], line[4], line[6], line[8]) elif line[2]=='start_codon': if 'Parent=' in line[8]: transcript_id_temp = re.search('Parent=(.+?)(;|$)', line[8]).group(1) else: raise Exception( "Parent field required in GFF3 file in attribute field for three_prime_UTR" " feature type") if transcript_id_temp == transcript_id: yield (line[0], gene_id, gene_name, transcript_id, line[1], line[2], line[3], line[4], line[6], line[8]) elif line[2]=='stop_codon': if 'Parent=' in line[8]: transcript_id_temp = re.search('Parent=(.+?)(;|$)', line[8]).group(1) else: raise Exception( "Parent field required in GFF3 file in attribute field for three_prime_UTR" " feature type") if transcript_id_temp == transcript_id: yield (line[0], gene_id, gene_name, transcript_id, line[1], line[2], line[3], line[4], line[6], line[8]) read_gff_file.close() class norm: def __init__(self): pass def cpm(self, df='dataframe'): df = df.dropna() # check for non-numeric values for i in df.columns: assert general.check_for_nonnumeric(df[i]) == 0, \ 'dataframe contains non-numeric values in {} column'.format(i) self.lib_size = df.sum() self.cpm_norm = (df * 1e6) / df.sum() def rpkm(self, df='dataframe', gl=None): df = df.dropna() assert gl is not None, "Provide column name for gene length in bp" # check for non-numeric values for i in df.columns: assert general.check_for_nonnumeric(df[i]) == 0, \ 'dataframe contains non-numeric values in {} column'.format(i) self.rpkm_norm = (df.div(df[gl], axis=0) * 1e9) / df.sum() self.rpkm_norm = self.rpkm_norm.drop([gl], axis=1) def tpm(self, df='dataframe', gl=None): df = df.dropna() assert gl is not None, "Provide column name for gene length in bp" # check for non-numeric values for i in df.columns: assert general.check_for_nonnumeric(df[i]) == 0, \ 'dataframe contains non-numeric values in {} column'.format(i) # gene length must be in bp self.a = df.div(df[gl], axis=0) * 1e3 self.tpm_norm = (self.a * 1e6) / self.a.sum() self.tpm_norm = self.tpm_norm.drop([gl], axis=1) class assembly: def sizdist(self, file='fasta', n=50): fasta_iter = Fasta.fasta_reader(file) seq_len = [] total_len_sum = 0 for record in fasta_iter: header, sequence = record seq_len.append(len(sequence)) total_len_sum += len(sequence) seq_len.sort(reverse=True) class lncrna: @staticmethod def lincrna_types(gff_file='gff_file_with_lincrna', map_factor=200): read_gff_file = open(gff_file, 'r') out_file = open('same_conv_out.txt', 'w') out_file_2 = open('dive_out.txt', 'w') out_file_3 = open('lincrna_types.txt', 'w') transcript_id = '' lincrna_dict = dict() mrna_dict = dict() lincrna_dict_1 = dict() mrna_dict_1 = dict() line_num = 0 for line in read_gff_file: if not line.startswith('#'): line = re.split('\t', line.strip()) line_num += 1 line.extend([line_num]) if line[1] == 'Evolinc': lincrna_trn_id = re.search('transcript_id (.+?)(;|$)', line[8]).group(1) lincrna_dict[(line[0], int(line[3]), int(line[4]), line[6], line[9])] = lincrna_trn_id.strip('"') lincrna_dict_1[line_num] = [line[0], int(line[3]), int(line[4]), line[6], line[9], lincrna_trn_id.strip('"')] if line[2] == 'mRNA': mrna_id = re.search('gene_id (.+?)(;|$)', line[8]).group(1) mrna_dict[(line[0], int(line[3]), int(line[4]), line[6], line[9])] = mrna_id.strip('"') mrna_dict_1[line_num] = [line[0], int(line[3]), int(line[4]), line[6], line[9], mrna_id.strip('"')] read_gff_file.close() checked = dict() checked_2 = dict() # for same and convergent for k in lincrna_dict_1: if lincrna_dict_1[k][3] == '+': k1 = k for i in range(map_factor): if k1 in mrna_dict_1: linc_st = lincrna_dict_1[k][1] mrna_st = mrna_dict_1[k1][1] diff = mrna_st - linc_st + 1 mrna_id = mrna_dict_1[k1][5] if 'PGSC' in mrna_dict_1[k1][5] and mrna_dict_1[k1][3] == '+' and lincrna_dict_1[k][5] not in \ checked and mrna_dict_1[k1][0] == lincrna_dict_1[k][0]: checked[lincrna_dict_1[k][5]] = [diff, mrna_id, 'same'] out_file.write(lincrna_dict_1[k][5]+'\t'+mrna_dict_1[k1][5]+'\t'+str(diff)+'\t'+'same'+'\n') elif 'PGSC' in mrna_dict_1[k1][5] and mrna_dict_1[k1][3] == '-' and lincrna_dict_1[k][5] not \ in checked and mrna_dict_1[k1][0] == lincrna_dict_1[k][0]: checked[lincrna_dict_1[k][5]] = [diff, mrna_id, 'convergent'] out_file.write(lincrna_dict_1[k][5]+'\t'+mrna_dict_1[k1][5]+'\t'+str(diff)+'\t'+'convergent'+'\n') else: k1 += 1 elif lincrna_dict_1[k][3] == '-': k1 = k for i in range(map_factor): if k1 in mrna_dict_1: linc_st = lincrna_dict_1[k][1] mrna_st = mrna_dict_1[k1][1] diff = linc_st - mrna_st + 1 mrna_id = mrna_dict_1[k1][5] if 'PGSC' in mrna_dict_1[k1][5] and mrna_dict_1[k1][3] == '-' and lincrna_dict_1[k][ 5] not in checked and mrna_dict_1[k1][0] == lincrna_dict_1[k][0]: checked[lincrna_dict_1[k][5]] = [diff, mrna_id, 'same'] out_file.write(lincrna_dict_1[k][5]+'\t'+mrna_dict_1[k1][5]+'\t'+str(diff)+'\t'+'same'+'\n') elif 'PGSC' in mrna_dict_1[k1][5] and mrna_dict_1[k1][3] == '+' and lincrna_dict_1[k][ 5] not in checked and mrna_dict_1[k1][0] == lincrna_dict_1[k][0]: checked[lincrna_dict_1[k][5]] = [diff, mrna_id, 'convergent'] out_file.write(lincrna_dict_1[k][5]+'\t'+mrna_dict_1[k1][5]+'\t'+str(diff)+'\t'+'convergent'+'\n') else: k1 -= 1 # for divergent only for k in lincrna_dict_1: if lincrna_dict_1[k][3] == '+': k1 = k for i in range(map_factor): if k1 in mrna_dict_1: linc_st = lincrna_dict_1[k][1] mrna_st = mrna_dict_1[k1][1] diff = linc_st - mrna_st + 1 mrna_id = mrna_dict_1[k1][5] if 'PGSC' in mrna_dict_1[k1][5] and mrna_dict_1[k1][3] == '-' and lincrna_dict_1[k][5] not in \ checked_2 and mrna_dict_1[k1][0] == lincrna_dict_1[k][0]: checked_2[lincrna_dict_1[k][5]] = [diff, mrna_id, 'divergent'] out_file_2.write(lincrna_dict_1[k][5]+'\t'+mrna_dict_1[k1][5]+'\t'+str(diff)+'\t'+'divergent'+'\n') else: k1 -= 1 elif lincrna_dict_1[k][3] == '-': k1 = k for i in range(map_factor): if k1 in mrna_dict_1: linc_st = lincrna_dict_1[k][1] mrna_st = mrna_dict_1[k1][1] diff = mrna_st - linc_st + 1 mrna_id = mrna_dict_1[k1][5] if 'PGSC' in mrna_dict_1[k1][5] and mrna_dict_1[k1][3] == '+' and lincrna_dict_1[k][ 5] not in checked_2 and mrna_dict_1[k1][0] == lincrna_dict_1[k][0]: checked_2[lincrna_dict_1[k][5]] = [diff, mrna_id, 'divergent'] out_file_2.write(lincrna_dict_1[k][5]+'\t'+mrna_dict_1[k1][5]+'\t'+str(diff)+'\t'+'divergent'+'\n') else: k1 += 1 for k in lincrna_dict_1: if lincrna_dict_1[k][5] not in checked: print(lincrna_dict_1[k][5]) for k in checked: x = 0 for k1 in checked_2: if k == k1 and checked[k][2] == 'same': x = 1 out_file_3.write(k + '\t' + checked[k][1] + '\t' + checked[k][2] + '\t' + str(checked[k][0]) + '\n') elif k == k1 and checked[k][2] == 'convergent' and checked_2[k][2] == 'divergent': if checked[k][0] <= checked_2[k][0]: x = 1 out_file_3.write(k + '\t' + checked[k][1] + '\t' + checked[k][2] + '\t' + str(checked[k][0]) + '\n') else: x = 1 out_file_3.write( k + '\t' + checked_2[k1][1] + '\t' + checked_2[k1][2] + '\t' + str(checked_2[k1][0]) + '\n') if x == 0: out_file_3.write(k + '\t' + checked[k][1] + '\t' + checked[k][2] + '\t' + str(checked[k][0]) + '\n') class genfam: def __init__(self): self.species_df = None self.genfam_info= None self.df_enrich = None @staticmethod def enrichment_analysis(user_provided_uniq_ids_len=None, get_user_id_count_for_gene_fam=None, gene_fam_count=None, bg_gene_count=None, df_dict_glist=None, stat_sign_test=None, multi_test_corr=None, uniq_p=None, uniq_c=None, uniq_f=None, get_gene_ids_from_user=None, short_fam_name=None, min_map_ids=None): pvalues = [] enrichment_result = [] # get total mapped genes from user list mapped_query_ids = sum(get_user_id_count_for_gene_fam.values()) for k in get_user_id_count_for_gene_fam: # first row and first column (k) # from user list # number of genes mapped to family in subset gene_in_category = get_user_id_count_for_gene_fam[k] short_fam = short_fam_name[k] # first row and second column (m-k) _uniq_id_count_dict (m) # n-k (n total mappable deg) # from user list # total subset - gene mapped to family # gene_not_in_category_but_in_sample = _uniq_id_count_dict-gene_in_category # calculate stat sign based on only ids mapped and not all query ids as in agrigo gene_not_in_category_but_in_sample = mapped_query_ids - gene_in_category # second row and first column (n-k) # m-k # genes that mapped to family are in genome - genes in category from user list gene_not_in_catgory_but_in_genome = gene_fam_count[k] - gene_in_category bg_gene_fam_ids = gene_fam_count[k] # second row and second column gene_in_category+gene_not_in_catgory_and_in_genome (n) # N-m-n+k bg_in_genome = bg_gene_count - mapped_query_ids - (gene_in_category + gene_not_in_catgory_but_in_genome) \ + gene_in_category # for go terms process = uniq_p[k] function = uniq_f[k] comp = uniq_c[k] # gene ids from user list mapped to particular gene family gene_ids = get_gene_ids_from_user[k] # fisher exact test if stat_sign_test == 1: stat_test_name = 'Fisher exact test' # run analysis if only mappable ids are >= 5 # if mapped_query_ids >= 5: oddsratio, pvalue = stats.fisher_exact([[gene_in_category, gene_not_in_category_but_in_sample], [gene_not_in_catgory_but_in_genome, bg_in_genome]], 'greater') if int(gene_in_category) > 0: enrichment_result.append([k, short_fam, user_provided_uniq_ids_len, gene_in_category, bg_gene_count, bg_gene_fam_ids, oddsratio, pvalue, process, function, comp, gene_ids]) pvalues.append(pvalue) # Hypergeometric elif stat_sign_test == 2: stat_test_name = 'Hypergeometric distribution' oddsratio = 'NA' pvalue = stats.hypergeom.sf(gene_in_category - 1, bg_gene_count, gene_fam_count[k], mapped_query_ids) if int(gene_in_category) > 0: enrichment_result.append([k, short_fam, user_provided_uniq_ids_len, gene_in_category, bg_gene_count, bg_gene_fam_ids, oddsratio, pvalue, process, function, comp, gene_ids]) pvalues.append(pvalue) # Binomial elif stat_sign_test == 3: stat_test_name = 'Binomial distribution' oddsratio = 'NA' # probability from the reference set for particular category exp_pvalue = (gene_fam_count[k] / bg_gene_count) pvalue = stats.binom_test(gene_in_category, mapped_query_ids, exp_pvalue, alternative='greater') if int(gene_in_category) > 0: enrichment_result.append([k, short_fam, user_provided_uniq_ids_len, gene_in_category, bg_gene_count, bg_gene_fam_ids, oddsratio, pvalue, process, function, comp, gene_ids]) pvalues.append(pvalue) # Chi-Square elif stat_sign_test == 4: stat_test_name = 'Chi-squared distribution' oddsratio = 'NA' chi2, pvalue, dof, exp = stats.chi2_contingency([[gene_in_category, gene_not_in_category_but_in_sample], [gene_not_in_catgory_but_in_genome, bg_in_genome]], correction=False) # count cells where expected frequency < 5 cell_ct = sum(sum(i < 5 for i in exp)) cell_ct_per = 100 * float(cell_ct) / float(4) # only report the family where observed count is more than expected gene in category count # this is for getting highly enriched genes other under-represented genes will also be found if int(gene_in_category) > 0 and gene_in_category >= exp[0][0]: enrichment_result.append([k, short_fam, user_provided_uniq_ids_len, gene_in_category, bg_gene_count, bg_gene_fam_ids, oddsratio, pvalue, process, function, comp, gene_ids, cell_ct_per]) # print key, chi2, pvalue pvalues.append(pvalue) # FDR Bonferroni if multi_test_corr == 1: mult_test_name = 'Bonferroni' fdr = multipletests(pvals=pvalues, method='bonferroni')[1] # FDR Bonferroni-Holm elif multi_test_corr == 2: mult_test_name = 'Bonferroni-Holm' fdr = multipletests(pvals=pvalues, method='holm')[1] # FDR Benjamini-Hochberg elif multi_test_corr == 3: mult_test_name = 'Benjamini-Hochberg' fdr = multipletests(pvals=pvalues, method='fdr_bh')[1] return enrichment_result, fdr, mapped_query_ids, stat_test_name, mult_test_name @staticmethod def get_file_from_gd(url=None): get_path = 'https://drive.google.com/uc?export=download&id=' + url.split('/')[-2] return pd.read_csv(get_path) @staticmethod def get_bg_counts(species=None, check_ids=False): if species == 'ahyp': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1Y5WHC-G7idvaMa_sX5xyy99MLXENaSfS/view?usp=sharing') plant_name = 'Amaranthus hypochondriacus v2.1 (Amaranth)' elif species == 'atri': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1PeuE4_r4o3YdczEwuJhiJgpS0SAD6kWi/view?usp=sharing') plant_name = 'Amborella trichopoda v1.0 (Amborella)' elif species == 'acom': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/198lQk2_kvI78qqE15QmEiuKNmR7IjIy0/view?usp=sharing') plant_name = 'Ananas comosus v3 (Pineapple)' elif species == 'alyr': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1xa8V_g0fJLJRuZ9lbJooZy_QC1xNypnC/view?usp=sharing') plant_name = 'Arabidopsis lyrata v2.1 (Lyre-leaved rock cress)' elif species == 'atha': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1akf_2LJU0ULLB31o7smQI6NwUC0_Cg1T/view?usp=sharing') plant_name = 'Arabidopsis thaliana TAIR10 (Thale cress)' elif species == 'aoff': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1D5dkCEwEf7uwPsb1bJySKQcH3HukDLUD/view?usp=sharing') plant_name = 'Asparagus officinalis V1.1 (Asparagus)' elif species == 'bstr': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1uJtA-WpEfgYdjDsiCAZbPdRX9OyMAmb1/view?usp=sharing') plant_name = 'Boechera stricta v1.2 (Drummond rock cress)' elif species == 'bdis': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1ju40AJAw9vYcm3CdKEYOnL8LonXF9t5H/view?usp=sharing') plant_name = 'Brachypodium distachyon v3.1 (Purple false brome)' elif species == 'bole': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1NOAEvLJBKPFKogwyUkQ_8bXCO4Wz8ZqF/view?usp=sharing') plant_name = 'Brassica oleracea capitata v1.0 (Savoy cabbage)' elif species == 'cgra': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1SI7PLZOuc5GTnuFxYA-zdCHZShLvleSk/view?usp=sharing') plant_name = 'Capsella grandiflora v1.1' elif species == 'crub': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1Sz9yPe67BzLujVj_N4Hpgvu8rG7rFSLl/view?usp=sharing') plant_name = 'Capsella rubella v1.0 (Pink shepherds purse)' elif species == 'cpap': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1pFLQJt2m-TDA2zGBDBCFQSiiiA5SEfQO/view?usp=sharing') plant_name = 'Carica papaya ASGPBv0.4 (Papaya)' elif species == 'cqui': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/10KLHnBgB-OC7aTEEhxYqp3BYbLqchfcj/view?usp=sharing') plant_name = 'Chenopodium quinoa v1.0 (Quinoa)' elif species == 'crei': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1YbQ457hRuKZ2KsuVhfSShgCeso9QTPZP/view?usp=sharing') plant_name = 'Chlamydomonas reinhardtii v5.5 (Green algae)' elif species == 'czof': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1WftatxF-m11Q7WWxvbSV_gEIJlLUp4X5/view?usp=sharing') plant_name = 'Chromochloris zofingiensis v5.2.3.2' elif species == 'cari': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/14EldoR_JBgvFAgyOa_MW4IqaE-_IVEA3/view?usp=sharing') plant_name = 'Cicer arietinum v1.0 (Chickpea)' elif species == 'ccle': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1xTrCDPgnWwfIObZFxeMdp0v-iNL2aO69/view?usp=sharing') plant_name = 'Citrus clementina v1.0 (Clementine)' elif species == 'csin': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1Zaif12UzenScHAuNP7NY2bqSHplBpx9a/view?usp=sharing') plant_name = 'Citrus sinensis v1.1 (Sweet orange)' elif species == 'csub': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1UXEF9n1kKNXtEDv-e9pGYJkKcMsJ203S/view?usp=sharing') plant_name = 'Coccomyxa subellipsoidea C-169 v2.0' elif species == 'csat': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1DeuURHM1yFtHk7TUjh341Au43BdXQqQK/view?usp=sharing') plant_name = 'Cucumis sativus v1.0' elif species == 'dcar': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1dUO1umk6RvzXdT7jilx7NYmXz6xWXWBj/view?usp=sharing') plant_name = 'Daucus carota v2.0' elif species == 'dsal': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1EibVmaLKl9jqIECQ5eI35dd1ePpycKw_/view?usp=sharing') plant_name = 'Dunaliella salina v1.0' elif species == 'egra': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1s6-HTCXKtd8TCvEzYSb2t2T_sCnJF3GT/view?usp=sharing') plant_name = 'Eucalyptus grandis v2.0' elif species == 'esal': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/18sMv6sK4DzWqEhpU7JuMQzwoI-DdPAgZ/view?usp=sharing') plant_name = 'Eutrema salsugineum v1.0' elif species == 'fves': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1GhNX0dkRZHOZiQIxuPTrPuOX6Yf7HZ4z/view?usp=sharing') plant_name = 'Fragaria vesca v1.1' elif species == 'gmax': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1j9nENpp5_bWnuuiM0ojoB3-shltl7QMn/view?usp=sharing') plant_name = 'Glycine max Wm82.a2.v1' elif species == 'grai': df = genfam.get_file_from_gd('https://drive.google.com/file/d/11_Atm8NQpt87KzBS7hEVwnadq19x7SPk/view?usp=sharing') plant_name = 'Gossypium raimondii v2.1' elif species == 'hvul': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1gQmt5j8o4TaRrl-RE4GVUV5_a19haR5N/view?usp=sharing') plant_name = 'Hordeum vulgare r1 (Barley)' elif species == 'kfed': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1te-KkIUkKhwyaJeyMzxruji20VzV2Jp-/view?usp=sharing') plant_name = 'Kalanchoe fedtschenkoi v1.1 (diploid Kalanchoe)' elif species == 'lsat': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1V-fXPzpR2hV_FKGed1bcnVV0LCnA36vd/view?usp=sharing') plant_name = 'Lactuca sativa V5 (Lettuce)' elif species == 'lusi': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1RY97um9edfEyC_HoPLmi5FZuGvBvYK6M/view?usp=sharing') plant_name = 'Linum usitatissimum v1.0 (Flax)' elif species == 'mdom': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1d05-57Uxc-Zpg1P42oCmZWQscBETzwru/view?usp=sharing') plant_name = 'Malus domestica v1.0 (Apple)' elif species == 'mesc': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/131d1eiwgeRt691GASO9hEi5j2AVlgA5f/view?usp=sharing') plant_name = 'Manihot esculenta v6.1 (Cassava)' elif species == 'mpol': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1S4eJBldzkvov2HRigG68JDJ4kPz5o2i9/view?usp=sharing') plant_name = 'Marchantia polymorpha v3.1 (Common liverwort)' elif species == 'mtru': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/111BzdpRL6Vmrq32ErujKmRJGi8EZmQWG/view?usp=sharing') plant_name = 'Medicago truncatula Mt4.0v1 (Barrel medic)' elif species == 'mpus': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/109eZLEkzQFSyeq1DYHiznDPUuZ1X9D1y/view?usp=sharing') plant_name = 'Micromonas pusilla CCMP1545 v3.0' elif species == 'mgut': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1Ewqr7_xeSSMzADQgzEBJseu9YVyfsHC7/view?usp=sharing') plant_name = 'Mimulus guttatus v2.0 (Monkey flower)' elif species == 'macu': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1v9q_voRcqaMDXc7CpfYdkAt0uUwbHRbb/view?usp=sharing') plant_name = 'Musa acuminata v1 (Banana)' elif species == 'oeur': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1dJAipHwx4mPZmMAs53gJG0EiCzgizGtx/view?usp=sharing') plant_name = 'Olea europaea var. sylvestris v1.0 (Wild olive)' elif species == 'otho': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1eUnTqx4WMRG0HHZS2HBAhi0vil1a9_xj/view?usp=sharing') plant_name = 'Oropetium thomaeum v1.0' elif species == 'osat': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1GsQgmFrwxtlSMCgDAyamAvMXQvEaYjcE/view?usp=sharing') plant_name = 'Oryza sativa v7_JGI (Rice)' elif species == 'oluc': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1Ld57aW3j7GT7J6YSlfDou32pxsIlnB-S/view?usp=sharing') plant_name = 'Ostreococcus lucimarinus v2.0' elif species == 'ppat': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1uUlBWGJYiyScBLjZg67txZohtueOzo-L/view?usp=sharing') plant_name = 'Physcomitrella patens v3.3' elif species == 'ptri': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1fGsrLBwTuP72nwNTOIPR52nVu0-wzt5Z/view?usp=sharing') plant_name = 'Populus trichocarpa v3.1 (Poplar)' elif species == 'pumb': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1TdZ_bm78xP2kca6M_NY7l6lAunpkM4CU/view?usp=sharing') plant_name = 'Porphyra umbilicalis v1.5 (Laver)' elif species == 'pper': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1nfcMPj-Xmg8U7-Pfs6cJe74kQ31pZ0ac/view?usp=sharing') plant_name = 'Prunus persica v2.1 (Peach)' elif species == 'rcom': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1UYXzGirLozWX-N_uuOBirsJ0pKSJoarv/view?usp=sharing') plant_name = 'Ricinus communis v0.1 (Castor bean)' elif species == 'smoe': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1VPQfN5-_SX91JgmcIFf2ZdvsO7QWEOEr/view?usp=sharing') plant_name = 'Selaginella moellendorffii v1.0 (Spikemoss)' elif species == 'sita': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1N97CkOLPE7Atgjs9Alst3VrvsRj-igtJ/view?usp=sharing') plant_name = 'Setaria italica v2.2 (Foxtail millet)' elif species == 'slyc': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1_MxCNxyPFXk4V7-6vR9NTFhdgH2Yg04W/view?usp=sharing') plant_name = 'Solanum lycopersicum iTAG2.4 (Tomato)' elif species == 