prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import datetime, timedelta import numpy as np import pytest from pandas.errors import ( NullFrequencyError, OutOfBoundsDatetime, PerformanceWarning) import pandas as pd from pandas import ( DataFrame, DatetimeIndex, NaT, Series, Timedelta, TimedeltaIndex, Timestamp, timedelta_range) import pandas.util.testing as tm def get_upcast_box(box, vector): """ Given two box-types, find the one that takes priority """ if box is DataFrame or isinstance(vector, DataFrame): return DataFrame if box is Series or isinstance(vector, Series): return Series if box is pd.Index or isinstance(vector, pd.Index): return pd.Index return box # ------------------------------------------------------------------ # Timedelta64[ns] dtype Comparisons class TestTimedelta64ArrayLikeComparisons: # Comparison tests for timedelta64[ns] vectors fully parametrized over # DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison # tests will eventually end up here. def test_compare_timedelta64_zerodim(self, box_with_array): # GH#26689 should unbox when comparing with zerodim array box = box_with_array xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = pd.timedelta_range('2H', periods=4) other = np.array(tdi.to_numpy()[0]) tdi = tm.box_expected(tdi, box) res = tdi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(res, expected) with pytest.raises(TypeError): # zero-dim of wrong dtype should still raise tdi >= np.array(4) class TestTimedelta64ArrayComparisons: # TODO: All of these need to be parametrized over box def test_compare_timedelta_series(self): # regression test for GH#5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_tdi_cmp_str_invalid(self, box_with_array): # GH#13624 xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = TimedeltaIndex(['1 day', '2 days']) tdarr = tm.box_expected(tdi, box_with_array) for left, right in [(tdarr, 'a'), ('a', tdarr)]: with pytest.raises(TypeError): left > right with pytest.raises(TypeError): left >= right with pytest.raises(TypeError): left < right with pytest.raises(TypeError): left <= right result = left == right expected = np.array([False, False], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = left != right expected = np.array([True, True], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize('dtype', [None, object]) def test_comp_nat(self, dtype): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = rhs != lhs expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == rhs, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(lhs != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != lhs, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > lhs, expected) def test_comparisons_nat(self): tdidx1 = pd.TimedeltaIndex(['1 day', pd.NaT, '1 day 00:00:01', pd.NaT, '1 day 00:00:01', '5 day 00:00:03']) tdidx2 = pd.TimedeltaIndex(['2 day', '2 day', pd.NaT, pd.NaT, '1 day 00:00:02', '5 days 00:00:03']) tdarr = np.array([np.timedelta64(2, 'D'), np.timedelta64(2, 'D'), np.timedelta64('nat'), np.timedelta64('nat'), np.timedelta64(1, 'D') + np.timedelta64(2, 's'), np.timedelta64(5, 'D') + np.timedelta64(3, 's')]) cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) # TODO: better name def test_comparisons_coverage(self): rng = timedelta_range('1 days', periods=10) result = rng < rng[3] expected = np.array([True, True, True] + [False] * 7) tm.assert_numpy_array_equal(result, expected) # raise TypeError for now with pytest.raises(TypeError): rng < rng[3].value result = rng == list(rng) exp = rng == rng tm.assert_numpy_array_equal(result, exp) # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedelta64ArithmeticUnsorted: # Tests moved from type-specific test files but not # yet sorted/parametrized/de-duplicated def test_ufunc_coercions(self): # normal ops are also tested in tseries/test_timedeltas.py idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [idx * 2, np.multiply(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['4H', '8H', '12H', '16H', '20H'], freq='4H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '4H' for result in [idx / 2, np.divide(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['1H', '2H', '3H', '4H', '5H'], freq='H', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'H' idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [-idx, np.negative(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['-2H', '-4H', '-6H', '-8H', '-10H'], freq='-2H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '-2H' idx = TimedeltaIndex(['-2H', '-1H', '0H', '1H', '2H'], freq='H', name='x') for result in [abs(idx), np.absolute(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['2H', '1H', '0H', '1H', '2H'], freq=None, name='x') tm.assert_index_equal(result, exp) assert result.freq is None def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dt with pytest.raises(TypeError, match=msg): tdi - dti msg = (r"descriptor '__sub__' requires a 'datetime\.datetime' object" " but received a 'Timedelta'") with pytest.raises(TypeError, match=msg): td - dt msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): td - dti result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = pd.date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = pd.date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): assert result == expected assert isinstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt_tz - dt msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts_tz2 msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt - dt_tz msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): ts - dt_tz with pytest.raises(TypeError, match=msg): ts_tz2 - ts with pytest.raises(TypeError, match=msg): ts_tz2 - dt with pytest.raises(TypeError, match=msg): ts_tz - ts_tz2 # with dti with pytest.raises(TypeError, match=msg): dti - ts_tz with pytest.raises(TypeError, match=msg): dti_tz - ts with pytest.raises(TypeError, match=msg): dti_tz - ts_tz2 result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): tdi + dti[0:1] with pytest.raises(ValueError, match=msg): tdi[0:1] + dti # random indexes with pytest.raises(NullFrequencyError): tdi + pd.Int64Index([1, 2, 3]) # this is a union! # pytest.raises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') assert result == expected result = td + dt expected = Timestamp('20130102') assert result == expected # TODO: Needs more informative name, probably split up into # more targeted tests @pytest.mark.parametrize('freq', ['D', 'B']) def test_timedelta(self, freq): index = pd.date_range('1/1/2000', periods=50, freq=freq) shifted = index + timedelta(1) back = shifted + timedelta(-1) tm.assert_index_equal(index, back) if freq == 'D': expected = pd.tseries.offsets.Day(1) assert index.freq == expected assert shifted.freq == expected assert back.freq == expected else: # freq == 'B' assert index.freq == pd.tseries.offsets.BusinessDay(1) assert shifted.freq is None assert back.freq == pd.tseries.offsets.BusinessDay(1) result = index - timedelta(1) expected = index + timedelta(-1) tm.assert_index_equal(result, expected) # GH#4134, buggy with timedeltas rng = pd.date_range('2013', '2014') s = Series(rng) result1 = rng - pd.offsets.Hour(1) result2 = DatetimeIndex(s - np.timedelta64(100000000)) result3 = rng - np.timedelta64(100000000) result4 = DatetimeIndex(s - pd.offsets.Hour(1)) tm.assert_index_equal(result1, result4) tm.assert_index_equal(result2, result3) class TestAddSubNaTMasking: # TODO: parametrize over boxes def test_tdi_add_timestamp_nat_masking(self): # GH#17991 checking for overflow-masking with NaT tdinat = pd.to_timedelta(['24658 days 11:15:00', 'NaT']) tsneg = Timestamp('1950-01-01') ts_neg_variants = [tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype('datetime64[ns]'), tsneg.to_datetime64().astype('datetime64[D]')] tspos = Timestamp('1980-01-01') ts_pos_variants = [tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype('datetime64[ns]'), tspos.to_datetime64().astype('datetime64[D]')] for variant in ts_neg_variants + ts_pos_variants: res = tdinat + variant assert res[1] is pd.NaT def test_tdi_add_overflow(self): # See GH#14068 # preliminary test scalar analogue of vectorized tests below with pytest.raises(OutOfBoundsDatetime): pd.to_timedelta(106580, 'D') + Timestamp('2000') with pytest.raises(OutOfBoundsDatetime): Timestamp('2000') + pd.to_timedelta(106580, 'D') _NaT = int(pd.NaT) + 1 msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): pd.to_timedelta([106580], 'D') + Timestamp('2000') with pytest.raises(OverflowError, match=msg): Timestamp('2000') + pd.to_timedelta([106580], 'D') with pytest.raises(OverflowError, match=msg): pd.to_timedelta([_NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): pd.to_timedelta(['5 days', _NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): (pd.to_timedelta([_NaT, '5 days', '1 hours']) - pd.to_timedelta(['7 seconds', _NaT, '4 hours'])) # These should not overflow! exp = TimedeltaIndex([pd.NaT]) result = pd.to_timedelta([pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex(['4 days', pd.NaT]) result = pd.to_timedelta(['5 days', pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex([pd.NaT, pd.NaT, '5 hours']) result = (pd.to_timedelta([pd.NaT, '5 days', '1 hours']) + pd.to_timedelta(['7 seconds', pd.NaT, '4 hours'])) tm.assert_index_equal(result, exp) class TestTimedeltaArraylikeAddSubOps: # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # TODO: moved from frame tests; needs parametrization/de-duplication def test_td64_df_add_int_frame(self): # GH#22696 Check that we don't dispatch to numpy implementation, # which treats int64 as m8[ns] tdi = pd.timedelta_range('1', periods=3) df = tdi.to_frame() other = pd.DataFrame([1, 2, 3], index=tdi) # indexed like `df` with pytest.raises(TypeError): df + other with pytest.raises(TypeError): other + df with pytest.raises(TypeError): df - other with pytest.raises(TypeError): other - df # TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs # parametrization+de-duplication def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated sn = pd.to_timedelta(Series([pd.NaT])) df1 = pd.DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = pd.DataFrame(['00:00:02']).apply(pd.to_timedelta) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated dfn = pd.DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') actual = scalar1 + scalar1 assert actual == scalar2 actual = scalar2 - scalar1 assert actual == scalar1 actual = s1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - s1 tm.assert_series_equal(actual, s1) actual = s1 + scalar1 tm.assert_series_equal(actual, s2) actual = scalar1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - scalar1 tm.assert_series_equal(actual, s1) actual = -scalar1 + s2 tm.assert_series_equal(actual, s1) actual = s1 + timedelta_NaT tm.assert_series_equal(actual, sn) actual = timedelta_NaT + s1 tm.assert_series_equal(actual, sn) actual = s1 - timedelta_NaT tm.assert_series_equal(actual, sn) actual = -timedelta_NaT + s1 tm.assert_series_equal(actual, sn) with pytest.raises(TypeError): s1 + np.nan with pytest.raises(TypeError): np.nan + s1 with pytest.raises(TypeError): s1 - np.nan with pytest.raises(TypeError): -np.nan + s1 actual = s1 + pd.NaT tm.assert_series_equal(actual, sn) actual = s2 - pd.NaT tm.assert_series_equal(actual, sn) actual = s1 + df1 tm.assert_frame_equal(actual, df2) actual = s2 - df1
tm.assert_frame_equal(actual, df1)
pandas.util.testing.assert_frame_equal
# -*- coding: utf-8 -*- from collections import OrderedDict from datetime import date, datetime, timedelta import numpy as np import pytest from pandas.compat import product, range import pandas as pd from pandas import ( Categorical, DataFrame, Grouper, Index, MultiIndex, Series, concat, date_range) from pandas.api.types import CategoricalDtype as CDT from pandas.core.reshape.pivot import crosstab, pivot_table import pandas.util.testing as tm @pytest.fixture(params=[True, False]) def dropna(request): return request.param class TestPivotTable(object): def setup_method(self, method): self.data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) def test_pivot_table(self): index = ['A', 'B'] columns = 'C' table = pivot_table(self.data, values='D', index=index, columns=columns) table2 = self.data.pivot_table( values='D', index=index, columns=columns) tm.assert_frame_equal(table, table2) # this works pivot_table(self.data, values='D', index=index) if len(index) > 1: assert table.index.names == tuple(index) else: assert table.index.name == index[0] if len(columns) > 1: assert table.columns.names == columns else: assert table.columns.name == columns[0] expected = self.data.groupby( index + [columns])['D'].agg(np.mean).unstack() tm.assert_frame_equal(table, expected) def test_pivot_table_nocols(self): df = DataFrame({'rows': ['a', 'b', 'c'], 'cols': ['x', 'y', 'z'], 'values': [1, 2, 3]}) rs = df.pivot_table(columns='cols', aggfunc=np.sum) xp = df.pivot_table(index='cols', aggfunc=np.sum).T tm.assert_frame_equal(rs, xp) rs = df.pivot_table(columns='cols', aggfunc={'values': 'mean'}) xp = df.pivot_table(index='cols', aggfunc={'values': 'mean'}).T tm.assert_frame_equal(rs, xp) def test_pivot_table_dropna(self): df = DataFrame({'amount': {0: 60000, 1: 100000, 2: 50000, 3: 30000}, 'customer': {0: 'A', 1: 'A', 2: 'B', 3: 'C'}, 'month': {0: 201307, 1: 201309, 2: 201308, 3: 201310}, 'product': {0: 'a', 1: 'b', 2: 'c', 3: 'd'}, 'quantity': {0: 2000000, 1: 500000, 2: 1000000, 3: 1000000}}) pv_col = df.pivot_table('quantity', 'month', [ 'customer', 'product'], dropna=False) pv_ind = df.pivot_table( 'quantity', ['customer', 'product'], 'month', dropna=False) m = MultiIndex.from_tuples([('A', 'a'), ('A', 'b'), ('A', 'c'), ('A', 'd'), ('B', 'a'), ('B', 'b'), ('B', 'c'), ('B', 'd'), ('C', 'a'), ('C', 'b'), ('C', 'c'), ('C', 'd')], names=['customer', 'product']) tm.assert_index_equal(pv_col.columns, m) tm.assert_index_equal(pv_ind.index, m) def test_pivot_table_categorical(self): cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) result = pd.pivot_table(df, values='values', index=['A', 'B'], dropna=True) exp_index = pd.MultiIndex.from_arrays( [cat1, cat2], names=['A', 'B']) expected = DataFrame( {'values': [1, 2, 3, 4]}, index=exp_index) tm.assert_frame_equal(result, expected) def test_pivot_table_dropna_categoricals(self, dropna): # GH 15193 categories = ['a', 'b', 'c', 'd'] df = DataFrame({'A': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'], 'B': [1, 2, 3, 1, 2, 3, 1, 2, 3], 'C': range(0, 9)}) df['A'] = df['A'].astype(CDT(categories, ordered=False)) result = df.pivot_table(index='B', columns='A', values='C', dropna=dropna) expected_columns = Series(['a', 'b', 'c'], name='A') expected_columns = expected_columns.astype( CDT(categories, ordered=False)) expected_index = Series([1, 2, 3], name='B') expected = DataFrame([[0, 3, 6], [1, 4, 7], [2, 5, 8]], index=expected_index, columns=expected_columns,) if not dropna: # add back the non observed to compare expected = expected.reindex( columns=Categorical(categories)).astype('float') tm.assert_frame_equal(result, expected) def test_pivot_with_non_observable_dropna(self, dropna): # gh-21133 df = pd.DataFrame( {'A': pd.Categorical([np.nan, 'low', 'high', 'low', 'high'], categories=['low', 'high'], ordered=True), 'B': range(5)}) result = df.pivot_table(index='A', values='B', dropna=dropna) expected = pd.DataFrame( {'B': [2, 3]}, index=pd.Index( pd.Categorical.from_codes([0, 1], categories=['low', 'high'], ordered=True), name='A')) tm.assert_frame_equal(result, expected) # gh-21378 df = pd.DataFrame( {'A': pd.Categorical(['left', 'low', 'high', 'low', 'high'], categories=['low', 'high', 'left'], ordered=True), 'B': range(5)}) result = df.pivot_table(index='A', values='B', dropna=dropna) expected = pd.DataFrame( {'B': [2, 3, 0]}, index=pd.Index( pd.Categorical.from_codes([0, 1, 2], categories=['low', 'high', 'left'], ordered=True), name='A')) tm.assert_frame_equal(result, expected) def test_pass_array(self): result = self.data.pivot_table( 'D', index=self.data.A, columns=self.data.C) expected = self.data.pivot_table('D', index='A', columns='C') tm.assert_frame_equal(result, expected) def test_pass_function(self): result = self.data.pivot_table('D', index=lambda x: x // 5, columns=self.data.C) expected = self.data.pivot_table('D', index=self.data.index // 5, columns='C') tm.assert_frame_equal(result, expected) def test_pivot_table_multiple(self): index = ['A', 'B'] columns = 'C' table = pivot_table(self.data, index=index, columns=columns) expected = self.data.groupby(index + [columns]).agg(np.mean).unstack() tm.assert_frame_equal(table, expected) def test_pivot_dtypes(self): # can convert dtypes f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [ 1, 2, 3, 4], 'i': ['a', 'b', 'a', 'b']}) assert f.dtypes['v'] == 'int64' z = pivot_table(f, values='v', index=['a'], columns=[ 'i'], fill_value=0, aggfunc=np.sum) result = z.get_dtype_counts() expected = Series(dict(int64=2)) tm.assert_series_equal(result, expected) # cannot convert dtypes f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [ 1.5, 2.5, 3.5, 4.5], 'i': ['a', 'b', 'a', 'b']}) assert f.dtypes['v'] == 'float64' z = pivot_table(f, values='v', index=['a'], columns=[ 'i'], fill_value=0, aggfunc=np.mean) result = z.get_dtype_counts() expected = Series(dict(float64=2)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('columns,values', [('bool1', ['float1', 'float2']), ('bool1', ['float1', 'float2', 'bool1']), ('bool2', ['float1', 'float2', 'bool1'])]) def test_pivot_preserve_dtypes(self, columns, values): # GH 7142 regression test v = np.arange(5, dtype=np.float64) df = DataFrame({'float1': v, 'float2': v + 2.0, 'bool1': v <= 2, 'bool2': v <= 3}) df_res = df.reset_index().pivot_table( index='index', columns=columns, values=values) result = dict(df_res.dtypes) expected = {col: np.dtype('O') if col[0].startswith('b') else np.dtype('float64') for col in df_res} assert result == expected def test_pivot_no_values(self): # GH 14380 idx = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-01-02', '2011-01-01', '2011-01-02']) df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}, index=idx) res = df.pivot_table(index=df.index.month, columns=df.index.day) exp_columns = pd.MultiIndex.from_tuples([('A', 1), ('A', 2)]) exp = pd.DataFrame([[2.5, 4.0], [2.0, np.nan]], index=[1, 2], columns=exp_columns) tm.assert_frame_equal(res, exp) df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'dt': pd.date_range('2011-01-01', freq='D', periods=5)}, index=idx) res = df.pivot_table(index=df.index.month, columns=pd.Grouper(key='dt', freq='M')) exp_columns = pd.MultiIndex.from_tuples([('A', pd.Timestamp('2011-01-31'))]) exp_columns.names = [None, 'dt'] exp = pd.DataFrame([3.25, 2.0], index=[1, 2], columns=exp_columns) tm.assert_frame_equal(res, exp) res = df.pivot_table(index=pd.Grouper(freq='A'), columns=pd.Grouper(key='dt', freq='M')) exp = pd.DataFrame([3], index=pd.DatetimeIndex(['2011-12-31']), columns=exp_columns) tm.assert_frame_equal(res, exp) def test_pivot_multi_values(self): result = pivot_table(self.data, values=['D', 'E'], index='A', columns=['B', 'C'], fill_value=0) expected = pivot_table(self.data.drop(['F'], axis=1), index='A', columns=['B', 'C'], fill_value=0) tm.assert_frame_equal(result, expected) def test_pivot_multi_functions(self): f = lambda func: pivot_table(self.data, values=['D', 'E'], index=['A', 'B'], columns='C', aggfunc=func) result = f([np.mean, np.std]) means = f(np.mean) stds = f(np.std) expected = concat([means, stds], keys=['mean', 'std'], axis=1) tm.assert_frame_equal(result, expected) # margins not supported?? f = lambda func: pivot_table(self.data, values=['D', 'E'], index=['A', 'B'], columns='C', aggfunc=func, margins=True) result = f([np.mean, np.std]) means = f(np.mean) stds = f(np.std) expected = concat([means, stds], keys=['mean', 'std'], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_index_with_nan(self, method): # GH 3588 nan = np.nan df = DataFrame({'a': ['R1', 'R2', nan, 'R4'], 'b': ['C1', 'C2', 'C3', 'C4'], 'c': [10, 15, 17, 20]}) if method: result = df.pivot('a', 'b', 'c') else: result = pd.pivot(df, 'a', 'b', 'c') expected = DataFrame([[nan, nan, 17, nan], [10, nan, nan, nan], [nan, 15, nan, nan], [nan, nan, nan, 20]], index=Index([nan, 'R1', 'R2', 'R4'], name='a'), columns=Index(['C1', 'C2', 'C3', 'C4'], name='b')) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(df.pivot('b', 'a', 'c'), expected.T) # GH9491 df = DataFrame({'a': pd.date_range('2014-02-01', periods=6, freq='D'), 'c': 100 + np.arange(6)}) df['b'] = df['a'] - pd.Timestamp('2014-02-02') df.loc[1, 'a'] = df.loc[3, 'a'] = nan df.loc[1, 'b'] = df.loc[4, 'b'] = nan if method: pv = df.pivot('a', 'b', 'c') else: pv = pd.pivot(df, 'a', 'b', 'c') assert pv.notna().values.sum() == len(df) for _, row in df.iterrows(): assert pv.loc[row['a'], row['b']] == row['c'] if method: result = df.pivot('b', 'a', 'c') else: result = pd.pivot(df, 'b', 'a', 'c') tm.assert_frame_equal(result, pv.T) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_tz(self, method): # GH 5878 df = DataFrame({'dt1': [datetime(2013, 1, 1, 9, 0), datetime(2013, 1, 2, 9, 0), datetime(2013, 1, 1, 9, 0), datetime(2013, 1, 2, 9, 0)], 'dt2': [datetime(2014, 1, 1, 9, 0), datetime(2014, 1, 1, 9, 0), datetime(2014, 1, 2, 9, 0), datetime(2014, 1, 2, 9, 0)], 'data1': np.arange(4, dtype='int64'), 'data2': np.arange(4, dtype='int64')}) df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d, tz='US/Pacific')) df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d, tz='Asia/Tokyo')) exp_col1 = Index(['data1', 'data1', 'data2', 'data2']) exp_col2 = pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'] * 2, name='dt2', tz='Asia/Tokyo') exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]], index=pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific'), columns=exp_col) if method: pv = df.pivot(index='dt1', columns='dt2') else: pv = pd.pivot(df, index='dt1', columns='dt2') tm.assert_frame_equal(pv, expected) expected = DataFrame([[0, 2], [1, 3]], index=pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific'), columns=pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'], name='dt2', tz='Asia/Tokyo')) if method: pv = df.pivot(index='dt1', columns='dt2', values='data1') else: pv = pd.pivot(df, index='dt1', columns='dt2', values='data1') tm.assert_frame_equal(pv, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_periods(self, method): df = DataFrame({'p1': [pd.Period('2013-01-01', 'D'), pd.Period('2013-01-02', 'D'), pd.Period('2013-01-01', 'D'), pd.Period('2013-01-02', 'D')], 'p2': [pd.Period('2013-01', 'M'), pd.Period('2013-01', 'M'), pd.Period('2013-02', 'M'), pd.Period('2013-02', 'M')], 'data1': np.arange(4, dtype='int64'), 'data2': np.arange(4, dtype='int64')}) exp_col1 = Index(['data1', 'data1', 'data2', 'data2']) exp_col2 = pd.PeriodIndex(['2013-01', '2013-02'] * 2, name='p2', freq='M') exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]], index=pd.PeriodIndex(['2013-01-01', '2013-01-02'], name='p1', freq='D'), columns=exp_col) if method: pv = df.pivot(index='p1', columns='p2') else: pv = pd.pivot(df, index='p1', columns='p2') tm.assert_frame_equal(pv, expected) expected = DataFrame([[0, 2], [1, 3]], index=pd.PeriodIndex(['2013-01-01', '2013-01-02'], name='p1', freq='D'), columns=pd.PeriodIndex(['2013-01', '2013-02'], name='p2', freq='M')) if method: pv = df.pivot(index='p1', columns='p2', values='data1') else: pv = pd.pivot(df, index='p1', columns='p2', values='data1') tm.assert_frame_equal(pv, expected) @pytest.mark.parametrize('values', [ ['baz', 'zoo'], np.array(['baz', 'zoo']), pd.Series(['baz', 'zoo']), pd.Index(['baz', 'zoo']) ]) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_list_like_values(self, values, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) if method: result = df.pivot(index='foo', columns='bar', values=values) else: result = pd.pivot(df, index='foo', columns='bar', values=values) data = [[1, 2, 3, 'x', 'y', 'z'], [4, 5, 6, 'q', 'w', 't']] index = Index(data=['one', 'two'], name='foo') columns = MultiIndex(levels=[['baz', 'zoo'], ['A', 'B', 'C']], codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], names=[None, 'bar']) expected = DataFrame(data=data, index=index, columns=columns, dtype='object') tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('values', [ ['bar', 'baz'], np.array(['bar', 'baz']), pd.Series(['bar', 'baz']), pd.Index(['bar', 'baz']) ]) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_list_like_values_nans(self, values, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) if method: result = df.pivot(index='zoo', columns='foo', values=values) else: result = pd.pivot(df, index='zoo', columns='foo', values=values) data = [[np.nan, 'A', np.nan, 4], [np.nan, 'C', np.nan, 6], [np.nan, 'B', np.nan, 5], ['A', np.nan, 1, np.nan], ['B', np.nan, 2, np.nan], ['C', np.nan, 3, np.nan]] index = Index(data=['q', 't', 'w', 'x', 'y', 'z'], name='zoo') columns = MultiIndex(levels=[['bar', 'baz'], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[None, 'foo']) expected = DataFrame(data=data, index=index, columns=columns, dtype='object') tm.assert_frame_equal(result, expected) @pytest.mark.xfail(reason='MultiIndexed unstack with tuple names fails' 'with KeyError GH#19966') @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_multiindex(self, method): # issue #17160 index = Index(data=[0, 1, 2, 3, 4, 5]) data = [['one', 'A', 1, 'x'], ['one', 'B', 2, 'y'], ['one', 'C', 3, 'z'], ['two', 'A', 4, 'q'], ['two', 'B', 5, 'w'], ['two', 'C', 6, 't']] columns = MultiIndex(levels=[['bar', 'baz'], ['first', 'second']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) df = DataFrame(data=data, index=index, columns=columns, dtype='object') if method: result = df.pivot(index=('bar', 'first'), columns=('bar', 'second'), values=('baz', 'first')) else: result = pd.pivot(df, index=('bar', 'first'), columns=('bar', 'second'), values=('baz', 'first')) data = {'A': Series([1, 4], index=['one', 'two']), 'B': Series([2, 5], index=['one', 'two']), 'C': Series([3, 6], index=['one', 'two'])} expected = DataFrame(data) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_tuple_of_values(self, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) with pytest.raises(KeyError): # tuple is seen as a single column name if method: df.pivot(index='zoo', columns='foo', values=('bar', 'baz')) else: pd.pivot(df, index='zoo', columns='foo', values=('bar', 'baz')) def test_margins(self): def _check_output(result, values_col, index=['A', 'B'], columns=['C'], margins_col='All'): col_margins = result.loc[result.index[:-1], margins_col] expected_col_margins = self.data.groupby(index)[values_col].mean() tm.assert_series_equal(col_margins, expected_col_margins, check_names=False) assert col_margins.name == margins_col result = result.sort_index() index_margins = result.loc[(margins_col, '')].iloc[:-1] expected_ix_margins = self.data.groupby(columns)[values_col].mean() tm.assert_series_equal(index_margins, expected_ix_margins, check_names=False) assert index_margins.name == (margins_col, '') grand_total_margins = result.loc[(margins_col, ''), margins_col] expected_total_margins = self.data[values_col].mean() assert grand_total_margins == expected_total_margins # column specified result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean) _check_output(result, 'D') # Set a different margins_name (not 'All') result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean, margins_name='Totals') _check_output(result, 'D', margins_col='Totals') # no column specified table = self.data.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean) for value_col in table.columns.levels[0]: _check_output(table[value_col], value_col) # no col # to help with a buglet self.data.columns = [k * 2 for k in self.data.columns] table = self.data.pivot_table(index=['AA', 'BB'], margins=True, aggfunc=np.mean) for value_col in table.columns: totals = table.loc[('All', ''), value_col] assert totals == self.data[value_col].mean() # no rows rtable = self.data.pivot_table(columns=['AA', 'BB'], margins=True, aggfunc=np.mean) assert isinstance(rtable, Series) table = self.data.pivot_table(index=['AA', 'BB'], margins=True, aggfunc='mean') for item in ['DD', 'EE', 'FF']: totals = table.loc[('All', ''), item] assert totals == self.data[item].mean() def test_margins_dtype(self): # GH 17013 df = self.data.copy() df[['D', 'E', 'F']] = np.arange(len(df) * 3).reshape(len(df), 3) mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')] mi = MultiIndex.from_tuples(mi_val, names=('A', 'B')) expected = DataFrame({'dull': [12, 21, 3, 9, 45], 'shiny': [33, 0, 36, 51, 120]}, index=mi).rename_axis('C', axis=1) expected['All'] = expected['dull'] + expected['shiny'] result = df.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.sum, fill_value=0) tm.assert_frame_equal(expected, result) @pytest.mark.xfail(reason='GH#17035 (len of floats is casted back to ' 'floats)') def test_margins_dtype_len(self): mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')] mi = MultiIndex.from_tuples(mi_val, names=('A', 'B')) expected = DataFrame({'dull': [1, 1, 2, 1, 5], 'shiny': [2, 0, 2, 2, 6]}, index=mi).rename_axis('C', axis=1) expected['All'] = expected['dull'] + expected['shiny'] result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=len, fill_value=0) tm.assert_frame_equal(expected, result) def test_pivot_integer_columns(self): # caused by upstream bug in unstack d = date.min data = list(product(['foo', 'bar'], ['A', 'B', 'C'], ['x1', 'x2'], [d + timedelta(i) for i in range(20)], [1.0])) df = DataFrame(data) table = df.pivot_table(values=4, index=[0, 1, 3], columns=[2]) df2 = df.rename(columns=str) table2 = df2.pivot_table( values='4', index=['0', '1', '3'], columns=['2']) tm.assert_frame_equal(table, table2, check_names=False) def test_pivot_no_level_overlap(self): # GH #1181 data = DataFrame({'a': ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'] * 2, 'b': [0, 0, 0, 0, 1, 1, 1, 1] * 2, 'c': (['foo'] * 4 + ['bar'] * 4) * 2, 'value': np.random.randn(16)}) table = data.pivot_table('value', index='a', columns=['b', 'c']) grouped = data.groupby(['a', 'b', 'c'])['value'].mean() expected = grouped.unstack('b').unstack('c').dropna(axis=1, how='all') tm.assert_frame_equal(table, expected) def test_pivot_columns_lexsorted(self): n = 10000 dtype = np.dtype([ ("Index", object), ("Symbol", object), ("Year", int), ("Month", int), ("Day", int), ("Quantity", int), ("Price", float), ]) products = np.array([ ('SP500', 'ADBE'), ('SP500', 'NVDA'), ('SP500', 'ORCL'), ('NDQ100', 'AAPL'), ('NDQ100', 'MSFT'), ('NDQ100', 'GOOG'), ('FTSE', 'DGE.L'), ('FTSE', 'TSCO.L'), ('FTSE', 'GSK.L'), ], dtype=[('Index', object), ('Symbol', object)]) items = np.empty(n, dtype=dtype) iproduct = np.random.randint(0, len(products), n) items['Index'] = products['Index'][iproduct] items['Symbol'] = products['Symbol'][iproduct] dr = pd.date_range(date(2000, 1, 1), date(2010, 12, 31)) dates = dr[np.random.randint(0, len(dr), n)] items['Year'] = dates.year items['Month'] = dates.month items['Day'] = dates.day items['Price'] = np.random.lognormal(4.0, 2.0, n) df = DataFrame(items) pivoted = df.pivot_table('Price', index=['Month', 'Day'], columns=['Index', 'Symbol', 'Year'], aggfunc='mean') assert pivoted.columns.is_monotonic def test_pivot_complex_aggfunc(self): f = OrderedDict([('D', ['std']), ('E', ['sum'])]) expected = self.data.groupby(['A', 'B']).agg(f).unstack('B') result = self.data.pivot_table(index='A', columns='B', aggfunc=f) tm.assert_frame_equal(result, expected) def test_margins_no_values_no_cols(self): # Regression test on pivot table: no values or cols passed. result = self.data[['A', 'B']].pivot_table( index=['A', 'B'], aggfunc=len, margins=True) result_list = result.tolist() assert sum(result_list[:-1]) == result_list[-1] def test_margins_no_values_two_rows(self): # Regression test on pivot table: no values passed but rows are a # multi-index result = self.data[['A', 'B', 'C']].pivot_table( index=['A', 'B'], columns='C', aggfunc=len, margins=True) assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0] def test_margins_no_values_one_row_one_col(self): # Regression test on pivot table: no values passed but row and col # defined result = self.data[['A', 'B']].pivot_table( index='A', columns='B', aggfunc=len, margins=True) assert result.All.tolist() == [4.0, 7.0, 11.0] def test_margins_no_values_two_row_two_cols(self): # Regression test on pivot table: no values passed but rows and cols # are multi-indexed self.data['D'] = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k'] result = self.data[['A', 'B', 'C', 'D']].pivot_table( index=['A', 'B'], columns=['C', 'D'], aggfunc=len, margins=True) assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0] def test_pivot_table_with_margins_set_margin_name(self): # see gh-3335 for margin_name in ['foo', 'one', 666, None, ['a', 'b']]: with pytest.raises(ValueError): # multi-index index pivot_table(self.data, values='D', index=['A', 'B'], columns=['C'], margins=True, margins_name=margin_name) with pytest.raises(ValueError): # multi-index column pivot_table(self.data, values='D', index=['C'], columns=['A', 'B'], margins=True, margins_name=margin_name) with pytest.raises(ValueError): # non-multi-index index/column pivot_table(self.data, values='D', index=['A'], columns=['B'], margins=True, margins_name=margin_name) def test_pivot_timegrouper(self): df = DataFrame({ 'Branch': 'A A A A A A A B'.split(), 'Buyer': '<NAME> <NAME>'.split(), 'Quantity': [1, 3, 5, 1, 8, 1, 9, 3], 'Date': [datetime(2013, 1, 1), datetime(2013, 1, 1), datetime(2013, 10, 1), datetime(2013, 10, 2), datetime(2013, 10, 1), datetime(2013, 10, 2), datetime(2013, 12, 2), datetime(2013, 12, 2), ]}).set_index('Date') expected = DataFrame(np.array([10, 18, 3], dtype='int64') .reshape(1, 3), index=[datetime(2013, 12, 31)], columns='<NAME>'.split()) expected.index.name = 'Date' expected.columns.name = 'Buyer' result = pivot_table(df, index=Grouper(freq='A'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='A'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) expected = DataFrame(np.array([1, np.nan, 3, 9, 18, np.nan]) .reshape(2, 3), index=[datetime(2013, 1, 1), datetime(2013, 7, 1)], columns='<NAME>'.split()) expected.index.name = 'Date' expected.columns.name = 'Buyer' result = pivot_table(df, index=Grouper(freq='6MS'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) # passing the name df = df.reset_index() result = pivot_table(df, index=Grouper(freq='6MS', key='Date'), columns='Buyer', values='Quantity', aggfunc=np.sum)
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
# Implementation of Feed Forward Neural Network Classifer using gradient descent from __future__ import print_function, division import numpy as np import pandas as pd import dl_nn import dl_nn_mini import dl_nn_mini_mo import time from builtins import range # Note: you may need to update your version of future # sudo pip install -U future import matplotlib.pyplot as plt c0_mean = [2, 2] c0_cov = [[1, 0], [0, 1]] c0 = np.random.multivariate_normal(c0_mean, c0_cov, 5000) c0_df = pd.DataFrame(c0) c0_df.columns = ['x', 'y'] c0_df['group'] = 1.0 c0_df['t0'] = 0.0 c0_df['t1'] = 1.0 c0_df['t2'] = 0.0 c1_mean = [-2, -2] c1_cov = [[1, 0], [0, 1]] c1 = np.random.multivariate_normal(c1_mean, c1_cov, 5000) c1_df = pd.DataFrame(c1) c1_df.columns = ['x', 'y'] c1_df['group'] = 1.0 c1_df['t0'] = 0.0 c1_df['t1'] = 1.0 c1_df['t2'] = 0.0 c2_mean = [2, -2] c2_cov = [[1, 0], [0, 1]] c2 = np.random.multivariate_normal(c2_mean, c2_cov, 5000) c2_df = pd.DataFrame(c2) c2_df.columns = ['x', 'y'] c2_df['group'] = 0.0 c2_df['t0'] = 1.0 c2_df['t1'] = 0.0 c2_df['t2'] = 0.0 c3_mean = [-2, 2] c3_cov = [[1, 0], [0, 1]] c3 = np.random.multivariate_normal(c3_mean, c3_cov, 5000) c3_df = pd.DataFrame(c3) c3_df.columns = ['x', 'y'] c3_df['group'] = 2.0 c3_df['t0'] = 0.0 c3_df['t1'] = 0.0 c3_df['t2'] = 1.0 dat =
pd.concat([c0_df, c1_df, c2_df, c3_df], ignore_index=True)
pandas.concat
import numpy as np import pandas as pd from pandas import DataFrame as df from pandas import Series as sr def rndlist(n=4): x,y=[],[] l=list(range(n)) for i in range(n): x.append(np.random.permutation(l)) y.append(np.random.permutation(l)) f1=df(x) f2=
df(y)
pandas.DataFrame
# Mar21, 2022 ## #--------------------------------------------------------------------- # SERVER only input all files (.bam and .fa) output MeH matrix in .csv # August 3, 2021 clean # FINAL github #--------------------------------------------------------------------- import random import math import pysam import csv import sys import pandas as pd import numpy as np import datetime import time as t from collections import Counter, defaultdict, OrderedDict #--------------------------------------- # Functions definition #--------------------------------------- def open_log(fname): open_log.logfile = open(fname, 'w', 1) def logm(message): log_message = "[%s] %s\n" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), message) print(log_message), open_log.logfile.write(log_message) def close_log(): open_log.logfile.close() # Count # of windows with enough reads for complete/impute def coverage(methbin,complete,w): count=0 tot = 0 meth=methbin.iloc[:,methbin.columns!='Qname'] if len(meth.columns)>=w: for i in range(len(meth.columns)-w+1): # extract a window temp = meth.iloc[:,i:i+w].copy() #print(temp) tot = tot+1 if (enough_reads(window=temp,complete=complete,w=w)): count=count+1 #toprint=temp.notnull().sum(axis=1)>=w #print(toprint.sum()) #print(count) #print(tot) return count/tot*100 else: return 0 # Check whether a window has enough reads for complete/impute def enough_reads(window,w,complete): temp=np.isnan(window).sum(axis=1)==0 if complete: # For heterogeneity estimation return temp.sum()>=2**w else: # for imputation tempw1=np.isnan(window).sum(axis=1)==1 return temp.sum()>=2**(w-2) and tempw1.sum()>0 def impute(window,w): full_ind=np.where(np.isnan(window).sum(axis=1)==0)[0] part_ind=np.where(np.isnan(window).sum(axis=1)==1)[0] for i in range(len(part_ind)): sam = [] # which column is nan pos=np.where(np.isnan(window[part_ind[i],:]))[0] if np.unique(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos]).shape[0]==1: window[part_ind[i],pos]=window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos][0] else: #print("win_part i pos =",window[part_ind[i],pos]) for j in range(len(full_ind)): if (window[part_ind[i],:]==window[full_ind[j],:]).sum()==w-1: sam.append(j) if len(sam)>0: s1=random.sample(sam, 1) s=window[full_ind[s1],pos] else: s=random.sample(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos].tolist(), k=1)[0] window[part_ind[i],pos]=np.float64(s) #print("win_part i =",window[part_ind[i],pos]) #print("s = ",np.float64(s)) return window def getcomplete(window,w): temp=np.isnan(window).sum(axis=1)==0 mat=window[np.where(temp)[0],:] #temp=window.notnull().sum(axis=1)>=w #mat=window.iloc[np.where(temp)[0],:] #else: # temp=mat.notnull().sum(axis=1)>=w-1 return mat def PattoDis(mat,dist=1): s=mat.shape[0] dis=np.zeros((s,s)) for i in range(s): for j in range(s): if j<i: if dist==1: d=Ham_d(mat.iloc[i,],mat.iloc[j,]) else: d=WDK_d(mat.iloc[i,],mat.iloc[j,]) dis[i,j]=dis[j,i]=d return dis def Ham_d(pat1,pat2): return (pat1!=pat2).sum() def WDK_d(pat1,pat2): d=0 w=pat1.shape[0] for i in range(w): # k-1 for j in range(w-i): # starting pos s=(w-i-1)*(1-np.all(pat1[j:j+i+1]==pat2[j:j+i+1])) d+=s return d # input a window of w CGs and output a list of proportions with starting genomic location and genomic distance across def window_summ(pat,start,dis,chrom): m=np.shape(pat)[0] d=np.shape(pat)[1] all_pos=np.zeros((2**d,d)) for i in range(d): all_pos[:,i]=np.linspace(0,2**d-1,2**d)%(2**(i+1))//(2**i) #print(all_pos) prob=np.zeros((2**d,1)) #print(prob) for i in range(2**d): count = 0 for j in range(m): if (all_pos[i,:]==pat.iloc[j,:]).sum()==d: count += 1 #print(count) prob[i]=count if d==3: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'dis':dis}) if d==4: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'dis':dis}) if d==5: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'p17':prob[16],'p18':prob[17],'p19':prob[18],'p20':prob[19],\ 'p21':prob[20],'p22':prob[21],'p23':prob[22],'p24':prob[23],'p25':prob[24],\ 'p26':prob[25],'p27':prob[26],'p28':prob[27],'p29':prob[28],'p30':prob[29],\ 'p31':prob[30],'p32':prob[31],'dis':dis}) if d==6: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'p17':prob[16],'p18':prob[17],'p19':prob[18],'p20':prob[19],\ 'p21':prob[20],'p22':prob[21],'p23':prob[22],'p24':prob[23],'p25':prob[24],\ 'p26':prob[25],'p27':prob[26],'p28':prob[27],'p29':prob[28],'p30':prob[29],\ 'p31':prob[30],'p32':prob[31],'p33':prob[32],'p34':prob[33],'p35':prob[34],\ 'p36':prob[35],'p37':prob[36],'p38':prob[37],'p39':prob[38],'p40':prob[39],\ 'p41':prob[40],'p42':prob[41],'p43':prob[42],'p44':prob[43],'p45':prob[44],\ 'p46':prob[45],'p47':prob[46],'p48':prob[47],'p49':prob[48],'p50':prob[49],\ 'p51':prob[50],'p52':prob[51],'p53':prob[52],'p54':prob[53],'p55':prob[54],\ 'p56':prob[55],'p57':prob[56],'p58':prob[57],'p59':prob[58],'p60':prob[59],\ 'p61':prob[60],'p62':prob[61],'p63':prob[62],'p64':prob[63],'dis':dis}) return out def MeHperwindow(pat,start,dis,chrom,D,w,optional,MeH=2,dist=1,strand='f'): count=np.zeros((2**w,1)) m=np.shape(pat)[0] pat=np.array(pat) if w==2: pat = Counter([str(i[0])+str(i[1]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['00','10','01','11']]) if w==3: pat = Counter([str(i[0])+str(i[1])+str(i[2]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['000','100','010','110','001','101','011','111']]) if w==4: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['0000','1000','0100','1100','0010','1010','0110','1110','0001',\ '1001','0101','1101','0011','1011','0111','1111']]) if w==5: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3])+str(i[4]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['00000','10000','01000','11000','00100','10100','01100','11100','00010',\ '10010','01010','11010','00110','10110','01110','11110','00001','10001','01001','11001','00101',\ '10101','01101','11101','00011','10011','01011','11011','00111','10111','01111','11111']]) if w==6: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3])+str(i[4])+str(i[5]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['000000','100000','010000','110000','001000','101000','011000','111000','000100',\ '100100','010100','110100','001100','101100','011100','111100','000010','100010','010010','110010','001010',\ '101010','011010','111010','000110', '100110','010110','110110','001110','101110','011110','111110',\ '000001','100001','010001','110001','001001','101001','011001','111001','000101',\ '100101','010101','110101','001101','101101','011101','111101','000011','100011','010011','110011','001011',\ '101011','011011','111011','000111', '100111','010111','110111','001111','101111','011111','111111']]) if MeH==1: # Abundance based score=(((count/m)**2).sum(axis=0))**(-1) elif MeH==2: # PWS based interaction=np.multiply.outer(count/m,count/m).reshape((2**w,2**w)) Q=sum(sum(D*interaction)) #print("Q =",Q) if Q==0: score=0 else: score=(sum(sum(D*(interaction**2)))/(Q**2))**(-0.5) elif MeH==3: #Phylogeny based count=count.reshape(2**w) count=np.concatenate((count[[0]],count)) if dist==1 and w==4: phylotree=np.append(np.append(np.append(np.append([0],np.repeat(0.5,16)),np.repeat(0.25,6)),[0.5]),np.repeat(0.25,6)) #phylotree=np.repeat(0,1).append(np.repeat(0.5,16)).append(np.repeat(0.25,6)).append(0.5).append(np.repeat(0.25,6)) countn=np.zeros(30) #count<-rep(0,29) countn[1:17]=count[[1,9,5,3,2,13,11,10,7,6,4,15,14,12,8,16]] countn[17]=countn[4]+countn[7] countn[18]=countn[9]+countn[12] countn[19]=countn[1]+countn[2] countn[20]=countn[3]+countn[6] countn[21]=countn[17]+countn[18] countn[22]=countn[19]+countn[20] countn[23]=countn[21]+countn[22] countn[24]=countn[5]+countn[8] countn[25]=countn[10]+countn[13] countn[26]=countn[24]+countn[25] countn[27]=countn[23]+countn[26] countn[28]=countn[11]+countn[14] countn[29]=countn[27]+countn[28] #Q=sum(sum(phylotree*count)) if dist==2 and w==4: phylotree=np.append(np.append(np.append(np.append([0],np.repeat(3,16)),np.repeat(1.5,6)),[3.2,0.8]),np.repeat(2,3),np.repeat(1.5,2)) #phylotree=c(rep(3,16),rep(1.5,6),3.2,0.8,rep(2,3),1.5,1.5) countn=np.zeros(30) #print(count) countn[1:17]=count[[1,9,5,3,2,13,11,10,7,6,4,15,14,12,8,16]] countn[17]=countn[1]+countn[2] countn[18]=countn[5]+countn[8] countn[19]=countn[3]+countn[6] countn[20]=countn[10]+countn[13] countn[21]=countn[4]+countn[7] countn[22]=countn[11]+countn[14] countn[23]=countn[17]+countn[18] countn[24]=countn[21]+countn[22] countn[25]=countn[19]+countn[20] countn[26]=countn[23]+countn[24] countn[27]=countn[25]+countn[26] countn[28]=countn[9]+countn[12] countn[29]=countn[27]+countn[28] #Q=sum(phylotree*count) if dist==2 and w==3: phylotree=np.append(np.append(np.append([0],np.repeat(1.5,8)),np.repeat(0.75,3)),np.repeat(1.5,0.75)) #phylotree=np.array(0).append(np.repeat(1.5,8)).append(np.repeat(0.75,3)).append(1.5,0.75) #phylotree=c(rep(1.5,8),rep(0.75,3),1.5,0.75) countn=np.zeros(14) countn[1:9]=count[1:9] countn[9]=countn[1]+countn[2] countn[10]=countn[5]+countn[6] countn[11]=countn[3]+countn[4] countn[12]=countn[9]+countn[10] countn[13]=countn[11]+countn[12] #Q=sum(phylotree*count) if dist==1 and w==3: phylotree=np.append(np.append(np.append([0],np.repeat(0.5,8)),np.repeat(0.25,3)),[0.5,0.25]) #phylotree=np.array(0).append(np.repeat(0.5,8)).append(np.repeat(0.25,3)).append(0.5,0.25) countn=np.zeros(14) countn[1:9]=count[1:9] countn[9]=countn[1]+countn[2] countn[10]=countn[5]+countn[6] countn[11]=countn[3]+countn[4] countn[12]=countn[9]+countn[10] countn[13]=countn[11]+countn[12] #print("count = ",count) #print("phylotree = ",phylotree) Q=sum(phylotree*countn) score=sum(phylotree*((countn/Q)**2))**(-1) elif MeH==4: #Entropy score=0 for i in count: if i>0: score-=(i/m)*np.log2(i/m)/w elif MeH==5: #Epipoly score=1-((count/m)**2).sum(axis=0) if optional: if MeH!=3: count=count.reshape(2**w) count=np.concatenate((count[[0]],count)) if w==3: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==4: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==5: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p17':count[17],'p18':count[18],'p19':count[19],'p20':count[20],\ 'p21':count[21],'p22':count[22],'p23':count[23],'p24':count[24],'p25':count[25],\ 'p26':count[26],'p27':count[27],'p28':count[28],'p29':count[29],'p30':count[30],\ 'p31':count[31],'p32':count[32],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==6: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p17':count[17],'p18':count[18],'p19':count[19],'p20':count[20],\ 'p21':count[21],'p22':count[22],'p23':count[23],'p24':count[24],'p25':count[25],\ 'p26':count[26],'p27':count[27],'p28':count[28],'p29':count[29],'p30':count[30],\ 'p31':count[31],'p32':count[32],'p33':count[33],'p34':count[34],'p35':count[35],\ 'p36':count[36],'p37':count[37],'p38':count[38],'p39':count[39],'p40':count[40],\ 'p41':count[41],'p42':count[42],'p43':count[43],'p44':count[44],'p45':count[45],\ 'p46':count[46],'p47':count[47],'p48':count[48],'p49':count[49],'p50':count[50],\ 'p51':count[51],'p52':count[52],'p53':count[53],'p54':count[54],'p55':count[55],\ 'p56':count[56],'p57':count[57],'p58':count[58],'p59':count[59],'p60':count[60],\ 'p61':count[61],'p62':count[62],'p63':count[63],'p64':count[64],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) return out, opt else: out=pd.DataFrame({'chrom':chrom,'pos':start,'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) return out def impute(window,w): full_ind=np.where(np.isnan(window).sum(axis=1)==0)[0] part_ind=np.where(np.isnan(window).sum(axis=1)==1)[0] for i in range(len(part_ind)): sam = [] # which column is nan pos=np.where(np.isnan(window[part_ind[i],:]))[0] if np.unique(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos]).shape[0]==1: window[part_ind[i],pos]=window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos][0] else: #print("win_part i pos =",window[part_ind[i],pos]) for j in range(len(full_ind)): if (window[part_ind[i],:]==window[full_ind[j],:]).sum()==w-1: sam.append(j) if len(sam)>0: s1=random.sample(sam, 1) s=window[full_ind[s1],pos] else: s=random.sample(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos].tolist(), k=1)[0] window[part_ind[i],pos]=np.float64(s) return window def CGgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] coverage = cov_context = 0 # load bamfile samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") # load reference genome fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) # initialise data frame for genome screening (load C from bam file) aggreR = aggreC = pd.DataFrame(columns=['Qname']) # initialise data frame for output ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','strand','depth']) # if user wants to output compositions of methylation patterns at every eligible window, initialise data frame if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True # all methylation patterns for Methylation heterogeneity evaluation all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) # distance matrix, also for Methylation heterogeneity evaluation D=PattoDis(pd.DataFrame(all_pos),dist=dist) # 1:Hamming distance, 2: WDK start=datetime.datetime.now() # vector for saving methylation statuses before imputation MU=np.zeros((2,w)) # screen bamfile by column for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CG %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now(),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) # Forward strand, check if 'CG' in reference genome if (fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+2)=='CG'): cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) # append reads in the column for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) temp=temp.append(df2, ignore_index=True) if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['G'],0) temp2 = temp2.replace(['A','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) # merge with other columns if (not temp.empty): aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # Reverse strand, check if 'CG' in reference genome if pileupcolumn.pos>1: if (fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos+1)=='CG'): cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # C dr = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} dfr2 = pd.DataFrame(data=dr) tempr=tempr.append(dfr2, ignore_index=True) if melv: temp2 = tempr.replace(['G'],1) temp2 = temp2.replace(['C'],0) temp2 = temp2.replace(['A','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'r','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not tempr.empty): aggreR = pd.merge(aggreR,tempr,how='outer',on=['Qname']) aggreR = aggreR.drop_duplicates() # Impute and estimate, if there are 2w-1 columns if never and aggreC.shape[1] == (2*w): # C/G to 1, rest to 0, N to NA never = False aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC meth = methbin.copy() # remove read ID meth = meth.drop('Qname',axis=1) # back up for imputation if imp: methtemp = meth.copy() # imputation by sliding window of 1 C for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # save methylation statuses before imputation # check if eligible for imputation, impute if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values # overwrite imputed window meth = methtemp.copy() # Evaluate methylation level and methylation heterogeneity and append to result for i in range(0,w,1): # w windows window = meth.iloc[:,range(i,i+w)].values # check if enough complete patterns for evaluating MeH if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) # if need to output methylation patterns if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) # evaluate and output MeH else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) # remove 1 column aggreC = aggreC.drop(meth.columns[0:1],axis=1) # drop rows with no values aggreC.dropna(axis = 0, thresh=2, inplace = True) #total += w # Reverse if neverr and aggreR.shape[1] == (2*w): neverr = False aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) aggreR = aggreR.drop(meth.columns[0:1],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #------------------ # SECONDARY CASE #------------------ if (aggreC.shape[1] == (3*w-1)): aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): #for i in range(0,meth.shape[1]-w+1,1): #if i>w-2 and i<2*w: window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreC = aggreC.drop(meth.columns[0:w],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w # reverse if (aggreR.shape[1] == (3*w-1)): aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreR = aggreR.drop(meth.columns[0:w],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) if ResultPW.shape[0]>0: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) return sample, coverage, cov_context, 'CG' print("Done CG for file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) #samfile.close() def CHHgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] coverage = cov_context = 0 #directory = "Outputs/" + str(sample) + '.csv' #original filename of .bams samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) aggreR = aggreC = pd.DataFrame(columns=['Qname']) ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','depth','strand']) if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True #chr_lengths = fastafile.get_reference_length(chrom) all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) D=PattoDis(pd.DataFrame(all_pos),dist=dist) #1:Hamming distance start=datetime.datetime.now() MU=np.zeros((2,w)) for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CHH %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) # forward if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='C' and fastafile.fetch(chrom,pileupcolumn.pos+1,pileupcolumn.pos+2)!='G' and fastafile.fetch(chrom,pileupcolumn.pos+2,pileupcolumn.pos+3)!='G': cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) #df2.head() temp=temp.append(df2, ignore_index=True) #temp.head() if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['T'],0) temp2 = temp2.replace(['A','G','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not temp.empty): #temp.head() aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # reverse if pileupcolumn.pos>2: if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='G' and fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos)!='C' and fastafile.fetch(chrom,pileupcolumn.pos-2,pileupcolumn.pos-1)!='C': cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) #df2.head() tempr=tempr.append(df2, ignore_index=True) #temp.head() if melv: temp2 = tempr.replace(['G'],1) temp2 = temp2.replace(['A'],0) temp2 = temp2.replace(['C','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'r','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not tempr.empty): aggreR = pd.merge(aggreR,tempr,how='outer',on=['Qname']) aggreR = aggreR.drop_duplicates() if never and aggreC.shape[1] == (2*w): never = False aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values # MeH eligibility if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) aggreC = aggreC.drop(meth.columns[0:1],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #total += w # reverse if neverr and aggreR.shape[1] == (2*w): neverr = False aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values #if enough_reads(window,w,complete=True): if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) aggreR = aggreR.drop(meth.columns[0:1],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #------------------ # SECONDARY CASE #------------------ if (aggreC.shape[1] == (3*w-1)): aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['N','G','A'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values # MeH eligibility if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHH_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHH_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHH_ML_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHH. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreC = aggreC.drop(meth.columns[0:w],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w if (aggreR.shape[1] == (3*w-1)): aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['N','T','C'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHH_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHH_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHH_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHH. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreR = aggreR.drop(meth.columns[0:w],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w if ResultPW.shape[0]>0: ResultPW.to_csv(r"MeHdata/CHH_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHH_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHH_opt_%s.csv"%(filename),index = False, header=True) return sample, coverage, cov_context, 'CHH' print("Done CHH for file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) def CHGgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] #directory = "Outputs/" + str(sample) + '.csv' #original filename of .bams samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) coverage = cov_context = 0 aggreR = aggreC = pd.DataFrame(columns=['Qname']) ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','depth','strand']) if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True #chr_lengths = fastafile.get_reference_length(chrom) all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) D=PattoDis(pd.DataFrame(all_pos),dist=dist) #1:Hamming distance MU=np.zeros((2,w)) start=datetime.datetime.now() for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CHG %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='C' and fastafile.fetch(chrom,pileupcolumn.pos+1,pileupcolumn.pos+2)!='G' and fastafile.fetch(chrom,pileupcolumn.pos+2,pileupcolumn.pos+3)=='G': cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) #df2.head() temp=temp.append(df2, ignore_index=True) #temp.head() if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['T'],0) temp2 = temp2.replace(['A','G'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/float(MC+UC)}, index=[0]) ResML=ResML.append(toappend) if (not temp.empty): #temp.head() aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # reverse if pileupcolumn.pos>2: if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='G' and fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos)!='C' and fastafile.fetch(chrom,pileupcolumn.pos-2,pileupcolumn.pos-1)=='C': cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # G dr = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2r = pd.DataFrame(data=dr) #df2.head() tempr=tempr.append(df2r, ignore_index=True) #temp.head() if melv: temp2 = tempr.replace(['G'],1) temp2 = temp2.replace(['A'],0) temp2 = temp2.replace(['C','T'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'r','depth':depth,'ML':float(MC)/float(MC+UC)}, index=[0]) ResML=ResML.append(toappend) if (not tempr.empty): #temp.head() aggreR = pd.merge(aggreR,tempr,how='outer',on=['Qname']) aggreR = aggreR.drop_duplicates() if never and aggreC.shape[1] == (2*w): never = False aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','G','N'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='f') Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='f') ResultPW=ResultPW.append(toappend) aggreC = aggreC.drop(meth.columns[0:1],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #total += w # reverse if neverr and aggreR.shape[1] == (2*w): neverr = False aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['N','C','T'],np.nan) methbin = aggreR # backup meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='r') Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='r') ResultPW=ResultPW.append(toappend) aggreR = aggreR.drop(meth.columns[0:1],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #total += w #------------------ # SECONDARY CASE #------------------ if (aggreC.shape[1] == (3*w-1)): aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['N','A','G'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='f') Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='f') ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHG_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHG_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHG_ML_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreC = aggreC.drop(meth.columns[0:w],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w # reverse if (aggreR.shape[1] == (3*w-1)): aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['N','T','C'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='r') Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='r') ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHG_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHG_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHG_ML_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos+1)) aggreR = aggreR.drop(meth.columns[0:w],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) if ResultPW.shape[0]>0: ResultPW.to_csv(r"MeHdata/CHG_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHG_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHG_opt_%s.csv"%(filename),index = False, header=True) return sample, coverage, cov_context, 'CHG' print("Done CHG for file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos+1)) def split_bam(samplenames,Folder): # get bam size spbam_list = [] bamfile = samplenames + '.bam' statinfo_out = os.stat(Folder+bamfile) bamsize = statinfo_out.st_size samfile = pysam.Samfile(Folder+bamfile, "rb") fileout_base = os.path.splitext(bamfile)[0] # filename ext = '.bam' x = 0 fileout = Folder+fileout_base+"_" + str(x)+ext # filename_x.bam print("fileout",fileout) header = samfile.header outfile = pysam.Samfile(fileout, "wb", header = header) sum_Outfile_Size=0 for reads in samfile.fetch(): outfile.write(reads) statinfo_out = os.stat(fileout) outfile_Size = statinfo_out.st_size if(outfile_Size >=337374182 and sum_Outfile_Size <= bamsize): sum_Outfile_Size = sum_Outfile_Size + outfile_Size x = x + 1 spbam_list.append(fileout_base + "_" + str(x)+ext) outfile.close() pysam.index(fileout) fileout = Folder+fileout_base + "_" + str(x)+ext print("fileout",fileout) outfile = pysam.Samfile(fileout, "wb",header = header) outfile.close() pysam.index(fileout) import argparse parser = argparse.ArgumentParser() parser.add_argument("-w", "--windowsize",type=int, default=4 ,help='number of CGs') parser.add_argument("-c", "--cores",type=int, default=4, help='number of cores') parser.add_argument("-m", "--MeH",type=int, default=2, help='Methylation heterogeneity score 1:Abundance 2:PW 3:Phylogeny') parser.add_argument("-d", "--dist",type=int, default=1, help='Distance between methylation patterns 1:Hamming 2:WDK') parser.add_argument("--CG", default=False, action='store_true', help='Include genomic context CG') parser.add_argument("--CHG", default=False, action='store_true', help='Include genomic context CHG') parser.add_argument("--CHH", default=False, action='store_true', help='Include genomic context CHH') parser.add_argument("--opt", default=False, action='store_true', help='Outputs compositions of methylation patterns') parser.add_argument('--mlv', default=False, action='store_true', help='Outputs methylation levels') parser.add_argument('--imp', default=True, action='store_false', help='Implement BSImp (impute if valid)') args = parser.parse_args() import sys import time import os import pandas as pd import multiprocessing from joblib import Parallel, delayed #num_cores = multiprocessing.cpu_count() if __name__ == "__main__": open_log('MeHscreening.log') logm("Call genome screening.") #start = time.time() Folder = 'MeHdata/' files = os.listdir(Folder) bam_list = [] # all samples' bam files for file in files: filename, file_extension = os.path.splitext(file) if file_extension == '.fa': fa = filename if file_extension == '.bam': bam_list.append(filename) #if 'cores' in args: # num_cores = args.cores #else: # num_cores = 4 Parallel(n_jobs=args.cores)(delayed(split_bam)(bamfile,Folder=Folder) for bamfile in bam_list) spbam_list = [] tempfiles = os.listdir(Folder) for file in tempfiles: filename, file_extension = os.path.splitext(file) if file_extension=='.bam' and filename not in bam_list: spbam_list.append(filename) #print(spbam_list) topp =
pd.DataFrame(columns=['sample','coverage','context_coverage','context'])
pandas.DataFrame
# Libraries import import numpy as np import pandas as pd import os from sklearn.ensemble import RandomForestClassifier # Input data files are available in the "../input/" directory. for dirname, _, filenames in os.walk('./input'): for filename in filenames: print(os.path.join(dirname, filename)) train_data =
pd.read_csv("./input/train.csv")
pandas.read_csv
from contextlib import contextmanager from unittest.mock import patch from zipfile import ZipFile from pandas import DataFrame, read_csv from pandas.util.testing import assert_frame_equal from pytest import raises, fixture, warns, mark from IPython import get_ipython from data_vault import Vault, parse_arguments, VaultMagics from data_vault.frames import frame_manager @contextmanager def file_from_storage(archive_path, file_path, pwd: str = None, mode='r'): if pwd: pwd = pwd.encode() with ZipFile(archive_path) as archive: yield archive.open( file_path, mode=mode, pwd=pwd ) ipython = get_ipython() EXAMPLE_DATA_FRAME = DataFrame([{'a': 1, 'b': 1}, {'a': 1, 'b': 2}]) def patch_ipython_globals(dummy_globals): return patch.object(frame_manager, 'get_ipython_globals', return_value=dummy_globals) @fixture def mock_key(monkeypatch): monkeypatch.setenv('KEY', 'a_strong_password') def test_open_vault_message(): with raises(Exception, match='Please setup the storage with %open_vault first'): ipython.magic('vault del x') def test_vault_security_alert(tmpdir): # should warn if not encryption key provided with warns(UserWarning, match='Encryption variable not set - no encryption will be used..*'): ipython.magic(f'open_vault --path {tmpdir}/archive.zip') # should not warn if secure explicitly toggled off with warns(None) as record: ipython.magic(f'open_vault --path {tmpdir}/archive.zip --secure False') assert not record.list # should not warn if encryption key provided with warns(None) as record: ipython.magic(f'open_vault --path {tmpdir}/archive.zip -e SOME_KEY') assert not record.list def test_usage_help(tmpdir, mock_key): ipython.magic(f'open_vault --path {tmpdir}/archive.zip -e KEY') x = EXAMPLE_DATA_FRAME with patch_ipython_globals(locals()): with raises(ValueError, match='No command matched. Did you mean:\n\t - store .*?'): ipython.magic('vault store x') def test_variable_not_defined(tmpdir, mock_key): ipython.magic(f'open_vault --path {tmpdir}/archive.zip -e KEY') with patch_ipython_globals(locals()): with raises(ValueError, match=".*variable 'x' is not defined in the global namespace.*"): ipython.magic('vault store x') def test_function_not_defined(tmpdir, mock_key): ipython.magic(f'open_vault --path {tmpdir}/archive.zip -e KEY') x = EXAMPLE_DATA_FRAME with patch_ipython_globals(locals()): with raises(NameError, match="function 'pipe_delimited' is not defined in the global namespace"): ipython.magic('vault store x in my_frames with pipe_delimited') def test_store(tmpdir): ipython.magic(f'open_vault --path {tmpdir}/archive.zip --secure False') x = EXAMPLE_DATA_FRAME with patch_ipython_globals(locals()): ipython.magic('vault store x in my_frames') with file_from_storage(f'{tmpdir}/archive.zip', 'my_frames/x') as f: data =
read_csv(f, sep='\t', index_col=0)
pandas.read_csv
import pyspark from pyspark.sql import SQLContext import pandas as pd import csv import os def load_states(): # read US states f = open('states.txt', 'r') states = set() for line in f.readlines(): l = line.strip('\n') if l != '': states.add(l) return states def validate2(states, bt): #sqlContext = SQLContext(sc) for state in states: if not os.path.exists("US/" + state): continue """ Train """ train_prefix = "US/" + state + '/' + bt + "/train/" + state + "_train_" business_train_fname = train_prefix + 'yelp_academic_dataset_business.csv' business_train_fname2 = train_prefix + 'yelp_academic_dataset_business2.csv' review_train_fname = train_prefix + 'yelp_academic_dataset_review.csv' checkins_train_fname = train_prefix + 'yelp_academic_dataset_checkin.csv' tip_train_fname = train_prefix + 'yelp_academic_dataset_tip.csv' user_train_fname = train_prefix + 'yelp_academic_dataset_user.csv' df_business_train = pd.read_csv(business_train_fname) df_review_train = pd.read_csv(review_train_fname) df_checkins_train = pd.read_csv(checkins_train_fname) df_tip_train =
pd.read_csv(tip_train_fname)
pandas.read_csv
import pandas as pd import numpy as np from pyomo import environ from pyomo.environ import * def optimization_MIP(model, x, ## decision variables (already attached to model) model_master, ## master table that specifies learned functions for constraints (and parameters) data, ## dataframe holding all data to be used for convex hull max_violation=None, ## parameter for RF model allowable violation proportion (between 0-1) tr=True, ## bool variable for the use of trust region constraints clustering_model=None): ## trained clustering algorithm using the entire data (only active if tr = True) def logistic_x(proba): if proba == 0: proba = 0.00001 if proba == 1: proba = 0.99999 return - np.log(1 / proba - 1) def constraints_linear(model, outcome, task, coefficients, lb=None, ub=None, weight_objective=0, SCM=None, features=None): ''' Embed a trained linear predictive model for 'outcome' into the master 'model'. 'Coefficients' is a model file generated by the constraint_extrapolation_skEN() function. 'lb/ub' specify the lower/upper bounds if 'outcome' is to be incorporated as a constraint. 'weight_objective' specifies the weight to use if incorporating 'outcome' as a term in the objective. ''' # Row-level information: row = single constraint (multiple rows can correspond to single leaf) intercept = coefficients['intercept'][0] coeff = coefficients.drop(['intercept'], axis=1, inplace=False).loc[0, :] model.add_component('LR'+outcome, Constraint(expr=model.y[outcome] == sum(model.x[i] * coeff.loc[i] for i in pd.DataFrame(coeff).index) + intercept)) if weight_objective != 0: model.OBJ.set_value(expr=model.OBJ.expr + weight_objective * model.y[outcome]) elif not pd.isna(SCM): model.add_component('scm_' + outcome, Constraint(expr=model.y[outcome] == SCM + model.x[outcome])) else: if not pd.isna(ub): if task == 'binary': ub = logistic_x(proba=ub) model.add_component('ub_' + outcome, Constraint(expr=model.y[outcome] <= ub)) if not pd.isna(lb): if task == 'binary': lb = logistic_x(proba=lb) model.add_component('lb_' + outcome, Constraint(expr=model.y[outcome] >= lb)) def constraints_svm(model, outcome, task, coefficients, lb=None, ub=None, weight_objective=0, SCM=None, features=None): ''' Embed a trained SVM predictive model for 'outcome' into the master 'model'. 'Coefficients' is a model file generated by the constraint_extrapolation_skSVM() function. 'lb/ub' specify the lower/upper bounds if 'outcome' is to be incorporated as a constraint. 'weight_objective' specifies the weight to use if incorporating 'outcome' as a term in the objective. ''' # Row-level information: row = single constraint (multiple rows can correspond to single leaf) intercept = coefficients['intercept'][0] coeff = coefficients.drop(['intercept'], axis=1, inplace=False).loc[0, :] # Set y to decision function model.add_component('SVM'+outcome, Constraint(expr=model.y[outcome] == sum(model.x[i] * coeff.loc[i] for i in features) + intercept)) # Set y to binary: 1 if expr >= 0, else 0 # model.add_component('SVM_lb'+outcome, Constraint(expr=model.y[outcome] >= 1/M*(sum(model.x[i] * coeff.loc[i] for i in features) + intercept))) if weight_objective != 0: model.OBJ.set_value(expr=model.OBJ.expr + weight_objective * model.y[outcome]) elif not pd.isna(SCM): model.add_component('scm_' + outcome, Constraint(expr=model.y[outcome] == SCM + model.x[outcome])) else: if task == "continuous": if not pd.isna(ub): model.add_component('ub_' + outcome, Constraint(expr=model.y[outcome] <= ub)) if not pd.isna(lb): model.add_component('lb_' + outcome, Constraint(expr=model.y[outcome] >= lb)) elif task == "binary": model.add_component('lb_' + outcome, Constraint(expr=model.y[outcome] >= 0)) def constraints_tree(model, outcome, tree_table, lb=None, ub=None, M=1e5, weight_objective=0, SCM=None, features=None): ''' Embed a trained decision tree predictive model for 'outcome' into the master 'model'. 'tree_table' is a model file generated by the constraint_extrapolation_skTree() function, where each row encodes a single constraint (multiple rows can correspond to single leaf) 'lb/ub' specify the lower/upper bounds if 'outcome' is to be incorporated as a constraint. 'weight_objective' specifies the weight to use if incorporating 'outcome' as a term in the objective. 'M' is an upper bound on the value at any node. ''' leaf_values = tree_table.loc[:, ['ID', 'prediction']].drop_duplicates().set_index('ID') # Row-level information: intercept = tree_table['threshold'] coeff = tree_table.drop(['ID', 'threshold', 'prediction'], axis=1, inplace=False).reset_index(drop=True) l_ids = tree_table['ID'] n_constr = coeff.shape[0] L = np.unique(tree_table['ID']) def constraintsTree_1(model, j): return sum(model.x[i]*coeff.loc[j, i] for i in features) <= intercept.iloc[j] + M*(1-model.l[(outcome,str(l_ids.iloc[j]))]) def constraintsTree_2(model): return sum(model.l[(outcome, str(i))] for i in L) == 1 def constraintTree(model): return model.y[outcome] == sum(leaf_values.loc[i, 'prediction'] * model.l[(outcome, str(i))] for i in L) model.add_component(outcome+'_1', Constraint(range(n_constr), rule=constraintsTree_1)) model.add_component('DT'+outcome, Constraint(rule=constraintTree)) model.add_component(outcome+'_2', Constraint(rule=constraintsTree_2)) if weight_objective != 0: model.OBJ.set_value(expr=model.OBJ.expr + weight_objective * model.y[outcome]) elif not pd.isna(SCM): model.add_component('scm_' + outcome, Constraint(expr=model.y[outcome] == SCM + model.x[outcome])) else: if not pd.isna(ub): model.add_component('ub_'+outcome, Constraint(expr=model.y[outcome] <= ub)) if not pd.isna(lb): model.add_component('lb_' + outcome, Constraint(expr=model.y[outcome] >= lb)) def constraints_rf(model, outcome, forest_table, ub=None, lb=None, max_violation=None, weight_objective=0, SCM=None, features=None): ''' Embed a trained random forest predictive model for 'outcome' into the master 'model'. 'forest_table' is a model file generated by the constraint_extrapolation_skRF() function, where each row encodes a single constraint (multiple rows can correspond to single leaf) 'lb/ub' specify the lower/upper bounds if 'outcome' is to be incorporated as a constraint. 'weight_objective' specifies the weight to use if incorporating 'outcome' as a term in the objective. 'max_violation' specifies the allowable violation proportion for a constraint (e.g. 0.2 -> 20% of trees can violate the chosen lb/ub) ''' forest_table['Tree_id'] = [outcome + '_' + str(i) for i in forest_table['Tree_id']] T = np.unique(forest_table['Tree_id']) ## For each tree in the forest, add tree to model and define outcome y for i, t in enumerate(T): tree_table = forest_table.loc[forest_table['Tree_id'] == t, :].drop('Tree_id', axis=1) # don't set LB, UB, or objective for individual trees constraints_tree(model, t, tree_table, lb=None, ub=None, weight_objective=0, SCM=None, features=features) ## Compute average (as y[outcome]), either for avg. constraint or objective model.add_component('RF'+outcome, Constraint(rule=model.y[outcome] == 1 / len(T) * quicksum(model.y[j] for j in T))) if weight_objective != 0: model.OBJ.set_value(expr=model.OBJ.expr + weight_objective * model.y[outcome]) elif not pd.isna(SCM): model.add_component('scm_' + outcome, Constraint(expr=model.y[outcome] == SCM + model.x[outcome])) else: if pd.isna(max_violation): # Constrain average values if not pd.isna(ub): model.add_component('ub_' + outcome, Constraint(expr=model.y[outcome] <= ub)) if not pd.isna(lb): model.add_component('lb_' + outcome, Constraint(expr=model.y[outcome] >= lb)) else: # Constrain proportion of trees (1 - max_violation) if not pd.isna(ub): def constraint_upperBoundViol(model, j): return 1 / 100 * (model.y[j] - ub) <= model.y_viol[(outcome, str(j))] model.add_component('upperBoundViol'+outcome, Constraint(T, rule=constraint_upperBoundViol)) if not pd.isna(lb): def constraint_lowerBoundViol(model, j): return 1 / 100 * (lb - model.y[j]) <= model.y_viol[(outcome, str(j))] model.add_component('lowerBoundViol' + outcome, Constraint(T, rule=constraint_lowerBoundViol)) model.add_component('constraintViol'+outcome, Constraint(rule=1 / len(T) * sum(model.y_viol[(outcome, str(j))] for j in T) <= max_violation)) def constraints_gbm(model, outcome, task, gbm_table, ub=None, lb=None, weight_objective=0, SCM=None, features=None): ''' Embed a trained gradient-boosting machine model for 'outcome' into the master 'model'. 'gbm_table' is a model file generated by the constraint_extrapolation_skGBM() function, where each row encodes a single constraint (multiple rows can correspond to single leaf) 'lb/ub' specify the lower/upper bounds if 'outcome' is to be incorporated as a constraint. 'weight_objective' specifies the weight to use if incorporating 'outcome' as a term in the objective. ''' gbm_table['Tree_id'] = [outcome + '_' + str(i) for i in gbm_table['Tree_id']] T = np.unique(gbm_table['Tree_id']) ## For each tree in the forest, add tree to model and define outcome y for i, t in enumerate(T): tree_table = gbm_table.loc[gbm_table['Tree_id'] == t, :].drop( ['Tree_id', 'initial_prediction', 'learning_rate'], axis=1, inplace=False) # don't set LB, UB, or objective for individual trees constraints_tree(model, t, tree_table, lb=None, ub=None, weight_objective=0, SCM=None, features=features) # ## Compute average (as y[outcome]), either for avg. constraint or objective def constraint_gbm(model): return model.y[outcome] == np.unique(gbm_table['initial_prediction']).item() + np.unique(gbm_table['learning_rate']).item() * quicksum(model.y[j] for j in T) model.add_component('GBM'+outcome, Constraint(rule=constraint_gbm)) if task == 'binary': lb = logistic_x(proba=lb) if lb != None else None ub = logistic_x(proba=ub) if ub != None else None if weight_objective != 0: model.OBJ.set_value(expr=model.OBJ.expr + weight_objective * model.y[outcome]) elif not pd.isna(SCM): model.add_component('scm_' + outcome, Constraint(expr=model.y[outcome] == SCM + model.x[outcome])) else: if not pd.isna(ub): if task == 'binary': ub = logistic_x(proba=ub) model.add_component('ub_' + outcome, Constraint(expr=model.y[outcome] <= ub)) if not pd.isna(lb): if task == 'binary': lb = logistic_x(proba=lb) model.add_component('lb_' + outcome, Constraint(expr=model.y[outcome] >= lb)) def constraints_mlp(model, data, outcome, task, weights, lb=None, ub=None, weight_objective=0, SCM=None, features=None, M_l=-1e5, M_u=1e5): ''' Embed a trained multi-layer perceptron model for 'outcome' into the master 'model'. 'weights' is a model file generated by the constraint_extrapolation_skMLP() function, where each row encodes the coefficients for a single node/layer pair 'lb/ub' specify the lower/upper bounds if 'outcome' is to be incorporated as a constraint. 'weight_objective' specifies the weight to use if incorporating 'outcome' as a term in the objective. 'M_l' and 'M_u' are lower/upper bounds on the value at any node/layer pair. ''' # Recursively generate constraints linking nodes between layers, starting from input nodes_input = range(len(features)) # v_input = [x[f'col{i}'] for i in nodes_input] v_input = [x[i] for i in features] max_layer = max(weights['layer']) for l in range(max_layer + 1): df_layer = weights.query('layer == %d' % l) max_nodes = [k for k in df_layer.columns if 'node_' in k] # coeffs_layer = np.array(df_layer.iloc[:, range(len(max_nodes))].dropna(axis=1)) coeffs_layer = np.array(df_layer.loc[:, max_nodes].dropna(axis=1)) intercepts_layer = np.array(df_layer['intercept']) nodes = df_layer['node'] if l == max_layer: node = nodes.iloc[0] # only one node in last layer model.add_component('MLP'+outcome, Constraint(rule=model.y[outcome] == sum(v_input[i] * coeffs_layer[node, i] for i in nodes_input) + intercepts_layer[ node])) else: # Save v_pos for input to next layer v_pos_list = [] for node in nodes: ## Initialize variables v_pos_list.append(model.v[(outcome, l, node)]) model.add_component('constraint_1_' + str(l) + '_'+str(node)+outcome, Constraint(rule=model.v[(outcome, l, node)] >= sum(v_input[i] * coeffs_layer[node, i] for i in nodes_input) + intercepts_layer[node])) model.add_component('constraint_2_' + str(l)+'_' + str(node) + outcome, Constraint(rule=model.v[(outcome, l, node)] <= M_u * (model.v_ind[(outcome, l, node)]))) model.add_component('constraint_3_' + str(l)+'_' + str(node) + outcome, Constraint(rule=model.v[(outcome, l, node)] <= sum(v_input[i] * coeffs_layer[node, i] for i in nodes_input) + intercepts_layer[node] - M_l * (1 - model.v_ind[(outcome, l, node)]))) ## Prepare nodes_input for next layer nodes_input = nodes v_input = v_pos_list if weight_objective != 0: model.OBJ.set_value(expr=model.OBJ.expr + weight_objective * model.y[outcome]) elif not
pd.isna(SCM)
pandas.isna
import numpy as np import pandas as pd import lightgbm as lgb from ..search.base import BoosterSearchBase class LgbGridSearch(BoosterSearchBase): def __init__(self, param_grid, cv, metric, maximize): super().__init__(param_grid, cv, metric, maximize) def tr_transform(self, tr_x, tr_y): return lgb.Dataset(tr_x, tr_y) def te_transform(self, te_x): return te_x def eval_cv(self, cv_result, n_folds): cv_result = pd.DataFrame(cv_result.copy()) cv_result.columns = [col.replace('stdv', 'std') for col in cv_result] return self._eval_cv(cv_result, n_folds) def compute_booster_cv(self, params, tr_data, *args, **kwargs): cv_models = {} cv_result = lgb.cv( params, tr_data, folds=self.folds, callbacks=[save_cv_models(cv_models)], *args, **kwargs ) return cv_result, cv_models['cv_packs'] def extract_model_meta_features(self, comb_id, cv_packs, te_x): tr_meta_ftr = np.zeros(self.n_train_rows) te_meta_ftr = np.zeros(te_x.shape[0]) for lgb_model, fold in zip(cv_packs.boosters, self.folds): val_idx = fold[1] assert len(lgb_model.valid_sets) == 1 assert len(val_idx) == lgb_model.valid_sets[0].num_data() tr_meta_ftr[val_idx] = lgb_model._Booster__inner_predict(data_idx=1) te_meta_ftr += lgb_model.predict(te_x) te_meta_ftr = te_meta_ftr / len(self.folds) model_name = 'lgb_%d' % comb_id tr_meta_ftr = pd.Series(tr_meta_ftr, name=model_name) te_meta_ftr =
pd.Series(te_meta_ftr, name=model_name)
pandas.Series
import datetime import string from collections import namedtuple from distutils.version import LooseVersion from random import choices from typing import Optional, Type import numpy as np import pandas as pd import pyarrow as pa import pytest from pandas.tests.extension.base import ( BaseArithmeticOpsTests, BaseBooleanReduceTests, BaseCastingTests, BaseComparisonOpsTests, BaseConstructorsTests, BaseDtypeTests, BaseGetitemTests, BaseGroupbyTests, BaseInterfaceTests, BaseMethodsTests, BaseMissingTests, BaseNoReduceTests, BaseNumericReduceTests, BaseParsingTests, BasePrintingTests, BaseReshapingTests, BaseSetitemTests, ) from fletcher import FletcherBaseDtype if LooseVersion(pd.__version__) >= "0.25.0": # imports of pytest fixtures needed for derived unittest classes from pandas.tests.extension.conftest import ( # noqa: F401 as_array, # noqa: F401 use_numpy, # noqa: F401 groupby_apply_op, # noqa: F401 as_frame, # noqa: F401 as_series, # noqa: F401 ) PANDAS_GE_1_1_0 = LooseVersion(pd.__version__) >= "1.1.0" FletcherTestType = namedtuple( "FletcherTestType", [ "dtype", "data", "data_missing", "data_for_grouping", "data_for_sorting", "data_missing_for_sorting", "data_repeated", ], ) def is_arithmetic_type(arrow_dtype: pa.DataType) -> bool: """Check whether this is a type that support arithmetics.""" return ( pa.types.is_integer(arrow_dtype) or pa.types.is_floating(arrow_dtype) or pa.types.is_decimal(arrow_dtype) ) skip_non_artithmetic_type = pytest.mark.skip_by_type_filter( [lambda x: not is_arithmetic_type(x)] ) xfail_list_scalar_constuctor_not_implemented = pytest.mark.xfail_by_type_filter( [pa.types.is_list], "constructor from scalars is not implemented for lists" ) xfail_list_equals_not_implemented = pytest.mark.xfail_by_type_filter( [pa.types.is_list], "== is not implemented for lists" ) xfail_list_setitem_not_implemented = pytest.mark.xfail_by_type_filter( [pa.types.is_list], "__setitem__ is not implemented for lists" ) xfail_missing_list_dict_encode = pytest.mark.xfail_by_type_filter( [pa.types.is_list], "ArrowNotImplementedError: dictionary-encode not implemented for list<item: string>", ) xfail_bool_too_few_uniques = pytest.mark.xfail_by_type_filter( [pa.types.is_boolean], "Test requires at least 3 unique values" ) test_types = [ FletcherTestType( pa.string(), ["🙈", "Ö", "Č", "a", "B"] * 20, [None, "A"], ["B", "B", None, None, "A", "A", "B", "C"], ["B", "C", "A"], ["B", None, "A"], lambda: choices(list(string.ascii_letters), k=10), ), FletcherTestType( pa.bool_(), [True, False, True, True, False] * 20, [None, False], [True, True, None, None, False, False, True, False], [True, False, False], [True, None, False], lambda: choices([True, False], k=10), ), FletcherTestType( pa.int8(), # Use small values here so that np.prod stays in int32 [2, 1, 1, 2, 1] * 20, [None, 1], [2, 2, None, None, -100, -100, 2, 100], [2, 100, -10], [2, None, -10], lambda: choices(list(range(100)), k=10), ), FletcherTestType( pa.int16(), # Use small values here so that np.prod stays in int32 [2, 1, 3, 2, 1] * 20, [None, 1], [2, 2, None, None, -100, -100, 2, 100], [2, 100, -10], [2, None, -10], lambda: choices(list(range(100)), k=10), ), FletcherTestType( pa.int32(), # Use small values here so that np.prod stays in int32 [2, 1, 3, 2, 1] * 20, [None, 1], [2, 2, None, None, -100, -100, 2, 100], [2, 100, -10], [2, None, -10], lambda: choices(list(range(100)), k=10), ), FletcherTestType( pa.int64(), # Use small values here so that np.prod stays in int64 [2, 1, 3, 2, 1] * 20, [None, 1], [2, 2, None, None, -100, -100, 2, 100], [2, 100, -10], [2, None, -10], lambda: choices(list(range(100)), k=10), ), FletcherTestType( pa.float64(), [2, 1.0, 1.0, 5.5, 6.6] * 20, [None, 1.1], [2.5, 2.5, None, None, -100.1, -100.1, 2.5, 100.1], [2.5, 100.99, -10.1], [2.5, None, -10.1], lambda: choices([2.5, 1.0, -1.0, 0, 66.6], k=10), ), # Most of the tests fail as assert_extension_array_equal casts to numpy object # arrays and on them equality is not defined. pytest.param( FletcherTestType( pa.list_(pa.string()), [["B", "C"], ["A"], [None], ["A", "A"], []] * 20, [None, ["A"]], [["B"], ["B"], None, None, ["A"], ["A"], ["B"], ["C"]], [["B"], ["C"], ["A"]], [["B"], None, ["A"]], lambda: choices([["B", "C"], ["A"], [None], ["A", "A"]], k=10), ) ), FletcherTestType( pa.date64(), [ datetime.date(2015, 1, 1), datetime.date(2010, 12, 31), datetime.date(1970, 1, 1), datetime.date(1900, 3, 31), datetime.date(1999, 12, 31), ] * 20, [None, datetime.date(2015, 1, 1)], [ datetime.date(2015, 2, 2), datetime.date(2015, 2, 2), None, None, datetime.date(2015, 1, 1), datetime.date(2015, 1, 1), datetime.date(2015, 2, 2), datetime.date(2015, 3, 3), ], [ datetime.date(2015, 2, 2), datetime.date(2015, 3, 3), datetime.date(2015, 1, 1), ], [datetime.date(2015, 2, 2), None, datetime.date(2015, 1, 1)], lambda: choices(list(pd.date_range("2010-1-1", "2011-1-1").date), k=10), ), ] @pytest.fixture(params=[True, False]) def box_in_series(request): """Whether to box the data in a Series.""" return request.param @pytest.fixture(params=test_types) def fletcher_type(request): return request.param @pytest.fixture(autouse=True) def skip_by_type_filter(request, fletcher_type): if request.node.get_closest_marker("skip_by_type_filter"): for marker in request.node.iter_markers("skip_by_type_filter"): for func in marker.args[0]: if func(fletcher_type.dtype): pytest.skip(f"skipped for type: {fletcher_type}") @pytest.fixture(autouse=True) def xfail_by_type_filter(request, fletcher_type): if request.node.get_closest_marker("xfail_by_type_filter"): for marker in request.node.iter_markers("xfail_by_type_filter"): for func in marker.args[0]: if func(fletcher_type.dtype): pytest.xfail(f"XFAIL for type: {fletcher_type}") @pytest.fixture def dtype(fletcher_type, fletcher_dtype): return fletcher_dtype(fletcher_type.dtype) @pytest.fixture def data(fletcher_type, fletcher_array): return fletcher_array(fletcher_type.data, dtype=fletcher_type.dtype) @pytest.fixture def data_for_twos(dtype, fletcher_type, fletcher_array): if dtype._is_numeric: return fletcher_array([2] * 100, dtype=fletcher_type.dtype) else: return None @pytest.fixture def data_missing(fletcher_type, fletcher_array): return fletcher_array(fletcher_type.data_missing, dtype=fletcher_type.dtype) @pytest.fixture def data_repeated(fletcher_type, fletcher_array): """Return different versions of data for count times.""" pass # noqa def gen(count): for _ in range(count): yield fletcher_array( fletcher_type.data_repeated(), dtype=fletcher_type.dtype ) yield gen @pytest.fixture def data_for_grouping(fletcher_type, fletcher_array): """Fixture with data for factorization, grouping, and unique tests. Expected to be like [B, B, NA, NA, A, A, B, C] Where A < B < C and NA is missing """ return fletcher_array(fletcher_type.data_for_grouping, dtype=fletcher_type.dtype) @pytest.fixture def data_for_sorting(fletcher_type, fletcher_array): """Length-3 array with a known sort order. This should be three items [B, C, A] with A < B < C """ return fletcher_array(fletcher_type.data_for_sorting, dtype=fletcher_type.dtype) @pytest.fixture def data_missing_for_sorting(fletcher_type, fletcher_array): """Length-3 array with a known sort order. This should be three items [B, NA, A] with A < B and NA missing. """ return fletcher_array( fletcher_type.data_missing_for_sorting, dtype=fletcher_type.dtype ) @pytest.fixture(params=[None, lambda x: x]) def sort_by_key(request): """ Return a simple fixture for festing keys in sorting methods. Tests None (no key) and the identity key. """ return request.param class TestBaseCasting(BaseCastingTests): pass class TestBaseConstructors(BaseConstructorsTests): def test_from_dtype(self, data): if pa.types.is_string(data.dtype.arrow_dtype): pytest.xfail( "String construction is failing as Pandas wants to pass the FletcherChunkedDtype to NumPy" ) BaseConstructorsTests.test_from_dtype(self, data) @xfail_list_scalar_constuctor_not_implemented def test_series_constructor_scalar_with_index(self, data, dtype): if PANDAS_GE_1_1_0: BaseConstructorsTests.test_series_constructor_scalar_with_index( self, data, dtype ) class TestBaseDtype(BaseDtypeTests): pass class TestBaseGetitemTests(BaseGetitemTests): def test_loc_iloc_frame_single_dtype(self, data): if pa.types.is_string(data.dtype.arrow_dtype): pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/27673" ) else: BaseGetitemTests.test_loc_iloc_frame_single_dtype(self, data) class TestBaseGroupbyTests(BaseGroupbyTests): @xfail_bool_too_few_uniques @xfail_missing_list_dict_encode @pytest.mark.parametrize("as_index", [True, False]) def test_groupby_extension_agg(self, as_index, data_for_grouping): BaseGroupbyTests.test_groupby_extension_agg(self, as_index, data_for_grouping) @xfail_bool_too_few_uniques @xfail_missing_list_dict_encode def test_groupby_extension_no_sort(self, data_for_grouping): BaseGroupbyTests.test_groupby_extension_no_sort(self, data_for_grouping) @xfail_missing_list_dict_encode def test_groupby_extension_transform(self, data_for_grouping): if pa.types.is_boolean(data_for_grouping.dtype.arrow_dtype): valid = data_for_grouping[~data_for_grouping.isna()] df = pd.DataFrame({"A": [1, 1, 3, 3, 1, 4], "B": valid}) result = df.groupby("B").A.transform(len) # Expected grouping is different as we only have two non-null values expected = pd.Series([3, 3, 3, 3, 3, 3], name="A") self.assert_series_equal(result, expected) else: BaseGroupbyTests.test_groupby_extension_transform(self, data_for_grouping) @xfail_missing_list_dict_encode def test_groupby_extension_apply( self, data_for_grouping, groupby_apply_op # noqa: F811 ): BaseGroupbyTests.test_groupby_extension_apply( self, data_for_grouping, groupby_apply_op ) class TestBaseInterfaceTests(BaseInterfaceTests): @pytest.mark.xfail( reason="view or self[:] returns a shallow copy in-place edits are not backpropagated" ) def test_view(self, data): BaseInterfaceTests.test_view(self, data) def test_array_interface(self, data): if pa.types.is_list(data.dtype.arrow_dtype): pytest.xfail("Not sure whether this test really holds for list") else: BaseInterfaceTests.test_array_interface(self, data) @xfail_list_setitem_not_implemented def test_copy(self, data): BaseInterfaceTests.test_array_interface(self, data) class TestBaseMethodsTests(BaseMethodsTests): # https://github.com/pandas-dev/pandas/issues/22843 @pytest.mark.skip(reason="Incorrect expected") @pytest.mark.parametrize("dropna", [True, False]) def test_value_counts(self, all_data, dropna, dtype): pass @xfail_list_equals_not_implemented @pytest.mark.parametrize("box", [pd.array, pd.Series, pd.DataFrame]) def test_equals(self, data, na_value, as_series, box): # noqa: F811 if PANDAS_GE_1_1_0: BaseMethodsTests.test_equals(self, data, na_value, as_series, box) @xfail_missing_list_dict_encode def test_value_counts_with_normalize(self, data): if PANDAS_GE_1_1_0: BaseMethodsTests.test_value_counts_with_normalize(self, data) def test_combine_le(self, data_repeated): # GH 20825 # Test that combine works when doing a <= (le) comparison # Fletcher returns 'fletcher_chunked[bool]' instead of np.bool as dtype orig_data1, orig_data2 = data_repeated(2) if pa.types.is_list(orig_data1.dtype.arrow_dtype): return pytest.skip("__le__ not implemented for list scalars with None") s1 = pd.Series(orig_data1) s2 = pd.Series(orig_data2) result = s1.combine(s2, lambda x1, x2: x1 <= x2) expected = pd.Series( orig_data1._from_sequence( [a <= b for (a, b) in zip(list(orig_data1), list(orig_data2))] ) ) self.assert_series_equal(result, expected) val = s1.iloc[0] result = s1.combine(val, lambda x1, x2: x1 <= x2) expected = pd.Series( orig_data1._from_sequence([a <= val for a in list(orig_data1)]) ) self.assert_series_equal(result, expected) def test_combine_add(self, data_repeated, dtype): if dtype.name in [ "fletcher_chunked[date64[ms]]", "fletcher_continuous[date64[ms]]", ]: pytest.skip( "unsupported operand type(s) for +: 'datetime.date' and 'datetime.date" ) else:
BaseMethodsTests.test_combine_add(self, data_repeated)
pandas.tests.extension.base.BaseMethodsTests.test_combine_add
#!/usr/bin/env python # coding: utf-8 # "With whom do users initiate?" Mlogit Modeling # === # # This version is the script version. import os import re import pandas as pd import numpy as np from collections import Counter, defaultdict import sqlite3 from tqdm import tqdm import random import pickle from datetime import datetime import bisect import matplotlib.pyplot as plt import matplotlib.dates as md import matplotlib import pylab as pl from IPython.core.display import display, HTML import networkx as nx import sys # if set to True, will generate in the test data range # Otherwise, will generate in the train data range # This is definited by model_start_timestamp below should_generate_test_data = False working_dir = "/home/lana/shared/caringbridge/data/projects/sna-social-support/author_initiations" assert os.path.exists(working_dir) start_date = datetime.fromisoformat('2005-01-01') start_timestamp = int(start_date.timestamp() * 1000) end_date = datetime.fromisoformat('2016-06-01') end_timestamp = int(end_date.timestamp() * 1000) subset_start_date = datetime.fromisoformat('2014-01-01') subset_start_timestamp = int(subset_start_date.timestamp() * 1000) ##### Data reading # load the list of valid users data_selection_working_dir = "/home/lana/shared/caringbridge/data/projects/sna-social-support/data_selection" valid_user_ids = set() with open(os.path.join(data_selection_working_dir, "valid_user_ids.txt"), 'r') as infile: for line in infile: user_id = line.strip() if user_id == "": continue else: valid_user_ids.add(int(user_id)) # load the list of valid sites data_selection_working_dir = "/home/lana/shared/caringbridge/data/projects/sna-social-support/data_selection" valid_site_ids = set() with open(os.path.join(data_selection_working_dir, "valid_site_ids.txt"), 'r') as infile: for line in infile: site_id = line.strip() if site_id == "": continue else: valid_site_ids.add(int(site_id)) # read the journal metadata with author type info added s = datetime.now() author_type_dir = "/home/lana/shared/caringbridge/data/projects/sna-social-support/author_type" journal_metadata_filepath = os.path.join(author_type_dir, "journal_metadata_with_author_type.df") journal_df =
pd.read_feather(journal_metadata_filepath)
pandas.read_feather
# Copyright 2021 <NAME>, spideynolove @ GitHub # See LICENSE for details. __author__ = '<NAME> @spideynolove in GitHub' __version__ = '0.0.1' # mimic pro code # from .technical import technical_indicators, moving_averages, pivot_points import investpy as iv import os import numpy as np import pandas as pd import datetime import re from settings import * from functools import reduce from pprint import pprint ''' # --------- investpy market folder path equity_path = 'investpy/equitiesdata/' crypto_path = 'investpy/cryptodata/' ''' # today = datetime.date.today().strftime("%d/%m/%Y") today = '19/08/2021' def convert_date(date): return date.strftime("%d/%m/%Y") def calculate_stats(source=combine_path, periods=13, quotes='cor_bond', interval='Daily'): df = pd.read_csv(source+f'{quotes}_{interval}.csv') df = df.iloc[-periods-1:] df['Mean'] = df.iloc[:, 1:5].mean(axis=1) df['Std'] = df.iloc[:, 1:5].std(axis=1) df['Skew'] = df.iloc[:, 1:5].skew(axis=1) df['Kurt'] = df.iloc[:, 1:5].kurtosis(axis=1) # error if not have Close columns df['Change%'] = df['Close'].pct_change()*100 df['Mchange%'] = df['Mean'].pct_change()*100 # consider drop or not df.drop(columns=['Open', 'High', 'Low'], inplace=True) df.set_index('Date', inplace=True) df = df[-periods:] # print(quotes) # print(df) df.to_csv(analysis_path + f'{quotes}_{periods}_{interval}_stats.csv') def calculate_one_stats(): pass def correlation_one(source=combine_path, periods=13, quotes='cor_bond', interval='Daily'): # read data df = pd.read_csv(source+f'{quotes}_{interval}.csv') df = df.iloc[-periods-1:] df = df.corr() # print(quotes, periods, interval) # print(df) # print() # print(df.corr()) # method='kendall' / 'spearman' df.to_csv(analysis_path + f'{quotes}_{periods}_{interval}_corr.csv') def residuals_formula(): pass def correlation_two(periods=4, interval='Daily', dicts={'currenciesdata': 'XAUUSD', 'rates-bondsdata': 'U.S. 10Y'}): sources = list(dicts.keys()) quotes = list(dicts.values()) df = pd.read_csv( f'investpy/{sources[0]}/{quotes[0]}_{interval}.csv') df = df.iloc[-periods-1:] df.reset_index(inplace=True) df1 = pd.read_csv( f'investpy/{sources[1]}/{quotes[1]}_{interval}.csv') df1 = df1.iloc[-periods-1:] df1.reset_index(inplace=True) df_ = list(df.corrwith(df1)) df1_ = list(df.corrwith(df1, axis=1)) return df_[-len(df_)+1:], df1_[-len(df1_)+1:] def combine_params(filename, params, interval): check_data(combine_path, f'{filename}_{interval}.csv') main_df = pd.DataFrame() for ticker, info in params.items(): if '/' in ticker: print(f'{ticker} have special /') ticker = replace_specchar(ticker, '/', '') df = pd.read_csv(f'investpy/{info[0]}data/{ticker}_{interval}.csv') df.set_index('Date', inplace=True) df.rename(columns={'Close': ticker}, inplace=True) df = df.filter([ticker]) main_df = df if main_df.empty else main_df.join(df, how='outer') # fillna or dropna main_df.to_csv(combine_path + f'{filename}_{interval}.csv') # dump same thing in an list def dump_things(filename, things, intervals): for thing, info in things.items(): market, country, infunc = info for interval in intervals: print(interval) infunc(thing, interval, country) for interval in intervals: combine_params(filename, things, interval) def make_market(params, isReload=True): intervals = ['Daily', 'Weekly', 'Monthly'] # filename, data, info, outfunc = params filename, data, info = params thing_pairs = dict(zip(data, info)) if isReload: dump_things(filename, thing_pairs, intervals) # else: # outfunc(combine_path + f'{filename}_{interval}.csv') # # read data def norm_data(): # numpy processing pass def append_preparing(path): df = pd.read_csv(path) cur_date = df[-1:]['Date'].tolist()[0] df = df[:-1] df['Date'] = pd.to_datetime(df['Date']) df.set_index('Date', inplace=True) df.to_csv(path) if cur_date == datetime.date.today().strftime('%Y-%m-%d'): return None else: dayRe = re.compile(r'(\d\d\d\d)-(\d\d)-(\d\d)') mo = dayRe.search(cur_date) starttime = mo.group(3) + "/" + mo.group(2) + "/" + mo.group(1) return starttime def check_data(folder_part, filename): # if os.path.exists(folder_part): # # print(f'{folder_part} already exist!') # if os.path.exists(folder_part+filename): # print(f'{folder_part+filename} already exist!') # return False # else: # return True # else: # os.makedirs(folder_part) # return False return False def replace_specchar(obj, char, newchar): tmp = obj if char in obj: tmp = obj.replace(char, newchar) return tmp # Fred part -------------------------------- def get_economic_fred(currency, item): # economic_path = f'fred/{currency}/' economic_path = f'quandl/{currency}/' # check_data(economic_path) df = fred.get_series(item, observation_start=starttime, observation_end=today) df.to_csv(economic_path + f'{item}.csv') pass # quandl part -------------------------------- def get_economic_quandl(currency, field, item): economic_path = f'quandl/{currency}/' check_data(economic_path, f'{item}.csv') df = quandl.get(f'{field}/{item}', start_date=starttime, end_date=today) # print(df.tail()) df.to_csv(economic_path + f'{item}.csv') def get_quandl_data(market, field, currency, item): # need optimize folder name quandl_part = f'quandl/{market}data/{currency}/' # create folder check_data(quandl_part, f'{item}.csv') # request data then save to file, start_date, end_date df = quandl.get(f'{field}/{item}', start_date=starttime, end_date=today) print(df.tail()) # df.to_csv(quandl_part + f'{item}.csv') # return quandl_part + f'{item}.csv' # --------------------- indices ---------------------------------- def get_index(index, interval, country): index_ = replace_specchar(index, '/', '') path = f'investpy/indicesdata/{index_}_{interval}.csv' if not check_data('investpy/indicesdata/', f'{index_}_{interval}.csv'): df = iv.indices.get_index_historical_data( index=index, country=country, from_date=starttime, to_date=today, order='ascending', interval=interval) df.to_csv(path) # else: # new_start = append_preparing(path) # print(new_start, today) # if new_start is not None: # df = iv.indices.get_index_historical_data( # index=index, country=country, from_date=new_start, # to_date=today, order='ascending', interval=interval) # df.to_csv(path, mode='a', header=False) def get_indices(isReload=True): data = ['US Dollar Index', 'PHLX Euro', 'PHLX Australian Dollar', 'PHLX Canadian Dollar', 'PHLX Swiss Franc', 'PHLX British Pound', 'PHLX Yen', 'PHLX New Zealand Dollar'] info = [[markets[0], 'united states', get_index]]*len(data) # params = ['currencyindex', data, info, analysis_index] params = ['currencyindex', data, info] # make_market(params, isReload) # ------------------- bonds ----------------------------- def get_bond(bond, interval, country): path = f'investpy/rates-bondsdata/{bond}_{interval}.csv' if not check_data('investpy/rates-bondsdata/', f'{bond}_{interval}.csv'): df = iv.bonds.get_bond_historical_data( bond=bond, from_date=starttime, to_date=today, order='ascending', interval=interval) df.to_csv(path) # else: # new_start = append_preparing(path) # if new_start is not None: # df = iv.bonds.get_bond_historical_data( # bond=bond, from_date=new_start, to_date=today, # order='ascending', interval=interval) # df.to_csv(path, mode='a', header=False) def get_bonds(isReload=True): data = ['U.S. 10Y', 'Canada 10Y', 'Japan 10Y', 'Switzerland 10Y', 'Australia 10Y', 'New Zealand 10Y', 'Germany 10Y', 'U.K. 10Y'] info = [[markets[3], 'united states', get_bond]]*len(data) # params = ['cor_bond', data, info, analysis_bond] params = ['cor_bond', data, info] # make_market(params, isReload) def get_bond_spread(periods=6, name='cor_bond', interval='Monthly', base='U.S. 10Y'): # https://pypi.org/project/nelson-siegel-svensson/0.1.0/ # https://pypi.org/project/yield-curve-dynamics/ # read data df = pd.read_csv(combine_path + f'{name}_{interval}.csv') # get a range value df = df.iloc[-periods-1:] # move base to the first columns first_column = df.pop(base) df.insert(1, base, first_column) # list(df)[1:] mean quotes list df.dropna(subset=list(df)[1:], how='any', inplace=True) # calculate spread by subtract to the base df.iloc[:, 1:9] = df.iloc[:, 1:9].sub(df[base], axis=0).pct_change()*100 # drop zero base column df.drop(base, axis=1, inplace=True) # remove first empty row df = df[-len(df)+1:] # set Date as index df.set_index('Date', inplace=True) # write to file df.to_csv(analysis_path + f'{base}_spread_{periods}_{interval}.csv') # ----------- get_currency_cross_historical_data --------- def get_forex(quote, interval, country): quote_ = replace_specchar(quote, '/', '') path = f'investpy/currenciesdata/{quote_}_{interval}.csv' if not check_data('investpy/currenciesdata/', f'{quote_}_{interval}.csv'): # check latest data print("check_data True") df = iv.currency_crosses.get_currency_cross_historical_data( currency_cross=quote, from_date=starttime, to_date=today, order='ascending', interval=interval) df = df.iloc[:, :-1] df.to_csv(path) else: print("check_data False") new_start = append_preparing(path) print(new_start, today) if new_start is not None: df = iv.currency_crosses.get_currency_cross_historical_data( currency_cross=quote, from_date=new_start, to_date=today, order='ascending', interval=interval) df = df.iloc[:, :-1] df.to_csv(path, mode='a', header=False) def get_goldpairs(isReload=True): data = ['XAU/USD', 'XAU/EUR', 'XAU/GBP', 'XAU/CAD', 'XAU/CHF', 'XAU/JPY', 'XAU/AUD', 'XAU/NZD'] info = [[markets[1], 'united states', get_forex]]*len(data) # params = ['xaupair', data, info, analysis_currency] params = ['xaupair', data, info] # make_market(params, isReload) def get_silverpairs(isReload=True): data = ['XAG/USD', 'XAG/EUR', 'XAG/GBP', 'XAG/CAD', 'XAG/CHF', 'XAG/AUD'] info = [[markets[1], 'united states', get_forex]]*len(data) # params = ['xagpair', data, info, analysis_currency] params = ['xagpair', data, info] # make_market(params, isReload) # ----------------------------IMPORTANT- commondity--- # ------------- get_commodity_historical_data --------------- def get_commodities(commodity, interval, country): path = f'investpy/commoditiesdata/{commodity}_{interval}.csv' compath = 'investpy/commoditiesdata/' if not check_data(compath, f'{commodity}_{interval}.csv'): df = iv.commodities.get_commodity_historical_data( commodity=commodity, from_date=starttime, to_date=today, order='ascending', interval=interval) df.to_csv(path) else: new_start = append_preparing(path) if new_start is not None: df = iv.commodities.get_commodity_historical_data( commodity=commodity, from_date=new_start, to_date=today, order='ascending', interval=interval) df.to_csv(path, mode='a', header=False) def get_grains(isReload=True): # https://www.investing.com/commodities/grains data = ['Rough Rice', 'US Soybean Oil', 'US Soybean Meal', 'US Soybeans', 'US Wheat', 'US Corn', 'Oats', 'London Wheat'] info = [[markets[2], 'united states', get_commodities]]*len(data) # params = ['grain', data, info, analysis_commodity] params = ['grain', data, info] # make_market(params, isReload) def get_softs(isReload=True): # https://www.investing.com/commodities/softs data = ['US Coffee C', 'US Cotton #2', 'US Sugar #11', 'Orange Juice', 'US Cocoa', 'Lumber', 'London Cocoa', 'London Coffee', 'London Sugar'] info = [[markets[2], 'united states', get_commodities]]*len(data) # params = ['soft', data, info, analysis_commodity] params = ['soft', data, info] # make_market(params, isReload) # shortcut: filename + dataset def get_meats(isReload=True): # https://www.investing.com/commodities/meats data = ['Live Cattle', 'Lean Hogs', 'Feeder Cattle'] info = [[markets[2], 'united states', get_commodities]]*len(data) # params = ['meat', data, info, analysis_commodity] params = ['meat', data, info] # make_market(params, isReload) def get_metals(isReload=True): # https://www.investing.com/commodities/metals data = ['Gold', 'Silver', 'Copper', 'Palladium', 'Platinum', 'Aluminum', 'Zinc', 'Lead', 'Nickel', 'Tin'] info = [[markets[2], 'united states', get_commodities]]*len(data) # params = ['metal', data, info, analysis_commodity] params = ['metal', data, info] # make_market(params, isReload) def get_energies(isReload=True): # https://www.investing.com/commodities/energy data = ['Brent Oil', 'Crude Oil WTI', 'London Gas Oil', 'Natural Gas', 'Heating Oil', 'Carbon Emissions', 'Gasoline RBOB'] info = [[markets[2], 'united states', get_commodities]]*len(data) # params = ['energy', data, info, analysis_commodity] params = ['energy', data, info] # make_market(params, isReload) # ----------------Commondity index------------------------- # https://www.investing.com/indices/thomson-reuters---jefferies-crb def get_crb(isReload=True): intervals = ['Daily', 'Weekly', 'Monthly'] for interval in intervals: get_index('TR/CC CRB', interval, 'world') # ---------------- ETF ------------------------- def etf_percent(): pass def get_etf(etf, interval, country): path = f'investpy/etfsdata/{etf}_{interval}.csv' if not check_data('investpy/etfsdata/', f'{etf}_{interval}.csv'): df = iv.etfs.get_etf_historical_data( etf=etf, country=country, from_date=starttime, to_date=today, order='ascending', interval=interval) df.to_csv(path) # else: # new_start = append_preparing(path) # if new_start is not None: # df = iv.etfs.get_etf_historical_data( # etf=etf, country=country, from_date=new_start, # to_date=today, # order='ascending', interval=interval) # df.to_csv(path, mode='a', header=False) # pass def get_bondetfs(isReload=True): data = ['iShares Core US Aggregate Bond', 'Vanguard Total Bond Market', 'Vanguard Intermediate-Term Corporate Bond', 'Vanguard Total International Bond', 'Vanguard Short-Term Corporate Bond'] info = [[markets[5], 'united states', get_etf]]*len(data) # params = ['bondetfs', data, info, analysis_etf] params = ['bondetfs', data, info] # make_market(params, isReload) pass def get_stocketfs(isReload=True): data = ['SPDR S&P 500', 'ishares S&P 500', 'Vanguard Total Stock Market', 'Vanguard S&P 500', 'Invesco QQQ Trust Series 1'] info = [[markets[5], 'united states', get_etf]]*len(data) # params = ['stocketfs', data, info, analysis_etf] params = ['stocketfs', data, info] # make_market(params, isReload) pass def get_goldetfs(isReload=True): data = ['SPDR Gold Shares', 'iShares Gold', 'SPDR Gold MiniShares', 'ETFS Physical Swiss Gold Shares', 'GraniteShares Gold Trust'] info = [[markets[5], 'united states', get_etf]]*len(data) # params = ['goldetfs', data, info, analysis_etf] params = ['goldetfs', data, info] # make_market(params, isReload) def get_silveretfs(isReload=True): # 'United States Copper' - not use data = ['iShares Silver', 'ETFS Physical Silver Shares', 'ProShares Ultra Silver'] info = [[markets[5], 'united states', get_etf]]*len(data) # params = ['silveretfs', data, info, analysis_etf] params = ['silveretfs', data, info] # make_market(params, isReload) # ----------------Correlation------------------------- # ------------------------------------- # AUD vs NZD (correlation) def get_aunz(isReload=True): data = ['PHLX Australian Dollar', 'PHLX New Zealand Dollar', 'Australia 10Y', 'New Zealand 10Y'] info = [[markets[0], 'united states', get_index]] * \ 2 + [[markets[3], 'united states', get_bond]]*2 # params = ['cor_aunz', data, info, analysis_intermarket] params = ['cor_aunz', data, info] make_market(params, isReload) # ------------------------------------- # USD vs CAD (correlation) def get_usca(isReload=True): data = ['US Dollar Index', 'PHLX Canadian Dollar', 'U.S. 10Y', 'Canada 10Y'] info = [[markets[0], 'united states', get_index]] * \ 2 + [[markets[3], 'united states', get_bond]]*2 # params = ['cor_usca', data, info, analysis_intermarket] params = ['cor_usca', data, info] make_market(params, isReload) # ------------------------------------- # JPY vs CHF (correlation) def get_jpsw(isReload=True): data = ['PHLX Yen', 'PHLX Swiss Franc', 'Japan 10Y', 'Switzerland 10Y'] info = [[markets[0], 'united states', get_index]] * \ 2 + [[markets[3], 'united states', get_bond]]*2 # params = ['cor_jpsw', data, info, analysis_intermarket] params = ['cor_jpsw', data, info] make_market(params, isReload) # ------------------------------------- # GBP vs EUR (correlation) def get_ukeu(isReload=True): data = ['PHLX British Pound', 'PHLX Euro', 'U.K. 10Y', 'Germany 10Y'] info = [[markets[0], 'united states', get_index]] * \ 2 + [[markets[3], 'united states', get_bond]]*2 # params = ['cor_ukeu', data, info, analysis_intermarket] params = ['cor_ukeu', data, info] make_market(params, isReload) # ---------------------------------- # https://www.investing.com/economic-calendar/ def get_economic_calendar(): ''' countries = ['united states', 'united kingdom', 'australia', 'canada', 'switzerland', 'germany', 'japan', 'new zealand', 'china'] importances = ['high', 'medium'] today = date.today() # get entire month (month have??? day) week_ago = (today + datetime.timedelta(days=6)) # print(today, week_ago) df = iv.economic_calendar(time_zone='GMT +7:00', time_filter='time_only', countries=countries, importances=importances, categories=None, from_date=convert_date(today), to_date=convert_date(week_ago)) df.to_csv('investpy/calendar/economic_calendar.csv') ''' df = pd.read_csv('investpy/calendar/economic_calendar.csv', index_col=0) df['date'] = pd.to_datetime(df['date']) df.set_index('date', inplace=True) print(df) pass def csv_finder(foldername): paths = [] for root, dirs, files in os.walk(foldername): for file in files: if file.endswith(".csv"): paths.append(os.path.abspath(os.path.join(root, file))) return paths def read_data_vol(): non_vols = [] vols = [] paths = csv_finder("investpy") for count, item in enumerate(paths, 1): df =
pd.read_csv(item)
pandas.read_csv
from __future__ import print_function, absolute_import, division import pandas as pd import numpy as np import argparse import json import math import re import os import sys import csv import socket # -- ip checks import seaborn as sns import matplotlib.pyplot as plt from jinja2 import Environment, PackageLoader # --- functions --- def get_config(config): """ convert json config file into a python dict """ with open(config, 'r') as f: config_dict = json.load(f)[0] return config_dict # -- load data -- def get_dataframe(config): """ load csv into python dataframe """ df = pd.read_csv(config['input_file'], low_memory=False) return df # -- def get_overview(config, df): """ return details of the dataframe and any issues found """ overview_msg = {} df = df.copy() column_cnt = len(df.columns) try: df['EVENT_TIMESTAMP'] = pd.to_datetime(df[config['required_features']['EVENT_TIMESTAMP']], infer_datetime_format=True) date_range = df['EVENT_TIMESTAMP'].min().strftime('%Y-%m-%d') + ' to ' + df['EVENT_TIMESTAMP'].max().strftime('%Y-%m-%d') day_cnt = (df['EVENT_TIMESTAMP'].max() - df['EVENT_TIMESTAMP'].min()).days except: overview_msg[config['required_features']['EVENT_TIMESTAMP']] = " Unable to convert" + config['required_features']['EVENT_TIMESTAMP'] + " to timestamp" date_range = "" day_cnt = 0 record_cnt = df.shape[0] memory_size = df.memory_usage(index=True).sum() record_size = round(float(memory_size) / record_cnt,2) n_dupe = record_cnt - len(df.drop_duplicates()) if record_cnt <= 10000: overview_msg["Record count"] = "A minimum of 10,000 rows are required to train the model, your dataset contains " + str(record_cnt) overview_stats = { "Record count" : "{:,}".format(record_cnt) , "Column count" : "{:,}".format(column_cnt), "Duplicate count" : "{:,}".format(n_dupe), "Memory size" : "{:.2f}".format(memory_size/1024**2) + " MB", "Record size" : "{:,}".format(record_size) + " bytes", "Date range" : date_range, "Day count" : "{:,}".format(day_cnt) + " days", "overview_msg" : overview_msg, "overview_cnt" : len(overview_msg) } return df, overview_stats def set_feature(row, config): """ sets the feature type of each variable in the file, identifies features with issues as well as the required features. this is the first pass of rules """ rulehit = 0 feature = "" message = "" required_features = config['required_features'] # -- assign numeric -- if ((row._dtype in ['float64', 'int64']) and (row['nunique'] > 1)): feature = "numeric" message = "(" + "{:,}".format(row['nunique']) + ") unique" # -- assign categorical -- if ((row._dtype == 'object') and ( row.nunique_pct <= 0.75)): feature = "categorical" message = "(" + "{:.2f}".format(row.nunique_pct*100) + "%) unique" # -- assign categorical to numerics -- if ((row._dtype in ['float64', 'int64']) and ( row['nunique'] <= 1024 )): feature = "categorical" message = "(" + "{:,}".format(row['nunique']) + ") unique" # -- assign binary -- if (row['nunique'] == 2 ): feature = "categorical" message = "(" + "{:}".format(row['nunique']) + ") binary" # -- single value -- if (row['nunique'] == 1): rulehit = 1 feature = "exclude" message = "(" + "{:}".format(row['nunique']) + ") single value" # -- null pct -- if (row.null_pct >= 0.50 and (rulehit == 0)): rulehit = 1 feature = "exclude" message = "(" + "{:.2f}".format(row.null_pct*100) + "%) missing " # -- categorical w. high % unique if ((row._dtype == 'object') and ( row.nunique_pct >= 0.75)) and (rulehit == 0): rulehit = 1 feature = "exclude" message = "(" + "{:.2f}".format(row.nunique_pct*100) + "%) unique" # -- numeric w. extreeme % unique if ((row._dtype in ['float64', 'int64']) and ( row.nunique_pct >= 0.95)) and (rulehit == 0): rulehit = 1 feature = "exclude" message = "(" + "{:.2f}".format(row.nunique_pct*100) + "%) unique" if ('EMAIL_ADDRESS' in required_features) and (row._column == required_features['EMAIL_ADDRESS']): feature = "EMAIL_ADDRESS" if ('IP_ADDRESS' in required_features) and (row._column == required_features['IP_ADDRESS']): feature = "IP_ADDRESS" if row._column == required_features['EVENT_TIMESTAMP']: feature = "EVENT_TIMESTAMP" if row._column == required_features['EVENT_LABEL']: feature = "EVENT_LABEL" return feature, message def get_label(config, df): """ returns stats on the label and performs intial label checks """ message = {} label = config['required_features']['EVENT_LABEL'] label_summary = df[label].value_counts() rowcnt = df.shape[0] label_dict = { "label_field" : label, "label_values" : df[label].unique(), "label_dtype" : label_summary.dtype, "fraud_rate" : "{:.2f}".format((label_summary.min()/label_summary.sum())*100), "fraud_label": str(label_summary.idxmin()), "fraud_count": label_summary.min(), "legit_rate" : "{:.2f}".format((label_summary.max()/label_summary.sum())*100), "legit_count": label_summary.max(), "legit_label": str(label_summary.idxmax()), "null_count" : "{:,}".format(df[label].isnull().sum(axis = 0)), "null_rate" : "{:.2f}".format(df[label].isnull().sum(axis = 0)/rowcnt), } """ label checks """ if label_dict['fraud_count'] <= 500: message['fraud_count'] = "Fraud count " + str(label_dict['fraud_count']) + " is less than 500\n" if df[label].isnull().sum(axis = 0)/rowcnt >= 0.01: message['label_nulls'] = "Your LABEL column contains " + label_dict["null_count"] +" a significant number of null values" label_dict['warnings'] = len(message) return label_dict, message def get_partition(config, df): """ evaluates your dataset partitions and checks the distribution of fraud lables """ df = df.copy() row_count = df.shape[0] required_features = config['required_features'] message = {} stats ={} try: df['_event_timestamp'] =
pd.to_datetime(df[required_features['EVENT_TIMESTAMP']])
pandas.to_datetime
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.5 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_checklist_scenariobased_step01 [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_checklist_scenariobased_step01&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=ex-vue-1). # + import numpy as np import pandas as pd from scipy import interpolate import matplotlib.pyplot as plt from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() from arpym.pricing import bsm_function, bootstrap_nelson_siegel, \ implvol_delta2m_moneyness from arpym.tools import aggregate_rating_migrations, add_logo # - # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_checklist_scenariobased_step01-parameters) # + # set current time t_now t_now = np.datetime64('2012-08-31') # set start date for data selection t_first = np.datetime64('2009-11-02') # set initial portfolio construction date t_init t_init = np.datetime64('2012-08-30') # stocks - must include GE and JPM stock_names = ['GE', 'JPM', 'A', 'AA', 'AAPL'] # stocks considered # make sure stock names includes GE and JPM stock_names = ['GE', 'JPM'] + [stock for stock in stock_names if stock not in ['GE', 'JPM']] print('Stocks considered:', stock_names) # options on S&P 500 k_strk = 1407 # strike value of options on S&P 500 (US dollars) tend_option = np.datetime64('2013-08-26') # options expiry date y = 0.01 # level for yield curve (assumed flat and constant) l_ = 9 # number of points on the m-moneyness grid # corporate bonds # expiry date of the GE coupon bond to extract tend_ge = np.datetime64('2013-09-16') # expiry date of the JPM coupon bond to extract tend_jpm = np.datetime64('2014-01-15') # starting ratings following the table: # "AAA" (0), "AA" (1), "A" (2), "BBB" (3), "BB" (4), "B" (5), # "CCC" (6), "D" (7) ratings_tnow = np.array([5, # initial credit rating for GE (corresponding to B) 3]) # initial credit rating for JPM (corresponding to BBB) # start of period for aggregate credit risk drivers tfirst_credit = np.datetime64('1995-01-01') # end of period for aggregate credit risk drivers tlast_credit = np.datetime64('2004-12-31') # index of risk driver to plot d_plot = 1 # - # ## [Step 0](https://www.arpm.co/lab/redirect.php?permalink=s_checklist_scenariobased_step01-implementation-step00): Import data # + # upload data # stocks stocks_path = '../../../databases/global-databases/equities/db_stocks_SP500/' db_stocks = pd.read_csv(stocks_path + 'db_stocks_sp.csv', skiprows=[0], index_col=0) db_stocks.index = pd.to_datetime(db_stocks.index) # implied volatility of option on S&P 500 index path = '../../../databases/global-databases/derivatives/db_implvol_optionSPX/' db_impliedvol = pd.read_csv(path + 'data.csv', index_col=['date'], parse_dates=['date']) implvol_param = pd.read_csv(path + 'params.csv', index_col=False) # corporate bonds: GE and JPM jpm_path = \ '../../../databases/global-databases/fixed-income/db_corporatebonds/JPM/' db_jpm = pd.read_csv(jpm_path + 'data.csv', index_col=['date'], parse_dates=['date']) jpm_param = pd.read_csv(jpm_path + 'params.csv', index_col=['expiry_date'], parse_dates=['expiry_date']) jpm_param['link'] = ['dprice_'+str(i) for i in range(1, jpm_param.shape[0]+1)] ge_path = '../../../databases/global-databases/fixed-income/db_corporatebonds/GE/' db_ge = pd.read_csv(ge_path + 'data.csv', index_col=['date'], parse_dates=['date']) ge_param = pd.read_csv(ge_path + 'params.csv', index_col=['expiry_date'], parse_dates=['expiry_date']) ge_param['link'] = ['dprice_'+str(i) for i in range(1, ge_param.shape[0]+1)] # ratings rating_path = '../../../databases/global-databases/credit/db_ratings/' db_ratings = pd.read_csv(rating_path+'data.csv', parse_dates=['date']) # ratings_param represents all possible ratings i.e. AAA, AA, etc. ratings_param = pd.read_csv(rating_path+'params.csv', index_col=0) ratings_param = np.array(ratings_param.index) c_ = len(ratings_param)-1 # define the date range of interest dates = db_stocks.index[(db_stocks.index >= t_first) & (db_stocks.index <= t_now)] dates = np.intersect1d(dates, db_impliedvol.index) dates = dates.astype('datetime64[D]') # the corporate bonds time series is shorter; select the bonds dates ind_dates_bonds = np.where((db_ge.index >= dates[0]) & (db_ge.index <= t_now)) dates_bonds = np.intersect1d(db_ge.index[ind_dates_bonds], db_jpm.index) dates_bonds = dates_bonds.astype('datetime64[D]') # length of the time series t_ = len(dates) t_bonds = len(dates_bonds) # initialize temporary databases db_risk_drivers = {} v_tnow = {} v_tinit = {} risk_drivers_names = {} v_tnow_names = {} # implied volatility parametrized by time to expiry and delta-moneyness tau_implvol = np.array(implvol_param.time2expiry) tau_implvol = tau_implvol[~np.isnan(tau_implvol)] delta_moneyness = np.array(implvol_param.delta) implvol_delta_moneyness_2d = \ db_impliedvol.loc[(db_impliedvol.index.isin(dates)), (db_impliedvol.columns != 'underlying')] k_ = len(tau_implvol) # unpack flattened database (from 2d to 3d) implvol_delta_moneyness_3d = np.zeros((t_, k_, len(delta_moneyness))) for k in range(k_): implvol_delta_moneyness_3d[:, k, :] = \ np.r_[np.array(implvol_delta_moneyness_2d.iloc[:, k::k_])] # - # ## [Step 1](https://www.arpm.co/lab/redirect.php?permalink=s_checklist_scenariobased_step01-implementation-step01): Stocks # + n_stocks = len(stock_names) # number of stocks d_stocks = n_stocks # one risk driver for each stock for d in range(d_stocks): # calculate time series of stock risk drivers db_risk_drivers[d] = np.log(np.array(db_stocks.loc[dates, stock_names[d]])) risk_drivers_names[d] = 'stock '+stock_names[d]+'_log_value' # stock value v_tnow[d] = db_stocks.loc[t_now, stock_names[d]] v_tinit[d] = db_stocks.loc[t_init, stock_names[d]] v_tnow_names[d] = 'stock '+stock_names[d] # number of risk drivers, to be updated at every insertion d_ = d_stocks # - # ## [Step 2](https://www.arpm.co/lab/redirect.php?permalink=s_checklist_scenariobased_step01-implementation-step02): S&P 500 Index # + # calculate risk driver of the S&P 500 index db_risk_drivers[d_] = \ np.log(np.array(db_impliedvol.loc[(db_impliedvol.index.isin(dates)), 'underlying'])) risk_drivers_names[d_] = 'sp_index_log_value' # value of the S&P 500 index v_tnow[d_] = db_impliedvol.loc[t_now, 'underlying'] v_tinit[d_] = db_impliedvol.loc[t_init, 'underlying'] v_tnow_names[d_] = 'sp_index' # update counter d_ = d_+1 # - # ## [Step 3](https://www.arpm.co/lab/redirect.php?permalink=s_checklist_scenariobased_step01-implementation-step03): Call and put options on the S&P 500 Index # + # from delta-moneyness to m-moneyness parametrization implvol_m_moneyness_3d, m_moneyness = \ implvol_delta2m_moneyness(implvol_delta_moneyness_3d, tau_implvol, delta_moneyness, y*np.ones((t_, k_)), tau_implvol, l_) # calculate log implied volatility log_implvol_m_moneyness_2d = \ np.log(np.reshape(implvol_m_moneyness_3d, (t_, k_*(l_)), 'F')) # value of the underlying s_tnow = v_tnow[d_stocks] s_tinit = v_tinit[d_stocks] # time to expiry (in years) tau_option_tnow = np.busday_count(t_now, tend_option)/252 tau_option_tinit = np.busday_count(t_init, tend_option)/252 # moneyness moneyness_tnow = np.log(s_tnow/k_strk)/np.sqrt(tau_option_tnow) moneyness_tinit = np.log(s_tnow/k_strk)/np.sqrt(tau_option_tnow) # grid points points = list(zip(*[grid.flatten() for grid in np.meshgrid(*[tau_implvol, m_moneyness])])) # known values values = implvol_m_moneyness_3d[-1, :, :].flatten('F') # implied volatility (interpolated) impl_vol_tnow = \ interpolate.LinearNDInterpolator(points, values)(*np.r_[tau_option_tnow, moneyness_tnow]) impl_vol_tinit = \ interpolate.LinearNDInterpolator(points, values)(*np.r_[tau_option_tinit, moneyness_tinit]) # compute call option value by means of Black-Scholes-Merton formula v_call_tnow = bsm_function(s_tnow, y, impl_vol_tnow, moneyness_tnow, tau_option_tnow) v_call_tinit = bsm_function(s_tinit, y, impl_vol_tinit, moneyness_tinit, tau_option_tinit) # compute put option value by means of the put-call parity v_zcb_tnow = np.exp(-y*tau_option_tnow) v_put_tnow = v_call_tnow - s_tnow + k_strk*v_zcb_tnow v_zcb_tinit = np.exp(-y*tau_option_tinit) v_put_tinit = v_call_tinit - s_tinit + k_strk*v_zcb_tinit # store data d_implvol = log_implvol_m_moneyness_2d.shape[1] for d in np.arange(d_implvol): db_risk_drivers[d_+d] = log_implvol_m_moneyness_2d[:, d] risk_drivers_names[d_+d] = 'option_spx_logimplvol_mtau_' + str(d+1) v_tnow[d_] = v_call_tnow v_tinit[d_] = v_call_tinit v_tnow_names[d_] = 'option_spx_call' v_tnow[d_+1] = v_put_tnow v_tinit[d_+1] = v_put_tinit v_tnow_names[d_+1] = 'option_spx_put' # update counter d_ = len(db_risk_drivers) n_ = len(v_tnow) # - # ## [Step 4](https://www.arpm.co/lab/redirect.php?permalink=s_checklist_scenariobased_step01-implementation-step04): Corporate bonds # + n_bonds = 2 # GE bond # extract coupon coupon_ge = ge_param.loc[tend_ge, 'coupons']/100 # rescaled dirty prices of GE bond v_bond_ge = db_ge.loc[db_ge.index.isin(dates_bonds)]/100 # computation of Nelson-Siegel parameters for GE bond theta_ge = np.zeros((t_bonds, 4)) theta_ge = bootstrap_nelson_siegel(v_bond_ge.values, dates_bonds, np.array(ge_param.coupons/100), ge_param.index.values.astype('datetime64[D]')) # risk drivers for bonds are Nelson-Siegel parameters for d in np.arange(4): if d == 3: db_risk_drivers[d_+d] = np.sqrt(theta_ge[:, d]) else: db_risk_drivers[d_+d] = theta_ge[:, d] risk_drivers_names[d_+d] = 'ge_bond_nel_sieg_theta_' + str(d+1) # store dirty price of GE bond # get column variable name in v_bond_ge that selects bond with correct expiry ge_link = ge_param.loc[tend_ge, 'link'] v_tnow[n_] = v_bond_ge.loc[t_now, ge_link] v_tinit[n_] = v_bond_ge.loc[t_init, ge_link] v_tnow_names[n_] = 'ge_bond' # update counter d_ = len(db_risk_drivers) n_ = len(v_tnow_names) # JPM bond # extract coupon coupon_jpm = jpm_param.loc[tend_jpm, 'coupons']/100 # rescaled dirty prices of JPM bond v_bond_jpm = db_jpm.loc[db_ge.index.isin(dates_bonds)]/100 # computation of Nelson-Siegel parameters for JPM bond theta_jpm = np.zeros((t_bonds, 4)) theta_jpm = bootstrap_nelson_siegel(v_bond_jpm.values, dates_bonds, np.array(jpm_param.coupons/100), jpm_param.index.values.astype('datetime64[D]')) # risk drivers for bonds are Nelson-Siegel parameters for d in np.arange(4): if d == 3: db_risk_drivers[d_+d] = np.sqrt(theta_jpm[:, d]) else: db_risk_drivers[d_+d] = theta_jpm[:, d] risk_drivers_names[d_+d] = 'jpm_bond_nel_sieg_theta_'+str(d+1) # store dirty price of JPM bond # get column variable name in v_bond_ge that selects bond with correct expiry jpm_link = jpm_param.loc[tend_jpm, 'link'] v_tnow[n_] = v_bond_jpm.loc[t_now, jpm_link] v_tinit[n_] = v_bond_jpm.loc[t_init, jpm_link] v_tnow_names[n_] = 'jpm_bond' # update counter d_ = len(db_risk_drivers) n_ = len(v_tnow) # fill the missing values with nan's for d in range(d_stocks+1+d_implvol, d_stocks+1+d_implvol+n_bonds*4): db_risk_drivers[d] = np.concatenate((np.zeros(t_-t_bonds), db_risk_drivers[d])) db_risk_drivers[d][:t_-t_bonds] = np.NAN # - # ## [Step 5](https://www.arpm.co/lab/redirect.php?permalink=s_checklist_scenariobased_step01-implementation-step05): Credit # + # extract aggregate credit risk drivers dates_credit, n_obligors, n_cum_trans, *_ = \ aggregate_rating_migrations(db_ratings, ratings_param, tfirst_credit, tlast_credit) # number of obligors in each rating at each t t_credit = len(dates_credit) # length of the time series credit_types = {} credit_series = {} for c in np.arange(c_+1): credit_types[c] = 'n_oblig_in_state_'+ratings_param[c] credit_series[c] = n_obligors[:, c] d_credit = len(credit_series) # cumulative number of migrations up to time t for each pair of rating buckets for i in np.arange(c_+1): for j in np.arange(c_+1): if i != j: credit_types[d_credit] = \ 'n_cum_trans_'+ratings_param[i]+'_'+ratings_param[j] credit_series[d_credit] = n_cum_trans[:, i, j] d_credit = len(credit_series) # - # ## [Step 6](https://www.arpm.co/lab/redirect.php?permalink=s_checklist_scenariobased_step01-implementation-step06): Save databases # + path = '../../../databases/temporary-databases/' # market risk drivers out = pd.DataFrame({risk_drivers_names[d]: db_risk_drivers[d] for d in range(len(db_risk_drivers))}, index=dates) out = out[list(risk_drivers_names.values())] out.index.name = 'dates' out.to_csv(path+'db_riskdrivers_series.csv') del out # aggregate credit risk drivers out = pd.DataFrame({credit_types[d]: credit_series[d] for d in range(d_credit)}, index=dates_credit) out = out[list(credit_types.values())] out.index.name = 'dates' out.to_csv(path+'db_riskdrivers_credit.csv') del out # values of all instruments at t_now out = pd.DataFrame({v_tnow_names[n]: pd.Series(v_tnow[n]) for n in range(len(v_tnow))}) out = out[list(v_tnow_names.values())] out.to_csv(path+'db_v_tnow.csv', index=False) del out # values of all instruments at t_init out = pd.DataFrame({v_tnow_names[n]: pd.Series(v_tinit[n]) for n in range(len(v_tinit))}) out = out[list(v_tnow_names.values())] out.to_csv(path+'db_v_tinit.csv', index=False) del out # additional variables needed for subsequent steps out = {'n_stocks': pd.Series(n_stocks), 'd_implvol': pd.Series(d_implvol), 'n_bonds': pd.Series(n_bonds), 'c_': pd.Series(c_), 'tlast_credit': pd.Series(tlast_credit), 'tend_option': pd.Series(tend_option), 'k_strk': pd.Series(k_strk), 'l_': pd.Series(l_), 'tau_implvol': pd.Series(tau_implvol), 'y': pd.Series(y), 'm_moneyness': pd.Series(m_moneyness), 'tend_ge': pd.Series(tend_ge), 'coupon_ge': pd.Series(coupon_ge), 'tend_jpm': pd.Series(tend_jpm), 'coupon_jpm': pd.Series(coupon_jpm), 'd_': pd.Series(d_), 'd_credit': pd.Series(d_credit), 'ratings_tnow':
pd.Series(ratings_tnow)
pandas.Series
import pandas as pd import numpy as np import dateutil import networkx as nx ADULT_AGE = 18 def get_hmis_cp(): """ Pull in relevant CSVs from `../data/`, merge them, clean them, and return a tuple containing the cleaned HMIS data and the cleaned Connecting Point data. """ # get raw dataframes hmis = get_raw_hmis() cp = get_raw_cp() # convert dates hmis = hmis_convert_dates(hmis) cp = cp_convert_dates(cp) # compute client and family ids across the dataframes (hmis, cp) = get_client_family_ids(hmis, cp) # get child status hmis = hmis_child_status(hmis) cp = cp_child_status(cp) # generate family characteristics hmis_generate_family_characteristics(hmis) cp_generate_family_characteristics(cp) return (hmis, cp) ################### # get_raw methods # ################### def get_raw_hmis(): """ Pull in relevant CSVs from `../data/`, merge them, and return the raw HMIS dataframe. """ program = pd.read_csv('../data/hmis/program with family.csv') client = pd.read_csv('../data/hmis/client de-identified.csv') # NOTE we're taking an inner join here because the program csv got pulled after # the client csv, because we added the family site identifier column to program program = program.merge(client, on='Subject Unique Identifier', how='inner') return program def get_raw_cp(): """ Pull in relevant CSVs from `../data/`, merge them, and return the raw Connecting Point dataframe. """ case = pd.read_csv("../data/connecting_point/case.csv") case = case.rename(columns={'caseid': 'Caseid'}) client = pd.read_csv("../data/connecting_point/client.csv") case = case.merge(client, on='Caseid', how='left') return case ############################################# # get_client_family_ids and related methods # ############################################# def get_client_family_ids(hmis, cp): """ Given raw HMIS and Connecting Point dataframes, de-duplicate individuals and determine families across time. See the README for more information about rationale and methodology. The graph contains IDs from both HMIS and Connecting Point, so each vertex is represented as a tuple `(c, id)`, where `c` is either `'h'` or `'c'`, to indicate whether the `id` corresponds to a row in HMIS or Connecting Point. For example, `('h', 1234)` represents the row(s) in HMIS with individual ID `1234`, and `('c',5678)` represents the row(s) in Connecting Point with individual ID `5678`. :param hmis: HMIS dataframe. :type hmis: Pandas.Dataframe. :param cp: Connecting Point dataframe. :type cp: Pandas.Dataframe. """ hmis = hmis.rename(columns={'Subject Unique Identifier': 'Raw Subject Unique Identifier'}) cp = cp.rename(columns={'Clientid': 'Raw Clientid'}) # create graph of individuals G_individuals = nx.Graph() G_individuals.add_nodes_from([('h', v) for v in hmis['Raw Subject Unique Identifier'].values]) G_individuals.add_nodes_from([('c', v) for v in cp['Raw Clientid'].values]) # add edges between same individuals G_individuals.add_edges_from(group_edges('h', pd.read_csv('../data/hmis/hmis_client_duplicates_link_plus.csv'), ['Set ID'], 'Subject Unique Identifier')) G_individuals.add_edges_from(group_edges('c', pd.read_csv('../data/connecting_point/cp_client_duplicates_link_plus.csv'), ['Set ID'], 'Clientid')) G_individuals.add_edges_from(matching_edges()) # copy graph of individuals and add edges between individuals in the same family G_families = G_individuals.copy() G_families.add_edges_from(group_edges('h', hmis, ['Family Site Identifier','Program Start Date'], 'Raw Subject Unique Identifier')) G_families.add_edges_from(group_edges('c', cp, ['Caseid'], 'Raw Clientid')) # compute connected components and pull out ids for each dataframe for individuals and families hmis_individuals = [get_ids_from_nodes('h', c) for c in nx.connected_components(G_individuals)] cp_individuals = [get_ids_from_nodes('c', c) for c in nx.connected_components(G_individuals)] hmis_families = [get_ids_from_nodes('h', c) for c in nx.connected_components(G_families)] cp_families = [get_ids_from_nodes('c', c) for c in nx.connected_components(G_families)] # create dataframes to merge hmis_individuals = create_dataframe_from_grouped_ids(hmis_individuals, 'Subject Unique Identifier') hmis_families = create_dataframe_from_grouped_ids(hmis_families, 'Family Identifier') cp_individuals = create_dataframe_from_grouped_ids(cp_individuals, 'Clientid') cp_families = create_dataframe_from_grouped_ids(cp_families, 'Familyid') # merge into hmis and cp dataframes hmis = hmis.merge(hmis_individuals, left_on='Raw Subject Unique Identifier', right_index=True, how='left') hmis = hmis.merge(hmis_families, left_on='Raw Subject Unique Identifier', right_index=True, how='left') cp = cp.merge(cp_individuals, left_on='Raw Clientid', right_index=True, how='left') cp = cp.merge(cp_families, left_on='Raw Clientid', right_index=True, how='left') return (hmis, cp) def group_edges(node_prefix, df, group_ids, individual_id): """ Return the edge list from a grouping dataframe, either a Link Plus fuzzy matching or a dataframe, where people are connected by appearing in the same family or case. :param node_prefix: prefix for the nodes in the edge list. :type node_prefix: str. :param df: dataframe. :type df: Pandas.Dataframe. :param group_ids: grouping column names in grouping csv. :type group_ids: [str]. :param individual_id: individual id column name in grouping csv. :type individual_id: str. """ groups = df[group_ids+[individual_id]].dropna().drop_duplicates().set_index(group_ids) edges = groups.merge(groups, left_index=True, right_index=True) return [tuple(map(lambda v: (node_prefix, v), e)) for e in edges.values] def matching_edges(): """ Returns the edge list from a Connecting Point to HMIS matching CSV. """ matching = pd.read_csv('../data/matching/cp_hmis_match_results.csv').dropna() return [(('c',v[0]),('h',v[1])) for v in matching[['clientid','Subject Unique Identifier']].values] def get_ids_from_nodes(node_prefix, nodes): """ Take a list of nodes from G and returns a list of the ids of only the nodes with the given prefix. param node_prefix: prefix for the nodes to keep. type node_prefix: str. param nodes: list of nodes from G. type nodes: [(str, int)]. """ return map(lambda pair: pair[1], filter(lambda pair: pair[0] == node_prefix, nodes)) def create_dataframe_from_grouped_ids(grouped_ids, col): """ Take a list of IDs, grouped by individual or family, and creates a dataframe where each ID in a group has the same id in `col`. For example, for the arguments `[[1, 2, 3], [4, 5, 6], [7, 8], [9]]` and `'Family Identifier'`, return a single-column dataframe: ``` Family Identifier -+----------------- 1 0 2 0 3 0 4 1 5 1 6 1 7 2 8 2 9 3 ``` param grouped_ids: a list of lists of ids. type grouped_ids: [[int]]. param col: the name to give the single column in the dataframe. type col: str. """ return pd.DataFrame({col: pd.Series({id: idx for idx, ids in enumerate(grouped_ids) for id in ids})}) ######################### # convert_dates methods # ######################### def hmis_convert_dates(hmis): """ Given an HMIS dataframe, convert columns with dates to datetime columns. :param hmis: HMIS dataframe. :type hmis: Pandas.Dataframe. """ hmis['Raw Program Start Date'] = hmis['Program Start Date'] hmis['Program Start Date'] = pd.to_datetime(hmis['Program Start Date']) hmis['Raw Program End Date'] = hmis['Program End Date'] hmis['Program End Date'] = pd.to_datetime(hmis['Program End Date']) hmis['Raw DOB'] = hmis['DOB'] hmis['DOB'] = pd.to_datetime(hmis['DOB']) return hmis def cp_convert_dates(cp): """ Given a Connecting Point dataframe, convert columns with dates to datetime columns. :param cp: Connecting Point dataframe. :type cp: Pandas.Dataframe. """ cp['Raw servstart'] = cp['servstart'] cp['servstart'] = pd.to_datetime(cp['servstart']) cp['Raw servend'] = cp['servend'] cp['servend'] = pd.to_datetime(cp['servend']) cp['Raw LastUpdateDate'] = cp['LastUpdateDate'] cp['LastUpdateDate'] =
pd.to_datetime(cp['LastUpdateDate'])
pandas.to_datetime
""" Analysis for automatically segmented cells. Part of the annotations were computed in experiment 0003 and part in experiment 0004. """ """ This file is part of Cytometer Copyright 2021 Medical Research Council SPDX-License-Identifier: Apache-2.0 Author: <NAME> <<EMAIL>> """ # script name to identify this experiment experiment_id = 'rreb1_tm1b_exp_0005_population_analysis_v8' # cross-platform home directory from pathlib import Path home = str(Path.home()) import os import sys sys.path.extend([os.path.join(home, 'Software/cytometer')]) # post-processing parameters min_area = 203 / 2 # (pix^2) smaller objects are rejected # max_area = 44879 * 3 # (pix^2) larger objects are rejected xres_ref = 0.4538234626730202 yres_ref = 0.4537822752643282 min_area_um2 = min_area * xres_ref * yres_ref # max_area_um2 = max_area * xres_ref * yres_ref max_area_um2 = 25e3 # list of NDPI files that were processed ndpi_files_list = [ 'RREB1-TM1B-B6N-IC-1.1a 1132-18 G1 - 2019-02-20 09.56.50.ndpi', 'RREB1-TM1B-B6N-IC-1.1a 1132-18 M1 - 2019-02-20 09.48.06.ndpi', 'RREB1-TM1B-B6N-IC-1.1a 1132-18 P1 - 2019-02-20 09.29.29.ndpi', 'RREB1-TM1B-B6N-IC-1.1a 1132-18 S1 - 2019-02-20 09.21.24.ndpi', 'RREB1-TM1B-B6N-IC-1.1b 1133-18 G1 - 2019-02-20 12.31.18.ndpi', 'RREB1-TM1B-B6N-IC-1.1b 1133-18 M1 - 2019-02-20 12.15.25.ndpi', 'RREB1-TM1B-B6N-IC-1.1b 1133-18 P3 - 2019-02-20 11.51.52.ndpi', 'RREB1-TM1B-B6N-IC-1.1b 1133-18 S1 - 2019-02-20 11.31.44.ndpi', 'RREB1-TM1B-B6N-IC-1.1c 1129-18 G1 - 2019-02-19 14.10.46.ndpi', 'RREB1-TM1B-B6N-IC-1.1c 1129-18 M2 - 2019-02-19 13.58.32.ndpi', 'RREB1-TM1B-B6N-IC-1.1c 1129-18 P1 - 2019-02-19 12.41.11.ndpi', 'RREB1-TM1B-B6N-IC-1.1c 1129-18 S1 - 2019-02-19 12.28.03.ndpi', 'RREB1-TM1B-B6N-IC-1.1e 1134-18 G2 - 2019-02-20 14.43.06.ndpi', 'RREB1-TM1B-B6N-IC-1.1e 1134-18 P1 - 2019-02-20 13.59.56.ndpi', 'RREB1-TM1B-B6N-IC-1.1f 1130-18 G1 - 2019-02-19 15.51.35.ndpi', 'RREB1-TM1B-B6N-IC-1.1f 1130-18 M2 - 2019-02-19 15.38.01.ndpi', 'RREB1-TM1B-B6N-IC-1.1f 1130-18 S1 - 2019-02-19 14.39.24.ndpi', 'RREB1-TM1B-B6N-IC-1.1g 1131-18 G1 - 2019-02-19 17.10.06.ndpi', 'RREB1-TM1B-B6N-IC-1.1g 1131-18 M1 - 2019-02-19 16.53.58.ndpi', 'RREB1-TM1B-B6N-IC-1.1g 1131-18 P1 - 2019-02-19 16.37.30.ndpi', 'RREB1-TM1B-B6N-IC-1.1g 1131-18 S1 - 2019-02-19 16.21.16.ndpi', 'RREB1-TM1B-B6N-IC-1.1h 1135-18 G3 - 2019-02-20 15.46.52.ndpi', 'RREB1-TM1B-B6N-IC-1.1h 1135-18 M1 - 2019-02-20 15.30.26.ndpi', 'RREB1-TM1B-B6N-IC-1.1h 1135-18 P1 - 2019-02-20 15.06.59.ndpi', 'RREB1-TM1B-B6N-IC-1.1h 1135-18 S1 - 2019-02-20 14.56.47.ndpi', 'RREB1-TM1B-B6N-IC-2.1a 1128-18 G1 - 2019-02-19 12.04.29.ndpi', 'RREB1-TM1B-B6N-IC-2.1a 1128-18 M2 - 2019-02-19 11.26.46.ndpi', 'RREB1-TM1B-B6N-IC-2.1a 1128-18 P1 - 2019-02-19 11.01.39.ndpi', 'RREB1-TM1B-B6N-IC-2.1a 1128-18 S1 - 2019-02-19 11.59.16.ndpi', 'RREB1-TM1B-B6N-IC-2.2a 1124-18 G1 - 2019-02-18 10.15.04.ndpi', 'RREB1-TM1B-B6N-IC-2.2a 1124-18 M3 - 2019-02-18 10.12.54.ndpi', 'RREB1-TM1B-B6N-IC-2.2a 1124-18 P2 - 2019-02-18 09.39.46.ndpi', 'RREB1-TM1B-B6N-IC-2.2a 1124-18 S1 - 2019-02-18 09.09.58.ndpi', 'RREB1-TM1B-B6N-IC-2.2b 1125-18 G1 - 2019-02-18 12.35.37.ndpi', 'RREB1-TM1B-B6N-IC-2.2b 1125-18 P1 - 2019-02-18 11.16.21.ndpi', 'RREB1-TM1B-B6N-IC-2.2b 1125-18 S1 - 2019-02-18 11.06.53.ndpi', 'RREB1-TM1B-B6N-IC-2.2d 1137-18 S1 - 2019-02-21 10.59.23.ndpi', 'RREB1-TM1B-B6N-IC-2.2e 1126-18 G1 - 2019-02-18 14.58.55.ndpi', 'RREB1-TM1B-B6N-IC-2.2e 1126-18 M1- 2019-02-18 14.50.13.ndpi', 'RREB1-TM1B-B6N-IC-2.2e 1126-18 P1 - 2019-02-18 14.13.24.ndpi', 'RREB1-TM1B-B6N-IC-2.2e 1126-18 S1 - 2019-02-18 14.05.58.ndpi', 'RREB1-TM1B-B6N-IC-5.1a 0066-19 G1 - 2019-02-21 15.26.24.ndpi', 'RREB1-TM1B-B6N-IC-5.1a 0066-19 M1 - 2019-02-21 15.04.14.ndpi', 'RREB1-TM1B-B6N-IC-5.1a 0066-19 P1 - 2019-02-21 14.39.43.ndpi', 'RREB1-TM1B-B6N-IC-5.1a 0066-19 S1 - 2019-02-21 14.04.12.ndpi', 'RREB1-TM1B-B6N-IC-5.1b 0067-19 P1 - 2019-02-21 16.32.24.ndpi', 'RREB1-TM1B-B6N-IC-5.1b 0067-19 S1 - 2019-02-21 16.00.37.ndpi', 'RREB1-TM1B-B6N-IC-5.1b 67-19 G1 - 2019-02-21 17.29.31.ndpi', 'RREB1-TM1B-B6N-IC-5.1b 67-19 M1 - 2019-02-21 17.04.37.ndpi', 'RREB1-TM1B-B6N-IC-5.1c 68-19 G2 - 2019-02-22 09.43.59.ndpi', 'RREB1-TM1B-B6N-IC- 5.1c 68 -19 M2 - 2019-02-22 09.27.30.ndpi', 'RREB1-TM1B-B6N-IC -5.1c 68 -19 peri3 - 2019-02-22 09.08.26.ndpi', 'RREB1-TM1B-B6N-IC- 5.1c 68 -19 sub2 - 2019-02-22 08.39.12.ndpi', 'RREB1-TM1B-B6N-IC-5.1d 69-19 G2 - 2019-02-22 15.13.08.ndpi', 'RREB1-TM1B-B6N-IC-5.1d 69-19 M1 - 2019-02-22 14.39.12.ndpi', 'RREB1-TM1B-B6N-IC-5.1d 69-19 Peri1 - 2019-02-22 12.00.19.ndpi', 'RREB1-TM1B-B6N-IC-5.1d 69-19 sub1 - 2019-02-22 11.44.13.ndpi', 'RREB1-TM1B-B6N-IC-5.1e 70-19 G3 - 2019-02-25 10.34.30.ndpi', 'RREB1-TM1B-B6N-IC-5.1e 70-19 M1 - 2019-02-25 09.53.00.ndpi', 'RREB1-TM1B-B6N-IC-5.1e 70-19 P2 - 2019-02-25 09.27.06.ndpi', 'RREB1-TM1B-B6N-IC-5.1e 70-19 S1 - 2019-02-25 08.51.26.ndpi', 'RREB1-TM1B-B6N-IC-7.1a 71-19 G1 - 2019-02-25 12.27.06.ndpi', 'RREB1-TM1B-B6N-IC-7.1a 71-19 P1 - 2019-02-25 11.31.30.ndpi', 'RREB1-TM1B-B6N-IC-7.1a 71-19 S1 - 2019-02-25 11.03.59.ndpi' ] ######################################################################################################################## ## Compute cell populations from automatically segmented images in two depots: SQWAT and GWAT: ## Cell area histograms ## HD quantiles of cell areas ## The results are saved, so in later sections, it's possible to just read them for further analysis. ## GENERATES DATA USED IN FOLLOWING SECTIONS ######################################################################################################################## import matplotlib.pyplot as plt import cytometer.data import shapely import scipy.stats as stats import openslide import numpy as np import scipy.stats import sklearn.neighbors, sklearn.model_selection import pandas as pd # from mlxtend.evaluate import permutation_test # from statsmodels.stats.multitest import multipletests # import math import PIL import warnings # directories annotations_dir = os.path.join(home, 'Data/cytometer_data/aida_data_Rreb1_tm1b/annotations') histology_dir = os.path.join(home, 'scan_srv2_cox/Liz Bentley/Grace/RREB1 Feb19') dataframe_dir = os.path.join(home, 'GoogleDrive/Research/20200826_Rreb1_Grace') figures_dir = os.path.join(home, 'GoogleDrive/Research/20200826_Rreb1_Grace/figures') metainfo_dir = os.path.join(home, 'Data/cytometer_data/rreb1') # we are not using cell overlap in this study, thus, we use the 'auto' method (watershed) method = 'auto' DEBUG = False SAVEFIG = False # 0.05, 0.1 , 0.15, 0.2, ..., 0.9 , 0.95 quantiles = np.linspace(0, 1, 21) # bins for the cell population histograms area_bin_edges = np.linspace(min_area_um2, max_area_um2, 201) area_bin_centers = (area_bin_edges[0:-1] + area_bin_edges[1:]) / 2.0 # data file with extra info for the dataframe (quantiles and histograms bins) dataframe_areas_extra_filename = os.path.join(dataframe_dir, 'rreb1_tm1b_exp_0005_dataframe_areas_extra.npz') # if the file doesn't exist, save it if not os.path.isfile(dataframe_areas_extra_filename): np.savez(dataframe_areas_extra_filename, quantiles=quantiles, area_bin_edges=area_bin_edges, area_bin_centers=area_bin_centers) # dataframe with histograms and smoothed histograms of cell populations in each slide dataframe_areas_filename = os.path.join(dataframe_dir, 'rreb1_tm1b_exp_0005_dataframe_areas_' + method + '.pkl') if os.path.isfile(dataframe_areas_filename): # load dataframe with cell population quantiles and histograms df_all = pd.read_pickle(dataframe_areas_filename) else: # CSV file with metainformation of all mice metainfo_csv_file = os.path.join(metainfo_dir, 'rreb1_tm1b_meta_info.csv') metainfo = pd.read_csv(metainfo_csv_file) # keep only the last part of the ID in 'Animal Identifier', so that it can be found in the filename # RREB1-TM1B-B6N-IC/5.1c -> 5.1c metainfo['Animal Identifier'] = [x.replace('RREB1-TM1B-B6N-IC/', '') for x in metainfo['Animal Identifier']] # rename columns to make them easier to use in statsmodels metainfo = metainfo.rename( columns={'Weight (g)': 'Weight', 'Gonadal_AT (g)': 'Gonadal', 'Mesenteric_AT (g)': 'Mesenteric', 'PAT+RPAT (g)': 'PAT', 'Brown_AT (g)': 'Brown', 'SAT (g)': 'SAT'}) # make sure that in the boxplots Rreb1-tm1b:WT comes before Rreb1-tm1b:Het, and female before male metainfo['Sex'] = metainfo['Sex'].astype(pd.api.types.CategoricalDtype(categories=['f', 'm'], ordered=True)) metainfo['Genotype'] = metainfo['Genotype'].astype( pd.api.types.CategoricalDtype(categories=['Rreb1-tm1b:WT', 'Rreb1-tm1b:Het'], ordered=True)) # mean mouse body weight (female and male) mean_bw_f = metainfo[metainfo['Sex'] == 'f']['Weight'].mean() mean_bw_m = metainfo[metainfo['Sex'] == 'm']['Weight'].mean() # dataframe to keep all results, one row per annotations file df_all = pd.DataFrame() # get filenames of the annotations. Note that they come from two experiments, 0003 or 0004, so we have to check from # which one json_annotation_files = [] for i_file, file in enumerate(ndpi_files_list): print('File ' + str(i_file) + '/' + str(len(json_annotation_files)-1) + ': ' + os.path.basename(file)) json_file = os.path.join(annotations_dir, file.replace('.ndpi', '_exp_0003_auto_aggregated.json')) if os.path.isfile(json_file): print('\tExperiment 0003') json_annotation_files.append(json_file) else: json_file = os.path.join(annotations_dir, file.replace('.ndpi', '_exp_0004_auto_aggregated.json')) if os.path.isfile(json_file): print('\tExperiment 0004') json_annotation_files.append(json_file) else: warnings.warn('Annotations file not found') # process annotations files for i_file, (ndpi_file, json_file) in enumerate(zip(ndpi_files_list, json_annotation_files)): print('File ' + str(i_file) + '/' + str(len(json_annotation_files)-1) + ': ' + os.path.basename(json_file)) if not os.path.isfile(json_file): warnings.warn('Missing annotations file') continue # open full resolution histology slide im = openslide.OpenSlide(os.path.join(histology_dir, os.path.basename(ndpi_file))) # pixel size assert (im.properties['tiff.ResolutionUnit'] == 'centimeter') xres = float(im.properties['openslide.mpp-x']) # um/pixel yres = float(im.properties['openslide.mpp-y']) # um/pixel # figure out what depot these cells belong to aux = ndpi_file.replace('RREB1-TM1B-B6N-IC', '') is_gonadal = any([s in aux for s in ['G1', 'G2', 'G3']]) is_perineal = any([s in aux for s in ['P1', 'P2', 'P3', 'peri', 'Peri']]) is_subcutaneous = any([s in aux for s in ['S1', 'S2', 'S3', 'sub', 'Sub']]) is_mesenteric = any([s in aux for s in ['M1', 'M2', 'M3']]) n_matches = np.count_nonzero([is_gonadal, is_perineal, is_subcutaneous, is_mesenteric]) if n_matches != 1: raise ValueError(['Filename matches in metainfo table: ' + str(n_matches)]) if is_gonadal: depot_label = 'Gonadal' elif is_perineal: depot_label = 'PAT' # perineal + retroperineal elif is_subcutaneous: depot_label = 'SAT' elif is_mesenteric: depot_label = 'Mesenteric' aux = cytometer.data.tag_values_with_mouse_info(metainfo=metainfo, s=os.path.basename(json_file), tags_to_keep=['Animal Identifier', 'Sex', 'Genotype', 'Weight', 'Gonadal', 'PAT', 'SAT', 'Mesenteric'], id_tag='Animal Identifier') df = aux.drop(labels=['Gonadal', 'PAT', 'SAT', 'Mesenteric'], axis='columns') df['depot'] = depot_label df['depot_weight'] = aux[depot_label] # load contours and their confidence measure from annotation file cells, props = cytometer.data.aida_get_contours(json_file, layer_name='White adipocyte.*', return_props=True) # compute areas of the cells (um^2) areas = np.array([shapely.geometry.Polygon(cell).area for cell in cells]) * xres * yres # um^2 # smooth out histogram kde = sklearn.neighbors.KernelDensity(bandwidth=100, kernel='gaussian').fit(areas.reshape(-1, 1)) log_dens = kde.score_samples(area_bin_centers.reshape(-1, 1)) pdf = np.exp(log_dens) # compute mode df['area_smoothed_mode'] = area_bin_centers[np.argmax(pdf)] # compute areas at population quantiles areas_at_quantiles = stats.mstats.hdquantiles(areas, prob=quantiles, axis=0) df['area_at_quantiles'] = [areas_at_quantiles] # compute histograms with area binning histo, _ = np.histogram(areas, bins=area_bin_edges, density=True) df['histo'] = [list(histo)] # smoothed histogram df['smoothed_histo'] = [list(pdf)] if DEBUG: plt.clf() plt.plot(1e-3 * area_bin_centers, df['histo'].to_numpy()[0], label='Areas') plt.plot(1e-3 * area_bin_centers, df['smoothed_histo'].to_numpy()[0], label='Kernel') plt.plot([df['area_smoothed_mode'] * 1e-3, df['area_smoothed_mode'] * 1e-3], [0, np.array(df['smoothed_histo'].to_numpy()[0]).max()], 'k', label='Mode') plt.legend() plt.xlabel('Area ($10^3 \cdot \mu m^2$)', fontsize=14) # add results to total dataframe df_all = pd.concat([df_all, df], ignore_index=True) # save dataframe with data from both depots for current method (auto or corrected) df_all.to_pickle(dataframe_areas_filename) ######################################################################################################################## ## Import packages and auxiliary functions common to all analysis sections ## Load metainfo and cell population data ## USED IN PAPER ######################################################################################################################## from toolz import interleave import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.stats as stats import statsmodels.api as sm from statsmodels.stats.multitest import multipletests import seaborn as sns import cytometer.stats # directories annotations_dir = os.path.join(home, 'Data/cytometer_data/aida_data_Rreb1_tm1b/annotations') histology_dir = os.path.join(home, 'scan_srv2_cox/Liz Bentley/Grace/RREB1 Feb19') dataframe_dir = os.path.join(home, 'GoogleDrive/Research/20200826_Rreb1_Grace') figures_dir = os.path.join(home, 'GoogleDrive/Research/20200826_Rreb1_Grace/figures') metainfo_dir = os.path.join(home, 'Data/cytometer_data/rreb1') DEBUG = False method = 'auto' # CSV file with metainformation of all mice metainfo_csv_file = os.path.join(metainfo_dir, 'rreb1_tm1b_meta_info.csv') metainfo = pd.read_csv(metainfo_csv_file) # keep only the last part of the ID in 'Animal Identifier', so that it can be found in the filename # RREB1-TM1B-B6N-IC/5.1c -> 5.1c metainfo['Animal Identifier'] = [x.replace('RREB1-TM1B-B6N-IC/', '') for x in metainfo['Animal Identifier']] # rename columns to make them easier to use in statsmodels metainfo = metainfo.rename(columns={'Weight (g)':'Weight', 'Gonadal_AT (g)':'Gonadal', 'Mesenteric_AT (g)':'Mesenteric', 'PAT+RPAT (g)':'PAT', 'Brown_AT (g)':'Brown', 'SAT (g)':'SAT'}) # make sure that in the boxplots Rreb1-tm1b:WT comes before Rreb1-tm1b:Het, and female before male metainfo['Sex'] = metainfo['Sex'].astype(
pd.api.types.CategoricalDtype(categories=['f', 'm'], ordered=True)
pandas.api.types.CategoricalDtype
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import pandas from modin.data_management.utils import length_fn_pandas, width_fn_pandas from modin.engines.base.frame.partition import BaseFramePartition from distributed.client import get_client from distributed import Future from distributed.utils import get_ip import cloudpickle as pkl from dask.distributed import wait def apply_list_of_funcs(funcs, df): for func, kwargs in funcs: if isinstance(func, bytes): func = pkl.loads(func) df = func(df, **kwargs) return df, get_ip() class PandasOnDaskFramePartition(BaseFramePartition): """This abstract class holds the data and metadata for a single partition. The methods required for implementing this abstract class are listed in the section immediately following this. The API exposed by the children of this object is used in `BaseFrameManager`. Note: These objects are treated as immutable by `BaseFrameManager` subclasses. There is no logic for updating inplace. """ def __init__(self, future, length=None, width=None, ip=None, call_queue=None): self.future = future if call_queue is None: call_queue = [] self.call_queue = call_queue self._length_cache = length self._width_cache = width self._ip_cache = ip def get(self): """Flushes the call_queue and returns the data. Note: Since this object is a simple wrapper, just return the data. Returns ------- The object that was `put`. """ self.drain_call_queue() # blocking operation if isinstance(self.future, pandas.DataFrame): return self.future return self.future.result() def apply(self, func, **kwargs): """Apply some callable function to the data in this partition. Note: It is up to the implementation how kwargs are handled. They are an important part of many implementations. As of right now, they are not serialized. Parameters ---------- func : callable The lambda to apply (may already be correctly formatted) Returns: A new `PandasOnDaskFramePartition` containing the object that has had `func` applied to it. """ func = pkl.dumps(func) call_queue = self.call_queue + [[func, kwargs]] future = get_client().submit( apply_list_of_funcs, call_queue, self.future, pure=False ) futures = [get_client().submit(lambda l: l[i], future) for i in range(2)] return PandasOnDaskFramePartition(futures[0], ip=futures[1]) def add_to_apply_calls(self, func, **kwargs): """Add the function to the apply function call stack. Note: This function will be executed when apply is called. It will be executed in the order inserted; apply's func operates the last and return Parameters ---------- func : callable The function to apply. Returns ------- A new `PandasOnDaskFramePartition` with the function added to the call queue. """ return PandasOnDaskFramePartition( self.future, call_queue=self.call_queue + [[pkl.dumps(func), kwargs]] ) def drain_call_queue(self): """Execute all functionality stored in the call queue.""" if len(self.call_queue) == 0: return new_partition = self.apply(lambda x: x) self.future = new_partition.future self._ip_cache = new_partition._ip_cache self.call_queue = [] def wait(self): self.drain_call_queue() wait(self.future) def mask(self, row_indices, col_indices): """Lazily create a mask that extracts the indices provided. Parameters ---------- row_indices: The indices for the rows to extract. col_indices: The indices for the columns to extract. Returns ------- A `PandasOnDaskFramePartition` object. """ new_obj = self.add_to_apply_calls( lambda df:
pandas.DataFrame(df.iloc[row_indices, col_indices])
pandas.DataFrame
from __future__ import print_function import pandas as pd import os import logging import argparse ''' This file reads in data related E. coli levels in Chicago beaches. It is based on the files analysis.R and split_sheets.R, and is written such that the dataframe loaded here will match the R dataframe code exactly. ''' # This is an adaptation of previous read_data.py so that it runs on Python3 # Some variable names changed. Notably, Client.ID is now Beach # Added day of week and month variables # Also adds columns to dataframe: # YesterdayEcoli : prior days reading # DayBeforeYesterdayEcoli : two days prior reading # actual_elevated : where Escherichia_coli >=235 # predicted_elevated : where Drek_Prediction >=235 # # TODO: verbose # TODO: use multi-level index on date/beach ? # TODO: standardize on inplace=True or not inplace # TODO: how much consistency do we want between python columns # and the R columns? # TODO: create better docstrings # TODO: remove print statements and the import # TODO: loyola/leone the same? # TODO: repeats on 2015-06-16 ? # and some of 2012? # Just check for these everywhere, why is it happening? def split_sheets(file_name, year, verbose=False): ''' Reads in all sheets of an excel workbook, concatenating all of the information into a single dataframe. The excel files were unfortunately structured such that each day had its own sheet. ''' xls = pd.ExcelFile(file_name) dfs = [] standardized_col_names = [ 'Date', 'Laboratory_ID', 'Beach', 'Reading1', 'Reading2', 'Escherichia_coli', 'Units', 'Sample_Collection_Time' ] for i, sheet_name in enumerate(xls.sheet_names): if not xls.book.sheet_by_name(sheet_name).nrows: # Older versions of ExcelFile.parse threw an error if the sheet # was empty, explicitly check for this condition. logging.debug('sheet "{0}" from {1} is empty'.format(sheet_name, year)) continue df = xls.parse(sheet_name) if i == 0 and len(df.columns) > 30: # This is the master/summary sheet logging.debug('ignoring sheet "{0}" from {1}'.format(sheet_name, year)) continue if df.index.dtype == 'object': # If the first column does not have a label, then the excel # parsing engine will helpfully use the first column as # the index. This is *usually* helpful, but there are two # days when the first column is missing the typical label # of 'Laboratory ID'. In this case, peel that index off # and set its name. msg = '1st column in sheet "{0}" from {1} is missing title'.format( sheet_name, year) logging.debug(msg) df.reset_index(inplace=True) df.columns = ['Laboratory ID'] + df.columns.tolist()[1:] # Insert name of sheet as first column, the sheet name is the date df.insert(0, u'Date', sheet_name) for c in df.columns.tolist(): if 'Reading' in c: # There are about 10 days that have >2 readings for some reason if int(c[8:]) > 2: logging.info('sheet "{0}" from {1} has >2 readings'.format( sheet_name, year) ) df.drop(c, 1, inplace=True) # Only take the first 8 columns, some sheets erroneously have >8 cols df = df.ix[:,0:8] # Standardize the column names df.columns = standardized_col_names dfs.append(df) df = pd.concat(dfs) df.insert(0, u'Year', str(year)) logging.info('Removing data with missing Client ID') df.dropna(subset=['Beach'], inplace=True) return df def read_holiday_data(file_name, verbose=False): df = pd.read_csv(file_name) df['Date'] = pd.to_datetime(df['Date']) return df def read_water_sensor_data(verbose=False): ''' Downloads and reads water sensor data from the Chicago data portal. Downsamples the readings into the min, mean, and max for each day and for each sensor. Each day only has one row, with many columns (one column each per sensor per reading per type of down-sampling process) ''' url = 'https://data.cityofchicago.org/api/views/qmqz-2xku/rows.csv?accessType=DOWNLOAD' water_sensors = pd.read_csv(url) url = 'https://data.cityofchicago.org/api/views/g3ip-u8rb/rows.csv?accessType=DOWNLOAD' sensor_locations = pd.read_csv(url) df = pd.merge(water_sensors, sensor_locations, left_on='Beach Name', right_on='Sensor Name') df.drop(['Sensor Type', 'Location'], 1, inplace=True) # TODO: map sensor to beach ??? df['Beach Name'] = df['Beach Name'].apply(lambda x: x[0:-6]) df['Measurement Timestamp'] = pd.to_datetime(df['Measurement Timestamp']) df['Date'] = pd.DatetimeIndex(df['Measurement Timestamp']).normalize() df.drop(['Battery Life', 'Measurement Timestamp', 'Measurement Timestamp Label', 'Measurement ID', 'Sensor Name'], axis=1, inplace=True) df_mins = df.groupby(['Beach Name', 'Date'], as_index=False).min() df_means = df.groupby(['Beach Name', 'Date'], as_index=False).mean() df_maxes = df.groupby(['Beach Name', 'Date'], as_index=False).max() df_mins.drop(['Latitude','Longitude'],1,inplace=True) df_means.drop(['Latitude','Longitude'],1,inplace=True) df_maxes.drop(['Latitude','Longitude'],1,inplace=True) cols = df_mins.columns.tolist() def rename_columns(cols, aggregation_type): cols = list(map(lambda x: x.replace(' ', '_'), cols)) for i in range(2,7): cols[i] = cols[i] + '_' + aggregation_type return cols df_mins.columns = rename_columns(cols, 'Min') df_means.columns = rename_columns(cols, 'Mean') df_maxes.columns = rename_columns(cols, 'Max') df = pd.merge(df_mins, df_means, on=['Beach_Name', 'Date']) df = pd.merge(df, df_maxes, on=['Beach_Name', 'Date']) df = df.pivot(index='Date', columns='Beach_Name') df.columns = ['.'.join(col[::-1]).strip() for col in df.columns.values] df.reset_index(inplace=True) df.columns = ['Full_date'] + list( map(lambda x: x.replace(' ', '_'), df.columns.tolist()[1:])) c = df.columns.tolist() c[c.index('Full_date')] = 'Date' df.columns = c return df def read_weather_station_data(verbose=False): ''' Downloads and reads weather sensor data from the Chicago data portal. Downsamples the readings into the min, mean, and max for each day and for each sensor. Each day only has one row, with many columns (one column each per sensor per reading per type of down-sampling process) ''' url = 'https://data.cityofchicago.org/api/views/k7hf-8y75/rows.csv?accessType=DOWNLOAD' weather_sensors = pd.read_csv(url) url = 'https://data.cityofchicago.org/api/views/g3ip-u8rb/rows.csv?accessType=DOWNLOAD' sensor_locations = pd.read_csv(url) weather_sensors.columns = map(lambda x: x.replace(' ', '_'), weather_sensors.columns.tolist()) sensor_locations.columns = map(lambda x: x.replace(' ', '_'), sensor_locations.columns.tolist()) sensor_locations.columns = ['Station_Name'] + sensor_locations.columns.tolist()[1:] df = pd.merge(weather_sensors, sensor_locations, on='Station_Name') df['Beach'] = df['Station_Name'] df['Date'] =
pd.DatetimeIndex(df['Measurement_Timestamp'])
pandas.DatetimeIndex
import pandas as pd import matplotlib.pyplot as plt from PyQt5.QtCore import * from libs.figure.figure_QDialog import fig_Dialog import os import numpy as np class save_DynamicResult_(QThread): def __init__(self, over_tracked, parameter, save_path, parent=None): super(save_DynamicResult_, self).__init__() self.overtracked = over_tracked self.particle = {"binding":[], "debinding":[]} self.parameter = parameter self.save_path = save_path self.binding = [] self.debinding = [] self.Method = parameter[0] self.SubImg_T = parameter[1] def save(self): all = self.overtracked for i in range(len(all)): if self.Method == 0: start_frame = all[i][1][0] over_frame = all[i][-1][0] if all[i][-1][2] == "debinding": over_index = self.search_debinding(all[i]) over_frame = all[i][over_index][0] if self.Method == 0 and all[i][-1][2] == "binding" and all[i][-1][0] % self.SubImg_T == 0: # TODO:这里需要修改!!! pass # 如果减第一帧,该轨迹的最后一帧是500的整数倍,那就认为该粒子还存在 self.binding.append(start_frame) self.debinding.append(over_frame) else: if len(all[i]) == 2: # 如果这一类只有一个,可能为binding也可能为debinding,那就添加进去 if all[i][-1][2] != "debinding": self.particle[all[i][-1][2]].append(all[i][-1][0]) pass # 下面是类别中大于2个的,标准为binding开始,debinding结束,不标准的则是binding开始,binding结束, start_frame = all[i][1][0] over_frame = all[i][-1][0] over_index = -1 if all[i][-1][2] == "debinding": over_index = self.search_debinding(all[i]) over_frame = all[i][over_index][0] self.particle["binding"].append(start_frame) self.particle["debinding"].append(over_frame) # if all[i][-1][2] == "debinding": # over_index = self.search_debinding(all[i]) # over_frame = all[i][over_index][0] # if all[i][-1][2] == "binding" and all[i][over_index][2] == "debinding": # self.particle["binding"].append(start_frame) # self.particle["debinding"].append(over_frame) # elif all[i][-1][2] == "binding" and all[i][over_index][2] == "binding": # self.particle["binding"].append(start_frame) # elif all[i][-1][2] == "debinding" and all[i][over_index][2] == "debinding": # self.particle["debinding"].append(over_frame) if self.Method == 1: self.binding = self.particle["binding"] self.debinding = self.particle["debinding"] print(self.binding) binding = self.sort_(self.binding) debinding = self.sort_(self.debinding) binding_Data = pd.DataFrame(binding, columns=["Frame", "New Binding"]) binding_Data = binding_Data.set_index("Frame", drop=True) debinding_Data = pd.DataFrame(debinding, columns=["Frame", "New Debinding"]) debinding_Data = debinding_Data.set_index("Frame", drop=True) df = pd.concat([binding_Data, debinding_Data], axis=1) print(df) max_index = df.index[-1] index = [i for i in range(1, max_index + 1)] data = np.zeros([max_index, 2]) for i in df.index: data[i - 1, :] = df.loc[i, :] new = pd.DataFrame(data, index=index, columns=["New Binding", "New Debinding"]) new = new.fillna(0) have_binding = [[1, 0]] have_debinding = [[1, 0]] b_, deb_ = 0, 0 for i in range(1, len(new)): b_ += new.iloc[i]["New Binding"] deb_ += new.iloc[i]["New Debinding"] have_binding.append([i + 1, b_]) have_debinding.append([i + 1, deb_]) have_binding_Data =
pd.DataFrame(have_binding, columns=["Frame", "have Binding"])
pandas.DataFrame
__version__ = 0.1 __author__ = '<NAME>' __doc__ = """ Utility function for json. """ import numpy as np import pandas as pd import json class MyJson(object): def __init__(self): pass def parse_json_col(self, df,json_col): """Explode the json column and attach to original dataframe. Parameters ----------- df: pandas.DataFrame input dataframe json_col: string Column name of dataframe which contains json objects. Example: -------- import numpy as np import pandas as pd pd.options.display.max_colwidth=999 from bp.ds_json import MyJson df = pd.DataFrame({'id': [0], 'payload': [\"""{"analytics": {"device": "Desktop", "email_open_rate_pct": 14.0}, "industry": "Construction", "time_in_product_mins": 62.45}\"""] }) mj = MyJson() ans = mj.parse_json_col(df,'payload') """ # give increasing index to combine later df = df.reset_index() df_json = df[json_col].apply(json.loads).apply(pd.json_normalize) df_json = pd.concat(df_json.to_numpy()) df_json.index = range(len(df_json)) df_no_json = df.drop(json_col,axis=1) cols = df_no_json.columns.tolist() + df_json.columns.tolist() df_combined =
pd.concat([df_no_json, df_json], axis=1, ignore_index=False)
pandas.concat
import os import nltk import pandas as pd from nltk.stem.lancaster import LancasterStemmer from sklearn.metrics.pairwise import cosine_similarity from sklearn.model_selection import train_test_split as tts from sklearn.preprocessing import LabelEncoder as LE from sklearn.svm import SVC from vectorizers.factory import get_vectoriser class FaqEngine: def __init__(self, faqslist, type='tfidf'): self.faqslist = faqslist self.stemmer = LancasterStemmer() self.le = LE() self.classifier = None self.build_model(type) def cleanup(self, sentence): word_tok = nltk.word_tokenize(sentence) stemmed_words = [self.stemmer.stem(w) for w in word_tok] return ' '.join(stemmed_words) def build_model(self, type): self.vectorizer = get_vectoriser(type) # TfidfVectorizer(min_df=1, stop_words='english') dataframeslist = [
pd.read_csv(csvfile)
pandas.read_csv
#!/usr/bin python3 # Imports # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Python: from os import getenv from functools import lru_cache from hashlib import blake2s from io import BytesIO from datetime import datetime from json import loads import logging # 3rd party: from sqlalchemy.dialects.postgresql import insert, dialect as postgres from sqlalchemy.exc import ProgrammingError from pandas import read_feather, to_datetime, DataFrame, read_sql from numpy import NaN, ndarray, array_split from azure.core.exceptions import ResourceNotFoundError # Internal: try: from __app__.storage import StorageClient from __app__.db_tables.covid19 import ( Session, MainData, ReleaseReference, AreaReference, MetricReference, DB_INSERT_MAX_ROWS ) except ImportError: from storage import StorageClient from db_tables.covid19 import ( Session, MainData, ReleaseReference, AreaReference, MetricReference, DB_INSERT_MAX_ROWS ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __all__ = [ 'main', 'generate_row_hash', 'to_sql', 'deploy_preprocessed', 'get_partition_id', 'get_release', 'create_partition', 'deploy_preprocessed_long', 'trim_sides' ] RECORD_KEY = getenv("RECORD_KEY").encode() def trim_sides(data): for metric in data.metric.dropna().unique(): dm = ( data .loc[data.metric == metric, :] .sort_values(["date"], ascending=True) ) if not dm.payload.dropna().size: continue try: cumsum = dm.payload.abs().cumsum() first_nonzero = cumsum.loc[cumsum > 0].index[0] except (TypeError, IndexError): first_nonzero = dm.payload.first_valid_index() try: dm.loc[:first_nonzero + 1] = NaN except KeyError: continue if not dm.payload.dropna().size: continue last_valid = dm.payload.last_valid_index() try: dm.loc[last_valid - 1:, :] = NaN data.loc[dm.index] = dm except KeyError: continue return data.dropna(how="all", axis=0) def get_area_data(): session = Session() try: results = read_sql( f"""\ SELECT c.id AS "area_id", c.area_type, c.area_code FROM covid19.area_reference AS c """, con=session.connection(), index_col=["area_type", "area_code"] ) except Exception as err: session.rollback() raise err finally: session.close() return results nested = { "newAdmissionsByAge", "cumAdmissionsByAge", "femaleCases", "maleCases", "femaleNegatives", "maleNegatives", "newCasesBySpecimenDateAgeDemographics", "newDeaths28DaysByDeathDateAgeDemographics" } id_vars = [ 'area_type', 'area_code', 'partition_id', 'date', 'release_id', 'hash' ] metric_names = { 'areaType': 'area_type', 'areaCode': 'area_code', 'areaName': 'area_name', 'releaseTimestamp': 'release_timestamp', } def generate_row_hash(d: DataFrame, hash_only=False, date=None) -> DataFrame: """ Parameters ---------- d hash_only date Returns ------- """ hash_cols = [ "date", "area_type", "area_code", "metric_id", "release_id" ] try: d.date = d.date.map(lambda x: x.strftime("%Y-%m-%d")) except AttributeError: pass d.date = d.date.map(lambda x: x[:10]) # Create hash hash_key = ( d .loc[:, hash_cols] .astype(str) .sum(axis=1) .apply(str.encode) .apply(lambda x: blake2s(x, key=RECORD_KEY, digest_size=12).hexdigest()) ) if hash_only: return hash_key column_names = d.columns data = d.assign( hash=hash_key, seriesDate=date, id=hash_key ).loc[:, ['id', 'hash', 'seriesDate', *list(column_names)]] return data def get_metrics(): session = Session() try: metrics = read_sql( f"""\ SELECT ref.id AS "metric_id", ref.metric FROM covid19.metric_reference AS ref; """, con=session.connection(), index_col=["metric"] ) except Exception as err: session.rollback() raise err finally: session.close() return metrics @lru_cache(256) def get_release(timestamp): insert_stmt = ( insert(ReleaseReference.__table__) .values(timestamp=timestamp) ) stmt = ( insert_stmt .on_conflict_do_update( index_elements=[ReleaseReference.timestamp], set_={ReleaseReference.timestamp.name: insert_stmt.excluded.timestamp} ) .returning(ReleaseReference.id) ) # session = Session(autocommit=True) session = Session() try: response = session.execute(stmt) result = response.fetchone()[0] except Exception as err: session.rollback() raise err finally: session.close() return result def get_partition_id(area_type, release): if area_type in ["nhsTrust", "utla", "ltla", "msoa"]: partition_id = f"{release:%Y_%-m_%-d}|{area_type.lower()}" else: partition_id = f"{release:%Y_%-m_%-d}|other" return partition_id def create_partition(area_type: str, release: datetime): """ Creates new database partition - if one doesn't already exist - for the `time_series` table based on `area_type` and `release` datestamp. Parameters ---------- area_type : str Area type, as defined in the `area_reference` table. release: datetime Release timestamp of the data. Returns ------- NoReturn """ partition_id = get_partition_id(area_type, release) if area_type in ["nhsTrust", "utla", "ltla", "msoa"]: area_partition = f"{release:%Y_%-m_%-d}_{area_type.lower()}" else: area_partition = f"{release:%Y_%-m_%-d}_other" session = Session() try: session.execute( f""" CREATE TABLE IF NOT EXISTS covid19.time_series_p{area_partition} PARTITION OF covid19.time_series ( partition_id ) FOR VALUES IN ('{partition_id}'); """ ) session.flush() except ProgrammingError as e: session.rollback() except Exception as err: session.rollback() raise err finally: session.close() def sql_fn(row): return MainData(**row.to_dict()) def to_sql(df: DataFrame): if df.size == 0: return None df_size = df.shape[0] n_chunks = df_size // DB_INSERT_MAX_ROWS + 1 df.drop_duplicates( ["release_id", "area_id", "metric_id", "date"], keep="first", inplace=True ) session = Session() connection = session.connection() try: for chunk in df.pipe(array_split, n_chunks): records = chunk.to_dict(orient="records") insert_stmt = insert(MainData.__table__).values(records) stmt = insert_stmt.on_conflict_do_update( index_elements=[MainData.hash, MainData.partition_id], set_={MainData.payload.name: insert_stmt.excluded.payload} ) connection.execute(stmt) session.flush() except Exception as err: session.rollback() raise err finally: session.close() return None def validate_metrics(dt): metrics = get_metrics() invalid_metrics = set(dt.metric).difference(metrics.index) if len(invalid_metrics): for metric in invalid_metrics: add_metric(metric) return dt.join(get_metrics(), on=["metric"]) return dt.join(metrics, on=["metric"]) def deploy_nested(df, key): if key not in df.columns: return df dt = df.loc[:, ["date", "area_type", "area_code", "partition_id", "release_id", key]] if dt.size: try: dt.drop(columns=set(dt.columns).difference([*id_vars, key]), inplace=True) dt.rename(columns={key: "payload"}, inplace=True) dt.dropna(subset=["payload"], inplace=True) dt.payload = dt.payload.map(lambda x: list(x) if not isinstance(x, dict) else list()) to_sql( dt .assign(metric=key) .join(get_area_data(), on=["area_type", "area_code"]) .pipe(validate_metrics) .pipe(lambda d: d.assign(hash=generate_row_hash(d, hash_only=True))) .loc[:, ["metric_id", "area_id", "partition_id", "release_id", "hash", "date", "payload"]] ) except Exception as e: raise e return df def deploy_preprocessed_long(df): """ Generates hash key and deploys the data to the database. Data must be preprocessed and in long (unstacked) format. Parameters ---------- df: DataFrame Dataframe containing the following columns: - metric_id - area_id - partition_id - release_id - date - payload Returns ------- DataFrame Processed dataframe """ to_sql( df .join(get_area_data(), on=["area_type", "area_code"]) .pipe(validate_metrics) .pipe(lambda d: d.assign(hash=generate_row_hash(d, hash_only=True))) .loc[:, ["metric_id", "area_id", "partition_id", "release_id", "hash", "date", "payload"]] ) return df def deploy_preprocessed(df, key): df.loc[:, key] = df.loc[:, key].map(list) to_sql( df .rename(columns={key: "payload"}) .assign(metric=key) .join(get_area_data(), on=["area_type", "area_code"]) .pipe(validate_metrics) .pipe(lambda d: d.assign(hash=generate_row_hash(d, hash_only=True))) .loc[:, ["metric_id", "area_id", "partition_id", "release_id", "hash", "date", "payload"]] ) return df def convert_timestamp(dt: DataFrame, timestamp): if "release_timestamp" in dt.columns: ts = dt.loc[:, "release_timestamp"].unique()[0] if ts == timestamp and not isinstance(ts, str): return dt dt.drop(columns=["release_timestamp"], inplace=True) dt = dt.assign(release_timestamp=timestamp.isoformat() + "Z") dt.loc[:, "release_timestamp"] =
to_datetime(dt.release_timestamp)
pandas.to_datetime