'stub': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1XttvKbhHr4oEKiHSWKFYIN0gWAjO6oTC/view?usp=sharing') plant_name = 'Solanum tuberosum' elif species == 'sbio': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1KXNKCiWynvev2OePQPtxIbBtjffaf3UK/view?usp=sharing') plant_name = 'Sorghum bicolor v3.1.1 (Cereal grass)' elif species == 'spol': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1i6ux7UVrEF3XNRuf3uF9ZsRThrM7jO11/view?usp=sharing') plant_name = 'Spirodela polyrhiza v2 (Greater duckweed)' elif species == 'tcac': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/10wDbFyC9uo_lmnWbdLNxecuV7ZdsuwC4/view?usp=sharing') plant_name = 'Theobroma cacao v1.1 (Cacao)' elif species == 'tpra': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1Vt2lyBmOqTk1bHY6LG7Va6zMGEDZs0oq/view?usp=sharing') plant_name = 'Trifolium pratense v2 (Red clover)' elif species == 'taes': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1qOzqfXfVRstYfY7FF4EgMEjsaUiZ9au-/view?usp=sharing') plant_name = 'Triticum aestivum v2.2 (Common wheat)' elif species == 'vvin': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1-B0Rut8GZ_buDCsDM723kevbNeBNGnXg/view?usp=sharing') plant_name = 'Vitis vinifera Genoscope.12X (Common grape vine)' elif species == 'vcar': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1QFDNUoPXhxkSfnf8qC5UQxxn1KqKWVdb/view?usp=sharing') plant_name = 'Volvox carteri v2.1 (Volvox)' elif species == 'zmay': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1ufO2Ueml0i0bqw2aWAa6rF7zI52JKC3Z/view?usp=sharing') plant_name = 'Zea mays Ensembl-18 (Maize)' elif species == 'zmar': df = genfam.get_file_from_gd( 'https://drive.google.com/file/d/1ufO2Ueml0i0bqw2aWAa6rF7zI52JKC3Z/view?usp=sharing') plant_name = 'Zostera marina v2.2 (Common eelgrass)' else: raise ValueError('Invalid value for species \n') bg_gene_count, bg_trn_count, bg_phytid_count = df['loc_len'].sum(), df['trn_len'].sum(), df['phyt_id_len'].sum() if check_ids: return df, plant_name else: return df, bg_gene_count, bg_trn_count, bg_phytid_count, plant_name @staticmethod def get_rec_dicts(df=None, glist=None, sname=None, loclen=None, gop=None, gof=None, goc=None): df1_glist = df[glist] df1_sname = df[sname] df1_loclen = df[loclen] df1_gop = df[gop] df1_gof = df[gof] df1_goc = df[goc] df2_glist = df1_glist.replace('(^\{|\}$)', '', regex=True) df_dict_glist = df2_glist.set_index('gene_fam').T.to_dict('list') df_dict_sname = df1_sname.set_index('gene_fam').T.to_dict('list') df_dict_loclen = df1_loclen.set_index('gene_fam').T.to_dict('list') df_dict_gop = df1_gop.set_index('gene_fam').T.to_dict('list') df_dict_gof = df1_gof.set_index('gene_fam').T.to_dict('list') df_dict_goc = df1_goc.set_index('gene_fam').T.to_dict('list') df_dict_glist = {key: value[0].split(',') for key, value in df_dict_glist.items()} return df_dict_glist, df_dict_sname, df_dict_loclen, df_dict_gop, df_dict_gof, df_dict_goc def fam_enrich(self, id_file='text_file_with_gene_ids', species=None, id_type=None, stat_sign_test=1, multi_test_corr=3, min_map_ids=5, alpha=0.05): if id_type not in [1, 2, 3]: raise ValueError('Invalid value for id_type') if stat_sign_test not in [1, 2, 3, 4]: raise ValueError('Invalid value for stat_sign_test') if multi_test_corr not in [1, 2, 3]: raise ValueError('Invalid value for multi_test_corr') df, bg_gene_count, bg_trn_count, bg_phytid_count, plant_name = genfam.get_bg_counts(species) # phytozome locus == 1 get_gene_ids_from_user = dict() gene_fam_count = dict() short_fam_name = dict() get_user_id_count_for_gene_fam = dict() uniq_p = dict() uniq_f = dict() uniq_c = dict() user_provided_uniq_ids = dict() # phytozome locus if id_type == 1: df_dict_glist, df_dict_sname, df_dict_loclen, df_dict_gop, df_dict_gof, df_dict_goc = \ genfam.get_rec_dicts(df, ['gene_fam', 'array_agg'], ['gene_fam', 'fam_short'], ['gene_fam', 'loc_len'], ['gene_fam', 'uniq_p'], ['gene_fam', 'uniq_f'], ['gene_fam', 'uniq_c']) for item in df_dict_glist: df_dict_glist[item] = [x.upper() for x in df_dict_glist[item]] get_gene_ids_from_user[item] = [] # gene family short name short_fam_name[item] = df_dict_sname[item][0] # count for each gene family for background genome gene_fam_count[item] = df_dict_loclen[item][0] # user gene id counts for each gene family get_user_id_count_for_gene_fam[item] = 0 # GO terms uniq_p[item] = df_dict_gop[item] uniq_f[item] = df_dict_gof[item] uniq_c[item] = df_dict_goc[item] bg_gene_count = bg_gene_count # phytozome transcript elif id_type == 2: df_dict_glist, df_dict_sname, df_dict_loclen, df_dict_gop, df_dict_gof, df_dict_goc = \ genfam.get_rec_dicts(df, ['gene_fam', 'trn_array'], ['gene_fam', 'fam_short'], ['gene_fam', 'trn_len'], ['gene_fam', 'uniq_p'], ['gene_fam', 'uniq_f'], ['gene_fam', 'uniq_c']) for item in df_dict_glist: df_dict_glist[item] = [x.upper() for x in df_dict_glist[item]] get_gene_ids_from_user[item] = [] # gene family short name short_fam_name[item] = df_dict_sname[item][0] # count for each gene family for background genome gene_fam_count[item] = df_dict_loclen[item][0] # user gene id counts for each gene family get_user_id_count_for_gene_fam[item] = 0 # GO terms uniq_p[item] = df_dict_gop[item] uniq_f[item] = df_dict_gof[item] uniq_c[item] = df_dict_goc[item] bg_gene_count = bg_trn_count # phytozome pacId elif id_type == 3: df_dict_glist, df_dict_sname, df_dict_loclen, df_dict_gop, df_dict_gof, df_dict_goc = \ genfam.get_rec_dicts(df, ['gene_fam', 'phyt_id_array'], ['gene_fam', 'fam_short'], ['gene_fam', 'phyt_id_len'], ['gene_fam', 'uniq_p'], ['gene_fam', 'uniq_f'], ['gene_fam', 'uniq_c']) for item in df_dict_glist: df_dict_glist[item] = [x.upper() for x in df_dict_glist[item]] get_gene_ids_from_user[item] = [] # gene family short name short_fam_name[item] = df_dict_sname[item][0] # count for each gene family for background genome gene_fam_count[item] = df_dict_loclen[item][0] # user gene id counts for each gene family get_user_id_count_for_gene_fam[item] = 0 # GO terms uniq_p[item] = df_dict_gop[item] uniq_f[item] = df_dict_gof[item] uniq_c[item] = df_dict_goc[item] bg_gene_count = bg_phytid_count if isinstance(id_file, pd.DataFrame): for ix, rows in id_file.iterrows(): gene_id = rows[0].strip().upper() user_provided_uniq_ids[gene_id] = 0 else: read_id_file = open(id_file, 'r') for gene_id in read_id_file: gene_id = gene_id.strip().upper() # remove the duplicate ids and keep unique user_provided_uniq_ids[gene_id] = 0 read_id_file.close() # get the annotation count. number of genes from user input present in genfam database anot_count = 0 for k1 in df_dict_glist: for k2 in user_provided_uniq_ids: if k2 in df_dict_glist[k1]: # if the user input id present in df_dict_glist increment count get_gene_ids_from_user[k1].append(k2) get_user_id_count_for_gene_fam[k1] += 1 anot_count += 1 if anot_count == 0: raise Exception('Provided gene ID does not match to selected ID type') enrichment_result, fdr, mapped_query_ids, stat_test_name, mult_test_name = \ genfam.enrichment_analysis(len(user_provided_uniq_ids), get_user_id_count_for_gene_fam, gene_fam_count, bg_gene_count, df_dict_glist, stat_sign_test, multi_test_corr, uniq_p, uniq_c, uniq_f, get_gene_ids_from_user, short_fam_name, min_map_ids) # if the number input ids are less than 5, the process will stop # check if list is empty; this is in case of wrong input by user for gene ids or not as per phytozome format or # wrong species selected # if len(uniq_id_count_dict) >= 5 and enrichment_result and _plant_select!="z": if mapped_query_ids < min_map_ids: raise Exception('The minimum mapped gene IDs must be greater than ', min_map_ids) # replace all fdr values which are greater than 1 to 1 fdr[fdr > 1] = 1 fam_out_enrich_file = open('fam_enrich_out.txt', 'w') fam_out_all_file = open('fam_all_out.txt', 'w') cell_ct_chi = 0 # Query IDs = total query ids from user (k) # Annotated query IDs = query ids annotated to particular gene family # background ids = particular gene family ids present in whole genome backround # background total = total genome ids for x in range(0, len(fdr)): enrichment_result[x].insert(3, anot_count) enrichment_result[x].insert(9, fdr[x]) if stat_sign_test == 4: # chi-s test only fam_out_enrich_file.write( "Gene Family" + "\t" + "Short Name" + "\t" + "Query total" + "\t" + "Annotated query total" + "\t" + "Annotated query per family" + "\t" + "Background annotated total" + "\t" + "Background annotated per family" + "\t" + "Odds ratio" + "\t" + "P-value" + "\t" + "FDR" + "\t" + "GO biological process" + "\t" + "GO molecular function" + "\t" + "GO cellular component" + "\t" + "Gene IDs" + "\t" + "Cells with expected frequency <5 (%)" + "\n") fam_out_all_file.write( "Gene Family" + "\t" + "Short Name" + "\t" + "Query total" + "\t" + "Annotated query total" + "\t" + "Annotated query per family" + "\t" + "Background annotated total" + "\t" + "Background annotated per family" + "\t" + "Odds ratio" + "\t" + "P-value" + "\t" + "FDR" + "\t" + "GO biological process" + "\t" + "GO molecular function" + "\t" + "GO cellular component" + "\t" + "Gene IDs" + "\t" + "Cells with expected frequency <5 (%)" + "\n") else: fam_out_enrich_file.write( "Gene Family" + "\t" + "Short Name" + "\t" + "Query total" + "\t" + "Annotated query total" + "\t" + "Annotated query per family" + "\t" + "Background annotated total" + "\t" + "Background annotated per family" + "\t" + "Odds ratio" + "\t" + "P-value" + "\t" + "FDR" + "\t" + "GO biological process" + "\t" + "GO molecular function" + "\t" + "GO cellular component" + "\t" + "Gene IDs" + "\n") fam_out_all_file.write( "Gene Family" + "\t" + "Short Name" + "\t" + "Query total" + "\t" + "Annotated query total" + "\t" + "Annotated query per family" + "\t" + "Background annotated total" + "\t" + "Background annotated per family" + "\t" + "Odds ratio" + "\t" + "P-value" + "\t" + "FDR" + "\t" + "GO biological process" + "\t" + "GO molecular function" + "\t" + "GO cellular component" + "\t" + "Gene IDs" + "\n") genfam_for_df, sname_for_df, pv_for_df, fdr_for_df = [], [], [], [] for x in range(0, len(enrichment_result)): fam_out_all_file.write('\t'.join(str(v) for v in enrichment_result[x]) + "\n") # check pvalue less than 0.05 if float(enrichment_result[x][8]) <= alpha: fam_out_enrich_file.write('\t'.join(str(v) for v in enrichment_result[x]) + "\n") genfam_for_df.append(enrichment_result[x][0]) sname_for_df.append(enrichment_result[x][1]) pv_for_df.append(enrichment_result[x][8]) fdr_for_df.append(enrichment_result[x][9]) if stat_sign_test == 4: if float(enrichment_result[x][14]) > 20.0: cell_ct_chi += 1 if cell_ct_chi > 0: print('\n WARNING: Some gene families have more than 20% cells with expected frequency count < 5. \n ' 'Chi-square test may not be valid test. You can validate those gene families \n for enrichment using ' 'fisher exact test. \n Please check output file and see last column for expected frequency count. \n') # console result self.df_enrich = pd.DataFrame({'Gene Family': genfam_for_df, 'Short name': sname_for_df, 'p value': pv_for_df, 'FDR': fdr_for_df}) self.df_enrich = self.df_enrich.sort_values(by=['p value']) # console info self.genfam_info = pd.DataFrame({'Parameter': ['Total query gene IDs', 'Number of genes annotated', 'Number of enriched gene families (p < 0.05)', 'Plant species', 'Statistical test for enrichment', 'Multiple testing correction method', 'Significance level'], 'Value':[len(user_provided_uniq_ids), mapped_query_ids, self.df_enrich.shape[0], plant_name, stat_test_name, mult_test_name, alpha]}) fam_out_all_file.close() fam_out_enrich_file.close() # get figure for enrichment results df_enrich_fig = self.df_enrich.copy() df_enrich_fig['log10p'] = -(np.log10(df_enrich_fig['p value'])) visuz.stat.normal_bar(df=df_enrich_fig, x_col_name='Short name', y_col_name='log10p', axxlabel='Gene Family', axylabel='-log10(p value)', ar=(90, 0), figname='genfam_enrich', r=1000) @staticmethod def allowed_ids(locus=None, trn=None, pacid=None, species=None): print('\nAllowed ID types for ', species, '\n\n', 'Phytozome locus: ', locus, '\n', 'Phytozome transcript: ', trn, '\n', 'Phytozome pacID: ', pacid, '\n') @staticmethod def check_allowed_ids(species=None): df, plant_name = genfam.get_bg_counts(species, True) genfam.allowed_ids(df['array_agg'].iloc[0].strip('\{').split(',')[0], df['trn_array'].iloc[0].strip('\{').split(',')[0], df['phyt_id_array'].iloc[0].strip('\{').split(',')[0], plant_name) class anot: def __init__(self): self.mapped_ids = None def id_map(self, species=None, input_id=None, look_id=None, fetch_id=None): if input_id is None or look_id is None or fetch_id is None: raise ValueError('Invalid value for input_id or look_id or fetch_id options') if species == 'stub': df = general.get_file_from_gd( 'https://drive.google.com/file/d/1jrw95f3PX1qpFK_XYLDCwZ8hlIVUr4FM/view?usp=sharing') print(df) df = df[[look_id, fetch_id]] input_id_df = pd.read_csv(input_id, header=None) input_id_df.rename(columns={input_id_df.columns[0]: look_id}, inplace=True) print(input_id_df) # self.mapped_ids = pd.merge(input_id_df, df, how='left', on=look_id) class get_data: def __init__(self, data=None): if data=='mlr': self.data = pd.read_csv("https://reneshbedre.github.io/assets/posts/reg/test_reg.csv") elif data=='boston': self.data = pd.read_csv("https://reneshbedre.github.io/assets/posts/reg/boston.csv") elif data=='volcano': self.data =
pd.read_csv("https://reneshbedre.github.io/assets/posts/volcano/testvolcano.csv")
pandas.read_csv
# Generated by nuclio.export.NuclioExporter import os import pandas as pd import numpy as np import scipy as sp import pickle import datetime import v3io_frames as v3f import matplotlib.pyplot as plt from sklearn.preprocessing import KBinsDiscretizer def to_observations(context, t, u, key): t = ( t.apply(lambda row: f"{'_'.join([str(row[val]) for val in t.columns])}", axis=1) .value_counts() .sort_index() ) u = ( u.apply(lambda row: f"{'_'.join([str(row[val]) for val in u.columns])}", axis=1) .value_counts() .sort_index() ) joined_uniques = pd.DataFrame([t, u]).T.fillna(0).sort_index() joined_uniques.columns = ["t", "u"] t_obs = joined_uniques.loc[:, "t"] u_obs = joined_uniques.loc[:, "u"] t_pdf = t_obs / t_obs.sum() u_pdf = u_obs / u_obs.sum() context.log_dataset(f"{key}_t_pdf", pd.DataFrame(t_pdf), format="parquet") context.log_dataset(f"{key}_u_pdf", pd.DataFrame(u_pdf), format="parquet") return t_pdf, u_pdf def tvd(t, u): return sum(abs(t - u)) / 2 def helinger(t, u): return (np.sqrt(np.sum(np.power(np.sqrt(t) - np.sqrt(u), 2)))) / np.sqrt(2) def kl_divergence(t, u): t_u = np.sum(np.where(t != 0, t * np.log(t / u), 0)) u_t = np.sum(np.where(u != 0, u * np.log(u / t), 0)) return t_u + u_t def all_metrics(t, u): return tvd(t, u), helinger(t, u), kl_divergence(t, u) def drift_magnitude( context, t: pd.DataFrame, u: pd.DataFrame, label_col=None, prediction_col=None, discretizers: dict = None, n_bins=5, stream_name: str = "some_stream", results_tsdb_container: str = "bigdata", results_tsdb_table: str = "concept_drift/drift_magnitude", ): """Drift magnitude metrics Computes drift magnitude metrics between base dataset t and dataset u. Metrics: - TVD (Total Variation Distance) - Helinger - KL Divergence :param context: MLRun context :param t: Base dataset for the drift metrics :param u: Test dataset for the drift metrics :param label_col: Label colum in t and u :param prediction_col: Predictions column in t and u :param discritizers: Dictionary of dicsritizers for the features if available (Created automatically if not provided) :param n_bins: Number of bins to be used for histrogram creation from continuous variables :param stream_name: Output stream to push metrics to :param results_tsdb_container: TSDB table container to push metrics to :param results_tsdb_table: TSDB table to push metrics to """ v3io_client = v3f.Client("framesd:8081", container=results_tsdb_container) try: v3io_client.create("tsdb", results_tsdb_table, if_exists=1, rate="1/s") except: v3io_client.create( "tsdb", results_tsdb_table, if_exists=1, attrs={"rate": "1/s"} ) df_t = t.as_df() df_u = u.as_df() drop_columns = [] if label_col is not None: drop_columns.append(label_col) if prediction_col is not None: drop_columns.append(prediction_col) continuous_features = df_t.select_dtypes(["float"]) if discretizers is None: discretizers = {} for feature in continuous_features.columns: context.logger.info(f"Fitting discretizer for {feature}") discretizer = KBinsDiscretizer( n_bins=n_bins, encode="ordinal", strategy="uniform" ) discretizer.fit(continuous_features.loc[:, feature].values.reshape(-1, 1)) discretizers[feature] = discretizer os.makedirs(context.artifact_path, exist_ok=True) discretizers_path = os.path.abspath(f"{context.artifact_path}/discritizer.pkl") with open(discretizers_path, "wb") as f: pickle.dump(discretizers, f) context.log_artifact("discritizers", target_path=discretizers_path) context.logger.info("Discretizing featuers") for feature, discretizer in discretizers.items(): df_t[feature] = discretizer.transform( df_t.loc[:, feature].values.reshape(-1, 1) ) df_u[feature] = discretizer.transform( df_u.loc[:, feature].values.reshape(-1, 1) ) df_t[feature] = df_t[feature].astype("int") df_u[feature] = df_u[feature].astype("int") context.log_dataset("t_discrete", df_t, format="parquet") context.log_dataset("u_discrete", df_u, format="parquet") context.logger.info("Compute prior metrics") results = {} t_prior, u_prior = to_observations( context, df_t.drop(drop_columns, axis=1), df_u.drop(drop_columns, axis=1), "features", ) results["prior_tvd"], results["prior_helinger"], results["prior_kld"] = all_metrics( t_prior, u_prior ) if prediction_col is not None: context.logger.info("Compute prediction metrics") t_predictions =
pd.DataFrame(df_t.loc[:, prediction_col])
pandas.DataFrame