######################################### # Time Series Figures ######################################### #### Import Libraries and Functions from pyhydroqc import anomaly_utilities, rules_detect, calibration from pyhydroqc.parameters import site_params import matplotlib.pyplot as plt import datetime import pandas as pd import numpy as np import os colors = ['#0C7BDC', '#F3870D', '#24026A', '#AF3C31'] # FIGURES 3 (gap values and drift correction), 4 (threshold), C1 (detection example), C2 (long labeled event), # C3 (model detection for calibration events) # These figures all use data from Main Street. #### Retrieve data ######################################### site = 'MainStreet' sensors = ['temp', 'cond', 'ph', 'do'] years = [2014, 2015, 2016, 2017, 2018, 2019] sensor_array = anomaly_utilities.get_data(sensors=sensors, site=site, years=years, path="./LRO_data/") #### Rules Based Anomaly Detection ######################################### range_count = dict() persist_count = dict() rules_metrics = dict() for snsr in sensor_array: sensor_array[snsr], range_count[snsr] = rules_detect.range_check(df=sensor_array[snsr], maximum=site_params[site][snsr]['max_range'], minimum=site_params[site][snsr]['min_range']) sensor_array[snsr], persist_count[snsr] = rules_detect.persistence(df=sensor_array[snsr], length=site_params[site][snsr]['persist'], output_grp=True) sensor_array[snsr] = rules_detect.interpolate(df=sensor_array[snsr]) print('Rules based detection complete.\n') ### Find Gap Values ######################################### # Subset of sensors that are calibrated calib_sensors = sensors[1:4] # Initialize data structures calib_dates = dict() gaps = dict() shifts = dict() tech_shifts = dict() for cal_snsr in calib_sensors: # Import calibration dates calib_dates[cal_snsr] = pd.read_csv('./LRO_data/' + site + '_' + cal_snsr + '_calib_dates.csv', header=1, parse_dates=True, infer_datetime_format=True) calib_dates[cal_snsr]['start'] = pd.to_datetime(calib_dates[cal_snsr]['start']) calib_dates[cal_snsr]['end'] = pd.to_datetime(calib_dates[cal_snsr]['end']) # Ensure date range of calibrations correspond to imported data calib_dates[cal_snsr] = calib_dates[cal_snsr].loc[(calib_dates[cal_snsr]['start'] > min(sensor_array[cal_snsr].index)) & (calib_dates[cal_snsr]['end'] < max(sensor_array[cal_snsr].index))] # Initialize dataframe to store determined gap values and associated dates gaps[cal_snsr] = pd.DataFrame(columns=['end', 'gap'], index=range(min(calib_dates[cal_snsr].index), max(calib_dates[cal_snsr].index)+1)) if len(calib_dates[cal_snsr]) > 0: # Initialize data structures shifts[cal_snsr] = [] # Loop through each calibration event date. for i in range(min(calib_dates[cal_snsr].index), max(calib_dates[cal_snsr].index)+1): # Apply find_gap routine, add to dataframe, add output of shifts to list. gap, end = calibration.find_gap(observed=sensor_array[cal_snsr]['observed'], calib_date=calib_dates[cal_snsr]['end'][i], hours=2, show_shift=False) gaps[cal_snsr].loc[i]['end'] = end gaps[cal_snsr].loc[i]['gap'] = gap print('Gap value determination complete.\n') # Review gaps and make adjustments as needed before performing drift correction gaps['cond'].loc[3, 'gap'] = 4 gaps['cond'].loc[4, 'gap'] = 10 gaps['cond'].loc[21, 'gap'] = 0 gaps['cond'].loc[39, 'gap'] = -5 gaps['cond'].loc[41, 'gap'] = 4 gaps['ph'].loc[33, 'gap'] = -0.04 gaps['ph'].loc[43, 'gap'] = 0.12 gaps['ph'].loc[43, 'end'] = '2019-08-15 15:00' #### Perform Linear Drift Correction ######################################### calib_sensors = sensors[1:4] for cal_snsr in calib_sensors: # Set start dates for drift correction at the previously identified calibration (one month back for the first calibration.) gaps[cal_snsr]['start'] = gaps[cal_snsr]['end'].shift(1) gaps[cal_snsr]['start'][0] = gaps[cal_snsr]['end'][0] - pd.Timedelta(days=30) if len(gaps[cal_snsr]) > 0: for i in range(min(gaps[cal_snsr].index), max(gaps[cal_snsr].index) + 1): result, sensor_array[cal_snsr]['observed'] = calibration.lin_drift_cor(observed=sensor_array[cal_snsr]['observed'], start=gaps[cal_snsr]['start'][i], end=gaps[cal_snsr]['end'][i], gap=gaps[cal_snsr]['gap'][i], replace=True) print('Linear drift correction complete.\n') ## FIGURE 3 ## ######################################### # Compare calibration and drift correction to Observed data and to technician corrected. cal_snsr = 'ph' df = sensor_array[cal_snsr] plt.figure(figsize=(10, 4)) plt.plot(df['raw'], colors[0], label='Observed data') plt.plot(df['cor'], colors[1], label='Technician corrected') plt.plot(df['observed'], colors[3], label='Algorithm corrected') plt.xlim(datetime.datetime(2014, 7, 24), datetime.datetime(2014, 8, 1)) # Specify date range of plot plt.ylim(7.6, 8.4) plt.legend() plt.ylabel('pH') plt.xlabel('Date') plt.show() plt.savefig('Figures/Figure3.png', bbox_inches='tight') ## FIGURE 4 ## ######################################### # Examine thresholds and model residuals # set working directory for importing model results. os.chdir('Examples/Plotting') ARIMA_detections = pd.read_csv('ARIMA_detections_MainStreet_cond.csv', header=0, index_col=0, parse_dates=True, infer_datetime_format=True) ARIMA_threshold = pd.read_csv('ARIMA_threshold_MainStreet_cond.csv', header=0, index_col=0, parse_dates=True, infer_datetime_format=True) plt.figure(figsize=(10, 4)) plt.plot(ARIMA_detections['residual'], 'b', label='Model residuals') plt.plot(ARIMA_threshold['low'], 'c', label='Upper threshold') plt.plot(ARIMA_threshold['high'], 'm', mfc='none', label='Lower threshold') plt.xlim(datetime.datetime(2015, 7, 8), datetime.datetime(2015, 8, 14)) # Specify date range of plot plt.ylim(-200, 150) plt.xticks(
pd.date_range(start='7/9/2015', end='8/14/2015', freq='5D')
pandas.date_range
######################################## #This script reads data and convert it to a code redable format to be used in next steps ######################################### from sklearn.datasets import fetch_20newsgroups from pandas import DataFrame import unicodedata newsgroups_train = fetch_20newsgroups(subset='train') newsgroups_test = fetch_20newsgroups(subset='test') rows_train = [] rows_test = [] rows_all = [] # Path for saving all tsv files. path_train = 'data/train_v2.tsv' path_test = 'data/test_v2.tsv' path_all = 'data/all_v2.tsv' data_train =
DataFrame({'news': [], 'class': []})
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 """ This script has to be executed after hi_freq_data_to_csv.py and get_interval.py have succesfully run. This script should be called with 1 (or 2) arguments. The 1st mandatory argument is the ABSOLUTE path of the top directory for the flight campaign. /media/spectors/HDD320/lidar/20201218_fresh <<----- This is it! ----------------------------/20201218_fresh/p_00_joined_pcap_files ----------------------------/20201218_fresh/p_01_apx_csv_shapefile <<----- This must be present and will be used as input. ----------------------------/20201218_fresh/p_02_plt <<----- Not used. Just for reference. ----------------------------/20201218_fresh/p_03_pcap <<----- This must be present and will be used as input. ----------------------------/20201218_fresh/2_planned_mision ----------------------------/20201218_fresh/ ..... ----------------------------/20201218_fresh/logging <<----- This is where the logs will be stored. ----------------------------/20201218_fresh/transl_table.txt <<----- This must be present and will be used as input. The 2nd optional argument can be a boresight-calibration string. It must contain the boresight angles and be of the following form: # RabcdefghPijklmnopYqrstuvwx # Where abcdefgh is milionths of degree to ROLL. a is sign (p/n) # ..... ijklmnop is milionths of degree to PITCH. i is sign (p/n) # ..... qrstuvwx is milionths of degree to YAW. q is sign (p/n) # In this order! ROLL -> PITCH -> YAW ! # Theoretically can encode up to 9.9° around each axis This script combines .csv files with each of the .pcap flight lines and writes point clouds in .txt files. It then calls a lew lastools to convert them to las, denoise and set the correct (georeference) metadata. The script is run non-interactively. The only exception is choosing the p_01_apx_csv_shapefile and p__03_pcap folders at the beginning if there are muktiple of them. TO DO: add support for different EPSG codes. """ from scapy.all import rdpcap import time, os, sys, datetime, platform, logging, shutil, re, io import numpy as np import pandas as pd import matplotlib.pyplot as plt from osgeo import gdal, ogr, osr from scipy.interpolate import interp1d from vlp16_tables import * from collections import OrderedDict from multiprocessing import Pool, cpu_count from multiprocessing.managers import SharedMemoryManager from multiprocessing.shared_memory import SharedMemory debug = False log_dir = 'p_logging' txt_dir_in = 'p_01_apx_csv_shapefile' txt_in_base_len = len(txt_dir_in) pcap_dir_in = 'p_22_likely_gcp_pcap' pcap_in_base_len = len(pcap_dir_in) out_dir_ascii = 'p_23_boresight_iterations' out_ascii_base_len = len(out_dir_ascii) transl_table_fn = 'p_transl_table.txt' fn_keyword = 'hi_freq_apx' nl = '\n' pcap_contents = None raw_contents = None def shorten_string(text_string): """ Function to remove all duplicates from string and keep the order of characters same https://www.geeksforgeeks.org/remove-duplicates-given-string-python/ """ return "".join(OrderedDict.fromkeys(text_string)) def remove_min_sec(ts): return (int(ts) // 3600) * 3600 # ### Function to calculate the gaps between given azimuths. Needed to interpolate azimuths that are not given. def get_azim_gap(azimuths, dual = True, preserve_shape = False): """ Only works for dual returns now. preserve_shape is relevant for dual, where the azimuths repeat. if False: return only unique gaps. if True: return same shape as azimuths """ if dual: azimuths_gap_flat = np.zeros_like(azimuths[:,0::2]).flatten() azimuths_gap_flat[:-1] = ((azimuths[:,0::2].flatten()[1:] - azimuths[:,0::2].flatten()[:-1]) % 36000) azimuths_gap_flat[-1] = azimuths_gap_flat[-2] azimuths_gap = azimuths_gap_flat.reshape(azimuths[:,0::2].shape) if preserve_shape: #either of the following lines should work the same. only use one. #azimuths_gap = np.hstack((azimuths_gap.reshape((azimuths_gap.size,1)), azimuths_gap.reshape((azimuths_gap.size,1)))).flatten().reshape(azimuths.shape) azimuths_gap = np.tile(azimuths_gap,2) return azimuths_gap else: raise NotImplementedError def get_micros_pulses(micros, dual = True, preserve_shape = False): """ preserve_shape is relevant for dual, where the azimuths repeat. if False: return only unique gaps. if True: return same shape as azimuths """ if dual: if preserve_shape: micros_pulses = np.expand_dims(micros, axis=1) + TIMING_OFFSETS_DUAL.T.flatten() * 1e6 else: micros_pulses = np.expand_dims(micros, axis=1) + TIMING_OFFSETS_DUAL.T[0::2,:].flatten() * 1e6 else: micros_pulses = np.expand_dims(micros, axis=1) + TIMING_OFFSETS_SINGLE.T.flatten() * 1e6 return micros_pulses def get_precision_azimuth(az_simple, azimuths_gap, dual = True, minimal_shape = True): if dual: timing_offsets_within_block = TIMING_OFFSETS_DUAL[:,0] # TIMING_OFFSETS_DUAL[:,0] is the same as TIMING_OFFSETS_SINGLE[:,0] ! az_pulses = np.tile(az_simple,(LASERS_PER_DATA_BLOCK)).reshape(az_simple.shape[0], LASERS_PER_DATA_BLOCK, az_simple.shape[1]) az_pulses = az_pulses.transpose((0,2,1)) precision_azimuth = az_pulses[:,:,:] + timing_offsets_within_block / (2 * T_CYCLE) * np.expand_dims(azimuths_gap, axis=2) precision_azimuth = precision_azimuth % 36000 if not minimal_shape: precision_azimuth = np.tile(precision_azimuth.transpose((0,2,1)), (1,2,1)).transpose((0,2,1)) precision_azimuth = precision_azimuth.reshape((precision_azimuth.shape[0], precision_azimuth.shape[1] * precision_azimuth.shape[2])) return precision_azimuth else: raise NotImplementedError def boresight_str_to_angles(boresight_str): scale_factor = 1e-6 boresight_roll = scale_factor * int(boresight_str[2:9]) * (1 if boresight_str[1] == "p" else -1) boresight_pitch = scale_factor * int(boresight_str[11:18]) * (1 if boresight_str[10] == "p" else -1) boresight_yaw = scale_factor * int(boresight_str[20:27]) * (1 if boresight_str[19] == "p" else -1) return boresight_roll, boresight_pitch, boresight_yaw def read_all_pcap_files_once(pcap_dir_in): pcap_data = dict() raw_data = dict() fnames = sorted([fn for fn in os.listdir(pcap_dir_in) if "line_" in fn and len(fn) == 24 and "pcap" in fn]) for pcap_file_in in fnames: packets = rdpcap(os.path.join(pcap_dir_in, pcap_file_in)) pcap_data[pcap_file_in] = packets with open(os.path.join(pcap_dir_in, pcap_file_in), "rb") as fh: raw_pcap = fh.read() #24 bytes = global header, 16+42 bytes = packet header, 1200 bytes = vlp returns, 2 bytes = vlp factory bytes #raw_data[pcap_file_in] = [np.frombuffer(raw_pcap, dtype = np.uint8)[24:].reshape((len(raw_pcap)//1264,1264))[:,16+42:]] raw_data[pcap_file_in] = np.frombuffer(raw_pcap, dtype = np.uint8)[24:].reshape((len(raw_pcap)//1264,1264))[:,16+42:].flatten() raw_data = pd.DataFrame.from_dict(raw_data) raw_data = raw_data.to_records(index=False) timestamps = {k: [float(val[0].time)] for k, val in pcap_data.items()} timestamps =
pd.DataFrame.from_dict(timestamps, dtype=np.float64)
pandas.DataFrame.from_dict
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253:
pd.Timestamp("2013-01-10 00:00:00")
pandas.Timestamp
import pandas as pd from collections import defaultdict import math from DoD.utils import FilterType import config as C import os import psutil from tqdm import tqdm import time import pprint pp = pprint.PrettyPrinter(indent=4) # Cache reading and transformation of DFs cache = dict() memory_limit_join_processing = C.memory_limit_join_processing * psutil.virtual_memory().total data_separator = C.separator tmp_spill_file = "./tmp_spill_file.tmp" # tmp_df_chunk = "./chunk_df" def configure_csv_separator(separator): global data_separator data_separator = separator def estimate_output_row_size(a: pd.DataFrame, b: pd.DataFrame): # 1. check each dataframe's size in memory and number of rows # a_bytes = sum(a.memory_usage(deep=True)) # b_bytes = sum(b.memory_usage(deep=True)) a_bytes = sum(a.memory_usage(deep=False)) b_bytes = sum(b.memory_usage(deep=False)) a_len_rows = len(a) b_len_rows = len(b) # 2. estimate size per row from previous a_row_size = float(a_bytes/a_len_rows) b_row_size = float(b_bytes/b_len_rows) # 3. estimate row size of output join (no selections) o_row_size = a_row_size + b_row_size return o_row_size def does_join_fit_in_memory(chunk, ratio, o_row_size): estimated_output_num_rows = (float)((chunk / ratio)) estimated_output_size = estimated_output_num_rows * o_row_size if estimated_output_size >= memory_limit_join_processing: # eos_gb = estimated_output_size / 1024 / 1024 / 1024 # print("Estimated Output size in GB: " + str(eos_gb)) return False, estimated_output_size/1024/1024/1024 return True, estimated_output_size/1024/1024/1024 def join_ab_on_key_optimizer(a: pd.DataFrame, b: pd.DataFrame, a_key: str, b_key: str, suffix_str=None, chunksize=C.join_chunksize, normalize=True): # clean up temporal stuff -- i.e., in case there was a crash try: # os.remove(tmp_df_chunk) os.remove(tmp_spill_file) except FileNotFoundError: pass # if normalize: a[a_key] = a[a_key].apply(lambda x: str(x).lower()) try: b[b_key] = b[b_key].apply(lambda x: str(x).lower()) except KeyError: print("COLS: " + str(b.columns)) print("KEY: " + str(b_key)) # drop NaN/Null values a.dropna(subset=[a_key], inplace=True) b.dropna(subset=[b_key], inplace=True) a_drop_indices = [i for i, el in enumerate(a[a_key]) if el == 'nan' or el == 'null' or el is pd.NaT] b_drop_indices = [i for i, el in enumerate(b[b_key]) if el == 'nan' or el == 'null' or el is pd.NaT] a.drop(a_drop_indices, inplace=True) b.drop(b_drop_indices, inplace=True) a.reset_index(drop=True) b.reset_index(drop=True) if len(a) == 0 or len(b) == 0: return False # Estimate output join row size o_row_size = estimate_output_row_size(a, b) # join by chunks def join_chunk(chunk_df, header=False): # print("First chunk? : " + str(header)) # print("a: " + str(len(a))) # print("b: " + str(len(chunk_df))) # worst_case_estimated_join_size = chunksize * len(a) * o_row_size # if worst_case_estimated_join_size >= memory_limit_join_processing: # print("Can't join sample. Size: " + str(worst_case_estimated_join_size)) # return False # can't even join a sample # print(a[a_key].head(10)) # print(chunk_df[b_key].head(10)) target_chunk = pd.merge(a, chunk_df, left_on=a_key, right_on=b_key, sort=False, suffixes=('', suffix_str)) if header: # header is only activated the first time. We only want to do this check the first time # sjt = time.time() fits, estimated_join_size = does_join_fit_in_memory(len(target_chunk), (float)(chunksize/len(b)), o_row_size) # ejt = time.time() # join_time = (float)((ejt - sjt) * (float)(len(b)/chunksize)) # print("Est. join time: " + str(join_time)) print("Estimated join size: " + str(estimated_join_size)) # if estimated_join_size < 0.01: # print("TC: " + str(len(target_chunk))) # print("Ratio: " + str((float)(chunksize/len(b)))) # print("row size: " + str(o_row_size)) # print("FITS? : " + str(fits)) if fits: return True else: return False target_chunk.to_csv(tmp_spill_file, mode="a", header=header, index=False) return False def chunk_reader(df): len_df = len(df) init_index = 0 num_chunks = math.ceil(len_df / chunksize) for i in range(num_chunks): chunk_df = df[init_index:init_index + chunksize] init_index += chunksize yield chunk_df # swap row order of b to approximate uniform sampling b = b.sample(frac=1).reset_index(drop=True) first_chunk = True all_chunks = [chunk for chunk in chunk_reader(b)] # for chunk in tqdm(all_chunks): for chunk in all_chunks: scp = time.time() if first_chunk: fits_in_memory = join_chunk(chunk, header=True) first_chunk = False if fits_in_memory: # join in memory and exit return join_ab_on_key(a, b, a_key, b_key, suffix_str=suffix_str, normalize=False) else: # just ignore no-fit in memory chunks return False else: join_chunk(chunk) ecp = time.time() chunk_time = ecp - scp estimated_total_time = chunk_time * len(all_chunks) print("ETT: " + str(estimated_total_time)) if estimated_total_time > 60 * 3: # no more than 3 minutes return False # cancel this join without breaking the whole pipeline print("Reading written down relation: ") # [join_chunk(chunk) for chunk in chunk_reader(b)] joined = pd.read_csv(tmp_spill_file, encoding='latin1', sep=data_separator) # clean up temporal stuff try: # os.remove(tmp_df_chunk) os.remove(tmp_spill_file) except FileNotFoundError: pass return joined def join_ab_on_key_spill_disk(a: pd.DataFrame, b: pd.DataFrame, a_key: str, b_key: str, suffix_str=None, chunksize=C.join_chunksize): # clean up temporal stuff -- i.e., in case there was a crash try: # os.remove(tmp_df_chunk) os.remove(tmp_spill_file) except FileNotFoundError: pass a[a_key] = a[a_key].apply(lambda x: str(x).lower()) try: b[b_key] = b[b_key].apply(lambda x: str(x).lower()) except KeyError: print("COLS: " + str(b.columns)) print("KEY: " + str(b_key)) # Calculate target columns # a_columns = set(a.columns) # b_columns = pd.Index([column if column not in a_columns else column + suffix_str for column in b.columns]) # # # Write to disk the skeleton of the target # df_target = pd.DataFrame(columns=(a.columns.append(b_columns))) # df_target.to_csv(tmp_spill_file, index_label=False) # join by chunks def join_chunk(chunk_df, header=False): # chunk_df[b_key] = chunk_df[b_key].apply(lambda x: str(x).lower()) # transform to string for join target_chunk = pd.merge(a, chunk_df, left_on=a_key, right_on=b_key, sort=False, suffixes=('', suffix_str)) target_chunk.to_csv(tmp_spill_file, mode="a", header=header, index=False) def chunk_reader(df): len_df = len(df) init_index = 0 num_chunks = math.ceil(len_df / chunksize) for i in range(num_chunks): chunk_df = df[init_index:init_index + chunksize] init_index += chunksize yield chunk_df # b.to_csv(tmp_df_chunk, index_label=False) # chunk_reader = pd.read_csv(tmp_df_chunk, encoding='latin1', sep=data_separator, chunksize=chunksize) first_chunk = True for chunk in chunk_reader(b): if first_chunk: join_chunk(chunk, header=True) first_chunk = False else: join_chunk(chunk) # [join_chunk(chunk) for chunk in chunk_reader(b)] joined = pd.read_csv(tmp_spill_file, encoding='latin1', sep=data_separator) # clean up temporal stuff try: # os.remove(tmp_df_chunk) os.remove(tmp_spill_file) except FileNotFoundError: pass return joined def join_ab_on_key(a: pd.DataFrame, b: pd.DataFrame, a_key: str, b_key: str, suffix_str=None, normalize=True): if normalize: a[a_key] = a[a_key].apply(lambda x: str(x).lower()) b[b_key] = b[b_key].apply(lambda x: str(x).lower()) joined = pd.merge(a, b, how='inner', left_on=a_key, right_on=b_key, sort=False, suffixes=('', suffix_str)) return joined # def update_relation_cache(relation_path, df): # if relation_path in cache: # cache[relation_path] = df def read_relation(relation_path): if relation_path in cache: df = cache[relation_path] else: df = pd.read_csv(relation_path, encoding='latin1', sep=data_separator) cache[relation_path] = df return df def read_relation_on_copy(relation_path): """ This is assuming than copying a DF is cheaper than reading it back from disk :param relation_path: :return: """ if relation_path in cache: df = cache[relation_path] else: df = pd.read_csv(relation_path, encoding='latin1', sep=data_separator) cache[relation_path] = df return df.copy() def empty_relation_cache(): global cache cache = dict() def get_dataframe(path): # TODO: only csv is supported df = pd.read_csv(path, encoding='latin1', sep=data_separator) return df def _join_ab_on_key(a: pd.DataFrame, b: pd.DataFrame, a_key: str, b_key: str, suffix_str=None): # First make sure to remove empty/nan values from join columns # TODO: Generate data event if nan values are found a_valid_index = (a[a_key].dropna()).index b_valid_index = (b[b_key].dropna()).index a = a.iloc[a_valid_index] b = b.iloc[b_valid_index] # Normalize join columns # a_original = a[a_key].copy() # b_original = b[b_key].copy() a[a_key] = a[a_key].apply(lambda x: str(x).lower()) b[b_key] = b[b_key].apply(lambda x: str(x).lower()) joined = pd.merge(a, b, how='inner', left_on=a_key, right_on=b_key, sort=False, suffixes=('', suffix_str)) # # Recover format of original columns # FIXME: would be great to do this, but it's broken # joined[a_key] = a_original # joined[b_key] = b_original return joined def apply_filter(relation_path, attribute, cell_value): # if relation_path in cache: # df = cache[relation_path] # else: # df = pd.read_csv(relation_path, encoding='latin1', sep=data_separator) # # store in cache # cache[relation_path] = df df = read_relation_on_copy(relation_path) # FIXME FIXE FIXME # df = get_dataframe(relation_path) df[attribute] = df[attribute].apply(lambda x: str(x).lower()) # update_relation_cache(relation_path, df) df = df[df[attribute] == cell_value] return df def find_key_for(relation_path, key, attribute, value): """ select key from relation where attribute = value; """ # normalize this value value = str(value).lower() # Check if DF in cache if relation_path in cache: df = cache[relation_path] else: df =
pd.read_csv(relation_path, encoding='latin1', sep=data_separator)
pandas.read_csv
import numpy as np import pandas as pd from scipy import stats import statsmodels.api as sm import seaborn as sns import matplotlib.cm as cm import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter from functools import wraps from . import utils from . import performance as perf from .plot_utils import ( print_table, customize, ICTS, ICHIST, ICQQ, QRETURNBAR, QRETURNVIOLIN, QRETURNTS, ICGROUP, AUTOCORR, TBTURNOVER, ICHEATMAP, CUMRET, TDCUMRET, CUMRETQ, AVGCUMRET, EVENTSDIST, MISSIINGEVENTSDIST ) DECIMAL_TO_BPS = 10000 def plotting_context(context='notebook', font_scale=1.5, rc=None): """ Create alphalens default plotting style context. Under the hood, calls and returns seaborn.plotting_context() with some custom settings. Usually you would use in a with-context. Parameters ---------- context : str, optional Name of seaborn context. font_scale : float, optional Scale font by factor font_scale. rc : dict, optional Config flags. By default, {'lines.linewidth': 1.5} is being used and will be added to any rc passed in, unless explicitly overriden. Returns ------- seaborn plotting context Example ------- with alphalens.plotting.plotting_context(font_scale=2): alphalens.create_full_tear_sheet(..., set_context=False) See also -------- For more information, see seaborn.plotting_context(). """ if rc is None: rc = {} rc_default = {'lines.linewidth': 1.5} # Add defaults if they do not exist for name, val in rc_default.items(): rc.setdefault(name, val) return sns.plotting_context(context=context, font_scale=font_scale, rc=rc) def axes_style(style='darkgrid', rc=None): """Create alphalens default axes style context. Under the hood, calls and returns seaborn.axes_style() with some custom settings. Usually you would use in a with-context. Parameters ---------- style : str, optional Name of seaborn style. rc : dict, optional Config flags. Returns ------- seaborn plotting context Example ------- with alphalens.plotting.axes_style(style='whitegrid'): alphalens.create_full_tear_sheet(..., set_context=False) See also -------- For more information, see seaborn.plotting_context(). """ if rc is None: rc = {} rc_default = {} # Add defaults if they do not exist for name, val in rc_default.items(): rc.setdefault(name, val) return sns.axes_style(style=style, rc=rc) def plot_returns_table(alpha_beta, mean_ret_quantile, mean_ret_spread_quantile): returns_table = pd.DataFrame() returns_table = returns_table.append(alpha_beta) returns_table.loc["Mean Period Wise Return Top Quantile (bps)"] = \ mean_ret_quantile.iloc[-1] * DECIMAL_TO_BPS returns_table.loc["Mean Period Wise Return Bottom Quantile (bps)"] = \ mean_ret_quantile.iloc[0] * DECIMAL_TO_BPS returns_table.loc["Mean Period Wise Spread (bps)"] = \ mean_ret_spread_quantile.mean() * DECIMAL_TO_BPS print("收益分析") print_table(returns_table.apply(lambda x: x.round(3))) def plot_turnover_table(autocorrelation_data, quantile_turnover): turnover_table = pd.DataFrame() for ret_name in quantile_turnover.keys(): for quantile, p_data in quantile_turnover[ret_name].iteritems(): turnover_table.loc["Quantile {} Mean Turnover ".format(quantile), "{}".format(ret_name)] = p_data.mean() auto_corr = pd.DataFrame() for ret_name, p_data in autocorrelation_data.items(): auto_corr.loc["Mean Factor Rank Autocorrelation", "{}".format(ret_name)] = p_data.mean() print("换手率分析") print_table(turnover_table.apply(lambda x: x.round(3))) print_table(auto_corr.apply(lambda x: x.round(3))) def plot_information_table(ic_data): ic_summary_table =
pd.DataFrame()
pandas.DataFrame
import urllib.request from bs4 import BeautifulSoup import csv from time import sleep import pandas as pd import json import urllib.request import os from PIL import Image result = {} with open('data/data_all.csv', 'r') as f: reader = csv.reader(f) header = next(reader) # ヘッダーを読み飛ばしたい時 for row in reader: # print(row) title1 = row[0] id1 = row[1] if id1 not in result: # result[title1] = {} result[id1] = { "title": title1, "children": {} } tmp = result[id1]["children"] title2 = row[2] id2 = row[3] if id2 not in tmp: tmp[id2] = { "title": title2, "children": {} } tmp = tmp[id2]["children"] no = row[4] desc = row[5] if no not in tmp: tmp[no] = { "desc": desc, "images": [] } tmp = tmp[no] img = row[6] tmp["images"].append(img) data = [] data.append(["ID", "Media Url"]) for id1 in result: obj1 = result[id1]["children"] title1 = result[id1]["title"] for id2 in obj1: print("**"+id2) obj2 = obj1[id2]["children"] title2 = obj1[id2]["title"] for no in obj2: obj3 = obj2[no] id = id1+"-"+id2+"-"+str(no).zfill(4) for i in range(len(obj3["images"])): img_url = obj3["images"][i] row = [id, img_url] data.append(row) df = pd.DataFrame(data) writer =
pd.ExcelWriter('data2/images.xlsx', options={'strings_to_urls': False})
pandas.ExcelWriter
import os import random import stat from collections import Counter from datetime import datetime from itertools import groupby import numpy as np import pandas as pd import seaborn as sns from django.core.paginator import Paginator from django.db import connection from django.db.models import Count, Q from django.db.models.functions import TruncMonth from api.models import ( AlbumAuto, AlbumDate, AlbumUser, Face, LongRunningJob, Person, Photo, ) from api.serializers.serializers import LongRunningJobSerializer from api.util import logger def get_current_job(): job_detail = None running_job = ( LongRunningJob.objects.filter(finished=False).order_by("-started_at").first() ) if running_job: job_detail = LongRunningJobSerializer(running_job).data return job_detail def shuffle(list): random.shuffle(list) return list def is_hidden(filepath): name = os.path.basename(os.path.abspath(filepath)) return name.startswith(".") or has_hidden_attribute(filepath) def has_hidden_attribute(filepath): try: return bool(os.stat(filepath).st_file_attributes & stat.FILE_ATTRIBUTE_HIDDEN) except Exception: return False def path_to_dict(path, recurse=2): d = {"title": os.path.basename(path), "absolute_path": path} if recurse > 0: d["children"] = [ path_to_dict(os.path.join(path, x), recurse - 1) for x in os.scandir(path) if os.path.isdir(os.path.join(path, x)) and not is_hidden(os.path.join(path, x)) ] else: d["children"] = [] return d def jump_by_month(start_date, end_date, month_step=1): current_date = start_date yield current_date while current_date < end_date: carry, new_month = divmod(current_date.month - 1 + month_step, 12) new_month += 1 current_date = current_date.replace( year=current_date.year + carry, month=new_month ) yield current_date def get_location_timeline(user): qs_photos = ( Photo.objects.exclude(geolocation_json={}) .exclude(exif_timestamp=None) .filter(owner=user) .order_by("exif_timestamp") ) timestamp_loc = [] paginator = Paginator(qs_photos, 5000) for page in range(1, paginator.num_pages + 1): current_page = [ (p.exif_timestamp, p.geolocation_json["features"][-1]["text"]) for p in paginator.page(page).object_list ] timestamp_loc = timestamp_loc + current_page groups = [] uniquekeys = [] for k, g in groupby(timestamp_loc, lambda x: x[1]): groups.append(list(g)) # Store group iterator as a list uniquekeys.append(k) city_start_end_duration = [] for idx, group in enumerate(groups): city = group[0][1] start = group[0][0] if idx < len(groups) - 1: end = groups[idx + 1][0][0] else: end = group[-1][0] time_in_city = (end - start).total_seconds() if time_in_city > 0: city_start_end_duration.append([city, start, end, time_in_city]) locs = list(set([e[0] for e in city_start_end_duration])) colors = sns.color_palette("Paired", len(locs)).as_hex() loc2color = dict(zip(locs, colors)) intervals_in_seconds = [] for idx, sted in enumerate(city_start_end_duration): intervals_in_seconds.append( { "loc": sted[0], "start": sted[1].timestamp(), "end": sted[2].timestamp(), "dur": sted[2].timestamp() - sted[1].timestamp(), } ) data = [ { "data": [d["dur"]], "color": loc2color[d["loc"]], "loc": d["loc"], "start": d["start"], "end": d["end"], } for d in intervals_in_seconds ] return data def get_search_term_examples(user): default_search_terms = [ "for people", "for places", "for things", "for time", "for file path or file name", ] pp = Photo.objects.filter(owner=user).exclude(captions_json={}) possible_ids = list(pp.values_list("image_hash", flat=True)) if len(possible_ids) > 99: possible_ids = random.choices(possible_ids, k=100) logger.info(f"{len(possible_ids)} possible ids") try: samples = ( pp.filter(image_hash__in=possible_ids) .prefetch_related("faces") .prefetch_related("faces__person") .all() ) except ValueError: return default_search_terms search_data = [] search_terms = default_search_terms logger.info("Getting search terms for user %s", user.id) logger.info("Found %s photos", len(samples)) for p in samples: faces = p.faces.all() terms_loc = "" if p.geolocation_json != {}: terms_loc = [ f["text"] for f in p.geolocation_json["features"][-5:] if not f["text"].isdigit() ] terms_time = "" if p.exif_timestamp: terms_time = [str(p.exif_timestamp.year)] terms_people = [] if p.faces.count() > 0: terms_people = [f.person.name.split(" ")[0] for f in faces] terms_things = "" if p.captions_json and p.captions_json["places365"] is not None: terms_things = p.captions_json["places365"]["categories"] terms = { "loc": terms_loc, "time": terms_time, "people": terms_people, "things": terms_things, } search_data.append(terms) search_terms = [] for datum in search_data: term_time = "" term_thing = "" term_loc = "" term_people = "" if datum["loc"]: term_loc = random.choice(datum["loc"]) search_terms.append(term_loc) if datum["time"]: term_time = random.choice(datum["time"]) search_terms.append(term_time) if datum["things"]: term_thing = random.choice(datum["things"]) search_terms.append(term_thing) if datum["people"]: term_people = random.choice(datum["people"]) search_terms.append(term_people) search_term_loc_people = " ".join(shuffle([term_loc, term_people])) if random.random() > 0.3: search_terms.append(search_term_loc_people) search_term_time_people = " ".join(shuffle([term_time, term_people])) if random.random() > 0.3: search_terms.append(search_term_time_people) search_term_people_thing = " ".join(shuffle([term_people, term_thing])) if random.random() > 0.9: search_terms.append(search_term_people_thing) search_term_all = " ".join( shuffle([term_loc, term_people, term_time, term_thing]) ) if random.random() > 0.95: search_terms.append(search_term_all) search_term_loc_time = " ".join(shuffle([term_loc, term_time])) if random.random() > 0.3: search_terms.append(search_term_loc_time) search_term_loc_thing = " ".join(shuffle([term_loc, term_thing])) if random.random() > 0.9: search_terms.append(search_term_loc_thing) search_term_time_thing = " ".join(shuffle([term_time, term_thing])) if random.random() > 0.9: search_terms.append(search_term_time_thing) return list(set(search_terms)) def get_count_stats(user): num_photos = Photo.objects.filter(owner=user).count() num_missing_photos = Photo.objects.filter(Q(owner=user) & Q(image_paths=[])).count() num_faces = Face.objects.filter(photo__owner=user).count() num_unknown_faces = Face.objects.filter( Q(person__name__exact="unknown") & Q(photo__owner=user) ).count() num_labeled_faces = Face.objects.filter( Q(person_label_is_inferred=False) & ~Q(person__name__exact="unknown") & Q(photo__owner=user) & Q(photo__hidden=False) ).count() num_inferred_faces = Face.objects.filter( Q(person_label_is_inferred=True) & Q(photo__owner=user) & Q(photo__hidden=False) ).count() num_people = ( Person.objects.filter( Q(faces__photo__hidden=False) & Q(faces__photo__owner=user) & Q(faces__person_label_is_inferred=False) ) .distinct() .annotate(viewable_face_count=Count("faces")) .filter(Q(viewable_face_count__gt=0)) .count() ) num_albumauto = ( AlbumAuto.objects.filter(owner=user) .annotate(photo_count=Count("photos")) .filter(Q(photo_count__gt=0)) .count() ) num_albumdate = ( AlbumDate.objects.filter(owner=user) .annotate(photo_count=Count("photos")) .filter(Q(photo_count__gt=0)) .count() ) num_albumuser = ( AlbumUser.objects.filter(owner=user) .annotate(photo_count=Count("photos")) .filter(Q(photo_count__gt=0)) .count() ) res = { "num_photos": num_photos, "num_missing_photos": num_missing_photos, "num_faces": num_faces, "num_people": num_people, "num_unknown_faces": num_unknown_faces, "num_labeled_faces": num_labeled_faces, "num_inferred_faces": num_inferred_faces, "num_albumauto": num_albumauto, "num_albumdate": num_albumdate, "num_albumuser": num_albumuser, } return res def get_location_clusters(user): start = datetime.now() photos = ( Photo.objects.filter(owner=user) .exclude(geolocation_json={}) .only("geolocation_json") .all() ) coord_names = [] paginator = Paginator(photos, 5000) for page in range(1, paginator.num_pages + 1): for p in paginator.page(page).object_list: for feature in p.geolocation_json["features"]: if not feature["text"].isdigit(): coord_names.append([feature["text"], feature["center"]]) groups = [] uniquekeys = [] coord_names.sort(key=lambda x: x[0]) for k, g in groupby(coord_names, lambda x: x[0]): groups.append(list(g)) # Store group iterator as a list uniquekeys.append(k) res = [[g[0][1][1], g[0][1][0], g[0][0]] for g in groups] elapsed = (datetime.now() - start).total_seconds() logger.info("location clustering took %.2f seconds" % elapsed) return res def get_photo_country_counts(user): photos_with_gps = Photo.objects.exclude(geolocation_json=None).filter(owner=user) geolocations = [p.geolocation_json for p in photos_with_gps] countries = [] for gl in geolocations: if "features" in gl.keys(): for feature in gl["features"]: if feature["place_type"][0] == "country": countries.append(feature["place_name"]) counts = Counter(countries) return counts def get_location_sunburst(user): photos_with_gps = ( Photo.objects.exclude(geolocation_json={}) .exclude(geolocation_json=None) .filter(owner=user) ) if photos_with_gps.count() == 0: return {"children": []} geolocations = [] paginator = Paginator(photos_with_gps, 5000) for page in range(1, paginator.num_pages + 1): for p in paginator.page(page).object_list: geolocations.append(p.geolocation_json) four_levels = [] for gl in geolocations: out_dict = {} if "features" in gl.keys(): if len(gl["features"]) >= 1: out_dict[1] = gl["features"][-1]["text"] if len(gl["features"]) >= 2: out_dict[2] = gl["features"][-2]["text"] if len(gl["features"]) >= 3: out_dict[3] = gl["features"][-3]["text"] four_levels.append(out_dict) df =
pd.DataFrame(four_levels)
pandas.DataFrame
import numpy as np import cv2 import csv import os import pandas as pd import time def calcuNearestPtsDis2(ptList1): ''' Find the nearest point of each point in ptList1 & return the mean min_distance Parameters ---------- ptList1: numpy array points' array, shape:(x,2) Return ---------- mean_Dis: float the mean value of the minimum distances ''' if len(ptList1)<=1: print('error!') return 'error' minDis_list = [] for i in range(len(ptList1)): currentPt = ptList1[i,0:2] ptList2 = np.delete(ptList1,i,axis=0) disMat = np.sqrt(np.sum(np.asarray(currentPt - ptList2)**2, axis=1).astype(np.float32) ) minDis = disMat.min() minDis_list.append(minDis) minDisArr = np.array(minDis_list) mean_Dis = np.mean(minDisArr) return mean_Dis def calcuNearestPtsDis(ptList1, ptList2): ''' Find the nearest point of each point in ptList1 from ptList2 & return the mean min_distance Parameters ---------- ptList1: numpy array points' array, shape:(x,2) ptList2: numpy array points' array, shape:(x,2) Return ---------- mean_Dis: float the mean value of the minimum distances ''' if (not len(ptList2)) or (not len(ptList1)): print('error!') return 'error' minDis_list = [] for i in range(len(ptList1)): currentPt = ptList1[i,0:2] disMat = np.sqrt(np.sum(np.asarray(currentPt - ptList2)**2, axis=1).astype(np.float32) ) minDis = disMat.min() minDis_list.append(minDis) minDisArr = np.array(minDis_list) mean_Dis = np.mean(minDisArr) return mean_Dis def calcuNearestPts(csvName1, csvName2): ptList1_csv = pd.read_csv(csvName1,usecols=['x_cord', 'y_cord']) ptList2_csv = pd.read_csv(csvName2,usecols=['x_cord', 'y_cord']) ptList1 = ptList1_csv.values[:,:2] ptList2 = ptList2_csv.values[:,:2] minDisInd_list = [] for i in range(len(ptList1)): currentPt = ptList1[i,0:2] disMat = np.sqrt(np.sum(np.asarray(currentPt - ptList2)**2, axis=1)) minDisInd = np.argmin(disMat) minDisInd_list.append(minDisInd) minDisInd = np.array(minDisInd_list).reshape(-1,1) ptList1_csv = pd.concat([ptList1_csv, pd.DataFrame( columns=['nearestInd'],data = minDisInd)], axis=1) ptList1_csv.to_csv(csvName1,index=False) return minDisInd def drawDisPic(picInd): picName = 'patients_dataset/image/'+ picInd +'.png' img = cv2.imread(picName) csvName1='patients_dataset/data_csv/'+picInd+'other_tumour_pts.csv' csvName2='patients_dataset/data_csv/'+picInd+'other_lymph_pts.csv' ptList1_csv = pd.read_csv(csvName1) ptList2_csv = pd.read_csv(csvName2) ptList1 = ptList1_csv.values ptList2 = ptList2_csv.values for i in range(len(ptList1)): img = cv2.circle(img, tuple(ptList1[i,:2]), 3 , (0, 0, 255), -1 ) img = cv2.line(img, tuple(ptList1[i,:2]) , tuple(ptList2[ ptList1[i,2] ,:2]), (0,255,0), 1) for i in range(len(ptList2)): img = cv2.circle(img, tuple(ptList2[i,:2]), 3 , (255, 0, 0), -1 ) cv2.imwrite( picInd+'_dis.png',img) def drawDistancePic(disName1, disName2, picID): ''' Draw & save the distance pics Parameters ---------- disName1,disName2: str such as 'positive_lymph', 'all_tumour' picID: str the patient's ID ''' cellName_color = {'other_lymph': (255, 0, 0), 'positive_lymph': (255, 255, 0), 'other_tumour': (0, 0, 255), 'positive_tumour': (0, 255, 0)} ptline_color = {'positive_lymph': (0,0,255), 'positive_tumour': (0,0,255), 'ptumour_plymph': (51, 97, 235), 'other_tumour': (0, 255, 0)} if (disName1 == 'all_tumour' and disName2 == 'all_lymph') or (disName1 == 'all_tumour' and disName2 == 'positive_lymph'): line_color = (0,255,255) elif disName1 == 'positive_tumour' and disName2 == 'positive_lymph': line_color = (51, 97, 235) else: line_color = ptline_color[disName1] csv_dir = '/data/Datasets/MediImgExp/data_csv' img_dir = '/data/Datasets/MediImgExp/image' if disName1 == 'all_tumour' and disName2 == 'positive_lymph': dis1_csv = pd.read_csv(csv_dir + '/' + picID + 'positive_tumour' + '_pts.csv', usecols=['x_cord', 'y_cord']) dis2_csv = pd.read_csv(csv_dir + '/' + picID + 'other_tumour' + '_pts.csv', usecols=['x_cord', 'y_cord']) dis3_csv = pd.read_csv(csv_dir + '/' + picID + 'positive_lymph' + '_pts.csv', usecols=['x_cord', 'y_cord']) ptList1 = dis1_csv.values[:,:2] ptList2 = dis2_csv.values[:,:2] ptList3 = dis3_csv.values[:,:2] # positive tumour: find the nearest lymph cell minDisInd_list = [] for i in range(len(ptList1)): currentPt = ptList1[i,:] disMat = np.sqrt(np.sum(np.asarray(currentPt - ptList3)**2, axis=1)) minDisInd = np.argmin(disMat) minDisInd_list.append(minDisInd) minDisInd = np.array(minDisInd_list).reshape(-1,1) dis1_csv = pd.concat([dis1_csv, pd.DataFrame(columns=['nearestInd'], data=minDisInd)], axis=1) # other tumour: find the nearest lymph cell minDisInd_list = [] for i in range(len(ptList2)): currentPt = ptList2[i,:] disMat = np.sqrt(np.sum(np.asarray(currentPt - ptList3)**2, axis=1)) minDisInd = np.argmin(disMat) minDisInd_list.append(minDisInd) minDisInd = np.array(minDisInd_list).reshape(-1,1) dis2_csv = pd.concat([dis2_csv, pd.DataFrame(columns=['nearestInd'], data=minDisInd)], axis=1) img = cv2.imread(img_dir + '/' + picID + '.jpg') ptList1 = dis1_csv.values for i in range(len(ptList1)): img = cv2.line(img, tuple(ptList1[i,:2]), tuple(ptList3[ptList1[i, 2],:2]), line_color, 1) ptList2 = dis2_csv.values for i in range(len(ptList2)): img = cv2.line(img, tuple(ptList2[i,:2]), tuple(ptList3[ptList2[i, 2],:2]), line_color, 1) for i in range(len(ptList1)): img = cv2.circle(img, tuple(ptList1[i,:2]), 4, (0, 255, 0), -1) for i in range(len(ptList2)): img = cv2.circle(img, tuple(ptList2[i,:2]), 4, (0, 0, 255), -1) for i in range(len(ptList3)): img = cv2.circle(img, tuple(ptList3[i,:2]), 4, (255, 255, 0), -1) cv2.imwrite(picID + disName1 + '_' + disName2 + '_dis.png', img) elif disName1 == 'all_tumour' and disName2 == 'all_lymph': dis1_csv = pd.read_csv(csv_dir + '/' + picID + 'positive_tumour' + '_pts.csv', usecols=['x_cord', 'y_cord']) dis2_csv = pd.read_csv(csv_dir + '/' + picID + 'other_tumour' + '_pts.csv', usecols=['x_cord', 'y_cord']) dis3_csv = pd.read_csv(csv_dir + '/' + picID + 'positive_lymph' + '_pts.csv', usecols=['x_cord', 'y_cord']) dis4_csv = pd.read_csv(csv_dir + '/' + picID + 'other_lymph' + '_pts.csv', usecols=['x_cord', 'y_cord']) ptList1 = dis1_csv.values[:,:2] ptList2 = dis2_csv.values[:,:2] ptList3 = dis3_csv.values[:,:2] ptList4 = dis4_csv.values[:,:2] ptList6 = np.concatenate((ptList3, ptList4), axis=0) minDisInd_list = [] for i in range(len(ptList1)): currentPt = ptList1[i,:] disMat = np.sqrt(np.sum(np.asarray(currentPt - ptList6)**2, axis=1)) minDisInd = np.argmin(disMat) minDisInd_list.append(minDisInd) minDisInd = np.array(minDisInd_list).reshape(-1,1) dis1_csv = pd.concat([dis1_csv, pd.DataFrame(columns=['nearestInd'], data=minDisInd)], axis=1) minDisInd_list = [] for i in range(len(ptList2)): currentPt = ptList2[i,:] disMat = np.sqrt(np.sum(np.asarray(currentPt - ptList6)**2, axis=1)) minDisInd = np.argmin(disMat) minDisInd_list.append(minDisInd) minDisInd = np.array(minDisInd_list).reshape(-1,1) dis2_csv = pd.concat([dis2_csv, pd.DataFrame(columns=['nearestInd'], data=minDisInd)], axis=1) img = cv2.imread(img_dir + '/' + picID + '.jpg') ptList1 = dis1_csv.values for i in range(len(ptList1)): img = cv2.line(img, tuple(ptList1[i,:2]), tuple(ptList6[ptList1[i, 2],:2]), line_color, 1) ptList2 = dis2_csv.values for i in range(len(ptList2)): img = cv2.line(img, tuple(ptList2[i,:2]), tuple(ptList6[ptList2[i, 2],:2]), line_color, 1) for i in range(len(ptList1)): img = cv2.circle(img, tuple(ptList1[i,:2]), 4, (0, 255, 0), -1) for i in range(len(ptList2)): img = cv2.circle(img, tuple(ptList2[i,:2]), 4, (0, 0, 255), -1) for i in range(len(ptList3)): img = cv2.circle(img, tuple(ptList3[i,:2]), 4, (255, 255, 0), -1) for i in range(len(ptList4)): img = cv2.circle(img, tuple(ptList4[i,:2]), 4, (255, 0, 0), -1) cv2.imwrite(picID + disName1 + '_' + disName2 + '_dis.png', img) elif disName1 != disName2: dis1_csv = pd.read_csv(csv_dir + '/' + picID + disName1 + '_pts.csv', usecols=['x_cord', 'y_cord']) dis2_csv = pd.read_csv(csv_dir + '/' + picID + disName2 + '_pts.csv', usecols=['x_cord', 'y_cord']) ptList1 = dis1_csv.values[:,:2] ptList2 = dis2_csv.values[:,:2] minDisInd_list = [] for i in range(len(ptList1)): currentPt = ptList1[i,:] disMat = np.sqrt(np.sum(np.asarray(currentPt - ptList2)**2, axis=1)) minDisInd = np.argmin(disMat) minDisInd_list.append(minDisInd) minDisInd = np.array(minDisInd_list).reshape(-1,1) dis1_csv = pd.concat([dis1_csv, pd.DataFrame( columns=['nearestInd'],data = minDisInd)], axis=1) img = cv2.imread(img_dir + '/' + picID + '.jpg') img[:,:, 0] = 255 img[:,:, 1] = 255 img[:,:, 2] = 255 ptList1 = dis1_csv.values for i in range(len(ptList1)): img = cv2.line(img, tuple(ptList1[i,:2]) , tuple(ptList2[ ptList1[i,2] ,:2]), line_color, 1) for i in range(len(ptList1)): img = cv2.circle(img, tuple(ptList1[i,:2]), 5, cellName_color[disName1], -1) for i in range(len(ptList2)): img = cv2.circle(img, tuple(ptList2[i,:2]), 5, cellName_color[disName2], -1) cv2.imwrite(picID + disName1 + '_' + disName2 + '_dis.png', img) elif disName1 == disName2: dis1_csv = pd.read_csv(csv_dir + '/' + picID + disName1 + '_pts.csv', usecols=['x_cord', 'y_cord']) ptList1 = dis1_csv.values[:,:2] minDisInd_list = [] for i in range(len(ptList1)): currentPt = ptList1[i, :2] disMat = np.sqrt(np.sum(np.asarray(currentPt - ptList1)** 2, axis=1).astype(np.float32)) minDisInd = np.argmin(disMat) disMat[minDisInd] = 1000.0 minDisInd = np.argmin(disMat) minDisInd_list.append(minDisInd) minDisInd = np.array(minDisInd_list).reshape(-1,1) dis1_csv = pd.concat([dis1_csv, pd.DataFrame( columns=['nearestInd'],data = minDisInd)], axis=1) img = cv2.imread(img_dir + '/' + picID + '.jpg') img[:,:, 0] = 255 img[:,:, 1] = 255 img[:,:, 2] = 255 ptList1 = dis1_csv.values for i in range(len(ptList1)): img = cv2.line(img, tuple(ptList1[i,:2]), tuple(ptList1[ptList1[i, 2],:2]), line_color, 1) for i in range(len(ptList1)): img = cv2.circle(img, tuple(ptList1[i,:2]), 5, cellName_color[disName1], -1) cv2.imwrite(picID + disName1 + '_dis.png', img) def getAllPicsDisCSV(): ''' Get all distance data from the saved csv files (get from the above functions) ''' base_dir = '/data/Datasets/MediImgExp' f = open( base_dir + '/' + 'AllDisData.csv','w',encoding='utf-8',newline="") csv_writer = csv.writer(f) csv_writer.writerow([ 'Ind','PosiTumourRatio','PosiLymphRatio', 'DisTumourLymph','DisPosiTumour','DisPosiLymph', 'DisPosiTumourPosiLymph','DisTumourPosiLymph']) process_dir = base_dir + '/process' csv_dir = base_dir + '/data_csv' pic_name = os.listdir(process_dir) picIDList = [] for pic_name_ in pic_name: picIDList.append( pic_name_.split('_')[0] ) for picID in picIDList: list_data = [] list_data.append(picID) # PosiTumourRatio PosiTumourCsv = pd.read_csv( csv_dir+'/'+ picID +'positive_tumour_pts.csv') OtherTumourCsv = pd.read_csv( csv_dir+'/'+ picID +'other_tumour_pts.csv') Num_PosiTumour = PosiTumourCsv.shape[0] Num_OtherTumour = OtherTumourCsv.shape[0] if (Num_PosiTumour + Num_OtherTumour)!=0 : PosiTumourRatio = Num_PosiTumour / (Num_PosiTumour + Num_OtherTumour) else: PosiTumourRatio = 'error' list_data.append(PosiTumourRatio) # PosiLymphRatio PosiLymphCsv = pd.read_csv( csv_dir+'/'+ picID +'positive_lymph_pts.csv') OtherLymphCsv = pd.read_csv( csv_dir+'/'+ picID +'other_lymph_pts.csv') Num_PosiLymph = PosiLymphCsv.shape[0] Num_OtherLymph = OtherLymphCsv.shape[0] if (Num_PosiLymph + Num_OtherLymph)!=0 : PosiLymphRatio = Num_PosiLymph / (Num_PosiLymph + Num_OtherLymph) else: PosiLymphRatio = 'error' list_data.append(PosiLymphRatio) # DisTumourLymph ptList1_csv = pd.read_csv(csv_dir+'/'+ picID +'positive_tumour_pts.csv',usecols=['x_cord', 'y_cord']) ptList2_csv = pd.read_csv(csv_dir+'/'+ picID +'positive_lymph_pts.csv',usecols=['x_cord', 'y_cord']) ptList1 = ptList1_csv.values[:,:2] ptList2 = ptList2_csv.values[:,:2] ptList3_csv = pd.read_csv(csv_dir+'/'+ picID +'other_tumour_pts.csv',usecols=['x_cord', 'y_cord']) ptList4_csv = pd.read_csv(csv_dir+'/'+ picID +'other_lymph_pts.csv',usecols=['x_cord', 'y_cord']) ptList3 = ptList3_csv.values[:,:2] ptList4 = ptList4_csv.values[:,:2] ptList1 = np.concatenate((ptList1,ptList3), axis=0) ptList2 = np.concatenate((ptList2,ptList4), axis=0) DisTumourLymph = calcuNearestPtsDis(ptList1, ptList2) list_data.append(DisTumourLymph) # DisPosiTumour ptList1_csv = pd.read_csv(csv_dir+'/'+ picID +'positive_tumour_pts.csv',usecols=['x_cord', 'y_cord']) ptList1 = ptList1_csv.values[:,:2] DisPosiTumour = calcuNearestPtsDis2(ptList1) list_data.append(DisPosiTumour) # DisPosiLymph ptList1_csv = pd.read_csv(csv_dir+'/'+ picID +'positive_lymph_pts.csv',usecols=['x_cord', 'y_cord']) ptList1 = ptList1_csv.values[:,:2] DisPosiLymph = calcuNearestPtsDis2(ptList1) list_data.append(DisPosiLymph) # DisPosiTumourPosiLymph ptList1_csv = pd.read_csv(csv_dir+'/'+ picID +'positive_tumour_pts.csv',usecols=['x_cord', 'y_cord']) ptList2_csv = pd.read_csv(csv_dir+'/'+ picID +'positive_lymph_pts.csv',usecols=['x_cord', 'y_cord']) ptList1 = ptList1_csv.values[:,:2] ptList2 = ptList2_csv.values[:,:2] DisPosiTumourPosiLymph = calcuNearestPtsDis(ptList1, ptList2) list_data.append(DisPosiTumourPosiLymph) # DisTumourPosiLymph ptList1_csv = pd.read_csv(csv_dir+'/'+ picID +'positive_tumour_pts.csv',usecols=['x_cord', 'y_cord']) ptList2_csv = pd.read_csv(csv_dir+'/'+ picID +'positive_lymph_pts.csv',usecols=['x_cord', 'y_cord']) ptList1 = ptList1_csv.values[:,:2] ptList2 = ptList2_csv.values[:,:2] ptList3_csv = pd.read_csv(csv_dir+'/'+ picID +'other_tumour_pts.csv',usecols=['x_cord', 'y_cord']) ptList3 = ptList3_csv.values[:,:2] ptList1 = np.concatenate((ptList1,ptList3), axis=0) DisTumourPosiLymph = calcuNearestPtsDis(ptList1, ptList2) list_data.append(DisTumourPosiLymph) csv_writer.writerow(list_data) def adjustToMultiCSV(): ''' Divide the AllDisData.csv into 6+1=7 csv ''' base_dir = '/data/Datasets/MediImgExp' alldata = pd.read_csv( base_dir + '/' + 'AllDisData.csv' ) IndData = alldata['Ind'].values patient_Ind = [] for IndName in IndData: patient_Ind.append(IndName.split('-')[0]) patient_Ind = np.unique(patient_Ind) patient_Ind = sorted( list(map(int,patient_Ind)) ) column_name = ['Ind','2D','3D','GAL9','LAG3','MHC','OX40','OX40L','PD1','PDL1','TIM3'] # stage 1 calculate the 6 csv (10 cols for each csv) DisPosiTumour = pd.DataFrame(columns=column_name,index= patient_Ind) DisPosiTumour['Ind'] = patient_Ind patient_Id = patient_Ind column_names = ['2D','3D','GAL9','LAG3','MHC','OX40','OX40L','PD1','PDL1','TIM3'] for patient in patient_Id: for column in column_names: combine_name = str(patient) + '-' + column exist_flag = (alldata['Ind'].str[0:len(combine_name)]== combine_name).any() if not exist_flag: continue valid_slice = alldata[ alldata['Ind'].str[0:len(combine_name)]== combine_name ] arr = valid_slice['DisTumourPosiLymph'].values if arr.__contains__('error'): arr = np.setdiff1d(arr, ['error']) if not arr.shape[0]: continue valid_slice_mean = np.mean( arr.astype(np.float32)) DisPosiTumour.loc[ patient ,column ] = valid_slice_mean DisPosiTumour.to_csv( base_dir + '/' + 'DisTumourPosiLymph.csv',index=False ) # stage 2 add the outputs (4 cols) all_data_name = base_dir + '/' + 'alldata2.csv' all_data = pd.read_csv(all_data_name) all_data.index = all_data['Ind'] valid_columns = ['RELAPSE','RFS','DEATH','OS'] valid_slice = all_data.loc[ patient_Ind, valid_columns ] DisPosiTumour = pd.read_csv( base_dir + '/' + 'PosiTumourRatio.csv',index_col=0) DisPosiTumour = pd.concat([DisPosiTumour,valid_slice],axis = 1) DisPosiTumour.to_csv( base_dir + '/' + 'PosiTumourRatio.csv' ) # stage 3 calculate DisTumourLymph (use all markers' mean values) DisTumourLymph =
pd.DataFrame(columns=['mean_10markers'],index= patient_Ind)
pandas.DataFrame
#------------------------------------------------------------------------------ '''Handy tools for global use. - build cases quickly - read geo_strings from DataFrames - write/read csv files to DataFrames - compare sets - resequence columns in DataFrame - determine if brackets/parentheses match in a string - assert pandas Series/DataFrames - natural sort strings ''' # flake8 utils/tools.py --ignore=E265,E501,F841,N802,N803 import os import re import logging import tempfile import inspect import warnings import collections as ct import pandas as pd import pandas.util.testing as pdt import lamana as la # TODO: just import extensions? from config import EXTENSIONS as conf.EXTENSIONS from lamana.utils import config # # TODO: Replace with config.EXTENSIONS # EXTENSIONS = ('.csv', '.xlsx') # TODO: Add deprecation warning def laminator(geos=None, load_params=None, mat_props=None, ps=[5], verbose=False): '''Return a dict of Cases; quickly build and encase a suite of Case objects. This is useful for tests requiring laminates with different thicknesses, ps and geometries. .. note:: Deprecate warning LamAna 0.4.10 `lamanator` will be removed in LamAna 0.5 and replaced by `lamana.distributions.Cases` because the latter is more efficient. Parameters ---------- geos : list; default `None` Contains (optionally tuples of) geometry strings. load_params : dict; default `None` Passed-in geometric parameters if specified; else default is used. mat_props : dict; default `None` Passed-in materials parameters if specified; else default is used. ps : list of int, optional; default 5 p values to be looped over; this sets the number of rows per DataFrame. verbose : bool; default `False` If True, print a list of Geometries. See Also -------- test_sanity#() : set of test functions that run sanity checks utils.tools.select_frames() : utility function to parse DataFrames Notes ----- The preferred use for this function is the following: >>> for case in cases: ... print(case.LMs) [<lamana LaminateModel object (400-200-400S)>, <lamana LaminateModel object (400-200-800)>], [<lamana LaminateModel object (400-200-400S)>, <lamana LaminateModel object (400-200-800)>] >>> (LM for case in cases for LM in case.LMs) <generator object> Examples -------- >>> from lamana.utils import tools as ut >>> g = ('400-200-400S') >>> case = ut.laminator(geos=g, ps=[2]) >>> LM = case[0] >>> LM <lamana LaminateModel object (400-200-400S)> >>> g = ['400-200-400S', '400-200-800'] >>> cases = ut.laminator(geos=g, p=[2,3]) >>> cases {0: <lamana.distributions.Case p=2>, 1: <lamana.distributions.Case p=3>,} # keys by p >>> for i, case in cases.items(): # process cases ... for LM in case.LMs: ... print(LM.Geometry) >>> (LM for i, LMs in cases.items() for LM in LMs) # generator processing ''' # Default if (geos is None) and (load_params is None) and (mat_props is None): print('CAUTION: No Geometry or parameters provided to case builder. Using defaults...') if geos is None: geos = [('400-200-800')] if isinstance(geos, str): geos = [geos] elif (geos is not None) and not (isinstance(geos, list)): # TODO: use custom Exception raise Exception('geos must be a list of strings') if load_params is None: ''' UPDATE: pull from Defaults()''' load_params = { 'R': 12e-3, # specimen radius 'a': 7.5e-3, # support ring radius 'p': 5, # points/layer 'P_a': 1, # applied load 'r': 2e-4, # radial distance from center loading } if mat_props is None: mat_props = { 'HA': [5.2e10, 0.25], 'PSu': [2.7e9, 0.33], } # Laminates of different ps '''Fix to output repr; may do this with an iterator class.''' def cases_by_p(): for i, p in enumerate(ps): '''raise exception if p is not int.''' load_params['p'] = p case = la.distributions.Case(load_params, mat_props) case.apply(geos) # Verbose printing if verbose: print('A new case was created. ' '# of LaminateModels: {}, p: {}'.format(len(geos), p)) #print('A new case was created. # LaminateModels: %s, ps: %s' % (len(geos), p)) #yield p, case yield i, case return dict((i, case) for i, case in cases_by_p()) # Helpers def get_multi_geometry(Frame): '''Return geometry string parsed from a multi-plied laminate DataFrame. Uses pandas GroupBy to extract indices with unique values in middle and outer. Splits the inner_i list by p. Used in controls.py. Refactored for even multi-plies in 0.4.3d4. Parameters ---------- Frame : DataFrame A laminate DataFrame, typically extracted from a file. Therefore, it is ambigouous whether Frame is an LFrame or LMFrame. Notes ----- Used in controls.py, extract_dataframe() to parse data from files. See Also -------- - get_special_geometry: for getting geo_strings of laminates w/nplies<=4. ''' # TODO: Move to separate function in utils def chunks(lst, n): '''Split up a list into n-sized smaller lists; (REF 018)''' for i in range(0, len(lst), n): yield lst[i:i + n] # TODO: why convert to int?; consider conversion to str def convert_lists(lst): '''Convert numeric contents of lists to int then str''' return [str(int(i)) for i in lst] #print(Frame) group = Frame.groupby('type') nplies = len(Frame['layer'].unique()) if nplies < 5: raise Exception('Number of plies < 5. Use get_special_geometry() instead.') p = Frame.groupby('layer').size().iloc[0] # should be same for each group # Identify laminae types by creating lists of indices # These lists must consider the the inner lists as well # Final lists appear to contain strings. # Access types by indices if nplies % 2 != 0: middle_group = group.get_group('middle') inner_group = group.get_group('inner').groupby('side') outer_group = group.get_group('outer') # Convert to list of indices for each group if nplies % 2 != 0: mid_idx = middle_group.index.tolist() in_idx = inner_group.groups['Tens.'] # need to split in chunks out_idx = outer_group.index.tolist() # Make lists of inner_i indices for a single stress side_ # TODO: Would like to make this inner_i splitting more robust # TODO: better for it to auto differentiate subsets within inner_i # NOTE: inner values are converting to floats somewhere, i.e. 400-200-800 --> 400-[200.0]-800 # Might be fixed with _gen_convention, but take note o the inconsistency. # Looks like out_lst, in_lst, mid_lst are all floats. Out and mid convert to ints. in_lst = [] for inner_i_idx in chunks(in_idx, p): #print(inner_i_idx) t = Frame.ix[inner_i_idx, 't(um)'].dropna().unique().tolist() in_lst.append(t) if nplies % 2 != 0: mid_lst = Frame.ix[mid_idx, 't(um)'].dropna().unique().tolist() in_lst = sum(in_lst, []) # flatten list out_lst = Frame.ix[out_idx, 't(um)'].dropna().unique().tolist() #print(out_lst, in_lst, mid_lst) # Convert list thicknesses to strings if nplies % 2 != 0: mid_con = convert_lists(mid_lst) else: mid_con = ['0'] # for even plies out_con = convert_lists(out_lst) # Make geometry string geo = [] geo.extend(out_con) geo.append(str(in_lst)) geo.extend(mid_con) geo_string = '-'.join(geo) # TODO: format geo_strings to General Convention # NOTE: geo_string comes in int-[float]-int format; _to_gen_convention should patch geo_string = la.input_.Geometry._to_gen_convention(geo_string) return geo_string def get_special_geometry(Frame): '''Return geometry string parsed from a special-plied (<5) laminate DataFrame. Parameters ---------- Frame : DataFrame A laminate DataFrame, typically extracted from a file. Therefore, it is ambigouous whether Frame is an LFrame or LMFrame. Notes ----- Used in controls.py, extract_dataframe() to parse data from files. See Also -------- - get_multi_geometry: for getting geo_strings of laminates w/nplies>=5. ''' #nplies = len(laminate['layer'].unique()) #geo = [ # str(int(thickness)) for thickness # gets unique values # in laminate.groupby('type', sort=False)['t(um)'].first() #] nplies = len(Frame['layer'].unique()) geo = [ str(int(thickness)) for thickness # gets unique values in Frame.groupby('type', sort=False)['t(um)'].first() ] #print(geo) # Amend list by plies by inserting 0 for missing layer type thicknesses; list required for .join if nplies == 1: #ply = 'Monolith' geo.insert(0, '0') # outer geo.insert(1, '0') # inner elif nplies == 2: #ply = 'Bilayer' geo.append('0') # middle geo.append('0') elif nplies == 3: #ply = 'Trilayer' geo.insert(1, '0') elif nplies == 4: #ply = '4-ply' geo.append('0') # TODO: use join geo[1] = '[' + geo[1] + ']' # redo inner in General Convention notation else: # TODO: use custom Exception raise Exception('Number of plies > 4. Use get_multi_geometry() instead.') #print('nplies:', nplies) #print(geo) geo_string = '-'.join(geo) # TODO: format geo_strings to General Convention geo_string = la.input_.Geometry._to_gen_convention(geo_string) return geo_string # TODO: Add extract_dataframe and fix_discontinuities here from controls.py; make tests. # DEPRECATE: remove and replace with Cases() (0.4.11.dev0) # Does not print cases accurately # Did not fail test although alias given for name #def get_frames(cases, name=None, nplies=None, ps=None): # def select_frames(cases, name=None, nplies=None, ps=None): # '''Yield and print a subset of case DataFrames given cases. # Else, print all DataFrames for all cases. # .. note:: DEPRECATE LamAna 0.4.11.dev0 # `lamanator` will be removed in LamAna 0.5 and replaced by # `lamana.distributions.Cases` because the latter is more efficient. # # Parameters # ---------- # cases : list of DataFrames # Contains case objects. # name : str # Common name. # nplies : int # Number of plies. # ps : int # Number of points per layer. # Examples # -------- # >>> cases_selected = ut.select_frames(cases, name='Trilayer', ps=[]) # >>> LMs_list = list(cases) # capture generator contents # >>> LMs_list = [LM for LM in cases_selected] # capture and exhaust generator # >>> for LMs in cases_selected: # exhaust generator; see contents # ... print(LMs) # Notes # ----- # This function is a predecessor to the modern Cases.select() method. It is # no longer maintained (0.4.11.dev0), though possibly useful for extracting # selected DataFrames from existing cases. Formerly `get_frames()`. # See Also # -------- # lamana.distributions.Cases.select() : canonical way to select df subsets. # Yields # ------ # DataFrame # Extracted data from a sequence of case objects. # ''' # # Default # if ps is None: # ps = [] # try: # for i, case in enumerate(cases.values()): # Python 3 # print('case', i + 1) # for LM in case.LMs: # #print(LM.Geometry) # #print(name, nplies, ps) # # Select based on what is not None # if not not ps: # if list not empty # for p in ps: # #print('p', p) # if ((LM.name == name) | (LM.nplies == nplies)) & (LM.p == p): # #print(LM.LMFrame) # print(LM.Geometry) # yield LM.LMFrame # # All ps in the case suite # elif ((LM.name == name) | (LM.nplies == nplies)): # #print(LM.LMFrame) # print(LM.Geometry) # yield LM.LMFrame # # No subset --> print all # if (name is None) & (nplies is None) & (ps == []): # #print(LM.LMFrame) # print(LM.Geometry) # yield LM.LMFrame # finally: # print('\n') # print('Finished getting DataFrames.') def compare_set(it, others, how='union', test=None): '''Return a specific set of unique values based on `how` it is evaluated. Wraps set operators from the standard library. Used to check values in demo. Parameters ---------- it, others : iterable A container of unique or non-unique values. how : {'union', 'intersection', 'difference', 'symmetric_difference'}; default 'union'. Determine which type of set to use. Applies set theory. test : {'issubset', 'issuperset', 'isdisjoint'}; default `None` Test the type of subset. ''' # Defaults if isinstance(it, int): it = [it] if isinstance(others, int): others = [others] if test is None: test = '' # Tests # Subset: [1,2] < [1,2,3] -> True; [1,2] <= [1,2] -> True if test.startswith('issub'): return set(it).issubset(others) # Superset: [1,2,3] > [1,2] -> True; [1,2,3] >= [1,2,3] -> True if test.startswith('issuper'): return set(it).issuperset(others) # Disjoint: [1,2] , [3,4] -> True if test.startswith('isdis'): return set(it).isdisjoint(others) # Set Theory # Union: [1,2] | [3,4] -> {1,2,3,4} if how.startswith('uni'): return set(it).union(others) # Intersection: [1] & [1,2] -> {1} elif how.startswith('int'): return set(it).intersection(others) # Difference: [1,2,3] - [3,4] -> {1,2} elif how.startswith('diff'): return set(it).difference(others) # Symmetric Difference: [1,2,3] ^ [3,4] -> {1,2,4} elif how.startswith('symm'): return set(it).symmetric_difference(others) def ndframe_equal(ndf1, ndf2): '''Return True if DataFrames (or Series) are equal; else False. Parameters ---------- ndf1, ndf2 : Series or DataFrame Two groups of data in pandas data structures. ''' try: if isinstance(ndf1, pd.DataFrame) and isinstance(ndf2, pd.DataFrame): pdt.assert_frame_equal(ndf1, ndf2) #print('DataFrame check:', type(ndf1), type(ndf2)) elif isinstance(ndf1, pd.Series) and isinstance(ndf2, pd.Series): pdt.assert_series_equal(ndf1, ndf2) #print('Series check:', type(ndf1), type(ndf2)) return True except (ValueError, AssertionError, AttributeError): return False # Refactor to favor string as first arg (0.4.11.dev0) def is_matched(string, pattern=None): '''Return True if container brackets or parentheses have equal count; matched. Parameters ---------- string : str String to which the pattern in search. pattern : str; Default None Regular expression pattern. If None, defaults to test all characters i.e. '.'. Notes ----- This function was made to help validate parsed input strings. Examples -------- >>> s = 'Here the [brackets] are matched.' >>> is_matched(s) True >>> s = 'Here the [brackets][ are NOT matched.' >>> is_matched(s) False >>> s = 'Only accept [letters] in brackets that are [CAPITALIZED[.' >>> p = '\W[A-Z]+\W' # regex for all only capital letters and non-alphannumerics >>> is_matched(s, p) False ''' if pattern is None: pattern = '.+' # default for all characters together (greedily) bra, ket, par, ren = 0, 0, 0, 0 search = re.findall(pattern, string) # quick, non-iterative extraction for item in search: if ('[' in item) or (']' in item): bra, ket = item.count('['), item.count(']') if ('(' in item) or (')' in item): par, ren = item.count('('), item.count(')') #print(search, len(search)) #print('l_bracket: {0}, r_bracket: {1}, ' # 'l_paren {2}, r_paren: {3}'.format(bra, ket, par, ren)) return bra == ket and par == ren # IO -------------------------------------------------------------------------- # IO-related functions # DEPRECATE: verbose; use logging instead def rename_tempfile(filepath, filename): '''Return new file path; renames an extant file in-place.''' dirpath = os.path.dirname(filepath) new_filepath = os.path.join(dirpath, filename) new_filepath = get_path(validate=new_filepath) os.rename(filepath, new_filepath) return new_filepath # TODO: Add write functions from controls.py here def convert_featureinput(FI): '''Return FeaureInput dict with converted values to Dataframes. Can accept almost any dict. Converts to DataFrames depending on type. Returns ------- defaultdict Values are DataFrames. ''' logging.info('Converting FeatureInput values to DataFrames: {}...'.format( FI.get('Geometry'))) dd = ct.defaultdict(list) for k, v in FI.items(): if isinstance(v, dict): try: # if dict of dicts dd[k] = pd.DataFrame(v).T except(ValueError): # if regular dict, put in a list dd[k] = pd.DataFrame([v], index=[k]).T finally: logging.debug('{0} {1} -> df'.format(k, type(v))) elif isinstance(v, list): dd[k] = pd.DataFrame(v, columns=[k]) logging.debug('{0} {1} -> df'.format(k, type(v))) elif isinstance(v, str): dd[k] = pd.DataFrame({'': {k: v}}) logging.debug('{0} {1} -> df'.format(k, type(v))) elif isinstance(v, la.input_.Geometry): v = v.string # get geo_string dd[k] = pd.DataFrame({'': {k: v}}) logging.debug('{0} {1} -> df'.format(k, type(v))) elif isinstance(v, pd.DataFrame): # sometimes materials is df dd[k] = v logging.debug('{0} {1} -> df'.format(k, type(v))) elif not v: # empty container dd[k] = pd.DataFrame() logging.debug('{0} {1} -> empty df'.format(k, v)) else: logging.debug('{0} -> Skipped'.format(type(v))) # pragma: no cover return dd def reorder_featureinput(d, keys=None): '''Return an OrderedDict given a list of keys. Parameters ---------- d : dict Any dict; expects a FeatureInput. keys : list of strings, default None Order of keys of a FeatureInput. Examples -------- >>> case = ut.laminator(dft.geos_standard)[0] >>> LM = case.LMs[0] >>> FI = LM.FeatureInput >>> # Default order >>> fi = reorder_featureinput(FI) >>> list(fi.keys()) ['Geometry', 'Model', 'Materials', 'Parameters', 'Globals', 'Properties'] >>> # Manage key order >>> rev_keys = reversed(['Geometry', 'Model', 'Materials', ... 'Parameters', 'Globals', 'Properties']) >>> fi = reorder_featureinput(FI, keys=rev_keys) >>> list(fi.keys()) ['Properties', 'Globals', 'Parameters', 'Materials', 'Model', 'Geometry'] >>> # Add missing keys (in random order) >>> fi = reorder_featureinput(FI, [Model', 'Geometry']) >>> list(fi.keys()) ['Model', 'Geometry', 'Materials', 'Parameters', 'Globals', 'Properties'] Notes ----- - Keys are optional; assumes a typical FeatureInput with default keys. - If passed keys are shorter the FI keys, ignores empty entries. - Groups single string entries (i.e. Geometry, Model) upfront for dashboard. - Properties are last as the materials expand expand column-wise. ''' # Default keys for standard FeatureInput if keys is None: keys = ['Geometry', 'Model', 'Materials', 'Parameters', 'Globals', 'Properties'] od = ct.OrderedDict() for key in keys: if key in d: # skip Globals in Laminate.FeaturInput od[key] = d[key] # If keys is shorter than FI.keys(), tag on the missing keys for k in d.keys(): if k not in od: od[k] = d[k] return od def get_path(filename=None, prefix=None, suffix=None, overwrite=True, dashboard=False, validate=None,): '''Return the default export path or a file path if given a filename. Verifies existing paths, else returns an new path. Parameters ---------- filename : str, default None File name. prefix : str, default None File name prefix. suffix : |'.csv'|'.xlsx'|, default None File name extension. overwrite : bool, default True Toggle of overwrite protection. If False, increments filename. dashboard : bool, default False Auto-append 'dash_' to filename. Flag a dashboard is being made; only .csv files supportted. validate : str, default None, optional Verifies if full file path exists; if so, return incremented file path. Notes ----- Need to return different types of paths depending on output file. Here is what this function can do: - OK Standardize the default "\export" directory - OK Give path for csv data file - OK Give path for csv dashboard file; prepend "dash_" - OK Give path for xlsx file only (no dashboard) - OK Support overwrite protection of pre-existing files - OK Reprocess paths for temporary files - X Join path components and return a safe path - X Accept directory paths arg to override the default path; security issue Key Terms: * currpath = current working directory * dirpath = full path - base name * filepath = full path (includes suffix) * basename = prefix + filename + suffix * filename = base name - suffix - prefix Raises ------ OSError : verify working directory starts at the package root prior writing. Returns ------- str Default export directory path, unless given other information ''' # Helpers ----------------------------------------------------------------- def protect_overwrite(filepath): '''Return a new filepath by looping existing files and incrementing. Notes ----- - Check for duplicates before writing; overwrite protection - Read dir if file exists. Append counter to path name if exists. ''' basename = os.path.basename(filepath) dirpath = os.path.dirname(filepath) counter = 1 # Edit basename while os.path.isfile(filepath): ##suffix = [ext for ext in EXTENSIONS if basename.endswith(ext)][0] ##filename = basename.replace(suffix, '') filename, suffix = os.path.splitext(basename) logging.debug('filename: {}, suffix: {}'.format(filename, suffix)) increment = ''.join(['(', str(counter), ')']) filename = ''.join([filename, increment]) logging.info("Overwrite protection: filename exists." " Incrementing name to '{}' ...".format(filename)) # Pretend the default directory path with a simple recursive call ##filepath = get_path(filename=filename, suffix=suffix, overwrite=True) # or inifinite loop filepath = os.path.join(dirpath, ''.join([filename, suffix])) counter += 1 return filepath # Reset Defaults ---------------------------------------------------------- if filename is None: filename = '' if prefix is None: prefix = '' if suffix is None: suffix = '' elif suffix.endswith('csv'): suffix = config.EXTENSIONS[0] elif suffix.endswith('xlsx'): suffix = config.EXTENSIONS[1] # Set Root/Source/Default Paths ------------------------------------------- # The export folder is relative to the root (package) path # TODO: replace with config.DEFAULTPATH sourcepath = os.path.abspath(os.path.dirname(la.__file__)) packagepath = os.path.dirname(sourcepath) if not os.path.isfile(os.path.join(packagepath, 'setup.py')): raise OSError( 'Package root path location is not correct: {}' ' Verify working directory is ./lamana.'.format(packagepath) ) defaultpath = os.path.join(packagepath, 'export') dirpath = defaultpath logging.debug('Root path: {}'.format(packagepath)) if not filename and (suffix or dashboard): logging.warn("Missing 'filename' arg. Using default export directory ...") # File Path --------------------------------------------------------------- if validate: # Just check if exists. Give new filepath is so. return protect_overwrite(validate) if filename: prefix = 'dash_'if dashboard and suffix.endswith('csv') else '' if dashboard and not suffix.endswith('csv'): logging.info('Only .csv files support separate dashboards.' ' Using default export directory...') if not suffix: logging.warn('Missing suffix. No action taken.') basename = ''.join([prefix, filename, suffix]) filepath = os.path.join(dirpath, basename) if not overwrite: return protect_overwrite(filepath) return filepath return dirpath def export(L_, overwrite=False, prefix=None, suffix=None, order=None, offset=3, dirpath=None, temp=False, keepname=True, delete=False): '''Write LaminateModels and FeatureInput to files; return a tuple of paths. Supported formats: - .csv: two files; separate data and dashboard files - .xlsx: one file; data and dashboard sheets Parameters ---------- L_ : Laminate-like object Laminate or subclass containing attributes and calculations. overwrite : bool; default False Save over files with the same name. Prevents file incrementation and excess files after cyclic calls. prefix : str; default None Prepend a prefix to the filename. Conventions are: - '' : legacy or new - 'w': written by the package - 't': temporary file; used when tempfile is renamed - 'r': redone; altered from legacy - 'dash': dashboard suffix : |'.csv'|'.xlsx'| Determines the file format by appending to filename; default '.xlsx'. order: list Keys of the FeatureInput. offset : int Blank columns between data in the dashboard. dirpath : str, optional; default "/export" directory Directory path to store resulting csv files; custom path NotImplemented. temp : bool, default False Make temporary files in the OS Temp directory instead. keepname : bool, True Toggle renaming temporary files; temp must be True. delete : bool, default False Force file removal after created; mainly used for temporary files. Returns ------- tuple Full file paths (str) of the created files LM and dashboard data. See Also -------- - get_path(): deals with munging paths and validations - convert_featureinput(): convert dict values to DataFrames - reorder_featureinput(): make and ordered list for the dashboard - make_tempfile(): review how Python 'mkstemp' makes temp; NotImplemented - rename_tempfile(): rename the file post closing file. Notes ----- Contents are written into an "/export" directory. FeatureInput data a.k.a "dashboard". We use mkstemp (low-level), which leaves it open for to_excel to write. Here are technical characteristics: - OK Outputs different file formats. - OK Writes regular or temporary files (get auto-deleted by the OS; for tests) - OK Calls helper functions to clean paths and datastructures. - OK Allows prefixing for file indentification. - OK Outputs data and dashboards. - OK Works even when files exist in the directory. - OK Auto creates "\export" directory if none exists. - OK Renames temporary files by default. - OK Support Laminate and LaminateModel objects - X Supports custom directory paths. Examples -------- >>> from lamana.utils import tools as ut >>> case = ut.laminator('400.0-[200.0]-800.0')[0] >>> LM = case.LMs[0] >>> export(LM) '~/lamana/export/laminatemodel_5ply_p5_t2.0_400.0-[200.0]-800.0.xlsx' >>> # Overwrite Protection >>> export(LM, overwrite=False) '~/lamana/export/laminatemodel_5ply_p5_t2.0_400.0-[200.0]-800.0(1).xlsx' >>> # Optional .csv Format >>> export(LM, suffix='.csv') '~/lamana/export/dash_laminatemodel_5ply_p5_t2.0_400.0-[200.0]-800.0.csv' '~/lamana/export/laminatemodel_5ply_p5_t2.0_400.0-[200.0]-800.0.csv' >>> # Optional Temporary Files >>> export(LM, suffix='.csv', temp=True) 'temp/t_dash_laminatemodel_5ply_p5_t2.0_400.0-[200.0]-800.0.csv' 'temp/t_laminatemodel_5ply_p5_t2.0_400.0-[200.0]-800.0.csv' >>> # Supports Laminate objects too >>> from lamana.models import Wilson_LT as wlt >>> dft = wlt.Defaults() >>> L = la.constructs.Laminate(dft.FeatureInput) >>> export(L) '~/lamana/export/dash_laminate_5ply_p5_t2.0_400.0-[200.0]-800.0.xlsx' ''' # Parse for Filename ------------------------------------------------------ nplies = L_.nplies p = L_.p # TODO: Fix units t_total = L_.total * 1e3 # (in mm) geo_string = L_.Geometry.string FI = L_.FeatureInput # Path Munge -------------------------------------------------------------- if prefix is None: prefix = '' if suffix is None: suffix = config.EXTENSIONS[1] # .xlsx if dirpath is None: ### # Prepend files with 'w' for "written" by the package # NOTE: removed default w_ prefix; check the control and other uses to maintain coding # TODO: rename legacy files with "l_" ### if hasattr(L_, 'LMFrame'): kind = 'laminatemodel' else: kind = 'laminate' filename = r'{}{}_{}ply_p{}_t{:.1f}_{}'.format( prefix, kind, nplies, p, t_total, geo_string) # Force-create export directory or path (REF 047) # Send file to export directory defaultpath = get_path() if not os.path.exists(defaultpath): # TODO: Make sure this log prints out logging.info( 'No default export directory found. Making directory {} ...'.format(defaultpath) ) os.makedirs(defaultpath) else: raise NotImplementedError('Custom directory paths are not yet implemented.') # Prepare FeatureInput ---------------------------------------------------- if order is None: order = ['Geometry', 'Model', 'Materials', 'Parameters', 'Globals', 'Properties'] # default converted_FI = convert_featureinput(FI) reordered_FI = reorder_featureinput(converted_FI, order) # elevates strings dash_df =
pd.concat(converted_FI)
pandas.concat
# import pyedflib import numpy as np from scipy import signal as sg import argparse import sys import json # import matplotlib.pyplotmatplot as plt from pprint import pprint import pandas as pd class Notch(): Q = 0 f0 = 0 def __init__(self,f0=60,Q=50): self.f0=f0 self.Q=Q def argparse(self): parser = argparse.ArgumentParser() parser.add_argument('-i','--archivo',help='Ingrese el nombre del archivo .edf a utilizar',type = str) parser.add_argument('-fo','--fo',help='Frecuencia que se desea filtrar. Por defecto fo = 60',type = float) parser.add_argument('-Q','--Q',help='Factor de calidad del filtro. Por defecto Q = 50',type = int) parser.add_argument('-e','--edf',help='Nombre y dirección del archivo .edf de salida',type = str) parsedargs = parser.parse_args() arc = parsedargs.archivo output = parsedargs.edf if (parsedargs.fo != None): if (parsedargs.fo> 0): self.f0 = parsedargs.fo if (parsedargs.Q != None): if (parsedargs.Q>0): self.Q = parsedargs.Q return arc,output # def read_edf(self,nameEdf): # ''' # Descripción: Se encarga de leer el archivo .edf # Entradas: - nameEdf: nombre del archivo .edf # Salidas: - in_signal: Matriz de Canales X Tiempo # - fs: Frecuencia de muestro # - headers: Etiquetas del archivo .edf # ''' # edf = pyedflib.EdfReader(nameEdf) # headers = edf.getSignalHeaders() # nch = edf.signals_in_file # nsig = edf.getNSamples()[0] # fs = edf.getSampleFrequency(0) # in_signal = np.zeros((nch,nsig)) # for x in range(nch): # in_signal[x,:] = edf.readSignal(x) # edf._close() # del edf # return in_signal,fs,headers def filt(self,in_signal,fs): ''' Descripción: Se encarga de filtrar los datos del EEG Entradas: - in_signal: Matriz de Canales X Tiempo - fs: Frecuencia de muestro Salidas: - out_signal: EEG filtrado (Matriz de CanalesXTiempo) ''' w0 = self.f0/(fs/2) num,den = sg.iirnotch(w0,self.Q) out_signal = np.zeros((len(in_signal),len(in_signal[0]))) for i in range(0,len(in_signal)): out_signal[i]=sg.filtfilt(num,den,in_signal[i]) return out_signal,num,den # def write_edf(self,in_signal,headers,nameEdf): # ''' # Descripción: Se encarga de escribir los datos del nuevo EEG # Entradas: - headers: etiquetas del .edf # - in_signal: Matriz de Canales X Tiempo # - nameEdf : Nombre con el que se desea guardar el nuevo .edf # ''' # edf = pyedflib.EdfWriter(nameEdf,len(in_signal),file_type=pyedflib.FILETYPE_EDFPLUS) # edf_info = [] # edf_signal = [] # for i in range (len(in_signal)): # channel_info={'label':headers[i]['label'],'dimension':headers[i]['dimension'],'sample_rate':headers[i]['sample_rate'],'physical_max':headers[i]['physical_max'] , 'physical_min': headers[i]['physical_min'], 'digital_max': headers[i]['digital_max'], 'digital_min': headers[i]['digital_min'], 'transducer':headers[i]['transducer'] , 'prefilter':headers[i]['prefilter']+',notch '+str(self.f0)+'Hz'} # edf_info.append(channel_info) # edf_signal.append(in_signal[i]) # edf.setSignalHeaders(edf_info) # edf.writeSamples(edf_signal) # edf.close() # del edf #Read data from stdin def read_in(): lines = sys.stdin.readlines() #Since our input would only be having one line, parse our JSON data from that return json.loads(lines[0]) if __name__ == '__main__': notch1 = Notch() # argparse input mode # print ("start of notch") # arc,output = notch1.argparse() # signal , fs ,headers= notch1.read_edf(arc) # filtered_signal,num,den = notch1.filt(signal[:,232250:234750],fs) # print("size of output",filtered_signal.shape) # print(vals) # print("size of input",in_signal.shape) # fig,subplt=plt.subplots(3,1,figsize=(8,5)) # subplt[0].plot(t,inp[9][ni:nf]) # subplt[0].title.set_text('Señal original') # subplt[0].grid() #notch1.write_edf(filtered_signal,headers,output) # python-shell input mode inSignals=read_in() nch=len(inSignals) nSamples = len(inSignals[0]['data']) fs=inSignals[0]['samplefrequency'] # print(nch,nSamples) in_signal = np.zeros((nch,nSamples)) # print(len(inSignals)) # print(len(inSignals[0]['data'])) currentCh=0 for item in inSignals: for subitem in item['data']: subitem.pop('time', None) df =
pd.DataFrame(item['data'])
pandas.DataFrame
import plotly.express as px import plotly.graph_objects as go import pandas as pd import numpy as np from simRunSensitivityApr15 import simGenerator pd.options.display.max_columns = 100 class senAnalyze: colorFile = 'colors_dict_April_15_2021.xlsx' incomeDict = {'Low': 9000, 'Medium': 19500, 'High': 1000000} Age = {'Under 65': 65, 'Above 65': 65} gridBG = '#f2f2f2' def __init__(self): self.sim = simGenerator() self.res_df = self.sim.generateSimulation() self.colorExcel = pd.read_excel(senAnalyze.colorFile) self.res_df['stay'] = 0 self.res_df['stay'] = self.res_df['status'].apply( lambda x: 1 if x == 'stay' else 0) self.res_df['leave'] = 0 self.res_df['leave'] = self.res_df['status'].apply( lambda x: 1 if x == 'leave' else 0) self.res_df['New Comers'] = 0 self.res_df['New Comers'] = self.res_df['status'].apply( lambda x: 1 if x == 'New Comers' else 0) self.res_df.fillna(0, inplace=True) self.res_df['Under 65'] = 0 self.res_df['Above 65'] = 0 self.res_df['Low Income'] = 0 self.res_df['Medium Income'] = 0 self.res_df['High Income'] = 0 self.res_df['Under 65'] = self.res_df['age'].apply( lambda x: 1 if x < 65 else 0) self.res_df['Above 65'] = self.res_df['age'].apply( lambda x: 1 if x >= 65 else 0) self.res_df['Low Income'] = self.res_df['income'].apply( lambda x: 1 if (x < senAnalyze.incomeDict['Low']) else 0) self.res_df['Medium Income'] = self.res_df['income'].apply( lambda x: 1 if (x >= senAnalyze.incomeDict['Low']) & (x < senAnalyze.incomeDict['Medium']) else 0) self.res_df['High Income'] = self.res_df['income'].apply( lambda x: 1 if (x >= senAnalyze.incomeDict['Medium']) else 0) self.cols_keep = ['aprtmentSize', 'ProjNumber', 'yearsInBldg', 'age', 'rent', 'own', 'agentID', 'prjectType', 'tic', 'status', 'CostForStaying', 'rentPrice', 'stay', 'leave', 'New Comers', 'Under 65', 'Above 65', 'Low Income', 'Medium Income', 'High Income'] self.cols_stat = ['aprtmentSizeMean', 'ProjNumber', 'yearsInBldgMean', 'aprtmentSizeMeanStay', 'aprtmentSizeNewComer', 'AgeMean', 'AgeMeanNew', 'AgeMeanStay', 'AgeMeanLeave', 'AgeOldStayNew', 'AgeYoungStayNew', 'AgeOldStay', 'AgeYoungStay', 'AgeOldNew', 'AgeYoungNew', 'IncomeMean', 'IncomeMeanStay', 'IncomeMeanNew', 'IncomeMeanLeave', 'IncomeHighStay', 'IncomeMedStay', 'IncomeLowStay', 'IncomeHighNew', 'IncomeMedNew', 'IncomeLowNew', 'IncomeHighStayNew', 'IncomeMedStayNew', 'IncomeLowStayNew', 'meanIncomeStay', 'meanIncomeNewComers', 'meanIncomeStay_N_new', 'rentCount', 'ownCount', 'rentStayCount', 'rentNewCount', 'ownStayCount', 'ownNewCount', 'TotalAgentsCount', 'prjectType', 'tic', 'stay', 'new comers', 'CostForStaying', 'rentPrice'] self.res2 =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Series, date_range, ) import pandas._testing as tm from pandas.core.api import Int64Index class TestDataFrameTruncate: def test_truncate(self, datetime_frame, frame_or_series): ts = datetime_frame[::3] if frame_or_series is Series: ts = ts.iloc[:, 0] start, end = datetime_frame.index[3], datetime_frame.index[6] start_missing = datetime_frame.index[2] end_missing = datetime_frame.index[7] # neither specified truncated = ts.truncate() tm.assert_equal(truncated, ts) # both specified expected = ts[1:3] truncated = ts.truncate(start, end) tm.assert_equal(truncated, expected) truncated = ts.truncate(start_missing, end_missing) tm.assert_equal(truncated, expected) # start specified expected = ts[1:] truncated = ts.truncate(before=start) tm.assert_equal(truncated, expected) truncated = ts.truncate(before=start_missing) tm.assert_equal(truncated, expected) # end specified expected = ts[:3] truncated = ts.truncate(after=end) tm.assert_equal(truncated, expected) truncated = ts.truncate(after=end_missing) tm.assert_equal(truncated, expected) # corner case, empty series/frame returned truncated = ts.truncate(after=ts.index[0] - ts.index.freq) assert len(truncated) == 0 truncated = ts.truncate(before=ts.index[-1] + ts.index.freq) assert len(truncated) == 0 msg = "Truncate: 2000-01-06 00:00:00 must be after 2000-02-04 00:00:00" with pytest.raises(ValueError, match=msg): ts.truncate( before=ts.index[-1] - ts.index.freq, after=ts.index[0] + ts.index.freq ) def test_truncate_copy(self, datetime_frame): index = datetime_frame.index truncated = datetime_frame.truncate(index[5], index[10]) truncated.values[:] = 5.0 assert not (datetime_frame.values[5:11] == 5).any() def test_truncate_nonsortedindex(self, frame_or_series): # GH#17935 obj = DataFrame({"A": ["a", "b", "c", "d", "e"]}, index=[5, 3, 2, 9, 0]) if frame_or_series is Series: obj = obj["A"] msg = "truncate requires a sorted index" with pytest.raises(ValueError, match=msg): obj.truncate(before=3, after=9) def test_sort_values_nonsortedindex(self): # TODO: belongs elsewhere? rng = date_range("2011-01-01", "2012-01-01", freq="W") ts = DataFrame( {"A": np.random.randn(len(rng)), "B": np.random.randn(len(rng))}, index=rng ) msg = "truncate requires a sorted index" with pytest.raises(ValueError, match=msg): ts.sort_values("A", ascending=False).truncate( before="2011-11", after="2011-12" ) def test_truncate_nonsortedindex_axis1(self): # GH#17935 df = DataFrame( { 3: np.random.randn(5), 20: np.random.randn(5), 2: np.random.randn(5), 0: np.random.randn(5), }, columns=[3, 20, 2, 0], ) msg = "truncate requires a sorted index" with pytest.raises(ValueError, match=msg): df.truncate(before=2, after=20, axis=1) @pytest.mark.parametrize( "before, after, indices", [(1, 2, [2, 1]), (None, 2, [2, 1, 0]), (1, None, [3, 2, 1])], ) @pytest.mark.parametrize("klass", [Int64Index, DatetimeIndex]) def test_truncate_decreasing_index( self, before, after, indices, klass, frame_or_series ): # https://github.com/pandas-dev/pandas/issues/33756 idx = klass([3, 2, 1, 0]) if klass is DatetimeIndex: before = pd.Timestamp(before) if before is not None else None after =
pd.Timestamp(after)
pandas.Timestamp
from unittest import TestCase from collections import Counter import pandas as pd import numpy as np from scripts.vars import CONDITIONAL, TAG, BORDERLINE, SAFE, NOISY from scripts.utils import add_tags, Bounds import scripts.vars as my_vars class TestAddTags(TestCase): """Tests add_tags() from utils.py""" def test_add_tags_safe_borderline(self): """Add tags when using nominal and numeric features assigning borderline and safe as tags""" df = pd.DataFrame({"A": ["low", "low", "high", "low", "low", "high"], "B": [1, 1, 4, 1.5, 0.5, 0.75], "C": [3, 2, 1, .5, 3, 2], "Class": ["apple", "apple", "banana", "banana", "banana", "banana"]}) class_col_name = "Class" lookup = \ { "A": { 'high': 2, 'low': 4, CONDITIONAL: { 'high': Counter({ 'banana': 2 }), 'low': Counter({ 'banana': 2, 'apple': 2 }) } } } correct = pd.DataFrame({"A": ["low", "low", "high", "low", "low", "high"], "B": [1, 1, 4, 1.5, 0.5, 0.75], "C": [3, 2, 1, .5, 3, 2], "Class": ["apple", "apple", "banana", "banana", "banana", "banana"], TAG: [BORDERLINE, BORDERLINE, SAFE, BORDERLINE, BORDERLINE, BORDERLINE] }) my_vars.closest_rule_per_example = {} my_vars.closest_examples_per_rule = {} my_vars.seed_rule_example = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5} my_vars.seed_example_rule = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5} # Note: examples_covered_by_rule implicitly includes the seeds of all rules my_vars.examples_covered_by_rule = {} classes = ["apple", "banana"] min_max = pd.DataFrame({"C": {"min": 1, "max": 5}, "B": {"min": 1, "max": 11}}) k = 3 rules = [ pd.Series({"A": "low", "B": Bounds(lower=1, upper=1), "C": Bounds(lower=3, upper=3), "Class": "apple"}, name=0), pd.Series({"A": "low", "B": Bounds(lower=1, upper=1), "C": Bounds(lower=2, upper=2), "Class": "apple"}, name=1), pd.Series({"A": "high", "B": Bounds(lower=4, upper=4), "C": Bounds(lower=1, upper=1), "Class": "banana"}, name=2), pd.Series({"A": "low", "B": Bounds(lower=1.5, upper=1.5), "C": Bounds(lower=0.5, upper=0.5), "Class": "banana"}, name=3), pd.Series({"A": "low", "B": Bounds(lower=0.5, upper=0.5), "C": Bounds(lower=3, upper=3), "Class": "banana"}, name=4), pd.Series({"A": "high", "B": Bounds(lower=0.75, upper=0.75), "C": Bounds(lower=2, upper=2), "Class": "banana"}, name=5) ] my_vars.all_rules = {0: rules[0], 1: rules[1], 2: rules[2], 3: rules[3], 4: rules[4], 5: rules[5]} tagged = add_tags(df, k, rules, class_col_name, lookup, min_max, classes) # Due to floating point precision, use approximate comparison self.assertTrue(tagged.equals(correct)) def test_add_tags_noisy_safe(self): """Add tags when using nominal and numeric features and assigning noisy and safe as tags""" df = pd.DataFrame({"A": ["low", "low", "high", "low", "low", "high"], "B": [1, 1, 4, 1.5, 0.5, 0.75], "C": [3, 2, 1, .5, 3, 2], "Class": ["apple", "banana", "banana", "banana", "banana", "banana"]}) class_col_name = "Class" lookup = \ { "A": { 'high': 2, 'low': 4, CONDITIONAL: { 'high': Counter({ 'banana': 2 }), 'low': Counter({ 'banana': 2, 'apple': 2 }) } } } correct = pd.DataFrame({"A": ["low", "low", "high", "low", "low", "high"], "B": [1, 1, 4, 1.5, 0.5, 0.75], "C": [3, 2, 1, .5, 3, 2], "Class": ["apple", "banana", "banana", "banana", "banana", "banana"], TAG: [NOISY, BORDERLINE, SAFE, SAFE, SAFE, SAFE] }) classes = ["apple", "banana"] my_vars.closest_rule_per_example = {} my_vars.closest_examples_per_rule = {} my_vars.seed_rule_example = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5} my_vars.seed_example_rule = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5} # Note: examples_covered_by_rule implicitly includes the seeds of all rules my_vars.examples_covered_by_rule = {} min_max =
pd.DataFrame({"C": {"min": 1, "max": 5}, "B": {"min": 1, "max": 11}})
pandas.DataFrame
from abc import ABC, abstractmethod from pandas import DataFrame import json from kestrel.exceptions import KestrelInternalError class AbstractDisplay(ABC): @abstractmethod def to_string(self): pass @abstractmethod def to_html(self): pass @abstractmethod def to_json(self): pass @abstractmethod def to_dict(self): pass class DisplayDataframe(AbstractDisplay): def __init__(self, data): if isinstance(data, DataFrame): self.dataframe = data else: try: self.dataframe =
DataFrame(data)
pandas.DataFrame
from ruffus import * import pandas as pd from util.util import file_by_type import datatables.traveltime import pipeline.data_bt import pipeline.data_vs # BLUETH_YYYYMMDD.traveltime, VSDATA_YYYYMMDD.volume -> YYYYMMDD.merged @collate([pipeline.data_bt.import_bt, pipeline.data_vs.import_vs], regex(r"^data/(BLUETH|VSDATA)_(\d{8})\.(traveltime|volume)$"), r"data/\2.merged") def merge_data(infiles, mergefile): assert (len(infiles) == 2), "Expected exactly 2 files (BLUETH_... and VSDATA_...) to merge" bt_f = file_by_type(infiles, '.traveltime') # 'BLUETH_...' vs_f = file_by_type(infiles, '.volume') # 'VSDATA_...' bt = pd.read_csv(bt_f, header=None, names=['t', 'travel time']) vs =
pd.read_csv(vs_f, header=None, names=['t', 'volume'])
pandas.read_csv
import numpy as np import pandas as pd import os import csv import re import itertools import time import sys from CNN import CNN import tensorflow as tf from hashtag_separator import get_word_vectors from data_loader import load_glove_data def trainCNN(tweets, train_tweets_ind, x_valid, y_valid, y_val, glove): """ Trains CNN INPUT: tweets: Dataframe with tweets train_tweets_ind: shuffled indices of training dataset x_valid: tweets for validation y_valid: labels for tweets for validation y_val: matrix containing label for each tweet glove: glove dictionary OUTPUT: path: path to the last saved checkpoint """ with tf.Graph().as_default(): sess = tf.Session() with sess.as_default(): cnn = CNN() global_step = tf.Variable(0, name="global_step", trainable=False) learning_rate = tf.train.exponential_decay(5e-4, global_step, 500, 0.97, staircase=True, name='learning_rate') train_op = tf.train.AdamOptimizer(learning_rate, name='optimizer').minimize(cnn.loss, global_step=global_step, name='optim_operation') # Use timestamps for summaries timestamp = str(int(time.time())) out_dir = os.path.abspath(os.path.join("../data/models/", timestamp)) # Loss, train and validation accuracy summaries for visualization loss_summary = tf.summary.scalar('loss', cnn.loss) acc_summary = tf.summary.scalar('accuracy', cnn.accuracy) lambda_summary = tf.summary.scalar('learning_rate', learning_rate) train_summary_op = tf.summary.merge([loss_summary, acc_summary, lambda_summary], name='training_summaries') train_summary_dir = os.path.join(out_dir, 'summaries', 'train') train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph) valid_summary_op = tf.summary.merge([loss_summary, acc_summary], name='validation_summaries') valid_summary_dir = os.path.join(out_dir, 'summaries', 'validation') valid_summary_writer = tf.summary.FileWriter(valid_summary_dir, sess.graph) # Checkpoint checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver = tf.train.Saver(tf.all_variables(), max_to_keep=50, name='saver') sess.run(tf.global_variables_initializer()) def train_step(x_batch, y_batch): feed_dict = {cnn.x: x_batch, cnn.y: y_batch, cnn.dropout_prob: 0.5} _, step, summaries, loss, accuracy = sess.run([train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy], feed_dict) print('step %d, loss %.3f, accuracy %.2f' %(step,loss,100*accuracy)) train_summary_writer.add_summary(summaries, step) def valid_step(x_batch, y_batch): feed_dict = {cnn.x: x_batch, cnn.y: y_batch, cnn.dropout_prob:1.0} step, summaries, loss, accuracy, pred = sess.run([global_step, valid_summary_op, cnn.loss, cnn.accuracy, cnn.y_pred], feed_dict) print('step %d, loss %.3f, accuracy %.2f' %(step,loss,100*accuracy)) valid_summary_writer.add_summary(summaries, step) for epoch in range(30): for batch_ind in batch_iter(train_tweets_ind, 1024): minibatch_x = get_word_vectors(tweets.loc[batch_ind], glove) minibatch_y = y_val[batch_ind, :] train_step(minibatch_x, minibatch_y) current_step = tf.train.global_step(sess, global_step) if current_step % 20 == 0: print("\nEvaluation:") valid_step(x_valid, y_valid) if current_step % 1000 == 0: path = saver.save(sess, checkpoint_prefix, global_step=current_step) print("Saved model checkpoint to {}\n".format(path)) return path def batch_iter(train_tweets_ind, batch_size): """ Batch iterator INPUT: train_tweets_ind: indices for tweets to take in the batch batch_size: size of batch """ n_ind = len(train_tweets_ind) shuffled_indices = np.random.permutation(train_tweets_ind) for batch_num in range(int(np.ceil(n_ind/batch_size))): start_index = batch_num * batch_size end_index = min((batch_num + 1) * batch_size, n_ind) if start_index != end_index: yield shuffled_indices[start_index:end_index] def eval_from_checkpoint(test_tweets, path, glove): """ Evaluates predictions based on saved checkpoint INPUT: test_tweets: Dataframe with test tweets path: location of checkpoint glove: glove dictionary OUTPUT: test_predictions: predictions of test tweets """ test_embeddings = get_word_vectors(test_tweets, glove) graph = tf.Graph() with graph.as_default(): checkpoint_file = tf.train.latest_checkpoint(path) sess = tf.Session() with sess.as_default(): saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) x = graph.get_operation_by_name("embedding").outputs[0] dropout_prob = graph.get_operation_by_name("dropout_prob").outputs[0] predictions = graph.get_operation_by_name("softmax/predicted_classes").outputs[0] test_predictions = sess.run(predictions, {x:test_embeddings, dropout_prob:1.0}) test_predictions[test_predictions==0] = -1 return test_predictions def create_submission(y_pred): """ Creates submission file INPUT: y_pred: list of predictions of test tweets """ with open("../output/submission.csv", 'w') as csvfile: fieldnames = ['Id', 'Prediction'] writer = csv.DictWriter(csvfile, delimiter=",", fieldnames=fieldnames) writer.writeheader() i = 1 for y in y_pred: writer.writerow({'Id':int(i),'Prediction':y}) i += 1 def main(): if len(sys.argv) != 2 or (sys.argv[1] not in ['train', 'eval']): print("Invalid command. Expected 'train' or 'eval'.") return if sys.argv[1] == 'train': if not os.path.exists('../data/parsed/test_full.csv'): print('test_full.csv doesn\'t exist') return None tweets_test = pd.read_csv('../data/parsed/test_full.csv', names=['id', 'tweet']) tweets_test = tweets_test.drop(columns=['id']) if not os.path.exists('../data/parsed/train_pos_full.csv'): print('train_pos_full.csv doesn\'t exist') return None if not os.path.exists('../data/parsed/train_neg_full.csv'): print('train_neg_full.csv doesn\'t exist') return None pos = pd.read_csv('../data/parsed/train_pos_full.csv', names=['tweet']) pos['sentiment']=1 neg =
pd.read_csv('../data/parsed/train_neg_full.csv', names=['tweet'])
pandas.read_csv
import pandas as pd import os import warnings def read_checkm_output(taxonomy_table, completness_table): c_df = pd.read_csv(completness_table, index_col=0,sep='\t')[ ["Completeness", "Contamination", "Strain heterogeneity"] ] t_df = pd.read_csv(taxonomy_table, index_col=0,sep='\t')[ [ "# unique markers (of 43)", "# multi-copy", "Insertion branch UID", "Taxonomy (contained)", "Taxonomy (sister lineage)", "GC", "Genome size (Mbp)", "Gene count", "Coding density", ] ] df = pd.concat([c_df, t_df], axis=1) return df def load_checkm_tax(checkm_taxonomy_file): checkmTax=
pd.read_table(checkm_taxonomy_file,index_col=0)
pandas.read_table
''' Data_Combiner.py Created on: July 22th, 2019 Author: <NAME> Script intended to take all of the .xlsx files from a folder and combine them into a single csv file. Additional data features including a moving average and a change in each variable are added to potentially improve machine learning algorithms, which is the next code to run after combining all of the data. Last updated 7/24/19 ''' import os, csv import pandas as pd import numpy as np file_list = os.listdir() file_list.remove('Data_Combiner.py') if('All_Data.csv' in file_list): file_list.remove('All_Data.csv') if('Data_Analysis.py' in file_list): file_list.remove('Data_Analysis.py') if('Data_Collector_script.py' in file_list): file_list.remove('Data_Collector_script.py') #print(file_list) def avging(df, col, num_points): indexer = 0 avging = np.array([df[col][0]]*num_points) avg = [] for value in df[col]: avging[indexer] = value avg.append(np.sum(avging).astype(np.float32)/num_points) if indexer == num_points-1: indexer = 0 else: indexer = indexer + 1 return avg def delta_var(df, col): deltas = [] past_val = df[col][0] for value in df[col]: deltas.append(value - past_val) past_val = value return deltas add_columns = ['Xavg', 'Yavg', 'Zavg', 'Pitchavg', 'Rollavg', 'Yawavg', 'dx', 'dy', 'dz', 'dpitch', 'droll', 'dyaw'] base_columns = ['Accel_x', 'Accel_y', 'Accel_z', 'Pitch', 'Roll', 'Yaw'] moving_average_num = 5 main_df = pd.DataFrame(columns = base_columns + add_columns + ['Danger']) empty_files = [] for item in file_list: df =
pd.read_excel(item)
pandas.read_excel
import json import multiprocessing as mp import os import re import subprocess import sys import warnings from functools import partial from operator import itemgetter from random import randint import cxxfilt import numpy as np import pandas as pd from fuzzywuzzy import fuzz from sklearn.cluster import KMeans from sofa_common import * from sofa_config import * from sofa_models import SOFATrace from sofa_print import * sofa_fieldnames = [ "timestamp", # 0 "event", # 1 "duration", # 2 "deviceId", # 3 "copyKind", # 4 "payload", # 5 "bandwidth", # 6 "pkt_src", # 7 "pkt_dst", # 8 "pid", # 9 "tid", # 10 "name", # 11 "category"] # 12 """ Move sofa_hsg from sofa_preprocess to sofa_hsg Goal: step 1 sofa record "the program" --logdir sofalog1 step 2 sofa record "the program" --logdir sofalog2 step 3 sofa diff --base_logdir=sofalog1 --match_logdir=sofalog2 """ def list_downsample(list_in, plot_ratio): new_list = [] for i in range(len(list_in)): if i % plot_ratio == 0: # print("%d"%(i)) new_list.append(list_in[i]) return new_list def cpu_trace_read_hsg(sample, t_offset, cfg, cpu_mhz_xp, cpu_mhz_fp): fields = sample.split() event = event_raw = 0 counts = 0 if re.match(r'\[\d+\]', fields[1]) is not None: time = float(fields[2].split(':')[0]) func_name = '[%s]'%fields[4].replace('-','_') + fields[6] + fields[7] counts = float(fields[3]) event_raw = 1.0 * int("0x01" + fields[5], 16) # add new column to cpu_traces feature_types = fields[3].split(':')[0] mem_addr = fields[5] else: time = float(fields[1].split(':')[0]) func_name = '[%s]'%fields[3].replace('-','_') + fields[5] + fields[6] counts = float(fields[2]) event_raw = 1.0 * int("0x01" + fields[4], 16) # add new column to cpu_traces feature_types = fields[3].split(':')[0] mem_addr = fields[4] if not cfg.absolute_timestamp: time = time - cfg.time_base t_begin = time + t_offset t_end = time + t_offset if len(cpu_mhz_xp) > 1: duration = counts/(np.interp(t_begin, cpu_mhz_xp, cpu_mhz_fp)*1e6) else: duration = counts/(3000.0*1e6) event = np.log10(event_raw) if cfg.perf_events.find('cycles') == -1: duration = np.log2(event_raw/1e14) trace = [t_begin, # 0 event, # % 1000000 # 1 duration, # 2 -1, # 3 -1, # 4 0, # 5 0, # 6 -1, # 7 -1, # 8 int(fields[0].split('/')[0]), # 9 int(fields[0].split('/')[1]), # 10 func_name, # 11 0, # 12 feature_types, # 13 mem_addr] # 14 return trace def random_generate_color(): rand = lambda: randint(0, 255) return '#%02X%02X%02X' % (rand(), rand(), rand()) def kmeans_cluster(num_of_cluster, X): ''' num_of_cluster: how many groups of data you prefer X: input taining data ''' random_state = 170 try: num_of_cluster = 5 y_pred = KMeans(n_clusters=num_of_cluster, random_state=random_state).fit_predict(X) except : num_of_cluster = len(X) # minimum number of data y_pred = KMeans(n_clusters=num_of_cluster, random_state=random_state).fit_predict(X) return y_pred def sofa_hsg(cfg, swarm_groups, swarm_stats, t_offset, cpu_mhz_xp, cpu_mhz_fp): """ hierarchical swarm generation """ with open(cfg.logdir + 'perf.script') as f, warnings.catch_warnings(): warnings.filterwarnings("ignore") samples = f.readlines() print_info(cfg, "Length of cpu_traces for HSG = %d" % len(samples)) if len(samples) > 0: with mp.Pool() as pool: res = pool.map( partial( cpu_trace_read_hsg, t_offset = t_offset, cfg = cfg, cpu_mhz_xp = cpu_mhz_xp, cpu_mhz_fp = cpu_mhz_fp ), samples) cpu_traces = pd.DataFrame(res) sofa_fieldnames_ext = sofa_fieldnames + ["feature_types", "mem_addr"] # mem_addr for swarm-diff cpu_traces.columns = sofa_fieldnames_ext cpu_traces.to_csv( cfg.logdir + 'hsg_trace.csv', mode='w', header=True, index=False, float_format='%.6f') res_viz = list_downsample(res, cfg.plot_ratio) swarm_cpu_traces_viz = pd.DataFrame(res_viz) swarm_cpu_traces_viz.columns = sofa_fieldnames_ext char1 = ']' char2 = '+' # demangle c++ symbol, little dirty work here... swarm_cpu_traces_viz['name'] = swarm_cpu_traces_viz['name'].apply( lambda x: cxxfilt.demangle(str( x[x.find(char1)+1 : x.find(char2)].split('@')[0] )) ) ### N features ### ## In order to merge, give unique id of each data within 10 msec by time quotient swarm_cpu_traces_viz['quotient'] = swarm_cpu_traces_viz['timestamp'].apply(lambda x: int( x * 1000 // 10)) # //: quotient # count feature_types in each 10 msec groups, and create a dictionary for mapping df2s = {} for quotient, dataframe in swarm_cpu_traces_viz.groupby(['quotient','event']): # api value_counts(): return pandas series df2s[quotient] = dataframe.feature_types.value_counts() df2 = pd.DataFrame.from_dict(df2s, orient='index').fillna(0).astype(np.int64) df = swarm_cpu_traces_viz.copy() swarm_cpu_traces_viz = pd.merge(df, df2, left_on=['quotient','event'], right_index=True).copy() ### swarm seperation by memory location #swarm_groups = [] feature_list = ['event'] if cfg.hsg_multifeatures: with open(cfg.logdir+'perf_events_used.txt','r') as f: lines = f.readlines() feature_list.extend(lines[0].split(',')) try: feature_list.remove('cycles') feature_list.remove('event') except: pass print_info(cfg, 'HSG features: '+','.join(feature_list)) idx = 0 showing_idx = 0 if len(cpu_traces) > 0: # get memory index by cheange float to integer swarm_cpu_traces_viz['event_int'] = swarm_cpu_traces_viz.event.apply(lambda x: int(x)) # add new column 'event_int' # swarm seperate event_groups = swarm_cpu_traces_viz.groupby('event_int') #swarm_stats = [] # add different swarm groups for mem_index, l1_group in event_groups: # kmeans X = pd.DataFrame(l1_group['event']) num_of_cluster = 2 y_pred = kmeans_cluster(num_of_cluster, X) # add new column # TODO: Eliminate warning of SettingWithCopyWarning l1_group['cluster'] = y_pred #for i in range(len(y_pred)): # group.loc[i, 'cluster'] = y_pred[i] # group by new column clusters = l1_group.groupby('cluster') for l2_group_idx, l2_group in clusters: # group by process id #pid_clusters = cluster.groupby('pid') X = pd.DataFrame(l2_group['event']) num_of_cluster = 4 y_pred = kmeans_cluster(num_of_cluster, X) # add new column l2_group['cluster'] = y_pred #for i in range(len(y_pred)): # l2_group.loc[i, 'cluster'] = y_pred[i] # group by new column l3_groups = l2_group.groupby('cluster') for l3_group_idx, l3_group in l3_groups: # kmeans X = pd.DataFrame(l3_group['event']) num_of_cluster = 4 y_pred_pid_cluster = kmeans_cluster(num_of_cluster, X) # add new column l3_group['cluster_in_pid'] = y_pred_pid_cluster # group by new column cluster_in_pid_clusters = l3_group.groupby('cluster_in_pid') for mini_cluster_id, cluster_in_pid_cluster in cluster_in_pid_clusters: # duration time total_duration = cluster_in_pid_cluster.duration.sum() mean_duration = cluster_in_pid_cluster.duration.mean() count = len(cluster_in_pid_cluster) # swarm diff # caption: assign mode of function name mode = str(cluster_in_pid_cluster['name'].mode()[0]) # api pd.Series.mode() returns a pandas series mode = mode.replace('::', '@') # str.replace(old, new[, max]) # print('mode of this cluster: {}'.format(str(mode[:35]))) # uncomment this line of code when you need to check the mode of cluster swarm_stats.append({'keyword': 'SWARM_' + '["' + str(mode[:35]) + ']' + ('_' * showing_idx), 'duration_sum': total_duration, 'duration_mean': mean_duration, 'example':cluster_in_pid_cluster.head(1)['name'].to_string().split(' ')[2], 'count':count}) swarm_groups.append({'group': cluster_in_pid_cluster.drop(columns = ['event_int', 'cluster', 'cluster_in_pid']), # data of each group 'color': random_generate_color(), 'keyword': 'SWARM_' + '[' + str(mode[:35]) + ']' + ('_' * showing_idx), 'total_duration': total_duration}) idx += 1 swarm_groups.sort(key=itemgetter('total_duration'), reverse = True) # reverse = True: descending swarm_stats.sort(key=itemgetter('duration_sum'), reverse = True) print_title('HSG Statistics - Top-%d Swarms'%(cfg.num_swarms)) print('%45s\t%13s\t%30s'%('SwarmCaption', 'ExecutionTime[sum,mean,count] (s)', 'Example')) for i in range(len(swarm_stats)): if i >= cfg.num_swarms: break else: swarm = swarm_stats[i] print('%45s\t%.6lf, %.6lf, %6d\t%45s' % (swarm['keyword'], swarm['duration_sum']/4.0, swarm['duration_mean']/4.0, swarm['count'], swarm['example'])) return swarm_groups, swarm_stats def sofa_hsg_to_sofatrace(cfg, swarm_groups, traces): # record_for_auto_caption = True # temperarily: for auto-caption dummy_i = 0 auto_caption_filename_with_path = cfg.logdir + 'auto_caption.csv' with open(auto_caption_filename_with_path,'w') as f: f.close() for swarm in swarm_groups[:cfg.num_swarms]: if cfg.display_swarms: sofatrace = SOFATrace() # file.class sofatrace.name = 'swarm' + str(dummy_i) # avoid errors casued by JavaScript. No special meaning, can be random unique ID. sofatrace.title = swarm['keyword'] # add number of swarm sofatrace.color = swarm['color'] sofatrace.x_field = 'timestamp' sofatrace.y_field = 'duration' sofatrace.data = swarm['group'].copy() traces.append(sofatrace) # append to csv file every time using pandas funciton swarm['group']['cluster_ID'] = dummy_i # add new column cluster ID to dataframe swarm['group'] copy = swarm['group'].copy() #print('*************************') copy.to_csv(auto_caption_filename_with_path, mode='a', header=False, index=False) #print('\nRecord for auto-caption, data preview: \n{}'.format(copy.head(2))) #print('*************************') # --- for auto-caption --- # dummy_i += 1 csv_input = pd.read_csv(auto_caption_filename_with_path, names=list(copy)) if 'instructions' not in copy.columns: csv_input.insert(17, 'instructions', 0) if 'cache-misses' not in copy.columns: csv_input.insert(18, 'cache-misses', 0) if 'branch-miss' not in copy.columns: csv_input.insert(19, 'branch-misses', 0) csv_input.to_csv(auto_caption_filename_with_path, header=False) return traces def matching_two_dicts_of_swarm(standard_dict, matching_dict, res_dict): """ String Matching Funciton: match two dictoinaries with same amount of key-value pairs and return matching result, a dict of dict called res_dict. * standard_dict: The standard of dict * matching_dict: The dict that i want to match * res_dict: the result, a dict of dict """ key = 0 # key: number, no string pop_list = [k for k,v in matching_dict.items()] #print(pop_list) for i in standard_dict.keys(): # control access index of standard_dict. a more pythonic way threshold = 0 for j in pop_list: # control access index of matching_dict f_ratio = fuzz.ratio(standard_dict[i], matching_dict[j]) if f_ratio > threshold: # update matching result only when the fuzz ratio is greater #print('New matching fuzz ratio {} is higher than threshold {}'\ # .format(f_ratio, threshold)) key = j # update key threshold = f_ratio # update threshold value #print('Update new threshold {}'\ # .format(threshold)) res_dict.update({i: {j: matching_dict[i]}}) # # pop out matched key-value pair of matching dict if pop_list: pop_list.remove(key) # remove specific value. remove() fails when no elements remains #print(res_dict) return res_dict # return result dict def evaluation_of_matching_result(base_df, matching_df1, final_df, eval_list, tmp_dict): """ calculate intersection rate of two dataframe intersection rate = num_t_stdswarm / total_num_t_mtchswarm num_t_stdswarm: traces in standard swarm total_num_t_mtchswarm: total traces number in matching swarm """ base_duration_list = [] match_duration_list = [] diff_list = [] # calculate num_t_stdswarm & total_num_t_mtchswarm for id_of_cluster in final_df.index: base_id = final_df['base_cluster_ID'].loc[id_of_cluster] bs_df = base_df.groupby(['cluster_ID','function_name'])\ .agg({'function_name':['count']})\ .loc[base_id]\ .reset_index() bs_df.columns = ['base_func_name', 'count'] # sum up duration time base_total_duration = base_df['duration'].loc[base_df['cluster_ID'] == id_of_cluster].sum() #print('base_total_duration = {} sec'.format(base_total_duration)) #print('Function name in cluster: \n{}\n'.format(bs_df.sort_values(by=['count'], ascending=False))) # total_num_t_mtchswarm match_id = final_df['match_cluster_ID'].loc[id_of_cluster] match_df = matching_df1.groupby(['cluster_ID','function_name'])\ .agg({'function_name':['count']})\ .loc[match_id]\ .reset_index() match_df.columns = ['match_func_name', 'count'] # sum up duration time match_total_duration = matching_df1['duration'].loc[matching_df1['cluster_ID'] == id_of_cluster].sum() total_num_t_mtchswarm = match_df['count'].sum() #print('match_total_duration = {} sec'.format(match_total_duration)) #print('Function name in cluster: \n{}\n'.format(match_df.sort_values(by=['count'], ascending=False))) #print('---------------------------------------------------------') #print('Total number of function name in cluster: {}'.format(total_num_t_mtchswarm)) # add total duration of each cluster base_duration_list.append(base_total_duration) match_duration_list.append(match_total_duration) diff_list.append(abs(base_total_duration - match_total_duration)) # To calculate num_t_stdswarm, get intersection of two cluster first intersected_df = bs_df.merge(match_df, left_on='base_func_name', right_on='match_func_name', how='outer') intersected_df.dropna(inplace=True) # drop row with NaN value and inplace intersected_df['min_value'] = intersected_df.min(axis=1) num_t_stdswarm = intersected_df['min_value'].sum() intersect_percent = num_t_stdswarm * 100 / float(total_num_t_mtchswarm) # float number if(intersect_percent != 0.0): eval_list.append(intersect_percent) #print('merge frame:\n {}\n'.format(intersected_df)) #print('num_t_stdswarm = {}'.format(num_t_stdswarm)) #print('intersection rate = (num_t_stdswarm / total_num_t_mtchswarm) x 100% = {}%'.format(intersect_percent)) #print('---------------------------------------------------------') #break; # test only one cluster # How many cluster match correctly intersect_percent = len(eval_list) * 100.0 / len(base_df['cluster_ID'].unique()) #print('Number of intersection rate > 0% percent: {}%'.format(intersect_percent)) # # deal with duration time of each cluster among two dataframes tmp_dict = {'base_duration(sec)': base_duration_list, 'match_duration(sec)': match_duration_list, 'cluster_diff(sec)': diff_list} tmp_df = pd.DataFrame.from_dict(tmp_dict) # dummy dataframe, just for concatenation final_df = pd.concat([final_df, tmp_df], axis=1, sort=False) # axis=1: horizontal direction print('Diff Report: \n{}'.format(final_df)) return final_df # return final_df in case information lost def sofa_swarm_diff(cfg): """ swarm diff: design for auto-caption. compare two different sofalog """ #print('Python verison: {}'.format(sys.version)) # check python version column_list = ["timestamp", "event", "duration", "deviceId", "copyKind", "payload", "bandwidth", "pkt_src", "pkt_dst", "pid", "tid", "function_name", "category", "feature_types", "mem_addr", "quotient", "cycles", "instructions", "cache-misses", "branch-misses", "cluster_ID"] base_df = pd.read_csv(cfg.base_logdir + 'auto_caption.csv', names=column_list) #print(base_df) #print('There are {} clusters in standard_df\n'.format(len(base_df['cluster_ID'].unique()))) base_df_groupby = base_df.groupby(['cluster_ID','function_name']).agg({'function_name':['count']}) ## --- Need refactor here --- ## ## Access data of multiIndex dataframe # get column names #TODO: fix bug of 'the label [0] is not in the [index]' print(base_df_groupby) df = base_df_groupby.loc[0].reset_index() flat_column_names = [] for level in df.columns: # tuple to list flat_column_names.extend(list(level)) # extend(): in-place if '' in flat_column_names: flat_column_names.remove('') # remove duplicate and empty #flat_column_names = filter(None, flat_column_names) # filter empty flat_column_names = list(set(flat_column_names)) # deduplicate print('original order: {}'.format(flat_column_names)) # change member order of list due to set is a random order if flat_column_names[0] == 'count': myorder = [1,0] flat_column_names = [flat_column_names[i] for i in myorder] # print('New order: {}'.format(flat_column_names)) base_df_dict = {} # Transform multi-index to single index, and update string to dict standard_df_dict for id_of_cluster in base_df['cluster_ID'].unique(): #print('\nCluster ID : {}'.format(id_of_cluster)) df = base_df_groupby.loc[id_of_cluster].reset_index() df.columns = flat_column_names #print(df.sort_values(by=['count'], ascending=False)) # pd.DataFrame.sort_values() return a DataFrame base_df_dict.update({id_of_cluster: df.function_name.str.cat(sep=' ', na_rep='?')}) ## Dataframe that i want to match matching_df1 = pd.read_csv(cfg.match_logdir + 'auto_caption.csv', names=column_list) matching_df1_groupby = matching_df1.groupby(['cluster_ID','function_name']).agg({'function_name':['count']}) # get column names df = matching_df1_groupby.loc[0].reset_index() flat_column_names = [] for level in df.columns: # tuple to list flat_column_names.extend(list(level)) # extend(): in-place # remove duplicate and empty flat_column_names = filter(None, flat_column_names) # filter empty flat_column_names = list(set(flat_column_names)) # deduplicate # print(flat_column_names) # change member order of list due to set is a random order if flat_column_names[0] == 'count': myorder = [1,0] flat_column_names = [flat_column_names[i] for i in myorder] # print('New order: {}'.format(flat_column_names)) matching_df1_dict = {} # Transform multi-index to single index, and update string to dict standard_df_dict for id_of_cluster in matching_df1['cluster_ID'].unique(): #print('\nCluster ID : {}'.format(id_of_cluster)) df = matching_df1_groupby.loc[id_of_cluster].reset_index() df.columns = flat_column_names # print(df.sort_values(by=['count'], ascending=False)) matching_df1_dict.update({id_of_cluster: df.function_name.str.cat(sep=' ', na_rep='?')}) ## --- Need refactor here --- ## res_dict = {} res_dict = matching_two_dicts_of_swarm(base_df_dict, matching_df1_dict, res_dict) ## show all stats (Ans) and matching results (algorithm) base_dict_to_df = pd.DataFrame.from_dict(base_df_dict, orient='index', columns=['Before: function_name']) base_dict_to_df['base_cluster_ID'] = base_dict_to_df.index base_dict_to_df = base_dict_to_df[['base_cluster_ID', 'Before: function_name']] res_dict_to_df = pd.DataFrame() # create an empty frame res_list = [k for k,v in res_dict.items()] for key in res_list: df = pd.DataFrame.from_dict(res_dict[key], orient='index', columns=['After: funciton name']) # res_dict[key]: a dict df['match_cluster_ID'] = df.index res_dict_to_df = res_dict_to_df.append(df, ignore_index=True) # df.append(): not in-place res_dict_to_df = res_dict_to_df[['match_cluster_ID', 'After: funciton name']] final_df =
pd.concat([base_dict_to_df, res_dict_to_df], axis=1)
pandas.concat
import numpy as np import pandas as pd import datetime as dt def make_column_index(df:pd.DataFrame, column_label:str) -> None: df.index = df[column_label] df.drop(column_label, axis=1, inplace=True) df.index.name = None def rename_column(df:pd.DataFrame, column_label:str, new_name:str) -> None: df.rename(columns={column_label: new_name}, inplace=True) def remove_outliers(df:pd.DataFrame, column_label:str) -> str: raw_data = df[column_label] mean = np.mean(raw_data) std_dev = np.std(raw_data) outliers_cutoff = std_dev * 3 lower_limit = mean - outliers_cutoff upper_limit = mean + outliers_cutoff no_outliers = raw_data.apply(lambda x: mean if x > upper_limit or x < lower_limit else x) outlier_column = f'{column_label} (-outliers)' df[outlier_column] = no_outliers return outlier_column def unstack_data(df:pd.DataFrame, metric_column:str, unstack_column:str) -> pd.DataFrame: pivoted = pd.pivot_table(df, index=['date'], values=[metric_column], columns=[unstack_column], aggfunc=[np.sum]) pivoted.columns = pivoted.columns.droplevel(0) pivoted.columns.name = None pivoted = pivoted.reset_index() pivoted.columns = [col[1] for col in pivoted.columns] metric_columns = list(pivoted.columns[1:]) metric_columns = [f"{c} | {metric_column}" for c in metric_columns] pivoted.columns = ["date"] + metric_columns pivoted.fillna(0, inplace=True) return pivoted def transpose_data(df:pd.DataFrame) -> pd.DataFrame: date_col = df.columns[0] df = df.T df.columns = df.iloc[0] df.drop(df.index[0], inplace=True) df.reset_index(inplace=True) df.rename(columns={"index": date_col}, inplace=True) df = df.rename_axis(None, axis = 1) return df def interpolate_weekly_data(df, date_col=None, resample_col=None): df = df.copy() if date_col == None: date_col = df.columns[0] if resample_col == None: resample_col = df.columns[1] df[date_col] = df[date_col].apply(lambda x: dt.datetime.strptime(f"{x}-1", "%Y-%W-%w")) # mondays df[date_col] = pd.to_datetime(df[date_col]) # datetime df.set_index(date_col, inplace=True) df_reindexed = df.reindex(pd.date_range(start=df.index.min(), end=df.index.max() + dt.timedelta(days=6), freq='1D')) col_to_resample = df_reindexed.columns[0] df_reindexed[col_to_resample] = df_reindexed[col_to_resample].fillna(0) df_reindexed[col_to_resample] = df_reindexed[col_to_resample].astype(str) df_reindexed[col_to_resample] = df_reindexed[col_to_resample].apply(lambda x: x.replace(',','')) df_reindexed[col_to_resample] = df_reindexed[col_to_resample].apply(lambda x: x.replace('$','')) df_reindexed[col_to_resample] = df_reindexed[col_to_resample].apply(lambda x: x.replace('£','')) df_reindexed[col_to_resample] = df_reindexed[col_to_resample].apply(lambda x: x.replace('€','')) df_reindexed[col_to_resample] = pd.to_numeric(df_reindexed[col_to_resample]) df_reindexed[col_to_resample].replace({0:np.nan}, inplace=True) df = df_reindexed.interpolate(method='linear') df = df / 7 df.reset_index(inplace=True) df.rename({'index': 'date'}, axis=1, inplace=True) return df def interpolate_monthly_data(df, date_col=None, resample_col=None): df = df.copy() if date_col == None: date_col = df.columns[0] if resample_col == None: resample_col = df.columns[1] df[date_col] =
pd.to_datetime(df[date_col], format="%Y-%m")
pandas.to_datetime
""" Analysis functions for nodeAnalysis.ipynb. <NAME> """ import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt import pickle import seaborn as sns def getEdgePair(node1, node2, edges): """ Get edge information that involves the specified two nodes. This function uses node indices as parameters; to pass in protein residue indices, use the function getContactPair. Parameters ---------- node1 : int Index of node_i. This is the node index not protein index. node2 : int Index of node_j. Should be larger than node_i. edges : pandas dataframe Dataframe in which to search for interaction. Returns ------- pandas dataframe Notes ----- Can't find the interaction you're looking for? Might need to add/subtract an offset if you used the diffEdges function. The offset value (with sign and magnitude) should have been printed out: "Shifting node indices by..." """ return edges[(edges.node_i == node1) & (edges.node_j == node2)] def getContactPair(res1, res2, nodes, edges): """ Get edge information that involves the two specified protein residues. This function is similar to getEdgePair but takes into protein indices. Parameters ---------- res1 : int protein residue number to use for node_i res2 : int protein resiude number to use for node_j. Should be greater than res1. nodes : pandas dataframe Dataframe in which to translate protein index to node index (indices). edges : pandas dataframe Dataframe in which to search for interaction. Returns ------- pandas dataframe """ df1 = getResidInfo(res1,nodes,resExcludes=['WAT']) df2 = getResidInfo(res2,nodes,resExcludes=['WAT']) indexList1 = df1.index.tolist() indexList2 = df2.index.tolist() print(df1, '\n\n', df2) return edges[(edges.node_i.isin(indexList1)) & (edges.node_j.isin(indexList2))] def findInEdges(nodeNum, edges, att=None): """ Find the specified node index in either node_i or node_j columns of input edges df. Parameters ---------- nodeNum : int This is the node index not protein index. edges : pandas dataframe Dataframe in which to search for node. Returns ------- pandas dataframe """ edges = edges.copy() if att is not None: return edges[(edges.attribute == att) & ((edges.node_i == nodeNum) | (edges.node_j == nodeNum))] else: return edges[(edges.node_i == nodeNum) | (edges.node_j == nodeNum)] def getResidInfo(resid, nodes, resExcludes=[]): """ Get the node information for specified protein residue index. Parameters ---------- resid : int protein residue number nodes : pandas dataframe Dataframe in which to translate protein index to node index (indices). resExcludes: list List containing strings for residues to ignore. E.g., ['WAT'] Returns ------- pandas dataframe """ nodes_id = nodes.loc[nodes['resid'] == resid] nodes_id = nodes_id[~nodes_id.resname.isin(resExcludes)] return nodes_id def idxToResid(idx, nodes, idOnly=False): """ This function takes in some node index and generates a string code of one-letter residue name and integer of residue number. Parameters ---------- idx : int integer index of the pandas dataframe nodes : pandas dataframe pandas dataframe of which to search idOnly : Boolean True to return numpy.int64 of residue number False to return code with resname abbrev ex., True returns 150; False returns 'F150:sc' Returns ------- string or numpy.int64 value of residue (based on idOnly parameter) """ aa_dict = {'CYS': 'C', 'ASP': 'D', 'SER': 'S', 'GLN': 'Q', 'LYS': 'K', 'ILE': 'I', 'PRO': 'P', 'THR': 'T', 'PHE': 'F', 'ASN': 'N', 'GLY': 'G', 'HIS': 'H', 'HSD': 'H', 'LEU': 'L', 'ARG': 'R', 'TRP': 'W', 'ALA': 'A', 'VAL':'V', 'GLU': 'E', 'TYR': 'Y', 'MET': 'M', 'GBI1':'GBI1', 'GBI2':'GBI2', 'WAT':'WAT'} #old way not conducive to taking diff of dataframes #entry = nodes.iloc[idx-1] entry = nodes.loc[nodes.index == idx] # iloc gives series, loc gives dataframe entry = entry.T.squeeze() # convert from dataframe to series resname = entry['resname'] if resname in ['GBI1','GBI2']: code = aa_dict[resname]+':'+entry['code'] elif resname == 'WAT': code = aa_dict[resname]+str(entry['resid']) else: # if not GBI or WAT, must be Hv1 if idOnly: code = entry['resid'] else: code = aa_dict[resname]+str(entry['resid'])+':'+entry['location'] return code def trimEdgesTM(nodes, edges): """ Process edges to remove edges that don't include transmembrane (TM) protein residue. In other words, only keep edges that involve at least one TM residue. The TM residue may contact a non-TM residue, water, or another TM residue. Parameters ---------- nodes : pandas dataframe Pandas dataframe with information on nodes (residues) edges : pandas dataframe Pandas dataframe with information on edges (contacts) Returns ------- pandas dataframe """ # define which residues are in TM region seg1 = list(range(99,126)) seg2 = list(range(134,161)) seg3 = list(range(168,192)) seg4 = list(range(198,221)) segtm = seg1+seg2+seg3+seg4 # get node indices for residues in TM region protein_nodes = nodes[(nodes['resid'].isin(segtm)) & (nodes['resname'] != 'WAT')] prot_node_ids = protein_nodes.index.tolist() # keep edges with at least one node that is a TM residue return edges[ (edges['node_i'].isin(prot_node_ids)) | (edges['node_j'].isin(prot_node_ids)) ] def prioritize(edges, rawNum): """ TODO Pull out N strongest interactions, or pivot the table. Not meant for user; implemented in protLigInts and selectionInts functions. This function handles cases of whether dataframe has edges or difference of edges. Parameters ---------- edges : pandas dataframe rawNum : integer Returns ------- pandas dataframe """ edges = edges.copy() try: # Pull out the N strongest interactions (should be no negative values) edges = edges.sort_values('average',ascending=False).head(rawNum) except KeyError: # if no 'average' column then this is one df minus another so there are negatives # sort by magnitude to get + and - changes tempinds = edges.avg_subt.abs().sort_values(ascending=False).head(rawNum).index edges = edges.loc[tempinds] return edges def pivot(edges, data=""): """ TODO Pull out N strongest interactions, or pivot the table. Not meant for user; implemented in protLigInts and selectionInts functions. This function handles cases of whether dataframe has edges or difference of edges. Parameters ---------- edges : pandas dataframe rawNum : integer Returns ------- pandas dataframe """ edges = edges.copy() if data=="edgetype": edges = edges.pivot(index='node_i',columns='node_j', values='edgetype') else: try: edges = edges.pivot(index='node_i',columns='node_j', values='average') except KeyError: edges = edges.pivot(index='node_i',columns='node_j', values='avg_subt') edges = edges.dropna(axis=1,how='all') # drop columns with all nan's return edges def protLigInts(nodes, edges, rawNum=250, dry=1): """ Take in a set of nodes and edges and identify the N strongest interactions. This function disregards: (1) interactions between waters (there can be protein-water interaction), (2) interactions between adjacent residues (e.g., residue F149 and F150), and (3) interactions within the same residue (e.g., backbone and sidechain of F150). Parameters ---------- nodes : pandas dataframe Pandas dataframe with information on nodes (residues) edges : pandas dataframe Pandas dataframe with information on edges (contacts) rawNum : integer How many interactions to use before further processing. Further processing = remove adjacent & intra-residue interactions. dry : integer 2 means no waters at all even to protein/ligand 1 means no water-water interactions 0 means allow waters (NOT YET implemented) Returns ------- pandas PIVOTED dataframe with reduced and filtered interactions, formatted as: > node_i as index column > node_j as different columns > average interaction strength in cell intersecting node_i and node_j """ edges = edges.copy() # Get all indices of nodes that are not water watless_idx = nodes.index[nodes['resname'] != 'WAT'].tolist() if dry==1: # Filter interactions with at least one non-water (remove wat-wat interactions) watless_edges = edges.loc[edges['node_i'].isin(watless_idx) | edges['node_j'].isin(watless_idx)] elif dry==2: # Filter interactions with no waters whatsoever watless_edges = edges.loc[edges['node_i'].isin(watless_idx) & edges['node_j'].isin(watless_idx)] # Pull out the N strongest interactions watless_edges = prioritize(watless_edges,rawNum=rawNum) if watless_edges is None: return # Make temp copy to compare protein resIDs to filter out those in same/adj resid temp = watless_edges.copy() temp['node_i'] = temp['node_i'].apply(idxToResid,args=(nodes,True)) temp['node_j'] = temp['node_j'].apply(idxToResid,args=(nodes,True)) # convert the non-protein residues with no ID for temp integer temp['node_i'].replace('GBI\w', -500, regex=True,inplace=True) temp['node_j'].replace('GBI\w', -500, regex=True,inplace=True) temp['node_i'].replace('WAT\w', -400, regex=True,inplace=True) temp['node_j'].replace('WAT\w', -400, regex=True,inplace=True) # drop node interactions in same resid or adjacent dropinds = temp.index[((temp['node_i']-temp['node_j']).abs() <= 1) == True].tolist() watless_edges.drop(dropinds, inplace=True) return watless_edges def selectionInts(nodes, edges, indices, rawNum=50, dry=True): """ Parameters ---------- nodes : pandas dataframe Pandas dataframe with information on nodes (residues) edges : pandas dataframe Pandas dataframe with information on edges (contacts) indices : list of integers List of node indices of selection. Two examples: 1. gidx_1 = nodes_1.index[nodes_1['resname'] == 'GBI1'].tolist() 2. selNodes = getResidInfo(211, nodes_2, resExcludes=['WAT']) selInds = selNodes.index.tolist() rawNum : int How many interactions to use before further processing. Further processing = remove adjacent & intra-residue interactions. dry : Boolean True to ignore any water-interactions of given selection Returns ------- sel_edges - pandas PIVOTED dataframe with interactions for given selection new format: > node_i as index column > node_j as different columns > average interaction strength in cell intersecting node_i and node_j Examples of selecting indices ----------------------------- > gidx_1 = nodes_1.index[nodes_1['resname'] == 'GBI1'].tolist() > selNodes = getResidInfo(211, nodes_2, resExcludes=['WAT']) > selInds = selNodes.index.tolist() """ sel_edges = edges.copy() if dry: watidx = nodes.index[nodes['resname'] == 'WAT'].tolist() # get water indices sel_edges = sel_edges[(~sel_edges['node_i'].isin(watidx)) & (~sel_edges['node_j'].isin(watidx))] # Get all the edge interactions that relate to selection sel_edges = sel_edges.loc[sel_edges['node_i'].isin(indices) | sel_edges['node_j'].isin(indices)] # Pull out the N strongest interactions sel_edges = prioritize(sel_edges,rawNum=rawNum) if sel_edges is None: return # put all the GBI nodes in the i spot sel_edges["node_i"], sel_edges["node_j"] = np.where(sel_edges['node_j'].isin(indices), [sel_edges["node_j"], sel_edges["node_i"]], [sel_edges["node_i"], sel_edges["node_j"]]) sel_edges = sel_edges[~sel_edges['node_j'].isin(indices)] # remove self-interactions return sel_edges def plotHeatInts(nodes,edges,minHeat=0,maxHeat=20,colors=None,size=(20,20),seltitle="",pivoted=False): """ Parameters ---------- nodes : pandas dataframe edges : pandas dataframe Pivoted pandas dataframe (node_i indices as header, node_j indices as left column.) minHeat : integer Minimum data point in heat color bar. Should be zero unless there's a special case. maxHeat : integer Maximum data point in heat color bar. May want to manually adjust if max edge data > default maxHeat. colors : string String code referring to one of Python's color maps. https://matplotlib.org/examples/color/colormaps_reference.html Use a parameter of colors="edges" to color by edge type instead of strength. size : tuple Tuple of length 2 for (width, length) in matplotlib seltitle : string Title to list at the top of the plot pivoted : Boolean Whether or not the input edges is already pivoted (such as from s Returns ------- pivoted dataframe """ def offsetHeatGrid(): # offset the y-grid to match the label WITHOUT offsetting ticklabels yticks_old = ax.get_yticks() if len(yticks_old) > 1: yticks_offset = (yticks_old[1]-yticks_old[0])/2 yticks = [(tick-yticks_offset) for tick in ax.get_yticks()] ax.set_yticks(yticks) # grid will use these new tick placements ax.set_yticks(yticks_old,minor=True) ax.set_yticklabels(ylabels,minor=True) # put labels back in old placements ax.set_yticklabels([]) # turn off labels at new tick placements # offset the x-grid to match the label WITHOUT offsetting ticklabels xticks_old = ax.get_xticks() if len(xticks_old) > 1: xticks_offset = (xticks_old[1]-xticks_old[0])/2 xticks = [(tick-xticks_offset) for tick in ax.get_xticks()] ax.set_xticks(xticks) # grid will use these new tick placements ax.set_xticks(xticks_old,minor=True) ax.set_xticklabels(xlabels,minor=True) # put labels back in old placements ax.set_xticklabels([]) # turn off labels at new tick placements def label_edge(row): # https://stackoverflow.com/questions/26886653/pandas-create-new-column-based-on-values-from-other-columns if row['attribute'] == "HPHOB": # two nonpolar nodes return 1 if row['attribute'] == "COUL": # two charged nodes return 2 if row['attribute'] == "HBOND": # dipolar and charged nodes return 3 if row['attribute'] == "STER": # everything else return 4 return -1 if (colors=="edgetype" and pivoted==True): print("Cannot color by edgetype if you have pass in a pivoted edge plot.") return if pivoted: plotInput = edges elif colors=="edgetype": # reassign the strength values in the edges dataframe plotInput = edges.copy() plotInput['edgetype'] = plotInput.apply (lambda row: label_edge(row),axis=1) plotInput = pivot(plotInput, data='edgetype') else: plotInput = pivot(edges) plotNodes = nodes # generate plot labels based on residue name and residue number ylabels = [idxToResid(i, plotNodes) for i in list(plotInput)] # get node_j's, convert idxToResid xlabels = [idxToResid(i, plotNodes) for i in list(plotInput.index.values)] # get node_i's, convert idxToResid # plot the data plt.clf() plt.subplots(figsize=size) sns.set(font_scale=2.1) if colors=='edgetype': colors="tab10" vmin=0 vmax=4 ax = sns.heatmap(plotInput.T,annot=True,yticklabels=ylabels,xticklabels=xlabels, cmap=colors,vmin=minHeat, vmax=maxHeat) offsetHeatGrid() plt.grid() plt.ylabel('') plt.xlabel('') plt.yticks(rotation=0) plt.title('\"Strongest\" interactions of {}'.format(seltitle)) plt.show() print('interaction range is from {} to {}; verify if this is appropriate'.format(minHeat,maxHeat)) return plotInput def diffEdges(nodes_x,nodes_y,edges_x,edges_y): """ Take one set of edges and subtract another. This can identify changes in contacts between different systems, such as before and after mutation. USE CASES: [1] taut1 and taut2 with SAME protein system but differs in 2GBI and maybe in waters [2] tautx before and after mutation, all else the same (same 2GBI and waters) """ nodes_x = nodes_x.copy() nodes_y = nodes_y.copy() edges_x = edges_x.copy() edges_y = edges_y.copy() # take union of both dataframes wrt to nodes_y, and ... df_1 =
pd.merge(nodes_y, nodes_x, how='outer', indicator=True)
pandas.merge
#<NAME> 29-04-18 #Iris dataset GMIT project #Import dependencies: import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as pt #This gives headings to the datas columns heading=["sepal-length","sepal-width","petal-length","petal-width","Species"] #Using panda this reads in the data as csv and assigns headings Data = pd.read_csv('data/iris.csv',names=heading) # Check for missing data and remove rows if missing data EmptyIdx =
pd.isnull(Data)
pandas.isnull
import pandas as pd from Client import clientclass from Server import serverclass from Stats import * from LTE import * from NodeDiscovery import * from policy import * from dynamic_plot import * from user import * from multiprocessing import Process import multiprocessing import os.path import os import shutil as sh import time import datetime import sys def choose_vm(dfvm, user_def): """The choose_vm function filters the dataset which has multiple vm migrations by the user defined proprieties. Depending on the mode the simulation is running the resulting dataframe may be a set of VMs that follow the specifications or a single VM from a given ID that the user introduced. The first situation being vm_mode = 1 and the second situation being vm_mode = 0 :param dfvm: Dataframe with the VMs :type dfvm: Pandas dataframe :param user_def: User definitions :type user_def: Object of the class UserDef :return: Returns a filtered dataframe with the VMs that will be used :rtype: Pandas dataframe """ if(user_def.vm_mode == 0): dfvm = dfvm[dfvm['Migration ID'].values == user_def.vm_id] dfvm = dfvm.reset_index(drop=True) elif(user_def.vm_mode == 1): dfvm = dfvm[dfvm['Migration Technique'].values == user_def.migtype] dfvm = dfvm[dfvm['Workload'].values == user_def.benchmark] dfvm = dfvm[dfvm['Page transfer rate (MB/s)'].values == user_def.PTR] dfvm = dfvm.reset_index(drop=True) return dfvm def setup_folders(user_def): """The setup_folders function generates the correct folders for outputting the results of the simulation. :param user_def: User definitions :type user_def: Object of the class UserDef :return: Returns 1 in success :rtype: Integer """ if(not os.path.isdir('./Digest/LoopVM')): os.makedirs('./Digest/LoopVM') if(not os.path.isdir('./Digest/SingleVM')): os.makedirs('./Digest/SingleVM') if(not os.path.isdir(user_def.digest_path)): os.makedirs(user_def.digest_path) if(not os.path.isdir('./OUT')): os.makedirs('./OUT') for files in os.listdir('./OUT'): os.remove(os.path.join('./OUT', files)) return 1 def data_to_digest(user_def): """The data_to_digest function copies the results of the simulation to the correct digest folders. :param user_def: User definitions :type user_def: Object of the class UserDef :return: Returns 1 in success :rtype: Integer """ sh.copy2('./OUT/Node_Determination.xlsx', user_def.digest_path) sh.copy2('./OUT/Statistics.xlsx', user_def.digest_path) sh.copy2('./OUT/Client_path.xlsx', user_def.digest_path) return 1 def check_dataframes(dftrips, dfstations, df_LTE, dfvm, user_def): """The check_dataframes function verifies if all datasets provided exist and have a correct structure based on the provided header of each .csv file. This function is used to prevent program errors futher in the execution process by checking if all the information that the user used to run the simulation can actually be used. :param dftrips: Dataframe with the trips :type dftrips: Pandas dataframe :param dfstations: Dataframe with the edge server stations :type dfstations: Pandas dataframe :param df_LTE: Dataframe with the LTE stations :type df_LTE: Pandas dataframe :param dfvm: Dataframe with the VMs :type dfvm: Pandas dataframe :param user_def: User definitions :type user_def: Object of the class UserDef :return: Returns 1 in success :rtype: Integer """ trips = ['TripID', 'TimeStamp', 'Speed', 'Acceleration', 'Heading', 'HeadingChange', 'Latitude', 'Longitude'] stations = ['ID_LTE', 'radio', 'lat', 'lon'] vm = ['Migration ID', 'Migration Technique', 'Workload', 'Page Dirty Rate (4KB pages per second)', 'VM_SIZE (MB)', 'Page transfer rate (MB/s)', 'Total Migration Time (ms)', 'Downtime (ms)', 'Total Transferred Data (KB)'] list_df = [trips, stations, stations, vm] trips_hd = dftrips.columns.values.tolist() stations_hd = dfstations.columns.values.tolist() lte_hd = df_LTE.columns.values.tolist() vm_hd = dfvm.columns.values.tolist() list_hd = [trips_hd, stations_hd, lte_hd, vm_hd] flag = 0 for df in list_df: for column in df: # for hd in list_hd: for column_hd in hd: # if(column_hd == column): flag = 1 break if (flag == 0): print('Dataset has wrong header sintaxe\n\tCheck header: ', hd) sys.exit(2) if(flag == 1): flag = 0 break list_hd.pop(0) list_vm = ['Migration ID', 'Migration Technique', 'Workload', 'Page Dirty Rate (4KB pages per second)'] list_user = [user_def.vm_id, user_def.migtype, user_def.benchmark, user_def.PTR] for vm_def, usr_def in zip(list_vm, list_user): if(dfvm.loc[dfvm[vm_def] == usr_def][vm_def].empty): print('User definitions not found in the provided dataframes\n\t Definition error: ', vm_def) sys.exit(2) return 1 def simulation(user_def, dfstations, dfnode, dfpath, clientlist, stationlist): """The simulation function is responsible for checking the main sequence of events that evaluates each step of the client by iterating through the multiple trips and virutal machines for each coordinate of the client. On each coordinate analyzed an evaluation is done to see if the migration is viable. If the suggested destination is approved by the policy evaluator then the migration process occurs. Otherwise, the next coordinate will be analyzed the same way, until the right opportunity appears. In the process of running the simulation some data is saved and acquired, so that in the future some results about the migration mechanism can be studied. :param user_def: User definitions :type user_def: Object of the class UserDef :param dfstations: Dataframe with the edge server stations :type dfstations: Pandas dataframe :param dfnode: Dataframe used for saving the data required by the dynamic plot :type dfnode: Pandas dataframe :param dfvm: Dataframe used for saving the latency and distance data to the user throughout the path :type dfvm: Pandas dataframe :param clientlist: List with all the clients :type clientlist: List :param clientlist: List with all the edge server stations :type clientlist: List :return: Returns 1 in success :rtype: Integer """ #Plot Process if(user_def.dynamic_plot == 1): lock = multiprocessing.Lock() process = Process(target=plot_process, args=(dftrips,dfstations,lock)) plt_dynamic = 0 for client in clientlist: print(client.dftrip['TripID'].values[0]) client.calc_triptime() client.calc_tripdistance() #print(client.vm_df) for i in range(0, client.vm_df['Migration ID'].count()): #for i in range(0, 10): client.vm = client.vm_df.iloc[[i]] print(i) client.reset_vars(user_def.cone) #reset vars do cliente get_client_source(client, dfstations) #give dfmigrations the first source server = stationlist[client.get_origin_server_id()] #find the first origin server for that client lte_connection(client, 0) #find the first lte_st for that client for coor_index in range( 0, client.count_coordinates()): cone_determination(client, coor_index) lte_connection(client, coor_index) client.latencies[0] = get_latency(client, coor_index, client.get_server_origin_coor()) client.distancies[0] = server.calc_distance(client.get_coordinates(coor_index), client.get_server_origin_coor()) if(client.mig_under == 0): ret_node = node_search(client, coor_index, dfstations, user_def) #-1 correspondes to not finding a posible destination #ret_node = node_search_close(client, coor_index, dfstations) if(ret_node != -1): client.latencies[1] = get_latency(client, coor_index, client.get_server_target_coor()) client.distancies[1] = server.calc_distance(client.get_coordinates(coor_index), client.get_server_target_coor()) if(ret_node != -1 and client.mig_under == 0 and policy_evaluator(server, client, coor_index, user_def)): client.mig_under = 1 Mt_est = math.ceil(server.migration_time_estimate(client, 2.5, 14.5)) # seconds Mt_real = math.ceil(client.vm_time_mig(2.5, 14.5)) #seconds if(user_def.mig_cost == 0): Mt_est = 0 Mt_real = 0 elapsed = 0 if (Mt_est >= Mt_real): elapsed = Mt_est elif (Mt_real >= Mt_est): elapsed = Mt_real if(user_def.timeout == 1): client.timeout = Mt_real + user_def.timeout_multiplier * Mt_real client.mig_id_inc = client.mig_id_inc + 1 creatstats(client, server, coor_index) if(user_def.dynamic_plot == 1): dfnode = df_dynamic_plot(client, dfnode, coor_index, ret_node, lock) if(plt_dynamic==0): process.start() plt_dynamic = 1 dfpath = path_stats(dfpath, client, coor_index) if(client.mig_under == 1 and ret_node != -1): #function stats to collect all data during migration stats_collect(Mt_real, Mt_est, server, client, user_def) if(elapsed == 0 ): client.mig_under = 0 # Apagar primeira linha do dfmigrations -> same as saying: migration happend client.dfmigrations = client.dfmigrations.drop([0], axis='index') client.dfmigrations = client.dfmigrations.reset_index(drop=True) server = stationlist[client.get_origin_server_id()] elapsed = elapsed - 1 Mt_est = Mt_est - 1 Mt_real = Mt_real - 1 #print(client.triptime) #print(client.tripdistance) if(user_def.dynamic_plot == 1): process.join() #Save statistics df_statistics = stats_df(clientlist) df_statistics.to_excel('./OUT/Statistics.xlsx', index=False, engine='xlsxwriter') df_stat_node = stats_df_node_dt(clientlist) df_stat_node.to_excel('./OUT/Node_Determination.xlsx', index=False, engine='xlsxwriter') dfpath.to_excel('./OUT/Client_path.xlsx', index=False, engine='xlsxwriter') #Copy data to digest path data_to_digest(user_def) return 1 if __name__ == "__main__": start_time = time.time() #Setup user definitions if(len(sys.argv)<=1): print('Missing Parameters:\n\tTo run default mode enter: main.py -d\n\tTo get help enter: main.py -h') sys.exit(1) argv = sys.argv[1:] user_def_dict = handle_user_def (argv) user_def = UserDef(user_def_dict) setup_folders(user_def) #define and initilize the dataframes and lists dftrips = pd.read_csv("./Datasets/Mobility/" + user_def.dftrips_path) dfstations = pd.read_csv("./Datasets/Network/" + user_def.dfstations_path) df_LTE = pd.read_csv("./Datasets/Network/" + user_def.df_LTE_path) dfvm = pd.read_csv("./Datasets/Vm/" + user_def.dfvm_path) check_dataframes(dftrips, dfstations, df_LTE, dfvm, user_def) dfnode = pd.DataFrame({'C_LAT': pd.Series([], dtype='float'),'C_LON':
pd.Series([], dtype='float')
pandas.Series
# -*- coding: utf-8 -*- import unittest import platform import pandas as pd import numpy as np import pyarrow.parquet as pq import hpat from hpat.tests.test_utils import ( count_array_REPs, count_parfor_REPs, count_array_OneDs, get_start_end) from hpat.tests.gen_test_data import ParquetGenerator from numba import types from numba.config import IS_32BITS from numba.errors import TypingError _cov_corr_series = [(pd.Series(x), pd.Series(y)) for x, y in [ ( [np.nan, -2., 3., 9.1], [np.nan, -2., 3., 5.0], ), # TODO(quasilyte): more intricate data for complex-typed series. # Some arguments make assert_almost_equal fail. # Functions that yield mismaching results: # _column_corr_impl and _column_cov_impl. ( [complex(-2., 1.0), complex(3.0, 1.0)], [complex(-3., 1.0), complex(2.0, 1.0)], ), ( [complex(-2.0, 1.0), complex(3.0, 1.0)], [1.0, -2.0], ), ( [1.0, -4.5], [complex(-4.5, 1.0), complex(3.0, 1.0)], ), ]] min_float64 = np.finfo('float64').min max_float64 = np.finfo('float64').max test_global_input_data_float64 = [ [1., np.nan, -1., 0., min_float64, max_float64], [np.nan, np.inf, np.NINF, np.NZERO] ] min_int64 = np.iinfo('int64').min max_int64 = np.iinfo('int64').max max_uint64 = np.iinfo('uint64').max test_global_input_data_integer64 = [ [1, -1, 0], [min_int64, max_int64], [max_uint64] ] test_global_input_data_numeric = test_global_input_data_integer64 + test_global_input_data_float64 test_global_input_data_unicode_kind4 = [ 'ascii', '12345', '1234567890', '¡Y tú quién te crees?', '🐍⚡', '大处着眼,小处着手。', ] test_global_input_data_unicode_kind1 = [ 'ascii', '12345', '1234567890', ] def _make_func_from_text(func_text, func_name='test_impl'): loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars[func_name] return test_impl def _make_func_use_binop1(operator): func_text = "def test_impl(A, B):\n" func_text += " return A {} B\n".format(operator) return _make_func_from_text(func_text) def _make_func_use_binop2(operator): func_text = "def test_impl(A, B):\n" func_text += " A {} B\n".format(operator) func_text += " return A\n" return _make_func_from_text(func_text) def _make_func_use_method_arg1(method): func_text = "def test_impl(A, B):\n" func_text += " return A.{}(B)\n".format(method) return _make_func_from_text(func_text) GLOBAL_VAL = 2 class TestSeries(unittest.TestCase): def test_create1(self): def test_impl(): df = pd.DataFrame({'A': [1, 2, 3]}) return (df.A == 1).sum() hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_unicode(self): def test_impl(): S = pd.Series([ ['abc', 'defg', 'ijk'], ['lmn', 'opq', 'rstuvwxyz'] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_integer(self): def test_impl(): S = pd.Series([ [123, 456, -789], [-112233, 445566, 778899] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_float(self): def test_impl(): S = pd.Series([ [1.23, -4.56, 7.89], [11.2233, 44.5566, -778.899] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) def test_create2(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n)}) return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) def test_create_series1(self): def test_impl(): A = pd.Series([1, 2, 3]) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index1(self): # create and box an indexed Series def test_impl(): A = pd.Series([1, 2, 3], ['A', 'C', 'B']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index2(self): def test_impl(): A = pd.Series([1, 2, 3], index=['A', 'C', 'B']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index3(self): def test_impl(): A = pd.Series([1, 2, 3], index=['A', 'C', 'B'], name='A') return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index4(self): def test_impl(name): A = pd.Series([1, 2, 3], index=['A', 'C', 'B'], name=name) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func('A'), test_impl('A')) def test_create_str(self): def test_impl(): df = pd.DataFrame({'A': ['a', 'b', 'c']}) return (df.A == 'a').sum() hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) def test_pass_df1(self): def test_impl(df): return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df), test_impl(df)) def test_pass_df_str(self): def test_impl(df): return (df.A == 'a').sum() hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['a', 'b', 'c']}) self.assertEqual(hpat_func(df), test_impl(df)) def test_pass_series1(self): # TODO: check to make sure it is series type def test_impl(A): return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series2(self): # test creating dataframe from passed series def test_impl(A): df = pd.DataFrame({'A': A}) return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series_str(self): def test_impl(A): return (A == 'a').sum() hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['a', 'b', 'c']}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series_index1(self): def test_impl(A): return A hpat_func = hpat.jit(test_impl) S = pd.Series([3, 5, 6], ['a', 'b', 'c'], name='A') pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_size(self): def test_impl(S): return S.size hpat_func = hpat.jit(test_impl) n = 11 for S, expected in [ (pd.Series(), 0), (pd.Series([]), 0), (pd.Series(np.arange(n)), n), (pd.Series([np.nan, 1, 2]), 3), (pd.Series(['1', '2', '3']), 3), ]: with self.subTest(S=S, expected=expected): self.assertEqual(hpat_func(S), expected) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_attr2(self): def test_impl(A): return A.copy().values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_attr3(self): def test_impl(A): return A.min() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_series_attr4(self): def test_impl(A): return A.cumsum().values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_argsort1(self): def test_impl(A): return A.argsort() hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.random.ranf(n)) pd.testing.assert_series_equal(hpat_func(A), test_impl(A)) def test_series_attr6(self): def test_impl(A): return A.take([2, 3]).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_attr7(self): def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_getattr_ndim(self): '''Verifies getting Series attribute ndim is supported''' def test_impl(S): return S.ndim hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_getattr_T(self): '''Verifies getting Series attribute T is supported''' def test_impl(S): return S.T hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_series_copy_str1(self): def test_impl(A): return A.copy() hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_copy_int1(self): def test_impl(A): return A.copy() hpat_func = hpat.jit(test_impl) S = pd.Series([1, 2, 3]) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_series_copy_deep(self): def test_impl(A, deep): return A.copy(deep=deep) hpat_func = hpat.jit(test_impl) for S in [ pd.Series([1, 2]), pd.Series([1, 2], index=["a", "b"]), ]: with self.subTest(S=S): for deep in (True, False): with self.subTest(deep=deep): actual = hpat_func(S, deep) expected = test_impl(S, deep) pd.testing.assert_series_equal(actual, expected) self.assertEqual(actual.values is S.values, expected.values is S.values) self.assertEqual(actual.values is S.values, not deep) # Shallow copy of index is not supported yet if deep: self.assertEqual(actual.index is S.index, expected.index is S.index) self.assertEqual(actual.index is S.index, not deep) def test_series_astype_int_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts integer series to series of strings ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int_to_str2(self): '''Verifies Series.astype implementation with a string literal dtype argument converts integer series to series of strings ''' def test_impl(S): return S.astype('str') hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str2(self): '''Verifies Series.astype implementation with a string literal dtype argument handles string series not changing it ''' def test_impl(S): return S.astype('str') hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str_index_str(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=['d', 'e', 'f']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str_index_int(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=[1, 2, 3]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: requires str(datetime64) support in Numba') def test_series_astype_dt_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts datetime series to series of strings ''' def test_impl(A): return A.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series([pd.Timestamp('20130101 09:00:00'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03') ]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('AssertionError: Series are different' '[left]: [0.000000, 1.000000, 2.000000, 3.000000, ...' '[right]: [0.0, 1.0, 2.0, 3.0, ...' 'TODO: needs alignment to NumPy on Numba side') def test_series_astype_float_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts float series to series of strings ''' def test_impl(A): return A.astype(str) hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int32_to_int64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series with dtype=int32 to series with dtype=int64 ''' def test_impl(A): return A.astype(np.int64) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n), dtype=np.int32) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int_to_float64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts integer series to series of float ''' def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_float_to_int32(self): '''Verifies Series.astype implementation with NumPy dtype argument converts float series to series of integers ''' def test_impl(A): return A.astype(np.int32) hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support string literal as dtype arg') def test_series_astype_literal_dtype1(self): '''Verifies Series.astype implementation with a string literal dtype argument converts float series to series of integers ''' def test_impl(A): return A.astype('int32') hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support converting unicode_type to int') def test_series_astype_str_to_int32(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series of strings to series of integers ''' import numba def test_impl(A): return A.astype(np.int32) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series([str(x) for x in np.arange(n) - n // 2]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support converting unicode_type to float') def test_series_astype_str_to_float64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series of strings to series of float ''' def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) S = pd.Series(['3.24', '1E+05', '-1', '-1.3E-01', 'nan', 'inf']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_index_str(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=['a', 'b', 'c']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_index_int(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=[2, 3, 5]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_np_call_on_series1(self): def test_impl(A): return np.min(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_values(self): def test_impl(A): return A.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_values1(self): def test_impl(A): return (A == 2).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_shape1(self): def test_impl(A): return A.shape hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_static_setitem_series1(self): def test_impl(A): A[0] = 2 return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_setitem_series1(self): def test_impl(A, i): A[i] = 2 return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A.copy(), 0), test_impl(df.A.copy(), 0)) def test_setitem_series2(self): def test_impl(A, i): A[i] = 100 hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) A1 = df.A.copy() A2 = df.A hpat_func(A1, 0) test_impl(A2, 0) pd.testing.assert_series_equal(A1, A2) @unittest.skip("enable after remove dead in hiframes is removed") def test_setitem_series3(self): def test_impl(A, i): S = pd.Series(A) S[i] = 100 hpat_func = hpat.jit(test_impl) n = 11 A = np.arange(n) A1 = A.copy() A2 = A hpat_func(A1, 0) test_impl(A2, 0) np.testing.assert_array_equal(A1, A2) def test_setitem_series_bool1(self): def test_impl(A): A[A > 3] = 100 hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) A1 = df.A.copy() A2 = df.A hpat_func(A1) test_impl(A2) pd.testing.assert_series_equal(A1, A2) def test_setitem_series_bool2(self): def test_impl(A, B): A[A > 3] = B[A > 3] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) A1 = df.A.copy() A2 = df.A hpat_func(A1, df.B) test_impl(A2, df.B) pd.testing.assert_series_equal(A1, A2) def test_static_getitem_series1(self): def test_impl(A): return A[0] hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) self.assertEqual(hpat_func(A), test_impl(A)) def test_getitem_series1(self): def test_impl(A, i): return A[i] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_getitem_series_str1(self): def test_impl(A, i): return A[i] hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['aa', 'bb', 'cc']}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_series_iat1(self): def test_impl(A): return A.iat[3] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_iat2(self): def test_impl(A): A.iat[3] = 1 return A hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_iloc1(self): def test_impl(A): return A.iloc[3] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_iloc2(self): def test_impl(A): return A.iloc[3:8] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal( hpat_func(S), test_impl(S).reset_index(drop=True)) def test_series_op1(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) def test_series_op2(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: df = pd.DataFrame({'A': np.arange(1, n, dtype=np.int64)}) else: df = pd.DataFrame({'A': np.arange(1, n)}) pd.testing.assert_series_equal(hpat_func(df.A, 1), test_impl(df.A, 1), check_names=False) def test_series_op3(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) def test_series_op4(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n)}) pd.testing.assert_series_equal(hpat_func(df.A, 1), test_impl(df.A, 1), check_names=False) def test_series_op5(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) @unittest.skipIf(platform.system() == 'Windows', 'Series values are different (20.0 %)' '[left]: [1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824, 3486784401, 10000000000]' '[right]: [1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824, -808182895, 1410065408]') def test_series_op5_integer_scalar(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: operand_series = pd.Series(np.arange(1, n, dtype=np.int64)) else: operand_series = pd.Series(np.arange(1, n)) operand_scalar = 10 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op5_float_scalar(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = .5 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op6(self): def test_impl(A): return -A hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(A), test_impl(A)) def test_series_op7(self): comparison_binops = ('<', '>', '<=', '>=', '!=', '==') for operator in comparison_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_names=False) def test_series_op8(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'ne', 'eq') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_names=False) @unittest.skipIf(platform.system() == 'Windows', "Attribute dtype are different: int64, int32") def test_series_op8_integer_scalar(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'eq', 'ne') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = 10 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op8_float_scalar(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'eq', 'ne') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = .5 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_inplace_binop_array(self): def test_impl(A, B): A += B return A hpat_func = hpat.jit(test_impl) n = 11 A = np.arange(n)**2.0 # TODO: use 2 for test int casting B = pd.Series(np.ones(n)) np.testing.assert_array_equal(hpat_func(A.copy(), B), test_impl(A, B)) def test_series_fusion1(self): def test_impl(A, B): return A + B + 1 hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n), dtype=np.int64) B = pd.Series(np.arange(n)**2, dtype=np.int64) else: A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) self.assertEqual(count_parfor_REPs(), 1) def test_series_fusion2(self): # make sure getting data var avoids incorrect single def assumption def test_impl(A, B): S = B + 2 if A[0] == 0: S = A + 1 return S + B hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n), dtype=np.int64) B = pd.Series(np.arange(n)**2, dtype=np.int64) else: A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) self.assertEqual(count_parfor_REPs(), 3) def test_series_len(self): def test_impl(A, i): return len(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_series_box(self): def test_impl(): A = pd.Series([1, 2, 3]) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_series_box2(self): def test_impl(): A = pd.Series(['1', '2', '3']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_series_list_str_unbox1(self): def test_impl(A): return A.iloc[0] hpat_func = hpat.jit(test_impl) S = pd.Series([['aa', 'b'], ['ccc'], []]) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) # call twice to test potential refcount errors np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_np_typ_call_replace(self): # calltype replacement is tricky for np.typ() calls since variable # type can't provide calltype def test_impl(i): return np.int32(i) hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(1), test_impl(1)) def test_series_ufunc1(self): def test_impl(A, i): return np.isinf(A).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A, 1), test_impl(df.A, 1)) def test_list_convert(self): def test_impl(): df = pd.DataFrame({'one': np.array([-1, np.nan, 2.5]), 'two': ['foo', 'bar', 'baz'], 'three': [True, False, True]}) return df.one.values, df.two.values, df.three.values hpat_func = hpat.jit(test_impl) one, two, three = hpat_func() self.assertTrue(isinstance(one, np.ndarray)) self.assertTrue(isinstance(two, np.ndarray)) self.assertTrue(isinstance(three, np.ndarray)) @unittest.skip("needs empty_like typing fix in npydecl.py") def test_series_empty_like(self): def test_impl(A): return np.empty_like(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertTrue(isinstance(hpat_func(df.A), np.ndarray)) def test_series_fillna1(self): def test_impl(A): return A.fillna(5.0) hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) # test inplace fillna for named numeric series (obtained from DataFrame) def test_series_fillna_inplace1(self): def test_impl(A): A.fillna(5.0, inplace=True) return A hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) def test_series_fillna_str1(self): def test_impl(A): return A.fillna("dd") hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['aa', 'b', None, 'ccc']}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) def test_series_fillna_str_inplace1(self): def test_impl(A): A.fillna("dd", inplace=True) return A hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) # TODO: handle string array reflection # hpat_func(S1) # test_impl(S2) # np.testing.assert_array_equal(S1, S2) def test_series_fillna_str_inplace_empty1(self): def test_impl(A): A.fillna("", inplace=True) return A hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_fillna_index_str(self): def test_impl(S): return S.fillna(5.0) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2.0, np.nan, 1.0], index=['a', 'b', 'c', 'd']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S), check_names=False) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_fillna_index_int(self): def test_impl(S): return S.fillna(5.0) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2.0, np.nan, 1.0], index=[2, 3, 4, 5]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S), check_names=False) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis1(self): '''Verifies Series.dropna() implementation handles 'index' as axis argument''' def test_impl(S): return S.dropna(axis='index') hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis2(self): '''Verifies Series.dropna() implementation handles 0 as axis argument''' def test_impl(S): return S.dropna(axis=0) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis3(self): '''Verifies Series.dropna() implementation handles correct non-literal axis argument''' def test_impl(S, axis): return S.dropna(axis=axis) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() axis_values = [0, 'index'] for value in axis_values: pd.testing.assert_series_equal(hpat_func(S1, value), test_impl(S2, value)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_float_index1(self): '''Verifies Series.dropna() implementation for float series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) for data in test_global_input_data_float64: S1 = pd.Series(data) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_float_index2(self): '''Verifies Series.dropna() implementation for float series with string index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf], ['a', 'b', 'c', 'd', 'e']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index1(self): '''Verifies Series.dropna() implementation for series of strings with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index2(self): '''Verifies Series.dropna() implementation for series of strings with string index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', ''], ['a', 'b', 'c', 'd', 'e']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index3(self): def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', ''], index=[1, 2, 5, 7, 10]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('BUG: old-style dropna impl returns series without index, in new-style inplace is unsupported') def test_series_dropna_float_inplace_no_index1(self): '''Verifies Series.dropna() implementation for float series with default index and inplace argument True''' def test_impl(S): S.dropna(inplace=True) return S hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('TODO: add reflection support and check method return value') def test_series_dropna_float_inplace_no_index2(self): '''Verifies Series.dropna(inplace=True) results are reflected back in the original float series''' def test_impl(S): return S.dropna(inplace=True) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() self.assertIsNone(hpat_func(S1)) self.assertIsNone(test_impl(S2)) pd.testing.assert_series_equal(S1, S2) @unittest.skip('BUG: old-style dropna impl returns series without index, in new-style inplace is unsupported') def test_series_dropna_str_inplace_no_index1(self): '''Verifies Series.dropna() implementation for series of strings with default index and inplace argument True ''' def test_impl(S): S.dropna(inplace=True) return S hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('TODO: add reflection support and check method return value') def test_series_dropna_str_inplace_no_index2(self): '''Verifies Series.dropna(inplace=True) results are reflected back in the original string series''' def test_impl(S): return S.dropna(inplace=True) hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() self.assertIsNone(hpat_func(S1)) self.assertIsNone(test_impl(S2)) pd.testing.assert_series_equal(S1, S2) def test_series_dropna_str_parallel1(self): '''Verifies Series.dropna() distributed work for series of strings with default index''' def test_impl(A): B = A.dropna() return (B == 'gg').sum() hpat_func = hpat.jit(distributed=['A'])(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc', 'dd', 'gg']) start, end = get_start_end(len(S1)) # TODO: gatherv self.assertEqual(hpat_func(S1[start:end]), test_impl(S1)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) self.assertTrue(count_array_OneDs() > 0) @unittest.skip('AssertionError: Series are different\n' 'Series length are different\n' '[left]: 3, Int64Index([0, 1, 2], dtype=\'int64\')\n' '[right]: 2, Int64Index([1, 2], dtype=\'int64\')') def test_series_dropna_dt_no_index1(self): '''Verifies Series.dropna() implementation for datetime series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series([pd.NaT, pd.Timestamp('1970-12-01'), pd.Timestamp('2012-07-25')]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) def test_series_dropna_bool_no_index1(self): '''Verifies Series.dropna() implementation for bool series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series([True, False, False, True]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_int_no_index1(self): '''Verifies Series.dropna() implementation for integer series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) n = 11 S1 = pd.Series(np.arange(n, dtype=np.int64)) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('numba.errors.TypingError - fix needed\n' 'Failed in hpat mode pipeline' '(step: convert to distributed)\n' 'Invalid use of Function(<built-in function len>)' 'with argument(s) of type(s): (none)\n') def test_series_rename1(self): def test_impl(A): return A.rename('B') hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A)) def test_series_sum_default(self): def test_impl(S): return S.sum() hpat_func = hpat.jit(test_impl) S = pd.Series([1., 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_sum_nan(self): def test_impl(S): return S.sum() hpat_func = hpat.jit(test_impl) # column with NA S = pd.Series([np.nan, 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) # all NA case should produce 0 S = pd.Series([np.nan, np.nan]) self.assertEqual(hpat_func(S), test_impl(S)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, "Old style Series.sum() does not support parameters") def test_series_sum_skipna_false(self): def test_impl(S): return S.sum(skipna=False) hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2., 3.]) self.assertEqual(np.isnan(hpat_func(S)), np.isnan(test_impl(S))) @unittest.skipIf(not hpat.config.config_pipeline_hpat_default, "Series.sum() operator + is not implemented yet for Numba") def test_series_sum2(self): def test_impl(S): return (S + S).sum() hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) S = pd.Series([np.nan, np.nan]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_prod(self): def test_impl(S, skipna): return S.prod(skipna=skipna) hpat_func = hpat.jit(test_impl) data_samples = [ [6, 6, 2, 1, 3, 3, 2, 1, 2], [1.1, 0.3, 2.1, 1, 3, 0.3, 2.1, 1.1, 2.2], [6, 6.1, 2.2, 1, 3, 3, 2.2, 1, 2], [6, 6, np.nan, 2, np.nan, 1, 3, 3, np.inf, 2, 1, 2, np.inf], [1.1, 0.3, np.nan, 1.0, np.inf, 0.3, 2.1, np.nan, 2.2, np.inf], [1.1, 0.3, np.nan, 1, np.inf, 0, 1.1, np.nan, 2.2, np.inf, 2, 2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.inf], ] for data in data_samples: S = pd.Series(data) for skipna_var in [True, False]: actual = hpat_func(S, skipna=skipna_var) expected = test_impl(S, skipna=skipna_var) if np.isnan(actual) or np.isnan(expected): # con not compare Nan != Nan directly self.assertEqual(np.isnan(actual), np.isnan(expected)) else: self.assertEqual(actual, expected) def test_series_prod_skipna_default(self): def test_impl(S): return S.prod() hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2, 3.]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_count1(self): def test_impl(S): return S.count() hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) S = pd.Series([np.nan, np.nan]) self.assertEqual(hpat_func(S), test_impl(S)) S = pd.Series(['aa', 'bb', np.nan]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_mean(self): def test_impl(S): return S.mean() hpat_func = hpat.jit(test_impl) data_samples = [ [6, 6, 2, 1, 3, 3, 2, 1, 2], [1.1, 0.3, 2.1, 1, 3, 0.3, 2.1, 1.1, 2.2], [6, 6.1, 2.2, 1, 3, 3, 2.2, 1, 2], [6, 6, np.nan, 2, np.nan, 1, 3, 3, np.inf, 2, 1, 2, np.inf], [1.1, 0.3, np.nan, 1.0, np.inf, 0.3, 2.1, np.nan, 2.2, np.inf], [1.1, 0.3, np.nan, 1, np.inf, 0, 1.1, np.nan, 2.2, np.inf, 2, 2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.inf], ] for data in data_samples: with self.subTest(data=data): S = pd.Series(data) actual = hpat_func(S) expected = test_impl(S) if np.isnan(actual) or np.isnan(expected): self.assertEqual(np.isnan(actual), np.isnan(expected)) else: self.assertEqual(actual, expected) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, "Series.mean() any parameters unsupported") def test_series_mean_skipna(self): def test_impl(S, skipna): return S.mean(skipna=skipna) hpat_func = hpat.jit(test_impl) data_samples = [ [6, 6, 2, 1, 3, 3, 2, 1, 2], [1.1, 0.3, 2.1, 1, 3, 0.3, 2.1, 1.1, 2.2], [6, 6.1, 2.2, 1, 3, 3, 2.2, 1, 2], [6, 6, np.nan, 2, np.nan, 1, 3, 3, np.inf, 2, 1, 2, np.inf], [1.1, 0.3, np.nan, 1.0, np.inf, 0.3, 2.1, np.nan, 2.2, np.inf], [1.1, 0.3, np.nan, 1, np.inf, 0, 1.1, np.nan, 2.2, np.inf, 2, 2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.inf], ] for skipna in [True, False]: for data in data_samples: S = pd.Series(data) actual = hpat_func(S, skipna) expected = test_impl(S, skipna) if np.isnan(actual) or np.isnan(expected): self.assertEqual(np.isnan(actual), np.isnan(expected)) else: self.assertEqual(actual, expected) def test_series_var1(self): def test_impl(S): return S.var() hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_min(self): def test_impl(S): return S.min() hpat_func = hpat.jit(test_impl) # TODO type_min/type_max for input_data in [[np.nan, 2., np.nan, 3., np.inf, 1, -1000], [8, 31, 1123, -1024], [2., 3., 1, -1000, np.inf]]: S = pd.Series(input_data) result_ref = test_impl(S) result = hpat_func(S) self.assertEqual(result, result_ref) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, "Series.min() any parameters unsupported") def test_series_min_param(self): def test_impl(S, param_skipna): return S.min(skipna=param_skipna) hpat_func = hpat.jit(test_impl) for input_data, param_skipna in [([np.nan, 2., np.nan, 3., 1, -1000, np.inf], True), ([2., 3., 1, np.inf, -1000], False)]: S = pd.Series(input_data) result_ref = test_impl(S, param_skipna) result = hpat_func(S, param_skipna) self.assertEqual(result, result_ref) def test_series_max(self): def test_impl(S): return S.max() hpat_func = hpat.jit(test_impl) # TODO type_min/type_max for input_data in [[np.nan, 2., np.nan, 3., np.inf, 1, -1000], [8, 31, 1123, -1024], [2., 3., 1, -1000, np.inf]]: S = pd.Series(input_data) result_ref = test_impl(S) result = hpat_func(S) self.assertEqual(result, result_ref) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, "Series.max() any parameters unsupported") def test_series_max_param(self): def test_impl(S, param_skipna): return S.max(skipna=param_skipna) hpat_func = hpat.jit(test_impl) for input_data, param_skipna in [([np.nan, 2., np.nan, 3., 1, -1000, np.inf], True), ([2., 3., 1, np.inf, -1000], False)]: S = pd.Series(input_data) result_ref = test_impl(S, param_skipna) result = hpat_func(S, param_skipna) self.assertEqual(result, result_ref) def test_series_value_counts(self): def test_impl(S): return S.value_counts() hpat_func = hpat.jit(test_impl) S = pd.Series(['AA', 'BB', 'C', 'AA', 'C', 'AA']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_dist_input1(self): '''Verify distribution of a Series without index''' def test_impl(S): return S.max() hpat_func = hpat.jit(distributed={'S'})(test_impl) n = 111 S = pd.Series(np.arange(n)) start, end = get_start_end(n) self.assertEqual(hpat_func(S[start:end]), test_impl(S)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_series_dist_input2(self): '''Verify distribution of a Series with integer index''' def test_impl(S): return S.max() hpat_func = hpat.jit(distributed={'S'})(test_impl) n = 111 S = pd.Series(np.arange(n), 1 + np.arange(n)) start, end = get_start_end(n) self.assertEqual(hpat_func(S[start:end]), test_impl(S)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @unittest.skip("Passed if run single") def test_series_dist_input3(self): '''Verify distribution of a Series with string index''' def test_impl(S): return S.max() hpat_func = hpat.jit(distributed={'S'})(test_impl) n = 111 S = pd.Series(np.arange(n), ['abc{}'.format(id) for id in range(n)]) start, end = get_start_end(n) self.assertEqual(hpat_func(S[start:end]), test_impl(S)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_series_tuple_input1(self): def test_impl(s_tup): return s_tup[0].max() hpat_func = hpat.jit(test_impl) n = 111 S = pd.Series(np.arange(n)) S2 = pd.Series(np.arange(n) + 1.0) s_tup = (S, 1, S2) self.assertEqual(hpat_func(s_tup), test_impl(s_tup)) @unittest.skip("pending handling of build_tuple in dist pass") def test_series_tuple_input_dist1(self): def test_impl(s_tup): return s_tup[0].max() hpat_func = hpat.jit(locals={'s_tup:input': 'distributed'})(test_impl) n = 111 S = pd.Series(np.arange(n)) S2 = pd.Series(np.arange(n) + 1.0) start, end = get_start_end(n) s_tup = (S, 1, S2) h_s_tup = (S[start:end], 1, S2[start:end]) self.assertEqual(hpat_func(h_s_tup), test_impl(s_tup)) def test_series_rolling1(self): def test_impl(S): return S.rolling(3).sum() hpat_func = hpat.jit(test_impl) S =
pd.Series([1.0, 2., 3., 4., 5.])