""" Collection of query wrappers / abstractions to both facilitate data retrieval and to reduce dependency on DB-specific API. """ from __future__ import print_function, division from datetime import datetime, date, timedelta import warnings import itertools import numpy as np import pandas.core.common as com from pandas.compat import lzip, map, zip, raise_with_traceback, string_types from pandas.core.api import DataFrame from pandas.core.base import PandasObject from pandas.tseries.tools import to_datetime class SQLAlchemyRequired(ImportError): pass class DatabaseError(IOError): pass #------------------------------------------------------------------------------ # Helper functions def _convert_params(sql, params): """convert sql and params args to DBAPI2.0 compliant format""" args = [sql] if params is not None: args += list(params) return args def _safe_col_name(col_name): #TODO: probably want to forbid database reserved names, such as "database" return col_name.strip().replace(' ', '_') def _handle_date_column(col, format=None): if isinstance(format, dict): return to_datetime(col, **format) else: if format in ['D', 's', 'ms', 'us', 'ns']: return to_datetime(col, coerce=True, unit=format) elif issubclass(col.dtype.type, np.floating) or issubclass(col.dtype.type, np.integer): # parse dates as timestamp format = 's' if format is None else format return to_datetime(col, coerce=True, unit=format) else: return to_datetime(col, coerce=True, format=format) def _parse_date_columns(data_frame, parse_dates): """ Force non-datetime columns to be read as such. Supports both string formatted and integer timestamp columns """ # handle non-list entries for parse_dates gracefully if parse_dates is True or parse_dates is None or parse_dates is False: parse_dates = [] if not hasattr(parse_dates, '__iter__'): parse_dates = [parse_dates] for col_name in parse_dates: df_col = data_frame[col_name] try: fmt = parse_dates[col_name] except TypeError: fmt = None data_frame[col_name] = _handle_date_column(df_col, format=fmt) return data_frame def execute(sql, con, cur=None, params=None, flavor='sqlite'): """ Execute the given SQL query using the provided connection object. Parameters ---------- sql : string Query to be executed con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, a supported SQL flavor must also be provided cur : depreciated, cursor is obtained from connection params : list or tuple, optional List of parameters to pass to execute method. flavor : string "sqlite", "mysql" Specifies the flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. Returns ------- Results Iterable """ pandas_sql = pandasSQL_builder(con, flavor=flavor) args = _convert_params(sql, params) return pandas_sql.execute(*args) def tquery(sql, con, cur=None, params=None, flavor='sqlite'): """ Returns list of tuples corresponding to each row in given sql query. If only one column selected, then plain list is returned. Parameters ---------- sql: string SQL query to be executed con: SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object is given, a supported SQL flavor must also be provided cur: depreciated, cursor is obtained from connection params: list or tuple, optional List of parameters to pass to execute method. flavor : string "sqlite", "mysql" Specifies the flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. Returns ------- Results Iterable """ warnings.warn( "tquery is depreciated, and will be removed in future versions", DeprecationWarning) pandas_sql = pandasSQL_builder(con, flavor=flavor) args = _convert_params(sql, params) return pandas_sql.tquery(*args) def uquery(sql, con, cur=None, params=None, engine=None, flavor='sqlite'): """ Does the same thing as tquery, but instead of returning results, it returns the number of rows affected. Good for update queries. Parameters ---------- sql: string SQL query to be executed con: SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object is given, a supported SQL flavor must also be provided cur: depreciated, cursor is obtained from connection params: list or tuple, optional List of parameters to pass to execute method. flavor : string "sqlite", "mysql" Specifies the flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. Returns ------- Number of affected rows """ warnings.warn( "uquery is depreciated, and will be removed in future versions", DeprecationWarning) pandas_sql = pandasSQL_builder(con, flavor=flavor) args = _convert_params(sql, params) return pandas_sql.uquery(*args) #------------------------------------------------------------------------------ # Read and write to DataFrames def read_sql(sql, con, index_col=None, flavor='sqlite', coerce_float=True, params=None, parse_dates=None): """ Returns a DataFrame corresponding to the result set of the query string. Optionally provide an `index_col` parameter to use one of the columns as the index, otherwise default integer index will be used. Parameters ---------- sql : string SQL query to be executed con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object is given, a supported SQL flavor must also be provided index_col : string, optional column name to use for the returned DataFrame object. flavor : string, {'sqlite', 'mysql'} The flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets cur : depreciated, cursor is obtained from connection params : list or tuple, optional List of parameters to pass to execute method. parse_dates : list or dict - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite Returns ------- DataFrame See also -------- read_table """ pandas_sql = pandasSQL_builder(con, flavor=flavor) return pandas_sql.read_sql(sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates) def to_sql(frame, name, con, flavor='sqlite', if_exists='fail', index=True): """ Write records stored in a DataFrame to a SQL database. Parameters ---------- frame : DataFrame name : string Name of SQL table con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object is given, a supported SQL flavor must also be provided flavor : {'sqlite', 'mysql'}, default 'sqlite' The flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. if_exists : {'fail', 'replace', 'append'}, default 'fail' - fail: If table exists, do nothing. - replace: If table exists, drop it, recreate it, and insert data. - append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column """ pandas_sql = pandasSQL_builder(con, flavor=flavor) pandas_sql.to_sql(frame, name, if_exists=if_exists, index=index) def has_table(table_name, con, meta=None, flavor='sqlite'): """ Check if DataBase has named table. Parameters ---------- table_name: string Name of SQL table con: SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object is given, a supported SQL flavor name must also be provided flavor: {'sqlite', 'mysql'}, default 'sqlite' The flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. Returns ------- boolean """ pandas_sql = pandasSQL_builder(con, flavor=flavor) return pandas_sql.has_table(table_name) def read_table(table_name, con, meta=None, index_col=None, coerce_float=True, parse_dates=None, columns=None): """Given a table name and SQLAlchemy engine, return a DataFrame. Type convertions will be done automatically. Parameters ---------- table_name : string Name of SQL table in database con : SQLAlchemy engine Legacy mode not supported meta : SQLAlchemy meta, optional If omitted MetaData is reflected from engine index_col : string, optional Column to set as index coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision. parse_dates : list or dict - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite columns : list List of column names to select from sql table Returns ------- DataFrame See also -------- read_sql """ pandas_sql = PandasSQLAlchemy(con, meta=meta) table = pandas_sql.read_table(table_name, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) if table is not None: return table else: raise ValueError("Table %s not found" % table_name, con) def pandasSQL_builder(con, flavor=None, meta=None): """ Convenience function to return the correct PandasSQL subclass based on the provided parameters """ try: import sqlalchemy if isinstance(con, sqlalchemy.engine.Engine): return PandasSQLAlchemy(con, meta=meta) else: warnings.warn( """Not an SQLAlchemy engine, attempting to use as legacy DBAPI connection""") if flavor is None: raise ValueError( """PandasSQL must be created with an SQLAlchemy engine or a DBAPI2 connection and SQL flavour""") else: return PandasSQLLegacy(con, flavor) except ImportError: warnings.warn("SQLAlchemy not installed, using legacy mode") if flavor is None: raise SQLAlchemyRequired else: return PandasSQLLegacy(con, flavor) class PandasSQLTable(PandasObject): """ For mapping Pandas tables to SQL tables. Uses fact that table is reflected by SQLAlchemy to do better type convertions. Also holds various flags needed to avoid having to pass them between functions all the time. """ # TODO: support for multiIndex def __init__(self, name, pandas_sql_engine, frame=None, index=True, if_exists='fail', prefix='pandas'): self.name = name self.pd_sql = pandas_sql_engine self.prefix = prefix self.frame = frame self.index = self._index_name(index) if frame is not None: # We want to write a frame if self.pd_sql.has_table(self.name): if if_exists == 'fail': raise ValueError("Table '%s' already exists." % name) elif if_exists == 'replace': self.pd_sql.drop_table(self.name) self.table = self._create_table_statement() self.create() elif if_exists == 'append': self.table = self.pd_sql.get_table(self.name) if self.table is None: self.table = self._create_table_statement() else: self.table = self._create_table_statement() self.create() else: # no data provided, read-only mode self.table = self.pd_sql.get_table(self.name) if self.table is None: raise ValueError("Could not init table '%s'" % name) def exists(self): return self.pd_sql.has_table(self.name) def sql_schema(self): return str(self.table.compile()) def create(self): self.table.create() def insert_statement(self): return self.table.insert() def maybe_asscalar(self, i): try: return np.asscalar(i) except AttributeError: return i def insert(self): ins = self.insert_statement() data_list = [] # to avoid if check for every row keys = self.frame.columns if self.index is not None: for t in self.frame.itertuples(): data = dict((k, self.maybe_asscalar(v)) for k, v in zip(keys, t[1:])) data[self.index] = self.maybe_asscalar(t[0]) data_list.append(data) else: for t in self.frame.itertuples(): data = dict((k, self.maybe_asscalar(v)) for k, v in zip(keys, t[1:])) data_list.append(data) self.pd_sql.execute(ins, data_list) def read(self, coerce_float=True, parse_dates=None, columns=None): if columns is not None and len(columns) > 0: from sqlalchemy import select cols = [self.table.c[n] for n in columns] if self.index is not None: cols.insert(0, self.table.c[self.index]) sql_select = select(cols) else: sql_select = self.table.select() result = self.pd_sql.execute(sql_select) data = result.fetchall() column_names = result.keys() self.frame = DataFrame.from_records( data, columns=column_names, coerce_float=coerce_float) self._harmonize_columns(parse_dates=parse_dates) if self.index is not None: self.frame.set_index(self.index, inplace=True) # Assume if the index in prefix_index format, we gave it a name # and should return it nameless if self.index == self.prefix + '_index': self.frame.index.name = None return self.frame def _index_name(self, index): if index is True: if self.frame.index.name is not None: return _safe_col_name(self.frame.index.name) else: return self.prefix + '_index' elif isinstance(index, string_types): return index else: return None def _create_table_statement(self): from sqlalchemy import Table, Column safe_columns = map(_safe_col_name, self.frame.dtypes.index) column_types = map(self._sqlalchemy_type, self.frame.dtypes) columns = [Column(name, typ) for name, typ in zip(safe_columns, column_types)] if self.index is not None: columns.insert(0, Column(self.index, self._sqlalchemy_type( self.frame.index), index=True)) return Table(self.name, self.pd_sql.meta, *columns) def _harmonize_columns(self, parse_dates=None): """ Make a data_frame's column type align with an sql_table column types Need to work around limited NA value support. Floats are always fine, ints must always be floats if there are Null values. Booleans are hard because converting bool column with None replaces all Nones with false. Therefore only convert bool if there are no NA values. Datetimes should already be converted to np.datetime if supported, but here we also force conversion if required """ # handle non-list entries for parse_dates gracefully if parse_dates is True or parse_dates is None or parse_dates is False: parse_dates = [] if not hasattr(parse_dates, '__iter__'): parse_dates = [parse_dates] for sql_col in self.table.columns: col_name = sql_col.name try: df_col = self.frame[col_name] # the type the dataframe column should have col_type = self._numpy_type(sql_col.type) if col_type is datetime or col_type is date: if not issubclass(df_col.dtype.type, np.datetime64): self.frame[col_name] = _handle_date_column(df_col) elif col_type is float: # floats support NA, can always convert! self.frame[col_name].astype(col_type, copy=False) elif len(df_col) == df_col.count(): # No NA values, can convert ints and bools if col_type is int or col_type is bool: self.frame[col_name].astype(col_type, copy=False) # Handle date parsing if col_name in parse_dates: try: fmt = parse_dates[col_name] except TypeError: fmt = None self.frame[col_name] = _handle_date_column( df_col, format=fmt) except KeyError: pass # this column not in results def _sqlalchemy_type(self, arr_or_dtype): from sqlalchemy.types import Integer, Float, Text, Boolean, DateTime, Date, Interval if arr_or_dtype is date: return Date if com.is_datetime64_dtype(arr_or_dtype): try: tz = arr_or_dtype.tzinfo return DateTime(timezone=True) except: return DateTime if com.is_timedelta64_dtype(arr_or_dtype): return Interval elif com.is_float_dtype(arr_or_dtype): return Float elif
com.is_integer_dtype(arr_or_dtype)
pandas.core.common.is_integer_dtype
import pandas as pd import sqlite3 as sql from asn1crypto._ffi import null from pandas.tests.frame.test_sort_values_level_as_str import ascending class FunctionMgr: def __init__(self,sql_con): self.sql_con = sql_con pass ''' 获取大于某换手率的股票列表 ''' def GetTurnoverRateList(self,rate,start_date,end_date): data = pd.read_sql_query('select ts_code,trade_date,turnover_rate,turnover_rate_f from daily_basic where trade_date <='+str(end_date)+' and trade_date >='+str(start_date)+' and turnover_rate_f >='+str(rate),self.sql_con) return data ''' 获取时间段内平均换手率排名列表 ''' def GetTurnoverRateMeanSortList(self,start_date,end_date): data = self.GetTurnoverRateList(1, start_date, end_date) group = data.groupby(by = 'ts_code') def func(item): tmp = dict() tmp['mean_rate_f'] = item.turnover_rate_f.mean() tmp['mean_rate'] = item.turnover_rate.mean() tmp['mean_count'] = len(item) return pd.Series(tmp) ans = group.apply(func) return (ans) ''' 根据代码查询概念 ''' def GetConceptByCode(self,code): name_data =
pd.read_sql_query('select * from concept_info',self.sql_con)
pandas.read_sql_query
#%% Script to correct the metmast signals for metmast shadow effects # Steps to be followed in detail: # Import Lidar data and metmast data for one height into Pandas DataFrame [#### 80%] -> 115m, 85m, 55m*, 25m* # plot weibull and windrose # plot mast effects at the height [#### 80%] # combine and correct the mast effects [#### 80%] # verify the correction with metmast [#### 70%] # verify the correction with windcube [#### 70%] # %% user modules # %matplotlib qt import pandas as pd import sys, os, glob sys.path.append(r"../../userModules") sys.path.append(r"../fun") import numpy as np import runpy as rp import matplotlib.pyplot as plt import tikzplotlib as tz import re import seaborn as sns import datetime as DT from datetime import datetime sys.path.append(r"../../OneDasExplorer/Python Connector") sys.path.append(r"c:\Users\giyash\OneDrive - Fraunhofer\Python\Scripts\OneDasExplorer\Python Connector") sys.path.append(r"c:\Users\giyash\OneDrive - Fraunhofer\Python\Scripts\userModules") from odc_exportData import odc_exportData from FnImportOneDas import FnImportOneDas from FnImportFiles import FnImportFiles import matlab2py as m2p from pythonAssist import * from FnWsRange import * from FnTurbLengthScale import FnTurbLengthScale #%% user definitions inp=struct() inp.h115m = struct() out = struct() out.h115m = struct() inp.tiny = 12 inp.Small = 14 inp.Large = 18 inp.Huge = 22 plt.rc('font', size=inp.Small) # controls default text sizes plt.rc('axes', titlesize=inp.Small) # fontsize of the axes title plt.rc('axes', labelsize=inp.Large) # fontsize of the x and y labels plt.rc('xtick', labelsize=inp.Small) # fontsize of the tick labels plt.rc('ytick', labelsize=inp.Small) # fontsize of the tick labels plt.rc('legend', fontsize=inp.Small) # legend fontsize plt.rc('figure', titlesize=inp.Huge) # fontsize of the figure title # %% import channels and projects from OneDAS from FnGetChannelNames import FnGetChannelNames inp.prj_url = f"https://onedas.iwes.fraunhofer.de/api/v1/projects/%2FAIRPORT%2FAD8_PROTOTYPE%2FMETMAST_EXTENSION/channels" inp.channelNames, inp.prj_paths, inp.channel_paths, inp.units = FnGetChannelNames(inp.prj_url) ## Initializations inp.saveFig=1 inp.h115m.tstart = DT.datetime.strptime('2020-01-01_00-00-00', '%Y-%m-%d_%H-%M-%S') # Select start date in the form yyyy-mm-dd_HH-MM-SS inp.h115m.tend = DT.datetime.strptime('2020-12-31_00-00-00', '%Y-%m-%d_%H-%M-%S') # Select start date in the form yyyy-mm-dd_HH-MM-SS inp.h115m.sampleRate = [1/600] inp.device = ['Ammonit'] inp.target_folder = r"../data" inp.target_folder = "" # comment the following line to read the data VerificationData.dat from ../data/ # inp.searchStr = ".*M0.*(V|D)\d" inp.statStr = 's_mean' # %% import Lidar data try: inp.searchStr import pickle from more_itertools import chunked from FnFilterChannels import FnFilterChannels try: with open(r'../data/runVerification_MM.pickle', 'rb') as f: DF = pickle.load(f) print('[{0}] File (*.pickle) loaded into DF'.format(now())) except FileNotFoundError: print('[{0}] File (*.pickle) not found'.format(now())) DF = pd.DataFrame() for i in range(len(inp.device)): inp.h115m.ch_names, inp.h115m.paths = FnFilterChannels(inp.prj_url, inp.h115m.sampleRate[i], inp.device[i], inp.searchStr) for chunks in list(chunked(inp.h115m.ch_names,len(inp.ch_names))): _, df, t = FnImportOneDas(inp.h115m.tstart, inp.h115m.tend, inp.paths, chunks, inp.h115m.sampleRate[i], inp.target_folder) DF=
pd.concat([DF,df],axis=1)
pandas.concat
"""Tests suite for Period handling. Parts derived from scikits.timeseries code, original authors: - <NAME> & <NAME> - pierregm_at_uga_dot_edu - mattknow_ca_at_hotmail_dot_com """ from unittest import TestCase from datetime import datetime, timedelta from numpy.ma.testutils import assert_equal from pandas.tseries.period import Period, PeriodIndex from pandas.tseries.index import DatetimeIndex, date_range from pandas.tseries.tools import to_datetime import pandas.core.datetools as datetools import numpy as np from pandas import Series, TimeSeries from pandas.util.testing import assert_series_equal class TestPeriodProperties(TestCase): "Test properties such as year, month, weekday, etc...." # def __init__(self, *args, **kwds): TestCase.__init__(self, *args, **kwds) def test_interval_constructor(self): i1 = Period('1/1/2005', freq='M') i2 = Period('Jan 2005') self.assertEquals(i1, i2) i1 = Period('2005', freq='A') i2 = Period('2005') i3 = Period('2005', freq='a') self.assertEquals(i1, i2) self.assertEquals(i1, i3) i4 = Period('2005', freq='M') i5 = Period('2005', freq='m') self.assert_(i1 != i4) self.assertEquals(i4, i5) i1 = Period.now('Q') i2 = Period(datetime.now(), freq='Q') i3 = Period.now('q') self.assertEquals(i1, i2) self.assertEquals(i1, i3) # Biz day construction, roll forward if non-weekday i1 = Period('3/10/12', freq='B') i2 = Period('3/12/12', freq='D') self.assertEquals(i1, i2.asfreq('B')) i3 = Period('3/10/12', freq='b') self.assertEquals(i1, i3) i1 = Period(year=2005, quarter=1, freq='Q') i2 = Period('1/1/2005', freq='Q') self.assertEquals(i1, i2) i1 = Period(year=2005, quarter=3, freq='Q') i2 = Period('9/1/2005', freq='Q') self.assertEquals(i1, i2) i1 = Period(year=2005, month=3, day=1, freq='D') i2 = Period('3/1/2005', freq='D') self.assertEquals(i1, i2) i3 = Period(year=2005, month=3, day=1, freq='d') self.assertEquals(i1, i3) i1 = Period(year=2012, month=3, day=10, freq='B') i2 = Period('3/12/12', freq='B') self.assertEquals(i1, i2) i1 = Period('2005Q1') i2 = Period(year=2005, quarter=1, freq='Q') i3 = Period('2005q1') self.assertEquals(i1, i2) self.assertEquals(i1, i3) i1 = Period('05Q1') self.assertEquals(i1, i2) lower = Period('05q1') self.assertEquals(i1, lower) i1 = Period('1Q2005') self.assertEquals(i1, i2) lower = Period('1q2005') self.assertEquals(i1, lower) i1 = Period('1Q05') self.assertEquals(i1, i2) lower = Period('1q05') self.assertEquals(i1, lower) i1 = Period('4Q1984') self.assertEquals(i1.year, 1984) lower = Period('4q1984') self.assertEquals(i1, lower) i1 = Period('1982', freq='min') i2 = Period('1982', freq='MIN') self.assertEquals(i1, i2) i2 = Period('1982', freq=('Min', 1)) self.assertEquals(i1, i2) def test_freq_str(self): i1 = Period('1982', freq='Min') self.assert_(i1.freq[0] != '1') i2 =
Period('11/30/2005', freq='2Q')
pandas.tseries.period.Period
""" Co-occurrence Matrix / Associations =============================================================================== >>> from techminer2 import * >>> directory = "data/" >>> co_occurrence_matrix_associations( ... column='author_keywords', ... min_occ=3, ... directory=directory, ... ).head() word_A word_B co_occ 0 financial inclusion fintech 15 1 financial technologies fintech 14 2 blockchain fintech 13 3 innovation fintech 10 4 regulation fintech 10 """ import pandas as pd from .co_occurrence_matrix import co_occurrence_matrix def co_occurrence_matrix_associations( column, min_occ=1, directory="./", ): coc_matrix = co_occurrence_matrix( column, min_occ=min_occ, directory=directory, ) # ------------------------------------------------------------------------- names = coc_matrix.columns.get_level_values(0) n_cols = coc_matrix.shape[1] edges = [] for i_row in range(1, n_cols): for i_col in range(0, i_row): if coc_matrix.iloc[i_row, i_col] > 0: edges.append( { "word_A": names[i_row], "word_B": names[i_col], "co_occ": coc_matrix.iloc[i_row, i_col], } ) # ------------------------------------------------------------------------- co_occ =
pd.DataFrame(edges)
pandas.DataFrame