pandas.Series
# -*- coding:utf-8 -*- # !/usr/bin/env python """ Date: 2022/5/16 18:36 Desc: 新股和风险警示股 新浪-行情中心-沪深股市-次新股 http://vip.stock.finance.sina.com.cn/mkt/#new_stock 东方财富网-行情中心-沪深个股-风险警示板 http://quote.eastmoney.com/center/gridlist.html#st_board """ import math import pandas as pd import requests def stock_zh_a_st_em() -> pd.DataFrame: """ 东方财富网-行情中心-沪深个股-风险警示板 http://quote.eastmoney.com/center/gridlist.html#st_board :return: 风险警示板 :rtype: pandas.DataFrame """ url = 'http://40.push2.eastmoney.com/api/qt/clist/get' params = { 'pn': '1', 'pz': '2000', 'po': '1', 'np': '1', 'ut': 'bd1d9ddb04089700cf9c27f6f7426281', 'fltt': '2', 'invt': '2', 'fid': 'f3', 'fs': 'm:0 f:4,m:1 f:4', 'fields': 'f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152', '_': '1631107510188', } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['data']['diff']) temp_df.reset_index(inplace=True) temp_df['index'] = range(1, len(temp_df)+1) temp_df.columns = [ '序号', '最新价', '涨跌幅', '涨跌额', '成交量', '成交额', '振幅', '换手率', '市盈率-动态', '量比', '_', '代码', '_', '名称', '最高', '最低', '今开', '昨收', '_', '_', '_', '市净率', '_', '_', '_', '_', '_', '_', '_', '_', '_', ] temp_df = temp_df[[ '序号', '代码', '名称', '最新价', '涨跌幅', '涨跌额', '成交量', '成交额', '振幅', '最高', '最低', '今开', '昨收', '量比', '换手率', '市盈率-动态', '市净率', ]] temp_df['最新价'] = pd.to_numeric(temp_df['最新价'], errors="coerce") temp_df['涨跌幅'] = pd.to_numeric(temp_df['涨跌幅'], errors="coerce") temp_df['涨跌额'] = pd.to_numeric(temp_df['涨跌额'], errors="coerce") temp_df['成交量'] = pd.to_numeric(temp_df['成交量'], errors="coerce") temp_df['成交额'] = pd.to_numeric(temp_df['成交额'], errors="coerce") temp_df['振幅'] = pd.to_numeric(temp_df['振幅'], errors="coerce") temp_df['最高'] = pd.to_numeric(temp_df['最高'], errors="coerce") temp_df['最低'] = pd.to_numeric(temp_df['最低'], errors="coerce") temp_df['今开'] = pd.to_numeric(temp_df['今开'], errors="coerce") temp_df['量比'] = pd.to_numeric(temp_df['量比'], errors="coerce") temp_df['换手率'] = pd.to_numeric(temp_df['换手率'], errors="coerce") return temp_df def stock_zh_a_new_em() -> pd.DataFrame: """ 东方财富网-行情中心-沪深个股-新股 http://quote.eastmoney.com/center/gridlist.html#newshares :return: 新股 :rtype: pandas.DataFrame """ url = 'http://40.push2.eastmoney.com/api/qt/clist/get' params = { 'pn': '1', 'pz': '2000', 'po': '1', 'np': '1', 'ut': 'bd1d9ddb04089700cf9c27f6f7426281', 'fltt': '2', 'invt': '2', 'fid': 'f26', 'fs': 'm:0 f:8,m:1 f:8', 'fields': 'f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152', '_': '1631107510188', } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['data']['diff']) temp_df.reset_index(inplace=True) temp_df['index'] = range(1, len(temp_df)+1) temp_df.columns = [ '序号', '最新价', '涨跌幅', '涨跌额', '成交量', '成交额', '振幅', '换手率', '市盈率-动态', '量比', '_', '代码', '_', '名称', '最高', '最低', '今开', '昨收', '_', '_', '_', '市净率', '_', '_', '_', '_', '_', '_', '_', '_', '_', ] temp_df = temp_df[[ '序号', '代码', '名称', '最新价', '涨跌幅', '涨跌额', '成交量', '成交额', '振幅', '最高', '最低', '今开', '昨收', '量比', '换手率', '市盈率-动态', '市净率', ]] temp_df['最新价'] = pd.to_numeric(temp_df['最新价'], errors="coerce") temp_df['涨跌幅'] = pd.to_numeric(temp_df['涨跌幅'], errors="coerce") temp_df['涨跌额'] = pd.to_numeric(temp_df['涨跌额'], errors="coerce") temp_df['成交量'] = pd.to_numeric(temp_df['成交量'], errors="coerce") temp_df['成交额'] = pd.to_numeric(temp_df['成交额'], errors="coerce") temp_df['振幅'] = pd.to_numeric(temp_df['振幅'], errors="coerce") temp_df['最高'] = pd.to_numeric(temp_df['最高'], errors="coerce") temp_df['最低'] = pd.to_numeric(temp_df['最低'], errors="coerce") temp_df['今开'] = pd.to_numeric(temp_df['今开'], errors="coerce") temp_df['量比'] = pd.to_numeric(temp_df['量比'], errors="coerce") temp_df['换手率'] = pd.to_numeric(temp_df['换手率'], errors="coerce") return temp_df def stock_zh_a_stop_em() -> pd.DataFrame: """ 东方财富网-行情中心-沪深个股-两网及退市 http://quote.eastmoney.com/center/gridlist.html#staq_net_board :return: 两网及退市 :rtype: pandas.DataFrame """ url = 'http://40.push2.eastmoney.com/api/qt/clist/get' params = { 'pn': '1', 'pz': '2000', 'po': '1', 'np': '1', 'ut': 'bd1d9ddb04089700cf9c27f6f7426281', 'fltt': '2', 'invt': '2', 'fid': 'f3', 'fs': 'm:0 s:3', 'fields': 'f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152', '_': '1631107510188', } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['data']['diff']) temp_df.reset_index(inplace=True) temp_df['index'] = range(1, len(temp_df)+1) temp_df.columns = [ '序号', '最新价', '涨跌幅', '涨跌额', '成交量', '成交额', '振幅', '换手率', '市盈率-动态', '量比', '_', '代码', '_', '名称', '最高', '最低', '今开', '昨收', '_', '_', '_', '市净率', '_', '_', '_', '_', '_', '_', '_', '_', '_', ] temp_df = temp_df[[ '序号', '代码', '名称', '最新价', '涨跌幅', '涨跌额', '成交量', '成交额', '振幅', '最高', '最低', '今开', '昨收', '量比', '换手率', '市盈率-动态', '市净率', ]] temp_df['最新价'] = pd.to_numeric(temp_df['最新价'], errors="coerce") temp_df['涨跌幅'] = pd.to_numeric(temp_df['涨跌幅'], errors="coerce") temp_df['涨跌额'] = pd.to_numeric(temp_df['涨跌额'], errors="coerce") temp_df['成交量'] = pd.to_numeric(temp_df['成交量'], errors="coerce") temp_df['成交额'] = pd.to_numeric(temp_df['成交额'], errors="coerce") temp_df['振幅'] = pd.to_numeric(temp_df['振幅'], errors="coerce") temp_df['最高'] = pd.to_numeric(temp_df['最高'], errors="coerce") temp_df['最低'] = pd.to_numeric(temp_df['最低'], errors="coerce") temp_df['今开'] = pd.to_numeric(temp_df['今开'], errors="coerce") temp_df['量比'] = pd.t
o_numeric(temp_df['量比'], errors="coerce")
pandas.to_numeric
import numpy as np import sys import os from neo import Block from neo.io import AxonIO, Spike2IO import pandas as pd from pathlib import Path from ec_code.phy_tools.utilities import nanzscore, nanzscoremedian, butter_highpass_filter def load_traces(filenames, **kwargs): """Function to load flexibly either one file or multiple files concatenated. """ if type(filenames) == list: if len(filenames) == 1: return _load_trace(filenames[0], **kwargs) else: df = _load_trace(filenames[0], **kwargs) for f in filenames[1:]: new_df = _load_trace(f, **kwargs) new_df["sweep"] += df["sweep"].max() + 1 df = pd.concat([df, new_df], axis=0) return df else: if Path(filenames).is_dir(): files = list(Path(filenames).glob("*.abf")) if len(files) > 0: return load_traces(files, **kwargs) else: return _load_trace(filenames, **kwargs) def _load_trace(filename, chan_names=[], verbose=True, artifact_chan=None, artifact_thr_sd=20, zscore=False, highpass_coff=None): """ :param filename: .abf file to be loaded; :param chan_names: new names for the channels; if "null", data won't be loaded; :param verbose: print info abot the trace if true; :return: """ # Time at the beginning of trace to be nan because of the artifact shape REMOVE_ART_S = 0.70 filename = str(filename) # convert to string if Path object if verbose: print('loading {}...'.format(filename)) # Filetype from filename: filetype = filename.split(".")[-1] # Read binary file: r = AxonIO(filename=filename) bl = r.read_block(lazy=False) # To be changed? read infos from the first block: read_names = [] for sig in bl.segments[0].analogsignals: read_names.append(sig.name) fn = np.float(sig.sampling_rate) print("Read info: Channels: {}; Sampling rate: {}".format(read_names, fn)) # If names are specified, overwrite: for i, overwrite_name in enumerate(chan_names): read_names[i] = overwrite_name # Initialise data dictionary: data = {'time': [], 'sweep': []} for k in read_names: if k is not 'null': data[k] = [] # Iterate over sweeps: artifact_positions = [] for i, seg in enumerate(bl.segments): # Calculate sample count time_vect = np.array(seg.analogsignals[0].times) # If trace has to start from the artifact, find a new start_idx: start_idx = 0 if artifact_chan is not None: data_arr = seg.analogsignals[artifact_chan].as_array() start_idx = find_artifact(data_arr, fn=fn, artifact_thr_sd=artifact_thr_sd) artifact_positions.append(start_idx/fn) # To check if all are found # Get time and sweep number time_vect = time_vect[start_idx:] - time_vect[start_idx] data['time'] += [time_vect] data['sweep'] += [np.ones(len(time_vect), dtype=int) * i] # Append all channel traces, removing artifact if necessary: for j, k in enumerate(read_names): if k is not 'null': # if channels are excluded data_arr = seg.analogsignals[j].as_array()[start_idx:, 0] if highpass_coff is not None: data_arr = butter_highpass_filter(data_arr, highpass_coff, fn, order=4) if artifact_chan is not None: data_arr[:int(REMOVE_ART_S * fn)] = np.nan if zscore: data_arr = nanzscoremedian(data_arr) data[k] += [data_arr] if verbose: print("Artifacts not found: {}".format(0 in artifact_positions)) # Concatenate values in dictionary for key in data.keys(): data[key] = np.squeeze( np.concatenate([np.squeeze(x) for x in data[key]])) return
pd.DataFrame(data)
pandas.DataFrame
""" Tests that work on both the Python and C engines but do not have a specific classification into the other test modules. """ import codecs import csv from datetime import datetime from io import StringIO import os import platform from tempfile import TemporaryFile from urllib.error import URLError import numpy as np import pytest from pandas._libs.tslib import Timestamp from pandas.errors import DtypeWarning, EmptyDataError, ParserError from pandas import DataFrame, Index, MultiIndex, Series, compat, concat import pandas._testing as tm from pandas.io.parsers import CParserWrapper, TextFileReader, TextParser def test_override_set_noconvert_columns(): # see gh-17351 # # Usecols needs to be sorted in _set_noconvert_columns based # on the test_usecols_with_parse_dates test from test_usecols.py class MyTextFileReader(TextFileReader): def __init__(self): self._currow = 0 self.squeeze = False class MyCParserWrapper(CParserWrapper): def _set_noconvert_columns(self): if self.usecols_dtype == "integer": # self.usecols is a set, which is documented as unordered # but in practice, a CPython set of integers is sorted. # In other implementations this assumption does not hold. # The following code simulates a different order, which # before GH 17351 would cause the wrong columns to be # converted via the parse_dates parameter self.usecols = list(self.usecols) self.usecols.reverse() return CParserWrapper._set_noconvert_columns(self) data = """a,b,c,d,e 0,1,20140101,0900,4 0,1,20140102,1000,4""" parse_dates = [[1, 2]] cols = { "a": [0, 0], "c_d": [Timestamp("2014-01-01 09:00:00"), Timestamp("2014-01-02 10:00:00")], } expected = DataFrame(cols, columns=["c_d", "a"]) parser = MyTextFileReader() parser.options = { "usecols": [0, 2, 3], "parse_dates": parse_dates, "delimiter": ",", } parser._engine = MyCParserWrapper(StringIO(data), **parser.options) result = parser.read() tm.assert_frame_equal(result, expected) def test_empty_decimal_marker(all_parsers): data = """A|B|C 1|2,334|5 10|13|10. """ # Parsers support only length-1 decimals msg = "Only length-1 decimal markers supported" parser = all_parsers with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), decimal="") def test_bad_stream_exception(all_parsers, csv_dir_path): # see gh-13652 # # This test validates that both the Python engine and C engine will # raise UnicodeDecodeError instead of C engine raising ParserError # and swallowing the exception that caused read to fail. path = os.path.join(csv_dir_path, "sauron.SHIFT_JIS.csv") codec = codecs.lookup("utf-8") utf8 = codecs.lookup("utf-8") parser = all_parsers msg = "'utf-8' codec can't decode byte" # Stream must be binary UTF8. with open(path, "rb") as handle, codecs.StreamRecoder( handle, utf8.encode, utf8.decode, codec.streamreader, codec.streamwriter ) as stream: with pytest.raises(UnicodeDecodeError, match=msg): parser.read_csv(stream) def test_read_csv_local(all_parsers, csv1): prefix = "file:///" if compat.is_platform_windows() else "file://" parser = all_parsers fname = prefix + str(os.path.abspath(csv1)) result = parser.read_csv(fname, index_col=0, parse_dates=True) expected = DataFrame( [ [0.980269, 3.685731, -0.364216805298, -1.159738], [1.047916, -0.041232, -0.16181208307, 0.212549], [0.498581, 0.731168, -0.537677223318, 1.346270], [1.120202, 1.567621, 0.00364077397681, 0.675253], [-0.487094, 0.571455, -1.6116394093, 0.103469], [0.836649, 0.246462, 0.588542635376, 1.062782], [-0.157161, 1.340307, 1.1957779562, -1.097007], ], columns=["A", "B", "C", "D"], index=Index( [ datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), datetime(2000, 1, 6), datetime(2000, 1, 7), datetime(2000, 1, 10), datetime(2000, 1, 11), ], name="index", ), ) tm.assert_frame_equal(result, expected) def test_1000_sep(all_parsers): parser = all_parsers data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({"A": [1, 10], "B": [2334, 13], "C": [5, 10.0]}) result = parser.read_csv(StringIO(data), sep="|", thousands=",") tm.assert_frame_equal(result, expected) def test_squeeze(all_parsers): data = """\ a,1 b,2 c,3 """ parser = all_parsers index =
Index(["a", "b", "c"], name=0)
pandas.Index
from tweepy import API from tweepy import Cursor from tweepy.streaming import StreamListener from tweepy import OAuthHandler from tweepy import Stream from tweetsent.nlp import Sentiment, SentimentCustom import os import numpy as np import pandas as pd import re import altair as alt # # # # TWITTER CLIENT # # # # class TwitterClient(): def __init__(self, twitter_user=None): self.auth = TwitterAuthenticator().authenticate_twitter_app() self.twitter_client = API(self.auth) self.twitter_user = twitter_user def get_twitter_client_api(self): return self.twitter_client # # # # TWITTER AUTHENTICATER # # # # class TwitterAuthenticator(): def authenticate_twitter_app(self): auth = OAuthHandler(os.environ.get('TWITTER_CONSUMER_API_KEY'), os.environ.get('TWITTER_CONSUMER_API_SECRET')) auth.set_access_token(os.environ.get('TWITTER_ACCESS_TOKEN'), os.environ.get('TWITTER_ACCESS_TOKEN_SECRET')) return auth # # # # TWITTER STREAMER # # # # class TwitterStreamer(): """ Class for streaming and processing live tweets. """ def __init__(self): self.twitter_autenticator = TwitterAuthenticator() def stream_tweets(self, fetched_tweets_filename, hash_tag_list): # This handles Twitter authetification and the connection to Twitter Streaming API listener = TwitterListener(fetched_tweets_filename) auth = self.twitter_autenticator.authenticate_twitter_app() stream = Stream(auth, listener) # This line filter Twitter Streams to capture data by the keywords: stream.filter(track=hash_tag_list) # # # # TWITTER STREAM LISTENER # # # # class TwitterListener(StreamListener): """ This is a basic listener that just prints received tweets to stdout. """ def __init__(self, fetched_tweets_filename): self.fetched_tweets_filename = fetched_tweets_filename def on_data(self, data): try: print(data) with open(self.fetched_tweets_filename, 'a') as tf: tf.write(data) return True except BaseException as e: print("Error on_data %s" % str(e)) return True def on_error(self, status): if status == 420: # Returning False on_data method in case rate limit occurs. return False print(status) class TweetAnalyzer(): """ Functionality for analyzing and categorizing content from tweets. """ #def clean_tweet(self, tweet): # return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)", " ", tweet).split()) def analyze_sentiment(self, tweet): sent = SentimentCustom() analysis = sent.analyze_sentiment(tweet) score = analysis[0][0] if score >= 0.6: return "Positivo", score elif (score >= 0.3) and (score <= 0.6): return "Neutral", score elif score < 0.3: return "Negativo", score else: return "Check Custom Model Threshold" def tweets_to_data_frame(self, tweets): df =
pd.DataFrame(data=[tweet.text for tweet in tweets], columns=['Tweets'])
pandas.DataFrame
import json, time from decimal import Decimal import pandas as pd import numpy as np import requests class API(): def __init__(self, base_url): self.base_url = base_url @staticmethod def _http_error_message(e, r): response_text = json.loads(r.text)['message'] return f'\n\nRequests HTTP error: {e}\n\n\tUrl: {r.url}\n\tStatus Code: {r.status_code}\n\tResponse Text: {response_text}\n\tNote: Check the url and endpoint\n' @staticmethod def _random_float_between_zero_one(): rand_int_below_ten = Decimal(str(np.random.randint(11))) return float(rand_int_below_ten / Decimal('10')) def get(self, endpoint, params={}, auth=None): url = f'{self.base_url}{endpoint}' try: r = requests.get(url=url, auth=auth, params=params) r.raise_for_status() except requests.ConnectionError as e: raise e except requests.HTTPError as e: raise requests.HTTPError(self._http_error_message(e, r)) else: return r def post(self, endpoint, params={}, data={}, auth=None): url = f'{self.base_url}{endpoint}' data = json.dumps(data) try: r = requests.post(url=url, auth=auth, params=params, data=data) r.raise_for_status() except requests.HTTPError as e: raise requests.HTTPError(self._http_error_message(e, r)) except requests.ConnectTimeout as e: raise e except requests.ConnectionError as e: raise e else: return r def handle_page_nation(self, endpoint, start_date, date_field='created_at', params={}, auth=None): all_results = [] def make_request(after=None): response = self.get(endpoint, params={**params, 'after':after}, auth=auth) end_cursor = response.headers.get('cb-after', None) # end of page index; used for older results data = response.json() number_of_results = len(data) if number_of_results == 0: # no data available in this page (request) return # flatten data; df =
pd.json_normalize(data, sep='.')
pandas.json_normalize
from ast import operator import csv from datetime import datetime from operator import index, mod import os import sys import math import time import warnings import itertools import numpy as np import pandas as pd # import scrapbook as sb import matplotlib.pyplot as plt from pmdarima.arima import auto_arima pd.options.display.float_format = "{:,.2f}".format np.set_printoptions(precision=2) warnings.filterwarnings("ignore") print("System version: {}".format(sys.version)) # Forecasting settings N_SPLITS = 1 HORIZON = 5 # Forecast 2 Days GAP = 1 FIRST_WEEK = 40 LAST_WEEK = 138 # Parameters of ARIMA model params = { "seasonal": False, "start_p": 0, "start_q": 0, "max_p": 5, "max_q": 5, "m": 52, } def readCSV(): # 读取csv至字典 csvFile = open("BCHAIN-MKPRU.csv", "r") reader = csv.reader(csvFile) date = [] price = [] # 建立空字典 result = {} for item in reader: # 忽略第一行 if reader.line_num == 1: continue result[item[0]] = float(item[1]) csvFile.close() for k, v in result.items(): result[k] = math.log(v) date.append(datetime.strptime(k, '%m/%d/%y')) price.append(result[k]) return (result, date, price) def getDatePrice(result): date = [] price = [] for k, v in result.iterrows(): result[k] = math.log(v['Value']) date.append(datetime.strptime(k, '%m/%d/%y')) price.append(math.log(v['Value'])) return (date, price) def createDF(date, price): period = 20 date = date[-period:] price = price[-period:] mid = int(period * 0.7) train_df = pd.DataFrame({'date': date[:mid], 'price': price[:mid]}, index=date[:mid], columns=['date', 'price']) test_df = pd.DataFrame({'date': date[mid:], 'price': price[mid:]}, index=date[mid:], columns=['date', 'price']) return (train_df, test_df) def train(train_ts): train_ts = np.array(train_ts.logmove) model = auto_arima( train_ts, seasonal=params["seasonal"], start_p=params["start_p"], start_q=params["start_q"], max_p=params["max_p"], max_q=params["max_q"], stepwise=True, ) model.fit(train_ts) def MAPE(predictions, actuals): """ Implements Mean Absolute Percent Error (MAPE). Args: predictions (array like): a vector of predicted values. actuals (array like): a vector of actual values. Returns: numpy.float: MAPE value """ if not (isinstance(actuals, pd.Series) and isinstance(predictions, pd.Series)): predictions, actuals = pd.Series(predictions), pd.Series(actuals) return ((predictions - actuals).abs() / actuals).mean() # 传入每日数据 def trainEveryDay(date, price): day = len(date) print(f'This is SIMU of the {day} DAY') train_df, test_df = createDF(date, price) train_ts = np.array(train_df.price) model = auto_arima( train_ts, seasonal=params["seasonal"], start_p=params["start_p"], start_q=params["start_q"], max_p=params["max_p"], max_q=params["max_q"], stepwise=True, ) model.fit(train_ts) # print(model.summary()) # model.plot_diagnostics(figsize=(10, 8)) # plt.show() preds = model.predict(n_periods=GAP + HORIZON - 1) predictions = np.round(np.exp(preds[-HORIZON:])) test_date = test_df.date[:HORIZON] pred_df = pd.DataFrame({"price": predictions}, index=test_date, columns=['price']) test_ts = test_df.head(HORIZON) train_ts = train_df # ts 为 e次方后数据 test_ts.price = np.round(np.exp(test_ts.price)) train_ts.price = np.round(np.exp(train_ts.price)) all_ts =
pd.concat([train_ts, test_ts])
pandas.concat
import os import argparse import numpy as np import pandas as pd from time import time from scipy.stats import norm from scipy.spatial.distance import euclidean from editing_dist_n_lcs_dp import edit_distance from editing_dist_n_lcs_dp import lcs #global variables # BREAK_POINTS = [] # LOOKUP_TABLE = [] # TODO BUILD CLASS # TODO find optimal VOCAB_SIZE & PAA_SIZE OR WINDOW_SIZE # TODO compare multiple series # TODO find motifs (cycles) def matrix_to_df(cols, matrix): """ Convert matrix of time series to pd.DataFrame """ df = pd.DataFrame() for i in range(len(cols)): df[cols[i]] = matrix[i] return df def znorm(ts): """ Standardize data """ return (ts - np.mean(ts)) / np.std(ts) def ts2paa(ts, paa_size): """ PAA algorithm implementation The conde is inpired on the R SAX package code. For non-equidivisible PAA interval a weighted sum is applied, The R package the weighted sum imlementationh has O(n * paa_size) complexity, instead this function has O(n) complexity. """ # convert ts to a single value if paa_size == 1: return np.array(np.mean(ts)) # use all ts' values elif paa_size == ts.shape[0]: return ts # series' length is divisible by paa split elif ts.shape[0] % paa_size == 0: ts_split = np.reshape(ts, (paa_size, ts.shape[0]//paa_size)) return np.mean(ts_split, 1) # ts' length is not divisible by paa split # O(ts.shape[0]) complexity instead of O(ts.shape[0] * paa_size) else: ts_paa = np.zeros(paa_size) carry = 0 n_vals = 0 paa_id = 0 weight = paa_size for i in range(ts.shape[0]): # update number of computed values n_vals += paa_size # set value's weight weight = paa_size # compute sum ts_paa[paa_id] += weight * ts[i] + carry # set carry carry = 0 # verify integrety => update `weight` and compute `carry` # update sum if n_vals > ts.shape[0]: # update weight to remove excess sum weight = n_vals - ts.shape[0] # remove excess ts_paa[paa_id] -= weight * ts[i] #compute paa value ts_paa[paa_id] = ts_paa[paa_id] / ts.shape[0] # update paa_id and aux. values paa_id += 1 n_vals = weight carry = weight * ts[i] return ts_paa def get_breakpoints(vocab_size): """ Devide series' area under N(0, 1) into `vocab_size` equal areas Returns a np.array, where symbol: cut Use inverse umulative distribution function """ probs = np.arange(0, vocab_size, 1) / vocab_size # cumulative prob. function return norm.ppf(probs) # @deprecated # use numpy instead (np.searchsorted(.)) def bin_search(val, arr): """ Adapted binary search (left) if `val` is <= than `m` => compare with m-1, otherwise compare with m+1 Find symbol representation Return index of symbol """ l = 0 r = arr.shape[0] - 1 while l <= r: m = (l + r + 1) // 2 if arr[m] <= val: # base case: m is right-most index if m + 1 == arr.shape[0]: return m # compare `val` with right neighbour elif val <= arr[m + 1]: return m l = m + 1 else: #base case: `val` is <= than 2nd value index if m <= 1: return 0 # compare `val` with left neighbour elif val > arr[m - 1]: return m - 1 r = m - 1 return m def val2symbol(ts_paa, vocab_size): """ Convert continuous time series values into discrete values, using `vocab_size` discrete values """ vocab = np.array(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'], dtype=str) #vocab = vocab[:vocab_size] # compute breakpoints under a normal distribution ~ N(0, 1) breakpoints = get_breakpoints(vocab_size) # get ids for symbol conversion symbol_ids = np.searchsorted(breakpoints, ts_paa) - 1 # convert ts to string ts_symbol = vocab[symbol_ids] return breakpoints, ts_symbol def sax(ts, out_size, vocab_size, paa=True): """ Apply SAX algorithm to time series, i.e. convert continuous values series into discrete values aggregated series :ts - time series of continuous values, numpy.array :out_size - the final output size of ts :vocab_size - number of sumbols to use (# lelvels), the size of vacabolary :paa - boolean variable, out_size is PAA if paa is True, out_size is Window size otherwise """ if paa: paa_size = out_size else: paa_size = get_paa_size_from_window_size(ts.shape[0], out_size) # Normalize series ts_norm = znorm(ts) # Convert normalized series to paa ts_paa = ts2paa(ts_norm, paa_size) # Convert paa series into symbols breakpoints, ts_sax = val2symbol(ts_paa, vocab_size) # Lookup table containing distance between symbols dist_lookup_table = compute_dist_lookup_table(breakpoints) return breakpoints, dist_lookup_table, ts_norm, ts_paa, ts_sax def symbol2index(ts_sax): """ Converts symbol string to index values of symbols ts_sax: series as symbols, i.e. sax representation of a series """ # lookup table for symbols' indeces s2id = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, 'f': 5, 'g': 6, 'h': 7, 'i': 8, 'j': 9, 'k': 10, 'l': 11, 'm': 12, 'n': 13, 'o': 14, 'p': 15, 'q': 16, 'r': 17, 's': 18, 't': 19, 'u': 20, 'v': 21, 'w': 22, 'x': 23, 'y': 24, 'z': 25, 'A': 26, 'B': 27, 'C': 28, 'D': 29, 'E': 30, 'F': 31, 'G': 32, 'H': 33, 'I': 34, 'J': 35, 'K': 36, 'L': 37, 'M': 38, 'N': 39, 'O': 40, 'P': 41, 'Q': 42, 'R': 43, 'S': 44, 'T': 45, 'U': 46, 'V': 47, 'W': 48, 'X': 49, 'Y': 50, 'Z': 51} # init. id series ts_id = np.empty(ts_sax.shape[0], dtype=int) # convert symbols to ids for i in range(ts_sax.shape[0]): ts_id[i] = s2id[ts_sax[i]] return ts_id def get_dists(ts1_sax, ts2_sax, lookup_table): """ Compute distance between each symbol of two words (series) using a lookup table ts1_sax and ts2_sax are two sax representations (strings) built under the same conditions """ # Verify integrity if ts1_sax.shape[0] != ts2_sax.shape[0]: return -1 # convert symbol series into series of indexes (symbol indexes) ts1_sax_id = symbol2index(ts1_sax) ts2_sax_id = symbol2index(ts2_sax) # array of distances between symbols dists = np.zeros(ts1_sax.shape[0]) for i in range(ts1_sax_id.shape[0]): dists[i] = lookup_table[ts1_sax_id[i], ts2_sax_id[i]] return dists def compute_mindist(n, lookup_table, ts1_sax, ts2_sax): """ Minimum distance between the original time series of two words `n` is the original series' length """ aux = np.sqrt(n / ts1_sax.shape[0]) dists = get_dists(ts1_sax, ts2_sax, lookup_table) dists_squares = np.square(dists) dists_sum_squares = np.sum(dists_squares) return aux * np.sqrt(dists_sum_squares) def get_tightness_of_lower_bound(lookup_table, ts1, ts2, ts1_sax, ts2_sax): """ Compute the tightness of the lower bound Used to find the parameters settings """ # compute euclidean distance between original series or_dist = euclidean(ts1, ts2) # compute MINDIST for sax series mindist = compute_mindist(ts1.shape[0],lookup_table, ts1_sax, ts2_sax) return mindist / or_dist def compute_dist_lookup_table(breakpoints): """ The lookup table is computed as described in [X] d(r, c) = |0, if |r - c| <= 1 |abs(breakpoints[i] - breakpoints[j-1]), otherwise Contiguous values have distance 0, thus are not computed """ # init. matrix lookup_table_dist = np.zeros((breakpoints.shape[0], breakpoints.shape[0])) # compute distances for bi in range(breakpoints.shape[0]): # increment by 2, since contiguous values have distance 0 for bj in range(bi + 2, breakpoints.shape[0]): # since breakpoints[0] = - np.inf and symbol is conditioned by <= # bi is set to next value # compute distance dist = breakpoints[bj] - breakpoints[bi + 1] # set distance lookup_table_dist[bi, bj] = dist # mirror lookup_table_dist[bj, bi] = dist return lookup_table_dist def get_paa_size_from_window_size(n, window_size): """ Gets paa size from a sliding window size. Use sliding window instead of symbol series. """ if n % window_size > 0: return n // window_size + 1 return n // window_size ############################################################################################### ############################################################################################### def main(args): #CONSTATNS MIN_VOCAB_SIZE = 1 MAX_VOCAB_SIZE = 52 MIN_PAA_SIZE = 1 ###################### # Finding VOCAB_SIZE & PAA_SIZE. It is highly data dependent. Best values are those # which minimize the tightness of the lowers bound # Objective: Minimize(MINDIST(Â, Ê) / D(A, B)), i.e. Tightness of Lower Bound # Read data (skips header) data = np.loadtxt(args.data_path, delimiter=',', skiprows=1) df = pd.read_csv(args.data_path) data = df.as_matrix() cols = list(df.columns) #switch columns with rows (=>row is a time series) data = data.T #read arguments # n = len of series VOCAB_SIZE = args.vocab_size PAA_SIZE = args.paa_size WINDOW_SIZE = args.window_size breakpoints_l = [] lookup_table_l = [] ts_norm_l = [] ts_paa_l = [] ts_sax_l = [] st = time() print("Computing SAX...") for ts in data: # get number of obs. n = ts.shape #get PAA_SIZE or WINDOW_SIZE if WINDOW_SIZE > 0: PAA_SIZE = get_paa_size_from_window_size(n, WINDOW_SIZE) # compute sax breakpoints, lookup_table, ts_norm, ts_paa, ts_sax = sax(ts, PAA_SIZE, VOCAB_SIZE) #add to list breakpoints_l.append(breakpoints) lookup_table_l.append(lookup_table) ts_norm_l.append(ts_norm) ts_paa_l.append(ts_paa) ts_sax_l.append(ts_sax) n_series = data.shape[0] # compute TLS tbl_df = pd.DataFrame() edd_df = pd.DataFrame() lcs_df =
pd.DataFrame()
pandas.DataFrame
"""Generates context csv files that can be used by a contextual bandit algorithm """ import os from datetime import datetime, timedelta import json from abc import ABC, abstractmethod import pandas as pd import numpy as np import typing from typing import List import global_config from . import trace_pre_processing as tpp def generate_context_csv( event_extractor, paths:List[str], seq: bool=True, window_size:int=30, step:int=5, columns:List[str]=None, outdir:str='./' )->str: """Writes a context.csv file that can be processed by a contextual bandit algorithm. It extracts features for each event in the passed traces. Afterwards in aggregates the features using a sliding window approach and writes the file to a desired location. Args: event_extractor (AbstractTraceExtractor): Used to extract the features from individual events. paths (string[]): Paths to the traces that will be used to generate the file. start (np.datetime64): Timestamp of the start for the context file. Only events occuring between start and end will be used. end (np.datetime64): Timestamp of the end for the context file. window_size (int): Size of the sliding window. step (int): Step of the sliding window. columns (string[]): If not None, thae resulting DataFrame will have these columns. outdir (string): Directory where to write the generated file. Returns: String: Full path of the written file """ stime = datetime.now() print('Generating context.csv...') start = global_config.START_TRACES_SEQUENTIAL if seq else global_config.START_TRACES_CONCURRENT end = global_config.END_TRACES_SEQUENTIAL if seq else global_config.END_TRACES_CONCURRENT start = pd.to_datetime(start) end = pd.to_datetime(end) context_df = pd.DataFrame(index=pd.date_range( start=start, end=end, freq='1S')) file_paths = [] current_path = '' for current_path in paths: file_paths.extend( list(map(lambda x: current_path + x, os.listdir(current_path)))) print('Total of %d traces will be used to generate the context.csv' % len(file_paths)) i = 0 context_df_columns_set = set() for current_fp in file_paths: with open(current_fp) as open_file: trace_json = json.load(open_file) try: event_features = event_extractor.extract_features_for_events( trace_json) except KeyError: print('Skipped trace %s' % current_fp) i = i + 1 continue trace_df = pd.pivot_table( pd.DataFrame(data=event_features), index=['start'], aggfunc=np.sum) mask = (trace_df.index >=
pd.to_datetime(start)
pandas.to_datetime
import pandas as pd import numpy as np import os import logging import argparse logging.getLogger().setLevel(logging.INFO) if __name__ == '__main__': parser = argparse.ArgumentParser("Aggregate experiment results") parser.add_argument("savepath", help="savepath for the experiment folder. either relative to working directory or absolute.", type=str) args = parser.parse_args() base_base_path = args.savepath dirs = [ name for name in os.listdir(base_base_path) if os.path.isdir(os.path.join(base_base_path, name)) ] for dir in dirs: base_path = base_base_path + dir +'/' r_types = ['individualized', 'subpopulation'] t_types = ['improvement', 'acceptance'] cols = ['eta_obs_model', 'eta_obs_refit', 'r_type', 't_type'] df =
pd.DataFrame([], columns=cols)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Routine to read and clean water quality data of wide/stacked formats <NAME>, <NAME> KWR, April-July 2020 Last edit: July 27. Not upodating any more and use the new version. """ import pandas as pd import numpy as np import logging import os import math # from unit_converter.converter import convert, converts import re from molmass import Formula # %% HGC.IO.defaults # New definition of NaN. Based on default values of python with the following exception: # 'NA' is left out to prevent NA (Sodium) being read as NaN. NA_VALUES = ['#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan', '1.#IND', '1.#QNAN', 'N/A', 'NULL', 'NaN', 'n/a', 'nan', 'null'] # The following dictionary should be extracted from HGC.constants and augmented (or overruled) by the user DATAMODEL_HGC = { 'HGC_default_feature_units': { 'Fe': 'mg/L', 'SO4': 'mg/L', 'Al': 'µg/L', }, } UNIT_CONVERSION = { 'mm':0.001, 'cm':0.01, 'm':1.0, 'km':1000, # add length here 'ng':1e-9, 'μg':0.000001, 'mg':0.001, 'g':1.0, 'kg':1000, # add mass here 'mL':0.001, 'L':1.0, # add volumn here 'μS':1e-6, 'mS':0.001, 'S':1.0, # add conductivity here 'mV': 0.001, 'V':1.0, # add voltage here 'μmol':1e-6, 'mmol':0.001, 'mol':1.0, # add mol here } # The following keyworded arguments can be adjusted and merged with the configuration dictionary by the user KWARGS = { 'na_values': NA_VALUES, 'encoding': 'ISO-8859-1', 'delimiter': None, } DEFAULT_FORMAT = { 'Value': 'float64', 'Feature': 'string', 'Unit': 'string', 'Date': 'date', 'LocationID': 'string', 'SampleID': 'string', 'X': 'float64', 'Y': 'float64', } # %% define sub-function to be called by the main function def read_file(file_path='', sheet_name=0, na_values=NA_VALUES, encoding='ISO-8859-1', delimiter=None, **kwargs): """ Read pandas dataframe or file. Parameters ---------- file_path : dataframe or string string must refer to file. Currenlty, Excel and csv are supported sheet_name : integer or string optional, when using Excel file and not reading first sheet na_values : list list of strings that are recognized as NaN """ logger.info('Reading input file(s) now...') if isinstance(file_path, pd.DataFrame): # skipping reading if the input is already a df df = file_path # print('dataframe read: ' + [x for x in globals() if globals()[x] is file_path][0]) logger.info('A dataframe has been imported') elif isinstance(file_path, str): file_extension = file_path.split('.')[-1] # filename, file_extension = os.path.splitext(file_path) if (file_extension == 'xlsx') or (file_extension == 'xls'): try: df = pd.read_excel(file_path, sheet_name=sheet_name, header=None, index_col=None, na_values=na_values, keep_default_na=False, encoding=encoding) logger.info('A excel spreadsheet has been imported') except: df = [] logger.error('Encountered an error when importing excel spreadsheet') elif file_extension == 'csv': try: df = pd.read_csv(file_path, encoding=encoding, header=None, index_col=None, low_memory=False, na_values=na_values, keep_default_na=False, delimiter=delimiter) logger.info('A csv has been imported') except: df = [] logger.error('Encountered an error when importing csv') else: df= [] logger.error('Not a recognizable file. Need a csv or xls(x) file.') else: df= [] logger.error(['This file path is not recognized: '+file_path]) return df def _get_slice(df, arrays): """ Get values by slicing """ if isinstance(arrays[0], list): # check if the array is nested series = pd.Series([], dtype='object') for array in arrays: series = series.append(df.iloc[array[0], array[1]].rename(0)) elif len(arrays) == 1: # only row specified series = df.iloc[arrays[0]] else: # row and column specified series = df.iloc[arrays[0], arrays[1]] return series def get_headers_wide(df, slice_sample='', slice_feature='', slice_unit='', **kwargs): """ Get column headers for a wide-format dataframe. """ # create series with headers header_sample = _get_slice(df, slice_sample) header_feature = _get_slice(df, slice_feature) header_unit = _get_slice(df, slice_unit) # get headers at 2 levels ncols = len(df.columns) level0 = pd.Series(ncols * ['']) level0[header_sample.index] = header_sample level0[header_feature.index] = header_feature level1 = pd.Series(ncols * ['']) level1[header_unit.index] = header_unit # add series by multi-index headers df.columns = pd.MultiIndex.from_arrays([level0, level1]) logger.info('Got column headers for a wide-format dataframe.') return df, header_sample, header_feature, header_unit def get_headers_stacked(df, slice_sample='', **kwargs): """ Get column headers for a stacked-format dataframe. """ # create series with headers header_sample = _get_slice(df, slice_sample) # add column names ncols = len(df.columns) level0 = pd.Series(ncols * ['']) level0[header_sample.index] = header_sample df.columns = level0 return df, header_sample def slice_rows_with_data(df, slice_data=None, **kwargs): """ Getting needed data by pre-defined slicing blocks """ df2 =
pd.DataFrame([])
pandas.DataFrame
from tkinter import ttk import tkinter as tk from eosim.config import GuiStyle, MissionConfig import eosim.gui.helpwindow as helpwindow from eosim import config from eosim.gui.mapprojections import Mercator, EquidistantConic, LambertConformal, Robinson, LambertAzimuthalEqualArea, Gnomonic import instrupy import pandas as pd import numpy as np import tkinter from matplotlib.backends.backend_tkagg import ( FigureCanvasTkAgg, NavigationToolbar2Tk) # Implement the default Matplotlib key bindings. from matplotlib.backend_bases import key_press_handler from matplotlib.figure import Figure import matplotlib.pyplot as plt import cartopy.crs as ccrs import logging logger = logging.getLogger(__name__) class PlotMapVars(instrupy.util.EnumEntity): TIME = "Time" ALT = "Altitude [km]" INC = "Inclination [deg]" TA = "True Anomaly [km]" RAAN = "RAAN [deg]" AOP = "AOP [deg]" ECC = "ECC" SPD = "ECI Speed [km/s]" @classmethod def get_orbitpy_file_column_header(cls, var): if(var==cls.INC): return "INC[deg]" elif(var==cls.RAAN): return "RAAN[deg]" elif(var==cls.AOP): return "AOP[deg]" elif(var==cls.TA): return "TA[deg]" elif(var==cls.ECC): return "ECC" else: return False # could be a derived variable @classmethod def get_data_from_orbitpy_file(cls, sat_df, sat_id, var, step_size, epoch_JDUT1): ''' Get data frame the orbitpy resultant output files ''' _header = PlotMapVars.get_orbitpy_file_column_header(var) if(_header is not False): if _header == sat_df.index.name: data = sat_df.index else: data = sat_df[_header] else: # a derived variable if(var == cls.TIME): data = np.array(sat_df.index) * step_size # index = "TimeIndex" _header = 'Time[s]' elif(var == cls.ALT): sat_dist = [] sat_dist = np.array(sat_df["X[km]"])*np.array(sat_df["X[km]"]) + np.array(sat_df["Y[km]"])*np.array(sat_df["Y[km]"]) + np.array(sat_df["Z[km]"])*np.array(sat_df["Z[km]"]) sat_dist = np.sqrt(sat_dist) data = np.array(sat_dist) - instrupy.util.Constants.radiusOfEarthInKM _header = 'Alt[km]' elif(var==cls.SPD): data = np.array(sat_df["VX[km/s]"])*np.array(sat_df["VX[km/s]"]) + np.array(sat_df["VY[km/s]"])*np.array(sat_df["VY[km/s]"]) + np.array(sat_df["VZ[km/s]"])*np.array(sat_df["VZ[km/s]"]) data = np.sqrt(data) _header = 'Speed[km/s]' return [str(sat_id)+'.'+_header, data] class MapVisPlotAttibutes(): def __init__(self, proj=None, sat_id=None, var=None, time_start=None, time_end=None): self.sat_id = sat_id if sat_id is not None else list() self.var = var if var is not None else list() self.proj = proj if proj is not None else None self.time_start = time_start if time_start is not None else None self.time_end = time_end if time_end is not None else None def update_variables(self, sat_id, var): self.sat_id.append(sat_id) self.var.append(var) def update_projection(self, proj): self.proj = proj def reset_variables(self): self.sat_id = list() self.var = list() def update_time_interval(self, time_start, time_end): self.time_start = time_start self.time_end = time_end def get_projection(self): return self.proj def get_variables(self): return [self.sat_id, self.var] def get_time_interval(self): return [self.time_start, self.time_end] class VisMapFrame(ttk.Frame): def __init__(self, win, tab): self.vis_map_attr = MapVisPlotAttibutes() # data structure storing the mapping attributes # map plots frame vis_map_frame = ttk.Frame(tab) vis_map_frame.pack(expand = True, fill ="both", padx=10, pady=10) vis_map_frame.rowconfigure(0,weight=1) vis_map_frame.rowconfigure(1,weight=1) vis_map_frame.columnconfigure(0,weight=1) vis_map_frame.columnconfigure(1,weight=1) vis_map_frame.columnconfigure(2,weight=1) vis_map_time_frame = ttk.LabelFrame(vis_map_frame, text='Set Time Interval', labelanchor='n') vis_map_time_frame.grid(row=0, column=0, sticky='nswe', padx=(10,0)) vis_map_time_frame.rowconfigure(0,weight=1) vis_map_time_frame.rowconfigure(1,weight=1) vis_map_time_frame.rowconfigure(2,weight=1) vis_map_time_frame.columnconfigure(0,weight=1) vis_map_time_frame.columnconfigure(1,weight=1) vis_map_proj_frame = ttk.LabelFrame(vis_map_frame, text='Set Map Projection', labelanchor='n') vis_map_proj_frame.grid(row=0, column=1, sticky='nswe') vis_map_proj_frame.columnconfigure(0,weight=1) vis_map_proj_frame.rowconfigure(0,weight=1) vis_map_proj_frame.rowconfigure(1,weight=1) vis_map_proj_type_frame = ttk.Frame(vis_map_proj_frame) vis_map_proj_type_frame.grid(row=0, column=0) proj_specs_container = ttk.Frame(vis_map_proj_frame) proj_specs_container.grid(row=1, column=0, sticky='nswe') proj_specs_container.columnconfigure(0,weight=1) proj_specs_container.rowconfigure(0,weight=1) proj_specs_container_frames = {} for F in (Mercator, EquidistantConic, LambertConformal,Robinson,LambertAzimuthalEqualArea,Gnomonic): page_name = F.__name__ self._prj_typ_frame = F(parent=proj_specs_container, controller=self) proj_specs_container_frames[page_name] = self._prj_typ_frame self._prj_typ_frame.grid(row=0, column=0, sticky="nsew") self._prj_typ_frame = proj_specs_container_frames['Mercator'] # default projection type self._prj_typ_frame.tkraise() vis_map_var_frame = ttk.LabelFrame(vis_map_frame, text='Set Variable(s)', labelanchor='n') vis_map_var_frame.grid(row=0, column=2, sticky='nswe') vis_map_var_frame.columnconfigure(0,weight=1) vis_map_var_frame.rowconfigure(0,weight=1) vis_map_var_frame.rowconfigure(1,weight=1) vis_map_plot_frame = ttk.Frame(vis_map_frame) vis_map_plot_frame.grid(row=1, column=0, columnspan=3, sticky='nswe', pady=(10,2)) vis_map_plot_frame.columnconfigure(0,weight=1) vis_map_plot_frame.columnconfigure(1,weight=1) vis_map_plot_frame.rowconfigure(0,weight=1) # time interval frame ttk.Label(vis_map_time_frame, text="Time (hh:mm:ss) from mission-epoch", wraplength="110", justify='center').grid(row=0, column=0,columnspan=2,ipady=5) ttk.Label(vis_map_time_frame, text="From").grid(row=1, column=0, sticky='ne') self.vis_map_time_from_entry = ttk.Entry(vis_map_time_frame, width=10, takefocus = False) self.vis_map_time_from_entry.grid(row=1, column=1, sticky='nw', padx=10) self.vis_map_time_from_entry.insert(0,'00:00:00') self.vis_map_time_from_entry.bind("<FocusIn>", lambda args: self.vis_map_time_from_entry.delete('0', 'end')) ttk.Label(vis_map_time_frame, text="To").grid(row=2, column=0, sticky='ne') self.vis_map_time_to_entry = ttk.Entry(vis_map_time_frame, width=10, takefocus = False) self.vis_map_time_to_entry.grid(row=2, column=1, sticky='nw', padx=10) self.vis_map_time_to_entry.insert(0,'10:00:00') self.vis_map_time_to_entry.bind("<FocusIn>", lambda args: self.vis_map_time_to_entry.delete('0', 'end')) # projection PROJ_TYPES = ['Mercator', 'EquidistantConic', 'LambertConformal', 'Robinson', 'LambertAzimuthalEqualArea', 'Gnomonic'] self._proj_type = tk.StringVar() # using self so that the variable is retained even after exit from the function self._proj_type.set("Mercator") # initialize def proj_type_combobox_change(event=None): if self._proj_type.get() == "Mercator": self._prj_typ_frame = proj_specs_container_frames['Mercator'] elif self._proj_type.get() == "EquidistantConic": self._prj_typ_frame = proj_specs_container_frames['EquidistantConic'] elif self._proj_type.get() == "LambertConformal": self._prj_typ_frame = proj_specs_container_frames['LambertConformal'] elif self._proj_type.get() == "Robinson": self._prj_typ_frame = proj_specs_container_frames['Robinson'] elif self._proj_type.get() == "LambertAzimuthalEqualArea": self._prj_typ_frame = proj_specs_container_frames['LambertAzimuthalEqualArea'] elif self._proj_type.get() == "Gnomonic": self._prj_typ_frame = proj_specs_container_frames['Gnomonic'] self._prj_typ_frame.tkraise() projtype_combo_box = ttk.Combobox(vis_map_proj_type_frame, values=PROJ_TYPES, textvariable = self._proj_type, width=25) projtype_combo_box.current(0) projtype_combo_box.grid(row=0, column=0) projtype_combo_box.bind("<<ComboboxSelected>>", proj_type_combobox_change) vis_map_var_sel_btn = ttk.Button(vis_map_var_frame, text="Var(s)", command=self.click_select_var_btn) vis_map_var_sel_btn.grid(row=0, column=0) self.vis_map_var_sel_disp = tk.Text(vis_map_var_frame, state='disabled',height = 2, width = 3, background="light grey") self.vis_map_var_sel_disp.grid(row=1, column=0, sticky='nsew', padx=20, pady=20) # plot frame plot_btn = ttk.Button(vis_map_plot_frame, text="Plot", command=self.click_plot_btn) plot_btn.grid(row=0, column=0, sticky='e', padx=20) def click_select_var_btn(self): # reset any previously configured variables self.vis_map_attr.reset_variables() # create window to ask which satellite select_var_win = tk.Toplevel() select_var_win.rowconfigure(0,weight=1) select_var_win.rowconfigure(1,weight=1) select_var_win.columnconfigure(0,weight=1) select_var_win.columnconfigure(1,weight=1) select_sat_win_frame = ttk.LabelFrame(select_var_win, text='Select Satellite') select_sat_win_frame.grid(row=0, column=0, padx=10, pady=10) select_var_frame = ttk.LabelFrame(select_var_win, text='Select Variable') select_var_frame.grid(row=0, column=1, padx=10, pady=10) okcancel_frame = ttk.Label(select_var_win) okcancel_frame.grid(row=1, column=0, columnspan=2, padx=10, pady=10) # place the widgets in the frame available_sats = config.out_config.get_satellite_ids() # get all available sats for which outputs are available sats_combo_box = ttk.Combobox(select_sat_win_frame, values=available_sats) sats_combo_box.current(0) sats_combo_box.grid(row=0, column=0) self._vis_map_var= tk.StringVar() # using self so that the variable is retained even after exit from the function, make sure variable name is unique j = 0 k = 0 for _var in list(PlotMapVars): var_rbtn = ttk.Radiobutton(select_var_frame, text=_var, variable=self._vis_map_var, value=_var) var_rbtn.grid(row=j, column=k, sticky='w') j = j + 1 if(j==5): j=0 k=k+1 def click_ok_btn(): self.vis_map_attr.update_variables(sats_combo_box.get(), self._vis_map_var.get()) def click_exit_btn(): self.vis_map_var_sel_disp.configure(state='normal') self.vis_map_var_sel_disp.delete(1.0,'end') [sats, vars] = self.vis_map_attr.get_variables() vars_str = [str(sats[k]+'.'+vars[k]) for k in range(0,len(sats))] self.vis_map_var_sel_disp.insert(1.0,' '.join(vars_str)) self.vis_map_var_sel_disp.configure(state='disabled') select_var_win.destroy() ok_btn = ttk.Button(okcancel_frame, text="Add", command=click_ok_btn, width=15) ok_btn.grid(row=0, column=0, sticky ='e') cancel_btn = ttk.Button(okcancel_frame, text="Exit", command=click_exit_btn, width=15) cancel_btn.grid(row=0, column=1, sticky ='w') def update_time_interval_in_attributes_variable(self): # read the plotting time interval time_start = str(self.vis_map_time_from_entry.get()).split(":") # split and reverse list time_start.reverse() # convert to seconds x = 0 for k in range(0,len(time_start)): x = x + float(time_start[k]) * (60**k) time_start_s = x time_end = str(self.vis_map_time_to_entry.get()).split(":") # split and reverse list time_end.reverse() # convert to seconds x = 0 for k in range(0,len(time_end)): x = x + float(time_end[k]) * (60**k) time_end_s = x self.vis_map_attr.update_time_interval(time_start_s, time_end_s) def update_projection_in_attributes_variable(self): proj = self._prj_typ_frame.get_specs() self.vis_map_attr.update_projection(proj) def click_plot_btn(self): """ Make projected plots of the variables indicated in :code:`self.vis_map_attr` instance variable. """ self.update_time_interval_in_attributes_variable() self.update_projection_in_attributes_variable() [time_start_s, time_end_s] = self.vis_map_attr.get_time_interval() proj = self.vis_map_attr.get_projection() # get the variable data [sat_id, var] = self.vis_map_attr.get_variables() # get the epoch and time-step from the file belonging to the first vraible (common among all variables) sat_state_fp = config.out_config.get_satellite_state_fp()[config.out_config.get_satellite_ids().index(sat_id[0])] # read the epoch and time-step size and fix the start and stop indices epoch_JDUT1 = pd.read_csv(sat_state_fp, skiprows = [0], nrows=1, header=None).astype(str) # 2nd row contains the epoch epoch_JDUT1 = float(epoch_JDUT1[0][0].split()[2]) step_size = pd.read_csv(sat_state_fp, skiprows = [0,1], nrows=1, header=None).astype(str) # 3rd row contains the stepsize step_size = float(step_size[0][0].split()[4]) logger.debug("epoch_JDUT1 is " + str(epoch_JDUT1)) logger.debug("step_size is " + str(step_size)) time_start_index = int(time_start_s/step_size) time_end_index = int(time_end_s/step_size) sat_state_df = pd.read_csv(sat_state_fp,skiprows = [0,1,2,3]) sat_state_df.set_index('TimeIndex', inplace=True) min_time_index = min(sat_state_df.index) max_time_index = max(sat_state_df.index) if(time_start_index < min_time_index or time_start_index > max_time_index or time_end_index < min_time_index or time_end_index > max_time_index or time_start_index > time_end_index): logger.info("Please enter valid time-interval.") return sat_state_df = sat_state_df.iloc[time_start_index:time_end_index] plt_data = pd.DataFrame(index=sat_state_df.index) # iterate over the list of vars num_vars = len(var) varname = [] for k in range(0,num_vars): # extract the y-variable data from of the particular satellite # cartesian eci state file _sat_state_fp = config.out_config.get_satellite_state_fp()[config.out_config.get_satellite_ids().index(sat_id[k])] _sat_state_df =
pd.read_csv(_sat_state_fp,skiprows = [0,1,2,3])
pandas.read_csv
from alpha_vantage.timeseries import TimeSeries import pandas as pd from datetime import datetime import matplotlib.pyplot as plt from matplotlib import style import matplotlib.dates as mdates from io import BytesIO import base64 import gc import config def incoming_data(stock): # config.py stores the Alpha Vantage API key (https://www.alphavantage.co/support/#api-key) ts = TimeSeries(key = config.api_key) # compact is prior 100 days of data data_recent = ts.get_daily_adjusted(stock, outputsize = 'compact') # full is up to 20 years of data (if available) data_old = ts.get_daily_adjusted(stock, outputsize = 'full') date_recent = [] close_recent = [] date_old = [] close_old = [] now = datetime.now() # specifies how many historical days to include on the recent chart lookback = 200 # iterates through recent data and appends date & close lists with data and close data for lookback period for keys in data_recent[0].keys(): if (datetime.toordinal(
pd.to_datetime(keys)
pandas.to_datetime
import numpy as np import pandas as pd import pytest import woodwork as ww from blocktorch.data_checks import DataCheckAction, DataCheckActionCode from blocktorch.model_family import ModelFamily from blocktorch.pipelines import ( BinaryClassificationPipeline, MulticlassClassificationPipeline, RegressionPipeline, ) from blocktorch.pipelines.components import ( DateTimeFeaturizer, DelayedFeatureTransformer, DropColumns, DropNullColumns, DropRowsTransformer, EmailFeaturizer, Estimator, Imputer, LinearRegressor, LogisticRegressionClassifier, LogTransformer, OneHotEncoder, SklearnStackedEnsembleClassifier, SklearnStackedEnsembleRegressor, StandardScaler, TargetImputer, TextFeaturizer, Transformer, URLFeaturizer, ) from blocktorch.pipelines.utils import ( _get_pipeline_base_class, _make_component_list_from_actions, generate_pipeline_code, get_estimators, make_pipeline, ) from blocktorch.problem_types import ProblemTypes, is_regression, is_time_series @pytest.fixture def get_test_data_from_configuration(): def _get_test_data_from_configuration( input_type, problem_type, column_names=None, lognormal_distribution=False ): X_all = pd.DataFrame( { "all_null": [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan] * 2, "numerical": range(14), "categorical": ["a", "b", "a", "b", "b", "a", "b"] * 2, "dates": pd.date_range("2000-02-03", periods=14, freq="W"), "text": [ "this is a string", "this is another string", "this is just another string", "blocktorch should handle string input", "cats are gr8", "hello world", "blocktorch is gr8", ] * 2, "email": [ "<EMAIL>", "<EMAIL>", "<EMAIL>", "<EMAIL>", "<EMAIL>", "<EMAIL>", "<EMAIL>", ] * 2, "url": [ "https://blocktorch.alteryx.com/en/stable/", "https://woodwork.alteryx.com/en/stable/guides/statistical_insights.html", "https://twitter.com/AlteryxOSS", "https://www.twitter.com/AlteryxOSS", "https://www.blocktorch.alteryx.com/en/stable/demos/text_input.html", "https://github.com/alteryx/blocktorch", "https://github.com/alteryx/featuretools", ] * 2, "ip": [ "0.0.0.0", "172.16.17.32", "192.168.127.12", "192.168.3.11", "192.168.3.11", "192.168.1.1", "255.255.255.255", ] * 2, } ) y = pd.Series([0, 0, 1, 0, 0, 1, 1] * 2) if problem_type == ProblemTypes.MULTICLASS: y = pd.Series([0, 2, 1, 2, 0, 2, 1] * 2) elif is_regression(problem_type): if lognormal_distribution: y = pd.Series([1, 1, 1, 2, 3, 6, 9] * 2) else: y = pd.Series([1, 2, 3, 3, 3, 4, 5] * 2) X = X_all[column_names] if input_type == "ww": logical_types = {} if "text" in column_names: logical_types.update({"text": "NaturalLanguage"}) if "categorical" in column_names: logical_types.update({"categorical": "Categorical"}) if "url" in column_names: logical_types.update({"url": "URL"}) if "email" in column_names: logical_types.update({"email": "EmailAddress"}) X.ww.init(logical_types=logical_types) y = ww.init_series(y) return X, y return _get_test_data_from_configuration @pytest.mark.parametrize("lognormal_distribution", [True, False]) @pytest.mark.parametrize("input_type", ["pd", "ww"]) @pytest.mark.parametrize("problem_type", ProblemTypes.all_problem_types) @pytest.mark.parametrize( "test_description, column_names", [ ("all nan is not categorical", ["all_null", "numerical"]), ("mixed types", ["all_null", "categorical", "dates", "numerical"]), ("no all_null columns", ["numerical", "categorical", "dates"]), ("date, numerical", ["dates", "numerical"]), ("only text", ["text"]), ("only dates", ["dates"]), ("only numerical", ["numerical"]), ("only ip", ["ip"]), ("only all_null", ["all_null"]), ("only categorical", ["categorical"]), ("text with other features", ["text", "numerical", "categorical"]), ("url with other features", ["url", "numerical", "categorical"]), ("ip with other features", ["ip", "numerical", "categorical"]), ("email with other features", ["email", "numerical", "categorical"]), ], ) def test_make_pipeline( problem_type, input_type, lognormal_distribution, test_description, column_names, get_test_data_from_configuration, ): X, y = get_test_data_from_configuration( input_type, problem_type, column_names=column_names, lognormal_distribution=lognormal_distribution, ) estimators = get_estimators(problem_type=problem_type) pipeline_class = _get_pipeline_base_class(problem_type) for estimator_class in estimators: if problem_type in estimator_class.supported_problem_types: parameters = {} if is_time_series(problem_type): parameters = { "pipeline": { "date_index": None, "gap": 1, "max_delay": 1, "forecast_horizon": 3, }, } pipeline = make_pipeline(X, y, estimator_class, problem_type, parameters) assert isinstance(pipeline, pipeline_class) delayed_features = ( [DelayedFeatureTransformer] if is_time_series(problem_type) and estimator_class.model_family != ModelFamily.ARIMA else [] ) ohe = ( [OneHotEncoder] if estimator_class.model_family != ModelFamily.CATBOOST and ( any( ltype in column_names for ltype in ["url", "email", "categorical"] ) ) else [] ) datetime = ( [DateTimeFeaturizer] if estimator_class.model_family not in [ModelFamily.ARIMA, ModelFamily.PROPHET] and "dates" in column_names else [] ) standard_scaler = ( [StandardScaler] if estimator_class.model_family == ModelFamily.LINEAR_MODEL else [] ) log_transformer = ( [LogTransformer] if lognormal_distribution and is_regression(problem_type) else [] ) drop_null = [DropNullColumns] if "all_null" in column_names else [] text_featurizer = ( [TextFeaturizer] if "text" in column_names and input_type == "ww" else [] ) email_featurizer = [EmailFeaturizer] if "email" in column_names else [] url_featurizer = [URLFeaturizer] if "url" in column_names else [] imputer = ( [] if ((column_names in [["ip"], ["dates"]]) and input_type == "ww") or ( (column_names in [["ip"], ["text"], ["dates"]]) and input_type == "pd" ) else [Imputer] ) drop_col = ( [DropColumns] if any(ltype in column_names for ltype in ["text"]) and input_type == "pd" else [] ) expected_components = ( log_transformer + email_featurizer + url_featurizer + drop_null + text_featurizer + drop_col + imputer + datetime + delayed_features + ohe + standard_scaler + [estimator_class] ) assert pipeline.component_graph.compute_order == [ component.name for component in expected_components ], test_description def test_make_pipeline_problem_type_mismatch(): with pytest.raises( ValueError, match=f"{LogisticRegressionClassifier.name} is not a valid estimator for problem type", ): make_pipeline( pd.DataFrame(), pd.Series(), LogisticRegressionClassifier, ProblemTypes.REGRESSION, ) with pytest.raises( ValueError, match=f"{LinearRegressor.name} is not a valid estimator for problem type", ): make_pipeline( pd.DataFrame(), pd.Series(), LinearRegressor, ProblemTypes.MULTICLASS ) with pytest.raises( ValueError, match=f"{Transformer.name} is not a valid estimator for problem type", ): make_pipeline(pd.DataFrame(),
pd.Series()
pandas.Series
def dataframe_diff(df_x,df_y,key): import pandas as pd set_x=['df_x' for i in range(len(df_x))] df_x['sets']=set_x set_y=['df_y' for i in range(len(df_y))] df_y['sets']=set_y columns=list(df_x.columns) columns.remove('sets') df_concat=pd.concat([df_x,df_y]).drop_duplicates(subset=columns,keep=False).reset_index(drop=True) df_set1=df_concat[df_concat['sets']=='df_x'] df_set2=df_concat[df_concat['sets']=='df_y'] df_merged=pd.merge(df_set1, df_set2, on=key) nonkey=set(columns)- set(key) list_diff=[] for i in range(len(df_merged)): for col in nonkey: if df_merged.iloc[i][col + '_x'] != df_merged.iloc[i][col + '_y']: list_diff.append(list(df_merged.iloc[i][key + [col + '_x',col + '_y']]) + [col]) df_diff=pd.DataFrame(list_diff,columns=key + ['value' + '_x','value' + '_y' ,'column_name'] ) df_additional =
pd.concat([df_x,df_y])
pandas.concat
import unittest import os import subprocess import tempfile import shutil import pprint from pathlib import Path import numpy as np class Test_pipeline(unittest.TestCase): def test_feature_extractor_w_norm(self): from npc_radiomics.feature_extractor import FeatureExtractor from mnts.mnts_logger import MNTSLogger globber = "^[0-9]+" p_im = Path('../samples/images_not_normalized/') p_seg = Path('../samples/segment/') p_setting = Path('../samples/sample_pyrad_settings.yml') with MNTSLogger('./', keep_file=False, verbose=True, log_level='debug') as logger, \ tempfile.TemporaryDirectory() as f: # Create feature extractor logger.info("{:-^50s}".format(" Testing feature extraction ")) fe = FeatureExtractor(id_globber=globber) fe.param_file = p_setting df = fe.extract_features_with_norm(p_im, p_seg, param_file = p_setting) fe.save_features(p_setting.with_name('sample_features.xlsx')) logger.info("\n" + df.to_string()) self.assertTrue(len(df) > 0) self.assertTrue(p_setting.with_name('sample_features.xlsx').is_file()) logger.info("Feature extraction pass...") # test save state logger.info("{:-^50s}".format(" Testing save state ")) fe.save(Path('../samples/fe_saved_state.fe')) fe.save(Path(f)) self.assertTrue(Path(f).joinpath('saved_state.fe').is_file()) # test load state logger.info("{:-^50s}".format(" Testing load state ")) _fe = FeatureExtractor(id_globber=globber) _fe.load(Path(f).joinpath('saved_state.fe')) _df = fe.extract_features_with_norm(p_im, p_seg) logger.info(f"Left:\n {_df.to_string()}") logger.info(f"Right:\n {df.to_string()}") def test_feature_extractor(self): from npc_radiomics.feature_extractor import FeatureExtractor from mnts.mnts_logger import MNTSLogger globber = "^[0-9]+" p_im = Path('../samples/images/') p_seg = Path('../samples/segment') p_setting = Path('../samples/sample_pyrad_settings.yml') logger = MNTSLogger('./', keep_file=False, verbose=True, log_level='debug') with tempfile.TemporaryDirectory() as f: # Create feature extractor logger.info("{:-^50s}".format(" Testing feature extraction ")) fe = FeatureExtractor(id_globber=globber, idlist=['1130', '1131']) fe.param_file = p_setting df = fe.extract_features(p_im, p_seg, param_file=p_setting) fe.save_features(p_setting.with_name('sample_features.xlsx')) logger.info("\n" + df.to_string()) self.assertTrue(len(df) > 0) self.assertTrue(p_setting.with_name('sample_features.xlsx').is_file()) logger.info("Feature extraction pass...") # test save state logger.info("{:-^50s}".format(" Testing save state ")) fe.save(Path(f)) self.assertTrue(Path(f).joinpath('saved_state.fe').is_file()) # test load state logger.info("{:-^50s}".format(" Testing load state ")) _fe = FeatureExtractor(id_globber=globber) _fe.load(Path(f).joinpath('saved_state.fe')) logger.debug(f"Loaded state: {_fe.saved_state}") _df = fe.extract_features(p_im, p_seg) # Display tested itmes logger.info(f"Left:\n {_df.to_string()}") logger.info(f"Right:\n {df.to_string()}") def test_feature_extractor_w_aug(self): from npc_radiomics.feature_extractor import FeatureExtractor from mnts.mnts_logger import MNTSLogger import torchio as tio globber = "^[0-9]+" p_im = Path('../samples/images/') p_seg_A = Path('../samples/segment') p_seg_B = Path('../samples/segment') p_setting = Path('../samples/sample_pyrad_settings.yml') transform = tio.Compose([ tio.ToCanonical(), tio.RandomAffine(scales=[0.95, 1.05], degrees=10), tio.RandomFlip(axes='lr'), tio.RandomNoise(mean=0, std=[0, 1]) ]) logger = MNTSLogger('./', keep_file=False, verbose=True, log_level='debug') with tempfile.TemporaryDirectory() as f: # Create feature extractor logger.info("{:-^50s}".format(" Testing feature extraction ")) fe = FeatureExtractor(id_globber=globber) fe.param_file = p_setting df = fe.extract_features(p_im, p_seg_A, p_seg_B, param_file=p_setting, augmentor=transform) fe.save_features(p_setting.with_name('sample_features.xlsx')) logger.info("\n" + df.to_string()) self.assertTrue(len(df) > 0) self.assertTrue(p_setting.with_name('sample_features.xlsx').is_file()) logger.info("Feature extraction pass...") def test_feature_extractor_param_file_load(self): from npc_radiomics.feature_extractor import FeatureExtractor from mnts.mnts_logger import MNTSLogger globber = "^[0-9]+" p_im = Path('../samples/images/') p_seg = Path('../samples/segment') p_setting = Path('../samples/sample_pyrad_settings.yml') with MNTSLogger('./', keep_file=False, verbose=True, log_level='debug') as logger: fe = FeatureExtractor(id_globber="^[0-9]+") fe.param_file = p_setting logger.info(f"Processed setting: {fe.param_file}") logger.info(f"Saved state: {pprint.pformat(fe.saved_state)}") self.assertFalse(fe.param_file == p_setting) self.assertTrue(fe.param_file == p_setting.read_text()) def test_get_radiomics_features_w_aug(self): from npc_radiomics.feature_extractor import FeatureExtractor, get_radiomics_features from mnts.mnts_logger import MNTSLogger from mnts.utils import get_unique_IDs, get_fnames_by_IDs import torchio as tio import pandas as pd import os globber = "^[0-9]+" p_im = Path('../samples/images/') p_seg_A = Path('../samples/segment') p_seg_B = Path('../samples/segment') p_setting = Path('../samples/sample_pyrad_settings.yml') transform = tio.Compose([ tio.ToCanonical(), tio.RandomAffine(scales=[0.95, 1.05], degrees=10), tio.RandomFlip(axes='lr'), tio.RandomNoise(mean=0, std=[0, 1]) ]) with MNTSLogger('./', keep_file=False, verbose=True, log_level='debug') as logger: dfs = [] ids = get_unique_IDs(os.listdir(str(p_im)), "^[0-9]+") logger.info(f"IDs: {ids}") im_fs = get_fnames_by_IDs(os.listdir(str(p_im)), ids) seg_a_fs = get_fnames_by_IDs(os.listdir(str(p_seg_A)), ids) seg_b_fs = get_fnames_by_IDs(os.listdir(str(p_seg_B)), ids) for im, seg_a, seg_b in zip(im_fs, seg_a_fs, seg_b_fs): logger.info(f"Performing on: \n{pprint.pformat([im, seg_a, seg_b])}") df = get_radiomics_features(p_im.joinpath(im), p_seg_A.joinpath(seg_a), p_setting, p_seg_B.joinpath(seg_b), id_globber="^(NPC|T1rhoNPC|K|P|RHO)?[0-9]{2,4}", augmentor=transform) logger.debug(f"df: {df}") dfs.append(df) dfs = pd.concat(dfs, axis=1) new_index = [o.split('_') for o in dfs.index] new_index = pd.MultiIndex.from_tuples(new_index, names=('Pre-processing', 'Feature_Group', 'Feature_Name')) dfs.index = new_index logger.debug(f"dfs:\n {dfs.drop('diagnostics').to_string()}") pass def test_feature_selection(self): from npc_radiomics.feature_selection import FeatureSelector from mnts.mnts_logger import MNTSLogger import pandas as pd globber = "^[0-9]+" p_feat_a = Path('../samples/samples_feat_1st.xlsx') p_feat_b = Path('../samples/samples_feat_2nd.xlsx') p_gt = Path('../samples/sample_datasheet.csv') features_a = pd.read_excel(str(p_feat_a), index_col=[0, 1, 2]).T features_b = pd.read_excel(str(p_feat_b), index_col=[0, 1, 2]).T gt = pd.read_csv(str(p_gt), index_col=0) cases = set(features_a.index) & set(gt.index) gt = gt.loc[cases] passed = False with MNTSLogger('./default.log', keep_file=False, verbose=True) as logger,\ tempfile.NamedTemporaryFile('wb', suffix = '.fss') as f: fs = FeatureSelector(n_trials=20, boot_runs=5, criteria_threshold=[0.1, 0.1, 0.1], thres_percentage=0.2, boosting=True) # Use default criteria, test with boosting test_result = {x: "Untested" for x in ['Single feature set', 'Two paired feature sets', 'Save/load', 'n_trial = 1', 'n_trial & boot_run = 1']} # Test one segmentation logger.info("{:-^50s}".format(" Testing single feature set ")) try: feats = fs.fit(features_a, gt) test_result['Single feature set'] = "Passed" except: test_result['Single feature set'] = "Failed" logger.info("Single feature set: Passed") # Test two segmentation logger.info("{:-^50s}".format(" Testing pair feature set ")) cases = set(features_a.index) & set(features_b.index) & set(gt.index) try: feats = fs.fit(features_a.loc[cases], gt.loc[cases], features_b.loc[cases]) test_result['Two paired feature sets'] = "Passed" except: test_result['Two paired feature sets'] = "Failed" # Testing save and load function logger.info("{:-^50s}".format(" Testing state save/load ")) try: fs.save(Path(f.name)) _new_fs = FeatureSelector() _new_fs.load(Path(f.name)) _feats = _new_fs.predict(features_a) logger.info(f"Left:\n {_feats.T}") logger.info(f"Right:\n {feats[0].T}") logger.info(f"Save/load (Passed)") test_result['Save/load'] = "Passed" except: test_result['Save/load'] = "Failed" # Test single trial (feature selection using enet with frequency threshold) logger.info("{:-^50s}".format(" Testing n_trial = 1 ")) try: fs.setting['n_trials'] = 1 feats = fs.fit(features_a.loc[cases], gt.loc[cases], features_b.loc[cases]) logger.info("n_trial = 1: Passed") test_result['n_trial = 1'] = "Passed" except: test_result['n_trial = 1'] = "Failed" # Test single boot_run (feature selection using enet without frequency threshold) logger.info("{:-^50s}".format(" Testing n_trial & boot_run = 1 ")) try: fs.setting['n_trials'] = 1 fs.setting['boot_runs'] = 1 feats = fs.fit(features_a.loc[cases], gt.loc[cases], features_b.loc[cases]) logger.info(f"Single Enet run features extracted: {feats[0].columns}") logger.info("n_trial & boot_run: Passed") test_result['n_trial & boot_run = 1'] = "Passed" except: test_result['n_trial & boot_run = 1'] = "Failed" logger.info(f"Test results: \n{pd.Series(test_result, name='Test results').to_frame().to_string()}") self.assertFalse(all([x == "Passed" for x in test_result.items()])) def test_model_building(self): from npc_radiomics.feature_selection import FeatureSelector from npc_radiomics.model_building import ModelBuilder from mnts.mnts_logger import MNTSLogger from sklearn.model_selection import train_test_split import pandas as pd globber = "^[0-9]+" p_feat_a = Path('../samples/samples_feat_1st.xlsx') p_gt = Path('../samples/sample_datasheet.csv') p_fss = Path('../samples/fs_saved_state.fss') features = pd.read_excel(str(p_feat_a), index_col=[0, 1, 2]).T gt = pd.read_csv(str(p_gt), index_col=0) cases = set(features.index) & set(gt.index) gt = gt.loc[cases] features = features.loc[cases] with MNTSLogger('./default.log', keep_file=False, verbose=True, log_level='debug') as logger, \ tempfile.NamedTemporaryFile('wb', suffix='.pkl') as f: fs = FeatureSelector() fs.load(p_fss) features = fs.predict(features) logger.info(f"Selected features are: {features.T}") # Random train test split splitter = train_test_split(features.index, test_size=0.2) train_feats, test_feats = splitter logger.info(f"Training group: {train_feats}") logger.info(f"Testing group: {test_feats}") logger.info("{:-^50s}".format(" Building model ")) model = ModelBuilder() # Test model building with testing data try: results, predict_table = model.fit(features.loc[train_feats], gt.loc[train_feats], features.loc[test_feats], gt.loc[test_feats]) except: logger.warning("Fitting with testing data failed!") # Test model building without testing data try: results, _ = model.fit(features.loc[train_feats], gt.loc[train_feats]) except Exception as e: logger.warning("Fitting without testing data failed!") logger.exception(f"{e}") logger.info(f"Results: {pprint.pformat(results)}") logger.info(f"Predict_table: {predict_table.to_string()}") logger.info(f"Best params: {pprint.pformat(model.saved_state)}") # Test save functionality logger.info("{:-^50s}".format(" Testing model save/load ")) model.save(Path(f.name)) # Test load functionality _model = ModelBuilder() _model.load(Path(f.name)) logger.debug(f"Saved state: {pprint.pformat(_model.saved_state)}") _predict_table = _model.predict(features.loc[test_feats]) logger.info(f"Left:\n {_predict_table}") logger.info(f"Right:\n {predict_table}") pass def test_controller_extraction(self): from npc_radiomics.controller import Controller from mnts.mnts_logger import MNTSLogger p = Path('../samples/sample_controller_settings.yml') p_im = Path('../samples/images_not_normalized/') p_seg = Path('../samples/segment/') p_gt = Path('../samples/sample_datasheet.csv') p_pyrad = Path('../samples/sample_pyrad_settings.yml') p_fe_state = Path('../samples/fe_saved_state.fe') # extract feature was ported to the controller, test it with MNTSLogger('./default.log', verbose=True, keep_file=False, log_level='debug') as logger: ctl = Controller(setting=p, with_norm=True) ctl.load_norm_settings(fe_state=p_fe_state) df = ctl.extract_feature(p_im, p_seg, py_rad_param_file=p_pyrad) logger.info(f"features {df}") pass def test_controller_load_norm(self): from npc_radiomics.controller import Controller from mnts.mnts_logger import MNTSLogger p = Path('../samples/sample_controller_settings.yml') p_norm_state = Path('../assets/t2wfs/') p_norm_graph = Path('../assets/t2wfs/norm_graph.yml') p_fe_state = Path('../samples/fe_saved_state.fe') with MNTSLogger('./default.log', verbose=True, keep_file=False) as logger: ctl = Controller(setting=p, with_norm=True) ctl.load_norm_settings(norm_graph=p_norm_graph, norm_state_file=p_norm_state) logger.info(f"State 1: \n{pprint.pformat(ctl.extractor.saved_state)}") ctl.load_norm_settings(fe_state=p_fe_state) logger.info(f"State 2: \n{pprint.pformat(ctl.extractor.saved_state)}") def test_controller_fit(self): from npc_radiomics.controller import Controller from mnts.mnts_logger import MNTSLogger p = Path('../samples/sample_controller_settings.yml') p_im = Path('../samples/images_not_normalized/') p_seg = Path('../samples/segment/') p_gt = Path('../samples/sample_datasheet.csv') p_pyrad = Path('../samples/sample_pyrad_settings.yml') p_fe_state = Path('../samples/fe_saved_state.fe') # extract feature was ported to the controller, test it with MNTSLogger('./default.log', verbose=True, keep_file=False, log_level='debug') as logger, \ tempfile.NamedTemporaryFile('wb', suffix='.ctl') as f: ctl = Controller(setting=p, with_norm=True) ctl.load_norm_settings(fe_state=p_fe_state) ctl.fit(p_im, p_seg, p_gt) ctl.save(f.name) _ctl = Controller() _ctl.load(f.name) logger.info(f"Saved state: {_ctl.saved_state}") def test_stability_metric(self): from npc_radiomics.perf_metric import getStability, confidenceIntervals, hypothesisTestT, hypothesisTestV, feat_list_to_binary_mat import pandas as pd from mnts.mnts_logger import MNTSLogger with MNTSLogger('./default.log', verbose=True, keep_file=False) as logger: test_result = {x: "Untested" for x in ['Binary feature map', 'Stability measure', 'Statistical Test' ]} p_sel_1 = Path('../samples/sample_selected_feat_1.xlsx') p_sel_2 = Path('../samples/sample_selected_feat_2.xlsx') p_feat_list = Path('../samples/samples_feat_1st.xlsx') sel_1 = pd.read_excel(p_sel_1, index_col=0).fillna('').astype(str) sel_2 = pd.read_excel(p_sel_2, index_col=0).fillna('').astype(str) feats = [str(s) for s in
pd.read_excel(p_feat_list, index_col=[0, 1, 2])
pandas.read_excel
""" Contain codes about parse plate info and generate sample sheet """ import pathlib import re from collections import OrderedDict import pandas as pd import cemba_data # Load defaults PACKAGE_DIR = pathlib.Path(cemba_data.__path__[0]) # the Illumina sample sheet header used by Ecker Lab with open(PACKAGE_DIR / 'files/sample_sheet_header.txt') as _f: SAMPLESHEET_DEFAULT_HEADER = _f.read() SECTIONS = ['[CriticalInfo]', '[LibraryInfo]', '[PlateInfo]'] LIMITED_CHOICES = { 'n_random_index': [8, 384, '8', '384'], 'input_plate_size': [384, '384'], 'primer_quarter': ['Set1_Q1', 'Set1_Q2', 'Set1_Q3', 'Set1_Q4', 'SetB_Q1', 'SetB_Q2', 'SetB_Q3', 'SetB_Q4']} CRITICAL_INFO_KEYS = ['n_random_index', 'input_plate_size', 'pool_id', 'tube_label', 'email'] # key (n_random_index, input_plate_size) BARCODE_TABLE = { ('8', '384'): PACKAGE_DIR / 'files/V1_i7_i5_index.tsv', # V1 can use both Set1 and SetB i5 i7 primer ('384', '384'): PACKAGE_DIR / 'files/V2_i7_i5_index.tsv' # V2 only use SetB primer } def _clean_str_for_path(str_in): # replace special char with _ str_out = re.sub('[^a-zA-Z0-9]', '_', str_in.strip()) return str_out def _get_kv_pair(line): try: k, v = line.split('=') if k == 'email': return k, v else: return _clean_str_for_path(k), _clean_str_for_path(v) except ValueError: raise ValueError(f'Each key=value line must contain a "=" to separate key and value. Got {line}') def _read_plate_info(plate_info_path): """Parse the plate info file""" cur_section = '' cur_section_id = -1 critical_info = {} library_info = OrderedDict() plate_header = True plate_info = [] with open(plate_info_path) as f: for line in f: line = line.strip('\n') if line == '' or line.startswith('#'): continue # determine section if line.startswith('['): cur_section_id += 1 if line == SECTIONS[cur_section_id]: cur_section = line else: raise ValueError( f'Section name and order must be [CriticalInfo] [LibraryInfo] [PlateInfo], ' f'got {line} at No.{cur_section_id + 1} section.') elif cur_section == '[CriticalInfo]': k, v = _get_kv_pair(line) if k not in CRITICAL_INFO_KEYS: raise ValueError(f'Unknown key {k} in [CriticalInfo]') else: critical_info[k] = v elif cur_section == '[LibraryInfo]': k, v = _get_kv_pair(line) if (k in critical_info.keys()) or (k in library_info.keys()): raise ValueError(f'Found duplicated key {k}') else: library_info[k] = v elif cur_section == '[PlateInfo]': ll = line.split('\t') if plate_header: plate_header = False plate_info.append(ll) else: raise ValueError(f'Got a malformed line: {line}') for k in CRITICAL_INFO_KEYS: if k not in critical_info: raise ValueError(f'[CriticalInfo] missing key-value pair "{k}"') header = plate_info[0] plate_info =
pd.DataFrame(plate_info[1:], columns=plate_info[0])
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib #matplotlib.use("Agg") import seaborn as sns from matplotlib import pyplot as plt import sys colors2 = sns.color_palette("Set1", 12)[6:] colors = [(0.6, 0.6, 0.6)] * 12 def read_dfs(i, j): df = pd.read_csv(sys.argv[i], sep="\t", index_col="sample") df2 = pd.read_csv(sys.argv[j], sep="\t", index_col="sample") try: df = df.drop(["RGP_426_3", "RGP_430_3", "RGP_462_3"]) df2 = df2.drop(["RGP_426_3", "RGP_430_3", "RGP_462_3"]) except: pass dfo = df.join(df2) dfo.drop("comphet_side", inplace=True, axis="columns") ad = dfo.auto_dom.copy() ad =
pd.DataFrame({"number_of_variants": ad})
pandas.DataFrame
### 공시지가/아파트실거래가/연립주택실거래가 K-NN ### import numpy as np import pandas as pd from sklearn.metrics import accuracy_score, classification_report import sklearn.neighbors as neg import matplotlib.pyplot as plt import json import sklearn.preprocessing as pp import warnings warnings.filterwarnings('ignore') ## 데이터 전처리 ## --> 이상치 제거, 표준화 필요 ## all_data = pd.read_csv("d:/project_data/house_clean02.csv", dtype=np.str, encoding='euc-kr') # encodig: 'euc-kr' # 면적 당 공시지가 추가 # --> string type이므로 astype을 통해 타입 변경 all_data['y_price'] = all_data['공시지가'].astype(np.float32) / all_data['면적'].astype(np.float32) # X: (x, y) / y: (면적 당 공시지가) # X = all_data.iloc[:, 9:11].astype(np.float32) # shape (28046, 2) y = all_data['y_price'] # shape (28046, ) ## Robust scaling ## --> 이상치를 반영한 정규화(min-max) rs = pp.RobustScaler() y_scale = rs.fit_transform(np.array(y).reshape(-1, 1)) ## 실거래가 아파트 데이터 전처리 ## --> shape (281684, 7) all_data_apt = pd.read_csv("d:/project_data/total_Apt.csv", sep=",", encoding='euc-kr') all_data_apt['price_big'] = all_data_apt['Price'] / all_data_apt['Howbig'] X_apt = all_data_apt.iloc[:, -3:-1] # shape (281684, 2) y_apt_scale = rs.fit_transform(np.array(all_data_apt['price_big']).reshape(-1, 1)) # shape(281684, 1) ## 실거래가 연립 데이터 전처리 ## --> shape () all_data_town = pd.read_csv("d:/project_Data/total_Townhouse01.csv", sep=",", encoding="cp949") all_data_town['price_big'] = all_data_town['Price'] / all_data_town['Howbig'] X_town = all_data_town.iloc[:, -3:-1] # shape (281684, 2) y_town_scale = rs.fit_transform(np.array(all_data_town['price_big']).reshape(-1, 1)) # shape(281684, 1) ## 어린이집 데이터 전처리 ## all_center =
pd.read_csv("d:/project_data/all_center9.csv", encoding="euc-kr")
pandas.read_csv
import pandas as pd from zipline.gens.brokers.ib_broker import IBBroker from zipline import run_algorithm tws_uri = 'localhost:7496:1236' brokerobj = IBBroker (tws_uri) start =
pd.to_datetime('2020-06-25')
pandas.to_datetime
# -*- coding: utf-8 -*- """Road-Friction-Forecasting.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1W15eOQbeHp9wbJWRaE0f7ZfYv_jAj14O # Authors: **<NAME>** * LinkedIn: https://www.linkedin.com/in/md-abrar-jahin-9a026018b * Facebook: https://www.facebook.com/ * Github: https://github.com/Abrar2652 * email: <EMAIL> **<NAME>** * Website: https://krutsylo.neocities.org * email: <EMAIL> # Import Libraries and Packages After importing libraries and packages, we start off by defining a function `transform_to_supervised` that creates desired **lag** *(24 hours in this case)* and **forecasting** features *(1 hour)* of our independent variables concatening with the dataframe and returns the final dataframe. """ import os import optuna import pickle import pandas as pd from optuna import Trial from optuna.samplers import TPESampler from sklearn.impute import KNNImputer from sklearn.model_selection import StratifiedKFold, cross_val_score from xgboost import XGBClassifier, XGBRegressor from matplotlib import pyplot as plt from sklearn.metrics import mean_absolute_error, accuracy_score, balanced_accuracy_score import numpy as np def transform_to_supervised(df, previous_steps=1, forecast_steps=1, dropnan=False): """ https://gist.github.com/monocongo/6e0df19c9dd845f3f465a9a6ccfcef37 Transforms a DataFrame containing time series data into a DataFrame containing data suitable for use as a supervised learning problem. Derived from code originally found at https://machinelearningmastery.com/convert-time-series-supervised-learning-problem-python/ :param df: pandas DataFrame object containing columns of time series values :param previous_steps: the number of previous steps that will be included in the output DataFrame corresponding to each input column :param forecast_steps: the number of forecast steps that will be included in the output DataFrame corresponding to each input column :return Pandas DataFrame containing original columns, renamed <orig_name>(t), as well as columns for previous steps, <orig_name>(t-1) ... <orig_name>(t-n) and columns for forecast steps, <orig_name>(t+1) ... <orig_name>(t+n) """ # original column names col_names = df.columns # list of columns and corresponding names we'll build from # the originals found in the input DataFrame cols, names = list(), list() # input sequence (t-n, ... t-1) # Lag features for i in range(previous_steps, 0, -1): cols.append(df.shift(i)) names += [('%s(t-%d)' % (col_name, i)) for col_name in col_names] # forecast sequence (t, t+1, ... t+n) for i in range(0, forecast_steps): cols.append(df.shift(-i)) if i == 0: names += [('%s(t)' % col_name) for col_name in col_names] else: names += [('%s(t+%d)' % (col_name, i)) for col_name in col_names] # put all the columns together into a single aggregated DataFrame agg = pd.concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg """# Data Collection and Import data The dataset has been collected from the **Smart Road - Winter Road Maintenance Challenge 2021** organized by *UiT The Arctic University of Norway* on Devpost. Dataset download link: https://uitno.app.box.com/s/bch09z27weq0wpcv8dbbc18sxz6cycjt After downloading the `smart_road_measurements.csv` file from the competition page, wehad added extra columns collecting data from the external resources authorized the organizers. The links of the external datasets are: [1] Weather data https://pypi.org/project/wwo-hist/ [2] UV Index data https://pyowm.readthedocs.io/en/latest/v3/uv-api-usage-examples.html After merging these 3 files together based on the same dates, we finalized our main dataset `smart_road_measurements_new_d_weather.csv` on top of which we will build our model after preprocessing. """ df = pd.read_csv("/content/smart_road_measurements_new_d_weather.csv", header=0) df2 = df.copy() df.head(15) """# Exploratory Data Analysis Our dataset contains 349613 rows and 29 columns """ df.shape df.info() import numpy as np np.random.seed(0) import seaborn as sns sns.set_theme() _ = sns.heatmap(df2.iloc[:,2:11].corr()) _ = sns.heatmap(df2.corr()) """We want to predict Friction of the road by weather conditions. So, this is a classification task. Every day the car drives on a new route. This means that all 11 days we receive data on new road sections. So, the only link between the road sections is the average weather conditions. This can be achieved by filtering the rows on **Microsoft Excel** for each date and get the total distance covered (the last row on each date because the column is cumulative in nature) **Max Distance traveled, Date** 42441, 16/02/2021 92311, 17/02/2021 150216, 18/02/2021 39007, 19/02/2021 71358, 22/02/2021 81999, 23/02/2021 55958, 24/02/2021 77315, 25/02/2021 55647, 26/02/2021 61534, 1/03/2021 12409, 2/03/2021 **Therefore, we can see from the above data that for all 11 days the car was driving at different routes** * We drop the `Distance` because the condition of the road does not depend on how much the car has traveled before. We use this column to get the speed and slope of the road. * This means that we are using normalized data + lag (time-series classification with engineered features instead of time-series classification with deep learning, because we have shallow data). We won't focus on any complicated models, just XGBClassifier to win. * Now we need to define at what Friction the road is dangerous (label 0), requires caution (label-1) and safe (label-2). Ta, Tsurf, friction are **highly correlated** which has been shown in our pandas profiling https://krutsylo.neocities.org/SmartRoads/pandas3.html of the smart road dataset. Yet we'll drop State, Height, Distance, Ta, Tsurf, Water, moon-illumination, uvIndex columns """ df = df.drop("Height", axis=1) # contain N/A df = df.drop("Distance", axis=1) df = df.drop("State", axis=1) df = df.drop("Ta", axis=1) df = df.drop("Tsurf", axis=1) df = df.drop("Water", axis=1) df = df.drop("moon_illumination", axis=1) df = df.drop("uvIndex", axis=1) df.head() """ We have grouped the data by calculating the mean of the rows in each hour based on the individual dates. For instance, if there are 8 rows for each hour, we calculated the mean of 8 rows and thus converted into a single row belonging to the distinct dates. We also avoided duplicates to reduce the noise in the data. """ df['Time(+01:00)'] = pd.to_datetime(df['Time(+01:00)'], format='%H:%M:%S').dt.hour df = df.groupby(['Date','Time(+01:00)']).mean() df = df.drop_duplicates() df.head() """Now we will work on the target feature that is `Friction` column to accomplish our objective since we want to perform a supervised machine learning model. Here we applied our knowledge of physics and research capabilities. Icy: These roads typically have the lowest coefficient of friction. For drivers, this is the most dangerous surface to be on. The small coefficient of friction gives the driver the least amount of traction when accelerating, braking, or turning (which has angular acceleration). Icy roads have a frictional coefficient of around 0.1. Wet: Roads wet with water have a coefficient of friction of around .4. This is around 4 times higher than an icy road. Although these roads are much safer to drive on, there is still the possibility of hydroplaning. Hydroplaning occurs when there is standing or flowing water on the road (typically from rainfall) that causes a tire to lose contact with the road's surface. The treads are designed to allow water to fill the crevices so that contact may be maintained between the road and the tire. However, if there is too much water, this may not be achieved, and hydroplaning will occur. This is precisely the reason that racing slicks have such a high coefficient of friction on dry roads (about .9) and a much lower coefficient on wet roads (as low as .1). Dry: Roads without precipitation are considered optimal for driving conditions. They have the highest coefficient of friction, around 0.9, which creates the most traction. This allows corners, acceleration, and braking to reach higher values without loss of control. Oftentimes, if roads are not dry, races will be canceled due to the extreme dangers that a less than optimal frictional surface can pose. So, we'll take (0 <= friction < 0.5) as *dangerous*, and (0.5 < friction <= 1) as *safe* """ bins = [0, 0.5, 1] labels = [0, 1] df["Friction"] = pd.cut(df["Friction"], bins, labels=labels) #df = df.drop("Date", axis=1) #df = df.drop("Time(+01:00)", axis=1) df.head() """Now we'll perform lagging and forecasting feature columns by shifting simply using our pre-defined `transform_to_supervise` function.""" df = transform_to_supervised(df, previous_steps=24, forecast_steps=1, dropnan=True) Y = df.loc[:, "Friction(t)"].to_numpy() cols = [c for c in df.columns if '(t)' not in c] data=df[cols] data['Friction'] = Y data.to_csv('/content/test.csv') data = data.values.tolist() df[cols].head() """**Lag of 1 to 3 days**""" lag = pd.read_csv('/content/lag(1-3)days.csv') lag=lag.head(10) lag ax = lag.plot(x="Date", y="humidity(t-3)", kind="bar") lag.plot(x="Date", y="humidity(t-2)", kind="bar", ax=ax, color="C2") lag.plot(x="Date", y="humidity(t-1)", kind="bar", ax=ax, color="C3") ax = lag.plot(x="Date", y="windspeedKmph(t-3)", kind="bar") lag.plot(x="Date", y="windspeedKmph(t-2)", kind="bar", ax=ax, color="C2") lag.plot(x="Date", y="windspeedKmph(t-1)", kind="bar", ax=ax, color="C3") """# Statistical Analysis **Mean values of each column** """ mean =
pd.read_csv('/content/Mean.csv')