import numpy as np import pandas as pd import random def weighted_avg_and_std(values, weights): """computes weighted averages and stdevs Args: values (np.array): variable of interest weight (np.array): weight to assign each observation Returns: list of weighted mean and stdev """ average = np.average(values, weights=weights) variance = np.average((values - average)**2, weights=weights) ess = np.sum(weights)**2 / np.sum(weights**2) return [average, np.sqrt(variance) / np.sqrt(ess)] def erupt(y, tmt, optim_tmt, weights=None, names=None): """Calculates Expected Response Under Proposed Treatments Args: y (np.array): response variables tmt (np.array): treatment randomly assigned to observation optim_tmt (np.array): proposed treatment model assigns weights (np.array): weights for each observation. useful if treatment was not uniformly assigned names (list of str): names of response variables Returns: Expected means and stdevs of proposed treatments """ if weights is None: weights = np.ones(y.shape[0]) equal_locs = np.where(optim_tmt == tmt)[0] erupts = [weighted_avg_and_std(y[equal_locs][:, x].reshape(-1, 1), weights[equal_locs].reshape(-1, 1)) for x in range(y.shape[1])] erupts = pd.DataFrame(erupts) erupts.columns = ['mean', 'std'] if names is not None: erupts['response_var_names'] = names else: erupts['response_var_names'] = [ 'var_' + str(x) for x in range(y.shape[1])] return erupts def get_best_tmts(objective_weights, ice, unique_tmts): """Calulcates Optimal Treatment for a set of counterfactuals and weights. Args: objective_weights (np.array): list of weights to maximize in objective function ice (np.array): 3-d array of counterfactuals. num_tmts x num_observations x num_responses unique_tmts (np.array): list of treatments Returns: Optimal Treatment with specific objective function """ weighted_ice = [x * objective_weights for x in ice] sum_weighted_ice = np.array(weighted_ice).sum(axis=2) max_values = sum_weighted_ice.T.argmax(axis=1) best_tmt = unique_tmts[np.array(max_values)] return(best_tmt) def get_weights(tmts): """Calculates weights to apply to tmts. Weight is inversely proportional to how common each weight is. Args: tmts (np.array): treatments randomly assigned to Returns: array of length tmts that is weight to assign in erupt calculation """ tmts_pd = pd.DataFrame(tmts) tmts_pd.columns = ['tmt'] weight_mat = pd.DataFrame(pd.DataFrame( tmts).iloc[:, 0].value_counts() / len(tmts)) weight_mat['tmt'] = weight_mat.index weight_mat.columns = ['weight', 'tmt'] tmts_pd = tmts_pd.merge(weight_mat, on='tmt', how='left') observation_weights = 1.0 / np.array(tmts_pd['weight']).reshape(-1, 1) return observation_weights def get_erupts_curves_aupc(y, tmt, ice, unique_tmts, objective_weights, names=None): """Calculates optimal treatments and returns erupt Args: y (np.array): response variables tmt (np.array): treatment randomly assigned to observation ice (np.array): 3-d array of counterfactuals. num_tmts x num_observations x num_responses objective_weights (np.array): list of weights to maximize in objective function names (list of str): names of response variables Returns: Dataframe of ERUPT metrics for each response variable for a given set of objective weights """ all_erupts = [] all_distributions = [] observation_weights = get_weights(tmt) for obj_weight in objective_weights: optim_tmt = get_best_tmts(obj_weight, ice, unique_tmts) random_tmt = optim_tmt.copy()[ np.random.choice( len(optim_tmt), len(optim_tmt), replace=False)] str_obj_weight = ','.join([str(q) for q in obj_weight]) erupts = erupt(y, tmt, optim_tmt, weights=observation_weights, names=names) erupts_random = erupt(y, tmt, random_tmt, weights=observation_weights, names=names) erupts_random['weights'] = str_obj_weight erupts['weights'] = str_obj_weight erupts_random['assignment'] = 'random' erupts['assignment'] = 'model' erupts = pd.concat([erupts, erupts_random], axis=0) dists =
pd.DataFrame(optim_tmt)
pandas.DataFrame
from __future__ import print_function import numpy as np import time, os, sys import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage import color, feature, filters, io, measure, morphology, segmentation, img_as_ubyte, transform import warnings import math import pandas as pd import argparse import subprocess import re import glob from skimage.segmentation import clear_border from ortools.graph import pywrapgraph import time from fatetrack_connections import buildFeatureFrame, buildOffsetFrame, generateCandidates, generateLinks, DivSimScore, DivSetupScore, DivisionCanditates, UpdateConnectionsDiv, TranslationTable, SolveMinCostTable, ReviewCostTable def TranslateConnections(ConnectionTable, TranslationTable, timepoint, preference = "Master_ID"): subTranslationTable_0 = TranslationTable.loc[:,[preference,"slabel"]] subTranslationTable_0['slabel_t0'] = subTranslationTable_0['slabel'] subTranslationTable_1 = TranslationTable.loc[:,[preference,"slabel"]] subTranslationTable_1['slabel_t1'] = subTranslationTable_1['slabel'] merge_0 = pd.merge(ConnectionTable, subTranslationTable_0, on="slabel_t0") merge = pd.merge(merge_0, subTranslationTable_1, on="slabel_t1") pref = str(preference) result = merge.loc[:,[pref+"_x",pref+"_y"]] result = result.drop_duplicates() result = result.dropna(thresh=1) result = result.reset_index(drop=True) result = result.rename(columns = {(pref+"_x") : (pref+"_"+str(timepoint)), (pref+"_y") : (pref+"_"+str(timepoint+1))}) return(result) def RajTLG_wrap(filename_t0, filename_t1,timepoint,ConnectionTable,TranslationTable,path="./"): frame0 = buildFeatureFrame(filename_t0,timepoint,pathtoimage=path); frame1 = buildFeatureFrame(filename_t1,timepoint+1,pathtoimage=path); frames = pd.concat([frame0,frame1]) frames["timepoint"] = frames["time"] InfoDF = pd.merge(frames,TranslationTable, on=['label','timepoint']) RajTLG_translation = TranslateConnections(ConnectionTable=ConnectionTable, TranslationTable=TranslationTable, timepoint=timepoint, preference="RajTLG_ID") RajTLGFrame = pd.DataFrame() if (timepoint == 0): for i in range(RajTLG_translation.shape[0]): tmpID = RajTLG_translation.loc[i,"RajTLG_ID"+"_"+str(timepoint)] tmpFrame = int(InfoDF.loc[InfoDF["RajTLG_ID"] == RajTLG_translation.loc[i,"RajTLG_ID"+"_"+str(timepoint)],"frame"]) tmpX = int(InfoDF.loc[InfoDF["RajTLG_ID"] == RajTLG_translation.loc[i,"RajTLG_ID"+"_"+str(timepoint)],"centroid-1"]) tmpY = int(InfoDF.loc[InfoDF["RajTLG_ID"] == RajTLG_translation.loc[i,"RajTLG_ID"+"_"+str(timepoint)],"centroid-0"]) tmpParent = "NaN" RajTLGFrame = RajTLGFrame.append(pd.DataFrame([tmpID,tmpFrame,tmpX,tmpY,tmpParent]).T) for i in range(RajTLG_translation.shape[0]): tmpID = RajTLG_translation.loc[i,"RajTLG_ID"+"_"+str(timepoint+1)] tmpFrame = int(InfoDF.loc[InfoDF["RajTLG_ID"] == RajTLG_translation.loc[i,"RajTLG_ID"+"_"+str(timepoint+1)],"frame"]) tmpX = int(InfoDF.loc[InfoDF["RajTLG_ID"] == RajTLG_translation.loc[i,"RajTLG_ID"+"_"+str(timepoint+1)],"centroid-1"]) tmpY = int(InfoDF.loc[InfoDF["RajTLG_ID"] == RajTLG_translation.loc[i,"RajTLG_ID"+"_"+str(timepoint+1)],"centroid-0"]) tmpParent = int(RajTLG_translation.loc[RajTLG_translation["RajTLG_ID"+"_"+str(timepoint+1)] == tmpID, "RajTLG_ID"+"_"+str(timepoint)]) RajTLGFrame = RajTLGFrame.append(pd.DataFrame([tmpID,tmpFrame,tmpX,tmpY,tmpParent]).T) RajTLGFrame = RajTLGFrame.reset_index(drop=True) RajTLGFrame = RajTLGFrame.rename(columns={0:"pointID", 1:"frameNumber", 2:"xCoord",3:"yCoord",4:"parentID"}) RajTLGFrame["annotation"] = "none" #RajTLGFrame.to_csv(outfilename,index=False) return(RajTLGFrame) def MatchToGoldStd(FileCompare,FileGoldSTD): GoldSTD = pd.read_csv(FileGoldSTD) FateTrack = pd.read_csv(FileCompare) GoldTranslationTable = pd.DataFrame() for obj in range(FateTrack.shape[0]): FateID = FateTrack.loc[obj,"pointID"] frame = FateTrack.loc[obj,"frameNumber"] xC = FateTrack.loc[obj,"xCoord"] yC = FateTrack.loc[obj,"yCoord"] tmpGold = GoldSTD.loc[GoldSTD["frameNumber"] == frame,] tmpGold = tmpGold.reset_index(drop=True) dist = np.array(np.sqrt((tmpGold["xCoord"]-xC)**2 + (tmpGold["yCoord"]-yC)**2)) GoldIndex = np.where(dist == dist.min())[0][0] GoldID = tmpGold.loc[GoldIndex,"pointID"] GoldTranslationTable = GoldTranslationTable.append(pd.DataFrame([GoldID,FateID]).T) GoldTranslationTable = GoldTranslationTable.rename(columns={0:"GoldID",1:"FateID"}) return(GoldTranslationTable) def CheckAccuracy(frame,FileCompare,FileGoldSTD,skip=0): TranslateGold = MatchToGoldStd(FileCompare,FileGoldSTD) GoldSTD = pd.read_csv(FileGoldSTD) FateTrack =
pd.read_csv(FileCompare)
pandas.read_csv
# -*- coding: utf-8 -*- """ @author: <NAME> """ import os from datetime import date import pprint import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import sqlite3 import pandas as pd from db_tools import otherm_db_reader from utilities import misc_functions mpl.use('Qt5Agg') C_to_F = misc_functions.C_to_F def get_mfr_data(heat_pump): db_name = os.path.join('../temp_files/MfrPD.db') mfr_db_con = sqlite3.connect(db_name) sql = """SELECT * from '%s' """ % heat_pump pd_table = pd.read_sql(sql, mfr_db_con) mfr_db_con.close() return pd_table def mfr_data(HP_ids): mfr_pl = get_mfr_data(HP_ids[0]) mfr_pl['EWT [F]'] = pd.Series(mfr_pl['EWT [F]']).fillna(method='ffill') mfr_pl['Flow [GPM]'] =
pd.Series(mfr_pl['Flow [GPM]'])
pandas.Series
# -*- coding: utf-8 -*- from os import listdir, remove from os.path import join from boto3 import Session from moto import mock_s3 import numpy as np import pandas as pd import pytest @pytest.fixture(scope="session") def clean_receiving_dir(): # Clean receiving directory for fname in listdir("receiving"): if fname not in (".gitkeep", ".gitignore"): remove(join("receiving", fname)) @pytest.fixture def CAN_parquet_data(): columns = ["provider", "dt", "location_id", "location", "location_type", "variable_name", "measurement", "unit", "age", "race", "ethnicity", "sex", "last_updated", "value"] data = [ ["cdc", "2021-01-01", "iso1:us#iso2:us-al#fips:01001", 1001, "county", "pcr_tests_positive", "rolling_average_7_day", "percentage", "all", "all", "all", "all", "2021-01-02 19:00:00", 50.0], ["cdc", "2021-01-01", "iso1:us#iso2:us-al#fips:01003", 1003, "county", "pcr_tests_positive", "rolling_average_7_day", "percentage", "all", "all", "all", "all", "2021-01-02 19:00:00", 25.0], ["cdc", "2021-01-01", "iso1:us#iso2:us-al#fips:01005", 1005, "county", "pcr_tests_positive", "rolling_average_7_day", "percentage", "all", "all", "all", "all", "2021-01-02 19:00:00", 50.0], ["cdc", "2021-01-01", "iso1:us#iso2:us-al#fips:01001", 1001, "county", "pcr_tests_total", "rolling_average_7_day", "specimens", "all", "all", "all", "all", "2021-01-02 19:00:00", 10.0], ["cdc", "2021-01-01", "iso1:us#iso2:us-al#fips:01003", 1003, "county", "pcr_tests_total", "rolling_average_7_day", "specimens", "all", "all", "all", "all", "2021-01-02 19:00:00", 20.0], ["cdc", "2021-01-01", "iso1:us#iso2:us-al#fips:01005", 1005, "county", "pcr_tests_total", "rolling_average_7_day", "specimens", "all", "all", "all", "all", "2021-01-02 19:00:00", 20.0], ["cdc", "2021-01-01", "iso1:us#iso2:us-pa#fips:42001", 42001, "county", "pcr_tests_positive", "rolling_average_7_day", "percentage", "all", "all", "all", "all", "2021-01-02 19:00:00", 50.0], ["cdc", "2021-01-01", "iso1:us#iso2:us-pa#fips:42003", 42003, "county", "pcr_tests_positive", "rolling_average_7_day", "percentage", "all", "all", "all", "all", "2021-01-02 19:00:00", 20.0], ["cdc", "2021-01-01", "iso1:us#iso2:us-pa#fips:42005", 42005, "county", "pcr_tests_positive", "rolling_average_7_day", "percentage", "all", "all", "all", "all", "2021-01-02 19:00:00", 10.0], ["cdc", "2021-01-01", "iso1:us#iso2:us-pa#fips:42001", 42001, "county", "pcr_tests_total", "rolling_average_7_day", "specimens", "all", "all", "all", "all", "2021-01-02 19:00:00", 10.0], ["cdc", "2021-01-01", "iso1:us#iso2:us-pa#fips:42003", 42003, "county", "pcr_tests_total", "rolling_average_7_day", "specimens", "all", "all", "all", "all", "2021-01-02 19:00:00", 20.0], ["cdc", "2021-01-01", "iso1:us#iso2:us-pa#fips:42005", 42005, "county", "pcr_tests_total", "rolling_average_7_day", "specimens", "all", "all", "all", "all", "2021-01-02 19:00:00", 10.0], ["SOME_SOURCE", "2021-01-15", "iso1:us#iso2:us-fl#fips:12093", 12093, "county", "SOME_OTHER_METRIC", "SOME_MEASUREMENT", "SOME_UNITS", "all", "all", "all", "all", "2021-01-21 19:00:00", 123.0], ] df_pq = pd.DataFrame(data, columns=columns) return df_pq @pytest.fixture def CAN_county_testing_data(): columns = ["fips", "timestamp", "pcr_tests_positive", "pcr_tests_total", "pcr_positivity_rate"] data = [ ["01001", "2021-01-01", 5, 10, 0.5], ["01003", "2021-01-01", 5, 20, 0.25], ["01005", "2021-01-01", 10, 20, 0.5], ["42001", "2021-01-01", 5, 10, 0.5], ["42003", "2021-01-01", 4, 20, 0.2], ["42005", "2021-01-01", 1, 10, 0.1], ] df = pd.DataFrame(data, columns=columns) df["timestamp"] = pd.to_datetime(df["timestamp"]) p, n = df.pcr_positivity_rate, df.pcr_tests_total df["se"] = np.sqrt(p * (1 - p) / n) return df @pytest.fixture def CAN_state_testing_data(): columns = ["fips", "timestamp", "pcr_tests_positive", "pcr_tests_total", "pcr_positivity_rate"] data = [ ["al", "2021-01-01", 20, 50, 0.4], ["pa", "2021-01-01", 10, 40, 0.25] ] df = pd.DataFrame(data, columns=columns) df["timestamp"] = pd.to_datetime(df["timestamp"]) p, n = df.pcr_positivity_rate, df.pcr_tests_total df["se"] = np.sqrt(p * (1 - p) / n) return df @pytest.fixture def CAN_msa_testing_data(): columns = ["fips", "timestamp", "pcr_tests_positive", "pcr_tests_total", "pcr_positivity_rate"] data = [ ["19300", "2021-01-01", 5, 20, 0.25], ["23900", "2021-01-01", 5, 10, 0.5], ["33860", "2021-01-01", 5, 10, 0.5], ["38300", "2021-01-01", 5, 30, 5 / 30], ] df = pd.DataFrame(data, columns=columns) df["timestamp"] = pd.to_datetime(df["timestamp"]) p, n = df.pcr_positivity_rate, df.pcr_tests_total df["se"] = np.sqrt(p * (1 - p) / n) return df @pytest.fixture def CAN_hrr_testing_data(): columns = ["fips", "timestamp", "pcr_tests_positive", "pcr_tests_total", "pcr_positivity_rate"] data = [ ["1", "2021-01-01", 0.195525, 0.391050, 0.5], ["134", "2021-01-01", 0.159989, 0.639958, 0.25], ["2", "2021-01-01", 9.743599, 19.487198, 0.5], ["351", "2021-01-01", 0.0145052, 0.145052, 0.1], ["352", "2021-01-01", 2.690298, 5.380595, 0.5], ["357", "2021-01-01", 4.985495, 29.854948, 0.166991], ["363", "2021-01-01", 2.309702, 4.619405, 0.5], ["6", "2021-01-01", 4.840011, 19.360042, 0.25], ["7", "2021-01-01", 5.060876, 10.121752, 0.5], ] df = pd.DataFrame(data, columns=columns) df["timestamp"] = pd.to_datetime(df["timestamp"]) p, n = df.pcr_positivity_rate, df.pcr_tests_total df["se"] = np.sqrt(p * (1 - p) / n) return df @pytest.fixture def CAN_hhs_testing_data(): columns = ["fips", "timestamp", "pcr_tests_positive", "pcr_tests_total", "pcr_positivity_rate"] data = [ ["3", "2021-01-01", 10, 40, 0.25], ["4", "2021-01-01", 20, 50, 0.4], ] df = pd.DataFrame(data, columns=columns) df["timestamp"] = pd.to_datetime(df["timestamp"]) p, n = df.pcr_positivity_rate, df.pcr_tests_total df["se"] = np.sqrt(p * (1 - p) / n) return df @pytest.fixture def CAN_nation_testing_data(): columns = ["fips", "timestamp", "pcr_tests_positive", "pcr_tests_total", "pcr_positivity_rate"] data = [ ["us", "2021-01-01", 30, 90, 30 / 90], ] df =
pd.DataFrame(data, columns=columns)
pandas.DataFrame
import os import pandas as pd import pytest from pandas.testing import assert_frame_equal from .. import read_sql @pytest.fixture(scope="module") # type: ignore def oracle_url() -> str: conn = os.environ["ORACLE_URL"] return conn @pytest.mark.xfail @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_on_non_select(oracle_url: str) -> None: query = "CREATE TABLE non_select(id INTEGER NOT NULL)" read_sql(oracle_url, query) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_complex_join(oracle_url: str) -> None: query = "SELECT a.test_int, b.test_date, c.test_num_int FROM test_table a left join test_types b on a.test_int = b.test_num_int cross join (select test_num_int from test_types) c where c.test_num_int < 3" df = read_sql(oracle_url, query) df = df.sort_values("TEST_INT").reset_index(drop=True) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 4, 5, 5, 2333], dtype="Int64"), "TEST_DATE": pd.Series( ["2019-05-21", None, None, "2020-05-21", "2020-05-21", None], dtype="datetime64[ns]", ), "TEST_NUM_INT": pd.Series([1, 1, 1, 1, 1, 1], dtype="Int64"), } ) assert_frame_equal(df, expected, check_names=True) def test_oracle_complex_join(oracle_url: str) -> None: query = "SELECT a.test_int, b.test_date, c.test_num_int FROM test_table a left join test_types b on a.test_int = b.test_num_int cross join (select test_num_int from test_types) c where c.test_num_int < 3" df = read_sql(oracle_url, query) df = df.sort_values("TEST_INT").reset_index(drop=True) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 4, 5, 5, 2333], dtype="Int64"), "TEST_DATE": pd.Series( ["2019-05-21", None, None, "2020-05-21", "2020-05-21", None], dtype="datetime64[ns]", ), "TEST_NUM_INT": pd.Series([1, 1, 1, 1, 1, 1], dtype="Int64"), } ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_complex_join(oracle_url: str) -> None: query = "SELECT a.test_int, b.test_date, c.test_num_int FROM test_table a left join test_types b on a.test_int = b.test_num_int cross join (select test_num_int from test_types) c where c.test_num_int < 3" df = read_sql(oracle_url, query) df = df.sort_values("TEST_INT").reset_index(drop=True) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 4, 5, 5, 2333], dtype="Int64"), "TEST_DATE": pd.Series( ["2019-05-21", None, None, "2020-05-21", "2020-05-21", None], dtype="datetime64[ns]", ), "TEST_NUM_INT": pd.Series([1, 1, 1, 1, 1, 1], dtype="Int64"), } ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_aggregation(oracle_url: str) -> None: query = "select avg(test_int), test_char from test_table group by test_char" df = read_sql(oracle_url, query) df = df.sort_values("AVG(TEST_INT)").reset_index(drop=True) expected = pd.DataFrame( data={ "AVG(TEST_INT)": pd.Series([1, 2, 5, 1168.5], dtype="float64"), "TEST_CHAR": pd.Series(["str1 ", "str2 ", "str05", None], dtype="object"), }, ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_partition_on_aggregation(oracle_url: str) -> None: query = "select sum(test_int) cid, test_char from test_table group by test_char" df = read_sql(oracle_url, query, partition_on="cid", partition_num=3) df = df.sort_values("CID").reset_index(drop=True) expected = pd.DataFrame( index=range(4), data={ "CID": pd.Series([1, 2, 5, 2337], dtype="float64"), "TEST_CHAR": pd.Series(["str1 ", "str2 ", "str05", None], dtype="object"), }, ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_aggregation2(oracle_url: str) -> None: query = "select DISTINCT(test_char) from test_table" df = read_sql(oracle_url, query) expected = pd.DataFrame( data={ "TEST_CHAR": pd.Series(["str05", "str1 ", "str2 ", None], dtype="object"), }, ) df.sort_values(by="TEST_CHAR", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_partition_on_aggregation2(oracle_url: str) -> None: query = "select MAX(test_int) MAX, MIN(test_int) MIN from test_table" df = read_sql(oracle_url, query, partition_on="MAX", partition_num=2) expected = pd.DataFrame( index=range(1), data={ "MAX": pd.Series([2333], dtype="float64"), "MIN": pd.Series([1], dtype="float64"), }, ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_manual_partition(oracle_url: str) -> None: queries = [ "SELECT * FROM test_table WHERE test_int < 2", "SELECT * FROM test_table WHERE test_int >= 2", ] df = read_sql(oracle_url, query=queries) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 4, 5, 2333], dtype="Int64"), "TEST_CHAR": pd.Series( ["str1 ", "str2 ", None, "str05", None], dtype="object" ), "TEST_FLOAT": pd.Series([1.1, 2.2, -4.44, None, None], dtype="float64"), }, ) df.sort_values(by="TEST_INT", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_without_partition(oracle_url: str) -> None: query = "SELECT * FROM test_table" df = read_sql(oracle_url, query) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 2333, 4, 5], dtype="Int64"), "TEST_CHAR": pd.Series( ["str1 ", "str2 ", None, None, "str05"], dtype="object" ), "TEST_FLOAT": pd.Series([1.1, 2.2, None, -4.44, None], dtype="float64"), }, ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_limit_without_partition(oracle_url: str) -> None: query = "SELECT * FROM test_table where rownum <= 3" df = read_sql(oracle_url, query) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 2333], dtype="Int64"), "TEST_CHAR": pd.Series(["str1 ", "str2 ", None], dtype="object"), "TEST_FLOAT": pd.Series([1.1, 2.2, None], dtype="float64"), }, ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_limit_large_without_partition(oracle_url: str) -> None: query = "SELECT * FROM test_table where rownum < 10" df = read_sql(oracle_url, query) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 2333, 4, 5], dtype="Int64"), "TEST_CHAR": pd.Series( ["str1 ", "str2 ", None, None, "str05"], dtype="object" ), "TEST_FLOAT": pd.Series([1.1, 2.2, None, -4.44, None], dtype="float64"), }, ) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_with_partition(oracle_url: str) -> None: query = "SELECT * FROM test_table" df = read_sql( oracle_url, query, partition_on="test_int", partition_range=(0, 5001), partition_num=3, ) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 4, 5, 2333], dtype="Int64"), "TEST_CHAR": pd.Series( ["str1 ", "str2 ", None, "str05", None], dtype="object" ), "TEST_FLOAT": pd.Series([1.1, 2.2, -4.44, None, None], dtype="float64"), }, ) df.sort_values(by="TEST_INT", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_with_partition_without_partition_range(oracle_url: str) -> None: query = "SELECT * FROM test_table where test_float > 1" df = read_sql( oracle_url, query, partition_on="test_int", partition_num=3, ) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2], dtype="Int64"), "TEST_CHAR": pd.Series(["str1 ", "str2 "], dtype="object"), "TEST_FLOAT": pd.Series([1.1, 2.2], dtype="float64"), }, ) df.sort_values(by="TEST_INT", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_with_partition_and_selection(oracle_url: str) -> None: query = "SELECT * FROM test_table WHERE 1 = 3 OR 2 = 2" df = read_sql( oracle_url, query, partition_on="test_int", partition_range=(1, 2333), partition_num=3, ) expected = pd.DataFrame( data={ "TEST_INT": pd.Series([1, 2, 4, 5, 2333], dtype="Int64"), "TEST_CHAR": pd.Series( ["str1 ", "str2 ", None, "str05", None], dtype="object" ), "TEST_FLOAT": pd.Series([1.1, 2.2, -4.44, None, None], dtype="float64"), }, ) df.sort_values(by="TEST_INT", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) @pytest.mark.skipif( not os.environ.get("ORACLE_URL"), reason="Test oracle only when `ORACLE_URL` is set" ) def test_oracle_with_partition_and_spja(oracle_url: str) -> None: query = "select test_table.test_int cid, SUM(test_types.test_num_float) sfloat from test_table, test_types where test_table.test_int=test_types.test_num_int group by test_table.test_int" df = read_sql(oracle_url, query, partition_on="cid", partition_num=2) expected = pd.DataFrame( data={ "CID":