pandas.read_csv
# Load the library with the iris dataset from sklearn.datasets import load_iris # Load scikit's random forest classifier library from sklearn.ensemble import RandomForestClassifier from scipy import interp # Using Skicit-learn to split data into training and testing sets from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, mean_squared_error, roc_auc_score,roc_curve, auc from sklearn.ensemble import RandomForestRegressor #Import scikit-learn metrics module for accuracy calculation from sklearn import metrics from sklearn.preprocessing import OneHotEncoder import matplotlib.pyplot as plt from statistics import mean, stdev import seaborn as sns from sklearn.model_selection import StratifiedKFold # Load pandas import pandas as pd # Load numpy import numpy as np from sklearn import preprocessing from numpy import array from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score,cross_val_predict def average(nums, default=float('nan')): return sum(nums) / float(len(nums)) if nums else default def read_csv(csv_file, nrows=None): df =
pd.read_csv(csv_file, nrows=nrows)
pandas.read_csv
''' Group enabled ANPNetwork class and supporting classes. ''' from pyanp.pairwise import Pairwise from pyanp.prioritizer import Prioritizer, PriorityType from pyanp.general import islist, unwrap_list, get_matrix, matrix_as_df from typing import Union import pandas as pd from copy import deepcopy from pyanp.limitmatrix import normalize, calculus, priority_from_limit import numpy as np import re from pyanp.rating import Rating class ANPNode: ''' A node inside a cluster, inside a netowrk. The basic building block of an ANP netowrk. :param network: An ANPNetwork object that this node lives inside. :param cluster: An ANPCluster object that this node lives inside. :param name: The name of this node. ''' def __init__(self, network, cluster, name:str): self.name = name self.cluster = cluster self.network = network self.node_prioritizers = {} self.subnetwork = None self.invert = False def is_node_cluster_connection(self, dest_cluster:str)->bool: ''' Is this node connected to a cluster. :param dest_cluster: The name of the cluster :return: True/False ''' if dest_cluster in self.node_prioritizers: return True else: return False def node_connect(self, dest_node)->None: '''' Make a node connection from this node to dest_node :param dest_node: The destination node as a str, int, or ANPNode. It can be a list of nodes, and then we will coonect each node from this node. The dest_node should be in any format accepted by ANPNetwork._get_node() ''' if islist(dest_node): for dn in dest_node: self.node_connect(dn) else: prioritizer = self.get_node_prioritizer(dest_node, create=True) prioritizer.add_alt(dest_node, ignore_existing=True) #Make sure parent clusters are connected src_cluster = self.cluster dest_cluster = self.network._get_node_cluster(dest_node) src_cluster.cluster_connect(dest_cluster) def get_node_prioritizer(self, dest_node, create=False, create_class=Pairwise, dest_is_cluster=False)->Prioritizer: ''' Gets the node prioritizer for the other_node :param dest_node: The node as a int, str, or ANPNode object. :return: The prioritizer if it exists, or None ''' if dest_is_cluster: dest_cluster = self.network.cluster_obj(dest_node) dest_name = dest_cluster.name else: dest_cluster = self.network._get_node_cluster(dest_node) dest_name = dest_cluster.name if dest_name not in self.node_prioritizers: if create: prioritizer = create_class() self.node_prioritizers[dest_name] = prioritizer return prioritizer else: return None else: return self.node_prioritizers[dest_name] def is_node_node_connection(self, dest_node)->bool: ''' Checks if there is a node connection from this node to dest_node :param dest_node: The node as a int, str, or ANPNode object. :return: ''' pri = self.get_node_prioritizer(dest_node) if pri is None: return False elif not pri.is_alt(dest_node): return False else: return True def get_unscaled_column(self, username=None)->pd.Series: ''' Returns the column in the unscaled supermatrix for this node. :param username: The user/users to do this for. Typical Prioritizer calculation usage, i.e. None means do for all group average. :return: A pandas series indexed by the node names. ''' nnodes = self.network.nnodes() rval = pd.Series(data=[0.0]*nnodes, index=self.network.node_names()) prioritizer:Prioritizer for prioritizer in self.node_prioritizers.values(): vals = prioritizer.priority(username, PriorityType.NORMALIZE) for alt, val in vals.iteritems(): rval[alt] = val return rval def data_names(self, append_to=None): ''' Used when exporting an Excel header for a network, for its data. :param append_to: If not None, append header strings to this list. Otherwise we create a new list to append to. :return: List of strings of comparison name headers. If append_to is not None, we return append_to with the new string headers appended. ''' if append_to is None: append_to = [] pri:Prioritizer for pri in self.node_prioritizers.values(): pri.data_names(append_to, post_pend="wrt "+self.name) return append_to def set_node_prioritizer_type(self, destNode, prioritizer_class): ''' Sets the node prioritizer type :param destNode: An ANPNode object, string, or integer location :param prioritizer_class: The new type :return: None ''' pri = self.get_node_prioritizer(destNode, create_class=prioritizer_class) if not isinstance(pri, prioritizer_class): #Wrong type, get alts from this one, and create correct one rval = prioritizer_class() rval.add_alt(pri.alt_names()) dest_cluster = self.network._get_node_cluster(destNode) dest_name = dest_cluster.name self.node_prioritizers[dest_name] = rval else: pass class ANPCluster: ''' A cluster in an ANP object :param network: The ANPNetowrk object this cluster is in. :param name: The name of the cluster to create. ''' def __init__(self, network, name:str): self.prioritizer = Pairwise() self.name = name self.network = network # The list of ANP nodes in this cluster self.nodes = {} def add_node(self, *nodes)->None: """ Adds one or more nodes :param nodes: A vararg list of node names to add to this cluster. The names should all be strings. :return: Nonthing """ nodes = unwrap_list(nodes) if islist(nodes): for node in nodes: if isinstance(node, str): self.add_node(node) else: self.nodes[nodes] = ANPNode(self.network, self, nodes) def nnodes(self)->int: """ :return: The number of nodes in this cluster. """ return len(self.nodes) def is_node(self, node_name:str)->bool: ''' Does a node by that name exist in this cluster :param node_name: The name of the node to look for :return: True/False ''' return node_name in self.nodes def node_obj(self, node_name): """ Get a node in this cluster. :param node_name: The node as either a string name, integer position, or simply the ANPObject, in which case there is nothing to do except return it. :return: ANPNode object. If it wasn't found, None is returned. """ if isinstance(node_name, ANPNode): return node_name else: return get_item(self.nodes, node_name) def node_names(self)->list: ''' :return: List of the string names of the nodes in this cluster ''' return list(self.nodes.keys()) def node_objs(self)->list: ''' :return: List of the ANPNode objects in this cluster. ''' return self.nodes.values() def cluster_connect(self, dest_cluster)->None: """ Make a cluster->cluster connection from this node to the destination. :param dest_cluster: Either the ANPCluster object to connect to, or the name of the destination cluster. :return: """ if isinstance(dest_cluster, ANPCluster): dest_cluster_name = dest_cluster.name else: dest_cluster_name = dest_cluster self.prioritizer.add_alt(dest_cluster_name, ignore_existing=True) def set_prioritizer_type(self, prioritizer_class)->None: ''' Sets the cluster prioritizer type :param prioritizer_class: The new type :return: None ''' pri = self.prioritizer if not isinstance(pri, prioritizer_class): #Wrong type, get alts from this one, and create correct one rval = prioritizer_class() rval.add_alt(pri.alt_names()) self.prioritizer = rval else: pass def data_names(self, append_to=None): ''' Used when exporting an Excel header for a network, for its data. :param append_to: If not None, append header strings to this list. Otherwise we create a new list to append to. :return: List of strings of comparison name headers. If append_to is not None, we return append_to with the new string headers appended. ''' if append_to is None: append_to = [] if self.prioritizer is not None: self.prioritizer.data_names(append_to, post_pend="wrt "+self.name) return append_to def get_item(tbl:dict, key): """ Looks up an item in a dictionary by key first, assuming the key is in the dictionary. Otherwise, it checks if the key is an integer, and returns the item in that position. :param tbl: The dictionary to look in :param key: The key, or integer position to get the item of :return: The item, or it not found, None """ if key in tbl: return tbl[key] elif not isinstance(key, int): return None # We have an integer key by this point if key < 0: return None elif key >= len(tbl): return None else: count = 0 for rval in tbl.values(): if count == key: return rval count+=1 #Should never make it here raise ValueError("Shouldn't happen in anp.get_item") __CLEAN_SPACES_RE = re.compile('\\s+') def clean_name(name:str)->str: """ Cleans up a string for usage by: 1. stripping off begging and ending spaces 2. All spaces convert to one space 3. \t and \n are treated like a space :param name: The string name to be cleaned :return: The cleaned name. """ rval = name.strip() return __CLEAN_SPACES_RE.sub(string=rval, repl=' ') def sum_subnetwork_formula(priorities:pd.Series, dict_of_series:dict): """ A function that takes the weighted sum of values. Used for synthesis. :param priorities: Series whose index are the nodes with subnetworks and values are their weights. :param dict_of_series: A dictionary whose keys are the same as the keys of priorities, i.e. the nodes with subnetworks. The values are Series whose keys are alternative names and values are the synthesized alternative scores under that subnetwork. :return: """ subpriorities = priorities[dict_of_series.keys()] if sum(subpriorities) != 0: subpriorities /= sum(subpriorities) rval = pd.Series() counts = pd.Series(dtype=int) for subnet_name, vals in dict_of_series.items(): priority = subpriorities[subnet_name] for alt_name, val in vals.iteritems(): if alt_name in rval: rval[alt_name] += val * priority counts[alt_name] += priority else: rval[alt_name] = val counts[alt_name] = priority # Now let's calculate the averages for alt_name, val in rval.iteritems(): if counts[alt_name] > 0: rval[alt_name] /= counts[alt_name] return rval class ANPNetwork(Prioritizer): ''' Represents an ANP prioritizer. Has clusters/nodes, comparisons, etc. :param create_alts_cluster: If True (which is the default) we start with a cluster that is the alternatives cluster. Otherwise the model starts empty. ''' def __init__(self, create_alts_cluster=True): self.clusters = {} if create_alts_cluster: cl = self.add_cluster("Alternatives") self.alts_cluster = cl self.users=[] self.limitcalc = calculus self.subnet_formula = sum_subnetwork_formula self.default_priority_type = None def add_cluster(self, *args)->ANPCluster: ''' Adds one or more clusters to a network :param args: Can be either a single string, or a list of strings :return: ANPCluster object or list of ANPCluster objects ''' clusters = unwrap_list(args) if islist(clusters): rval = [] for cl in clusters: rval.append(self.add_cluster(cl)) return rval else: #Adding a single cluster cl = ANPCluster(self, clusters) self.clusters[clusters] = cl return cl def cluster_names(self)->list: ''' :return: List of string names of the clusters ''' return list(self.clusters.keys()) def nclusters(self)->int: ''' :return: The number of clusters in the network. ''' return len(self.clusters) def cluster_obj(self, cluster_info:Union[ANPCluster, str])->ANPCluster: ''' Returns the cluster with given information :param cluster_info: Either the name of the cluster object to get or the cluster object, or its int position :return: The ANPCluster object ''' if isinstance(cluster_info, ANPCluster): return cluster_info else: return get_item(self.clusters, cluster_info) def add_node(self, cl, *nodes): ''' Adds nodes to a cluster :param cl: The cluster name or object :param nodes: The name or names of the nodes :return: Nothing ''' cluster = self.cluster_obj(cl) cluster.add_node(nodes) def nnodes(self, cluster=None)->int: """ Returns the number of nodes in the network, or a cluster. :param cluster: If None, we return the number of nodes in the network. Otherwise this is the integer position, string name, or ANPCluster object of the cluster to get the node count within. :return: The count. """ if cluster is None: rval = pd.Series() for cname, cluster in self.clusters.items(): rval[cname] = cluster.nnodes() return sum(rval) else: clobj = self.cluster_obj(cluster) return clobj.nnodes() def add_alt(self, alt_name:str): """ Adds an alternative to the model: 1. Adds the altenrative to alts_cluster if not None 2. For each node with a subnetwork, we add the alternative to that subnetwork. :param alt_name: The name of the alternative to add :return: Nothing """ if self.alts_cluster is not None: self.add_node(self.alts_cluster, alt_name) # We should add this alternative to each subnetwork for node in self.node_objs_with_subnet(): node.subnetwork.add_alt(alt_name) def is_user(self, uname)->bool: ''' Checks if a user exists :param uname: The name of the user to check for :return: bool ''' return uname in self.users def is_alt(self, altname)->bool: ''' Checks if an alternative exists :param altname: The alterantive name to look for :return: bool ''' return self.alts_cluster.is_node(altname) def add_user(self, uname, ignore_dupe=False): ''' Adds a user to the system :param uname: The name of the new user :return: Nothing :raise ValueError If the user already existed ''' if islist(uname): for un in uname: self.add_user(un, ignore_dupe=ignore_dupe) return if self.is_user(uname): if not ignore_dupe: raise ValueError("User by the name "+uname+" already existed") else: return self.users.append(uname) def nusers(self)->int: ''' :return: The number of users ''' return len(self.users) def user_names(self)->list: ''' :return: List of names of the users ''' return deepcopy(self.users) def node_obj(self, node_name)->ANPNode: ''' Gets the ANPNode object of the node with the given name :param node_name: The name of the node to get, or it's overall integer position, or the ANPNode object itself :return: The ANPNode if it exists, or None ''' if isinstance(node_name, ANPNode): return node_name elif isinstance(node_name, int): #Reference by integer node_pos = node_name node_count = 0 for cluster in self.clusters.values(): rel_pos = node_pos - node_count if rel_pos < cluster.nnodes(): return cluster.node_obj(rel_pos) #If we make it here, we were out of bounds return None #Okay handle string node name cluster: ANPCluster for cname, cluster in self.clusters.items(): rval = cluster.node_obj(node_name) if rval is not None: return rval #Made it here, the node didn't exist return None def _get_node_cluster(self, node)->ANPCluster: ''' Gets the ANPCluster object a node lives in :param node: The name/integer positions, or ANPNode object itself. See node_obj() method for more details. :return: The ANPCluster object this node lives in, or None if it doesn't exist. ''' n = self.node_obj(node) if n is None: # Could not find the node return None return n.cluster def node_connect(self, src_node, dest_node): ''' connects 2 nodes :param src_node: Source node as prescribed by node_object() function :param dest_node: Destination node as prescribed by node_object() function :return: Nothing ''' src = self.node_obj(src_node) src.node_connect(dest_node) def node_names(self, cluster=None)->list: ''' Returns a list of nodes in this network, organized by cluster :param cluster: If None, we get all nodes in network, else we get nodes in that cluster, otherwise format as specified by cluster_obj() function. :return: List of strs of node names ''' if cluster is not None: cl = self.cluster_obj(cluster) return cl.node_names() rval = [] cl:ANPCluster for cl in self.clusters.values(): cnodes = cl.node_names() for name in cnodes: rval.append(name) return rval def node_objs(self)->list: ''' Returns a list of ANPNodes in this network, organized by cluster :return: List of strs of node names ''' rval = [] cl:ANPCluster for cl in self.clusters.values(): cnodes = cl.node_objs() for name in cnodes: rval.append(name) return rval def cluster_objs(self)->list: """ :return: List of ANPCluster objects in the network """ return list(self.clusters.values()) def node_connections(self)->np.ndarray: """ Returns the node conneciton matrix for this network. :return: A numpy array of shape [nnode, nnodes] where item [row, col] 1 means there is a node connection from col -> row, and 0 means no connection. """ nnodes = self.nnodes() nnames = self.node_names() rval = np.zeros([nnodes, nnodes]) src_node:ANPNode for src in range(nnodes): srcname = nnames[src] src_node = self.node_obj(srcname) for dest in range(nnodes): dest_name = nnames[dest] if src_node.is_node_node_connection(dest_name): rval[dest,src]=1 return rval def unscaled_supermatrix(self, username=None, as_df=False)->np.array: ''' :param username: If None, gets it for all users. Otherwise gets it for the user specified. It can also be a list of users, in which case we combine them, as per the theory. :param as_df: If True, returns as a dataframe with index and column names as the names of the nodes in the network. Otherwise just returns the array. :return: The unscaled supermatrix as a numpy.array of shape [nnode, nnodes] ''' nnodes = self.nnodes() rval = np.zeros([nnodes, nnodes]) nodes = self.node_objs() col = 0 node:ANPNode for node in nodes: rval[:,col] = node.get_unscaled_column(username) col += 1 if not as_df: return rval else: return matrix_as_df(rval, self.node_names()) def scaled_supermatrix(self, username=None, as_df=False)->np.ndarray: ''' :param username: If None, gets it for all users. Otherwise gets it for the user specified. It can also be a list of users, in which case we combine them, as per the theory. :param as_df: If True, returns as a dataframe with index and column names as the names of the nodes in the network. Otherwise just returns the array. :return: The scaled supermatrix ''' rval = self.unscaled_supermatrix(username) # Now I need to normalized by cluster weights clusters = self.cluster_objs() nclusters = len(clusters) col = 0 for col_cp in range(nclusters): col_cluster:ANPCluster = clusters[col_cp] row_nnodes = col_cluster.nnodes() cluster_pris = col_cluster.prioritizer.priority(username, PriorityType.NORMALIZE) row_offset = 0 for col_node in col_cluster.node_objs(): row=0 for row_cp in range(nclusters): row_cluster:ANPCluster = clusters[row_cp] row_cluster_name = row_cluster.name if row_cluster_name in cluster_pris: priority = cluster_pris[row_cluster_name] else: priority = 0 for row_node in row_cluster.node_objs(): rval[row, col] *= priority row += 1 col += 1 normalize(rval, inplace=True) if not as_df: return rval else: return matrix_as_df(rval, self.node_names()) def global_priority(self, username=None)->pd.Series: ''' :param username: If None, gets it for all users. Otherwise gets it for the user specified. It can also be a list of users, in which case we combine them, as per the theory. :return: The global priorities Series, index by node name ''' lm = self.limit_matrix(username) rval = priority_from_limit(lm) node_names = self.node_names() return pd.Series(data=rval, index=node_names) def global_priority_df(self, user_infos=None)->pd.DataFrame: ''' :param user_infos: A list of users to do this for, if None is a part of this list, it means group average. If None, it defaults to None plus all users. :return: The global priorities dataframe. Rows are the nodes and columns are the users. The first user/column is the Group Average ''' if user_infos is None: user_infos = list(self.user_names()) user_infos.insert(0, None) rval = pd.DataFrame() for user in user_infos: if user is None: uname = "Group Average" else: uname = user rval[uname] = self.global_priority(user) return rval def limit_matrix(self, username=None, as_df=False): ''' :param username: If None, gets it for all users. Otherwise gets it for the user specified. It can also be a list of users, in which case we combine them, as per the theory. :param as_df: If True, returns as a dataframe with index and column names as the names of the nodes in the network. Otherwise just returns the array. :return: The limit supermatrix ''' sm = self.scaled_supermatrix(username) rval = self.limitcalc(sm) if not as_df: return rval else: return matrix_as_df(rval, self.node_names()) def alt_names(self)->list: ''' :return: List of alt names in this ANP model ''' if self.has_subnet(): # We have some v1 subnetworks, we get alternative names by looking # there. rval = [] node: ANPNode for node in self.node_objs_with_subnet(): alts = node.subnetwork.alt_names() for alt in alts: if alt not in rval: rval.append(alt) return rval else: return self.alts_cluster.node_names() def priority(self, username=None, ptype:PriorityType=None)->pd.Series: ''' Synthesize and return the alternative scores :param username: If None, gets it for all users. Otherwise gets it for the user specified. It can also be a list of users, in which case we combine them, as per the theory. :param ptype: The priority type to use :return: A pandas.Series indexed on alt names, values are the score ''' if ptype is None: # Use the default priority type for this network ptype = self.default_priority_type if self.has_subnet(): # Need to synthesize using subnetworks return self.subnet_synthesize(username=username, ptype=ptype) else: gp = self.global_priority(username) alt_names = self.alt_names() rval = gp[alt_names] if sum(rval) != 0: rval /= sum(rval) if ptype is not None: rval = ptype.apply(rval) return rval def data_names(self): ''' Returns the column headers needed to fill in the data for this model :return: A list of strings that would be usable in excel for parsing headers ''' node:ANPNode rval = [] cluster: ANPCluster for cluster in self.cluster_objs(): cluster.data_names(rval) for node in self.node_objs(): node.data_names(rval) return rval def node_connection_matrix(self, new_mat:np.ndarray=None): ''' Returns the current node conneciton matrix if new_mat is None. Otherwise, for each item [row, col] in the matrix with a value of 1 we connect from node[row] to node[col]. :param new_mat: The new node connection matrix. If None, we return the current one. :return: Current connection matrix. ''' src_node:ANPNode nnodes = self.nnodes() nodes = self.node_objs() node_names = self.node_names() if new_mat is not None: for src_node_pos in range(nnodes): src_node = nodes[src_node_pos] for dest_node_pos in range(nnodes): if new_mat[dest_node_pos, src_node_pos] != 0: src_node.node_connect(node_names[dest_node_pos]) rval = np.zeros([nnodes, nnodes]) for src_node_pos in range(nnodes): src_node = nodes[src_node_pos] for dest_node_pos in range(nnodes): if src_node.is_node_node_connection(node_names[dest_node_pos]): rval[dest_node_pos, src_node_pos] = 1 return rval def import_pw_series(self, series:pd.Series)->None: ''' Takes in a well titled series of data, and pushes it into the right node's prioritizer (or cluster). The name should be A vs B wrt C, where A, B, C are node or cluster names. :param series: The series of data for each user. Index is usernames. Values are the votes. :return: Nothing ''' name = series.name name = clean_name(name) info = name.split(' wrt ') if len(info) < 2: # We cannot do anything with this, we need a wrt raise ValueError("No wrt in "+name) wrt = info[1].strip() wrtNode:ANPNode wrtNode = self.node_obj(wrt) info = info[0].split( ' vs ') if len(info) < 2: raise ValueError(" vs was not present in "+name) row, col = info rowNode = self.node_obj(row) colNode = self.node_obj(col) npri: Pairwise if (wrtNode is not None) and (rowNode is not None) and (colNode is not None): # Node pairwise npri = wrtNode.get_node_prioritizer(rowNode, create=True) #print("Node comparison "+name) if not isinstance(npri, Pairwise): raise ValueError("Node prioritizer was not pairwise") npri.vote_series(series, row, col, createUnknownUser=True) self.add_user(series.index, ignore_dupe=True) else: # Try cluster pairwise wrtcluster = self.cluster_obj(wrt) rowcluster = self.cluster_obj(row) colcluster = self.cluster_obj(col) if wrtcluster is None: raise ValueError("wrt="+wrt+" was not a cluster, and the group was not a node comparison") if rowcluster is None: raise ValueError("row="+row+" was not a cluster, and the group was not a node comparison") if colcluster is None: raise ValueError("col="+col+" was not a cluster, and the group was not a node comparison") npri = self.cluster_prioritizer(wrtcluster) npri.vote_series(series, row, col, createUnknownUser=True) self.add_user(series.index, ignore_dupe=True) #print("Cluster comparison "+name) def set_alts_cluster(self, new_cluster): ''' Sets the new alternatives cluster :param new_cluster: Cluster specified as cluster_obj() expects. :return: Nothing ''' cl = self.cluster_obj(new_cluster) self.alts_cluster = cl def import_rating_series(self, series:pd.Series): ''' Takes in a well titled series of data, and pushes it into the right node's prioritizer as ratings (or cluster). Title should be A wrt B, where A and B are either both node names or both column names. :param series: The series of data for each user. Index is usernames. Values are the votes. :return: Nothing ''' name = series.name name = clean_name(name) info = name.split(' wrt ') if len(info) < 2: # We cannot do anything with this, we need a wrt raise ValueError("No wrt in "+name) wrt = info[1].strip() dest = info[0].strip() wrtNode:ANPNode destNode:ANPNode wrtNode = self.node_obj(wrt) destNode = self.node_obj(dest) npri:Rating if (wrtNode is not None) and (destNode is not None): # Node ratings npri = wrtNode.get_node_prioritizer(destNode, create=True, create_class=Rating) if not isinstance(npri, Rating): wrtNode.set_node_prioritizer_type(destNode, Rating) npri = wrtNode.get_node_prioritizer(destNode, create=True) npri.vote_column(votes=series, alt_name=dest, createUnknownUsers=True) else: # Trying cluster ratings wrtcluster = self.cluster_obj(wrt) destcluster = self.cluster_obj(dest) if wrtcluster is None: raise ValueError("Ratings: wrt is not a cluster wrt="+wrt+" and wasn't a node either") if destcluster is None: raise ValueError("Ratings: dest is not a cluster dest="+dest+" and wasn't a node either") npri = wrtcluster.prioritizer if not isinstance(npri, Rating): wrtcluster.set_prioritizer_type(Rating) npri = wrtcluster.prioritizer npri.vote_column(votes=series, alt_name=dest, createUnknownUsers=True) def node_prioritizer(self, wrtnode=None, cluster=None): ''' Gets the prioritizer for node->cluster connection :param wrtnode: The node as understood by node_obj() function. :param cluster: Cluster as understood by cluster_obj() function. :return: If both wrtnode and cluster are specified, a single node prioritizer is returned for that comparison (or None if there was nothing there). Otherwise it returns a dictionary indexed by [wrtnode, cluster] and whose values are the prioritizers for that (only the non-None ones). ''' if wrtnode is not None and cluster is not None: node = self.node_obj(wrtnode) cl_obj = self.cluster_obj(cluster) cluster_name = cl_obj.name return node.get_node_prioritizer(dest_node=cluster_name, dest_is_cluster=True) elif wrtnode is not None: # Have wrtnode, do not have cluster rval = {} for cluster in self.cluster_names(): pri = self.node_prioritizer(wrtnode, cluster) if pri is not None: rval[(wrtnode, cluster)] = pri return rval elif cluster is not None: # Have cluster, but not wrtnode rval = {} for wrtnode in self.node_names(): pri = self.node_prioritizer(wrtnode, cluster) if pri is not None: rval[(wrtnode, cluster)] = pri return rval else: # Both wrtnode and cluster are none, want all rval = {} for wrtnode in self.node_names(): for cluster in self.cluster_names(): pri = self.node_prioritizer(wrtnode, cluster) if pri is not None: rval[(wrtnode, cluster)] = pri return rval def subnet(self, wrtnode): ''' Makes wrtnode have a subnetwork if it did not already. :param wrtnode: The node to give a subnetwork to, or get the subnetwork of. Node specified as node_obj() function expects. :return: The ANPNetwork that is the subnet of this node ''' node = self.node_obj(wrtnode) if node.subnetwork is not None: return node.subnetwork else: rval = ANPNetwork(create_alts_cluster=False) node.subnetwork = rval rval.default_priority_type = PriorityType.IDEALIZE return rval def node_invert(self, node, value=None): ''' Either sets, or tells if a node is inverted :param node: The node to do this on, as expected by node_obj() function :param value: If None, we return the boolean about if this node is inverted. Otherwise specifies the new value. :return: T/F if value=None, telling if the node is inverted. Otherwise returns nothing. ''' node = self.node_obj(node) if value is None: return node.invert else: node.invert = value def has_subnet(self)->bool: ''' :return: True/False telling if some node had a subentwork ''' for node in self.node_objs(): if node.subnetwork is not None: return True return False def subnet_synthesize(self, username=None, ptype:PriorityType=None): ''' Does the standard V1 subnetowrk synthesis. :param username: The user/users to synthesize for. If None, we group synthesize across all. If a single user, we sythesize for that user across all. If it is a list, we synthesize for the group that is that list of users. :return: Nothing ''' # First we need our global priorities pris = self.global_priority(username) # Next we need the alternative priorities from each subnetwork subnets = {} node:ANPNode for node in self.node_objs_with_subnet(): p = node.subnetwork.priority(username, ptype) if node.invert: p = self.invert_priority(p) subnets[node.name]=p rval = self.synthesize_combine(pris, subnets) if ptype is not None: rval = ptype.apply(rval) return rval def node_objs_with_subnet(self): """ :return: List of ANPNode objects in this network that have v1 subnets """ return [node for node in self.node_objs() if node.subnetwork is not None] def invert_priority(self, p): """ Makes a copy of the list like element p, and inverts. The current standard inversion is 1-p. There could be others implemented later. :param p: The list like to invert :return: New list-like of same type as p, with inverted priorities """ rval = deepcopy(p) for i in range(len(p)): rval[i] = 1 - rval[i] return rval def synthesize_combine(self, priorities:pd.Series, alt_scores:dict): """ Performs the actual sythesis step from anp v1 synthesis. :param priorities: Priorities of the subnetworks :param alt_scores: Alt scores as dictionary, keys are subnetwork names values are Series whose keys are alt names. :return: Series whose keys are alt names, and whose values are the synthesized scores. """ return self.subnet_formula(priorities, alt_scores) def cluster_prioritizer(self, wrtcluster=None): """ Gets the prioritizer for the clusters wrt a given cluster. :param wrtcluster: WRT cluster identifier as expected by cluster_obj() function. If None, then we return a dictionary indexed by cluster names and values are the prioritizers :return: THe prioritizer for that cluster, or a dictionary of all cluster prioritizers """ if wrtcluster is not None: cluster = self.cluster_obj(wrtcluster) return cluster.prioritizer else: rval = {} for cluster in self.cluster_objs(): rval[cluster.name] = cluster.prioritizer return rval def to_excel(self, fname): struct = pd.DataFrame() cluster:ANPCluster writer = pd.ExcelWriter(fname, engine='openpyxl') for cluster in self.cluster_objs(): cluster_name = cluster.name if cluster == self.alts_cluster: cluster_name = "*"+str(cluster_name) struct[cluster_name] = cluster.node_names() struct.to_excel(writer, sheet_name="struct", index=False) # Now the node connections mat = self.node_connection_matrix() pd.DataFrame(mat).to_excel(writer, sheet_name="connection", index=False, header=False) # Lastly let's write just the comparison structure cmp = self.data_names()
pd.DataFrame({"":cmp})
pandas.DataFrame
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # 2章 1次元データの整理 # + import numpy as np import pandas as pd pd.set_option("precision", 3) # - df = pd.read_csv("../python_stat_sample/data/ch2_scores_em.csv", index_col="生徒番号") df.head() # + # 英語の点数の最初の10個を取得 scores = np.array(df["英語"])[:10] scores # + index = [chr(i+ord("A")) for i in range(10)] scores_df = pd.DataFrame({"点数":scores}, index=pd.Index(index, name="生徒")) scores_df # - # ## 平均値 # # \begin{align*} # \bar{x} = \frac{1}{N} \sum_{i=0}^{N} x_i # \end{align*} # # - $\bar{x}: \text{average}$ # - $N: \text{length of data}$ # - $x_i: \text{each data in }x$ sum(scores)/len(scores) # numpyを使った方法 np.mean(scores) # pandasを使った方法 scores_df.mean() # ## 中央値 # 中央値を導出するためにデータを順番に置き直す scores_sorted = np.sort(scores) scores_sorted # + n = len(scores_sorted) if n%2 == 0: median = (scores_sorted[n//2 - 1] + scores_sorted[n//2])/2 else: median = scores_sorted[n//2+1] median # - # numpy np.median(scores) # pandas scores_df.median() # ## 最頻値 tmp_list = [1, 1, 1, 2, 2, 3] pd.Series(tmp_list).mode() # multiple modes in list tmp_list = [i+1 for i in range(5)] pd.Series(tmp_list).mode() # ## 偏差 mean = np.mean(scores) deviation = scores - mean deviation # keep copy of scores_df summary_df = scores_df.copy() summary_df["偏差"] = deviation summary_df scores_ = [50, 60, 58, 54, 51, 56, 57, 53, 52, 59] mean_ = np.mean(scores_) deviation_ = scores_ - mean_ deviation_ # + # mean of deviation_ mean_deviation = np.mean(deviation_) mean_deviation # - # ### 偏差の平均が0になる理由 # # \begin{align*} # \frac{1}{n} \sum_{i=1}^{n}(x_i - \bar{x}) = \frac{1}{n} \sum_{i=1}^{n}x_i - \frac{1}{n} \sum_{i=1}^{n} \bar{x}\\ # = \bar{x} - \bar{x}\\ # = 0 # \end{align*} # ## 分散 var = np.mean(deviation ** 2) var_np = np.var(scores) # defaults to sample variance var_pd = scores_df.var() # defaults to unbiased variance print(f"variance: {var}") print(f"variance thru numpy: {var_np}") print(f"variance thru pandas: {var_pd}") summary_df["偏差二乗"] = np.square(deviation) summary_df # ### 標本分散 # # \begin{align*} # S^2 = \frac{1}{n} \sum_{i=1}^{n}(x_i - \bar{x})^2 \\ # (n > 0) # \end{align*} # # ### 不偏分散 # # \begin{align*} # \sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n}(x_i - \bar{x})^2 \\ # (n > 1) # \end{align*} # # よって標準偏差は以下のようになる # \begin{align*} # S = \sqrt{S^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n}(x_i - \bar{x})^2} \\ # (n > 0) # \end{align*} # 標準偏差 np.sqrt(np.var(scores, ddof=0)) # 標本分散を使用 np.std(scores, ddof=0) # 上と同様 # ## 範囲 # # \begin{align*} # \it{Rg} = x_{max} - x_{min} # \end{align*} # 範囲 np.max(scores) - np.min(scores) # ただし, これだと一つでも大きい値または, 小さい値があると範囲が極端になってしまう # そのため, データの上位数%と下位数%の範囲を用いる場合がある # これを<b>四分位範囲</b> (interquartile range) という # # \begin{align*} # IQR = Q3 - Q1 # \end{align*} # 四分位範囲 scores_Q1 = np.percentile(scores, 25) scores_Q3 = np.percentile(scores, 75) scores_IQR = scores_Q3 - scores_Q1 scores_IQR # pandas
pd.Series(scores)
pandas.Series
import unittest from setup.settings import * from numpy.testing import * from pandas.util.testing import * import numpy as np import dolphindb_numpy as dnp import pandas as pd import orca class FunctionBitwiseXorTest(unittest.TestCase): @classmethod def setUpClass(cls): # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") def test_function_math_binary_bitwise_xor_scalar(self): self.assertEqual(dnp.bitwise_xor(1, 4), np.bitwise_xor(1, 4)) self.assertEqual(dnp.bitwise_xor(1, -5), np.bitwise_xor(1, -5)) self.assertEqual(dnp.bitwise_xor(0, 9), np.bitwise_xor(0, 9)) def test_function_math_binary_bitwise_xor_list(self): lst1 = [0, 1, 2] lst2 = [4, 6, 9] assert_array_equal(dnp.bitwise_xor(lst1, lst2), np.bitwise_xor(lst1, lst2)) def test_function_math_binary_bitwise_xor_array_with_scalar(self): npa = np.array([0, 1, 2]) dnpa = dnp.array([0, 1, 2]) assert_array_equal(dnp.bitwise_xor(dnpa, 1), np.bitwise_xor(npa, 1)) assert_array_equal(dnp.bitwise_xor(1, dnpa), np.bitwise_xor(1, npa)) def test_function_math_binary_bitwise_xor_array_with_array(self): npa1 = np.array([0, 1, 2]) npa2 = np.array([4, 6, 9]) dnpa1 = dnp.array([0, 1, 2]) dnpa2 = dnp.array([4, 6, 9]) assert_array_equal(dnp.bitwise_xor(dnpa1, dnpa2), np.bitwise_xor(npa1, npa2)) def test_function_math_binary_bitwise_xor_array_with_array_param_out(self): npa1 = np.array([0, 1, 2]) npa2 = np.array([4, 6, 9]) npa = np.zeros(shape=(1, 3)) dnpa1 = dnp.array([0, 1, 2]) dnpa2 = dnp.array([4, 6, 9]) dnpa = dnp.zeros(shape=(1, 3)) np.bitwise_xor(npa1, npa2, out=npa) dnp.bitwise_xor(dnpa1, dnpa2, out=dnpa) assert_array_equal(dnpa, npa) def test_function_math_binary_bitwise_xor_array_with_series(self): npa = np.array([0, 1, 2]) dnpa = dnp.array([0, 1, 2]) ps = pd.Series([4, 6, 9]) os = orca.Series([4, 6, 9]) assert_series_equal(dnp.bitwise_xor(dnpa, os).to_pandas(), np.bitwise_xor(npa, ps)) assert_series_equal(dnp.bitwise_xor(os, dnpa).to_pandas(), np.bitwise_xor(ps, npa)) pser = pd.Series([1, 2, 4]) oser = orca.Series([1, 2, 4]) assert_series_equal(dnp.bitwise_xor(os, oser).to_pandas(), np.bitwise_xor(ps, pser)) def test_function_math_binary_bitwise_xor_array_with_dataframe(self): npa = np.array([1]) dnpa = dnp.array([1]) pdf =
pd.DataFrame({'A': [4, 6, 9]})
pandas.DataFrame
import pandas as pd import pytest from bach import DataFrame from tests.functional.bach.test_data_and_utils import assert_equals_data def test_basic_get_dummies(engine) -> None: pdf = pd.DataFrame( {'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], 'C': [1, 2, 3]}, ) df = DataFrame.from_pandas(engine=engine, df=pdf, convert_objects=True) expected = pd.get_dummies(pdf, dtype='int') expected.index.name = '_index_0' expected_columns = ['C', 'A_a', 'A_b', 'B_a', 'B_b', 'B_c'] result = df.get_dummies().sort_index() assert set(expected_columns) == set(result.data_columns) result = result[expected_columns] assert_equals_data( result[expected_columns], expected_columns=['_index_0'] + expected_columns, expected_data=[ [0, 1, 1, 0, 0, 1, 0], [1, 2, 0, 1, 1, 0, 0], [2, 3, 1, 0, 0, 0, 1] ], ) pd.testing.assert_frame_equal( expected, result.to_pandas(), ) def test_get_dummies_dtype(engine) -> None: pdf = pd.DataFrame( {'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], 'C': [1, 2, 3]}, ) df = DataFrame.from_pandas(engine=engine, df=pdf, convert_objects=True) expected_columns = ['C', 'A_a', 'A_b', 'B_a', 'B_b', 'B_c'] # comparison with pandas is different, pandas will return empty space instead of 0. result = df.get_dummies(dtype='string').sort_index() assert set(expected_columns) == set(result.data_columns) result = result[expected_columns] assert_equals_data( result[expected_columns], expected_columns=['_index_0'] + expected_columns, expected_data=[ [0, 1, '1', '0', '0', '1', '0'], [1, 2, '0', '1', '1', '0', '0'], [2, 3, '1', '0', '0', '0', '1'] ], ) def test_get_dummies_prefix(engine) -> None: pdf = pd.DataFrame( {'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], 'C': [1, 2, 3]}, ) df = DataFrame.from_pandas(engine=engine, df=pdf, convert_objects=True) prefix = ['col1', 'col2'] expected =
pd.get_dummies(pdf, prefix=prefix, prefix_sep='__', dtype='int')
pandas.get_dummies
# http://www.vdh.virginia.gov/coronavirus/ from bs4 import BeautifulSoup import csv from datetime import datetime from io import StringIO import os import requests import pandas as pd # Remove empty rows def filtered(rows): return [x for x in rows if "".join([(x[y] or "").strip() for y in x]) != ""] def run_VA(args): # Parameters raw_name = '../VA/raw' data_name = '../VA/data/data_%s.csv' now = datetime.now() links = [("locality", "https://data.virginia.gov/resource/bre9-aqqr.csv"), ("conf", "https://data.virginia.gov/resource/uqs3-x7zh.csv"), ("dist", "https://data.virginia.gov/resource/v5a8-4ahw.csv"), ("age", "https://data.virginia.gov/resource/uktn-mwig.csv"), ("sex", "https://data.virginia.gov/resource/tdt3-q47w.csv"), ("race_ethnicity", "https://data.virginia.gov/resource/9sba-m86n.csv")] for link in links: most_recent = "" exists = os.path.exists(data_name % link[0]) out = [] # If current data file does not exist if not exists: version = 0 v_exists = True while v_exists: version += 1 v_exists = os.path.exists((data_name % (link[0] + "_V" + str(version)))) version = version - 1 v_df = pd.read_csv((data_name % (link[0] + "_V" + str(version)))) date_col = "" for col in v_df.columns: if "date" in col.lower() and "report" in col.lower(): date_col = col break # Getting most recent date dates = (pd.to_datetime(v_df[date_col])).to_list() most_recent = max(dt for dt in dates if dt < now) # Getting new dates new_df =
pd.read_csv(link[1])
pandas.read_csv
from context import dero import pandas as pd from pandas.util.testing import assert_frame_equal from pandas import Timestamp from numpy import nan import numpy class DataFrameTest: df = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01), (10516, 'a', '1/2/2000', 1.02), (10516, 'a', '1/3/2000', 1.03), (10516, 'a', '1/4/2000', 1.04), (10516, 'b', '1/1/2000', 1.05), (10516, 'b', '1/2/2000', 1.06), (10516, 'b', '1/3/2000', 1.07), (10516, 'b', '1/4/2000', 1.08), (10517, 'a', '1/1/2000', 1.09), (10517, 'a', '1/2/2000', 1.10), (10517, 'a', '1/3/2000', 1.11), (10517, 'a', '1/4/2000', 1.12), ], columns = ['PERMNO','byvar','Date', 'RET']) df_duplicate_row = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01), (10516, 'a', '1/2/2000', 1.02), (10516, 'a', '1/3/2000', 1.03), (10516, 'a', '1/3/2000', 1.03), #this is a duplicated row (10516, 'a', '1/4/2000', 1.04), (10516, 'b', '1/1/2000', 1.05), (10516, 'b', '1/2/2000', 1.06), (10516, 'b', '1/3/2000', 1.07), (10516, 'b', '1/4/2000', 1.08), (10517, 'a', '1/1/2000', 1.09), (10517, 'a', '1/2/2000', 1.10), (10517, 'a', '1/3/2000', 1.11), (10517, 'a', '1/4/2000', 1.12), ], columns = ['PERMNO','byvar','Date', 'RET']) df_weight = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 0), (10516, 'a', '1/2/2000', 1.02, 1), (10516, 'a', '1/3/2000', 1.03, 1), (10516, 'a', '1/4/2000', 1.04, 0), (10516, 'b', '1/1/2000', 1.05, 1), (10516, 'b', '1/2/2000', 1.06, 1), (10516, 'b', '1/3/2000', 1.07, 1), (10516, 'b', '1/4/2000', 1.08, 1), (10517, 'a', '1/1/2000', 1.09, 0), (10517, 'a', '1/2/2000', 1.1, 0), (10517, 'a', '1/3/2000', 1.11, 0), (10517, 'a', '1/4/2000', 1.12, 1), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'weight']) df_nan_byvar = pd.DataFrame(data = [ ('a', 1), (nan, 2), ('b', 3), ('b', 4), ], columns = ['byvar', 'val']) df_nan_byvar_and_val = pd.DataFrame(data = [ ('a', 1), (nan, 2), ('b', nan), ('b', 4), ], columns = ['byvar', 'val']) single_ticker_df = pd.DataFrame(data = [ ('a', Timestamp('2000-01-01 00:00:00'), 'ADM'), ], columns = ['byvar', 'Date', 'TICKER']) df_datetime = df.copy() df_datetime['Date'] = pd.to_datetime(df_datetime['Date']) df_datetime_no_ret = df_datetime.copy() df_datetime_no_ret.drop('RET', axis=1, inplace=True) df_gvkey_str = pd.DataFrame([ ('001076','3/1/1995'), ('001076','4/1/1995'), ('001722','1/1/2012'), ('001722','7/1/2012'), ('001722', nan), (nan ,'1/1/2012') ], columns=['GVKEY','Date']) df_gvkey_str['Date'] = pd.to_datetime(df_gvkey_str['Date']) df_gvkey_num = df_gvkey_str.copy() df_gvkey_num['GVKEY'] = df_gvkey_num['GVKEY'].astype('float64') df_gvkey_str2 = pd.DataFrame([ ('001076','2/1/1995'), ('001076','3/2/1995'), ('001722','11/1/2011'), ('001722','10/1/2011'), ('001722', nan), (nan ,'1/1/2012') ], columns=['GVKEY','Date']) df_gvkey_str2['Date'] = pd.to_datetime(df_gvkey_str2['Date']) df_fill_data = pd.DataFrame( data=[ (4, 'c', nan, 'a'), (1, 'd', 3, 'a'), (10, 'e', 100, 'a'), (2, nan, 6, 'b'), (5, 'f', 8, 'b'), (11, 'g', 150, 'b'), ], columns=['y', 'x1', 'x2', 'group'] ) class TestCumulate(DataFrameTest): expect_between_1_3 = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 1.01), (10516, 'a', '1/2/2000', 1.02, 1.02), (10516, 'a', '1/3/2000', 1.03, 1.0506), (10516, 'a', '1/4/2000', 1.04, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.05), (10516, 'b', '1/2/2000', 1.06, 1.06), (10516, 'b', '1/3/2000', 1.07, 1.1342), (10516, 'b', '1/4/2000', 1.08, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.09), (10517, 'a', '1/2/2000', 1.1, 1.1), (10517, 'a', '1/3/2000', 1.11, 1.2210000000000003), (10517, 'a', '1/4/2000', 1.12, 1.12), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'cum_RET']) expect_first = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01, 1.01), (10516, 'a', '1/2/2000', 1.02, 1.02), (10516, 'a', '1/3/2000', 1.03, 1.0506), (10516, 'a', '1/4/2000', 1.04, 1.092624), (10516, 'b', '1/1/2000', 1.05, 1.05), (10516, 'b', '1/2/2000', 1.06, 1.06), (10516, 'b', '1/3/2000', 1.07, 1.1342), (10516, 'b', '1/4/2000', 1.08, 1.224936), (10517, 'a', '1/1/2000', 1.09, 1.09), (10517, 'a', '1/2/2000', 1.10, 1.10), (10517, 'a', '1/3/2000', 1.11, 1.221), (10517, 'a', '1/4/2000', 1.12, 1.36752), ], columns = ['PERMNO','byvar','Date', 'RET', 'cum_RET']) def test_method_between_1_3(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[1,3]) assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_method_between_m2_0(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[-2,0]) #Actually same result as [1,3] assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_shifted_index(self): df = self.df.copy() df.index = df.index + 10 cum_df = dero.pandas.cumulate(df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[-2,0]) assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_method_first(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'first', periodvar='Date', byvars=['PERMNO','byvar']) assert_frame_equal(self.expect_first, cum_df, check_dtype=False) def test_grossify(self): df = self.df.copy() #don't overwrite original df['RET'] -= 1 #ungrossify expect_first_grossify = self.expect_first.copy() expect_first_grossify['cum_RET'] -= 1 expect_first_grossify['RET'] -= 1 cum_df = dero.pandas.cumulate(df, 'RET', 'first', periodvar='Date', byvars=['PERMNO','byvar'], grossify=True) assert_frame_equal(expect_first_grossify, cum_df, check_dtype=False) class TestGroupbyMerge(DataFrameTest): def test_subset_max(self): byvars = ['PERMNO','byvar'] out = dero.pandas.groupby_merge(self.df, byvars, 'max', subset='RET') expect_df = pd.DataFrame( [(10516, 'a', '1/1/2000', 1.01, 1.04), (10516, 'a', '1/2/2000', 1.02, 1.04), (10516, 'a', '1/3/2000', 1.03, 1.04), (10516, 'a', '1/4/2000', 1.04, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.08), (10516, 'b', '1/2/2000', 1.06, 1.08), (10516, 'b', '1/3/2000', 1.07, 1.08), (10516, 'b', '1/4/2000', 1.08, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.12), (10517, 'a', '1/2/2000', 1.10, 1.12), (10517, 'a', '1/3/2000', 1.11, 1.12), (10517, 'a', '1/4/2000', 1.12, 1.12)], columns = ['PERMNO','byvar','Date', 'RET', 'RET_max']) assert_frame_equal(expect_df, out) def test_subset_std(self): byvars = ['PERMNO','byvar'] out = dero.pandas.groupby_merge(self.df, byvars, 'std', subset='RET') expect_df = pd.DataFrame( [(10516, 'a', '1/1/2000', 1.01, 0.012909944487358068), (10516, 'a', '1/2/2000', 1.02, 0.012909944487358068), (10516, 'a', '1/3/2000', 1.03, 0.012909944487358068), (10516, 'a', '1/4/2000', 1.04, 0.012909944487358068), (10516, 'b', '1/1/2000', 1.05, 0.012909944487358068), (10516, 'b', '1/2/2000', 1.06, 0.012909944487358068), (10516, 'b', '1/3/2000', 1.07, 0.012909944487358068), (10516, 'b', '1/4/2000', 1.08, 0.012909944487358068), (10517, 'a', '1/1/2000', 1.09, 0.012909944487358068), (10517, 'a', '1/2/2000', 1.10, 0.012909944487358068), (10517, 'a', '1/3/2000', 1.11, 0.012909944487358068), (10517, 'a', '1/4/2000', 1.12, 0.012909944487358068)], columns = ['PERMNO','byvar','Date', 'RET', 'RET_std']) assert_frame_equal(expect_df, out) def test_nan_byvar_transform(self): expect_df = self.df_nan_byvar.copy() expect_df['val_transform'] = expect_df['val'] out = dero.pandas.groupby_merge(self.df_nan_byvar, 'byvar', 'transform', (lambda x: x)) assert_frame_equal(expect_df, out) def test_nan_byvar_and_nan_val_transform_numeric(self): non_standard_index = self.df_nan_byvar_and_val.copy() non_standard_index.index = [5,6,7,8] expect_df = self.df_nan_byvar_and_val.copy() expect_df['val_transform'] = expect_df['val'] + 1 expect_df.index = [5,6,7,8] out = dero.pandas.groupby_merge(non_standard_index, 'byvar', 'transform', (lambda x: x + 1)) assert_frame_equal(expect_df, out) def test_nan_byvar_and_nan_val_and_nonstandard_index_transform_numeric(self): expect_df = self.df_nan_byvar_and_val.copy() expect_df['val_transform'] = expect_df['val'] + 1 def test_nan_byvar_sum(self): expect_df = pd.DataFrame(data = [ ('a', 1, 1.0), (nan, 2, nan), ('b', 3, 7.0), ('b', 4, 7.0), ], columns = ['byvar', 'val', 'val_sum']) out = dero.pandas.groupby_merge(self.df_nan_byvar, 'byvar', 'sum') assert_frame_equal(expect_df, out) class TestLongToWide: expect_df_with_colindex = pd.DataFrame(data = [ (10516, 'a', 1.01, 1.02, 1.03, 1.04), (10516, 'b', 1.05, 1.06, 1.07, 1.08), (10517, 'a', 1.09, 1.1, 1.11, 1.12), ], columns = ['PERMNO', 'byvar', 'RET1/1/2000', 'RET1/2/2000', 'RET1/3/2000', 'RET1/4/2000']) expect_df_no_colindex = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/2/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/3/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/4/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/2/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/3/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/4/2000', 1.05, 1.06, 1.07, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/2/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/3/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/4/2000', 1.09, 1.1, 1.11, 1.12), ], columns = ['PERMNO', 'byvar', 'Date', 'RET0', 'RET1', 'RET2', 'RET3']) input_data = DataFrameTest() ltw_no_dup_colindex = dero.pandas.long_to_wide(input_data.df, ['PERMNO', 'byvar'], 'RET', colindex='Date') ltw_dup_colindex = dero.pandas.long_to_wide(input_data.df_duplicate_row, ['PERMNO', 'byvar'], 'RET', colindex='Date') ltw_no_dup_no_colindex = dero.pandas.long_to_wide(input_data.df, ['PERMNO', 'byvar'], 'RET') ltw_dup_no_colindex = dero.pandas.long_to_wide(input_data.df_duplicate_row, ['PERMNO', 'byvar'], 'RET') df_list = [ltw_no_dup_colindex, ltw_dup_colindex, ltw_no_dup_no_colindex, ltw_dup_no_colindex] def test_no_duplicates_with_colindex(self): assert_frame_equal(self.expect_df_with_colindex, self.ltw_no_dup_colindex) def test_duplicates_with_colindex(self): assert_frame_equal(self.expect_df_with_colindex, self.ltw_dup_colindex) def test_no_duplicates_no_colindex(self): assert_frame_equal(self.expect_df_no_colindex, self.ltw_no_dup_no_colindex) def test_duplicates_no_colindex(self): assert_frame_equal(self.expect_df_no_colindex, self.ltw_dup_no_colindex) def test_no_extra_vars(self): for df in self.df_list: assert ('__idx__','__key__') not in df.columns class TestPortfolioAverages: input_data = DataFrameTest() expect_avgs_no_wt = pd.DataFrame(data = [ (1, 'a', 1.0250000000000001), (1, 'b', 1.0550000000000002), (2, 'a', 1.1050000000000002), (2, 'b', 1.0750000000000002), ], columns = ['portfolio', 'byvar', 'RET']) expect_avgs_wt = pd.DataFrame(data = [ (1, 'a', 1.0250000000000001, 1.025), (1, 'b', 1.0550000000000002, 1.0550000000000002), (2, 'a', 1.1050000000000002, 1.12), (2, 'b', 1.0750000000000002, 1.0750000000000002), ], columns = ['portfolio', 'byvar', 'RET', 'RET_wavg']) expect_ports = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 0, 1), (10516, 'a', '1/2/2000', 1.02, 1, 1), (10516, 'a', '1/3/2000', 1.03, 1, 1), (10516, 'a', '1/4/2000', 1.04, 0, 1), (10516, 'b', '1/1/2000', 1.05, 1, 1), (10516, 'b', '1/2/2000', 1.06, 1, 1), (10516, 'b', '1/3/2000', 1.07, 1, 2), (10516, 'b', '1/4/2000', 1.08, 1, 2), (10517, 'a', '1/1/2000', 1.09, 0, 2), (10517, 'a', '1/2/2000', 1.1, 0, 2), (10517, 'a', '1/3/2000', 1.11, 0, 2), (10517, 'a', '1/4/2000', 1.12, 1, 2), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'weight', 'portfolio']) avgs, ports = dero.pandas.portfolio_averages(input_data.df_weight, 'RET', 'RET', ngroups=2, byvars='byvar') w_avgs, w_ports = dero.pandas.portfolio_averages(input_data.df_weight, 'RET', 'RET', ngroups=2, byvars='byvar', wtvar='weight') def test_simple_averages(self): assert_frame_equal(self.expect_avgs_no_wt, self.avgs, check_dtype=False) def test_weighted_averages(self): assert_frame_equal(self.expect_avgs_wt, self.w_avgs, check_dtype=False) def test_portfolio_construction(self): print(self.ports) assert_frame_equal(self.expect_ports, self.ports, check_dtype=False) assert_frame_equal(self.expect_ports, self.w_ports, check_dtype=False) class TestWinsorize(DataFrameTest): def test_winsor_40_subset_byvars(self): expect_df = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.022624), (10516, 'a', '1/2/2000', 1.022624), (10516, 'a', '1/3/2000', 1.02672), (10516, 'a', '1/4/2000', 1.02672), (10516, 'b', '1/1/2000', 1.062624), (10516, 'b', '1/2/2000', 1.062624), (10516, 'b', '1/3/2000', 1.06672), (10516, 'b', '1/4/2000', 1.06672), (10517, 'a', '1/1/2000', 1.102624), (10517, 'a', '1/2/2000', 1.102624), (10517, 'a', '1/3/2000', 1.10672), (10517, 'a', '1/4/2000', 1.10672), ], columns = ['PERMNO', 'byvar', 'Date', 'RET']) wins = dero.pandas.winsorize(self.df, .4, subset='RET', byvars=['PERMNO','byvar']) assert_frame_equal(expect_df, wins, check_less_precise=True) class TestRegBy(DataFrameTest): def create_indf(self): indf = self.df_weight.copy() indf['key'] = indf['PERMNO'].astype(str) + '_' + indf['byvar'] return indf def test_regby_nocons(self): indf = self.create_indf() expect_df = pd.DataFrame(data = [ (0.48774684748988806, '10516_a'), (0.9388636664168903, '10516_b'), (0.22929206076239614, '10517_a'), ], columns = ['coef_RET', 'key']) rb = dero.pandas.reg_by(indf, 'weight', 'RET', 'key', cons=False) print('Reg by: ', rb) assert_frame_equal(expect_df, rb) def test_regby_cons(self): indf = self.create_indf() expect_df = pd.DataFrame(data = [ (0.49999999999999645, 5.329070518200751e-15, '10516_a'), (0.9999999999999893, 1.0658141036401503e-14, '10516_b'), (-32.89999999999997, 29.999999999999982, '10517_a'), ], columns = ['const', 'coef_RET', 'key']) rb = dero.pandas.reg_by(indf, 'weight', 'RET', 'key') print('Reg by: ', rb) assert_frame_equal(expect_df, rb) def test_regby_cons_low_obs(self): indf = self.create_indf().loc[:8,:] #makes it so that one byvar only has one obs expect_df = pd.DataFrame(data = [ (0.49999999999999645, 5.329070518200751e-15, '10516_a'), (0.9999999999999893, 1.0658141036401503e-14, '10516_b'), (nan, nan, '10517_a'), ], columns = ['const', 'coef_RET', 'key']) rb = dero.pandas.reg_by(indf, 'weight', 'RET', 'key') print('Reg by: ', rb) assert_frame_equal(expect_df, rb) class TestExpandMonths(DataFrameTest): def test_expand_months_tradedays(self): expect_df = pd.DataFrame(data = [ (Timestamp('2000-01-03 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-04 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-05 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-06 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-07 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-10 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-11 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-12 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-13 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-14 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-18 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-19 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-20 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-21 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-24 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-25 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-26 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-27 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-28 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-31 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), ], columns = ['Daily Date', 'byvar', 'Date', 'TICKER']) em = dero.pandas.expand_months(self.single_ticker_df) assert_frame_equal(expect_df.sort_index(axis=1), em.sort_index(axis=1)) def test_expand_months_calendardays(self): expect_df = pd.DataFrame(data = [ (Timestamp('2000-01-01 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-02 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-03 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-04 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-05 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-06 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-07 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-08 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-09 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-10 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-11 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-12 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-13 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-14 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-15 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-16 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-17 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-18 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-19 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-20 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-21 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-22 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-23 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-24 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-25 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-26 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-27 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-28 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-29 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-30 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-31 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), ], columns = ['Daily Date', 'byvar', 'Date', 'TICKER']) em = dero.pandas.expand_months(self.single_ticker_df, trade_days=False) assert_frame_equal(expect_df.sort_index(axis=1), em.sort_index(axis=1)) class TestPortfolio(DataFrameTest): def test_portfolio_byvars(self): expect_df = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 1), (10516, 'a', '1/2/2000', 1.02, 1), (10516, 'a', '1/3/2000', 1.03, 2), (10516, 'a', '1/4/2000', 1.04, 2), (10516, 'b', '1/1/2000', 1.05, 1), (10516, 'b', '1/2/2000', 1.06, 1), (10516, 'b', '1/3/2000', 1.07, 2), (10516, 'b', '1/4/2000', 1.08, 2), (10517, 'a', '1/1/2000', 1.09, 1), (10517, 'a', '1/2/2000', 1.1, 1), (10517, 'a', '1/3/2000', 1.11, 2), (10517, 'a', '1/4/2000', 1.12, 2), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'portfolio']) p = dero.pandas.portfolio(self.df, 'RET', ngroups=2, byvars=['PERMNO','byvar']) assert_frame_equal(expect_df, p, check_dtype=False) def test_portfolio_with_nan_and_byvars(self): expect_df = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', nan, 0), (10516, 'a', '1/2/2000', 1.02, 1), (10516, 'a', '1/3/2000', 1.03, 1), #changed from 2 to 1 when updated nan handling (10516, 'a', '1/4/2000', 1.04, 2), (10516, 'b', '1/1/2000', 1.05, 1), (10516, 'b', '1/2/2000', 1.06, 1), (10516, 'b', '1/3/2000', 1.07, 2), (10516, 'b', '1/4/2000', 1.08, 2), (10517, 'a', '1/1/2000', 1.09, 1), (10517, 'a', '1/2/2000', 1.1, 1), (10517, 'a', '1/3/2000', 1.11, 2), (10517, 'a', '1/4/2000', 1.12, 2), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'portfolio']) indf = self.df.copy() indf.loc[0, 'RET'] = nan p = dero.pandas.portfolio(indf, 'RET', ngroups=2, byvars=['PERMNO','byvar']) assert_frame_equal(expect_df, p, check_dtype=False) class TestConvertSASDateToPandasDate: df_sasdate = pd.DataFrame(data = [ ('011508', 16114.0), ('011508', 16482.0), ('011508', 17178.0), ('011508', 17197.0), ('011508', 17212.0), ], columns = ['gvkey', 'datadate']) df_sasdate_nan = pd.DataFrame(data = [ ('011508', 16114.0), ('011508', 16482.0), ('011508', 17178.0), ('011508', 17197.0), ('011508', nan), ('011508', 17212.0), ], columns = ['gvkey', 'datadate']) def test_convert(self): expect_df = pd.DataFrame(data = [ (numpy.datetime64('2004-02-13T00:00:00.000000000'),), (numpy.datetime64('2005-02-15T00:00:00.000000000'),), (numpy.datetime64('2007-01-12T00:00:00.000000000'),), (numpy.datetime64('2007-01-31T00:00:00.000000000'),), (numpy.datetime64('2007-02-15T00:00:00.000000000'),), ], columns = [0]) converted = pd.DataFrame(dero.pandas.convert_sas_date_to_pandas_date(self.df_sasdate['datadate'])) assert_frame_equal(expect_df, converted) def test_convert_nan(self): expect_df = pd.DataFrame(data = [ (numpy.datetime64('2004-02-13T00:00:00.000000000'),), (numpy.datetime64('2005-02-15T00:00:00.000000000'),), (numpy.datetime64('2007-01-12T00:00:00.000000000'),), (numpy.datetime64('2007-01-31T00:00:00.000000000'),), (numpy.datetime64('NaT'),), (numpy.datetime64('2007-02-15T00:00:00.000000000'),), ], columns = [0]) converted = pd.DataFrame(dero.pandas.convert_sas_date_to_pandas_date(self.df_sasdate_nan['datadate'])) assert_frame_equal(expect_df, converted) class TestMapWindows(DataFrameTest): times = [ [-4, -2, 0], [-3, 1, 2], [4, 5, 6], [0, 1, 2], [-1, 0, 1] ] df_period_str = pd.DataFrame([ (10516, '1/1/2000', 1.01), (10516, '1/2/2000', 1.02), (10516, '1/3/2000', 1.03), (10516, '1/4/2000', 1.04), (10516, '1/5/2000', 1.05), (10516, '1/6/2000', 1.06), (10516, '1/7/2000', 1.07), (10516, '1/8/2000', 1.08), (10517, '1/1/2000', 1.09), (10517, '1/2/2000', 1.10), (10517, '1/3/2000', 1.11), (10517, '1/4/2000', 1.12), (10517, '1/5/2000', 1.05), (10517, '1/6/2000', 1.06), (10517, '1/7/2000', 1.07), (10517, '1/8/2000', 1.08), ], columns = ['PERMNO','Date', 'RET']) df_period = df_period_str.copy() df_period['Date'] = pd.to_datetime(df_period['Date']) expect_dfs = [ pd.DataFrame(data = [ (10516, Timestamp('2000-01-01 00:00:00'), 1.01, 0), (10516, Timestamp('2000-01-02 00:00:00'), 1.02, 1), (10516, Timestamp('2000-01-03 00:00:00'), 1.03, 1), (10516, Timestamp('2000-01-04 00:00:00'), 1.04, 2), (10516, Timestamp('2000-01-05 00:00:00'), 1.05, 2), (10516, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10516, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10516, Timestamp('2000-01-08 00:00:00'), 1.08, 3), (10517, Timestamp('2000-01-01 00:00:00'), 1.09, 0), (10517, Timestamp('2000-01-02 00:00:00'), 1.1, 1), (10517, Timestamp('2000-01-03 00:00:00'), 1.11, 1), (10517, Timestamp('2000-01-04 00:00:00'), 1.12, 2), (10517, Timestamp('2000-01-05 00:00:00'), 1.05, 2), (10517, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10517, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10517, Timestamp('2000-01-08 00:00:00'), 1.08, 3), ], columns = ['PERMNO', 'Date', 'RET', '__map_window__']), pd.DataFrame(data = [ (10516, Timestamp('2000-01-01 00:00:00'), 1.01, 0), (10516, Timestamp('2000-01-02 00:00:00'), 1.02, 1), (10516, Timestamp('2000-01-03 00:00:00'), 1.03, 1), (10516, Timestamp('2000-01-04 00:00:00'), 1.04, 1), (10516, Timestamp('2000-01-05 00:00:00'), 1.05, 1), (10516, Timestamp('2000-01-06 00:00:00'), 1.06, 2), (10516, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10516, Timestamp('2000-01-08 00:00:00'), 1.08, 3), (10517, Timestamp('2000-01-01 00:00:00'), 1.09, 0), (10517, Timestamp('2000-01-02 00:00:00'), 1.1, 1), (10517, Timestamp('2000-01-03 00:00:00'), 1.11, 1), (10517, Timestamp('2000-01-04 00:00:00'), 1.12, 1), (10517, Timestamp('2000-01-05 00:00:00'), 1.05, 1), (10517, Timestamp('2000-01-06 00:00:00'), 1.06, 2), (10517, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10517, Timestamp('2000-01-08 00:00:00'), 1.08, 3), ], columns = ['PERMNO', 'Date', 'RET', '__map_window__']), pd.DataFrame(data = [ (10516, Timestamp('2000-01-01 00:00:00'), 1.01, 0), (10516, Timestamp('2000-01-02 00:00:00'), 1.02, 1), (10516, Timestamp('2000-01-03 00:00:00'), 1.03, 2), (10516, Timestamp('2000-01-04 00:00:00'), 1.04, 3), (10516, Timestamp('2000-01-05 00:00:00'), 1.05, 3), (10516, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10516, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10516, Timestamp('2000-01-08 00:00:00'), 1.08, 3), (10517, Timestamp('2000-01-01 00:00:00'), 1.09, 0), (10517, Timestamp('2000-01-02 00:00:00'), 1.1, 1), (10517, Timestamp('2000-01-03 00:00:00'), 1.11, 2), (10517, Timestamp('2000-01-04 00:00:00'), 1.12, 3), (10517, Timestamp('2000-01-05 00:00:00'), 1.05, 3), (10517, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10517, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10517, Timestamp('2000-01-08 00:00:00'), 1.08, 3), ], columns = ['PERMNO', 'Date', 'RET', '__map_window__']), pd.DataFrame(data = [ (10516, Timestamp('2000-01-01 00:00:00'), 1.01, 0), (10516, Timestamp('2000-01-02 00:00:00'), 1.02, 1), (10516, Timestamp('2000-01-03 00:00:00'), 1.03, 2), (10516, Timestamp('2000-01-04 00:00:00'), 1.04, 3), (10516, Timestamp('2000-01-05 00:00:00'), 1.05, 3), (10516, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10516, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10516, Timestamp('2000-01-08 00:00:00'), 1.08, 3), (10517, Timestamp('2000-01-01 00:00:00'), 1.09, 0), (10517, Timestamp('2000-01-02 00:00:00'), 1.1, 1), (10517, Timestamp('2000-01-03 00:00:00'), 1.11, 2), (10517, Timestamp('2000-01-04 00:00:00'), 1.12, 3), (10517, Timestamp('2000-01-05 00:00:00'), 1.05, 3), (10517, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10517, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10517, Timestamp('2000-01-08 00:00:00'), 1.08, 3), ], columns = ['PERMNO', 'Date', 'RET', '__map_window__']), pd.DataFrame(data = [ (10516, Timestamp('2000-01-01 00:00:00'), 1.01, 0), (10516, Timestamp('2000-01-02 00:00:00'), 1.02, 1), (10516, Timestamp('2000-01-03 00:00:00'), 1.03, 2), (10516, Timestamp('2000-01-04 00:00:00'), 1.04, 3), (10516, Timestamp('2000-01-05 00:00:00'), 1.05, 3), (10516, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10516, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10516, Timestamp('2000-01-08 00:00:00'), 1.08, 3), (10517, Timestamp('2000-01-01 00:00:00'), 1.09, 0), (10517, Timestamp('2000-01-02 00:00:00'), 1.1, 1), (10517, Timestamp('2000-01-03 00:00:00'), 1.11, 2), (10517, Timestamp('2000-01-04 00:00:00'), 1.12, 3), (10517, Timestamp('2000-01-05 00:00:00'), 1.05, 3), (10517, Timestamp('2000-01-06 00:00:00'), 1.06, 3), (10517, Timestamp('2000-01-07 00:00:00'), 1.07, 3), (10517, Timestamp('2000-01-08 00:00:00'), 1.08, 3), ], columns = ['PERMNO', 'Date', 'RET', '__map_window__']) ] expect_df_first = pd.DataFrame(data = [ (10516, Timestamp('2000-01-01 00:00:00'), 1.01, 0), (10516, Timestamp('2000-01-02 00:00:00'), 1.02, 1), (10516, Timestamp('2000-01-03 00:00:00'), 1.03, 1), (10516, Timestamp('2000-01-04 00:00:00'), 1.04, 1), (10516, Timestamp('2000-01-05 00:00:00'), 1.05, 1), (10516, Timestamp('2000-01-06 00:00:00'), 1.06, 1), (10516, Timestamp('2000-01-07 00:00:00'), 1.07, 1), (10516, Timestamp('2000-01-08 00:00:00'), 1.08, 1), (10517, Timestamp('2000-01-01 00:00:00'), 1.09, 0), (10517, Timestamp('2000-01-02 00:00:00'), 1.1, 1), (10517, Timestamp('2000-01-03 00:00:00'), 1.11, 1), (10517, Timestamp('2000-01-04 00:00:00'), 1.12, 1), (10517, Timestamp('2000-01-05 00:00:00'), 1.05, 1), (10517, Timestamp('2000-01-06 00:00:00'), 1.06, 1), (10517, Timestamp('2000-01-07 00:00:00'), 1.07, 1), (10517, Timestamp('2000-01-08 00:00:00'), 1.08, 1), ], columns = ['PERMNO', 'Date', 'RET', '__map_window__']) def run_for_each_time(func): """ Decorator that can be applied to any function whose args are (self, time, expect_df) which runs the function for each time in self.times and picks the appropriate matching expect_df """ def run(self): for t, time in enumerate(self.times): func(self, time, self.expect_dfs[t]) return run def test_method_first(self): result = dero.pandas._map_windows(self.df_period, self.times[0], method='first', periodvar='Date', byvars=['PERMNO']) assert_frame_equal(result, self.expect_df_first) @run_for_each_time def test_method_between(self, time, expect_df): result = dero.pandas._map_windows(self.df_period, time, method='between', periodvar='Date', byvars=['PERMNO']) assert_frame_equal(result, expect_df) class TestLeftMergeLatest(DataFrameTest): def test_left_merge_latest(self): expect_df = pd.DataFrame(data = [ ('001076', Timestamp('1995-03-01 00:00:00'), Timestamp('1995-02-01 00:00:00')), ('001076', Timestamp('1995-04-01 00:00:00'), Timestamp('1995-03-02 00:00:00')), ('001722', Timestamp('2012-01-01 00:00:00'), Timestamp('2011-11-01 00:00:00')), ('001722', Timestamp('2012-07-01 00:00:00'), Timestamp('2011-11-01 00:00:00')), ('001722', numpy.timedelta64('NaT','ns'), numpy.timedelta64('NaT','ns')), (numpy.datetime64('NaT'), numpy.datetime64('2012-01-01T00:00:00.000000000'), numpy.datetime64('NaT')), ], columns = ['GVKEY', 'Date', 'Date_y']) lm = dero.pandas.left_merge_latest(self.df_gvkey_str, self.df_gvkey_str2, on='GVKEY') lm_low_mem = dero.pandas.left_merge_latest(self.df_gvkey_str, self.df_gvkey_str2, on='GVKEY', low_memory=True) lm_sql = dero.pandas.left_merge_latest(self.df_gvkey_str, self.df_gvkey_str2, on='GVKEY', backend='sql') assert_frame_equal(expect_df, lm, check_dtype=False) assert_frame_equal(expect_df.iloc[:-1], lm_low_mem, check_dtype=False) assert_frame_equal(expect_df, lm_sql, check_dtype=False) class TestVarChangeByGroups(DataFrameTest): def test_multi_byvar_single_var(self): expect_df = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, nan), (10516, 'a', '1/2/2000', 1.02, 0.010000000000000009), (10516, 'a', '1/3/2000', 1.03, 0.010000000000000009), (10516, 'a', '1/4/2000', 1.04, 0.010000000000000009), (10516, 'b', '1/1/2000', 1.05, nan), (10516, 'b', '1/2/2000', 1.06, 0.010000000000000009), (10516, 'b', '1/3/2000', 1.07, 0.010000000000000009), (10516, 'b', '1/4/2000', 1.08, 0.010000000000000009), (10517, 'a', '1/1/2000', 1.09, nan), (10517, 'a', '1/2/2000', 1.1, 0.010000000000000009), (10517, 'a', '1/3/2000', 1.11, 0.010000000000000009), (10517, 'a', '1/4/2000', 1.12, 0.010000000000000009), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'RET_change']) vc = dero.pandas.var_change_by_groups(self.df, 'RET', ['PERMNO','byvar']) assert_frame_equal(expect_df, vc) def test_multi_byvar_multi_var(self): expect_df = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 0, nan, nan), (10516, 'a', '1/2/2000', 1.02, 1, 0.010000000000000009, 1.0), (10516, 'a', '1/3/2000', 1.03, 1, 0.010000000000000009, 0.0), (10516, 'a', '1/4/2000', 1.04, 0, 0.010000000000000009, -1.0), (10516, 'b', '1/1/2000', 1.05, 1, nan, nan), (10516, 'b', '1/2/2000', 1.06, 1, 0.010000000000000009, 0.0), (10516, 'b', '1/3/2000', 1.07, 1, 0.010000000000000009, 0.0), (10516, 'b', '1/4/2000', 1.08, 1, 0.010000000000000009, 0.0), (10517, 'a', '1/1/2000', 1.09, 0, nan, nan), (10517, 'a', '1/2/2000', 1.1, 0, 0.010000000000000009, 0.0), (10517, 'a', '1/3/2000', 1.11, 0, 0.010000000000000009, 0.0), (10517, 'a', '1/4/2000', 1.12, 1, 0.010000000000000009, 1.0), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'weight', 'RET_change', 'weight_change']) vc = dero.pandas.var_change_by_groups(self.df_weight, ['RET','weight'], ['PERMNO','byvar']) assert_frame_equal(expect_df, vc) class TestFillExcludedRows(DataFrameTest): expect_df_nofill = pd.DataFrame(data = [ ('001076', Timestamp('1995-03-01 00:00:00')), ('001076', Timestamp('1995-04-01 00:00:00')), ('001076', Timestamp('2012-01-01 00:00:00')), ('001076', Timestamp('2012-07-01 00:00:00')), ('001722', Timestamp('1995-03-01 00:00:00')), ('001722',
Timestamp('1995-04-01 00:00:00')
pandas.Timestamp
import logging from datetime import datetime, timedelta from typing import List, Union, Optional, Generator, Tuple, Dict from dataclasses import dataclass from urllib.parse import urljoin import pandas as pd from pandas._libs.tslibs.timestamps import Timestamp from requests import HTTPError from wetterdienst.core.data import WDDataCore from wetterdienst.core.sites import WDSitesCore from wetterdienst.dwd.forecasts.metadata.column_types import ( DATE_FIELDS_REGULAR, INTEGER_FIELDS, ) from wetterdienst.dwd.forecasts.metadata import ( DWDForecastDate, DWDForecastParameter, DWDMosmixType, ) from wetterdienst.dwd.forecasts.stations import metadata_for_forecasts from wetterdienst.dwd.metadata.column_names import DWDMetaColumns from wetterdienst.dwd.metadata.constants import ( DWD_SERVER, DWD_MOSMIX_S_PATH, DWD_MOSMIX_L_SINGLE_PATH, ) from wetterdienst.dwd.forecasts.access import KMLReader from wetterdienst.dwd.metadata.datetime import DatetimeFormat from wetterdienst.util.enumeration import parse_enumeration_from_template from wetterdienst.exceptions import StartDateEndDateError from wetterdienst.util.network import list_remote_files log = logging.getLogger(__name__) @dataclass class DWDMosmixResult: """ Result object encapsulating metadata, station information and forecast data. """ metadata: pd.DataFrame forecast: pd.DataFrame class DWDMosmixData(WDDataCore): """ Fetch weather forecast data (KML/MOSMIX_S dataset). Parameters ---------- station_ids : List - If None, data for all stations is returned. - If not None, station_ids are a list of station ids for which data is desired. parameters: List - If None, data for all parameters is returned. - If not None, list of parameters, per MOSMIX definition, see https://www.dwd.de/DE/leistungen/opendata/help/schluessel_datenformate/kml/mosmix_elemente_pdf.pdf?__blob=publicationFile&v=2 # noqa:E501,B950 """ def __init__( self, mosmix_type: DWDMosmixType, station_ids: List[str], parameters: Optional[List[Union[str, DWDForecastParameter]]] = None, start_date: Optional[ Union[str, datetime, DWDForecastDate] ] = DWDForecastDate.LATEST, end_date: Optional[Union[str, datetime, timedelta]] = None, tidy_data: bool = True, humanize_column_names: bool = False, ) -> None: """ Args: mosmix_type: type of forecast, either small (MOSMIX-S) or large (MOSMIX-L), as string or enumeration station_ids: station ids which are being queried from the MOSMIX foreacst parameters: optional parameters for which the forecasts are filtered start_date: start date of the MOSMIX forecast, can be used in combination with end date to query multiple MOSMIX forecasts, or instead used with enumeration to only query LATEST MOSMIX forecast end_date: end date of MOSMIX forecast, can be used to query multiple MOSMIX forecasts available on the server tidy_data: boolean if pandas.DataFrame shall be tidied and values put in rows humanize_column_names: boolean if parameters shall be renamed to human readable names """ if mosmix_type not in DWDMosmixType: raise ValueError( "period_type should be one of FORECAST_SHORT or FORECAST_LONG" ) if station_ids: station_ids = pd.Series(station_ids).astype(str).tolist() if parameters: parameters = ( pd.Series(parameters) .apply( parse_enumeration_from_template, args=(DWDForecastParameter,), ) .tolist() ) if not start_date and not end_date: start_date = DWDForecastDate.LATEST elif not end_date: end_date = start_date elif not start_date: start_date = end_date if start_date is not DWDForecastDate.LATEST: start_date = pd.to_datetime(start_date, infer_datetime_format=True).floor( "1H" ) end_date = pd.to_datetime(end_date, infer_datetime_format=True).floor("1H") if not start_date <= end_date: raise StartDateEndDateError( "end_date should be same or later then start_date" ) # Shift dates to 3, 9, 15, 21 hour format if mosmix_type == DWDMosmixType.LARGE: start_date = self.adjust_datetime(start_date) end_date = self.adjust_datetime(end_date) self.forecast_type = mosmix_type self.station_ids = station_ids self.parameters = parameters self.start_date = start_date self.end_date = end_date self.tidy_data = tidy_data self.humanize_column_names = humanize_column_names if mosmix_type == DWDMosmixType.SMALL: self.freq = "1H" # short forecasts released every hour else: self.freq = "6H" self.kml = KMLReader(station_ids=self.station_ids, parameters=self.parameters) @property def metadata(self): """ Wrapper for forecast metadata """ return metadata_for_forecasts() @staticmethod def adjust_datetime(datetime_: datetime) -> datetime: """ Adjust datetime to MOSMIX release frequency, which is required for MOSMIX-L that is only released very 6 hours (3, 9, 15, 21). Datetime is floored to closest release time e.g. if hour is 14, it will be rounded to 9 Args: datetime_: datetime that is adjusted Returns: adjusted datetime with floored hour """ regular_date = datetime_ + pd.offsets.DateOffset(hour=3) if regular_date > datetime_: regular_date -= pd.Timedelta(hours=6) delta_hours = (datetime_.hour - regular_date.hour) % 6 datetime_adjusted = datetime_ -
pd.Timedelta(hours=delta_hours)
pandas.Timedelta
#!env python import urllib.request import re import os import tempfile import numpy as np import pandas as pd import pdfminer from pdfminer.high_level import extract_pages def _extract_text(fn): found_elements = [] for page_layout in extract_pages(fn, maxpages=1): for element in page_layout: if isinstance(element, pdfminer.layout.LTTextBoxHorizontal): found_elements.append(element) found_elements.sort(key=lambda e: e.bbox[0]) found_elements.sort(key=lambda e: e.bbox[1], reverse=True) return [e.get_text().strip() for e in found_elements] def _parse_numbers(idx, entries): return [float(e.strip('*').replace(',', '.').strip()) if ',' in e else int(e.strip('*').strip()) for e in entries[idx+1:idx+3]] def _calc_rolling_average(df): mask = df['Daily new'] == 0 df.loc[mask, 'Daily new'] = df["Total"].diff()[mask] df['Daily new 7-day average'] = df['Daily new'].rolling(window=7).mean() return df def fetch_stats(out_dir, pdf_dir="", verbose=True): urls = [ "https://www.rhein-neckar-kreis.de/start/landratsamt/coronavirus+fallzahlen+03-07.html", "https://www.rhein-neckar-kreis.de/start/landratsamt/coronavirus+fallzahlen+08-09.html", "https://www.rhein-neckar-kreis.de/start/landratsamt/coronavirus+fallzahlen.html" ] p = re.compile('a href="(.+?Faktenblatt_Corona_RNK\.pdf)" title="" target="_blank">') if verbose: print("Checking updates...") pdf_urls = [] for url in urls: with urllib.request.urlopen(url) as f: t = f.read().decode("utf-8") pdf_urls += list(p.findall(t)) tmp_obj = None if pdf_dir == "": tmp_obj = tempfile.TemporaryDirectory() pdf_dir = tmp_obj.name elif not os.path.exists(pdf_dir): os.mkdir(pdf_dir) df_headers = ["Total", "Recovered", "Deaths", "Quarantined", "7 Day Incidents", "Daily new"] if os.path.exists(os.path.join(out_dir, 'hd_stats.json')): hd_stats = pd.read_json(os.path.join(out_dir, 'hd_stats.json'), orient="split").T rnk_stats = pd.read_json(os.path.join(out_dir, 'rnk_stats.json'), orient="split").T else: hd_stats = pd.DataFrame(columns=df_headers) rnk_stats = pd.DataFrame(columns=df_headers) url_root = "https://www.rhein-neckar-kreis.de/" for pdf_url in pdf_urls: pdf_fn = pdf_url.split('/')[-1] date = pd.Timestamp("20%s-%s-%s"%(pdf_fn[:2], pdf_fn[2:4], pdf_fn[4:6])) if date in rnk_stats.index: if verbose: print(f"Found data on {date.strftime('%Y-%m-%d')}, skipping...") continue if not os.path.exists(os.path.join(pdf_dir, pdf_fn)): print("Downloading %s..."%pdf_fn) with urllib.request.urlopen(url_root + pdf_url) as f, open(os.path.join(pdf_dir, pdf_fn), "wb") as fo: fo.write(f.read()) print("Parsing %s..."%pdf_fn) covid_numbers = np.zeros([2, 6], dtype=float) # Rows: RNK, HD # Cols: positive, recovered, deaths, quarantined, 7-day-incidences, difference yesterday covid_numbers[:, 4] = np.NaN entries = _extract_text(os.path.join(pdf_dir, pdf_fn)) flags = np.zeros(5, dtype=bool) for idx, e in enumerate(entries): # RNK: idx == 0 # HD: idx == 1 if not flags[0] and ("Positive" in e or "Gesamtzahl" in e): # Positive covid_numbers[:, 0] = _parse_numbers(idx, entries) flags[0] = True if not flags[1] and "Genesene" in e: # Recovered if 'Datenbank-Fehlers' in entries[-3] and 'Genesene Personen' in entries[-3]: # Some numbers are not avilable due to database failure covid_numbers[:, 1] = np.nan else: covid_numbers[:, 1] = _parse_numbers(idx, entries) flags[1] = True if not flags[2] and "Verstorbene" in e: # Deaths covid_numbers[:, 2] = _parse_numbers(idx, entries) flags[2] = True if not flags[3] and "7-Tage-Inzidenz" in e: # 7-day-incidences covid_numbers[:, 4] = _parse_numbers(idx, entries) flags[3] = True if not flags[4] and e == "Veränderung zum Vortag": # Daily new covid_numbers[:, 5] = _parse_numbers(idx, entries) flags[4] = True if all(flags): # found all numbers break covid_numbers[:, 3] = covid_numbers[:, 0] - covid_numbers[:, 1] - covid_numbers[:, 2] # Calculate quarantined rnk_stats = rnk_stats.append(pd.DataFrame([covid_numbers[0]], columns=df_headers, index=[date])) hd_stats = hd_stats.append(
pd.DataFrame([covid_numbers[1]], columns=df_headers, index=[date])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # Sangam2019 High Accuracy Traffic Prediction via PCA import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import LabelEncoder from datetime import datetime from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score,classification_report,mean_absolute_error,r2_score from sklearn.linear_model import LinearRegression from sklearn.decomposition import PCA from sklearn import decomposition get_ipython().run_line_magic('matplotlib', 'inline') from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import Adam le=LabelEncoder() lr=LinearRegression() pca=decomposition.PCA() traffic=pd.read_csv("Train.csv") traffic print(traffic.shape) traffic["is_holiday"].value_counts() traffic.weather_type=le.fit_transform(traffic.weather_type) traffic.head() list(le.classes_) traffic.loc[traffic['is_holiday']!='None','is_holiday']=1 traffic.loc[traffic['is_holiday']=='None','is_holiday']=0 traffic traffic['is_holiday'].value_counts() traffic['date_time'].describe() traffic[['date','time']]=traffic.date_time.str.split(expand=True) traffic.head() col=traffic.columns.tolist() col=col[-1:]+col[:-1] col=col[-1:]+col[:-1] col traffic=traffic[col] traffic=traffic.drop('date_time',axis=1) traffic.head() traffic['date']= pd.to_datetime(traffic['date']) traffic.info() traffic1=traffic traffic1.head() traffic1['date']=traffic1['date'].dt.weekday traffic1['date']=traffic1['date'].astype(int) traffic1.head() traffic1['time']=traffic1['time'].str.replace(':00','') traffic1['time']=traffic1['time'].astype(int) traffic1.head() traffic1.info() traffic1.loc[traffic1['date']=='6','is_holiday']=1 traffic2=traffic1 traffic2=traffic2.drop(['weather_description'],axis=1) traffic2.head() traffic2[['temperature','rain_p_h','snow_p_h']]=traffic2[['temperature','rain_p_h','snow_p_h']].astype(int) traffic2.info() x_train,x_test,y_train,y_test=train_test_split(traffic2.drop('traffic_volume',axis=1),traffic2['traffic_volume'],test_size=0.2,random_state=5) lr.fit(x_train,y_train) prd=lr.predict(x_test) lr.score(x_test,y_test) r_sq=r2_score(y_test,prd) r_sq pca.n_components=2 pca_data=pca.fit_transform(traffic2) print('Shape of pca_reduced.shape: ',pca_data.shape) data=np.vstack((pca_data.T,traffic2['traffic_volume'])).T #T for tranpose, without which h-stack needs to be used trafficpca=pd.DataFrame(data,columns=('Col1','Col2','Labels')) trafficpca.head() x_train1,x_test1,y_train1,y_test1=train_test_split(trafficpca.drop('Labels',axis=1),trafficpca['Labels'],test_size=0.1,random_state=5) lr.fit(x_train1,y_train1) prdpca=lr.predict(x_test1) prdpca prdpca.shape lr.score(x_test1,y_test1) r_sq1=r2_score(y_test1,prdpca) r_sq1 accuracy_score(y_test1,prdpca.round()) custom_x=[4,9,0,121,89,2,329,1,1,288,0,0,40,1] traffic_test=
pd.read_csv("Test.csv")
pandas.read_csv
# -*- coding: utf-8 -*- """model_bnb_h.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1LubfQy8-34FekTlgdarShQ5MUnXa328i """ import pandas as pd import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error import math import seaborn as sns sns.set() import warnings warnings.filterwarnings('ignore') data_path = '/content/Binance_' + 'BNB' + 'USDT_1h.csv' data_path df = pd.read_csv(data_path) df['Volume'] = df['Volume '+'BNB'] def moving_average(df, n): """Calculate the moving average for the given data. :param df: pandas.DataFrame :param n: :return: pandas.DataFrame """ MA = pd.Series(df['Close'].rolling(n, min_periods=n).mean(), name='MA_' + str(n)) df = df.join(MA) return df def exponential_moving_average(df, n): """ :param df: pandas.DataFrame :param n: :return: pandas.DataFrame """ EMA = pd.Series(df['Close'].ewm(span=n, min_periods=n).mean(), name='EMA_' + str(n)) df = df.join(EMA) return df def momentum(df, n): """ :param df: pandas.DataFrame :param n: :return: pandas.DataFrame """ M = pd.Series(df['Close'].diff(n), name='Momentum_' + str(n)) df = df.join(M) return df def rate_of_change(df, n): """ :param df: pandas.DataFrame :param n: :return: pandas.DataFrame """ M = df['Close'].diff(n - 1) N = df['Close'].shift(n - 1) ROC = pd.Series(M / N, name='ROC_' + str(n)) df = df.join(ROC) return df def average_true_range(df, n): """ :param df: pandas.DataFrame :param n: :return: pandas.DataFrame """ i = 0 TR_l = [0] while i < df.index[-1]: TR = max(df.loc[i + 1, 'High'], df.loc[i, 'Close']) - min(df.loc[i + 1, 'Low'], df.loc[i, 'Close']) TR_l.append(TR) i = i + 1 TR_s = pd.Series(TR_l) ATR = pd.Series(TR_s.ewm(span=n, min_periods=n).mean(), name='ATR_' + str(n)) df = df.join(ATR) return df def bollinger_bands(df, n): """ :param df: pandas.DataFrame :param n: :return: pandas.DataFrame """ MA = pd.Series(df['Close'].rolling(n, min_periods=n).mean()) MSD = pd.Series(df['Close'].rolling(n, min_periods=n).std()) b1 = 4 * MSD / MA B1 = pd.Series(b1, name='BollingerB_' + str(n)) df = df.join(B1) b2 = (df['Close'] - MA + 2 * MSD) / (4 * MSD) B2 = pd.Series(b2, name='Bollinger%b_' + str(n)) df = df.join(B2) return df def ppsr(df): """Calculate Pivot Points, Supports and Resistances for given data :param df: pandas.DataFrame :return: pandas.DataFrame """ PP = pd.Series((df['High'] + df['Low'] + df['Close']) / 3) R1 =
pd.Series(2 * PP - df['Low'])