pd.Series([1, 5], dtype="Int64")
pandas.Series
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values('a', axis=1) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values('a', axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float('nan')]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([('a', value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = (DataFrame(data) .sort_values((11, 21)) .sort_values(('a', value), axis=1)) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(('a', value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6') def test_constructor_dict_order_insertion(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ba')) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason='order by value for Python<3.6') def test_constructor_dict_order_by_values(self): # GH19018 # initialization ordering: by value if python<3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ab')) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(3, 1\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(2, 2\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) msg = ("If using all scalar " "values, you must pass " "an index") with pytest.raises(ValueError, match=msg): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame({col: dict(compat.iteritems(val)) for col, val in compat.iteritems(data)}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) assert isinstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal(result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M') b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D') df = pd.DataFrame({'a': a, 'b': b}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype # list of periods df = pd.DataFrame({'a': a.astype(object).tolist(), 'b': b.astype(object).tolist()}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype def test_nested_dict_frame_constructor(self): rng = pd.period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(col, {})[row] = df.get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(row, {})[col] = df.get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def _check_basic_constructor(self, empty): # mat: 2d matrix with shape (3, 2) to input. empty - makes sized # objects mat = empty((2, 3), dtype=float) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 # 1-D input frame = DataFrame(empty((3,)), columns=['A'], index=[1, 2, 3]) assert len(frame.index) == 3 assert len(frame.columns) == 1 # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # wrong size axis labels msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B', 'C'], index=[1]) msg = r'Shape of passed values is \(3, 2\), indices imply \(2, 2\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B'], index=[1, 2]) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(empty((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # automatic labeling frame = DataFrame(mat) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, index=[1, 2]) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, columns=['A', 'B', 'C']) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) # 0-length axis frame = DataFrame(empty((0, 3))) assert len(frame.index) == 0 frame = DataFrame(empty((3, 0))) assert len(frame.columns) == 0 def test_constructor_ndarray(self): self._check_basic_constructor(np.ones) frame = DataFrame(['foo', 'bar'], index=[0, 1], columns=['A']) assert len(frame) == 2 def test_constructor_maskedarray(self): self._check_basic_constructor(ma.masked_all) # Check non-masked values mat = ma.masked_all((2, 3), dtype=float) mat[0, 0] = 1.0 mat[1, 2] = 2.0 frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert 1.0 == frame['A'][1] assert 2.0 == frame['C'][2] # what is this even checking?? mat = ma.masked_all((2, 3), dtype=float) frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert np.all(~np.asarray(frame == frame)) def test_constructor_maskedarray_nonfloat(self): # masked int promoted to float mat = ma.masked_all((2, 3), dtype=int) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.float64) assert frame.values.dtype == np.float64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'][1] assert 2 == frame['C'][2] # masked np.datetime64 stays (use NaT as null) mat = ma.masked_all((2, 3), dtype='M8[ns]') # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert isna(frame).values.all() # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'].view('i8')[1] assert 2 == frame['C'].view('i8')[2] # masked bool promoted to object mat = ma.masked_all((2, 3), dtype=bool) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=object) assert frame.values.dtype == object # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = True mat2[1, 2] = False frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert frame['A'][1] is True assert frame['C'][2] is False def test_constructor_mrecarray(self): # Ensure mrecarray produces frame identical to dict of masked arrays # from GH3479 assert_fr_equal = functools.partial(tm.assert_frame_equal, check_index_type=True, check_column_type=True, check_frame_type=True) arrays = [ ('float', np.array([1.5, 2.0])), ('int', np.array([1, 2])), ('str', np.array(['abc', 'def'])), ] for name, arr in arrays[:]: arrays.append(('masked1_' + name, np.ma.masked_array(arr, mask=[False, True]))) arrays.append(('masked_all', np.ma.masked_all((2,)))) arrays.append(('masked_none', np.ma.masked_array([1.0, 2.5], mask=False))) # call assert_frame_equal for all selections of 3 arrays for comb in itertools.combinations(arrays, 3): names, data = zip(*comb) mrecs = mrecords.fromarrays(data, names=names) # fill the comb comb = {k: (v.filled() if hasattr(v, 'filled') else v) for k, v in comb} expected = DataFrame(comb, columns=names) result = DataFrame(mrecs) assert_fr_equal(result, expected) # specify columns expected = DataFrame(comb, columns=names[::-1]) result = DataFrame(mrecs, columns=names[::-1]) assert_fr_equal(result, expected) # specify index expected = DataFrame(comb, columns=names, index=[1, 2]) result = DataFrame(mrecs, index=[1, 2]) assert_fr_equal(result, expected) def test_constructor_corner_shape(self): df = DataFrame(index=[]) assert df.values.shape == (0, 0) @pytest.mark.parametrize("data, index, columns, dtype, expected", [ (None, lrange(10), ['a', 'b'], object, np.object_), (None, None, ['a', 'b'], 'int64', np.dtype('int64')), (None, lrange(10), ['a', 'b'], int, np.dtype('float64')), ({}, None, ['foo', 'bar'], None, np.object_), ({'b': 1}, lrange(10), list('abc'), int, np.dtype('float64')) ]) def test_constructor_dtype(self, data, index, columns, dtype, expected): df = DataFrame(data, index, columns, dtype) assert df.values.dtype == expected def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) assert df['int'].dtype == np.int64 assert df['bool'].dtype == np.bool_ assert df['float'].dtype == np.float64 assert df['complex'].dtype == np.complex128 assert df['object'].dtype == np.object_ def test_constructor_arrays_and_scalars(self): df = DataFrame({'a': randn(10), 'b': True}) exp = DataFrame({'a': df['a'].values, 'b': [True] * 10}) tm.assert_frame_equal(df, exp) with pytest.raises(ValueError, match='must pass an index'): DataFrame({'a': False, 'b': True}) def test_constructor_DataFrame(self): df = DataFrame(self.frame) tm.assert_frame_equal(df, self.frame) df_casted = DataFrame(self.frame, dtype=np.int64) assert df_casted.values.dtype == np.int64 def test_constructor_more(self): # used to be in test_matrix.py arr = randn(10) dm = DataFrame(arr, columns=['A'], index=np.arange(10)) assert dm.values.ndim == 2 arr = randn(0) dm = DataFrame(arr) assert dm.values.ndim == 2 assert dm.values.ndim == 2 # no data specified dm = DataFrame(columns=['A', 'B'], index=np.arange(10)) assert dm.values.shape == (10, 2) dm = DataFrame(columns=['A', 'B']) assert dm.values.shape == (0, 2) dm = DataFrame(index=np.arange(10)) assert dm.values.shape == (10, 0) # can't cast mat = np.array(['foo', 'bar'], dtype=object).reshape(2, 1) with pytest.raises(ValueError, match='cast'): DataFrame(mat, index=[0, 1], columns=[0], dtype=float) dm = DataFrame(DataFrame(self.frame._series)) tm.assert_frame_equal(dm, self.frame) # int cast dm = DataFrame({'A': np.ones(10, dtype=int), 'B': np.ones(10, dtype=np.float64)}, index=np.arange(10)) assert len(dm.columns) == 2 assert dm.values.dtype == np.float64 def test_constructor_empty_list(self): df = DataFrame([], index=[]) expected = DataFrame(index=[]) tm.assert_frame_equal(df, expected) # GH 9939 df = DataFrame([], columns=['A', 'B']) expected = DataFrame({}, columns=['A', 'B']) tm.assert_frame_equal(df, expected) # Empty generator: list(empty_gen()) == [] def empty_gen(): return yield df = DataFrame(empty_gen(), columns=['A', 'B']) tm.assert_frame_equal(df, expected) def test_constructor_list_of_lists(self): # GH #484 df = DataFrame(data=[[1, 'a'], [2, 'b']], columns=["num", "str"]) assert is_integer_dtype(df['num']) assert df['str'].dtype == np.object_ # GH 4851 # list of 0-dim ndarrays expected = DataFrame({0: np.arange(10)}) data = [np.array(x) for x in range(10)] result = DataFrame(data) tm.assert_frame_equal(result, expected) def test_constructor_sequence_like(self): # GH 3783 # collections.Squence like class DummyContainer(compat.Sequence): def __init__(self, lst): self._lst = lst def __getitem__(self, n): return self._lst.__getitem__(n) def __len__(self, n): return self._lst.__len__() lst_containers = [DummyContainer([1, 'a']), DummyContainer([2, 'b'])] columns = ["num", "str"] result = DataFrame(lst_containers, columns=columns) expected = DataFrame([[1, 'a'], [2, 'b']], columns=columns) tm.assert_frame_equal(result, expected, check_dtype=False) # GH 4297 # support Array import array result = DataFrame({'A': array.array('i', range(10))}) expected = DataFrame({'A': list(range(10))}) tm.assert_frame_equal(result, expected, check_dtype=False) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([array.array('i', range(10)), array.array('i', range(10))]) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_iterable(self): # GH 21987 class Iter(): def __iter__(self): for i in range(10): yield [1, 2, 3] expected = DataFrame([[1, 2, 3]] * 10) result = DataFrame(Iter()) tm.assert_frame_equal(result, expected) def test_constructor_iterator(self): expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([range(10), range(10)]) tm.assert_frame_equal(result, expected) def test_constructor_generator(self): # related #2305 gen1 = (i for i in range(10)) gen2 = (i for i in range(10)) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([gen1, gen2]) tm.assert_frame_equal(result, expected) gen = ([i, 'a'] for i in range(10)) result = DataFrame(gen) expected = DataFrame({0: range(10), 1: 'a'}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_list_of_dicts(self): data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] result = DataFrame(data) expected = DataFrame.from_dict(dict(zip(range(len(data)), data)), orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result = DataFrame([{}]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_preserve_order(self): # see gh-13304 expected = DataFrame([[2, 1]], columns=['b', 'a']) data = OrderedDict() data['b'] = [2] data['a'] = [1] result = DataFrame(data) tm.assert_frame_equal(result, expected) data = OrderedDict() data['b'] = 2 data['a'] = 1 result = DataFrame([data]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_conflicting_orders(self): # the first dict element sets the ordering for the DataFrame, # even if there are conflicting orders from subsequent ones row_one = OrderedDict() row_one['b'] = 2 row_one['a'] = 1 row_two = OrderedDict() row_two['a'] = 1 row_two['b'] = 2 row_three = {'b': 2, 'a': 1} expected = DataFrame([[2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two]) tm.assert_frame_equal(result, expected) expected = DataFrame([[2, 1], [2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two, row_three]) tm.assert_frame_equal(result, expected) def test_constructor_list_of_series(self): data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(['x', 'y'], data)) idx = Index(['a', 'b', 'c']) # all named data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx, name='y')] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) # some unnamed data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) sdict = OrderedDict(zip(['x', 'Unnamed 0'], data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result.sort_index(), expected) # none named data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] data = [Series(d) for d in data] result = DataFrame(data) sdict = OrderedDict(zip(range(len(data)), data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result2 = DataFrame(data, index=np.arange(6)) tm.assert_frame_equal(result, result2) result = DataFrame([Series({})]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]),
OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])
pandas.compat.OrderedDict
from datetime import datetime from decimal import Decimal from io import StringIO import numpy as np import pytest from pandas.errors import PerformanceWarning import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, read_csv import pandas._testing as tm from pandas.core.base import SpecificationError import pandas.core.common as com def test_repr(): # GH18203 result = repr(pd.Grouper(key="A", level="B")) expected = "Grouper(key='A', level='B', axis=0, sort=False)" assert result == expected @pytest.mark.parametrize("dtype", ["int64", "int32", "float64", "float32"]) def test_basic(dtype): data = Series(np.arange(9) // 3, index=np.arange(9), dtype=dtype) index = np.arange(9) np.random.shuffle(index) data = data.reindex(index) grouped = data.groupby(lambda x: x // 3) for k, v in grouped: assert len(v) == 3 agged = grouped.aggregate(np.mean) assert agged[1] == 1 tm.assert_series_equal(agged, grouped.agg(np.mean)) # shorthand tm.assert_series_equal(agged, grouped.mean()) tm.assert_series_equal(grouped.agg(np.sum), grouped.sum()) expected = grouped.apply(lambda x: x * x.sum()) transformed = grouped.transform(lambda x: x * x.sum()) assert transformed[7] == 12 tm.assert_series_equal(transformed, expected) value_grouped = data.groupby(data) tm.assert_series_equal( value_grouped.aggregate(np.mean), agged, check_index_type=False ) # complex agg agged = grouped.aggregate([np.mean, np.std]) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped.aggregate({"one": np.mean, "two": np.std}) group_constants = {0: 10, 1: 20, 2: 30} agged = grouped.agg(lambda x: group_constants[x.name] + x.mean()) assert agged[1] == 21 # corner cases msg = "Must produce aggregated value" # exception raised is type Exception with pytest.raises(Exception, match=msg): grouped.aggregate(lambda x: x * 2) def test_groupby_nonobject_dtype(mframe, df_mixed_floats): key = mframe.index.codes[0] grouped = mframe.groupby(key) result = grouped.sum() expected = mframe.groupby(key.astype("O")).sum() tm.assert_frame_equal(result, expected) # GH 3911, mixed frame non-conversion df = df_mixed_floats.copy() df["value"] = range(len(df)) def max_value(group): return group.loc[group["value"].idxmax()] applied = df.groupby("A").apply(max_value) result = applied.dtypes expected = Series( [np.dtype("object")] * 2 + [np.dtype("float64")] * 2 + [np.dtype("int64")], index=["A", "B", "C", "D", "value"], ) tm.assert_series_equal(result, expected) def test_groupby_return_type(): # GH2893, return a reduced type df1 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 2, "val2": 27}, {"val1": 2, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df1.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) df2 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 1, "val2": 27}, {"val1": 1, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df2.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) # GH3596, return a consistent type (regression in 0.11 from 0.10.1) df = DataFrame([[1, 1], [1, 1]], columns=["X", "Y"]) with tm.assert_produces_warning(FutureWarning): result = df.groupby("X", squeeze=False).count() assert isinstance(result, DataFrame) def test_inconsistent_return_type(): # GH5592 # inconsistent return type df = DataFrame( dict( A=["Tiger", "Tiger", "Tiger", "Lamb", "Lamb", "Pony", "Pony"], B=Series(np.arange(7), dtype="int64"), C=date_range("20130101", periods=7), ) ) def f(grp): return grp.iloc[0] expected = df.groupby("A").first()[["B"]] result = df.groupby("A").apply(f)[["B"]] tm.assert_frame_equal(result, expected) def f(grp): if grp.name == "Tiger": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Tiger"] = np.nan tm.assert_frame_equal(result, e) def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Pony"] = np.nan tm.assert_frame_equal(result, e) # 5592 revisited, with datetimes def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["C"]] e = df.groupby("A").first()[["C"]] e.loc["Pony"] = pd.NaT tm.assert_frame_equal(result, e) # scalar outputs def f(grp): if grp.name == "Pony": return None return grp.iloc[0].loc["C"] result = df.groupby("A").apply(f) e = df.groupby("A").first()["C"].copy() e.loc["Pony"] = np.nan e.name = None tm.assert_series_equal(result, e) def test_pass_args_kwargs(ts, tsframe): def f(x, q=None, axis=0): return np.percentile(x, q, axis=axis) g = lambda x: np.percentile(x, 80, axis=0) # Series ts_grouped = ts.groupby(lambda x: x.month) agg_result = ts_grouped.agg(np.percentile, 80, axis=0) apply_result = ts_grouped.apply(np.percentile, 80, axis=0) trans_result = ts_grouped.transform(np.percentile, 80, axis=0) agg_expected = ts_grouped.quantile(0.8) trans_expected = ts_grouped.transform(g) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) agg_result = ts_grouped.agg(f, q=80) apply_result = ts_grouped.apply(f, q=80) trans_result = ts_grouped.transform(f, q=80) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) # DataFrame df_grouped = tsframe.groupby(lambda x: x.month) agg_result = df_grouped.agg(np.percentile, 80, axis=0) apply_result = df_grouped.apply(DataFrame.quantile, 0.8) expected = df_grouped.quantile(0.8) tm.assert_frame_equal(apply_result, expected, check_names=False) tm.assert_frame_equal(agg_result, expected) agg_result = df_grouped.agg(f, q=80) apply_result = df_grouped.apply(DataFrame.quantile, q=0.8) tm.assert_frame_equal(agg_result, expected) tm.assert_frame_equal(apply_result, expected, check_names=False) def test_len(): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) assert len(grouped) == len(df) grouped = df.groupby([lambda x: x.year, lambda x: x.month]) expected = len({(x.year, x.month) for x in df.index}) assert len(grouped) == expected # issue 11016 df = pd.DataFrame(dict(a=[np.nan] * 3, b=[1, 2, 3])) assert len(df.groupby(("a"))) == 0 assert len(df.groupby(("b"))) == 3 assert len(df.groupby(["a", "b"])) == 3 def test_basic_regression(): # regression result = Series([1.0 * x for x in list(range(1, 10)) * 10]) data = np.random.random(1100) * 10.0 groupings = Series(data) grouped = result.groupby(groupings) grouped.mean() @pytest.mark.parametrize( "dtype", ["float64", "float32", "int64", "int32", "int16", "int8"] ) def test_with_na_groups(dtype): index = Index(np.arange(10)) values = Series(np.ones(10), index, dtype=dtype) labels = Series( [np.nan, "foo", "bar", "bar", np.nan, np.nan, "bar", "bar", np.nan, "foo"], index=index, ) # this SHOULD be an int grouped = values.groupby(labels) agged = grouped.agg(len) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) # assert issubclass(agged.dtype.type, np.integer) # explicitly return a float from my function def f(x): return float(len(x)) agged = grouped.agg(f) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) assert issubclass(agged.dtype.type, np.dtype(dtype).type) def test_indices_concatenation_order(): # GH 2808 def f1(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex(levels=[[]] * 2, codes=[[]] * 2, names=["b", "c"]) res = DataFrame(columns=["a"], index=multiindex) return res else: y = y.set_index(["b", "c"]) return y def f2(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: return DataFrame() else: y = y.set_index(["b", "c"]) return y def f3(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex( levels=[[]] * 2, codes=[[]] * 2, names=["foo", "bar"] ) res = DataFrame(columns=["a", "b"], index=multiindex) return res else: return y df = DataFrame({"a": [1, 2, 2, 2], "b": range(4), "c": range(5, 9)}) df2 = DataFrame({"a": [3, 2, 2, 2], "b": range(4), "c": range(5, 9)}) # correct result result1 = df.groupby("a").apply(f1) result2 = df2.groupby("a").apply(f1) tm.assert_frame_equal(result1, result2) # should fail (not the same number of levels) msg = "Cannot concat indices that do not have the same number of levels" with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f2) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f2) # should fail (incorrect shape) with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f3) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f3) def test_attr_wrapper(ts): grouped = ts.groupby(lambda x: x.weekday()) result = grouped.std() expected = grouped.agg(lambda x: np.std(x, ddof=1)) tm.assert_series_equal(result, expected) # this is pretty cool result = grouped.describe() expected = {name: gp.describe() for name, gp in grouped} expected = DataFrame(expected).T tm.assert_frame_equal(result, expected) # get attribute result = grouped.dtype expected = grouped.agg(lambda x: x.dtype) # make sure raises error msg = "'SeriesGroupBy' object has no attribute 'foo'" with pytest.raises(AttributeError, match=msg): getattr(grouped, "foo") def test_frame_groupby(tsframe): grouped = tsframe.groupby(lambda x: x.weekday()) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == 5 assert len(aggregated.columns) == 4 # by string tscopy = tsframe.copy() tscopy["weekday"] = [x.weekday() for x in tscopy.index] stragged = tscopy.groupby("weekday").aggregate(np.mean) tm.assert_frame_equal(stragged, aggregated, check_names=False) # transform grouped = tsframe.head(30).groupby(lambda x: x.weekday()) transformed = grouped.transform(lambda x: x - x.mean()) assert len(transformed) == 30 assert len(transformed.columns) == 4 # transform propagate transformed = grouped.transform(lambda x: x.mean()) for name, group in grouped: mean = group.mean() for idx in group.index: tm.assert_series_equal(transformed.xs(idx), mean, check_names=False) # iterate for weekday, group in grouped: assert group.index[0].weekday() == weekday # groups / group_indices groups = grouped.groups indices = grouped.indices for k, v in groups.items(): samething = tsframe.index.take(indices[k]) assert (samething == v).all() def test_frame_groupby_columns(tsframe): mapping = {"A": 0, "B": 0, "C": 1, "D": 1} grouped = tsframe.groupby(mapping, axis=1) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == len(tsframe) assert len(aggregated.columns) == 2 # transform tf = lambda x: x - x.mean() groupedT = tsframe.T.groupby(mapping, axis=0) tm.assert_frame_equal(groupedT.transform(tf).T, grouped.transform(tf)) # iterate for k, v in grouped: assert len(v.columns) == 2 def test_frame_set_name_single(df): grouped = df.groupby("A") result = grouped.mean() assert result.index.name == "A" result = df.groupby("A", as_index=False).mean() assert result.index.name != "A" result = grouped.agg(np.mean) assert result.index.name == "A" result = grouped.agg({"C": np.mean, "D": np.std}) assert result.index.name == "A" result = grouped["C"].mean() assert result.index.name == "A" result = grouped["C"].agg(np.mean) assert result.index.name == "A" result = grouped["C"].agg([np.mean, np.std]) assert result.index.name == "A" msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"foo": np.mean, "bar": np.std}) def test_multi_func(df): col1 = df["A"] col2 = df["B"] grouped = df.groupby([col1.get, col2.get]) agged = grouped.mean() expected = df.groupby(["A", "B"]).mean() # TODO groupby get drops names tm.assert_frame_equal( agged.loc[:, ["C", "D"]], expected.loc[:, ["C", "D"]], check_names=False ) # some "groups" with no data df = DataFrame( { "v1": np.random.randn(6), "v2": np.random.randn(6), "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), }, index=["one", "two", "three", "four", "five", "six"], ) # only verify that it works for now grouped = df.groupby(["k1", "k2"]) grouped.agg(np.sum) def test_multi_key_multiple_functions(df): grouped = df.groupby(["A", "B"])["C"] agged = grouped.agg([np.mean, np.std]) expected = DataFrame({"mean": grouped.agg(np.mean), "std": grouped.agg(np.std)}) tm.assert_frame_equal(agged, expected) def test_frame_multi_key_function_list(): data = DataFrame( { "A": [ "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar", "foo", "foo", "foo", ], "B": [ "one", "one", "one", "two", "one", "one", "one", "two", "two", "two", "one", ], "C": [ "dull", "dull", "shiny", "dull", "dull", "shiny", "shiny", "dull", "shiny", "shiny", "shiny", ], "D": np.random.randn(11), "E": np.random.randn(11), "F": np.random.randn(11), } ) grouped = data.groupby(["A", "B"]) funcs = [np.mean, np.std] agged = grouped.agg(funcs) expected = pd.concat( [grouped["D"].agg(funcs), grouped["E"].agg(funcs), grouped["F"].agg(funcs)], keys=["D", "E", "F"], axis=1, ) assert isinstance(agged.index, MultiIndex) assert isinstance(expected.index, MultiIndex) tm.assert_frame_equal(agged, expected) @pytest.mark.parametrize("op", [lambda x: x.sum(), lambda x: x.mean()]) def test_groupby_multiple_columns(df, op): data = df grouped = data.groupby(["A", "B"]) result1 = op(grouped) keys = [] values = [] for n1, gp1 in data.groupby("A"): for n2, gp2 in gp1.groupby("B"): keys.append((n1, n2)) values.append(op(gp2.loc[:, ["C", "D"]])) mi = MultiIndex.from_tuples(keys, names=["A", "B"]) expected = pd.concat(values, axis=1).T expected.index = mi # a little bit crude for col in ["C", "D"]: result_col = op(grouped[col]) pivoted = result1[col] exp = expected[col] tm.assert_series_equal(result_col, exp) tm.assert_series_equal(pivoted, exp) # test single series works the same result = data["C"].groupby([data["A"], data["B"]]).mean() expected = data.groupby(["A", "B"]).mean()["C"] tm.assert_series_equal(result, expected) def test_as_index_select_column(): # GH 5764 df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"]) result = df.groupby("A", as_index=False)["B"].get_group(1) expected = pd.Series([2, 4], name="B") tm.assert_series_equal(result, expected) result = df.groupby("A", as_index=False)["B"].apply(lambda x: x.cumsum()) expected = pd.Series( [2, 6, 6], name="B", index=pd.MultiIndex.from_tuples([(0, 0), (0, 1), (1, 2)]) ) tm.assert_series_equal(result, expected) def test_groupby_as_index_select_column_sum_empty_df(): # GH 35246 df = DataFrame(columns=["A", "B", "C"]) left = df.groupby(by="A", as_index=False)["B"].sum() assert type(left) is DataFrame assert left.to_dict() == {"A": {}, "B": {}} def test_groupby_as_index_agg(df): grouped = df.groupby("A", as_index=False) # single-key result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) grouped = df.groupby("A", as_index=True) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"Q": np.sum}) # multi-key grouped = df.groupby(["A", "B"], as_index=False) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) expected3 = grouped["C"].sum() expected3 = DataFrame(expected3).rename(columns={"C": "Q"}) result3 = grouped["C"].agg({"Q": np.sum}) tm.assert_frame_equal(result3, expected3) # GH7115 & GH8112 & GH8582 df = DataFrame(np.random.randint(0, 100, (50, 3)), columns=["jim", "joe", "jolie"]) ts = Series(np.random.randint(5, 10, 50), name="jim") gr = df.groupby(ts) gr.nth(0) # invokes set_selection_from_grouper internally tm.assert_frame_equal(gr.apply(sum), df.groupby(ts).apply(sum)) for attr in ["mean", "max", "count", "idxmax", "cumsum", "all"]: gr = df.groupby(ts, as_index=False) left = getattr(gr, attr)() gr = df.groupby(ts.values, as_index=True) right = getattr(gr, attr)().reset_index(drop=True) tm.assert_frame_equal(left, right) def test_ops_not_as_index(reduction_func): # GH 10355, 21090 # Using as_index=False should not modify grouped column if reduction_func in ("corrwith",): pytest.skip("Test not applicable") if reduction_func in ("nth", "ngroup",): pytest.skip("Skip until behavior is determined (GH #5755)") df = DataFrame(np.random.randint(0, 5, size=(100, 2)), columns=["a", "b"]) expected = getattr(df.groupby("a"), reduction_func)() if reduction_func == "size": expected = expected.rename("size") expected = expected.reset_index() g = df.groupby("a", as_index=False) result = getattr(g, reduction_func)() tm.assert_frame_equal(result, expected) result = g.agg(reduction_func) tm.assert_frame_equal(result, expected) result = getattr(g["b"], reduction_func)() tm.assert_frame_equal(result, expected) result = g["b"].agg(reduction_func) tm.assert_frame_equal(result, expected) def test_as_index_series_return_frame(df): grouped = df.groupby("A", as_index=False) grouped2 = df.groupby(["A", "B"], as_index=False) result = grouped["C"].agg(np.sum) expected = grouped.agg(np.sum).loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].agg(np.sum) expected2 = grouped2.agg(np.sum).loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) result = grouped["C"].sum() expected = grouped.sum().loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].sum() expected2 = grouped2.sum().loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) def test_as_index_series_column_slice_raises(df): # GH15072 grouped = df.groupby("A", as_index=False) msg = r"Column\(s\) C already selected" with pytest.raises(IndexError, match=msg): grouped["C"].__getitem__("D") def test_groupby_as_index_cython(df): data = df # single-key grouped = data.groupby("A", as_index=False) result = grouped.mean() expected = data.groupby(["A"]).mean() expected.insert(0, "A", expected.index) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) # multi-key grouped = data.groupby(["A", "B"], as_index=False) result = grouped.mean() expected = data.groupby(["A", "B"]).mean() arrays = list(zip(*expected.index.values)) expected.insert(0, "A", arrays[0]) expected.insert(1, "B", arrays[1]) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) def test_groupby_as_index_series_scalar(df): grouped = df.groupby(["A", "B"], as_index=False) # GH #421 result = grouped["C"].agg(len) expected = grouped.agg(len).loc[:, ["A", "B", "C"]] tm.assert_frame_equal(result, expected) def test_groupby_as_index_corner(df, ts): msg = "as_index=False only valid with DataFrame" with pytest.raises(TypeError, match=msg): ts.groupby(lambda x: x.weekday(), as_index=False) msg = "as_index=False only valid for axis=0" with pytest.raises(ValueError, match=msg): df.groupby(lambda x: x.lower(), as_index=False, axis=1) def test_groupby_multiple_key(df): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) agged = grouped.sum() tm.assert_almost_equal(df.values, agged.values) grouped = df.T.groupby( [lambda x: x.year, lambda x: x.month, lambda x: x.day], axis=1 ) agged = grouped.agg(lambda x: x.sum()) tm.assert_index_equal(agged.index, df.columns) tm.assert_almost_equal(df.T.values, agged.values) agged = grouped.agg(lambda x: x.sum()) tm.assert_almost_equal(df.T.values, agged.values) def test_groupby_multi_corner(df): # test that having an all-NA column doesn't mess you up df = df.copy() df["bad"] = np.nan agged = df.groupby(["A", "B"]).mean() expected = df.groupby(["A", "B"]).mean() expected["bad"] = np.nan tm.assert_frame_equal(agged, expected) def test_omit_nuisance(df): grouped = df.groupby("A") result = grouped.mean() expected = df.loc[:, ["A", "C", "D"]].groupby("A").mean() tm.assert_frame_equal(result, expected) agged = grouped.agg(np.mean) exp = grouped.mean() tm.assert_frame_equal(agged, exp) df = df.loc[:, ["A", "C", "D"]] df["E"] = datetime.now() grouped = df.groupby("A") result = grouped.agg(np.sum) expected = grouped.sum() tm.assert_frame_equal(result, expected) # won't work with axis = 1 grouped = df.groupby({"A": 0, "C": 0, "D": 1, "E": 1}, axis=1) msg = "reduction operation 'sum' not allowed for this dtype" with pytest.raises(TypeError, match=msg): grouped.agg(lambda x: x.sum(0, numeric_only=False)) def test_omit_nuisance_python_multiple(three_group): grouped = three_group.groupby(["A", "B"]) agged = grouped.agg(np.mean) exp = grouped.mean() tm.assert_frame_equal(agged, exp) def test_empty_groups_corner(mframe): # handle empty groups df = DataFrame( { "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), "k3": ["foo", "bar"] * 3, "v1": np.random.randn(6), "v2": np.random.randn(6), } ) grouped = df.groupby(["k1", "k2"]) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) grouped = mframe[3:5].groupby(level=0) agged = grouped.apply(lambda x: x.mean()) agged_A = grouped["A"].apply(np.mean) tm.assert_series_equal(agged["A"], agged_A) assert agged.index.name == "first" def test_nonsense_func(): df = DataFrame([0]) msg = r"unsupported operand type\(s\) for \+: 'int' and 'str'" with pytest.raises(TypeError, match=msg): df.groupby(lambda x: x + "foo") def test_wrap_aggregated_output_multindex(mframe): df = mframe.T df["baz", "two"] = "peekaboo" keys = [np.array([0, 0, 1]), np.array([0, 0, 1])] agged = df.groupby(keys).agg(np.mean) assert isinstance(agged.columns, MultiIndex) def aggfun(ser): if ser.name == ("foo", "one"): raise TypeError else: return ser.sum() agged2 = df.groupby(keys).aggregate(aggfun) assert len(agged2.columns) + 1 == len(df.columns) def test_groupby_level_apply(mframe): result = mframe.groupby(level=0).count() assert result.index.name == "first" result = mframe.groupby(level=1).count() assert result.index.name == "second" result = mframe["A"].groupby(level=0).count() assert result.index.name == "first" def test_groupby_level_mapper(mframe): deleveled = mframe.reset_index() mapper0 = {"foo": 0, "bar": 0, "baz": 1, "qux": 1} mapper1 = {"one": 0, "two": 0, "three": 1} result0 = mframe.groupby(mapper0, level=0).sum() result1 = mframe.groupby(mapper1, level=1).sum() mapped_level0 = np.array([mapper0.get(x) for x in deleveled["first"]]) mapped_level1 = np.array([mapper1.get(x) for x in deleveled["second"]]) expected0 = mframe.groupby(mapped_level0).sum() expected1 = mframe.groupby(mapped_level1).sum() expected0.index.name, expected1.index.name = "first", "second" tm.assert_frame_equal(result0, expected0) tm.assert_frame_equal(result1, expected1) def test_groupby_level_nonmulti(): # GH 1313, GH 13901 s = Series([1, 2, 3, 10, 4, 5, 20, 6], Index([1, 2, 3, 1, 4, 5, 2, 6], name="foo")) expected = Series([11, 22, 3, 4, 5, 6], Index(range(1, 7), name="foo")) result = s.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[0]).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=-1).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[-1]).sum() tm.assert_series_equal(result, expected) msg = "level > 0 or level < -1 only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=1) with pytest.raises(ValueError, match=msg): s.groupby(level=-2) msg = "No group keys passed!" with pytest.raises(ValueError, match=msg): s.groupby(level=[]) msg = "multiple levels only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=[0, 0]) with pytest.raises(ValueError, match=msg): s.groupby(level=[0, 1]) msg = "level > 0 or level < -1 only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=[1]) def test_groupby_complex(): # GH 12902 a = Series(data=np.arange(4) * (1 + 2j), index=[0, 0, 1, 1]) expected = Series((1 + 2j, 5 + 10j)) result = a.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = a.sum(level=0) tm.assert_series_equal(result, expected) def test_groupby_series_indexed_differently(): s1 = Series( [5.0, -9.0, 4.0, 100.0, -5.0, 55.0, 6.7], index=Index(["a", "b", "c", "d", "e", "f", "g"]), ) s2 = Series( [1.0, 1.0, 4.0, 5.0, 5.0, 7.0], index=Index(["a", "b", "d", "f", "g", "h"]) ) grouped = s1.groupby(s2) agged = grouped.mean() exp = s1.groupby(s2.reindex(s1.index).get).mean() tm.assert_series_equal(agged, exp) def test_groupby_with_hier_columns(): tuples = list( zip( *[ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] ) ) index = MultiIndex.from_tuples(tuples) columns = MultiIndex.from_tuples( [("A", "cat"), ("B", "dog"), ("B", "cat"), ("A", "dog")] ) df = DataFrame(np.random.randn(8, 4), index=index, columns=columns) result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).mean() tm.assert_index_equal(result.index, df.index) result = df.groupby(level=0).agg(np.mean) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0).apply(lambda x: x.mean()) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).agg(lambda x: x.mean(1)) tm.assert_index_equal(result.columns, Index(["A", "B"])) tm.assert_index_equal(result.index, df.index) # add a nuisance column sorted_columns, _ = columns.sortlevel(0) df["A", "foo"] = "bar" result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, df.columns[:-1]) def test_grouping_ndarray(df): grouped = df.groupby(df["A"].values) result = grouped.sum() expected = df.groupby("A").sum() tm.assert_frame_equal( result, expected, check_names=False ) # Note: no names when grouping by value def test_groupby_wrong_multi_labels(): data = """index,foo,bar,baz,spam,data 0,foo1,bar1,baz1,spam2,20 1,foo1,bar2,baz1,spam3,30 2,foo2,bar2,baz1,spam2,40 3,foo1,bar1,baz2,spam1,50 4,foo3,bar1,baz2,spam1,60""" data = read_csv(StringIO(data), index_col=0) grouped = data.groupby(["foo", "bar", "baz", "spam"]) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) def test_groupby_series_with_name(df): result = df.groupby(df["A"]).mean() result2 = df.groupby(df["A"], as_index=False).mean() assert result.index.name == "A" assert "A" in result2 result = df.groupby([df["A"], df["B"]]).mean() result2 = df.groupby([df["A"], df["B"]], as_index=False).mean() assert result.index.names == ("A", "B") assert "A" in result2 assert "B" in result2 def test_seriesgroupby_name_attr(df): # GH 6265 result = df.groupby("A")["C"] assert result.count().name == "C" assert result.mean().name == "C" testFunc = lambda x: np.sum(x) * 2 assert result.agg(testFunc).name == "C" def test_consistency_name(): # GH 12363 df = DataFrame( { "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": ["one", "one", "two", "two", "two", "two", "one", "two"], "C": np.random.randn(8) + 1.0, "D": np.arange(8), } ) expected = df.groupby(["A"]).B.count() result = df.B.groupby(df.A).count() tm.assert_series_equal(result, expected) def test_groupby_name_propagation(df): # GH 6124 def summarize(df, name=None): return Series({"count": 1, "mean": 2, "omissions": 3}, name=name) def summarize_random_name(df): # Provide a different name for each Series. In this case, groupby # should not attempt to propagate the Series name since they are # inconsistent. return Series({"count": 1, "mean": 2, "omissions": 3}, name=df.iloc[0]["A"]) metrics = df.groupby("A").apply(summarize) assert metrics.columns.name is None metrics = df.groupby("A").apply(summarize, "metrics") assert metrics.columns.name == "metrics" metrics = df.groupby("A").apply(summarize_random_name) assert metrics.columns.name is None def test_groupby_nonstring_columns(): df = DataFrame([np.arange(10) for x in range(10)]) grouped = df.groupby(0) result = grouped.mean() expected = df.groupby(df[0]).mean() tm.assert_frame_equal(result, expected) def test_groupby_mixed_type_columns(): # GH 13432, unorderable types in py3 df = DataFrame([[0, 1, 2]], columns=["A", "B", 0]) expected = DataFrame([[1, 2]], columns=["B", 0], index=Index([0], name="A")) result = df.groupby("A").first() tm.assert_frame_equal(result, expected) result = df.groupby("A").sum() tm.assert_frame_equal(result, expected) # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:Mean of:RuntimeWarning") def test_cython_grouper_series_bug_noncontig(): arr = np.empty((100, 100)) arr.fill(np.nan) obj = Series(arr[:, 0]) inds = np.tile(range(10), 10) result = obj.groupby(inds).agg(Series.median) assert result.isna().all() def test_series_grouper_noncontig_index(): index = Index(tm.rands_array(10, 100)) values = Series(np.random.randn(50), index=index[::2]) labels = np.random.randint(0, 5, 50) # it works! grouped = values.groupby(labels) # accessing the index elements causes segfault f = lambda x: len(set(map(id, x.index))) grouped.agg(f) def test_convert_objects_leave_decimal_alone(): s = Series(range(5)) labels = np.array(["a", "b", "c", "d", "e"], dtype="O") def convert_fast(x): return Decimal(str(x.mean())) def convert_force_pure(x): # base will be length 0 assert len(x.values.base) > 0 return Decimal(str(x.mean())) grouped = s.groupby(labels) result = grouped.agg(convert_fast) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) result = grouped.agg(convert_force_pure) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) def test_groupby_dtype_inference_empty(): # GH 6733 df = DataFrame({"x": [], "range": np.arange(0, dtype="int64")}) assert