pandas.Series
"""Tools for Loop-detection analysis.""" from multiprocessing import Pool from typing import Tuple, Sequence, Iterator from dataclasses import dataclass import numpy as np import pandas as pd from scipy import ndimage, stats, sparse from sklearn.cluster import DBSCAN from statsmodels.stats import multitest from .utils.utils import CPU_CORE, suppress_warning from .utils.numtools import mask_array, index_array, Toeplitz from .chrommatrix import ChromMatrix, Array HKernels = Tuple[Sequence[np.ndarray], Tuple[int, int]] @dataclass class HiccupsPeaksFinder(object): chrom_ma: ChromMatrix inner_radius: int = 2 outer_radius: int = 5 band_width: int = 600 fdrs: Tuple[float, float, float, float] = (0.1, 0.1, 0.1, 0.1) sigs: Tuple[float, float, float, float] = (0.1, 0.1, 0.1, 0.1) fold_changes: Tuple[float, float, float, float] = (1.5, 1.5, 1.5, 1.5) num_cpus: int = max(1, CPU_CORE - 2) def __post_init__(self): self.kernels: HKernels = self.fetch_kernels(self.inner_radius, self.outer_radius) def __call__(self) -> pd.DataFrame: observed = sparse.csr_matrix(self.chrom_ma.ob(sparse=True)) decay = self.chrom_ma.decay() weights = self.chrom_ma.weights # fetch chunk slices chunks: Iterator[Tuple[slice, slice]] = self.get_chunk_slices( length=self.chrom_ma.shape[0], band_width=self.band_width, height=self.band_width, ov_length=2 * self.outer_radius ) # fetching backgrounds model for nonzero pixles for each chunk for 4 kernels with Pool(processes=self.num_cpus) as pool: params = ( (observed[s1, s2], (decay[s1], decay[s2]), (1 / weights[s1], 1 / weights[s2]), self.kernels, self.band_width) for s1, s2 in chunks ) backgounds = pool.starmap(self.calculate_chunk, params) # indices are 0-based, plus onto the start index in the original matrix for (indices, *_), chunk in zip(backgounds, chunks): x_st, y_st = chunk[0].start, chunk[1].start indices += np.array([[x_st], [y_st]]) # 1. gathering backgrounds info of all nonzero pixels indices = np.concatenate([b[0] for b in backgounds], axis=1) contacts_array = np.concatenate([b[1] for b in backgounds]) lambda_array = np.concatenate([b[2] for b in backgounds], axis=1) enrich_ratio = np.concatenate([b[3] for b in backgounds]) # print(f'Before multiple test: {indices[0].size}') # 2. Multiple test. Filtering insignificant point after calculating padj using fdr_bh multiple test method. pvals, padjs, rejects = self.multiple_test(contacts_array, lambda_array, fdrs=self.fdrs, sigs=self.sigs) peaks = (indices, contacts_array, lambda_array, enrich_ratio, pvals, padjs) peaks = tuple(mask_array(np.all(rejects, axis=0), *peaks)) # print(f'After multiple test: {peaks[0][0].size}') # 3. Apply greedy clustering to merge points into confidant peaks. peak_indexs, shapes = self.cluster(peaks[0], peaks[1], peaks[2]) peaks = (*tuple(index_array(peak_indexs, *peaks)), shapes) # print(f'After cluster: {peaks[0][0].size}') # 4. Filter by gap_region, fold changes(enrichment) and singlet peak's sum-qvalue. valid_mask = self.filter(peaks, gap_mask=~self.chrom_ma.mask, fold_changes=self.fold_changes) peaks = tuple(mask_array(valid_mask, *peaks)) # indices, contacts_array, lambda_array, enrich_ratio, pvals, padjs, shape = peaks # print(f'After filter: {peaks[0][0].size}') peask_df = self.build_results(peaks, binsize=self.chrom_ma.binsize) return peask_df @staticmethod def fetch_kernels(p: int, w: int) -> HKernels: """Return kernels of four regions: donut region, vertical, horizontal, lower_left region. """ def region_to_kernel(*regions) -> np.ndarray: for region in regions: kernel = np.full((2 * w + 1, 2 * w + 1), 0, dtype=np.int) for i, j in region: kernel[i + w, j + w] = 1 yield kernel def rect(x_start, x_len, y_start, y_len): return { (i, j) for i in range(x_start, x_start + x_len) for j in range(y_start, y_start + y_len) } length = 2 * w + 1 center = rect(-p, 2 * p + 1, -p, 2 * p + 1) strips = rect(-w, length, 0, 1) | rect(0, 1, -w, length) donut = rect(-w, length, -w, length) - (center | strips) vertical = rect(-w, length, -1, 3) - center horizontal = rect(-1, 3, -w, length) - center lower_left = rect(1, w, -w, w) - center return tuple(region_to_kernel(donut, vertical, horizontal, lower_left)), (p, w) @staticmethod def get_chunk_slices(length: int, band_width: int, height: int, ov_length: int) -> Iterator[Tuple[slice, slice]]: """Return slices of all chunks along the digonal that ensure the band region with specified width is fully covered.\n Band region's left border is the main diagonal. """ band_width *= 2 start = 0 while 1: y_end = start + band_width x_end = start + height if (y_end < length) and (x_end < length): yield slice(start, x_end), slice(start, y_end) start += height - ov_length else: yield slice(start, length), slice(start, length) break @staticmethod @suppress_warning def calculate_chunk(observed: Array, exps: Tuple[np.ndarray, np.ndarray], factors: Tuple[np.ndarray, np.ndarray], kernels: HKernels, band_width: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """For a given chunk, calculate lambda values and contact(true counts) values of each pixel in regions specified in kernels. """ ks, (r1, r2) = kernels num_kernels = len(ks) try: if isinstance(observed, sparse.spmatrix): observed = observed.toarray() expected = Toeplitz(*exps)[:] observed[np.isnan(observed)] = 0 zero_region = observed == 0 expected[zero_region] = 0 # calculate lambda array for all nonzero pixels in valid region under each kernel x, y = observed.nonzero() dis = y - x mask = ((dis <= (band_width - 2 * r2)) & (x < (observed.shape[0] - r2)) & (dis >= r2) & (x >= r2)) x, y = x[mask], y[mask] if x.size == 0: return np.empty((2, 0)), np.empty(0), np.empty((num_kernels, 0)), np.empty(0) ratio_array = np.full((num_kernels, x.size), 0, dtype=np.float) oe_matrix = observed / expected for index, kernel in enumerate(ks): # ob_sum = ndimage.convolve(observed, kernel) # ex_sum = ndimage.convolve(expected, kernel) # ratio_array[index] = (ob_sum / ex_sum)[(x, y)] # Another option # counts = ndimage.convolve(valid_mat, kernel) ratio = ndimage.convolve(oe_matrix, kernel) / kernel.sum() ratio_array[index] = ratio[x, y] lambda_array = (ratio_array * expected[x, y] * factors[0][x] * factors[1][y]) inner_len = 2 * r1 + 1 outer_len = 2 * r2 + 1 inner_num = inner_len ** 2 percentage = (inner_num / outer_len ** 2) plateau_ma = oe_matrix - ndimage.percentile_filter( oe_matrix, int((1 - percentage) * 100), (outer_len, outer_len) ) plateau_region = (plateau_ma > 0).astype(np.int16) enrich_ratio = ndimage.convolve( plateau_region, np.ones((inner_len, inner_len)) )[x, y] / inner_num nan_mask = np.isnan(lambda_array) lambda_array[nan_mask] = 0 contacts_array = observed[x, y] * factors[0][x] * factors[1][y] non_nan_mask = ~(np.any(nan_mask, axis=0) | np.isnan(contacts_array)) indices = np.vstack((x, y)) # Another option is to prefilter by fold changes return (indices[:, non_nan_mask], contacts_array[non_nan_mask], lambda_array[:, non_nan_mask], enrich_ratio[non_nan_mask]) except Exception as e: return np.empty((2, 0)), np.empty(0), np.empty((num_kernels, 0)), np.empty(0) @staticmethod def multiple_test(contact_array: np.ndarray, lambda_array: np.ndarray, fdrs: Tuple[float, float, float, float], sigs: Tuple[float, float, float, float], method: str = "fdr_bh") -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Conduct poisson test on each pixel and multiple test correction for all tests. """ def lambda_chunks(lambda_array: np.ndarray, full: bool = False, base: float = 2, exponent: float = 1 / 3) -> Iterator[Tuple[float, float, np.ndarray]]: """Assign values in lambda_array to logarithmically spaced chunks of every base**exponent range. """ min_value = np.min(lambda_array) num = int(np.ceil(np.log2(np.max(lambda_array)) / exponent) + 1) lambda_values = np.logspace( start=0, stop=(num - 1) * exponent, num=num, base=base ) for start, end in zip(lambda_values[:-1], lambda_values[1:]): if not full and min_value > end: continue mask = (start < lambda_array) & (lambda_array <= end) yield start, end, mask num_test, len_test = lambda_array.shape pvals = np.full((num_test, len_test), 1, np.float) padjs = np.full((num_test, len_test), 1, np.float) rejects = np.full((num_test, len_test), False, np.bool) for test_i in range(num_test): for _, end, lambda_mask in lambda_chunks(lambda_array[test_i]): chunk_size = lambda_mask.sum() if chunk_size == 0: continue # poisson_model = stats.poisson(np.ones(chunk_size) * end) poisson_model = stats.poisson(lambda_array[test_i, lambda_mask]) _pvals = 1 - poisson_model.cdf(contact_array[lambda_mask]) reject, _padjs, _, _ = multitest.multipletests( pvals=_pvals, alpha=fdrs[test_i], method=method ) rejects[test_i][lambda_mask] = reject padjs[test_i][lambda_mask] = _padjs pvals[test_i][lambda_mask] = _pvals rejects = rejects & (padjs < np.array(sigs)[:, None]) return pvals, padjs, rejects @staticmethod def cluster(indices: np.ndarray, contacts: np.ndarray, lambda_array: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: dbscan = DBSCAN(2) dbscan.fit(indices.T) peak_indexs, shapes = [], [] for cluster_id in set(dbscan.labels_) - {-1}: point_indexs = np.where(dbscan.labels_ == cluster_id)[0] points = indices[:, point_indexs] center_index = np.argmax( (contacts[point_indexs] / lambda_array[:, point_indexs]).sum(axis=0) ) center = points[:, center_index] width = np.abs(points[1] - center[1]).max() * 2 + 1 height = np.abs(points[0] - center[0]).max() * 2 + 1 peak_indexs.append(point_indexs[center_index]) if height >= 2 * width: height = width elif width >= 2 * height: width = height shapes.append([width, height]) for singlet_index in np.where(dbscan.labels_ == -1)[0]: peak_indexs.append(singlet_index) shapes.append([1, 1]) return np.array(peak_indexs), np.array(shapes).T @staticmethod def filter(peaks: tuple, gap_mask: np.ndarray, fold_changes: Tuple[float, float, float, float] = (2, 1.5, 1.5, 2)) -> np.ndarray: """Post-filtering peaks after filtered by mulitple test and megred by clustering:\n 1. Remove peaks close to gap region(bad bins).\n 3. Retain peaks with fold changes over a given threshold in four regions.\n """ def enrich_mask(contact_array: np.ndarray, lambda_array: np.ndarray, enrich_ratio: np.ndarray) -> np.ndarray: """Return mask of valid peaks passed the enrichment fold changes filtering.""" fc_mask = np.all(contact_array >= lambda_array * np.array(fold_changes)[:, None], axis=0) ec_mask = enrich_ratio > 0.4 return fc_mask & ec_mask def away_gap_mask(indices, gap_mask, extend_width) -> np.ndarray: """Return mask of valid peaks away from gap regions.""" for _ in range(extend_width): gap_mask |= np.r_[gap_mask[1:], [False]] gap_mask |= np.r_[[False], gap_mask[: -1]] gap_region = set(np.where(gap_mask)[0]) return ~np.array([i in gap_region or j in gap_region for i, j in zip(*indices)]) indices, contact_array, lambda_array, enrich_ratio, pvals, padjs, shapes = peaks return away_gap_mask(indices, gap_mask, 1) & enrich_mask(contact_array, lambda_array, enrich_ratio) @staticmethod def build_results(peaks_tuple: tuple, binsize: int = 1) -> pd.DataFrame: """Aggregate peak-infos into a pd.DataFrame object. """ region_names = ['donut', 'horizontal', 'vertical', 'lower_left'] col_names = (['i', 'j', 'ob'] + ['ex_' + region for region in region_names] + ['pval_' + region for region in region_names] + ['padj_' + region for region in region_names] + ['enrich_ratio', 'width', 'height']) dtypes = [np.int] * 3 + [np.float] * (len(col_names) - 3) if not peaks_tuple: return
pd.DataFrame(columns=col_names)
pandas.DataFrame
# -*- coding: utf-8 -*- import pytest import numpy as np import pandas as pd import pandas.util.testing as tm import pandas.compat as compat ############################################################### # Index / Series common tests which may trigger dtype coercions ############################################################### class CoercionBase(object): klasses = ['index', 'series'] dtypes = ['object', 'int64', 'float64', 'complex128', 'bool', 'datetime64', 'datetime64tz', 'timedelta64', 'period'] @property def method(self): raise NotImplementedError(self) def _assert(self, left, right, dtype): # explicitly check dtype to avoid any unexpected result if isinstance(left, pd.Series): tm.assert_series_equal(left, right) elif isinstance(left, pd.Index): tm.assert_index_equal(left, right) else: raise NotImplementedError self.assertEqual(left.dtype, dtype) self.assertEqual(right.dtype, dtype) def test_has_comprehensive_tests(self): for klass in self.klasses: for dtype in self.dtypes: method_name = 'test_{0}_{1}_{2}'.format(self.method, klass, dtype) if not hasattr(self, method_name): msg = 'test method is not defined: {0}, {1}' raise AssertionError(msg.format(type(self), method_name)) class TestSetitemCoercion(CoercionBase, tm.TestCase): method = 'setitem' def _assert_setitem_series_conversion(self, original_series, loc_value, expected_series, expected_dtype): """ test series value's coercion triggered by assignment """ temp = original_series.copy() temp[1] = loc_value tm.assert_series_equal(temp, expected_series) # check dtype explicitly for sure self.assertEqual(temp.dtype, expected_dtype) # .loc works different rule, temporary disable # temp = original_series.copy() # temp.loc[1] = loc_value # tm.assert_series_equal(temp, expected_series) def test_setitem_series_object(self): obj = pd.Series(list('abcd')) self.assertEqual(obj.dtype, np.object) # object + int -> object exp = pd.Series(['a', 1, 'c', 'd']) self._assert_setitem_series_conversion(obj, 1, exp, np.object) # object + float -> object exp = pd.Series(['a', 1.1, 'c', 'd']) self._assert_setitem_series_conversion(obj, 1.1, exp, np.object) # object + complex -> object exp = pd.Series(['a', 1 + 1j, 'c', 'd']) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.object) # object + bool -> object exp = pd.Series(['a', True, 'c', 'd']) self._assert_setitem_series_conversion(obj, True, exp, np.object) def test_setitem_series_int64(self): obj = pd.Series([1, 2, 3, 4]) self.assertEqual(obj.dtype, np.int64) # int + int -> int exp = pd.Series([1, 1, 3, 4]) self._assert_setitem_series_conversion(obj, 1, exp, np.int64) # int + float -> float # TODO_GH12747 The result must be float # tm.assert_series_equal(temp, pd.Series([1, 1.1, 3, 4])) # self.assertEqual(temp.dtype, np.float64) exp = pd.Series([1, 1, 3, 4]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.int64) # int + complex -> complex exp = pd.Series([1, 1 + 1j, 3, 4]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.complex128) # int + bool -> int exp = pd.Series([1, 1, 3, 4]) self._assert_setitem_series_conversion(obj, True, exp, np.int64) def test_setitem_series_float64(self): obj = pd.Series([1.1, 2.2, 3.3, 4.4]) self.assertEqual(obj.dtype, np.float64) # float + int -> float exp = pd.Series([1.1, 1.0, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, 1, exp, np.float64) # float + float -> float exp = pd.Series([1.1, 1.1, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.float64) # float + complex -> complex exp = pd.Series([1.1, 1 + 1j, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.complex128) # float + bool -> float exp = pd.Series([1.1, 1.0, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, True, exp, np.float64) def test_setitem_series_complex128(self): obj = pd.Series([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j]) self.assertEqual(obj.dtype, np.complex128) # complex + int -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, True, exp, np.complex128) # complex + float -> complex exp = pd.Series([1 + 1j, 1.1, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.complex128) # complex + complex -> complex exp = pd.Series([1 + 1j, 1 + 1j, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.complex128) # complex + bool -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, True, exp, np.complex128) def test_setitem_series_bool(self): obj = pd.Series([True, False, True, False]) self.assertEqual(obj.dtype, np.bool) # bool + int -> int # TODO_GH12747 The result must be int # tm.assert_series_equal(temp, pd.Series([1, 1, 1, 0])) # self.assertEqual(temp.dtype, np.int64) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 1, exp, np.bool) # TODO_GH12747 The result must be int # assigning int greater than bool # tm.assert_series_equal(temp, pd.Series([1, 3, 1, 0])) # self.assertEqual(temp.dtype, np.int64) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 3, exp, np.bool) # bool + float -> float # TODO_GH12747 The result must be float # tm.assert_series_equal(temp, pd.Series([1., 1.1, 1., 0.])) # self.assertEqual(temp.dtype, np.float64) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.bool) # bool + complex -> complex (buggy, results in bool) # TODO_GH12747 The result must be complex # tm.assert_series_equal(temp, pd.Series([1, 1 + 1j, 1, 0])) # self.assertEqual(temp.dtype, np.complex128) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.bool) # bool + bool -> bool exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, True, exp, np.bool) def test_setitem_series_datetime64(self): obj = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self.assertEqual(obj.dtype, 'datetime64[ns]') # datetime64 + datetime64 -> datetime64 exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self._assert_setitem_series_conversion(obj, pd.Timestamp('2012-01-01'), exp, 'datetime64[ns]') # datetime64 + int -> object # ToDo: The result must be object exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp(1), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self._assert_setitem_series_conversion(obj, 1, exp, 'datetime64[ns]') # ToDo: add more tests once the above issue has been fixed def test_setitem_series_datetime64tz(self): tz = 'US/Eastern' obj = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2011-01-02', tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) self.assertEqual(obj.dtype, 'datetime64[ns, US/Eastern]') # datetime64tz + datetime64tz -> datetime64tz exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) value = pd.Timestamp('2012-01-01', tz=tz) self._assert_setitem_series_conversion(obj, value, exp, 'datetime64[ns, US/Eastern]') # datetime64 + int -> object # ToDo: The result must be object exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp(1, tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) self._assert_setitem_series_conversion(obj, 1, exp, 'datetime64[ns, US/Eastern]') # ToDo: add more tests once the above issue has been fixed def test_setitem_series_timedelta64(self): pass def test_setitem_series_period(self): pass def _assert_setitem_index_conversion(self, original_series, loc_key, expected_index, expected_dtype): """ test index's coercion triggered by assign key """ temp = original_series.copy() temp[loc_key] = 5 exp = pd.Series([1, 2, 3, 4, 5], index=expected_index) tm.assert_series_equal(temp, exp) # check dtype explicitly for sure self.assertEqual(temp.index.dtype, expected_dtype) temp = original_series.copy() temp.loc[loc_key] = 5 exp = pd.Series([1, 2, 3, 4, 5], index=expected_index) tm.assert_series_equal(temp, exp) # check dtype explicitly for sure self.assertEqual(temp.index.dtype, expected_dtype) def test_setitem_index_object(self): obj = pd.Series([1, 2, 3, 4], index=list('abcd')) self.assertEqual(obj.index.dtype, np.object) # object + object -> object exp_index = pd.Index(list('abcdx')) self._assert_setitem_index_conversion(obj, 'x', exp_index, np.object) # object + int -> IndexError, regarded as location temp = obj.copy() with tm.assertRaises(IndexError): temp[5] = 5 # object + float -> object exp_index = pd.Index(['a', 'b', 'c', 'd', 1.1]) self._assert_setitem_index_conversion(obj, 1.1, exp_index, np.object) def test_setitem_index_int64(self): # tests setitem with non-existing numeric key obj = pd.Series([1, 2, 3, 4]) self.assertEqual(obj.index.dtype, np.int64) # int + int -> int exp_index = pd.Index([0, 1, 2, 3, 5]) self._assert_setitem_index_conversion(obj, 5, exp_index, np.int64) # int + float -> float exp_index = pd.Index([0, 1, 2, 3, 1.1]) self._assert_setitem_index_conversion(obj, 1.1, exp_index, np.float64) # int + object -> object exp_index = pd.Index([0, 1, 2, 3, 'x']) self._assert_setitem_index_conversion(obj, 'x', exp_index, np.object) def test_setitem_index_float64(self): # tests setitem with non-existing numeric key obj = pd.Series([1, 2, 3, 4], index=[1.1, 2.1, 3.1, 4.1]) self.assertEqual(obj.index.dtype, np.float64) # float + int -> int temp = obj.copy() # TODO_GH12747 The result must be float with tm.assertRaises(IndexError): temp[5] = 5 # float + float -> float exp_index = pd.Index([1.1, 2.1, 3.1, 4.1, 5.1]) self._assert_setitem_index_conversion(obj, 5.1, exp_index, np.float64) # float + object -> object exp_index = pd.Index([1.1, 2.1, 3.1, 4.1, 'x']) self._assert_setitem_index_conversion(obj, 'x', exp_index, np.object) def test_setitem_index_complex128(self): pass def test_setitem_index_bool(self): pass def test_setitem_index_datetime64(self): pass def test_setitem_index_datetime64tz(self): pass def test_setitem_index_timedelta64(self): pass def test_setitem_index_period(self): pass class TestInsertIndexCoercion(CoercionBase, tm.TestCase): klasses = ['index'] method = 'insert' def _assert_insert_conversion(self, original, value, expected, expected_dtype): """ test coercion triggered by insert """ target = original.copy() res = target.insert(1, value) tm.assert_index_equal(res, expected) self.assertEqual(res.dtype, expected_dtype) def test_insert_index_object(self): obj = pd.Index(list('abcd')) self.assertEqual(obj.dtype, np.object) # object + int -> object exp = pd.Index(['a', 1, 'b', 'c', 'd']) self._assert_insert_conversion(obj, 1, exp, np.object) # object + float -> object exp = pd.Index(['a', 1.1, 'b', 'c', 'd']) self._assert_insert_conversion(obj, 1.1, exp, np.object) # object + bool -> object res = obj.insert(1, False) tm.assert_index_equal(res, pd.Index(['a', False, 'b', 'c', 'd'])) self.assertEqual(res.dtype, np.object) # object + object -> object exp = pd.Index(['a', 'x', 'b', 'c', 'd']) self._assert_insert_conversion(obj, 'x', exp, np.object) def test_insert_index_int64(self): obj = pd.Int64Index([1, 2, 3, 4]) self.assertEqual(obj.dtype, np.int64) # int + int -> int exp = pd.Index([1, 1, 2, 3, 4]) self._assert_insert_conversion(obj, 1, exp, np.int64) # int + float -> float exp = pd.Index([1, 1.1, 2, 3, 4]) self._assert_insert_conversion(obj, 1.1, exp, np.float64) # int + bool -> int exp = pd.Index([1, 0, 2, 3, 4]) self._assert_insert_conversion(obj, False, exp, np.int64) # int + object -> object exp = pd.Index([1, 'x', 2, 3, 4]) self._assert_insert_conversion(obj, 'x', exp, np.object) def test_insert_index_float64(self): obj = pd.Float64Index([1., 2., 3., 4.]) self.assertEqual(obj.dtype, np.float64) # float + int -> int exp = pd.Index([1., 1., 2., 3., 4.]) self._assert_insert_conversion(obj, 1, exp, np.float64) # float + float -> float exp = pd.Index([1., 1.1, 2., 3., 4.]) self._assert_insert_conversion(obj, 1.1, exp, np.float64) # float + bool -> float exp = pd.Index([1., 0., 2., 3., 4.]) self._assert_insert_conversion(obj, False, exp, np.float64) # float + object -> object exp = pd.Index([1., 'x', 2., 3., 4.]) self._assert_insert_conversion(obj, 'x', exp, np.object) def test_insert_index_complex128(self): pass def test_insert_index_bool(self): pass def test_insert_index_datetime64(self): obj = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04']) self.assertEqual(obj.dtype, 'datetime64[ns]') # datetime64 + datetime64 => datetime64 exp = pd.DatetimeIndex(['2011-01-01', '2012-01-01', '2011-01-02', '2011-01-03', '2011-01-04']) self._assert_insert_conversion(obj, pd.Timestamp('2012-01-01'), exp, 'datetime64[ns]') # ToDo: must coerce to object msg = "Passed item and index have different timezone" with tm.assertRaisesRegexp(ValueError, msg): obj.insert(1, pd.Timestamp('2012-01-01', tz='US/Eastern')) # ToDo: must coerce to object msg = "cannot insert DatetimeIndex with incompatible label" with tm.assertRaisesRegexp(TypeError, msg): obj.insert(1, 1) def test_insert_index_datetime64tz(self): obj = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04'], tz='US/Eastern') self.assertEqual(obj.dtype, 'datetime64[ns, US/Eastern]') # datetime64tz + datetime64tz => datetime64 exp = pd.DatetimeIndex(['2011-01-01', '2012-01-01', '2011-01-02', '2011-01-03', '2011-01-04'], tz='US/Eastern') val = pd.Timestamp('2012-01-01', tz='US/Eastern') self._assert_insert_conversion(obj, val, exp, 'datetime64[ns, US/Eastern]') # ToDo: must coerce to object msg = "Passed item and index have different timezone" with tm.assertRaisesRegexp(ValueError, msg): obj.insert(1, pd.Timestamp('2012-01-01')) # ToDo: must coerce to object msg = "Passed item and index have different timezone" with tm.assertRaisesRegexp(ValueError, msg): obj.insert(1, pd.Timestamp('2012-01-01', tz='Asia/Tokyo')) # ToDo: must coerce to object msg = "cannot insert DatetimeIndex with incompatible label" with tm.assertRaisesRegexp(TypeError, msg): obj.insert(1, 1) def test_insert_index_timedelta64(self): obj = pd.TimedeltaIndex(['1 day', '2 day', '3 day', '4 day']) self.assertEqual(obj.dtype, 'timedelta64[ns]') # timedelta64 + timedelta64 => timedelta64 exp = pd.TimedeltaIndex(['1 day', '10 day', '2 day', '3 day', '4 day']) self._assert_insert_conversion(obj, pd.Timedelta('10 day'), exp, 'timedelta64[ns]') # ToDo: must coerce to object msg = "cannot insert TimedeltaIndex with incompatible label" with tm.assertRaisesRegexp(TypeError, msg): obj.insert(1, pd.Timestamp('2012-01-01')) # ToDo: must coerce to object msg = "cannot insert TimedeltaIndex with incompatible label" with tm.assertRaisesRegexp(TypeError, msg): obj.insert(1, 1) def test_insert_index_period(self): obj = pd.PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M') self.assertEqual(obj.dtype, 'period[M]') # period + period => period exp = pd.PeriodIndex(['2011-01', '2012-01', '2011-02', '2011-03', '2011-04'], freq='M') self._assert_insert_conversion(obj, pd.Period('2012-01', freq='M'), exp, 'period[M]') # period + datetime64 => object exp = pd.Index([pd.Period('2011-01', freq='M'), pd.Timestamp('2012-01-01'), pd.Period('2011-02', freq='M'), pd.Period('2011-03', freq='M'), pd.Period('2011-04', freq='M')], freq='M') self._assert_insert_conversion(obj, pd.Timestamp('2012-01-01'), exp, np.object) # period + int => object exp = pd.Index([pd.Period('2011-01', freq='M'), 1, pd.Period('2011-02', freq='M'), pd.Period('2011-03', freq='M'), pd.Period('2011-04', freq='M')], freq='M') self._assert_insert_conversion(obj, 1, exp, np.object) # period + object => object exp = pd.Index([pd.Period('2011-01', freq='M'), 'x', pd.Period('2011-02', freq='M'), pd.Period('2011-03', freq='M'), pd.Period('2011-04', freq='M')], freq='M') self._assert_insert_conversion(obj, 'x', exp, np.object) class TestWhereCoercion(CoercionBase, tm.TestCase): method = 'where' def _assert_where_conversion(self, original, cond, values, expected, expected_dtype): """ test coercion triggered by where """ target = original.copy() res = target.where(cond, values) self._assert(res, expected, expected_dtype) def _where_object_common(self, klass): obj = klass(list('abcd')) self.assertEqual(obj.dtype, np.object) cond = klass([True, False, True, False]) # object + int -> object exp = klass(['a', 1, 'c', 1]) self._assert_where_conversion(obj, cond, 1, exp, np.object) values = klass([5, 6, 7, 8]) exp = klass(['a', 6, 'c', 8]) self._assert_where_conversion(obj, cond, values, exp, np.object) # object + float -> object exp = klass(['a', 1.1, 'c', 1.1]) self._assert_where_conversion(obj, cond, 1.1, exp, np.object) values = klass([5.5, 6.6, 7.7, 8.8]) exp = klass(['a', 6.6, 'c', 8.8]) self._assert_where_conversion(obj, cond, values, exp, np.object) # object + complex -> object exp = klass(['a', 1 + 1j, 'c', 1 + 1j]) self._assert_where_conversion(obj, cond, 1 + 1j, exp, np.object) values = klass([5 + 5j, 6 + 6j, 7 + 7j, 8 + 8j]) exp = klass(['a', 6 + 6j, 'c', 8 + 8j]) self._assert_where_conversion(obj, cond, values, exp, np.object) if klass is pd.Series: exp = klass(['a', 1, 'c', 1]) self._assert_where_conversion(obj, cond, True, exp, np.object) values = klass([True, False, True, True]) exp = klass(['a', 0, 'c', 1]) self._assert_where_conversion(obj, cond, values, exp, np.object) elif klass is pd.Index: # object + bool -> object exp = klass(['a', True, 'c', True]) self._assert_where_conversion(obj, cond, True, exp, np.object) values = klass([True, False, True, True]) exp = klass(['a', False, 'c', True]) self._assert_where_conversion(obj, cond, values, exp, np.object) else: NotImplementedError def test_where_series_object(self): self._where_object_common(pd.Series) def test_where_index_object(self): self._where_object_common(pd.Index) def _where_int64_common(self, klass): obj = klass([1, 2, 3, 4]) self.assertEqual(obj.dtype, np.int64) cond = klass([True, False, True, False]) # int + int -> int exp = klass([1, 1, 3, 1]) self._assert_where_conversion(obj, cond, 1, exp, np.int64) values = klass([5, 6, 7, 8]) exp = klass([1, 6, 3, 8]) self._assert_where_conversion(obj, cond, values, exp, np.int64) # int + float -> float exp = klass([1, 1.1, 3, 1.1]) self._assert_where_conversion(obj, cond, 1.1, exp, np.float64) values = klass([5.5, 6.6, 7.7, 8.8]) exp = klass([1, 6.6, 3, 8.8]) self._assert_where_conversion(obj, cond, values, exp, np.float64) # int + complex -> complex if klass is pd.Series: exp = klass([1, 1 + 1j, 3, 1 + 1j]) self._assert_where_conversion(obj, cond, 1 + 1j, exp, np.complex128) values = klass([5 + 5j, 6 + 6j, 7 + 7j, 8 + 8j]) exp = klass([1, 6 + 6j, 3, 8 + 8j]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # int + bool -> int exp = klass([1, 1, 3, 1]) self._assert_where_conversion(obj, cond, True, exp, np.int64) values = klass([True, False, True, True]) exp = klass([1, 0, 3, 1]) self._assert_where_conversion(obj, cond, values, exp, np.int64) def test_where_series_int64(self): self._where_int64_common(pd.Series) def test_where_index_int64(self): self._where_int64_common(pd.Index) def _where_float64_common(self, klass): obj = klass([1.1, 2.2, 3.3, 4.4]) self.assertEqual(obj.dtype, np.float64) cond = klass([True, False, True, False]) # float + int -> float exp = klass([1.1, 1.0, 3.3, 1.0]) self._assert_where_conversion(obj, cond, 1, exp, np.float64) values = klass([5, 6, 7, 8]) exp = klass([1.1, 6.0, 3.3, 8.0]) self._assert_where_conversion(obj, cond, values, exp, np.float64) # float + float -> float exp = klass([1.1, 1.1, 3.3, 1.1]) self._assert_where_conversion(obj, cond, 1.1, exp, np.float64) values = klass([5.5, 6.6, 7.7, 8.8]) exp = klass([1.1, 6.6, 3.3, 8.8]) self._assert_where_conversion(obj, cond, values, exp, np.float64) # float + complex -> complex if klass is pd.Series: exp = klass([1.1, 1 + 1j, 3.3, 1 + 1j]) self._assert_where_conversion(obj, cond, 1 + 1j, exp, np.complex128) values = klass([5 + 5j, 6 + 6j, 7 + 7j, 8 + 8j]) exp = klass([1.1, 6 + 6j, 3.3, 8 + 8j]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # float + bool -> float exp = klass([1.1, 1.0, 3.3, 1.0]) self._assert_where_conversion(obj, cond, True, exp, np.float64) values = klass([True, False, True, True]) exp = klass([1.1, 0.0, 3.3, 1.0]) self._assert_where_conversion(obj, cond, values, exp, np.float64) def test_where_series_float64(self): self._where_float64_common(pd.Series) def test_where_index_float64(self): self._where_float64_common(pd.Index) def test_where_series_complex128(self): obj = pd.Series([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j]) self.assertEqual(obj.dtype, np.complex128) cond = pd.Series([True, False, True, False]) # complex + int -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 1]) self._assert_where_conversion(obj, cond, 1, exp, np.complex128) values = pd.Series([5, 6, 7, 8]) exp = pd.Series([1 + 1j, 6.0, 3 + 3j, 8.0]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # complex + float -> complex exp = pd.Series([1 + 1j, 1.1, 3 + 3j, 1.1]) self._assert_where_conversion(obj, cond, 1.1, exp, np.complex128) values = pd.Series([5.5, 6.6, 7.7, 8.8]) exp = pd.Series([1 + 1j, 6.6, 3 + 3j, 8.8]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # complex + complex -> complex exp = pd.Series([1 + 1j, 1 + 1j, 3 + 3j, 1 + 1j]) self._assert_where_conversion(obj, cond, 1 + 1j, exp, np.complex128) values = pd.Series([5 + 5j, 6 + 6j, 7 + 7j, 8 + 8j]) exp = pd.Series([1 + 1j, 6 + 6j, 3 + 3j, 8 + 8j]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # complex + bool -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 1]) self._assert_where_conversion(obj, cond, True, exp, np.complex128) values = pd.Series([True, False, True, True]) exp = pd.Series([1 + 1j, 0, 3 + 3j, 1]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) def test_where_index_complex128(self): pass def test_where_series_bool(self): obj = pd.Series([True, False, True, False]) self.assertEqual(obj.dtype, np.bool) cond = pd.Series([True, False, True, False]) # bool + int -> int exp = pd.Series([1, 1, 1, 1]) self._assert_where_conversion(obj, cond, 1, exp, np.int64) values = pd.Series([5, 6, 7, 8]) exp = pd.Series([1, 6, 1, 8]) self._assert_where_conversion(obj, cond, values, exp, np.int64) # bool + float -> float exp = pd.Series([1.0, 1.1, 1.0, 1.1]) self._assert_where_conversion(obj, cond, 1.1, exp, np.float64) values = pd.Series([5.5, 6.6, 7.7, 8.8]) exp = pd.Series([1.0, 6.6, 1.0, 8.8]) self._assert_where_conversion(obj, cond, values, exp, np.float64) # bool + complex -> complex exp = pd.Series([1, 1 + 1j, 1, 1 + 1j]) self._assert_where_conversion(obj, cond, 1 + 1j, exp, np.complex128) values = pd.Series([5 + 5j, 6 + 6j, 7 + 7j, 8 + 8j]) exp = pd.Series([1, 6 + 6j, 1, 8 + 8j]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # bool + bool -> bool exp = pd.Series([True, True, True, True]) self._assert_where_conversion(obj, cond, True, exp, np.bool) values = pd.Series([True, False, True, True]) exp = pd.Series([True, False, True, True]) self._assert_where_conversion(obj, cond, values, exp, np.bool) def test_where_index_bool(self): pass def test_where_series_datetime64(self): obj = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self.assertEqual(obj.dtype, 'datetime64[ns]') cond = pd.Series([True, False, True, False]) # datetime64 + datetime64 -> datetime64 exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01'), pd.Timestamp('2011-01-03'), pd.Timestamp('2012-01-01')]) self._assert_where_conversion(obj, cond, pd.Timestamp('2012-01-01'), exp, 'datetime64[ns]') values = pd.Series([pd.Timestamp('2012-01-01'), pd.Timestamp('2012-01-02'), pd.Timestamp('2012-01-03'), pd.Timestamp('2012-01-04')]) exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2012-01-04')]) self._assert_where_conversion(obj, cond, values, exp, 'datetime64[ns]') # ToDo: coerce to object msg = "cannot coerce a Timestamp with a tz on a naive Block" with tm.assertRaisesRegexp(TypeError, msg): obj.where(cond, pd.Timestamp('2012-01-01', tz='US/Eastern')) # ToDo: do not coerce to UTC, must be object values = pd.Series([pd.Timestamp('2012-01-01', tz='US/Eastern'), pd.Timestamp('2012-01-02', tz='US/Eastern'), pd.Timestamp('2012-01-03', tz='US/Eastern'), pd.Timestamp('2012-01-04', tz='US/Eastern')]) exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-02 05:00'), pd.Timestamp('2011-01-03'), pd.Timestamp('2012-01-04 05:00')]) self._assert_where_conversion(obj, cond, values, exp, 'datetime64[ns]') def test_where_index_datetime64(self): obj = pd.Index([pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self.assertEqual(obj.dtype, 'datetime64[ns]') cond = pd.Index([True, False, True, False]) # datetime64 + datetime64 -> datetime64 # must support scalar msg = "cannot coerce a Timestamp with a tz on a naive Block" with tm.assertRaises(TypeError): obj.where(cond, pd.Timestamp('2012-01-01')) values = pd.Index([pd.Timestamp('2012-01-01'), pd.Timestamp('2012-01-02'), pd.Timestamp('2012-01-03'), pd.Timestamp('2012-01-04')]) exp = pd.Index([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2012-01-04')]) self._assert_where_conversion(obj, cond, values, exp, 'datetime64[ns]') # ToDo: coerce to object msg = ("Index\\(\\.\\.\\.\\) must be called with a collection " "of some kind") with tm.assertRaisesRegexp(TypeError, msg): obj.where(cond, pd.Timestamp('2012-01-01', tz='US/Eastern')) # ToDo: do not ignore timezone, must be object values = pd.Index([pd.Timestamp('2012-01-01', tz='US/Eastern'), pd.Timestamp('2012-01-02', tz='US/Eastern'), pd.Timestamp('2012-01-03', tz='US/Eastern'), pd.Timestamp('2012-01-04', tz='US/Eastern')]) exp = pd.Index([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2012-01-04')]) self._assert_where_conversion(obj, cond, values, exp, 'datetime64[ns]') def test_where_series_datetime64tz(self): pass def test_where_series_timedelta64(self): pass def test_where_series_period(self): pass def test_where_index_datetime64tz(self): pass def test_where_index_timedelta64(self): pass def test_where_index_period(self): pass class TestFillnaSeriesCoercion(CoercionBase, tm.TestCase): # not indexing, but place here for consisntency method = 'fillna' def _assert_fillna_conversion(self, original, value, expected, expected_dtype): """ test coercion triggered by fillna """ target = original.copy() res = target.fillna(value) self._assert(res, expected, expected_dtype) def _fillna_object_common(self, klass): obj = klass(['a', np.nan, 'c', 'd']) self.assertEqual(obj.dtype, np.object) # object + int -> object exp = klass(['a', 1, 'c', 'd']) self._assert_fillna_conversion(obj, 1, exp, np.object) # object + float -> object exp = klass(['a', 1.1, 'c', 'd']) self._assert_fillna_conversion(obj, 1.1, exp, np.object) # object + complex -> object exp = klass(['a', 1 + 1j, 'c', 'd']) self._assert_fillna_conversion(obj, 1 + 1j, exp, np.object) # object + bool -> object exp = klass(['a', True, 'c', 'd']) self._assert_fillna_conversion(obj, True, exp, np.object) def test_fillna_series_object(self): self._fillna_object_common(pd.Series) def test_fillna_index_object(self): self._fillna_object_common(pd.Index) def test_fillna_series_int64(self): # int can't hold NaN pass def test_fillna_index_int64(self): pass def _fillna_float64_common(self, klass): obj = klass([1.1, np.nan, 3.3, 4.4]) self.assertEqual(obj.dtype, np.float64) # float + int -> float exp = klass([1.1, 1.0, 3.3, 4.4]) self._assert_fillna_conversion(obj, 1, exp, np.float64) # float + float -> float exp = klass([1.1, 1.1, 3.3, 4.4]) self._assert_fillna_conversion(obj, 1.1, exp, np.float64) if klass is pd.Series: # float + complex -> complex exp = klass([1.1, 1 + 1j, 3.3, 4.4]) self._assert_fillna_conversion(obj, 1 + 1j, exp, np.complex128) elif klass is pd.Index: # float + complex -> object exp = klass([1.1, 1 + 1j, 3.3, 4.4]) self._assert_fillna_conversion(obj, 1 + 1j, exp, np.object) else: NotImplementedError # float + bool -> float exp = klass([1.1, 1.0, 3.3, 4.4]) self._assert_fillna_conversion(obj, True, exp, np.float64) def test_fillna_series_float64(self): self._fillna_float64_common(pd.Series) def test_fillna_index_float64(self): self._fillna_float64_common(pd.Index) def test_fillna_series_complex128(self): obj = pd.Series([1 + 1j, np.nan, 3 + 3j, 4 + 4j]) self.assertEqual(obj.dtype, np.complex128) # complex + int -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j]) self._assert_fillna_conversion(obj, 1, exp, np.complex128) # complex + float -> complex exp = pd.Series([1 + 1j, 1.1, 3 + 3j, 4 + 4j]) self._assert_fillna_conversion(obj, 1.1, exp, np.complex128) # complex + complex -> complex exp = pd.Series([1 + 1j, 1 + 1j, 3 + 3j, 4 + 4j]) self._assert_fillna_conversion(obj, 1 + 1j, exp, np.complex128) # complex + bool -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j]) self._assert_fillna_conversion(obj, True, exp, np.complex128) def test_fillna_index_complex128(self): self._fillna_float64_common(pd.Index) def test_fillna_series_bool(self): # bool can't hold NaN pass def test_fillna_index_bool(self): pass def test_fillna_series_datetime64(self): obj = pd.Series([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self.assertEqual(obj.dtype, 'datetime64[ns]') # datetime64 + datetime64 => datetime64 exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self._assert_fillna_conversion(obj, pd.Timestamp('2012-01-01'), exp, 'datetime64[ns]') # datetime64 + datetime64tz => object exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01', tz='US/Eastern'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) value = pd.Timestamp('2012-01-01', tz='US/Eastern') self._assert_fillna_conversion(obj, value, exp, np.object) # datetime64 + int => object # ToDo: must be coerced to object exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp(1), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self._assert_fillna_conversion(obj, 1, exp, 'datetime64[ns]') # datetime64 + object => object exp = pd.Series([pd.Timestamp('2011-01-01'), 'x', pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self._assert_fillna_conversion(obj, 'x', exp, np.object) def test_fillna_series_datetime64tz(self): tz = 'US/Eastern' obj = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.NaT, pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) self.assertEqual(obj.dtype, 'datetime64[ns, US/Eastern]') # datetime64tz + datetime64tz => datetime64tz exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) value = pd.Timestamp('2012-01-01', tz=tz) self._assert_fillna_conversion(obj, value, exp, 'datetime64[ns, US/Eastern]') # datetime64tz + datetime64 => object exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01'), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) value = pd.Timestamp('2012-01-01') self._assert_fillna_conversion(obj, value, exp, np.object) # datetime64tz + datetime64tz(different tz) => object exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz='Asia/Tokyo'), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) value = pd.Timestamp('2012-01-01', tz='Asia/Tokyo') self._assert_fillna_conversion(obj, value, exp, np.object) # datetime64tz + int => datetime64tz # ToDo: must be object exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp(1, tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) self._assert_fillna_conversion(obj, 1, exp, 'datetime64[ns, US/Eastern]') # datetime64tz + object => object exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), 'x', pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) self._assert_fillna_conversion(obj, 'x', exp, np.object) def test_fillna_series_timedelta64(self): pass def test_fillna_series_period(self): pass def test_fillna_index_datetime64(self): obj = pd.DatetimeIndex(['2011-01-01', 'NaT', '2011-01-03', '2011-01-04']) self.assertEqual(obj.dtype, 'datetime64[ns]') # datetime64 + datetime64 => datetime64 exp = pd.DatetimeIndex(['2011-01-01', '2012-01-01', '2011-01-03', '2011-01-04']) self._assert_fillna_conversion(obj, pd.Timestamp('2012-01-01'), exp, 'datetime64[ns]') # datetime64 + datetime64tz => object exp = pd.Index([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01', tz='US/Eastern'),
pd.Timestamp('2011-01-03')
pandas.Timestamp
import pickle import pandas as pd import numpy as np n_components = 20 def get_dataset(path ='./dataset_df', n_sensors = 3, **kwargs): assert n_sensors < 6 df = pickle.load( open( path, 'rb' ) ) df = df.loc[df['lable'].isin([1,2])] sensors = [f'sensor_{i}' for i in range(n_sensors)] feature_names = [f'PC_{i}' for i in range(n_components)] samples = df.groupby(['time', 'file_index']) feature_data = None lables = [] for name, sample in samples: lables.append(sample.iloc[0]['lable']) sensor_data = sample.loc[sample['radar'].isin(sensors)] if feature_data is None: feature_data = sensor_data[feature_names].to_numpy().flatten() else: feature_data = np.vstack((feature_data, sensor_data[feature_names].to_numpy().flatten())) dataset = np.hstack((feature_data, np.array(lables)[:,np.newaxis])) feature_names = [f'feature_{i}' for i in range(n_components*n_sensors)] columns = [*feature_names, 'lable'] dataset_df =
pd.DataFrame(dataset, columns=columns)
pandas.DataFrame
import builtins from io import StringIO from itertools import product from string import ascii_lowercase import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, date_range, isna) import pandas.core.nanops as nanops from pandas.util import testing as tm @pytest.mark.parametrize("agg_func", ['any', 'all']) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize("vals", [ ['foo', 'bar', 'baz'], ['foo', '', ''], ['', '', ''], [1, 2, 3], [1, 0, 0], [0, 0, 0], [1., 2., 3.], [1., 0., 0.], [0., 0., 0.], [True, True, True], [True, False, False], [False, False, False], [np.nan, np.nan, np.nan] ]) def test_groupby_bool_aggs(agg_func, skipna, vals): df = DataFrame({'key': ['a'] * 3 + ['b'] * 3, 'val': vals * 2}) # Figure out expectation using Python builtin exp = getattr(builtins, agg_func)(vals) # edge case for missing data with skipna and 'any' if skipna and all(isna(vals)) and agg_func == 'any': exp = False exp_df = DataFrame([exp] * 2, columns=['val'], index=Index( ['a', 'b'], name='key')) result = getattr(df.groupby('key'), agg_func)(skipna=skipna) tm.assert_frame_equal(result, exp_df) def test_max_min_non_numeric(): # #2700 aa = DataFrame({'nn': [11, 11, 22, 22], 'ii': [1, 2, 3, 4], 'ss': 4 * ['mama']}) result = aa.groupby('nn').max() assert 'ss' in result result = aa.groupby('nn').max(numeric_only=False) assert 'ss' in result result = aa.groupby('nn').min() assert 'ss' in result result = aa.groupby('nn').min(numeric_only=False) assert 'ss' in result def test_intercept_builtin_sum(): s = Series([1., 2., np.nan, 3.]) grouped = s.groupby([0, 1, 2, 2]) result = grouped.agg(builtins.sum) result2 = grouped.apply(builtins.sum) expected = grouped.sum() tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) # @pytest.mark.parametrize("f", [max, min, sum]) # def test_builtins_apply(f): @pytest.mark.parametrize("f", [max, min, sum]) @pytest.mark.parametrize('keys', [ "jim", # Single key ["jim", "joe"] # Multi-key ]) def test_builtins_apply(keys, f): # see gh-8155 df = pd.DataFrame(np.random.randint(1, 50, (1000, 2)), columns=["jim", "joe"]) df["jolie"] = np.random.randn(1000) fname = f.__name__ result = df.groupby(keys).apply(f) ngroups = len(df.drop_duplicates(subset=keys)) assert_msg = ("invalid frame shape: {} " "(expected ({}, 3))".format(result.shape, ngroups)) assert result.shape == (ngroups, 3), assert_msg tm.assert_frame_equal(result, # numpy's equivalent function df.groupby(keys).apply(getattr(np, fname))) if f != sum: expected = df.groupby(keys).agg(fname).reset_index() expected.set_index(keys, inplace=True, drop=False) tm.assert_frame_equal(result, expected, check_dtype=False) tm.assert_series_equal(getattr(result, fname)(), getattr(df, fname)()) def test_arg_passthru(): # make sure that we are passing thru kwargs # to our agg functions # GH3668 # GH5724 df = pd.DataFrame( {'group': [1, 1, 2], 'int': [1, 2, 3], 'float': [4., 5., 6.], 'string': list('abc'), 'category_string': pd.Series(list('abc')).astype('category'), 'category_int': [7, 8, 9], 'datetime': pd.date_range('20130101', periods=3), 'datetimetz': pd.date_range('20130101', periods=3, tz='US/Eastern'), 'timedelta': pd.timedelta_range('1 s', periods=3, freq='s')}, columns=['group', 'int', 'float', 'string', 'category_string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) expected_columns_numeric = Index(['int', 'float', 'category_int']) # mean / median expected = pd.DataFrame( {'category_int': [7.5, 9], 'float': [4.5, 6.], 'timedelta': [pd.Timedelta('1.5s'), pd.Timedelta('3s')], 'int': [1.5, 3], 'datetime': [pd.Timestamp('2013-01-01 12:00:00'), pd.Timestamp('2013-01-03 00:00:00')], 'datetimetz': [ pd.Timestamp('2013-01-01 12:00:00', tz='US/Eastern'), pd.Timestamp('2013-01-03 00:00:00', tz='US/Eastern')]}, index=Index([1, 2], name='group'), columns=['int', 'float', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['mean', 'median']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_frame_equal(result.reindex_like(expected), expected) # TODO: min, max *should* handle # categorical (ordered) dtype expected_columns = Index(['int', 'float', 'string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['min', 'max']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'string', 'category_string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['first', 'last']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'string', 'category_int', 'timedelta']) for attr in ['sum']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'category_int']) for attr in ['prod', 'cumprod']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) # like min, max, but don't include strings expected_columns = Index(['int', 'float', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['cummin', 'cummax']: f = getattr(df.groupby('group'), attr) result = f() # GH 15561: numeric_only=False set by default like min/max tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'category_int', 'timedelta']) for attr in ['cumsum']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) def test_non_cython_api(): # GH5610 # non-cython calls should not include the grouper df = DataFrame( [[1, 2, 'foo'], [1, np.nan, 'bar'], [3, np.nan, 'baz']], columns=['A', 'B', 'C']) g = df.groupby('A') gni = df.groupby('A', as_index=False) # mad expected = DataFrame([[0], [np.nan]], columns=['B'], index=[1, 3]) expected.index.name = 'A' result = g.mad() tm.assert_frame_equal(result, expected) expected = DataFrame([[0., 0.], [0, np.nan]], columns=['A', 'B'], index=[0, 1]) result = gni.mad() tm.assert_frame_equal(result, expected) # describe expected_index = pd.Index([1, 3], name='A') expected_col = pd.MultiIndex(levels=[['B'], ['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']], codes=[[0] * 8, list(range(8))]) expected = pd.DataFrame([[1.0, 2.0, np.nan, 2.0, 2.0, 2.0, 2.0, 2.0], [0.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]], index=expected_index, columns=expected_col) result = g.describe() tm.assert_frame_equal(result, expected) expected = pd.concat([df[df.A == 1].describe().unstack().to_frame().T, df[df.A == 3].describe().unstack().to_frame().T]) expected.index = pd.Index([0, 1]) result = gni.describe() tm.assert_frame_equal(result, expected) # any expected = DataFrame([[True, True], [False, True]], columns=['B', 'C'], index=[1, 3]) expected.index.name = 'A' result = g.any() tm.assert_frame_equal(result, expected) # idxmax expected = DataFrame([[0.0], [np.nan]], columns=['B'], index=[1, 3]) expected.index.name = 'A' result = g.idxmax() tm.assert_frame_equal(result, expected) def test_cython_api2(): # this takes the fast apply path # cumsum (GH5614) df = DataFrame( [[1, 2, np.nan], [1, np.nan, 9], [3, 4, 9] ], columns=['A', 'B', 'C']) expected = DataFrame( [[2, np.nan], [np.nan, 9], [4, 9]], columns=['B', 'C']) result = df.groupby('A').cumsum() tm.assert_frame_equal(result, expected) # GH 5755 - cumsum is a transformer and should ignore as_index result = df.groupby('A', as_index=False).cumsum() tm.assert_frame_equal(result, expected) # GH 13994 result = df.groupby('A').cumsum(axis=1) expected = df.cumsum(axis=1) tm.assert_frame_equal(result, expected) result = df.groupby('A').cumprod(axis=1) expected = df.cumprod(axis=1) tm.assert_frame_equal(result, expected) def test_cython_median(): df = DataFrame(np.random.randn(1000)) df.values[::2] = np.nan labels = np.random.randint(0, 50, size=1000).astype(float) labels[::17] = np.nan result = df.groupby(labels).median() exp = df.groupby(labels).agg(nanops.nanmedian) tm.assert_frame_equal(result, exp) df = DataFrame(np.random.randn(1000, 5)) rs = df.groupby(labels).agg(np.median) xp = df.groupby(labels).median() tm.assert_frame_equal(rs, xp) def test_median_empty_bins(observed): df = pd.DataFrame(np.random.randint(0, 44, 500)) grps = range(0, 55, 5) bins = pd.cut(df[0], grps) result = df.groupby(bins, observed=observed).median() expected = df.groupby(bins, observed=observed).agg(lambda x: x.median()) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("dtype", [ 'int8', 'int16', 'int32', 'int64', 'float32', 'float64']) @pytest.mark.parametrize("method,data", [ ('first', {'df': [{'a': 1, 'b': 1}, {'a': 2, 'b': 3}]}), ('last', {'df': [{'a': 1, 'b': 2}, {'a': 2, 'b': 4}]}), ('min', {'df': [{'a': 1, 'b': 1}, {'a': 2, 'b': 3}]}), ('max', {'df': [{'a': 1, 'b': 2}, {'a': 2, 'b': 4}]}), ('nth', {'df': [{'a': 1, 'b': 2}, {'a': 2, 'b': 4}], 'args': [1]}), ('count', {'df': [{'a': 1, 'b': 2}, {'a': 2, 'b': 2}], 'out_type': 'int64'}) ]) def test_groupby_non_arithmetic_agg_types(dtype, method, data): # GH9311, GH6620 df = pd.DataFrame( [{'a': 1, 'b': 1}, {'a': 1, 'b': 2}, {'a': 2, 'b': 3}, {'a': 2, 'b': 4}]) df['b'] = df.b.astype(dtype) if 'args' not in data: data['args'] = [] if 'out_type' in data: out_type = data['out_type'] else: out_type = dtype exp = data['df'] df_out = pd.DataFrame(exp) df_out['b'] = df_out.b.astype(out_type) df_out.set_index('a', inplace=True) grpd = df.groupby('a') t = getattr(grpd, method)(*data['args']) tm.assert_frame_equal(t, df_out) @pytest.mark.parametrize("i", [ (Timestamp("2011-01-15 12:50:28.502376"), Timestamp("2011-01-20 12:50:28.593448")), (24650000000000001, 24650000000000002) ]) def test_groupby_non_arithmetic_agg_int_like_precision(i): # see gh-6620, gh-9311 df = pd.DataFrame([{"a": 1, "b": i[0]}, {"a": 1, "b": i[1]}]) grp_exp = {"first": {"expected": i[0]}, "last": {"expected": i[1]}, "min": {"expected": i[0]}, "max": {"expected": i[1]}, "nth": {"expected": i[1], "args": [1]}, "count": {"expected": 2}} for method, data in grp_exp.items(): if "args" not in data: data["args"] = [] grouped = df.groupby("a") res = getattr(grouped, method)(*data["args"]) assert res.iloc[0].b == data["expected"] @pytest.mark.parametrize("func, values", [ ("idxmin", {'c_int': [0, 2], 'c_float': [1, 3], 'c_date': [1, 2]}), ("idxmax", {'c_int': [1, 3], 'c_float': [0, 2], 'c_date': [0, 3]}) ]) def test_idxmin_idxmax_returns_int_types(func, values): # GH 25444 df = pd.DataFrame({'name': ['A', 'A', 'B', 'B'], 'c_int': [1, 2, 3, 4], 'c_float': [4.02, 3.03, 2.04, 1.05], 'c_date': ['2019', '2018', '2016', '2017']}) df['c_date'] = pd.to_datetime(df['c_date']) result = getattr(df.groupby('name'), func)() expected = pd.DataFrame(values, index=Index(['A', 'B'], name="name")) tm.assert_frame_equal(result, expected) def test_fill_consistency(): # GH9221 # pass thru keyword arguments to the generated wrapper # are set if the passed kw is None (only) df = DataFrame(index=pd.MultiIndex.from_product( [['value1', 'value2'], date_range('2014-01-01', '2014-01-06')]), columns=Index( ['1', '2'], name='id')) df['1'] = [np.nan, 1, np.nan, np.nan, 11, np.nan, np.nan, 2, np.nan, np.nan, 22, np.nan] df['2'] = [np.nan, 3, np.nan, np.nan, 33, np.nan, np.nan, 4, np.nan, np.nan, 44, np.nan] expected = df.groupby(level=0, axis=0).fillna(method='ffill') result = df.T.groupby(level=0, axis=1).fillna(method='ffill').T tm.assert_frame_equal(result, expected) def test_groupby_cumprod(): # GH 4095 df = pd.DataFrame({'key': ['b'] * 10, 'value': 2}) actual = df.groupby('key')['value'].cumprod() expected = df.groupby('key')['value'].apply(lambda x: x.cumprod()) expected.name = 'value' tm.assert_series_equal(actual, expected) df = pd.DataFrame({'key': ['b'] * 100, 'value': 2}) actual = df.groupby('key')['value'].cumprod() # if overflows, groupby product casts to float # while numpy passes back invalid values df['value'] = df['value'].astype(float) expected = df.groupby('key')['value'].apply(lambda x: x.cumprod()) expected.name = 'value' tm.assert_series_equal(actual, expected) def test_ops_general(): ops = [('mean', np.mean), ('median', np.median), ('std', np.std), ('var', np.var), ('sum', np.sum), ('prod', np.prod), ('min', np.min), ('max', np.max), ('first', lambda x: x.iloc[0]), ('last', lambda x: x.iloc[-1]), ('count', np.size), ] try: from scipy.stats import sem except ImportError: pass else: ops.append(('sem', sem)) df = DataFrame(np.random.randn(1000)) labels = np.random.randint(0, 50, size=1000).astype(float) for op, targop in ops: result = getattr(df.groupby(labels), op)().astype(float) expected = df.groupby(labels).agg(targop) try: tm.assert_frame_equal(result, expected) except BaseException as exc: exc.args += ('operation: %s' % op, ) raise def test_max_nan_bug(): raw = """,Date,app,File -04-23,2013-04-23 00:00:00,,log080001.log -05-06,2013-05-06 00:00:00,,log.log -05-07,2013-05-07 00:00:00,OE,xlsx""" df = pd.read_csv(StringIO(raw), parse_dates=[0]) gb = df.groupby('Date') r = gb[['File']].max() e = gb['File'].max().to_frame() tm.assert_frame_equal(r, e) assert not r['File'].isna().any() def test_nlargest(): a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10]) b = Series(list('a' * 5 + 'b' * 5)) gb = a.groupby(b) r = gb.nlargest(3) e = Series([ 7, 5, 3, 10, 9, 6 ], index=MultiIndex.from_arrays([list('aaabbb'), [3, 2, 1, 9, 5, 8]])) tm.assert_series_equal(r, e) a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0]) gb = a.groupby(b) e = Series([ 3, 2, 1, 3, 3, 2 ], index=MultiIndex.from_arrays([list('aaabbb'), [2, 3, 1, 6, 5, 7]])) tm.assert_series_equal(gb.nlargest(3, keep='last'), e) def test_nsmallest(): a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10]) b = Series(list('a' * 5 + 'b' * 5)) gb = a.groupby(b) r = gb.nsmallest(3) e = Series([ 1, 2, 3, 0, 4, 6 ], index=MultiIndex.from_arrays([list('aaabbb'), [0, 4, 1, 6, 7, 8]])) tm.assert_series_equal(r, e) a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0]) gb = a.groupby(b) e = Series([ 0, 1, 1, 0, 1, 2 ], index=MultiIndex.from_arrays([list('aaabbb'), [4, 1, 0, 9, 8, 7]])) tm.assert_series_equal(gb.nsmallest(3, keep='last'), e) @pytest.mark.parametrize("func", [ 'mean', 'var', 'std', 'cumprod', 'cumsum' ]) def test_numpy_compat(func): # see gh-12811 df = pd.DataFrame({'A': [1, 2, 1], 'B': [1, 2, 3]}) g = df.groupby('A') msg = "numpy operations are not valid with groupby" with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(g, func)(1, 2, 3) with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(g, func)(foo=1) def test_cummin_cummax(): # GH 15048 num_types = [np.int32, np.int64, np.float32, np.float64] num_mins = [np.iinfo(np.int32).min, np.iinfo(np.int64).min, np.finfo(np.float32).min, np.finfo(np.float64).min] num_max = [np.iinfo(np.int32).max, np.iinfo(np.int64).max, np.finfo(np.float32).max, np.finfo(np.float64).max] base_df = pd.DataFrame({'A': [1, 1, 1, 1, 2, 2, 2, 2], 'B': [3, 4, 3, 2, 2, 3, 2, 1]}) expected_mins = [3, 3, 3, 2, 2, 2, 2, 1] expected_maxs = [3, 4, 4, 4, 2, 3, 3, 3] for dtype, min_val, max_val in zip(num_types, num_mins, num_max): df = base_df.astype(dtype) # cummin expected = pd.DataFrame({'B': expected_mins}).astype(dtype) result = df.groupby('A').cummin() tm.assert_frame_equal(result, expected) result = df.groupby('A').B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(result, expected) # Test cummin w/ min value for dtype df.loc[[2, 6], 'B'] = min_val expected.loc[[2, 3, 6, 7], 'B'] = min_val result = df.groupby('A').cummin() tm.assert_frame_equal(result, expected) expected = df.groupby('A').B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(result, expected) # cummax expected = pd.DataFrame({'B': expected_maxs}).astype(dtype) result = df.groupby('A').cummax() tm.assert_frame_equal(result, expected) result = df.groupby('A').B.apply(lambda x: x.cummax()).to_frame() tm.assert_frame_equal(result, expected) # Test cummax w/ max value for dtype df.loc[[2, 6], 'B'] = max_val expected.loc[[2, 3, 6, 7], 'B'] = max_val result = df.groupby('A').cummax() tm.assert_frame_equal(result, expected) expected = df.groupby('A').B.apply(lambda x: x.cummax()).to_frame() tm.assert_frame_equal(result, expected) # Test nan in some values base_df.loc[[0, 2, 4, 6], 'B'] = np.nan expected = pd.DataFrame({'B': [np.nan, 4, np.nan, 2, np.nan, 3, np.nan, 1]}) result = base_df.groupby('A').cummin() tm.assert_frame_equal(result, expected) expected = (base_df.groupby('A') .B .apply(lambda x: x.cummin()) .to_frame()) tm.assert_frame_equal(result, expected) expected = pd.DataFrame({'B': [np.nan, 4, np.nan, 4, np.nan, 3, np.nan, 3]}) result = base_df.groupby('A').cummax() tm.assert_frame_equal(result, expected) expected = (base_df.groupby('A') .B .apply(lambda x: x.cummax()) .to_frame()) tm.assert_frame_equal(result, expected) # Test nan in entire column base_df['B'] = np.nan expected = pd.DataFrame({'B': [np.nan] * 8}) result = base_df.groupby('A').cummin() tm.assert_frame_equal(expected, result) result = base_df.groupby('A').B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(expected, result) result = base_df.groupby('A').cummax() tm.assert_frame_equal(expected, result) result = base_df.groupby('A').B.apply(lambda x: x.cummax()).to_frame() tm.assert_frame_equal(expected, result) # GH 15561 df = pd.DataFrame(dict(a=[1], b=pd.to_datetime(['2001']))) expected = pd.Series(pd.to_datetime('2001'), index=[0], name='b') for method in ['cummax', 'cummin']: result = getattr(df.groupby('a')['b'], method)() tm.assert_series_equal(expected, result) # GH 15635 df = pd.DataFrame(dict(a=[1, 2, 1], b=[2, 1, 1])) result = df.groupby('a').b.cummax() expected = pd.Series([2, 1, 2], name='b') tm.assert_series_equal(result, expected) df = pd.DataFrame(dict(a=[1, 2, 1], b=[1, 2, 2])) result = df.groupby('a').b.cummin() expected = pd.Series([1, 2, 1], name='b') tm.assert_series_equal(result, expected) @pytest.mark.parametrize('in_vals, out_vals', [ # Basics: strictly increasing (T), strictly decreasing (F), # abs val increasing (F), non-strictly increasing (T) ([1, 2, 5, 3, 2, 0, 4, 5, -6, 1, 1], [True, False, False, True]), # Test with inf vals ([1, 2.1, np.inf, 3, 2, np.inf, -np.inf, 5, 11, 1, -np.inf], [True, False, True, False]), # Test with nan vals; should always be False ([1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan], [False, False, False, False]), ]) def test_is_monotonic_increasing(in_vals, out_vals): # GH 17015 source_dict = { 'A': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11'], 'B': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c', 'd', 'd'], 'C': in_vals} df = pd.DataFrame(source_dict) result = df.groupby('B').C.is_monotonic_increasing index = Index(list('abcd'), name='B') expected = pd.Series(index=index, data=out_vals, name='C') tm.assert_series_equal(result, expected) # Also check result equal to manually taking x.is_monotonic_increasing. expected = ( df.groupby(['B']).C.apply(lambda x: x.is_monotonic_increasing)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('in_vals, out_vals', [ # Basics: strictly decreasing (T), strictly increasing (F), # abs val decreasing (F), non-strictly increasing (T) ([10, 9, 7, 3, 4, 5, -3, 2, 0, 1, 1], [True, False, False, True]), # Test with inf vals ([np.inf, 1, -np.inf, np.inf, 2, -3, -np.inf, 5, -3, -np.inf, -np.inf], [True, True, False, True]), # Test with nan vals; should always be False ([1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan], [False, False, False, False]), ]) def test_is_monotonic_decreasing(in_vals, out_vals): # GH 17015 source_dict = { 'A': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11'], 'B': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c', 'd', 'd'], 'C': in_vals} df = pd.DataFrame(source_dict) result = df.groupby('B').C.is_monotonic_decreasing index = Index(list('abcd'), name='B') expected = pd.Series(index=index, data=out_vals, name='C') tm.assert_series_equal(result, expected) # describe # -------------------------------- def test_apply_describe_bug(mframe): grouped = mframe.groupby(level='first') grouped.describe() # it works! def test_series_describe_multikey(): ts = tm.makeTimeSeries() grouped = ts.groupby([lambda x: x.year, lambda x: x.month]) result = grouped.describe() tm.assert_series_equal(result['mean'], grouped.mean(), check_names=False) tm.assert_series_equal(result['std'], grouped.std(), check_names=False) tm.assert_series_equal(result['min'], grouped.min(), check_names=False) def test_series_describe_single(): ts = tm.makeTimeSeries() grouped = ts.groupby(lambda x: x.month) result = grouped.apply(lambda x: x.describe()) expected = grouped.describe().stack() tm.assert_series_equal(result, expected) def test_series_index_name(df): grouped = df.loc[:, ['C']].groupby(df['A']) result = grouped.agg(lambda x: x.mean()) assert result.index.name == 'A' def test_frame_describe_multikey(tsframe): grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month]) result = grouped.describe() desc_groups = [] for col in tsframe: group = grouped[col].describe() # GH 17464 - Remove duplicate MultiIndex levels group_col = pd.MultiIndex( levels=[[col], group.columns], codes=[[0] * len(group.columns), range(len(group.columns))]) group = pd.DataFrame(group.values, columns=group_col, index=group.index) desc_groups.append(group) expected = pd.concat(desc_groups, axis=1) tm.assert_frame_equal(result, expected) groupedT = tsframe.groupby({'A': 0, 'B': 0, 'C': 1, 'D': 1}, axis=1) result = groupedT.describe() expected = tsframe.describe().T expected.index = pd.MultiIndex( levels=[[0, 1], expected.index], codes=[[0, 0, 1, 1], range(len(expected.index))]) tm.assert_frame_equal(result, expected) def test_frame_describe_tupleindex(): # GH 14848 - regression from 0.19.0 to 0.19.1 df1 = DataFrame({'x': [1, 2, 3, 4, 5] * 3, 'y': [10, 20, 30, 40, 50] * 3, 'z': [100, 200, 300, 400, 500] * 3}) df1['k'] = [(0, 0, 1), (0, 1, 0), (1, 0, 0)] * 5 df2 = df1.rename(columns={'k': 'key'}) msg = "Names should be list-like for a MultiIndex" with pytest.raises(ValueError, match=msg): df1.groupby('k').describe() with pytest.raises(ValueError, match=msg): df2.groupby('key').describe() def test_frame_describe_unstacked_format(): # GH 4792 prices = {pd.Timestamp('2011-01-06 10:59:05', tz=None): 24990, pd.Timestamp('2011-01-06 12:43:33', tz=None): 25499, pd.Timestamp('2011-01-06 12:54:09', tz=None): 25499} volumes = {pd.Timestamp('2011-01-06 10:59:05', tz=None): 1500000000, pd.Timestamp('2011-01-06 12:43:33', tz=None): 5000000000, pd.Timestamp('2011-01-06 12:54:09', tz=None): 100000000} df = pd.DataFrame({'PRICE': prices, 'VOLUME': volumes}) result = df.groupby('PRICE').VOLUME.describe() data = [df[df.PRICE == 24990].VOLUME.describe().values.tolist(), df[df.PRICE == 25499].VOLUME.describe().values.tolist()] expected = pd.DataFrame(data, index=pd.Index([24990, 25499], name='PRICE'), columns=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) # nunique # -------------------------------- @pytest.mark.parametrize('n', 10 ** np.arange(2, 6)) @pytest.mark.parametrize('m', [10, 100, 1000]) @pytest.mark.parametrize('sort', [False, True]) @pytest.mark.parametrize('dropna', [False, True]) def test_series_groupby_nunique(n, m, sort, dropna): def check_nunique(df, keys, as_index=True): gr = df.groupby(keys, as_index=as_index, sort=sort) left = gr['julie'].nunique(dropna=dropna) gr = df.groupby(keys, as_index=as_index, sort=sort) right = gr['julie'].apply(Series.nunique, dropna=dropna) if not as_index: right = right.reset_index(drop=True) tm.assert_series_equal(left, right, check_names=False) days = date_range('2015-08-23', periods=10) frame = DataFrame({'jim': np.random.choice(list(ascii_lowercase), n), 'joe': np.random.choice(days, n), 'julie': np.random.randint(0, m, n)}) check_nunique(frame, ['jim']) check_nunique(frame, ['jim', 'joe']) frame.loc[1::17, 'jim'] = None frame.loc[3::37, 'joe'] = None frame.loc[7::19, 'julie'] = None frame.loc[8::19, 'julie'] = None frame.loc[9::19, 'julie'] = None check_nunique(frame, ['jim']) check_nunique(frame, ['jim', 'joe']) check_nunique(frame, ['jim'], as_index=False) check_nunique(frame, ['jim', 'joe'], as_index=False) def test_nunique(): df = DataFrame({ 'A': list('abbacc'), 'B': list('abxacc'), 'C': list('abbacx'), }) expected = DataFrame({'A': [1] * 3, 'B': [1, 2, 1], 'C': [1, 1, 2]}) result = df.groupby('A', as_index=False).nunique() tm.assert_frame_equal(result, expected) # as_index expected.index = list('abc') expected.index.name = 'A' result = df.groupby('A').nunique() tm.assert_frame_equal(result, expected) # with na result = df.replace({'x': None}).groupby('A').nunique(dropna=False) tm.assert_frame_equal(result, expected) # dropna expected = DataFrame({'A': [1] * 3, 'B': [1] * 3, 'C': [1] * 3}, index=list('abc')) expected.index.name = 'A' result = df.replace({'x': None}).groupby('A').nunique() tm.assert_frame_equal(result, expected) def test_nunique_with_object(): # GH 11077 data = pd.DataFrame( [[100, 1, 'Alice'], [200, 2, 'Bob'], [300, 3, 'Charlie'], [-400, 4, 'Dan'], [500, 5, 'Edith']], columns=['amount', 'id', 'name'] ) result = data.groupby(['id', 'amount'])['name'].nunique() index = MultiIndex.from_arrays([data.id, data.amount]) expected = pd.Series([1] * 5, name='name', index=index) tm.assert_series_equal(result, expected) def test_nunique_with_empty_series(): # GH 12553 data = pd.Series(name='name') result = data.groupby(level=0).nunique() expected = pd.Series(name='name', dtype='int64') tm.assert_series_equal(result, expected) def test_nunique_with_timegrouper(): # GH 13453 test = pd.DataFrame({ 'time': [Timestamp('2016-06-28 09:35:35'),
Timestamp('2016-06-28 16:09:30')
pandas.Timestamp
import json import pandas as pd import pymysql from sqlalchemy import create_engine from sklearn.cross_validation import train_test_split from sklearn import metrics import pickle from sklearn import ensemble from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error pd.set_option('display.max_columns', 500) with open("credentials.json") as f: credentials = json.loads(f.read()) host = credentials["db_host"] user = credentials["db_user"] password = credentials["db_pass"] db = credentials["db_name"] # Automate this query for every route for every direction engine = create_engine(f"mysql+pymysql://{user}:{password}@{host}:3306/{db}") routes = pd.read_sql_query('SELECT DISTINCT lineid, direction FROM trips_2017', engine) for index, row in routes.iterrows(): df = pd.read_sql_query(f'SELECT * FROM trips_2017 WHERE lineid = "{row[0]}" AND direction = {row[1]}', engine) last_stop_on_route = pd.read_sql_query(f'SELECT max(stop_on_route) as end from combined_2017 WHERE line_id = "{row[0]}" AND direction = {row[1]}', engine) last_stop = last_stop_on_route['end'].iloc[0] # Replace missing actual time departure values with planned values df.actualtime_dep.fillna(df.plannedtime_dep, inplace=True) # Remove rows with missing values for actual time arrival as we cannot safely assume these are as planned df = df[pd.notnull(df['actualtime_arr'])] # Create a new column for trip duration df['trip_duration'] = df['actualtime_arr'] - df['actualtime_dep'] # Create a new column with the hour of the day the trip took place df['actualtime_dep_H'] = round(df['actualtime_dep']/3600) # Hour of day of actual time arrival df['actualtime_arr_H'] = round(df['actualtime_arr']/3600) # Average hour of the day of the journey df['avg_H'] = (df['actualtime_dep_H'] + df['actualtime_arr_H']) / 2 # Convert this to an integer df['avg_H'] = df['avg_H'].astype(int) # Creating column solely for the dates to correlate with the dates column on the historical weather data table df['time'] = df['timestamp'] + df['avg_H'] * 3600 # Removing suppressed rows where suppressed = 1.0 df = df.query('suppressed != 1.0') # Remove <NAME>, because the times are going to be weird: df = df.query("timestamp != 1489708800") # Creating columns from timestamp for further processing df['dayofweek'] = df['timestamp'] df['monthofyear'] = df['timestamp'] # Converting the unix time to datetime format df.dayofweek = pd.to_datetime(df['dayofweek'], unit='s') df.monthofyear = pd.to_datetime(df['monthofyear'], unit='s') # Converting datetime to name of weekday, and to name of month (in separate columns) df['dayofweek'] = df['dayofweek'].dt.weekday_name df['monthofyear'] = df['monthofyear'].dt.month # Creating dummy variables for weekday names and name of month df_dayofweek_dummies = pd.get_dummies(df['dayofweek']) # Using data from the end of the Feb mid-term break till the start of the Easter break # April was on Sunday the 16th April and the timestamps is Monday April 10th, which is the first Monday of Easter Break df = df.query('monthofyear == 2 or monthofyear == 3 or monthofyear == 4 and time >= 1487548800 and time < 1491782400') # Add day of week columns for each day df1 = pd.concat([df, df_dayofweek_dummies], axis=1, join_axes=[df.index]) # Pull weather data from database df2 =
pd.read_sql_query('SELECT * FROM DarkSky_historical_weather_data WHERE year = 2017 AND month = 3', engine)
pandas.read_sql_query
import requests from lxml import etree import numpy as np import time import pandas as pd import eng_to_ipa as etipa import os from tqdm import tqdm __version__ = '0.0.1.2' class Pyrics: def __init__(self,path=None): if path is None: self.path = os.path.join(os.getcwd(), 'lyrics') if not os.path.exists(self.path): os.makedirs(os.path.join(self.path, 'rhymes'), exist_ok=True) else: self.path = path self.artists = [] if os.path.exists(os.path.join(self.path, 'rhymes')): for data in os.scandir(os.path.join(self.path, 'rhymes')): if data.name[-4:] == '.csv': self.artists.append(self.__process_artist_name(data.name[7:-4])) self.target = 'https://www.azlyrics.com' self.__vowel = ['æ', 'ə', 'ɑ', 'ɔ', 'o', 'a', 'e', 'ɛ', 'i', 'ɪ', 'ʊ', 'u', 'ʌ'] #print(f'Data Path: {self.path}') def download_lyrics(self, artists, iters_num = 1e20, delay_time=10, fluctuate_rate=5): #search target = self.target artist_search = artists search_url = requests.get(f"https://search.azlyrics.com/search.php?q={artist_search.replace(' ', '+')}") search_content = etree.HTML(search_url.content) artist_url = search_content.xpath('//b[contains(string(), "Artist results:")]/../..//a/@href')[0] artist = self.__find_artist(artists, search_content) if artist is None: return tree = etree.HTML(requests.get(artist_url).content) #album_names = tree.xpath('//div[@class="album"]/b/text()') song_names = tree.xpath('//div[@class="listalbum-item"]/a/text()') song_urls = tree.xpath('//div[@class="listalbum-item"]/a/@href') for content in zip(song_names[0:5], song_urls[0:5]): print(f'example songs: {content[0]}: {target + content[1]}') #download songs lyrics_dict = dict() lyrics = np.array([]) songs = np.array([]) bands = [] #delay_time = 10 # delay time to get rid of being baned total_iters = np.min((iters_num, len(song_urls))) iters = 1 reconnect_time = 0 with tqdm(total=total_iters) as pbar: for content in zip(song_names, song_urls): song_name = content[0] url = content[1] fluctuate = np.abs(np.random.randn())* fluctuate_rate url = requests.get(target + url) tree = etree.HTML(url.content) lyric = np.array([l.strip() for l in tree.xpath('//div[5]/text()') if l.strip()!='']) lyrics = np.hstack([lyrics, lyric]) songs = np.hstack([songs, np.array([song_name for i in range(len(lyric))])]) #comment = [c.strip() for c in tree.xpath('//div[@class="panel album-panel noprint"]/text()') if c.strip()!=''] #print(song_name) pbar.set_description_str(f'{song_name}: delay time: {delay_time + fluctuate} ') if len(lyric) == 0: reconnect_time += 1 if reconnect_time <= 3: continue else: print('You may be banned') break pbar.update(1) iters += 1 if (iters > iters_num or iters == len(song_urls)): break #print(f'delay: {delay_time + fluctuate}') sleep_time = delay_time + fluctuate if iters % 200 == 0: sleep_time = 60 time.sleep(sleep_time) #save file bands = [artist for i in range(len(lyrics))] lyrics = lyrics.tolist() lyrics_dict = {'bands': bands, 'songs': songs, 'lyrics': lyrics} df =
pd.DataFrame(lyrics_dict)
pandas.DataFrame
import matplotlib.pyplot as plt import numpy as np import pandas as pd from pandas.core.accessor import AccessorProperty import pandas.plotting._core as gfx from .client import WattbikeHubClient from .tools import polar_force_column_labels, flatten class WattbikeFramePlotMethods(gfx.FramePlotMethods): polar_angles = np.arange(90, 451) / (180 / np.pi) polar_force_columns = polar_force_column_labels() def _plot_single_polar(self, ax, polar_forces, mean, *args, **kwargs): if 'linewidth' in kwargs: linewidth = kwargs.pop('linewidth') elif mean: linewidth = 3 else: linewidth = 0.5 ax.plot(self.polar_angles, polar_forces, linewidth=linewidth, *args, **kwargs) def polar(self, full=False, mean=True, *args, **kwargs): ax = plt.subplot(111, projection='polar') if full: for i in range(0, len(self._data) - 50, 50): forces = self._data.iloc[i:i + 50, self._data.columns.get_indexer(self.polar_force_columns)].mean() self._plot_single_polar(ax, forces, mean=False, *args, **kwargs) if mean: forces = self._data[self.polar_force_columns].mean() self._plot_single_polar(ax, forces, mean=True, *args, **kwargs) xticks_num = 8 xticks = np.arange(0, xticks_num, 2 * np.pi / xticks_num) ax.set_xticks(xticks) rad_to_label = lambda i: '{}°'.format(int(i / (2 * np.pi) * 360 - 90) % 180) ax.set_xticklabels([rad_to_label(i) for i in xticks]) ax.set_yticklabels([]) return ax class WattbikeDataFrame(pd.DataFrame): @property def _constructor(self): return WattbikeDataFrame def load(self, session_id): client = WattbikeHubClient() if not isinstance(session_id, list): session_id = [session_id] for session in session_id: session_data, ride_session = client.get_session(session) wdf = self._raw_session_to_wdf(session_data, ride_session) self = self.append(wdf) return self def load_for_user(self, user_id, before=None, after=None): client = WattbikeHubClient() if not isinstance(user_id, list): user_id = [user_id] for ID in user_id: sessions = client.get_sessions_for_user( user_id=ID, before=before, after=after ) for session_data, ride_session in sessions: wdf = self._raw_session_to_wdf(session_data, ride_session) self = self.append(wdf) return self def _raw_session_to_wdf(self, session_data, ride_session): wdf = WattbikeDataFrame( [flatten(rev) for lap in session_data['laps'] for rev in lap['data']]) wdf['time'] = wdf.time.cumsum() wdf['user_id'] = ride_session.get_user_id() wdf['session_id'] = ride_session.get_session_id() self._process(wdf) return wdf def _process(self, wdf): wdf = wdf._columns_to_numeric() wdf = wdf._add_polar_forces() wdf = wdf._add_min_max_angles() wdf = self._enrich_with_athlete_performance_state(wdf) return wdf def _columns_to_numeric(self): for col in self.columns: try: self.iloc[:, self.columns.get_loc(col)] = pd.to_numeric(self.iloc[:, self.columns.get_loc(col)]) except ValueError: continue return self def _add_polar_forces(self): _df = pd.DataFrame() new_angles = np.arange(0.0, 361.0) column_labels = polar_force_column_labels() if not '_0' in self.columns: for label in column_labels: self[label] = np.nan for index, pf in self.polar_force.iteritems(): if not isinstance(pf, str): continue forces = [int(i) for i in pf.split(',')] forces = np.array(forces + [forces[0]]) forces = forces/np.mean(forces) angle_dx = 360.0 / (len(forces)-1) forces_interp = np.interp( x=new_angles, xp=np.arange(0, 360.01, angle_dx), fp=forces) _df[index] = forces_interp _df['angle'] = column_labels _df.set_index('angle', inplace=True) _df = _df.transpose() for angle in column_labels: self[angle] = _df[angle] return self def _add_min_max_angles(self): # @TODO this method is quite memory inefficient. Row by row calculation is better pf_columns = polar_force_column_labels() pf_T = self.loc[:, pf_columns].transpose().reset_index(drop=True) left_max_angle = pf_T.iloc[:180].idxmax() right_max_angle = pf_T.iloc[180:].idxmax() - 180 left_min_angle = pd.concat([pf_T.iloc[:135], pf_T.iloc[315:]]).idxmin() right_min_angle = pf_T.iloc[135:315].idxmin() - 180 self['left_max_angle'] = pd.DataFrame(left_max_angle) self['right_max_angle'] =
pd.DataFrame(right_max_angle)
pandas.DataFrame