df["x"].dtype == np.float64 result = df.groupby("x").first() exp_index = Index([], name="x", dtype=np.float64) expected = DataFrame({"range": Series([], index=exp_index, dtype="int64")}) tm.assert_frame_equal(result, expected, by_blocks=True) def test_groupby_list_infer_array_like(df): result = df.groupby(list(df["A"])).mean() expected = df.groupby(df["A"]).mean() tm.assert_frame_equal(result, expected, check_names=False) with pytest.raises(KeyError, match=r"^'foo'$"): df.groupby(list(df["A"][:-1])) # pathological case of ambiguity df = DataFrame({"foo": [0, 1], "bar": [3, 4], "val": np.random.randn(2)}) result = df.groupby(["foo", "bar"]).mean() expected = df.groupby([df["foo"], df["bar"]]).mean()[["val"]] def test_groupby_keys_same_size_as_index(): # GH 11185 freq = "s" index = pd.date_range( start=pd.Timestamp("2015-09-29T11:34:44-0700"), periods=2, freq=freq ) df = pd.DataFrame([["A", 10], ["B", 15]], columns=["metric", "values"], index=index) result = df.groupby([pd.Grouper(level=0, freq=freq), "metric"]).mean() expected = df.set_index([df.index, "metric"]) tm.assert_frame_equal(result, expected) def test_groupby_one_row(): # GH 11741 msg = r"^'Z'$" df1 = pd.DataFrame(np.random.randn(1, 4), columns=list("ABCD")) with pytest.raises(KeyError, match=msg): df1.groupby("Z") df2 = pd.DataFrame(np.random.randn(2, 4), columns=list("ABCD")) with pytest.raises(KeyError, match=msg): df2.groupby("Z") def test_groupby_nat_exclude(): # GH 6992 df = pd.DataFrame( { "values": np.random.randn(8), "dt": [ np.nan, pd.Timestamp("2013-01-01"), np.nan, pd.Timestamp("2013-02-01"), np.nan, pd.Timestamp("2013-02-01"), np.nan, pd.Timestamp("2013-01-01"), ], "str": [np.nan, "a", np.nan, "a", np.nan, "a", np.nan, "b"], } ) grouped = df.groupby("dt") expected = [pd.Index([1, 7]), pd.Index([3, 5])] keys = sorted(grouped.groups.keys()) assert len(keys) == 2 for k, e in zip(keys, expected): # grouped.groups keys are np.datetime64 with system tz # not to be affected by tz, only compare values tm.assert_index_equal(grouped.groups[k], e) # confirm obj is not filtered tm.assert_frame_equal(grouped.grouper.groupings[0].obj, df) assert grouped.ngroups == 2 expected = { Timestamp("2013-01-01 00:00:00"): np.array([1, 7], dtype=np.intp), Timestamp("2013-02-01 00:00:00"): np.array([3, 5], dtype=np.intp), } for k in grouped.indices: tm.assert_numpy_array_equal(grouped.indices[k], expected[k]) tm.assert_frame_equal(grouped.get_group(Timestamp("2013-01-01")), df.iloc[[1, 7]]) tm.assert_frame_equal(grouped.get_group(Timestamp("2013-02-01")), df.iloc[[3, 5]]) with pytest.raises(KeyError, match=r"^NaT$"): grouped.get_group(pd.NaT) nan_df = DataFrame( {"nan": [np.nan, np.nan, np.nan], "nat": [pd.NaT, pd.NaT, pd.NaT]} ) assert nan_df["nan"].dtype == "float64" assert nan_df["nat"].dtype == "datetime64[ns]" for key in ["nan", "nat"]: grouped = nan_df.groupby(key) assert grouped.groups == {} assert grouped.ngroups == 0 assert grouped.indices == {} with pytest.raises(KeyError, match=r"^nan$"): grouped.get_group(np.nan) with pytest.raises(KeyError, match=r"^NaT$"): grouped.get_group(pd.NaT) def test_groupby_2d_malformed(): d = DataFrame(index=range(2)) d["group"] = ["g1", "g2"] d["zeros"] = [0, 0] d["ones"] = [1, 1] d["label"] = ["l1", "l2"] tmp = d.groupby(["group"]).mean() res_values = np.array([[0, 1], [0, 1]], dtype=np.int64) tm.assert_index_equal(tmp.columns, Index(["zeros", "ones"])) tm.assert_numpy_array_equal(tmp.values, res_values) def test_int32_overflow(): B = np.concatenate((np.arange(10000), np.arange(10000), np.arange(5000))) A = np.arange(25000) df = DataFrame({"A": A, "B": B, "C": A, "D": B, "E": np.random.randn(25000)}) left = df.groupby(["A", "B", "C", "D"]).sum() right = df.groupby(["D", "C", "B", "A"]).sum() assert len(left) == len(right) def test_groupby_sort_multi(): df = DataFrame( { "a": ["foo", "bar", "baz"], "b": [3, 2, 1], "c": [0, 1, 2], "d": np.random.randn(3), } ) tups = [tuple(row) for row in df[["a", "b", "c"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["a", "b", "c"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[1, 2, 0]]) tups = [tuple(row) for row in df[["c", "a", "b"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["c", "a", "b"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups) tups = [tuple(x) for x in df[["b", "c", "a"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["b", "c", "a"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[2, 1, 0]]) df = DataFrame( {"a": [0, 1, 2, 0, 1, 2], "b": [0, 0, 0, 1, 1, 1], "d": np.random.randn(6)} ) grouped = df.groupby(["a", "b"])["d"] result = grouped.sum() def _check_groupby(df, result, keys, field, f=lambda x: x.sum()): tups = [tuple(row) for row in df[keys].values] tups = com.asarray_tuplesafe(tups) expected = f(df.groupby(tups)[field]) for k, v in expected.items(): assert result[k] == v _check_groupby(df, result, ["a", "b"], "d") def test_dont_clobber_name_column(): df = DataFrame( {"key": ["a", "a", "a", "b", "b", "b"], "name": ["foo", "bar", "baz"] * 2} ) result = df.groupby("key").apply(lambda x: x) tm.assert_frame_equal(result, df) def test_skip_group_keys(): tsf = tm.makeTimeDataFrame() grouped = tsf.groupby(lambda x: x.month, group_keys=False) result = grouped.apply(lambda x: x.sort_values(by="A")[:3]) pieces = [group.sort_values(by="A")[:3] for key, group in grouped] expected = pd.concat(pieces) tm.assert_frame_equal(result, expected) grouped = tsf["A"].groupby(lambda x: x.month, group_keys=False) result = grouped.apply(lambda x: x.sort_values()[:3]) pieces = [group.sort_values()[:3] for key, group in grouped] expected = pd.concat(pieces) tm.assert_series_equal(result, expected) def test_no_nonsense_name(float_frame): # GH #995 s = float_frame["C"].copy() s.name = None result = s.groupby(float_frame["A"]).agg(np.sum) assert result.name is None def test_multifunc_sum_bug(): # GH #1065 x = DataFrame(np.arange(9).reshape(3, 3)) x["test"] = 0 x["fl"] = [1.3, 1.5, 1.6] grouped = x.groupby("test") result = grouped.agg({"fl": "sum", 2: "size"}) assert result["fl"].dtype == np.float64 def test_handle_dict_return_value(df): def f(group): return {"max": group.max(), "min": group.min()} def g(group): return Series({"max": group.max(), "min": group.min()}) result = df.groupby("A")["C"].apply(f) expected = df.groupby("A")["C"].apply(g) assert isinstance(result, Series) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("grouper", ["A", ["A", "B"]]) def test_set_group_name(df, grouper): def f(group): assert group.name is not None return group def freduce(group): assert group.name is not None return group.sum() def foo(x): return freduce(x) grouped = df.groupby(grouper) # make sure all these work grouped.apply(f) grouped.aggregate(freduce) grouped.aggregate({"C": freduce, "D": freduce}) grouped.transform(f) grouped["C"].apply(f) grouped["C"].aggregate(freduce) grouped["C"].aggregate([freduce, foo]) grouped["C"].transform(f) def test_group_name_available_in_inference_pass(): # gh-15062 df = pd.DataFrame({"a": [0, 0, 1, 1, 2, 2], "b": np.arange(6)}) names = [] def f(group): names.append(group.name) return group.copy() df.groupby("a", sort=False, group_keys=False).apply(f) expected_names = [0, 1, 2] assert names == expected_names def test_no_dummy_key_names(df): # see gh-1291 result = df.groupby(df["A"].values).sum() assert result.index.name is None result = df.groupby([df["A"].values, df["B"].values]).sum() assert result.index.names == (None, None) def test_groupby_sort_multiindex_series(): # series multiindex groupby sort argument was not being passed through # _compress_group_index # GH 9444 index = MultiIndex( levels=[[1, 2], [1, 2]], codes=[[0, 0, 0, 0, 1, 1], [1, 1, 0, 0, 0, 0]], names=["a", "b"], ) mseries = Series([0, 1, 2, 3, 4, 5], index=index) index = MultiIndex( levels=[[1, 2], [1, 2]], codes=[[0, 0, 1], [1, 0, 0]], names=["a", "b"] ) mseries_result = Series([0, 2, 4], index=index) result = mseries.groupby(level=["a", "b"], sort=False).first() tm.assert_series_equal(result, mseries_result) result = mseries.groupby(level=["a", "b"], sort=True).first() tm.assert_series_equal(result, mseries_result.sort_index()) def test_groupby_reindex_inside_function(): periods = 1000 ind = date_range(start="2012/1/1", freq="5min", periods=periods) df = DataFrame({"high": np.arange(periods), "low": np.arange(periods)}, index=ind) def agg_before(hour, func, fix=False): """ Run an aggregate func on the subset of data. """ def _func(data): d = data.loc[data.index.map(lambda x: x.hour < 11)].dropna() if fix: data[data.index[0]] if len(d) == 0: return None return func(d) return _func def afunc(data): d = data.select(lambda x: x.hour < 11).dropna() return np.max(d) grouped = df.groupby(lambda x: datetime(x.year, x.month, x.day)) closure_bad = grouped.agg({"high": agg_before(11, np.max)}) closure_good = grouped.agg({"high": agg_before(11, np.max, True)}) tm.assert_frame_equal(closure_bad, closure_good) def test_groupby_multiindex_missing_pair(): # GH9049 df = DataFrame( { "group1": ["a", "a", "a", "b"], "group2": ["c", "c", "d", "c"], "value": [1, 1, 1, 5], } ) df = df.set_index(["group1", "group2"]) df_grouped = df.groupby(level=["group1", "group2"], sort=True) res = df_grouped.agg("sum") idx = MultiIndex.from_tuples( [("a", "c"), ("a", "d"), ("b", "c")], names=["group1", "group2"] ) exp = DataFrame([[2], [1], [5]], index=idx, columns=["value"]) tm.assert_frame_equal(res, exp) def test_groupby_multiindex_not_lexsorted(): # GH 11640 # define the lexsorted version lexsorted_mi = MultiIndex.from_tuples( [("a", ""), ("b1", "c1"), ("b2", "c2")], names=["b", "c"] ) lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi) assert lexsorted_df.columns.is_lexsorted() # define the non-lexsorted version not_lexsorted_df = DataFrame( columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]] ) not_lexsorted_df = not_lexsorted_df.pivot_table( index="a", columns=["b", "c"], values="d" ) not_lexsorted_df = not_lexsorted_df.reset_index() assert not not_lexsorted_df.columns.is_lexsorted() # compare the results tm.assert_frame_equal(lexsorted_df, not_lexsorted_df) expected = lexsorted_df.groupby("a").mean() with tm.assert_produces_warning(PerformanceWarning): result = not_lexsorted_df.groupby("a").mean() tm.assert_frame_equal(expected, result) # a transforming function should work regardless of sort # GH 14776 df = DataFrame( {"x": ["a", "a", "b", "a"], "y": [1, 1, 2, 2], "z": [1, 2, 3, 4]} ).set_index(["x", "y"]) assert not df.index.is_lexsorted() for level in [0, 1, [0, 1]]: for sort in [False, True]: result = df.groupby(level=level, sort=sort).apply(DataFrame.drop_duplicates) expected = df tm.assert_frame_equal(expected, result) result = ( df.sort_index() .groupby(level=level, sort=sort) .apply(DataFrame.drop_duplicates) ) expected = df.sort_index() tm.assert_frame_equal(expected, result) def test_index_label_overlaps_location(): # checking we don't have any label/location confusion in the # the wake of GH5375 df = DataFrame(list("ABCDE"), index=[2, 0, 2, 1, 1]) g = df.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = df.iloc[[1, 3, 4]] tm.assert_frame_equal(actual, expected) ser = df[0] g = ser.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = ser.take([1, 3, 4]) tm.assert_series_equal(actual, expected) # ... and again, with a generic Index of floats df.index = df.index.astype(float) g = df.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = df.iloc[[1, 3, 4]] tm.assert_frame_equal(actual, expected) ser = df[0] g = ser.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = ser.take([1, 3, 4]) tm.assert_series_equal(actual, expected) def test_transform_doesnt_clobber_ints(): # GH 7972 n = 6 x = np.arange(n) df = DataFrame({"a": x // 2, "b": 2.0 * x, "c": 3.0 * x}) df2 = DataFrame({"a": x // 2 * 1.0, "b": 2.0 * x, "c": 3.0 * x}) gb = df.groupby("a") result = gb.transform("mean") gb2 = df2.groupby("a") expected = gb2.transform("mean") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "sort_column", ["ints", "floats", "strings", ["ints", "floats"], ["ints", "strings"]], ) @pytest.mark.parametrize( "group_column", ["int_groups", "string_groups", ["int_groups", "string_groups"]] ) def test_groupby_preserves_sort(sort_column, group_column): # Test to ensure that groupby always preserves sort order of original # object. Issue #8588 and #9651 df = DataFrame( { "int_groups": [3, 1, 0, 1, 0, 3, 3, 3], "string_groups": ["z", "a", "z", "a", "a", "g", "g", "g"], "ints": [8, 7, 4, 5, 2, 9, 1, 1], "floats": [2.3, 5.3, 6.2, -2.4, 2.2, 1.1, 1.1, 5], "strings": ["z", "d", "a", "e", "word", "word2", "42", "47"], } ) # Try sorting on different types and with different group types df = df.sort_values(by=sort_column) g = df.groupby(group_column) def test_sort(x): tm.assert_frame_equal(x, x.sort_values(by=sort_column)) g.apply(test_sort) def test_group_shift_with_null_key(): # This test is designed to replicate the segfault in issue #13813. n_rows = 1200 # Generate a moderately large dataframe with occasional missing # values in column `B`, and then group by [`A`, `B`]. This should # force `-1` in `labels` array of `g.grouper.group_info` exactly # at those places, where the group-by key is partially missing. df = DataFrame( [(i % 12, i % 3 if i % 3 else np.nan, i) for i in range(n_rows)], dtype=float, columns=["A", "B", "Z"], index=None, ) g = df.groupby(["A", "B"]) expected = DataFrame( [(i + 12 if i % 3 and i < n_rows - 12 else np.nan) for i in range(n_rows)], dtype=float, columns=["Z"], index=None, ) result = g.shift(-1) tm.assert_frame_equal(result, expected) def test_group_shift_with_fill_value(): # GH #24128 n_rows = 24 df = DataFrame( [(i % 12, i % 3, i) for i in range(n_rows)], dtype=float, columns=["A", "B", "Z"], index=None, ) g = df.groupby(["A", "B"]) expected = DataFrame( [(i + 12 if i < n_rows - 12 else 0) for i in range(n_rows)], dtype=float, columns=["Z"], index=None, ) result = g.shift(-1, fill_value=0)[["Z"]] tm.assert_frame_equal(result, expected) def test_group_shift_lose_timezone(): # GH 30134 now_dt = pd.Timestamp.utcnow() df = DataFrame({"a": [1, 1], "date": now_dt}) result = df.groupby("a").shift(0).iloc[0] expected = Series({"date": now_dt}, name=result.name) tm.assert_series_equal(result, expected) def test_pivot_table_values_key_error(): # This test is designed to replicate the error in issue #14938 df = pd.DataFrame( { "eventDate": pd.date_range(datetime.today(), periods=20, freq="M").tolist(), "thename": range(0, 20), } ) df["year"] = df.set_index("eventDate").index.year df["month"] = df.set_index("eventDate").index.month with pytest.raises(KeyError, match="'badname'"): df.reset_index().pivot_table( index="year", columns="month", values="badname", aggfunc="count" ) def test_empty_dataframe_groupby(): # GH8093 df = DataFrame(columns=["A", "B", "C"]) result = df.groupby("A").sum() expected = DataFrame(columns=["B", "C"], dtype=np.float64) expected.index.name = "A" tm.assert_frame_equal(result, expected) def test_tuple_as_grouping(): # https://github.com/pandas-dev/pandas/issues/18314 df = pd.DataFrame( { ("a", "b"): [1, 1, 1, 1], "a": [2, 2, 2, 2], "b": [2, 2, 2, 2], "c": [1, 1, 1, 1], } ) with pytest.raises(KeyError, match=r"('a', 'b')"): df[["a", "b", "c"]].groupby(("a", "b")) result = df.groupby(("a", "b"))["c"].sum() expected = pd.Series([4], name="c", index=pd.Index([1], name=("a", "b"))) tm.assert_series_equal(result, expected) def test_tuple_correct_keyerror(): # https://github.com/pandas-dev/pandas/issues/18798 df = pd.DataFrame( 1, index=range(3), columns=pd.MultiIndex.from_product([[1, 2], [3, 4]]) ) with pytest.raises(KeyError, match=r"^\(7, 8\)$"): df.groupby((7, 8)).mean() def test_groupby_agg_ohlc_non_first(): # GH 21716 df = pd.DataFrame( [[1], [1]], columns=["foo"], index=pd.date_range("2018-01-01", periods=2, freq="D"), ) expected = pd.DataFrame( [[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]], columns=pd.MultiIndex.from_tuples( ( ("foo", "sum", "foo"), ("foo", "ohlc", "open"), ("foo", "ohlc", "high"), ("foo", "ohlc", "low"), ("foo", "ohlc", "close"), ) ), index=pd.date_range("2018-01-01", periods=2, freq="D"), ) result = df.groupby(pd.Grouper(freq="D")).agg(["sum", "ohlc"]) tm.assert_frame_equal(result, expected) def test_groupby_multiindex_nat(): # GH 9236 values = [ (pd.NaT, "a"), (datetime(2012, 1, 2), "a"), (datetime(2012, 1, 2), "b"), (datetime(2012, 1, 3), "a"), ] mi = pd.MultiIndex.from_tuples(values, names=["date", None]) ser = pd.Series([3, 2, 2.5, 4], index=mi) result = ser.groupby(level=1).mean() expected = pd.Series([3.0, 2.5], index=["a", "b"]) tm.assert_series_equal(result, expected) def test_groupby_empty_list_raises(): # GH 5289 values = zip(range(10), range(10)) df =
DataFrame(values, columns=["apple", "b"])
pandas.DataFrame
"""Module contains test cases for points.py module.""" import unittest from pyroglancer.points import create_pointinfo, upload_points, annotate_points from pyroglancer.layers import get_ngserver, _handle_ngdimensions from pyroglancer.localserver import startdataserver, closedataserver from pyroglancer.ngviewer import openviewer, closeviewer import os import pandas as pd BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Add a common viewer, dataserver(specific port for travis) for each test module.. closeviewer() closedataserver() startdataserver(port=8004) # start dataserver.. openviewer(headless=True) # open ngviewer # def setup_module(module): # """Start all servers.""" # # Add a common viewer, dataserver for the whole serie of test.. # startdataserver() # start dataserver.. # openviewer(headless=True) # open ngviewer # # # def teardown_module(module): # """Stop all servers.""" # # Stop all viewers.. # closedataserver() # closeviewer() class Testpoints(unittest.TestCase): """Test pyroglancer.points.""" # def setUp(self): # """Perform set up.""" # super(Testsynapses, self).setUp() # # def tearDown(self): # """Perform tearing down.""" # super(Testsynapses, self).tearDown() def test_create_pointinfo(self): """Check if the point info is stored.""" layer_serverdir, layer_host = get_ngserver() layer_kws = {} layer_kws['ngspace'] = 'FAFB' dimensions = _handle_ngdimensions(layer_kws) create_pointinfo(dimensions, layer_serverdir, 'points') status = os.path.isfile(os.path.join( layer_serverdir, 'precomputed/points', 'info')) assert status def test_put_pointfile(self): """Check if the point file is stored.""" layer_serverdir, layer_host = get_ngserver() layer_kws = {} layer_kws['ngspace'] = 'FAFB' dimensions = _handle_ngdimensions(layer_kws) layer_name = 'points' points_path = create_pointinfo(dimensions, layer_serverdir, layer_name) location_data = [{'x': 5, 'y': 10, 'z': 20}, {'x': 15, 'y': 25, 'z': 30}] points =
pd.DataFrame(location_data)
pandas.DataFrame
from functools import reduce import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) def mergeAllTime(dfs:list[pd.DataFrame]): ''' Layer 1 - not useful? combines multiple mutlicolumned dataframes. to support disparate frequencies, outter join fills in missing values with previous value. So this isn't really important anymore becauase I realized it'll not be needed anywhere I think, maybe for the live updates models and stream but that's for later. ''' if dfs is pd.DataFrame: return dfs if len(dfs) == 0: return None if len(dfs) == 1: return dfs[0] for df in dfs: df.index =
pd.to_datetime(df.index)
pandas.to_datetime
# Copyright (c) Facebook, Inc. and its affiliates. import logging import sys import unittest import numpy as np import pandas as pd from numba.typed import List from sklearn.datasets import make_gaussian_quantiles from sklearn.metrics import classification_report as sklearn_classification_report from sklearn.metrics import confusion_matrix as sklearn_confusion_matrix from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error from .classification import ( create_numba_list, classification_report, metrics_from_confusion_matrix, confusion_matrix, plot_classification_report, ) from .regression import regression_report logger = logging.getLogger(__name__) handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.DEBUG) logger.addHandler(handler) logger.setLevel(logging.DEBUG) RANDOM_SEED = 27 class TestMultiClassClassification: @classmethod def setup_class(cls): """""" # Construct dataset X1, y1 = make_gaussian_quantiles( cov=3.0, n_samples=10000, n_features=2, n_classes=5, random_state=RANDOM_SEED, ) X1 = pd.DataFrame(X1) cls.label = pd.Series(y1).to_numpy() np.random.seed(RANDOM_SEED) cls.predicted = pd.Series(y1)[ np.random.choice(len(y1), size=len(y1), replace=False) ].to_numpy() cls.labels = create_numba_list(np.unique(cls.label)) cls.n_labels = len(cls.labels) df = pd.DataFrame({"label": cls.label, "predicted": cls.predicted}) cls.df_np = df.to_numpy() cls.matrix = confusion_matrix( cls.df_np[:, 0], cls.df_np[:, 1], labels=cls.labels, n_labels=cls.n_labels ) def test_confusion_matrix(self): sklearn_matrix = sklearn_confusion_matrix(self.label, self.predicted) assert np.array_equal(self.matrix, sklearn_matrix) def test_metrics(self): """ put into a identically-formatted dictionaries to be able to use == operator """ report_sklearn = sklearn_classification_report( self.label, self.predicted, output_dict=True ) formatted_report = List() for key, val in report_sklearn.items(): if key not in ["accuracy", "macro avg", "weighted avg"]: formatted_report.append(val["precision"]) formatted_report.append(val["recall"]) formatted_report.append(val["f1-score"]) report = metrics_from_confusion_matrix(self.matrix, self.labels) assert formatted_report == report def test_confidence_intervals(self): """ validate that the lower is always <= upper and that the point estimate lies within """ np.random.seed(RANDOM_SEED) report = classification_report(self.label, self.predicted) assert (report["lower"] <= report["upper"]).all() class TestBinaryClassification: @classmethod def setup_class(cls): """""" # Construct dataset X1, y1 = make_gaussian_quantiles( cov=3.0, n_samples=10000, n_features=2, n_classes=2, random_state=RANDOM_SEED, ) cls.label = pd.Series(y1).to_numpy() np.random.seed(RANDOM_SEED) cls.predicted =
pd.Series(y1)
pandas.Series
import os import sys import pandas os.makedirs("./filelists_incucyte/", exist_ok=True) ROOT_FOLDERNAME_WITHIN_SUBMISSION_SYSTEM = "" #FILENAME = "20210920 Overview CG plates and compounds.xlsx" #FILENAME = "20220121 Overview CG plates and compounds _consolidated RTG.xlsx" FILENAME = sys.argv[1] df_batches = pandas.read_excel(FILENAME, sheet_name="compound batches") df_compounds = pandas.read_excel(FILENAME, sheet_name="compounds") df_identifier = df_batches.merge(df_compounds, on="compound ID", how="left", validate="m:1") df_experiments = pandas.read_excel(FILENAME, sheet_name="experiments") ## do only cv df_experiments = df_experiments[df_experiments["experiment ID"].str.contains("cv")] ## store expanded compound maps print("expanding the compound maps...") compound_map_dict = {} for see, _ in df_experiments.groupby("compound map see corresponding excel table"): print(f"Checking the compound map '{see}'...") df_compound_map = pandas.read_excel(FILENAME, sheet_name=f"compound map {see}") ## expand with lookup-ed ID for i, s in df_compound_map.iterrows(): #print(i) #print(s.compound_name) column_name_for_identification = "compound batch ID" if pandas.isna(s[column_name_for_identification]): continue result = df_identifier.query("`compound batch ID` == '{compound_name}'".format(compound_name= s[column_name_for_identification])) if type(s[column_name_for_identification]) == int: result = df_identifier.query("`compound batch ID` == {compound_name}".format(compound_name= s[column_name_for_identification])) #print(result) #assert len(result) == 1, (s, result) if len(result) == 1: #print(dff.loc[i]) for col in result.columns: df_compound_map.loc[i, col] = result.squeeze()[col] else: print("ERROR: couldn't lookup the compound name '{compound_name}'".format(compound_name= s[column_name_for_identification])) compound_map_dict.update( {see: df_compound_map}) df_imagings =
pandas.read_excel(FILENAME, sheet_name="imaging campaigns")
pandas.read_excel
import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter import seaborn as sns import json import argparse import os import sys from typing import List, Dict, Any from ast import literal_eval """ Plot heatmap or violinplot of tactics and vendors """ CPE_ID_NORB_ID_PATH = "NORB/original_id_to_norb_id/cpe_id_norb_id.json" def make_intensity_array(tactics, vendors, tactic_ids, tactic_vendor_products): intensity_array = np.zeros((len(vendors),len(tactics))) for tactic in tactic_vendor_products: for vendor in tactic_vendor_products[tactic]: products = tactic_vendor_products[tactic][vendor] num_products = len(products) intensity_array[vendors.index(vendor)][tactic_ids.index(tactic)] = num_products return intensity_array def norb_id_to_cpe_id(NORB_folder_path): NORB_cpe_id_path = os.path.join(NORB_folder_path, CPE_ID_NORB_ID_PATH) with open(NORB_cpe_id_path) as f: cpe_id_norb_id = json.load(f) norb_id_to_cpe_id = dict() for cpe_id, norb_id in cpe_id_norb_id.items(): norb_id_to_cpe_id[f"cpe_{norb_id}"] = cpe_id return norb_id_to_cpe_id def analyze_tactic_result(vendors, tactic_result, norb_id_to_cpe_id): df = pd.read_csv(tactic_result, usecols=["tactic", "cpe"]) tactic_vendor_products = dict() for row_index in df.index[:-1]: tactic = literal_eval(df["tactic"][row_index]).pop() cpes = set() entry = df["cpe"][row_index] if entry != "set()": cpes = literal_eval(entry) cpe_ids = find_cpe_ids(cpes, norb_id_to_cpe_id) vendor_products = find_vendor_cpes(vendors, cpe_ids) tactic_vendor_products[tactic] = vendor_products return tactic_vendor_products def find_vendor_cpes(vendors, cpe_ids): vendor_products = dict() for vendor in vendors: vendor_products[vendor] = set() for cpe_id in cpe_ids: parsed = cpe_id.split(':', 5) vendor = parsed[3] product = parsed[4] if vendor in vendors: vendor_products[vendor].add(product) return vendor_products def find_cpe_ids(cpes, norb_id_to_cpe_id): cpe_ids = set() for norb_id in cpes: cpe_ids.add(norb_id_to_cpe_id[norb_id]) return cpe_ids def make_heat_map(tactics, vendors, tactic_ids, tactic_search_result, norb_id_to_cpe_id, save_path=None): plt.rc('font', size=12) plt.rcParams["font.weight"] = "bold" plt.rcParams["axes.labelweight"] = "bold" tactic_vendor_products = analyze_tactic_result(vendors, tactic_search_result, norb_id_to_cpe_id) intensity_array = make_intensity_array(tactics, vendors, tactic_ids, tactic_vendor_products) labels = np.asarray([[int(intensity_array[row, col]) for col in range(len(tactics))] for row in range(len(vendors))]) comma_fmt = FuncFormatter(lambda x, p: format(int(x), ',')) heatmap = sns.heatmap(intensity_array, cmap='magma_r', xticklabels=tactics, yticklabels=vendors, annot=labels, fmt='', annot_kws={'size':10}, cbar_kws={'format':comma_fmt}) # heatmap.set_xticklabels(heatmap.get_xticklabels(), rotation=45, horizontalalignment='right') for t in heatmap.texts: t.set_text('{:,d}'.format(int(t.get_text()))) heatmap.set(xlabel="Tactics", ylabel="Vendors") heatmap.tick_params(which='both', width=2) heatmap.tick_params(which='major', length=7) heatmap.tick_params(which='minor', length=4) b, t = plt.ylim() b += 0.5 t -= 0.5 plt.ylim(b, t) plt.tight_layout() fig = heatmap.get_figure() if save_path is None: plt.show() else: fig.savefig(save_path, dpi=400) def cve_to_risk(cve_summary): cve_to_risk_dict = dict() df = pd.read_csv(cve_summary, usecols=["node_name", "metadata"]) for row_index in df.index: cve = df["node_name"][row_index] metadata = literal_eval(df["metadata"][row_index]) risk_score = metadata["weight"] cve_to_risk_dict[cve] = risk_score return cve_to_risk_dict # Violin plots for vendor applications that reach a specific tactic def max_cve_risk_violin_tactic_helper(tactic, vendors, vendor_search_result_folder, cve_to_risk_dict, tactic_search_result, norb_id_to_cpe_id): tactic_vendor_products = analyze_tactic_result(vendors, tactic_search_result, norb_id_to_cpe_id) vendor_products = tactic_vendor_products[tactic] # dict of vendors to set of their products vendor_to_risk_score = dict() for vendor in vendors: VENDOR_SEARCH_RESULT_PATH = os.path.join(vendor_search_result_folder, "search_result_" + vendor + ".csv") df = pd.read_csv(VENDOR_SEARCH_RESULT_PATH, usecols=["tactic", "cve"]) risk_score_list = [] for row_index in df.index[:-1]: tactics = set() tactics_entry = df["tactic"][row_index] if tactics_entry != "set()": tactics = literal_eval(tactics_entry) cves = set() cves_entry = df["cve"][row_index] if cves_entry != "set()": cves = literal_eval(cves_entry) if tactic in tactics: max_cve_risk = None for cve in cves: cve_risk = cve_to_risk_dict[cve] if max_cve_risk is None: max_cve_risk = cve_risk elif max_cve_risk < cve_risk: max_cve_risk = cve_risk risk_score_list.append(max_cve_risk) vendor_to_risk_score[vendor] = risk_score_list return vendor_to_risk_score def max_cve_risk_violin_tactic(tactic_names, tactic_ids, vendors, vendor_search_result_folder, cve_to_risk_dict, tactic_search_result, norb_id_to_cpe_id, save_path=None, stick=False): tactic1_name, tactic2_name = tactic_names tactic1_id, tactic2_id = tactic_ids plt.rcParams['figure.figsize'] = (20.0, 12.0) plt.rcParams["font.weight"] = "bold" plt.rcParams["axes.labelweight"] = "bold" sns.set(font_scale=3) sns.set_style("ticks") vendor_to_risk_score_dict1 = max_cve_risk_violin_tactic_helper(tactic1_id, vendors, vendor_search_result_folder, cve_to_risk_dict, tactic_search_result, norb_id_to_cpe_id) vendor_to_risk_score_dict2 = max_cve_risk_violin_tactic_helper(tactic2_id, vendors, vendor_search_result_folder, cve_to_risk_dict, tactic_search_result, norb_id_to_cpe_id) combined_data = {'Tactic': [], 'Vendor': [], 'CVSS Scores': []} for vendor, risk_score_list in vendor_to_risk_score_dict1.items(): for risk_score in risk_score_list: combined_data['Tactic'].append(tactic1_name) combined_data['Vendor'].append(vendor) combined_data['CVSS Scores'].append(risk_score) for vendor, risk_score_list in vendor_to_risk_score_dict2.items(): for risk_score in risk_score_list: combined_data['Tactic'].append(tactic2_name) combined_data['Vendor'].append(vendor) combined_data['CVSS Scores'].append(risk_score) vendor_to_risk_score_df = pd.DataFrame(combined_data) if stick: p = sns.violinplot(data=vendor_to_risk_score_df, x='Vendor', y='CVSS Scores', hue='Tactic', split=True, inner="stick") else: p = sns.violinplot(data=vendor_to_risk_score_df, x='Vendor', y='CVSS Scores', hue='Tactic', split=True) p.tick_params(which='both', width=4) p.tick_params(which='major', length=14) plt.legend(fontsize=30) p.set(xlabel="Vendors", ylabel="CVSS Scores") plt.xticks(rotation=45) plt.ylim(-1.5, 11.5) plt.tight_layout() if save_path is None: plt.show() else: plt.savefig(save_path, dpi=400) # Violin plots for vendor applications that reach all of their tactics def max_cve_risk_violin_helper(vendors, vendor_search_result_folder, cve_to_risk_dict): vendor_to_risk_score = dict() for vendor in vendors: VENDOR_SEARCH_RESULT_PATH = os.path.join(vendor_search_result_folder, "search_result_" + vendor + ".csv") df =
pd.read_csv(VENDOR_SEARCH_RESULT_PATH, usecols=["cve"])
pandas.read_csv
import requests import json import datetime import sys from dateutil.parser import parse as to_datetime try: import pandas as pd except: pass from pyteamup.utils.utilities import * from pyteamup.utils.constants import * from pyteamup.Event import Event class Calendar: def __init__(self, cal_id, api_key): self.__calendar_id = cal_id self.__api_key = api_key self.__cal_base = f'/{cal_id}' self.__token_str = f'?_teamup_token={self.api_key}' self.__subcalendars = None self.__valid_api = None self.__configuration = None self._base_url = BASE_URL + self.__cal_base self._event_collection_url = self._base_url + EVENTS_BASE + self.__token_str self._subcalendars_url = self._base_url + SUBCALENDARS_BASE + self.__token_str self._check_access_url = BASE_URL + CHECK_ACCESS_BASE + self.__token_str self.events_json = None if not self.valid_api: raise Exception(f'Invalid Api Key: {self.api_key}') def __str__(self): return self.calendar_id @property def api_key(self): return self.__api_key @property def calendar_id(self): return self.__calendar_id @property def valid_api(self): """Makes a request to the calendar to see if the api is valid""" if not self.__valid_api: req = requests.get(self._check_access_url) try: check_status_code(req.status_code) self.__valid_api = True except: self.__valid_api = False return self.__valid_api else: return None @property def configuration(self): if self.__configuration is None: print('Fetching configuration') req = requests.get(self._base_url + CONFIGURATION_BASE + self.__token_str) check_status_code(req.status_code) self.__configuration = json.loads(req.text)['configuration'] return self.__configuration @property def subcalendars(self): if not self.__subcalendars: print('Fetching Subcalendars') req = requests.get(self._subcalendars_url) check_status_code(req.status_code) self.__subcalendars = json.loads(req.text)['subcalendars'] return self.__subcalendars def clear_calendar_cache(self): self.__subcalendars = None self.__configuration = None def get_event_collection(self, start_dt=None, end_dt=None, subcal_id=None, returnas='events', markdown=False): """ Method allows bulk fetching of events that fall between the provided time frame. If None is provided then the current date -30 and +180 days is used. :param start_dt: if set as None then set as today minus 30 days :param end_dt: if left as None then set as today plus 180 days :param subcal_id: optional str or list-like if a different calendar should be queried :return: json of events """ if returnas not in ('events', 'dataframe', 'dict'): raise TypeError('Returnas not recognized. Recognized values: event, series, dict') if start_dt is None: start_dt = datetime.date.today() - datetime.timedelta(30) if end_dt is None: end_dt = datetime.date.today() + datetime.timedelta(180) subcal_par = '' if subcal_id: if isinstance(subcal_id, (list, tuple)): for id in subcal_id: subcal_par += f'&subcalendarId[]={id}' else: subcal_par = f'&subcalendarId[]={subcal_id}' if markdown == True: para_markdown = '&format[]=markdown' else: para_markdown = '' parameters = f'&startDate={start_dt.strftime("%Y-%m-%d")}&endDate={end_dt.strftime("%Y-%m-%d")}' + subcal_par + para_markdown req = requests.get(self._event_collection_url + parameters) check_status_code(req.status_code) self.events_json = json.loads(req.text)['events'] if returnas == 'events': return [Event(self, **event_dict) for event_dict in self.events_json] elif returnas == 'dataframe' and 'pandas' in sys.modules: return pd.DataFrame.from_records(self.events_json) else: return self.events_json def _create_event_from_json(self, payload): """ Lazy Creation of Event by passing a formatted payload""" resp = requests.post(self._event_collection_url, data=payload, headers=POST_HEADERS) try: check_status_code(resp.status_code) except: print(payload) print(resp.text) raise return resp.text def get_event(self, event_id, returnas='event'): if returnas not in ('event', 'series', 'dict'): raise TypeError('Returnas not recognized. Recognized values: event, series, dict') url = self._base_url + EVENTS_BASE + f'/{event_id}' + self.__token_str resp = requests.get(url) check_status_code(resp.status_code) event_dict = json.loads(resp.text)['event'] if returnas == 'event': return Event(self, **event_dict) elif returnas == 'series' and 'pandas' in sys.modules: return pd.Series(event_dict) else: return event_dict def get_subcalendar(self): raise NotImplementedError def search_events(self): raise NotImplementedError def get_changed_events(self, modified_since, returnas='event'): """ Get changed events since given unix time :param modified_since: <int> Unix timestamp, must be less than 30 days old :param returnas: <str> `event` `series` `dict` are valid options :return: Tuple of event list and returned timestamp """ if returnas not in ('event', 'series', 'dict'): raise TypeError('Returnas not recognized. Recognized values: event, series, dict') url = self._base_url + EVENTS_BASE + self.__token_str + '&modifiedSince=' + str(modified_since) resp = requests.get(url) check_status_code(resp.status_code) events_json = json.loads(resp.text)['events'] timestamp = json.loads(resp.text)['timestamp'] if returnas == 'events': return [Event(self, **event_dict) for event_dict in events_json], timestamp elif returnas == 'dataframe' and 'pandas' in sys.modules: return
pd.DataFrame.from_records(events_json)
pandas.DataFrame.from_records
import numpy as np import pandas as pd from datetime import datetime import pytest import empyrical import vectorbt as vbt from vectorbt import settings from tests.utils import isclose day_dt = np.timedelta64(86400000000000) ts = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [5, 4, 3, 2, 1], 'c': [1, 2, 3, 2, 1] }, index=pd.DatetimeIndex([ datetime(2018, 1, 1), datetime(2018, 1, 2), datetime(2018, 1, 3), datetime(2018, 1, 4), datetime(2018, 1, 5) ])) ret = ts.pct_change() settings.returns['year_freq'] = '252 days' # same as empyrical seed = 42 np.random.seed(seed) benchmark_rets = pd.DataFrame({ 'a': ret['a'] * np.random.uniform(0.8, 1.2, ret.shape[0]), 'b': ret['b'] * np.random.uniform(0.8, 1.2, ret.shape[0]) * 2, 'c': ret['c'] * np.random.uniform(0.8, 1.2, ret.shape[0]) * 3 }) # ############# accessors.py ############# # class TestAccessors: def test_freq(self): assert ret.vbt.returns.wrapper.freq == day_dt assert ret['a'].vbt.returns.wrapper.freq == day_dt assert ret.vbt.returns(freq='2D').wrapper.freq == day_dt * 2 assert ret['a'].vbt.returns(freq='2D').wrapper.freq == day_dt * 2 assert pd.Series([1, 2, 3]).vbt.returns.wrapper.freq is None assert pd.Series([1, 2, 3]).vbt.returns(freq='3D').wrapper.freq == day_dt * 3 assert pd.Series([1, 2, 3]).vbt.returns(freq=np.timedelta64(4, 'D')).wrapper.freq == day_dt * 4 def test_ann_factor(self): assert ret['a'].vbt.returns(year_freq='365 days').ann_factor == 365 assert ret.vbt.returns(year_freq='365 days').ann_factor == 365 with pytest.raises(Exception) as e_info: assert pd.Series([1, 2, 3]).vbt.returns(freq=None).ann_factor def test_from_price(self): pd.testing.assert_series_equal(pd.Series.vbt.returns.from_price(ts['a']).obj, ts['a'].pct_change()) pd.testing.assert_frame_equal(pd.DataFrame.vbt.returns.from_price(ts).obj, ts.pct_change()) assert pd.Series.vbt.returns.from_price(ts['a'], year_freq='365 days').year_freq == pd.to_timedelta('365 days') assert
pd.DataFrame.vbt.returns.from_price(ts, year_freq='365 days')
pandas.DataFrame.vbt.returns.from_price
import re import numpy as np import pandas as pd from arc._common import prob_metric_cal import matchzoo as mz from arc.anmm_impl import anmm_train from arc.arci_impl import arci_train from arc.arcii_impl import arcii_train from arc.bimpm_impl import bimpm_train from arc.cdssm_impl import cdssm_train from arc.conv_knrm_impl import conv_knrm_train from arc.diin_impl import diin_train from arc.drmm_impl import drmm_train from arc.drmmtks_impl import drmmtks_train from arc.dssm_impl import dssm_train from arc.duet_impl import duet_train from arc.esim_impl import esim_train from arc.hbmp_impl import hbmp_train from arc.knrm_impl import knrm_train from arc.match_lstm_impl import match_lstm_train from arc.match_pyramid_impl import match_pyramid_train from arc.match_srnn_impl import match_srnn_train from arc.mv_lstm_impl import mv_lstm_train from utils.util_params import arc_params_control def trans_text(str_data_list): res = [] for str_data in str_data_list: str_list = re.findall('\d+', str_data) num_list = list(map(int, str_list)) num_arr = np.array(num_list, dtype=np.float32) res.append(num_arr) print('Shape of text: ', np.array(res).shape) return res def trans_ngram(str_data_list, ngram=3): res = [] for str_data in str_data_list: str_list = re.findall('\d+', str_data) num_list = list(map(int, str_list)) num_arr = [] for i in range(len(num_list)): if i < len(num_list) - ngram + 1: gram = num_list[i: i + ngram] else: gram = num_list[i: len(num_list)] + [0] * (ngram - (len(num_list) - i)) num_arr.append(gram) res.append(np.array(num_arr, dtype=np.float)) print('Shape of n-gram: ', np.array(res).shape) return res def trans_hist(str_data_list_left, str_data_list_right, bin_size): res_left = trans_ngram(str_data_list_left, 5) res_right = trans_ngram(str_data_list_right, 5) res_len = len(res_right[0]) for left_text, right_text in zip(res_left, res_right): for i in range(res_len): score_list = [] for j in range(res_len): score = np.dot(left_text[i], right_text[j]) / (np.linalg.norm(left_text[i]) * (np.linalg.norm(right_text[j]))) score_list.append(score) # print('Shape of n-gram: ', np.array(res).shape) # return res def trans_pd(file_name, arc, params): pd_data = pd.read_csv(file_name) id_left_list = pd_data['id_left'].values text_left_list = trans_text(pd_data['text_left'].values) length_left_list = list(map(int, pd_data['length_left'].values)) id_right_list = pd_data['id_right'].values text_right_list = trans_text(pd_data['text_right'].values) length_right_list = list(map(int, pd_data['length_right'].values)) label_list = list(map(float, pd_data['label'].values)) if arc == 'dssm': # ngram_left_list = trans_ngram(pd_data['text_left'].values, params['ngram']) # ngram_right_list = trans_ngram(pd_data['text_right'].values, params['ngram']) data = {'id_left':
pd.Series(id_left_list)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Mon Dec 20 01:10:22 2021 @author: mohit """ #%% import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy import stats from sklearn.decomposition import PCA import prince #%% df=
pd.read_csv('stackoverflow_data.csv')
pandas.read_csv