#SPDX-License-Identifier: MIT """ Helper methods constant across all workers """ import requests import datetime import time import traceback import json import os import sys import math import logging import numpy import copy import concurrent import multiprocessing import psycopg2 import psycopg2.extensions import csv import io from logging import FileHandler, Formatter, StreamHandler from multiprocessing import Process, Queue, Pool, Value from os import getpid import sqlalchemy as s import pandas as pd from pathlib import Path from urllib.parse import urlparse, quote from sqlalchemy.ext.automap import automap_base from augur.config import AugurConfig from augur.logging import AugurLogging from sqlalchemy.sql.expression import bindparam from concurrent import futures import dask.dataframe as dd class Persistant(): ROOT_AUGUR_DIR = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) def __init__(self, worker_type, data_tables=[],operations_tables=[]): self.db_schema = None self.helper_schema = None self.worker_type = worker_type #For database functionality self.data_tables = data_tables self.operations_tables = operations_tables self._root_augur_dir = Persistant.ROOT_AUGUR_DIR # count of tuples inserted in the database ( to store stats for each task in op tables) self.update_counter = 0 self.insert_counter = 0 self._results_counter = 0 # Update config with options that are general and not specific to any worker self.augur_config = AugurConfig(self._root_augur_dir) #TODO: consider taking parts of this out for the base class and then overriding it in WorkerGitInterfaceable self.config = { 'worker_type': self.worker_type, 'host': self.augur_config.get_value('Server', 'host') } self.config.update(self.augur_config.get_section("Logging")) try: worker_defaults = self.augur_config.get_default_config()['Workers'][self.config['worker_type']] self.config.update(worker_defaults) except KeyError as e: logging.warn('Could not get default configuration for {}'.format(self.config['worker_type'])) worker_info = self.augur_config.get_value('Workers', self.config['worker_type']) self.config.update(worker_info) worker_port = self.config['port'] while True: try: r = requests.get('http://{}:{}/AUGWOP/heartbeat'.format( self.config['host'], worker_port)).json() if 'status' in r: if r['status'] == 'alive': worker_port += 1 except: break #add credentials to db config. Goes to databaseable self.config.update({ 'port': worker_port, 'id': "workers.{}.{}".format(self.worker_type, worker_port), 'capture_output': False, 'location': 'http://{}:{}'.format(self.config['host'], worker_port), 'port_broker': self.augur_config.get_value('Server', 'port'), 'host_broker': self.augur_config.get_value('Server', 'host'), 'host_database': self.augur_config.get_value('Database', 'host'), 'port_database': self.augur_config.get_value('Database', 'port'), 'user_database': self.augur_config.get_value('Database', 'user'), 'name_database': self.augur_config.get_value('Database', 'name'), 'password_database': self.augur_config.get_value('Database', 'password') }) # Initialize logging in the main process self.initialize_logging() # Clear log contents from previous runs open(self.config["server_logfile"], "w").close() open(self.config["collection_logfile"], "w").close() # Get configured collection logger self.logger = logging.getLogger(self.config["id"]) self.logger.info('Worker (PID: {}) initializing...'.format(str(os.getpid()))) #Return string representation of an object with all information needed to recreate the object (Think of it like a pickle made out of text) #Called using repr(*object*). eval(repr(*object*)) == *object* def __repr__(self): return f"{self.config['id']}" def initialize_logging(self): #Get the log level in upper case from the augur config's logging section. self.config['log_level'] = self.config['log_level'].upper() if self.config['debug']: self.config['log_level'] = 'DEBUG' if self.config['verbose']: format_string = AugurLogging.verbose_format_string else: format_string = AugurLogging.simple_format_string #Use stock python formatter for stdout formatter = Formatter(fmt=format_string) #User custom for stderr, Gives more info than verbose_format_string error_formatter = Formatter(fmt=AugurLogging.error_format_string) worker_dir = AugurLogging.get_log_directories(self.augur_config, reset_logfiles=False) + "/workers/" Path(worker_dir).mkdir(exist_ok=True) logfile_dir = worker_dir + f"/{self.worker_type}/" Path(logfile_dir).mkdir(exist_ok=True) #Create more complex sublogs in the logfile directory determined by the AugurLogging class server_logfile = logfile_dir + '{}_{}_server.log'.format(self.worker_type, self.config["port"]) collection_logfile = logfile_dir + '{}_{}_collection.log'.format(self.worker_type, self.config["port"]) collection_errorfile = logfile_dir + '{}_{}_collection.err'.format(self.worker_type, self.config["port"]) self.config.update({ 'logfile_dir': logfile_dir, 'server_logfile': server_logfile, 'collection_logfile': collection_logfile, 'collection_errorfile': collection_errorfile }) collection_file_handler = FileHandler(filename=self.config['collection_logfile'], mode="a") collection_file_handler.setFormatter(formatter) collection_file_handler.setLevel(self.config['log_level']) collection_errorfile_handler = FileHandler(filename=self.config['collection_errorfile'], mode="a") collection_errorfile_handler.setFormatter(error_formatter) collection_errorfile_handler.setLevel(logging.WARNING) logger = logging.getLogger(self.config['id']) logger.handlers = [] logger.addHandler(collection_file_handler) logger.addHandler(collection_errorfile_handler) logger.setLevel(self.config['log_level']) logger.propagate = False if self.config['debug']: self.config['log_level'] = 'DEBUG' console_handler = StreamHandler() console_handler.setFormatter(formatter) console_handler.setLevel(self.config['log_level']) logger.addHandler(console_handler) if self.config['quiet']: logger.disabled = True self.logger = logger #database interface, the git interfaceable adds additional function to the super method. def initialize_database_connections(self): DB_STR = 'postgresql://{}:{}@{}:{}/{}'.format( self.config['user_database'], self.config['password_database'], self.config['host_database'], self.config['port_database'], self.config['name_database'] ) # Create an sqlalchemy engine for both database schemas self.logger.info("Making database connections") self.db_schema = 'augur_data' self.db = s.create_engine(DB_STR, poolclass=s.pool.NullPool, connect_args={'options': '-csearch_path={}'.format(self.db_schema)}) # , 'client_encoding': 'utf8' self.helper_schema = 'augur_operations' self.helper_db = s.create_engine(DB_STR, poolclass=s.pool.NullPool, connect_args={'options': '-csearch_path={}'.format(self.helper_schema)}) metadata = s.MetaData() helper_metadata = s.MetaData() # Reflect only the tables we will use for each schema's metadata object metadata.reflect(self.db, only=self.data_tables) helper_metadata.reflect(self.helper_db, only=self.operations_tables) Base = automap_base(metadata=metadata) HelperBase = automap_base(metadata=helper_metadata) Base.prepare() HelperBase.prepare() # So we can access all our tables when inserting, updating, etc for table in self.data_tables: setattr(self, '{}_table'.format(table), Base.classes[table].__table__) try: self.logger.info(HelperBase.classes.keys()) except: pass for table in self.operations_tables: try: setattr(self, '{}_table'.format(table), HelperBase.classes[table].__table__) except Exception as e: self.logger.error("Error setting attribute for table: {} : {}".format(table, e)) # Increment so we are ready to insert the 'next one' of each of these most recent ids self.logger.info("Trying to find max id of table...") try: self.history_id = self.get_max_id('worker_history', 'history_id', operations_table=True) + 1 except Exception as e: self.logger.info(f"Could not find max id. ERROR: {e}") #25151 #self.logger.info(f"Good, passed the max id getter. Max id: {self.history_id}") #Make sure the type used to store date is synced with the worker? def sync_df_types(self, subject, source, subject_columns, source_columns): type_dict = {} ## Getting rid of nan's and NoneTypes across the dataframe to start: subject = subject.fillna(value=numpy.nan) source = source.fillna(value=numpy.nan) for index in range(len(source_columns)): if type(source[source_columns[index]].values[0]) == numpy.datetime64: subject[subject_columns[index]] = pd.to_datetime( subject[subject_columns[index]], utc=True ) source[source_columns[index]] = pd.to_datetime( source[source_columns[index]], utc=True ) continue ## Dealing with an error coming from paginate endpoint and the GitHub issue worker ### For a release in mid september, 2021. #SPG This did not work on Ints or Floats # if type(source[source_columns[index]].values[0]).isnull(): # subject[subject_columns[index]] = pd.fillna(value=np.nan) # source[source_columns[index]] = pd.fillna(value=np.nan) # continue source_index = source_columns[index] try: source_index = source_columns[index] type_dict[subject_columns[index]] = type(source[source_index].values[0]) #self.logger.info(f"Source data column is {source[source_index].values[0]}") #self.logger.info(f"Type dict at {subject_columns[index]} is : {type(source[source_index].values[0])}") except Exception as e: self.logger.info(f"Source data registered exception: {source[source_index]}") self.print_traceback("", e, True) subject = subject.astype(type_dict) return subject, source #Convert safely from sql type to python type? def get_sqlalchemy_type(self, data, column_name=None): if type(data) == str: try: time.strptime(data, "%Y-%m-%dT%H:%M:%SZ") return s.types.TIMESTAMP except ValueError: return s.types.String elif ( isinstance(data, (int, numpy.integer)) or (isinstance(data, float) and column_name and 'id' in column_name) ): return s.types.BigInteger elif isinstance(data, float): return s.types.Float elif type(data) in [numpy.datetime64, pd._libs.tslibs.timestamps.Timestamp]: return s.types.TIMESTAMP elif column_name and 'id' in column_name: return s.types.BigInteger return s.types.String def _convert_float_nan_to_int(self, df): for column in df.columns: if ( df[column].dtype == float and ((df[column] % 1 == 0) | (df[column].isnull())).all() ): df[column] = df[column].astype("Int64").astype(object).where( pd.notnull(df[column]), None ) return df def _setup_postgres_merge(self, data_sets, sort=False): metadata = s.MetaData() data_tables = [] # Setup/create tables for index, data in enumerate(data_sets): data_table = s.schema.Table(f"merge_data_{index}_{os.getpid()}", metadata) df = pd.DataFrame(data) columns = sorted(list(df.columns)) if sort else df.columns df = self._convert_float_nan_to_int(df) for column in columns: data_table.append_column( s.schema.Column( column, self.get_sqlalchemy_type( df.fillna(method='bfill').iloc[0][column], column_name=column ) ) ) data_tables.append(data_table) metadata.create_all(self.db, checkfirst=True) # Insert data to tables for data_table, data in zip(data_tables, data_sets): self.bulk_insert( data_table, insert=data, increment_counter=False, convert_float_int=True ) session = s.orm.Session(self.db) self.logger.info("Session created for merge tables") return data_tables, metadata, session def _close_postgres_merge(self, metadata, session): session.close() self.logger.info("Session closed") # metadata.reflect(self.db, only=[new_data_table.name, table_values_table.name]) metadata.drop_all(self.db, checkfirst=True) self.logger.info("Merge tables dropped") def _get_data_set_columns(self, data, columns): if not len(data): return [] self.logger.info("Getting data set columns") df = pd.DataFrame(data, columns=data[0].keys()) final_columns = copy.deepcopy(columns) for column in columns: if '.' not in column: continue root = column.split('.')[0] if root not in df.columns: df[root] = None expanded_column = pd.DataFrame( df[root].where(df[root].notna(), lambda x: [{}]).tolist() ) expanded_column.columns = [ f'{root}.{attribute}' for attribute in expanded_column.columns ] if column not in expanded_column.columns: expanded_column[column] = None final_columns += list(expanded_column.columns) try: df = df.join(expanded_column) except ValueError: # columns already added (happens if trying to expand the same column twice) # TODO: Catch this before by only looping unique prefixs? self.logger.info("Columns have already been added, moving on...") pass self.logger.info(final_columns) self.logger.info(list(set(final_columns))) self.logger.info("Finished getting data set columns") return df[list(set(final_columns))].to_dict(orient='records') def organize_needed_data( self, new_data, table_values, action_map={}, in_memory=True ): """ This method determines which rows need to be inserted into the database (ensures data ins't inserted more than once) and determines which rows have data that needs to be updated :param new_data: list of dictionaries - needs to be compared with data in database to see if any updates are needed or if the data needs to be inserted :param table_values: list of SQLAlchemy tuples - data that is currently in the database :param action_map: dict with two keys (insert and update) and each key's value contains a list of the fields that are needed to determine if a row is unique or if a row needs to be updated :param in_memory: boolean - determines whether the method is done is memory or database (currently everything keeps the default of in_memory=True) :return: list of dictionaries that contain data that needs to be inserted into the database :return: list of dictionaries that contain data that needs to be updated in the database """ if len(table_values) == 0: return new_data, [] if len(new_data) == 0: return [], [] need_insertion = pd.DataFrame() need_updates = pd.DataFrame() if not in_memory: new_data_columns = action_map['insert']['source'] table_value_columns = action_map['insert']['augur'] if 'update' in action_map: new_data_columns += action_map['update']['source'] table_value_columns += action_map['update']['augur'] (new_data_table, table_values_table), metadata, session = self._setup_postgres_merge( [ self._get_data_set_columns(new_data, new_data_columns), self._get_data_set_columns(table_values, table_value_columns) ] ) need_insertion = pd.DataFrame(session.query(new_data_table).join(table_values_table, eval( ' and '.join([ f"table_values_table.c.{table_column} == new_data_table.c.{source_column}" \ for table_column, source_column in zip(action_map['insert']['augur'], action_map['insert']['source']) ]) ), isouter=True).filter( table_values_table.c[action_map['insert']['augur'][0]] == None ).all(), columns=table_value_columns) self.logger.info("need_insertion calculated successfully") need_updates = pd.DataFrame(columns=table_value_columns) if 'update' in action_map: need_updates = pd.DataFrame(session.query(new_data_table).join(table_values_table, s.and_( eval(' and '.join([f"table_values_table.c.{table_column} == new_data_table.c.{source_column}" for \ table_column, source_column in zip(action_map['insert']['augur'], action_map['insert']['source'])])), eval(' and '.join([f"table_values_table.c.{table_column} != new_data_table.c.{source_column}" for \ table_column, source_column in zip(action_map['update']['augur'], action_map['update']['source'])])) ) ).all(), columns=table_value_columns) self.logger.info("need_updates calculated successfully") self._close_postgres_merge(metadata, session) new_data_df =
pd.DataFrame(new_data)
pandas.DataFrame
from app.test.base import BaseTestCase from app.main.service.CreateDocumentHandler import getCreatorDocumentHandler from app.main.service.languageBuilder import LanguageBuilder from app.test.fileVariables import pathTexts,pathTables,pathWeb,pathTimes from app.main.service.personalDataSearchByEntities import PersonalDataSearchByEntities from app.main.service.personalDataSearchByRules import PersonalDataSearchByRules from nltk.tokenize import word_tokenize import unittest import json import numpy as np import pandas as pd import matplotlib.pyplot as plt import re,string import itertools import time class ConfidenceMatrixBuilder: def __init__(self): self.hits = 0 self.falsePositives = 0 self.falseNegatives = 0 self.nlp = LanguageBuilder().getlanguage() self.listOfFalseNegatives = [] self.listOfFalsePositives = [] def countHinst(self, listNames:list, data:list, filename:str): listNames = list(map(lambda name: name.replace('\n',''),listNames)) for name in list(set(data)): countNameInModel = listNames.count(name) realCountName = data.count(name) if countNameInModel == realCountName: self.hits += countNameInModel elif countNameInModel == 0: self.falseNegatives += (realCountName-countNameInModel) self.listOfFalseNegatives.append((name,countNameInModel,realCountName,filename)) elif countNameInModel < realCountName: self.hits += realCountName self.listOfFalseNegatives.append((name,countNameInModel,realCountName,filename)) else: self.hits += realCountName self.falsePositives += (countNameInModel-realCountName) self.listOfFalsePositives.append((name,countNameInModel,realCountName,filename)) for name in list(set(listNames)): countNameInModel = listNames.count(name) realCountName = data.count(name) if realCountName == 0: self.falsePositives += countNameInModel self.listOfFalsePositives.append((name,countNameInModel,realCountName, filename)) def getData(self) -> dict: return { "hits" :self.hits, "False Positives":self.falsePositives, "False Negatives":self.falseNegatives } def _buildGarph(self, df:pd.DataFrame, yname, filename, nameTest): bfn = {nameTest+str(index):0 for index in range(1,11)} bfp = bfn.copy() block = df[(df["TYPE"] == 'False Negative') & (df["MATCHES"] == 0)].groupby('FILE').groups for k,v in block.items(): bfn[k] = len(v) print(bfn) plt.subplots_adjust(hspace=0.5) plt.subplot(211) plt.bar(bfn.keys(), bfn.values(), align='center', alpha=0.5) plt.ylabel(yname) plt.title('False Negative') block = df[df["TYPE"] == 'False Positive'].groupby('FILE').groups for k,v in block.items(): bfp[k] = len(v) print(bfp) plt.subplot(212) plt.bar(bfp.keys(), bfp.values(), align='center', alpha=0.5) plt.ylabel(yname) plt.title('False Positive') plt.savefig(filename) plt.close() def saveReport(self,csvfile, imgfile, nameTest): table = {"NAMES":[], "MATCHES":[], "REAL MARCHES": [], "TYPE": [], "FILE":[]} for name,matches,realMatches,file in self.listOfFalsePositives: table["NAMES"].append(name) table["MATCHES"].append(matches) table["REAL MARCHES"].append(realMatches) table["TYPE"].append("False Positive") table["FILE"].append(file) for name,matches,realMatches,file in self.listOfFalseNegatives: table["NAMES"].append(name) table["MATCHES"].append(matches) table["REAL MARCHES"].append(realMatches) table["TYPE"].append("False Negative") table["FILE"].append(file) df = pd.DataFrame(table, columns=table.keys()) df.to_csv(csvfile, index=False) self._buildGarph(df,'count',imgfile, nameTest) def getListOfFalseNegatives(self): return self.listOfFalseNegatives def getListOfFalsePositive(self): return self.listOfFalsePositives class TestPerfomanceTables(BaseTestCase): def test_tables(self): iteration = 11 builder = ConfidenceMatrixBuilder() print("\n") for index in range(1,iteration): with open(pathTables + "%s.json" %(index), encoding='utf-8') as file: data = json.load(file) creator = getCreatorDocumentHandler(pathTables + "%s.xls" %(index),'xls') dh = creator.create() listNames,_ = dh.extractData() builder.countHinst(listNames,data['names'],"tables%s" %(index)) #print(pathTables + "%s.xls" %(index), ":", len(listNames), "names") print(builder.getData()) builder.saveReport('app/test/result/tables_report.csv', 'app/test/result/tables_report.jpg', 'tables') class TestPerfomanceTexts(BaseTestCase): def test_text(self): iteration = 11 builder = ConfidenceMatrixBuilder() print("\n") for index in range(1,iteration): with open(pathTexts + "%s.json" %(index)) as file: data = json.load(file) creator = getCreatorDocumentHandler(pathTexts + "%s.txt" %(index),'txt') dh = creator.create() listNames,_ = dh.extractData() #print(pathTexts + "%s.txt" %(index), ":", len(listNames), "names") builder.countHinst(listNames,data['names'],"text%s" %(index)) print(builder.getData()) builder.saveReport('app/test/result/text_report.csv','app/test/result/text_report.jpg', 'text') @unittest.skip class TestPerfomanceWeb(BaseTestCase): def test_web(self): iteration = 11 builder = ConfidenceMatrixBuilder() print("\n") for index in range(1,iteration): with open(pathWeb + "%s.json" %(index), encoding='utf-8') as file: data = json.load(file) creator = getCreatorDocumentHandler(pathWeb + "%s.html" %(index),'html') dh = creator.create() listNames,_ = dh.extractData() builder.countHinst(listNames,data['names'], "web%s" %(index)) #print(pathWeb + "%s.html" %(index), ":", len(listNames), "names") print(builder.getData()) builder.saveReport('app/test/result/web_report.csv','app/test/result/web_report.jpg', 'web') def test_time_of_Model(): entModel = PersonalDataSearchByEntities() rulesModel = PersonalDataSearchByRules() def getMesures(text:str) -> list: st = time.time() data = entModel.searchPersonalData(text) ent_times = time.time()-st ent_len = len(data[0]) + len(data[1]) st = time.time() data = rulesModel.searchPersonalData(text) rules_times = time.time()-st rules_len = len(data[0]) + len(data[1]) return [ent_times,ent_len,rules_times,rules_len, len(word_tokenize(text))] with open(pathTimes, "r", encoding='latin-1') as file: texts = file.read() texts = re.sub('<.*>','lineSplit',texts) texts = re.sub('ENDOFARTICLE.','',texts) punctuationNoPeriod = "[" + re.sub("\.","",string.punctuation) + "]" texts = re.sub(punctuationNoPeriod, "", texts) list_texts = texts.split('lineSplit') mesures = np.array( list(filter(lambda row: row[1]*row[3]*row[4] != 0, map(lambda text: getMesures(text), list_texts ) ) ) ) df =
pd.DataFrame(mesures)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: # this definition exposes all python module imports that should be available in all subsequent commands import json import datetime import numpy as np import pandas as pd import spacy import en_core_web_sm from spacytextblob.spacytextblob import SpacyTextBlob # global constants MODEL_DIRECTORY = "/srv/app/model/data/" # In[5]: # this cell is not executed from MLTK and should only be used for staging data into the notebook environment def stage(name): with open("data/"+name+".csv", 'r') as f: df = pd.read_csv(f) with open("data/"+name+".json", 'r') as f: param = json.load(f) return df, param # In[13]: # initialize the model # params: data and parameters # returns the model object which will be used as a reference to call fit, apply and summary subsequently def init(df,param): # Load English parser and text blob (for sentiment analysis) model = spacy.load('en_core_web_sm') spacy_text_blob = SpacyTextBlob() model.add_pipe(spacy_text_blob) return model # In[15]: # returns a fit info json object def fit(model,df,param): returns = {} return returns # In[36]: def apply(model,df,param): X = df[param['feature_variables']].values.tolist() temp_data=list() for i in range(len(X)): doc = model(str(X[i])) polarity=doc._.sentiment.polarity subjectivity=doc._.sentiment.subjectivity assessments=doc._.sentiment.assessments temp_data.append([polarity,subjectivity,assessments]) column_names=["polarity","subjectivity","assessments"] returns=
pd.DataFrame(temp_data, columns=column_names)
pandas.DataFrame
import argparse from pathlib import Path import torch import pandas as pd from PIL import Image from tqdm import tqdm import yolov3.utils.utils as utils import yolov3.utils.vis_utils as vis_utils from yolov3.datasets.imagefolder import ImageFolder from yolov3.models.yolov3 import YOLOv3 from yolov3.utils.parse_yolo_weights import parse_yolo_weights def parse_args(): """Parse command line arguments. """ parser = argparse.ArgumentParser() # fmt: off parser.add_argument("--input_path", type=Path, required=True, help="image path or directory path which contains images to infer") parser.add_argument("--output_dir", type=Path, default="infer_output", help="directory path to output detection results") parser.add_argument("--weights_path", type=Path, required=True, help="path to weights file") parser.add_argument("--config_path", type=Path, default="config/yolov3_coco.yaml", help="path to config file") parser.add_argument('--gpu_id', type=int, default=-1, help="GPU id to use") # fmt: on args = parser.parse_args() return args def output_to_dataframe(output, class_names): detection = [] for x1, y1, x2, y2, obj_conf, class_conf, label in output: bbox = { "confidence": float(obj_conf * class_conf), "class_id": int(label), "class_name": class_names[int(label)], "x1": int(x1), "y1": int(y1), "x2": int(x2), "y2": int(y2), } detection.append(bbox) detection =
pd.DataFrame(detection)
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import joblib from utils import normalize_MPU9250_data, split_df, get_intervals_from_moments, EventIntervals from GeneralAnalyser import GeneralAnalyser, plot_measurements # plt.interactive(True) pd.options.display.max_columns = 15 pic_prefix = 'pic/' # data_path = 'data/CSV' # data_path = 'Anonimised Data/Data' # sessions_dict = joblib.load('data/sessions_dict') sessions_dict = joblib.load('data/sessions_dict') gamedata_dict = joblib.load('data/gamedata_dict') sensors_columns_dict = { 'hrm': ['hrm'], 'envibox': ['als', 'mic', 'humidity', 'temperature', 'co2'], 'datalog': ['hrm2', 'resistance', 'muscle_activity'] } sensors_list = list(sensors_columns_dict.keys()) sensors_columns_list = [] for session_id, session_data_dict in sessions_dict.items(): df_dict = {} if not set(sensors_list).issubset(set(session_data_dict.keys())): continue if session_id not in gamedata_dict: continue df_discretized_list = [] for sensor_name in sensors_columns_dict: df = session_data_dict[sensor_name] df = df.set_index(pd.DatetimeIndex(pd.to_datetime(df['time'], unit='s'))) df_discretized = df.resample('100ms').mean().ffill() # Forward fill is better df_discretized_list.append(df_discretized) moments_kills = gamedata_dict[session_id]['times_kills'] moments_death = gamedata_dict[session_id]['times_is_killed'] duration = 1 intervals_shootout = gamedata_dict[session_id]['shootout_times_start_end'] intervals_kills = get_intervals_from_moments(moments_kills, interval_start=-duration, interval_end=duration) intervals_death = get_intervals_from_moments(moments_death, interval_start=-duration, interval_end=duration) event_intervals_shootout = EventIntervals(intervals_list=intervals_shootout, label='shootouts', color='blue') event_intervals_kills = EventIntervals(intervals_list=intervals_kills, label='kills', color='green') event_intervals_death = EventIntervals(intervals_list=intervals_death, label='deaths', color='red') def discretize_time_column(time_column, discretization=0.1): time_column_discretized = time_column - time_column % discretization return time_column_discretized def auxilary_discretization_table(time_column, discretization): time_column_discretized = discretize_time_column(df['time'], discretization) timesteps = np.arange(0, time_column_discretized.max() + discretization, discretization) ''' If there are several records to one timestep => select the earliest If there isn't any records to one timestep => select the latest available '''
pd.PeriodIndex(df['time'])
pandas.PeriodIndex
#coding=utf8 from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals import torch from torch import nn, optim import numpy as np import sys import matplotlib.pyplot as plt from torchsummary import summary import matplotlib.pyplot as plt import pandas as pd import os import torch.nn.functional as F import time from utils import * import argparse class HSICBottleneck: def __init__(self, args): self.model = MLP(args) self.model.to(device) self.batch_size = args.batchsize self.lambda_0 = args.lambda_ self.sigma = args.sigma_ self.extractor = 'hsic' self.last_linear = "output_layer" self.HSIC = compute_HSIC(args.HSIC) self.kernel = compute_kernel() self.kernel_x = args.kernel_x self.kernel_h = args.kernel_h self.kernel_y = args.kernel_y self.forward = args.forward self.opt = optim.AdamW(self.model.parameters(), lr=0.001) self.iter_loss1, self.iter_loss2, self.iter_loss3 = [], [], [] self.track_loss1, self.track_loss2, self.track_loss3 = [], [], [] self.loss = args.loss if self.loss == "mse": self.output_criterion = nn.MSELoss() elif self.loss == "CE": self.output_criterion = nn.CrossEntropyLoss() def step(self, input_data, labels): labels_float = F.one_hot(labels, num_classes=10).float() if self.forward == "x": Kx = self.kernel(input_data, self.sigma, self.kernel_x) Ky = self.kernel(labels_float, self.sigma, self.kernel_y) kernel_list = list() y_pred, hidden_zs = self.model(input_data) for num, feature in enumerate(hidden_zs): kernel_list.append(self.kernel(feature, self.sigma, self.kernel_h)) total_loss1, total_loss2, total_loss3 = 0., 0., 0. for num, feature in enumerate(kernel_list): if num == (len(hidden_zs)-1): if self.forward == "h": total_loss1 += self.HSIC(feature, kernel_list[num-1], self.batch_size, device) elif self.forward == "x": total_loss1 += self.HSIC(feature, Kx, self.batch_size, device) if self.loss == "mse": total_loss3 += self.output_criterion(hidden_zs[-1], labels_float) elif self.loss == "CE": total_loss3 += self.output_criterion(hidden_zs[-1], labels) elif num == 0: if self.forward == "x": total_loss1 += self.HSIC(feature, Kx, self.batch_size, device) total_loss2 += - self.lambda_0*self.HSIC(feature, Ky, self.batch_size, device) else: if self.forward == "h": total_loss1 += self.HSIC(feature, kernel_list[num-1], self.batch_size, device) elif self.forward == "x": total_loss1 += self.HSIC(feature, Kx, self.batch_size, device) total_loss2 += - self.lambda_0*self.HSIC(feature, Ky, self.batch_size, device) if self.forward == "h" or self.forward == "x": total_loss = total_loss1 + total_loss2 + total_loss3 self.iter_loss1.append(total_loss1.item()) if self.forward == "n": total_loss = total_loss2 + total_loss3 self.iter_loss1.append(-1) self.opt.zero_grad() total_loss.backward() self.opt.step() self.iter_loss2.append(total_loss2.item()) self.iter_loss3.append(total_loss3.item()) def update_loss(self): self.track_loss1.append(np.mean(self.iter_loss1)) self.track_loss2.append(np.mean(self.iter_loss2)) self.track_loss3.append(np.mean(self.iter_loss3)) self.iter_loss1, self.iter_loss2, self.iter_loss3 = [], [], [] def tune_output(self, input_data, labels): self.model.train() if self.loss == "mse": one_hot_labels = F.one_hot(labels, num_classes=10) labels = F.one_hot(labels, num_classes=10).float() y_pred, hidden_zs = self.model(input_data) total_loss = self.output_criterion(hidden_zs[-1], labels) self.opt.zero_grad() total_loss.backward() self.opt.step() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=str, default="mnist") parser.add_argument('--loss', type=str, default="CE") parser.add_argument('--HSIC', type=str, default="nHSIC") parser.add_argument('--kernel_x', type=str, default="rbf", choices=["rbf", "student"]) parser.add_argument('--kernel_h', type=str, default="rbf", choices=["rbf", "student"]) parser.add_argument('--kernel_y', type=str, default="rbf", choices=["rbf", "student"]) parser.add_argument('--sigma_', type=int, default=10) parser.add_argument('--lambda_', type=int, default=1000) parser.add_argument('--batchsize', type=int, default=256) parser.add_argument('--device', type=int, default=0) parser.add_argument('--bn_affine', type=int, default=0) parser.add_argument('--forward', type=str, default="n", choices=["x", "h", "n"]) args, _ = parser.parse_known_args() filename = get_filename(args) print(filename) torch.manual_seed(1) device = "cuda:{}".format(args.device) batch_size = args.batchsize train_loader, test_loader = load_data(batch_size=args.batchsize) logs = list() hsic = HSICBottleneck(args) start = time.time() for epoch in range(100): hsic.model.train() for batch_idx, (data, target) in enumerate(train_loader): data = data.view(args.batchsize, -1) hsic.step(data.view(args.batchsize, -1).to(device), target.to(device)) hsic.tune_output(data.view(args.batchsize, -1).to(device), target.to(device)) if epoch in range(0, 100, 10): show_result(hsic, train_loader, test_loader, epoch, logs, device) print("{:.2f}".format(time.time()-start)) start = time.time() txt_path = os.path.join("./results", filename+".csv") df =
pd.DataFrame(logs)
pandas.DataFrame
# Same as SBM_vs_uncorrelated.py, but for lambda_k distances. Can be run for # various numberes of communities, designated below by variable l. import netcomp as nc from joblib import Parallel, delayed import multiprocessing import os import networkx as nx import pandas as pd import time import pickle import numpy as np from tqdm import tqdm #################################### ### SET PARAMETERS #################################### data_dir = "../pickled_data" num_cores = multiprocessing.cpu_count() # size of ensemble ensemble_len = 500 n = 1000 p = 0.02 l = 2 # number of communities n = n - n % l # ensures that n/l is an integer t = 0.05 # in the main body of the paper we use l=2 and t = 1/20 def pp(n, p, l, t): """calculate pp,qq for SBM given p from ER p : p from G(n,p) l : # of communities t : ratio of pp/qq """ pp = p * n * (n - 1) / (n ** 2 / l - n + t * n ** 2 * (l - 1) / l) qq = t * pp return pp, qq pp, qq = pp(n, p, l, t) #################################### ## DEFINE IMPORTANT FUNCTIONS #################################### def distance(dist_func, A, B): return dist_func(A, B) k_list = [1, 2, 10, 100, 300, 999] def flatten(l): return [item for sublist in l for item in sublist] distances = [] labels = [] def return_lambdas(k): return [ lambda A1, A2: nc.lambda_dist(A1, A2, kind="adjacency", k=k), lambda A1, A2: nc.lambda_dist(A1, A2, kind="laplacian", k=k), lambda A1, A2: nc.lambda_dist(A1, A2, kind="laplacian_norm", k=k), ] # can't make this work without using map distances = list(map(return_lambdas, k_list)) distances = flatten(distances) for k in k_list: labels_k = [ "Lambda (Adjacency, k={})".format(k), "Lambda (Laplacian, k={})".format(k), "Lambda (Normalized Laplacian, k={})".format(k), ] labels += labels_k def grab_data(i, null=True): G1 = nx.erdos_renyi_graph(n, p) if null: G2 = nx.erdos_renyi_graph(n, p) else: G2 = nx.planted_partition_graph(l, n // l, pp, qq) A1, A2 = [nx.adjacency_matrix(G).todense() for G in [G1, G2]] adj_distances = pd.Series( [distance(dfun, A1, A2) for dfun in distances], index=labels, name="Adjacency Distances", ) data = pd.concat([adj_distances], axis=1) return data #################################### ## TAKE DATA #################################### print("Running on {} cores.".format(num_cores)) print("ER/SBM Lambda K Distance Comparison.") start = time.time() results_null = Parallel(n_jobs=num_cores)( delayed(grab_data)(i) for i in tqdm(range(ensemble_len)) ) end = time.time() print("Null data complete. Total time elapsed: {} seconds.".format(end - start)) results_df_null = pd.concat(results_null, axis=1) start = time.time() results_not_null = Parallel(n_jobs=num_cores)( delayed(grab_data)(i, null=False) for i in tqdm(range(ensemble_len)) ) end = time.time() print("Alternative data complete. Total time elapsed: {} seconds.".format(end - start)) results_df_not_null =
pd.concat(results_not_null, axis=1)
pandas.concat
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from singa_auto.model import TabularClfModel, FloatKnob, CategoricalKnob, FixedKnob, IntegerKnob, utils from singa_auto.constants import ModelDependency from singa_auto.model.dev import test_model_class from sklearn.metrics import roc_auc_score, roc_curve from lightgbm import LGBMClassifier import lightgbm as lgb from sklearn.model_selection import KFold, StratifiedKFold import json import os import tempfile import numpy as np import base64 import pandas as pd import abc import gc import pickle from urllib.parse import urlparse, parse_qs import warnings warnings.simplefilter(action='ignore', category=FutureWarning) ''' This model is desigined for Home Credit Default Risk `https://www.kaggle .com/c/home-credit-default-risk` and only uses the main table 'application_{train|test}.csv' of this competition as dataset. ''' class LightGBM(TabularClfModel): @staticmethod def get_knob_config(): return { 'learning_rate': FloatKnob(1e-2, 1e-1, is_exp=True), 'num_leaves': IntegerKnob(20, 60), 'colsample_bytree': FloatKnob(1e-1, 1), 'subsample': FloatKnob(1e-1, 1), 'max_depth': IntegerKnob(1, 10), } def __init__(self, **knobs): self._knobs = knobs self.__dict__.update(knobs) def train(self, dataset_url, features=None, target=None, exclude=None, **kwargs): utils.logger.define_plot('Loss Over Epochs', ['loss', 'early_stop_val_loss'], x_axis='epoch') self._features = features self._target = target df = pd.read_csv(dataset_url, index_col=0) if exclude and set(df.columns.tolist()).intersection( set(exclude)) == set(exclude): df = df.drop(exclude, axis=1) # Optional: Remove 4 applications with XNA CODE_GENDER (train set) df = df[df['CODE_GENDER'] != 'XNA'] # Extract X & y from dataframe (X, y) = self._extract_xy(df) # Encode categorical features X = self._encoding_categorical_type(X) # other preprocessing df_train = self._preprocessing(X) # Cross validation model folds = KFold(n_splits=10, shuffle=True) flag = 0 for n_fold, (train_idx, valid_idx) in enumerate(folds.split(X, y)): lgb_train = lgb.Dataset( X.iloc[train_idx], y.iloc[train_idx], ) lgb_valid = lgb.Dataset( X.iloc[valid_idx], y.iloc[valid_idx], ) params = { 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'cross_entropy', 'nthread': 4, 'n_estimators': 10, 'learning_rate': self._knobs.get("learning_rate"), 'num_leaves': self._knobs.get("num_leaves"), 'colsample_bytree': self._knobs.get("colsample_bytree"), 'subsample': self._knobs.get("subsample"), 'max_depth': self._knobs.get("max_depth"), 'verbose': -1, } abc = {} self._model = lgb.train(params, lgb_train, num_boost_round=1000, valid_sets=[lgb_train, lgb_valid], verbose_eval=100, callbacks=[lgb.record_evaluation(abc)]) utils.logger.log( loss=abc['training']['cross_entropy'][-1], early_stop_val_loss=abc['valid_1']['cross_entropy'][-1], epoch=flag) flag += 1 def evaluate(self, dataset_url, **kwargs): df = pd.read_csv(dataset_url, index_col=0) # Optional: Remove 4 applications with XNA CODE_GENDER (train set) df = df[df['CODE_GENDER'] != 'XNA'] # Extract X & y from dataframe (X, y) = self._extract_xy(df) # Encode categorical features, no need mapping features for this model X = self._encoding_categorical_type(X) # other preprocessing df_train = self._preprocessing(X) # oof_preds = np.zeros(df.shape[0]) oof_preds = self._model.predict(X) return roc_auc_score(y, oof_preds) def predict(self, queries): df = pd.DataFrame(queries) # Extract X & y from dataframe (X, y) = self._extract_xy(df) # Encode categorical features X = self._encoding_categorical_type(X) # other preprocessing df_train = self._preprocessing(X) predictions = self._model.predict(X) predicts = [] for prediction in predictions: predicts.append(prediction) return predicts def destroy(self): pass def dump_parameters(self): params = {} # Save model parameters with tempfile.NamedTemporaryFile() as tmp: # Save whole model to temp h5 file self._model.save_model(tmp.name) # Read from temp h5 file & encode it to base64 string with open(tmp.name, 'rb') as f: h5_model_bytes = f.read() data_config_bytes = pickle.dumps([self._features, self._target]) params['h5_model_base64'] = base64.b64encode(h5_model_bytes).decode( 'utf-8') params['data_config_base64'] = base64.b64encode( data_config_bytes).decode('utf-8') return params def load_parameters(self, params): # Load model parameters h5_model_base64 = params.get('h5_model_base64', None) data_config_base64 = params.get('data_config_base64', None) data_config_bytes = base64.b64decode(data_config_base64.encode('utf-8')) self._features, self._target = pickle.loads(data_config_bytes) with tempfile.NamedTemporaryFile() as tmp: # Convert back to bytes & write to temp file h5_model_bytes = base64.b64decode(h5_model_base64.encode('utf-8')) with open(tmp.name, 'wb') as f: f.write(h5_model_bytes) # Load model from temp file self._model = lgb.Booster(model_file=tmp.name) def _extract_xy(self, data): if self._target is None: self._target = 'TARGET' y = data[self._target] if self._target in data else None if self._features is None: X = data.drop(self._target, axis=1) self._features = list(X.columns) else: X = data[self._features] return (X, y) def _encoding_categorical_type(self, df): # Categorical features with Binary encode (0 or 1; two categories) for bin_feature in ['CODE_GENDER', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY']: df[bin_feature], uniques = pd.factorize(df[bin_feature]) for col in df.columns: if df[col].dtype == 'object': df[col] = df[col].astype('category') return df def _preprocessing(self, df): # NaN values for DAYS_EMPLOYED: 365.243 -> nan df['DAYS_EMPLOYED'].replace(365243, np.nan, inplace=True) # Some simple new features (percentages) df['DAYS_EMPLOYED_PERC'] = df['DAYS_EMPLOYED'] / df['DAYS_BIRTH'] df['INCOME_CREDIT_PERC'] = df['AMT_INCOME_TOTAL'] / df['AMT_CREDIT'] df['INCOME_PER_PERSON'] = df['AMT_INCOME_TOTAL'] / df['CNT_FAM_MEMBERS'] df['ANNUITY_INCOME_PERC'] = df['AMT_ANNUITY'] / df['AMT_INCOME_TOTAL'] df['PAYMENT_RATE'] = df['AMT_ANNUITY'] / df['AMT_CREDIT'] return df def _features_mapping(self, df): pass def _build_model(self): pass if __name__ == '__main__': curpath = os.path.join(os.environ['HOME'], 'singa_auto') os.environ.setdefault('WORKDIR_PATH', curpath) os.environ.setdefault('PARAMS_DIR_PATH', os.path.join(curpath, 'params')) train_set_url = os.path.join(curpath, 'data', 'application_train_index.csv') valid_set_url = train_set_url test_set_url = os.path.join(curpath, 'data', 'application_test_index.csv') test_queries =
pd.read_csv(test_set_url, index_col=0)
pandas.read_csv
from navbar import create_navbar, create_navbar2 import dash import dash_bootstrap_components as dbc # from dash import html # from dash import dcc import dash_html_components as html import dash_core_components as dcc from dash.dependencies import Input, Output from dash_extensions import Download from dash_extensions.snippets import send_data_frame import pandas as pd import plotly.express as px app = dash.Dash(__name__) nav = create_navbar2() header = html.H3('Welcome to page 2!') #data df = pd.read_csv('./Data/my_backup.csv') #data frame df['Date'] =
pd.to_datetime(df['Date'])
pandas.to_datetime
def calculateAnyProfile(profileType, df_labs, df_meds, df_procedures, df_diagnoses, df_phenotypes): """Calculate a single profile based on the type provided and data cleaned from getSubdemographicsTables Arguments: profileType -- which individual profile type you would like generated, this will be the category with the header information (Options: 'labs', 'medications', 'procedures', 'diagnoses', 'phenotypes') Keywords: df_labs -- labs dataframe returned from getSubdemographicsTables df_medications -- medications dataframe returned from getSubdemographicsTables df_procedures -- procedures dataframe returned from getSubdemographicsTables df_diagnoses -- diagnoses dataframe returned from getSubdemographicsTables df_phenotypes -- phenotypes dataframe returned from getSubdemographicsTables Returns Pythonic structures needed to generate profile in JSON format using the corresponding write profile function """ import os import sys import sqlalchemy import urllib.parse import pandas as pd import numpy as np import getpass from dataclasses import dataclass from SciServer import Authentication from datetime import datetime import pymssql try: # Make Labs Profile if profileType == 'labs': # High Level Info, Scalar Distribution labs_counts = df_labs.LAB_LOINC.value_counts() grouped_labs = df_labs.groupby(['LAB_LOINC', 'resultYear']) labs_frequencyPerYear = (df_labs.groupby(['LAB_LOINC','PATID','resultYear']).PATID.size() .groupby(['LAB_LOINC','resultYear']).aggregate(np.mean)) labs_fractionOfSubjects = (np.divide(df_labs.groupby(['LAB_LOINC']).PATID.nunique(), df_labs.PATID.nunique())) labs_units = df_labs.groupby(['LAB_LOINC']).LOINC_UNIT.unique() labs_names = df_labs.groupby(['LAB_LOINC']).LOINC_SHORTNAME.unique() def percentile(n): def percentile_(x): return x.quantile(n*0.01) percentile_.__name__ = '%s' % n return percentile_ labs_stats = (grouped_labs .RESULT_NUM.agg(['min','max', 'mean','median','std', percentile(10), percentile(20), percentile(30), percentile(40), percentile(50), percentile(60), percentile(70), percentile(80), percentile(90)])) def fracsAboveBelowNormal(x): try: aboveNorm = np.divide(np.sum(x.RESULT_NUM > x.range_high), x.RESULT_NUM.size) belowNorm = np.divide(np.sum(x.RESULT_NUM < x.range_low), x.RESULT_NUM.size) return pd.Series({'aboveNorm':aboveNorm, 'belowNorm':belowNorm}) except: return pd.Series({'aboveNorm':np.nan, 'belowNorm':np.nan}) labs_aboveBelowNorm = (grouped_labs.apply(fracsAboveBelowNormal)) labs_correlatedLabsCoefficients = (df_labs.groupby(['LAB_LOINC','resultYear','PATID']) .RESULT_NUM.mean()) labs_abscorrelation = 0 ## LABS TO MEDICATIONS def patientsAboveBelowNormalLabsMeds(x): # Get patients above and below normal patientsAboveNorm = x.PATID[x.RESULT_NUM > x.range_high].tolist() patientsBelowNorm = x.PATID[x.RESULT_NUM < x.range_low].tolist() # Get unique patient IDs for above & below normal patientsAboveBelowNorm = list(set(patientsAboveNorm + patientsBelowNorm)) # Link to meds table abnormalPatientsMeds = df_meds[df_meds.PATID.isin(patientsAboveBelowNorm) & (df_meds.startYear == pd.to_datetime(x.RESULT_DATE).dt.year.unique()[0])] return pd.Series({'medsAboveBelowNorm': abnormalPatientsMeds.JH_INGREDIENT_RXNORM_CODE.value_counts().index, 'counts': abnormalPatientsMeds.JH_INGREDIENT_RXNORM_CODE.value_counts().values}) # Need to grab the indices of those with abnormal lab, grab their medications, count and rank them labs_correlatedMedsCoefficients = (grouped_labs.apply(patientsAboveBelowNormalLabsMeds)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for lab in labs_correlatedMedsCoefficients.index: thisLabYear = labs_correlatedMedsCoefficients.loc[lab] thisLab = lab[0] thisYear = lab[1] totalCrossTab = np.sum(thisLabYear.counts) for medInd in range(len(labs_correlatedMedsCoefficients.loc[lab].medsAboveBelowNorm.values)): mytups.append((thisLabYear.medsAboveBelowNorm.values[medInd], thisLabYear.counts[medInd]/totalCrossTab)) multiIndex.append((thisLab, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) labs_correlatedMedsCoefficients = (pd.DataFrame.from_records(mytups, columns=['JH_INGREDIENT_RXNORM_CODE','Relative_Counts'], index=index)) ## LABS TO PROCEDURES def patientsAboveBelowNormalLabsProcs(x): # Get patients above and below normal patientsAboveNorm = x.PATID[x.RESULT_NUM > x.range_high].tolist() patientsBelowNorm = x.PATID[x.RESULT_NUM < x.range_low].tolist() # Get unique patient IDs for above & below normal patientsAboveBelowNorm = list(set(patientsAboveNorm + patientsBelowNorm)) # Link to procs table abnormalPatientsProcs = df_procedures[df_procedures.PATID.isin(patientsAboveBelowNorm) & (df_procedures.encounterYear == pd.to_datetime(x.RESULT_DATE).dt.year.unique()[0])] return pd.Series({'procsAboveBelowNorm': abnormalPatientsProcs.RAW_PX.value_counts().index, 'counts': abnormalPatientsProcs.RAW_PX.value_counts().values}) # Need to grab the indices of those with abnormal lab, grab their medications, count and rank them labs_correlatedProceduresCoefficients = (grouped_labs.apply(patientsAboveBelowNormalLabsProcs)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for lab in labs_correlatedProceduresCoefficients.index: thisLabYear = labs_correlatedProceduresCoefficients.loc[lab] thisLab = lab[0] thisYear = lab[1] totalCrossTab = np.sum(thisLabYear.counts) for procInd in range(len(labs_correlatedProceduresCoefficients.loc[lab].procsAboveBelowNorm.values)): mytups.append((thisLabYear.procsAboveBelowNorm.values[procInd], thisLabYear.counts[procInd]/totalCrossTab)) multiIndex.append((thisLab, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) labs_correlatedProceduresCoefficients = (pd.DataFrame.from_records(mytups, columns=['RAW_PX','Relative_Counts'], index=index)) ## LABS TO DIAGNOSES def patientsAboveBelowNormalLabsDiags(x): # Get patients above and below normal patientsAboveNorm = x.PATID[x.RESULT_NUM > x.range_high].tolist() patientsBelowNorm = x.PATID[x.RESULT_NUM < x.range_low].tolist() # Get unique patient IDs for above & below normal patientsAboveBelowNorm = list(set(patientsAboveNorm + patientsBelowNorm)) # Link to procs table abnormalPatientsDiags = df_diagnoses[df_diagnoses.PATID.isin(patientsAboveBelowNorm) & (df_diagnoses.admitYear == pd.to_datetime(x.RESULT_DATE).dt.year.unique()[0])] return pd.Series({'diagsAboveBelowNorm': abnormalPatientsDiags.DX.value_counts().index, 'counts': abnormalPatientsDiags.DX.value_counts().values}) # Need to grab the indices of those with abnormal lab, grab their medications, count and rank them labs_correlatedDiagnosisCoefficients = (grouped_labs.apply(patientsAboveBelowNormalLabsDiags)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for lab in labs_correlatedDiagnosisCoefficients.index: thisLabYear = labs_correlatedDiagnosisCoefficients.loc[lab] thisLab = lab[0] thisYear = lab[1] totalCrossTab = np.sum(thisLabYear.counts) for diagInd in range(len(labs_correlatedDiagnosisCoefficients.loc[lab].diagsAboveBelowNorm.values)): mytups.append((thisLabYear.diagsAboveBelowNorm.values[diagInd], thisLabYear.counts[diagInd]/totalCrossTab)) multiIndex.append((thisLab, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) labs_correlatedDiagnosisCoefficients = (pd.DataFrame.from_records(mytups, columns=['DX','Relative_Counts'], index=index)) ## LABS TO PHENOTYPES def patientsAboveBelowNormalLabsHPOs(x): # Get patients above and below normal patientsAboveNorm = x.PATID[x.RESULT_NUM > x.range_high].tolist() patientsBelowNorm = x.PATID[x.RESULT_NUM < x.range_low].tolist() # Get unique patient IDs for above & below normal patientsAboveBelowNorm = list(set(patientsAboveNorm + patientsBelowNorm)) # Link to procs table abnormalPatientsHPOs = df_phenotypes[df_phenotypes.PATID.isin(patientsAboveBelowNorm) & (df_phenotypes.admitYear == pd.to_datetime(x.RESULT_DATE).dt.year.unique()[0])] return pd.Series({'hposAboveBelowNorm': abnormalPatientsHPOs.HPO.value_counts().index, 'counts': abnormalPatientsHPOs.HPO.value_counts().values}) # Need to grab the indices of those with abnormal lab, grab their medications, count and rank them labs_correlatedPhenotypesCoefficients = (grouped_labs.apply(patientsAboveBelowNormalLabsHPOs)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for lab in labs_correlatedPhenotypesCoefficients.index: thisLabYear = labs_correlatedPhenotypesCoefficients.loc[lab] thisLab = lab[0] thisYear = lab[1] totalCrossTab = np.sum(thisLabYear.counts) for hpoInd in range(len(labs_correlatedPhenotypesCoefficients.loc[lab].hposAboveBelowNorm.values)): mytups.append((thisLabYear.hposAboveBelowNorm.values[hpoInd], thisLabYear.counts[hpoInd]/totalCrossTab)) multiIndex.append((thisLab, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) labs_correlatedPhenotypesCoefficients = (pd.DataFrame.from_records(mytups, columns=['HPO','Relative_Counts'], index=index)) return (labs_counts, labs_frequencyPerYear, labs_fractionOfSubjects, labs_units, labs_names, labs_stats, labs_aboveBelowNorm, labs_correlatedLabsCoefficients, labs_abscorrelation, labs_correlatedMedsCoefficients, labs_correlatedProceduresCoefficients, labs_correlatedDiagnosisCoefficients, labs_correlatedPhenotypesCoefficients) # Make Medication Profile elif profileType == 'medications': meds_medication = df_meds.JH_INGREDIENT_RXNORM_CODE.unique() meds_dosageInfo = df_meds.groupby('JH_INGREDIENT_RXNORM_CODE').RX_DOSE_ORDERED.mean() meds_frequencyPerYear = (df_meds.groupby(['JH_INGREDIENT_RXNORM_CODE','startYear','PATID']).PATID .count().groupby(['JH_INGREDIENT_RXNORM_CODE','startYear']).mean()) meds_fractionOfSubjects = (np.divide(df_meds.groupby(['JH_INGREDIENT_RXNORM_CODE']).PATID.nunique(), df_meds.PATID.nunique())) grouped_meds = df_meds.groupby(['JH_INGREDIENT_RXNORM_CODE', 'startYear']) #meds_correlatedLabsCoefficients def patientsAboveBelowNormalMedsLabs(x): patientsWithThisRX = list(set(x.PATID.tolist())) # Link to labs table abnormalPatientsLabs = df_labs[(df_labs.PATID.isin(patientsWithThisRX)) & ((df_labs.RESULT_NUM > df_labs.range_high) | (df_labs.RESULT_NUM < df_labs.range_low)) & (df_labs.resultYear == pd.to_datetime(x.RX_START_DATE).dt.year.unique()[0])] return pd.Series({'labsAboveBelowNorm': abnormalPatientsLabs.LAB_LOINC.value_counts().index, 'counts': abnormalPatientsLabs.LAB_LOINC.value_counts().values}) meds_correlatedLabsCoefficients = (grouped_meds.apply(patientsAboveBelowNormalMedsLabs)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for med in meds_correlatedLabsCoefficients.index: thisMedYear = meds_correlatedLabsCoefficients.loc[med] thisMed = med[0] thisYear = med[1] totalCrossTab = np.sum(thisMedYear.counts) for labInd in range(len(meds_correlatedLabsCoefficients.loc[med].labsAboveBelowNorm.values)): mytups.append((thisMedYear.labsAboveBelowNorm.values[labInd], thisMedYear.counts[labInd]/totalCrossTab)) multiIndex.append((thisMed, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) meds_correlatedLabsCoefficients = (pd.DataFrame.from_records(mytups, columns=['LAB_LOINC','Relative_Counts'], index=index)) #meds_correlatedDiagsCoefficients def patientsCrossFreqMedsDiags(x): patientsWithThisRX = list(set(x.PATID.tolist())) # Link to diagnoses table commonPatientsDXs = df_diagnoses[(df_diagnoses.PATID.isin(patientsWithThisRX)) & (df_diagnoses.admitYear == pd.to_datetime(x.RX_START_DATE).dt.year.unique()[0])] return pd.Series({'diagsCrossFreq': commonPatientsDXs.DX.value_counts().index, 'counts': commonPatientsDXs.DX.value_counts().values}) meds_correlatedDiagsCoefficients = (grouped_meds.apply(patientsCrossFreqMedsDiags)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for med in meds_correlatedDiagsCoefficients.index: thisMedYear = meds_correlatedDiagsCoefficients.loc[med] thisMed = med[0] thisYear = med[1] totalCrossTab = np.sum(thisMedYear.counts) for diagInd in range(len(meds_correlatedDiagsCoefficients.loc[med].diagsCrossFreq.values)): mytups.append((thisMedYear.diagsCrossFreq.values[diagInd], thisMedYear.counts[diagInd]/totalCrossTab)) multiIndex.append((thisMed, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) meds_correlatedDiagsCoefficients = (pd.DataFrame.from_records(mytups, columns=['DX','Relative_Counts'], index=index)) #meds_correlatedMedsCoefficients def patientsCrossFreqMedsMeds(x): patientsWithThisRX = list(set(x.PATID.tolist())) # Link to labs table commonPatientsMeds = df_meds[(df_meds.PATID.isin(patientsWithThisRX)) & (pd.to_datetime(df_meds.RX_START_DATE).dt.year == pd.to_datetime(x.RX_START_DATE).dt.year.unique()[0])] return pd.Series({'medsCrossFreq': commonPatientsMeds.JH_INGREDIENT_RXNORM_CODE.value_counts().index, 'counts': commonPatientsMeds.JH_INGREDIENT_RXNORM_CODE.value_counts().values}) meds_correlatedMedsCoefficients = (grouped_meds.apply(patientsCrossFreqMedsMeds)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for med in meds_correlatedMedsCoefficients.index: thisMedYear = meds_correlatedMedsCoefficients.loc[med] thisMed = med[0] thisYear = med[1] totalCrossTab = np.sum(thisMedYear.counts) for medInd in range(len(meds_correlatedMedsCoefficients.loc[med].medsCrossFreq.values)): mytups.append((thisMedYear.medsCrossFreq.values[medInd], thisMedYear.counts[medInd]/totalCrossTab)) multiIndex.append((thisMed, thisYear)) index =
pd.MultiIndex.from_tuples(multiIndex)
pandas.MultiIndex.from_tuples
from os.path import dirname, join import pandas as pd from sstcam_sandbox import get_data, get_astri_2019 from CHECLabPy.core.io import HDF5Writer, TIOReader from tqdm import tqdm import psutil def process(paths, output_path): with HDF5Writer(output_path) as writer: for ipath, path in enumerate(paths): print(f"File: {ipath+1}/{len(paths)}") reader = TIOReader(path) n_events = reader.n_events for wf in tqdm(reader, total=n_events): data = dict( ipath=ipath, iev=wf.iev, tack=wf.t_tack, stale=wf.stale[0], fci=wf.first_cell_id[0], ) writer.append(
pd.DataFrame(data, index=[0])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Sep 1 16:28:08 2020 @author: sawleen """ import yfinance as yf import pandas as pd from datetime import date as _date from dateutil.relativedelta import relativedelta as _relativedelta import math as _math #pd.set_option('display.max_columns', 200) class Data(): def __init__ (self, sgx_symbol): self.sgx_symbol = sgx_symbol self.stock = yf.Ticker("{}".format(sgx_symbol)) def get_name_disp(self): stock = self.stock try: return stock.info['longName'] # for display except: print('! Warning: No name fetched for {}'.format(self.sgx_symbol)) return self.sgx_symbol def get_name_short(self): stock = self.stock try: short_name = stock.info['shortName'] # for feeding into SG Investor URL short_name = short_name.lower() short_name = short_name.replace(' ','-') return short_name except: print('! Warning: Short name cannot be fetched for {}'.format(self.sgx_symbol)) return None def get_sector(self): stock = self.stock try: return stock.info['sector'] except: print('Stock {} has no sector info'.format(self.sgx_symbol)) return None # Mainly for REITS def get_industry(self): stock = self.stock try: return stock.info['industry'] except: print('Stock {} has no industry info'.format(self.sgx_symbol)) return None # Get basic stats def get_basic_stats(self): stock = self.stock # Financial ratios market_cap = _math.nan # Set to nan if value not in stock info pb_ratio = _math.nan pe_ratio = _math.nan payout_ratio = _math.nan roe = _math.nan percentage_insider_share = _math.nan try: if 'marketCap' in stock.info.keys() and stock.info['marketCap']!=None: market_cap = round(stock.info['marketCap']/(10**9),2) if 'priceToBook' in stock.info.keys(): pb_ratio = round(stock.info['priceToBook'],2) if 'trailingPE' in stock.info.keys(): pe_ratio = round(stock.info['trailingPE'],2) if 'payoutRatio' in stock.info.keys(): payout_ratio = stock.info['payoutRatio'] if payout_ratio == None: payout_ratio = _math.nan else: payout_ratio = payout_ratio*100 if 'returnOnEquity' in stock.info.keys(): roe = stock.info['returnOnEquity'] if roe: roe = round(roe*100,2) except Exception as e: print(e) try: #sometimes the data can't be loaded for some reason :/ percentage_insider_share = stock.major_holders.iloc[0,0] percentage_insider_share = percentage_insider_share.replace('%','') percentage_insider_share = float(percentage_insider_share) percentage_insider_share = round(percentage_insider_share,2) except: print('! Warning: Percentage insider share for {} cannot be loaded.. '.format(self.sgx_symbol)) print('Data fetched instead:') print('{}'.format(percentage_insider_share)) pass stats={'Market Cap (bil)':market_cap, 'PB Ratio':pb_ratio, 'PE Ratio':pe_ratio, 'Dividend Payout Ratio':payout_ratio, '% Return on Equity': roe, '% insider shares':percentage_insider_share} #'PEG Ratio':peg_ratio stats_df = pd.DataFrame.from_dict(stats, orient='index') stats_df.columns = ['Values'] stats_df = stats_df.T return stats_df # Get dividends def get_dividends(self): stock = self.stock # Dividends try: div_yield = stock.info['dividendYield'] div_yield_trail = stock.info['trailingAnnualDividendYield'] div_yield_5yr = stock.info['fiveYearAvgDividendYield'] dividends = {'5-yr average':div_yield_5yr, 'Trailing':div_yield_trail, 'Forward':div_yield} for div_type in dividends: if dividends[div_type] != None: if dividends[div_type] >1: dividends[div_type] = round(dividends[div_type],2) else: dividends[div_type] = round(dividends[div_type]*100,2) # Convert % into figure dividends_df = pd.DataFrame.from_dict(dividends, orient='index') dividends_df=dividends_df.reset_index() # Set index(dividend type) to a column dividends_df.columns=['Dividend Type','Values'] except: print('! Warning: Dividend data cannot be fetched for {}'.format(self.sgx_symbol)) dividends_df = pd.DataFrame(index = ['5-yr average','Trailing','Forward'], columns=['Dividend Type','Values']) return dividends_df # Current stock price def get_askprice(self): stock=self.stock try: return stock.info['ask'] # Current price except: print('! Warning: Ask price cannot be fetched for {}'.format(self.sgx_symbol)) return None # Return average growth over 3 years for both income and revenue def process_inc_statement(self): inc_statement = self.get_inc_statement() inc_yoy_avg_growth={} inc_yrly_growth={} for fig_type in inc_statement: figures = inc_statement[fig_type] yrly_figures = self.get_yrly_figures(figures) all_years = self.get_years(yrly_figures) yrly_growth = self.calc_yrly_growth(yrly_figures, all_years, fig_type) inc_yrly_growth[fig_type] = yrly_growth growth_yoy_avg = self.calc_yoy_avg_growth(yrly_figures, all_years, fig_type) inc_yoy_avg_growth[fig_type] = growth_yoy_avg # Average yoy growth inc_yoy_avg_growth_df =
pd.DataFrame.from_dict(inc_yoy_avg_growth,orient='index')
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*-. """ Created on Tue Jan 21 13:04:58 2020 @author: xavier.mouy """ import pandas as pd import xarray as xr import os import uuid import warnings import ecosound.core.tools import ecosound.core.decorators from ecosound.core.metadata import DeploymentInfo import copy class Annotation(): """ A class used for manipulating annotation data. The Annotation object stores from both manual analysis annotations collected with software like PAMlab and Raven, and outputs from automated detectors and classifiers. Attributes ---------- data : pandas DataFrame Annotation DataFranme. Methods ------- check_integrity(verbose=False, time_duplicates_only=False) Check integrity of Annotation object. from_raven(files, class_header='Sound type',subclass_header=None, verbose=False) Import annotation data from 1 or several Raven files. to_raven(outdir, single_file=False) Write annotation data to one or several Raven files. from_pamlab(files, verbose=False) Import annotation data from 1 or several PAMlab files. to_pamlab(outdir, single_file=False) Write annotation data to one or several Raven files. from_parquet(file) Import annotation data from a Parquet file. to_parquet(file) Write annotation data to a Parquet file. from_netcdf(file) Import annotation data from a netCDF4 file. to_netcdf(file) Write annotation data to a netCDF4 file. insert_values(**kwargs) Manually insert values for given Annotation fields. insert_metadata(deployment_info_file) Insert metadata information to the annotation from a deployment_info_file. filter_overlap_with(annot, freq_ovp=True, dur_factor_max=None, dur_factor_min=None,ovlp_ratio_min=None, remove_duplicates=False,inherit_metadata=False, filter_deploymentID=True, inplace=False) Filter annotations overalaping with another set of annotations. get_labels_class() Return all unique class labels. get_labels_subclass() Return all unique subclass labels. get_fields() Return list with all annotations fields. summary(rows='deployment_ID',columns='label_class') Produce a summary pivot table with the number of annotations for two given annotation fields. __add__() Concatenate data from annotation objects uisng the + sign. __len__() Return number of annotations. """ def __init__(self): """ Initialize Annotation object. Sets all the annotation fields.: -'uuid': UUID, Unique identifier code -'from_detector': bool, True if data comes from an automatic process. -'software_name': str, Software name. Can be Raven or PAMlab for manual analysis. -'software_version': str, Version of the software used to create the annotations. -'operator_name': str, Name of the person responsible for the creation of the annotations. -'UTC_offset': float, Offset hours to UTC. -'entry_date': datetime, Date when the annotation was created. -'audio_channel': int, Channel number. -'audio_file_name': str, Name of the audio file. -'audio_file_dir': str, Directory where the audio file is. -'audio_file_extension': str, Extension of teh audio file. -'audio_file_start_date': datetime, Date of the audio file start time. -'audio_sampling_frequency': int, Sampling frequecy of the audio data. -'audio_bit_depth': int, Bit depth of the audio data. -'mooring_platform_name': str, Name of the moorig platform (e.g. 'glider','Base plate'). -'recorder_type': str, Name of the recorder type (e.g., 'AMAR'), 'SoundTrap'. -'recorder_SN': str, Serial number of the recorder. -'hydrophone_model': str, Model of the hydrophone. -'hydrophone_SN': str, Serial number of the hydrophone. -'hydrophone_depth': float, Depth of the hydrophone in meters. -'location_name': str, Name of the deploymnet location. -'location_lat': float, latitude of the deployment location in decimal degrees. -'location_lon': float, longitude of the deployment location in decimal degrees. -'location_water_depth': float, Water depth at the deployment location in meters. -'deployment_ID': str, Unique ID of the deployment. -'frequency_min': float, Minimum frequency of the annotaion in Hz. -'frequency_max': float, Maximum frequency of the annotaion in Hz. -'time_min_offset': float, Start time of the annotaion, in seconds relative to the begining of the audio file. -'time_max_offset': float, Stop time of the annotaion, in seconds relative to the begining of the audio file. -'time_min_date': datetime, Date of the annotation start time. -'time_max_date': datetime, Date of the annotation stop time. -'duration': float, Duration of the annotation in seconds. -'label_class': str, label of the annotation class (e.g. 'fish'). -'label_subclass': str, label of the annotation subclass (e.g. 'grunt') 'confidence': float, Confidence of the classification. Returns ------- Annotation object. """ self.data = pd.DataFrame({ 'uuid': [], 'from_detector': [], # True, False 'software_name': [], 'software_version': [], 'operator_name': [], 'UTC_offset': [], 'entry_date': [], 'audio_channel': [], 'audio_file_name': [], 'audio_file_dir': [], 'audio_file_extension': [], 'audio_file_start_date': [], 'audio_sampling_frequency': [], 'audio_bit_depth': [], 'mooring_platform_name': [], 'recorder_type': [], 'recorder_SN': [], 'hydrophone_model': [], 'hydrophone_SN': [], 'hydrophone_depth': [], 'location_name': [], 'location_lat': [], 'location_lon': [], 'location_water_depth': [], 'deployment_ID': [], 'frequency_min': [], 'frequency_max': [], 'time_min_offset': [], 'time_max_offset': [], 'time_min_date': [], 'time_max_date': [], 'duration': [], 'label_class': [], 'label_subclass': [], 'confidence': [] }) self._enforce_dtypes() def check_integrity(self, verbose=False, ignore_frequency_duplicates=False): """ Check integrity of Annotation object. Tasks performed: 1- Check that start time < stop time 2- Check that min frequency < max frequency 3- Remove duplicate entries based on time and frequency, filename, labels and filenames Parameters ---------- verbose : bool, optional Print summary of the duplicate entries deleted. The default is False. ignore_frequency_duplicates : bool, optional If set to True, doesn't consider frequency values when deleting duplicates. It is useful when data are imported from Raven. The default is False. Raises ------ ValueError If annotations have a start time > stop time If annotations have a min frequency > max frequency Returns ------- None. """ # Drop all duplicates count_start = len(self.data) if ignore_frequency_duplicates: # doesn't use frequency boundaries self.data = self.data.drop_duplicates( subset=['time_min_offset', 'time_max_offset', 'label_class', 'label_subclass', 'audio_file_name', ], keep="first",).reset_index(drop=True) else: # remove annot with exact same time AND frequency boundaries self.data = self.data.drop_duplicates( subset=['time_min_offset', 'time_max_offset', 'frequency_min', 'frequency_max', 'label_class', 'label_subclass', 'audio_file_name', ], keep="first",).reset_index(drop=True) count_stop = len(self.data) if verbose: print('Duplicate entries removed:', str(count_start-count_stop)) # Check that start and stop times are coherent (i.e. t2 > t1) time_check = self.data.index[ self.data['time_max_offset'] < self.data['time_min_offset']].tolist() if len(time_check) > 0: raise ValueError( 'Incoherent annotation times (time_min > time_max). \ Problematic annotations:' + str(time_check)) # Check that min and max frequencies are coherent (i.e. fmin < fmax) freq_check = self.data.index[ self.data['frequency_max'] < self.data['frequency_min']].tolist() if len(freq_check) > 0: raise ValueError( 'Incoherent annotation frequencies (frequency_min > \ frequency_max). Problematic annotations:' + str(freq_check)) if verbose: print('Integrity test succesfull') def from_raven(self, files, class_header='Sound type', subclass_header=None, verbose=False): """ Import data from 1 or several Raven files. Load annotation tables from .txt files generated by the software Raven. Parameters ---------- files : str, list Path of the txt file(s) to import. Can be a str if importing a single file. Needs to be a list if importing multiple files. If 'files' is a folder, all files in that folder ending with '.selections.txt' will be imported. class_header : str, optional Name of the header in the Raven file corresponding to the class name. The default is 'Sound type'. subclass_header : str, optional Name of the header in the Raven file corresponding to the subclass name. The default is None. verbose : bool, optional If set to True, print the summary of the annatation integrity test. The default is False. Returns ------- None. """ if os.path.isdir(files): files = ecosound.core.tools.list_files(files, '.selections.txt', recursive=False, case_sensitive=True, ) if verbose: print(len(files), 'annotation files found.') data = Annotation._import_csv_files(files) files_timestamp = ecosound.core.tools.filename_to_datetime( data['Begin Path'].tolist()) self.data['audio_file_start_date'] = files_timestamp self.data['audio_channel'] = data['Channel'] self.data['audio_file_name'] = data['Begin Path'].apply( lambda x: os.path.splitext(os.path.basename(x))[0]) self.data['audio_file_dir'] = data['Begin Path'].apply( lambda x: os.path.dirname(x)) self.data['audio_file_extension'] = data['Begin Path'].apply( lambda x: os.path.splitext(x)[1]) self.data['time_min_offset'] = data['Begin Time (s)'] self.data['time_max_offset'] = data['End Time (s)'] self.data['time_min_date'] = pd.to_datetime( self.data['audio_file_start_date'] + pd.to_timedelta( self.data['time_min_offset'], unit='s')) self.data['time_max_date'] = pd.to_datetime( self.data['audio_file_start_date'] + pd.to_timedelta(self.data['time_max_offset'], unit='s')) self.data['frequency_min'] = data['Low Freq (Hz)'] self.data['frequency_max'] = data['High Freq (Hz)'] if class_header is not None: self.data['label_class'] = data[class_header] if subclass_header is not None: self.data['label_subclass'] = data[subclass_header] self.data['from_detector'] = False self.data['software_name'] = 'raven' self.data['uuid'] = self.data.apply(lambda _: str(uuid.uuid4()), axis=1) self.data['duration'] = self.data['time_max_offset'] - self.data['time_min_offset'] self.check_integrity(verbose=verbose, ignore_frequency_duplicates=True) if verbose: print(len(self), 'annotations imported.') def to_raven(self, outdir, outfile='Raven.Table.1.selections.txt', single_file=False): """ Write data to 1 or several Raven files. Write annotations as .txt files readable by the software Raven. Output files can be written in a single txt file or in several txt files (one per audio recording). In the latter case, output file names are automatically generated based on the audio file's name. Parameters ---------- outdir : str Path of the output directory where the Raven files are written. outfile : str Name of the output file. Only used is single_file is True. The default is 'Raven.Table.1.selections.txt'. single_file : bool, optional If set to True, writes a single output file with all annotations. The default is False. Returns ------- None. """ if single_file: annots = [self.data] else: annots = [pd.DataFrame(y) for x, y in self.data.groupby( 'audio_file_name', as_index=False)] for annot in annots: annot.reset_index(inplace=True, drop=True) cols = ['Selection', 'View', 'Channel', 'Begin Time (s)', 'End Time (s)', 'Delta Time (s)', 'Low Freq (Hz)', 'High Freq (Hz)', 'Begin Path', 'File Offset (s)', 'Begin File', 'Class', 'Sound type', 'Software', 'Confidence'] outdf = pd.DataFrame({'Selection': 0, 'View': 0, 'Channel': 0, 'Begin Time (s)': 0, 'End Time (s)': 0, 'Delta Time (s)': 0, 'Low Freq (Hz)': 0, 'High Freq (Hz)': 0, 'Begin Path': 0, 'File Offset (s)': 0, 'Begin File': 0, 'Class': 0, 'Sound type': 0, 'Software': 0, 'Confidence': 0}, index=list(range(annot.shape[0]))) outdf['Selection'] = range(1, annot.shape[0]+1) outdf['View'] = 'Spectrogram 1' outdf['Channel'] = annot['audio_channel'] outdf['Begin Time (s)'] = annot['time_min_offset'] outdf['End Time (s)'] = annot['time_max_offset'] outdf['Delta Time (s)'] = annot['duration'] outdf['Low Freq (Hz)'] = annot['frequency_min'] outdf['High Freq (Hz)'] = annot['frequency_max'] outdf['File Offset (s)'] = annot['time_min_offset'] outdf['Class'] = annot['label_class'] outdf['Sound type'] = annot['label_subclass'] outdf['Software'] = annot['software_name'] outdf['Confidence'] = annot['confidence'] outdf['Begin Path'] = [os.path.join(x, y) + z for x, y, z in zip(annot['audio_file_dir'], annot['audio_file_name'], annot['audio_file_extension'])] outdf['Begin File'] = [x + y for x, y in zip(annot['audio_file_name'], annot['audio_file_extension'])] outdf = outdf.fillna(0) if single_file: outfilename = os.path.join(outdir, outfile) else: outfilename = os.path.join( outdir, str(annot['audio_file_name'].iloc[0]) + str(annot['audio_file_extension'].iloc[0]) + '.chan' + str(annot['audio_channel'].iloc[0]) + '.Table.1.selections.txt') outdf.to_csv(outfilename, sep='\t', encoding='utf-8', header=True, columns=cols, index=False) def from_pamlab(self, files, verbose=False): """ Import data from 1 or several PAMlab files. Load annotation data from .log files generated by the software PAMlab. Parameters ---------- files : str, list Path of the txt file to import. Can be a str if importing a single file or entire folder. Needs to be a list if importing multiple files. If 'files' is a folder, all files in that folder ending with 'annotations.log' will be imported. verbose : bool, optional If set to True, print the summary of the annatation integrity test. The default is False. Returns ------- None. """ if type(files) is str: if os.path.isdir(files): files = ecosound.core.tools.list_files(files, ' annotations.log', recursive=False, case_sensitive=True, ) if verbose: print(len(files), 'annotation files found.') data = Annotation._import_csv_files(files) files_timestamp = ecosound.core.tools.filename_to_datetime( data['Soundfile'].tolist()) self.data['audio_file_start_date'] = files_timestamp self.data['operator_name'] = data['Operator'] self.data['entry_date'] = pd.to_datetime( data['Annotation date and time (local)'], format='%Y-%m-%d %H:%M:%S.%f') self.data['audio_channel'] = data['Channel'] self.data['audio_file_name'] = data['Soundfile'].apply( lambda x: os.path.splitext(os.path.basename(x))[0]) self.data['audio_file_dir'] = data['Soundfile'].apply( lambda x: os.path.dirname(x)) self.data['audio_file_extension'] = data['Soundfile'].apply( lambda x: os.path.splitext(x)[1]) self.data['audio_sampling_frequency'] = data['Sampling freq (Hz)'] self.data['recorder_type'] = data['Recorder type'] self.data['recorder_SN'] = data['Recorder ID'] self.data['hydrophone_depth'] = data['Recorder depth'] self.data['location_name'] = data['Station'] self.data['location_lat'] = data['Latitude (deg)'] self.data['location_lon'] = data['Longitude (deg)'] self.data['time_min_offset'] = data['Left time (sec)'] self.data['time_max_offset'] = data['Right time (sec)'] self.data['time_min_date'] = pd.to_datetime( self.data['audio_file_start_date'] + pd.to_timedelta(self.data['time_min_offset'], unit='s')) self.data['time_max_date'] = pd.to_datetime( self.data['audio_file_start_date'] + pd.to_timedelta(self.data['time_max_offset'], unit='s')) self.data['frequency_min'] = data['Bottom freq (Hz)'] self.data['frequency_max'] = data['Top freq (Hz)'] self.data['label_class'] = data['Species'] self.data['label_subclass'] = data['Call type'] self.data['from_detector'] = False self.data['software_name'] = 'pamlab' self.data['uuid'] = self.data.apply(lambda _: str(uuid.uuid4()), axis=1) self.data['duration'] = self.data['time_max_offset'] - self.data['time_min_offset'] self.check_integrity(verbose=verbose) if verbose: print(len(self), 'annotations imported.') def to_pamlab(self, outdir, outfile='PAMlab annotations.log', single_file=False): """ Write data to 1 or several PAMlab files. Write annotations as .log files readable by the software PAMlab. Output files can be written in a single txt file or in several txt files (one per audio recording). In teh latter case, output file names are automatically generated based on the audio file's name and the name format required by PAMlab. Parameters ---------- outdir : str Path of the output directory where the Raven files are written. outfile : str Name of teh output file. Only used is single_file is True. The default is 'PAMlab annotations.log'. single_file : bool, optional If set to True, writes a single output file with all annotations. The default is False. Returns ------- None. """ if single_file: annots = [self.data] else: annots = [pd.DataFrame(y) for x, y in self.data.groupby( 'audio_file_name', as_index=False)] for annot in annots: annot.reset_index(inplace=True, drop=True) cols = ['fieldkey:', 'Soundfile', 'Channel', 'Sampling freq (Hz)', 'Latitude (deg)', 'Longitude (deg)', 'Recorder ID', 'Recorder depth', 'Start date and time (UTC)', 'Annotation date and time (local)', 'Recorder type', 'Deployment', 'Station', 'Operator', 'Left time (sec)', 'Right time (sec)', 'Top freq (Hz)', 'Bottom freq (Hz)', 'Species', 'Call type', 'rms SPL', 'SEL', '', ''] outdf = pd.DataFrame({'fieldkey:': 0, 'Soundfile': 0, 'Channel': 0, 'Sampling freq (Hz)': 0, 'Latitude (deg)': 0, 'Longitude (deg)': 0, 'Recorder ID': 0, 'Recorder depth': 0, 'Start date and time (UTC)': 0, 'Annotation date and time (local)': 0, 'Recorder type': 0, 'Deployment': 0, 'Station': 0, 'Operator': 0, 'Left time (sec)': 0, 'Right time (sec)': 0, 'Top freq (Hz)': 0, 'Bottom freq (Hz)': 0, 'Species': '', 'Call type': '', 'rms SPL': 0, 'SEL': 0, '': '', '': ''}, index=list(range(annot.shape[0]))) outdf['fieldkey:'] = 'an:' outdf['Species'] = annot['label_class'] outdf['Call type'] = annot['label_subclass'] outdf['Left time (sec)'] = annot['time_min_offset'] outdf['Right time (sec)'] = annot['time_max_offset'] outdf['Top freq (Hz)'] = annot['frequency_max'] outdf['Bottom freq (Hz)'] = annot['frequency_min'] outdf['rms SPL'] = annot['confidence'] outdf['Operator'] = annot['operator_name'] outdf['Channel'] = annot['audio_channel'] outdf['Annotation date and time (local)'] = annot['entry_date'] outdf['Sampling freq (Hz)'] = annot['audio_sampling_frequency'] outdf['Recorder type'] = annot['recorder_type'] outdf['Recorder ID'] = annot['recorder_SN'] outdf['Recorder depth'] = annot['hydrophone_depth'] outdf['Station'] = annot['location_name'] outdf['Latitude (deg)'] = annot['location_lat'] outdf['Longitude (deg)'] = annot['location_lon'] outdf['Soundfile'] = [os.path.join(x, y) + z for x, y, z in zip(annot['audio_file_dir'], annot['audio_file_name'], annot['audio_file_extension'] ) ] outdf = outdf.fillna(0) if single_file: outfilename = os.path.join(outdir, outfile) else: outfilename = os.path.join( outdir, str(annot['audio_file_name'].iloc[0]) + str(annot['audio_file_extension'].iloc[0]) + ' annotations.log') outdf.to_csv(outfilename, sep='\t', encoding='utf-8', header=True, columns=cols, index=False) def from_parquet(self, file, verbose=False): """ Import data from a Parquet file. Load annotations from a .parquet file. This format allows for fast and efficient data storage and access. Parameters ---------- file : str Path of the input parquet file. verbose : bool, optional If set to True, print the summary of the annatation integrity test. The default is False. Returns ------- None. """ self.data = pd.read_parquet(file) self.check_integrity(verbose=verbose) if verbose: print(len(self), 'annotations imported.') def to_parquet(self, file): """ Write data to a Parquet file. Write annotations as .parquet file. This format allows for fast and efficient data storage and access. Parameters ---------- file : str Path of the output directory where the parquet files is written. Returns ------- None. """ # make sure the HP SN column are strings self.data.hydrophone_SN = self.data.hydrophone_SN.astype(str) # save self.data.to_parquet(file, coerce_timestamps='ms', allow_truncated_timestamps=True) def from_netcdf(self, file, verbose=False): """ Import data from a netcdf file. Load annotations from a .nc file. This format works well with xarray and Dask. Parameters ---------- file : str Path of the nc file to import. Can be a str if importing a single file or entire folder. Needs to be a list if importing multiple files. If 'files' is a folder, all files in that folder ending with '.nc' will be imported. verbose : bool, optional If set to True, print the summary of the annatation integrity test. The default is False. Returns ------- None. """ if type(file) is str: if os.path.isdir(file): file = ecosound.core.tools.list_files( file, '.nc', recursive=False, case_sensitive=True,) if verbose: print(len(file), 'files found.') else: file = [file] self.data = self._import_netcdf_files(file) self.check_integrity(verbose=verbose) if verbose: print(len(self), 'annotations imported.') def to_netcdf(self, file): """ Write data to a netcdf file. Write annotations as .nc file. This format works well with xarray and Dask. Parameters ---------- file : str Path of the output file (.nc) to be written. Returns ------- None. """ if file.endswith('.nc') is False: file = file + '.nc' self._enforce_dtypes() meas = self.data meas.set_index('time_min_date', drop=False, inplace=True) meas.index.name = 'date' dxr1 = meas.to_xarray() dxr1.attrs['datatype'] = 'Annotation' dxr1.to_netcdf(file, engine='netcdf4', format='NETCDF4') def insert_values(self, **kwargs): """ Insert constant values for given Annotation fields. Fill in entire columns of the annotation dataframe with constant values. It is usefull for adding project related informations that may not be included in data imported from Raven or PAMlab files (e.g., 'location_lat', 'location_lon'). Values can be inserted for several annotations fields at a time by setting several keywords. This should only be used for filling in static values (i.e., not for variable values such as time/frequency boundaries of the annotations). Keywords must have the exact same name as the annotation field (see method .get_fields). For example: (location_lat=48.6, recorder_type='AMAR') Parameters ---------- **kwargs : annotation filed name Keyword and value of the annotation field to fill in. Keywords must have the exact same name as the annotation field. Raises ------ ValueError If keyword doesn't match any annotation field name. Returns ------- None. """ for key, value in kwargs.items(): if key in self.data: self.data[key] = value else: raise ValueError('The annotation object has no field: ' + str(key)) def insert_metadata(self, deployment_info_file): """ Insert metadata infortion to the annotation. Uses the Deployment_info_file to fill in the metadata of the annotation . The deployment_info_file must be created using the DeploymentInfo class from ecosound.core.metadata using DeploymentInfo.write_template. Parameters ---------- deployment_info_file : str Csv file readable by ecosound.core.meta.DeploymentInfo.read(). It contains all the deployment metadata. Returns ------- None. """ dep_info = DeploymentInfo() dep_info.read(deployment_info_file) self.insert_values(UTC_offset=dep_info.data['UTC_offset'].values[0], audio_channel=dep_info.data['audio_channel_number'].values[0], audio_sampling_frequency=dep_info.data['sampling_frequency'].values[0], audio_bit_depth=dep_info.data['bit_depth'].values[0], mooring_platform_name = dep_info.data['mooring_platform_name'].values[0], recorder_type=dep_info.data['recorder_type'].values[0], recorder_SN=dep_info.data['recorder_SN'].values[0], hydrophone_model=dep_info.data['hydrophone_model'].values[0], hydrophone_SN=dep_info.data['hydrophone_SN'].values[0], hydrophone_depth=dep_info.data['hydrophone_depth'].values[0], location_name=dep_info.data['location_name'].values[0], location_lat=dep_info.data['location_lat'].values[0], location_lon=dep_info.data['location_lon'].values[0], location_water_depth=dep_info.data['location_water_depth'].values[0], deployment_ID=dep_info.data['deployment_ID'].values[0], ) def filter_overlap_with(self, annot, freq_ovp=True,dur_factor_max=None,dur_factor_min=None,ovlp_ratio_min=None,remove_duplicates=False,inherit_metadata=False,filter_deploymentID=True, inplace=False): """ Filter overalaping annotations. Only keep annotations that overlap in time and/or frequency with the annotation object "annot". Parameters ---------- annot : ecosound.annotation.Annotation object Annotation object used to filter the current annotations. freq_ovp : bool, optional If set to True, filters not only annotations that overlap in time but also overlap in frequency. The default is True. dur_factor_max : float, optional Constraint dictating the maximum duration overlapped annotations must not exceed in order to be "kept". Any annotations whose duration exceed dur_factor_max*annot.duration are discareded, even if they overlap in time/frequency. If set to None, no maximum duration constraints are applied. The default is None. dur_factor_min : float, optional Constraint dictating the minimum duration overlapped annotations must exceed in order to be "kept". Any annotations whose duration does not exceed dur_factor_min*annot.duration are discareded, even if they overlap in time/frequency. If set to None, no minimum duration constraints are applied. The default is None. ovlp_ratio_min : float, optional Constraint dictating the minimum amount (percentage) of overlap in time annotations must have in order to be "kept". If set to None, no minimum time overlap constraints are applied. The default is None. remove_duplicates : bool, optional If set to True, only selects a single annotation overlaping with annotations from the annot object. This is relevant only if several annotations overlap with an annotation from the annot object. The default is False. inherit_metadata : bool, optional If set to True, the filtered annotations inherit all the metadata information from the matched annotations in the annot object. It includes 'label_class', 'label_subclass', 'mooring_platform_name', 'recorder_type', 'recorder_SN', 'hydrophone_model', 'hydrophone_SN' , 'hydrophone_depth', 'location_name', 'location_lat', 'location_lon', 'location_water_depth', and 'deployment_ID'. The default is False. filter_deploymentID : bool, optional If set to False, doesn't use the deploymentID to match annotations together but just the frequency and time offset boundaries of the annotations. The default is True. inplace : bool, optional If set to True, updates the urrent object with the filter results. The default is False. Returns ------- out_object : ecosound.annotation.Annotation Filtered Annotation object. """ stack = [] det = self.data for index, an in annot.data.iterrows(): # for each annotation # restrict to the specific deploymnetID of the annotation if file names are not unique if filter_deploymentID: df = det[det.deployment_ID == an.deployment_ID] else: df = det ## filter detections to same file and deployment ID as the current annotation df = df[df.audio_file_name == an.audio_file_name] ## check overlap in time first if len(df) > 0: df = df[((df.time_min_offset <= an.time_min_offset) & (df.time_max_offset >= an.time_max_offset)) | # 1- annot inside detec ((df.time_min_offset >= an.time_min_offset) & (df.time_max_offset <= an.time_max_offset)) | # 2- detec inside annot ((df.time_min_offset < an.time_min_offset) & (df.time_max_offset < an.time_max_offset) & (df.time_max_offset > an.time_min_offset)) | # 3- only the end of the detec overlaps with annot ((df.time_min_offset > an.time_min_offset) & (df.time_min_offset < an.time_max_offset) & (df.time_max_offset > an.time_max_offset)) # 4- only the begining of the detec overlaps with annot ] # then looks at frequency overlap. Can be turned off if freq bounds are not reliable if (len(df) > 0) & freq_ovp: df = df[((df.frequency_min <= an.frequency_min) & (df.frequency_max >= an.frequency_max)) | # 1- annot inside detec ((df.frequency_min >= an.frequency_min) & (df.frequency_max <= an.frequency_max)) | # 2- detec inside annot ((df.frequency_min < an.frequency_min) & (df.frequency_max < an.frequency_max) & (df.frequency_max > an.frequency_min)) | # 3- only the top of the detec overlaps with annot ((df.frequency_min > an.frequency_min) & (df.frequency_min < an.frequency_max) & (df.frequency_max > an.frequency_max)) # 4- only the bottom of the detec overlaps with annot ] # discard if durations are too different if (len(df) > 0) & (dur_factor_max is not None): df = df[df.duration < an.duration*dur_factor_max] if (len(df) > 0) & (dur_factor_min is not None): df = df[df.duration > an.duration*dur_factor_min] # discard if they don't overlap enough if (len(df) > 0) & (ovlp_ratio_min is not None): df_ovlp = (df['time_max_offset'].apply(lambda x: min(x,an.time_max_offset)) - df['time_min_offset'].apply(lambda x: max(x,an.time_min_offset))) / an.duration df = df[df_ovlp>=ovlp_ratio_min] df_ovlp = df_ovlp[df_ovlp>=ovlp_ratio_min] if (len(df) > 1) & remove_duplicates: try: df = df.iloc[[df_ovlp.values.argmax()]] # pick teh one with max time overlap except: print('asas') if len(df) > 0: if inherit_metadata: df['mooring_platform_name'] = an['mooring_platform_name'] df['recorder_type'] = an['recorder_type'] df['recorder_SN'] = an['recorder_SN'] df['hydrophone_model'] = an['hydrophone_model'] df['hydrophone_SN'] = an['hydrophone_SN'] df['hydrophone_depth'] = an['hydrophone_depth'] df['location_name'] = an['location_name'] df['location_lat'] = an['location_lat'] df['location_lon'] = an['location_lon'] df['location_water_depth'] = an['location_water_depth'] df['deployment_ID'] = an['deployment_ID'] df['label_class'] = an['label_class'] df['label_subclass'] = an['label_subclass'] stack.append(df) ovlp = pd.concat(stack, ignore_index=True) if inplace: self.data = ovlp self.check_integrity() out_object = None else: out_object = copy.copy(self) out_object.data = ovlp out_object.check_integrity() return out_object def get_labels_class(self): """ Get all the unique class labels of the annotations. Returns ------- classes : list List of unique class labels. """ if len(self.data) > 0: classes = list(self.data['label_class'].unique()) else: classes = [] return classes def get_labels_subclass(self): """ Get all the unique subclass labels of the annotations. Returns ------- classes : list List of unique subclass labels. """ if len(self.data) > 0: subclasses = list(self.data['label_subclass'].unique()) else: subclasses = [] return subclasses def get_fields(self): """ Get all the annotations fields. Returns ------- classes : list List of annotation fields. """ return list(self.data.columns) def summary(self, rows='deployment_ID', columns='label_class'): """ Produce a summary table of the number of annotations. Create a pivot table summarizing the number of annotations for each deployment and each label class. The optional arguments 'rows' and 'columns' can be used to change the fields of the annotations to be displayed in the table. Parameters ---------- rows : 'str', optional Name of the annotation field for the rows of the table. The default is 'deployment_ID'. columns : 'str', optional Name of the annotation field for the columns of the table. The default default is 'label_class'. Returns ------- summary : pandas DataFrame Pivot table with the number of annotations in each category. """ summary = self.data.pivot_table(index=rows, columns=columns, aggfunc='size', fill_value=0) # Add a "Total" row and column summary.loc['Total'] = summary.sum() summary['Total'] = summary.sum(axis=1) return summary def _enforce_dtypes(self): self.data = self.data.astype({ 'uuid': 'str', 'from_detector': 'bool', # True, False 'software_name': 'str', 'software_version': 'str', 'operator_name': 'str', 'UTC_offset': 'float', 'entry_date': 'datetime64[ns]', 'audio_channel': 'int', 'audio_file_name': 'str', 'audio_file_dir': 'str', 'audio_file_extension': 'str', 'audio_file_start_date': 'datetime64[ns]', 'audio_sampling_frequency': 'int', 'audio_bit_depth': 'int', 'mooring_platform_name': 'str', 'recorder_type': 'str', 'recorder_SN': 'str', 'hydrophone_model': 'str', 'hydrophone_SN': 'str', 'hydrophone_depth': 'float', 'location_name': 'str', 'location_lat': 'float', 'location_lon': 'float', 'location_water_depth': 'float', 'deployment_ID': 'str', 'frequency_min': 'float', 'frequency_max': 'float', 'time_min_offset': 'float', 'time_max_offset': 'float', 'time_min_date': 'datetime64[ns]', 'time_max_date': 'datetime64[ns]', 'duration': 'float', 'label_class': 'str', 'label_subclass': 'str', 'confidence': 'float', }) @staticmethod @ecosound.core.decorators.listinput def _import_csv_files(files): """Import one or several text files with header to a Panda datafrane.""" assert type(files) in (str, list), "Input must be of type str (single \ file) or list (multiple files)" # Import all files to a dataframe for idx, file in enumerate(files): # Extract header first due to formating issues in PAMlab files header = pd.read_csv(file, delimiter='\t', header=None, nrows=1) headerLength = header.shape[1] # Get all data and only keep values correpsonding to header labels tmp = pd.read_csv(file, delimiter='\t', header=None, skiprows=1, na_values=None) tmp = tmp.iloc[:, 0:headerLength] # Put header back tmp = tmp.set_axis(list(header.values[0]), axis=1, inplace=False) if idx == 0: data = tmp else: data = pd.concat([data, tmp], ignore_index=True, sort=False) return data def _import_netcdf_files(self, files): """Import one or several netcdf files to a Panda datafrane.""" assert type(files) in (str, list), "Input must be of type str (single \ file or directory) or list (multiple files)" # Import all files to a dataframe tmp = [] for idx, file in enumerate(files): dxr = xr.open_dataset(file) if dxr.attrs['datatype'] == 'Annotation': tmp2 = dxr.to_dataframe() tmp2.reset_index(inplace=True) elif dxr.attrs['datatype'] == 'Measurement': tmp2 = dxr.to_dataframe() tmp2.reset_index(inplace=True) tmp2 = tmp2[self.get_fields()] warnings.warn('Importing Measurement data as Annotation >> Not all Measurement data are loaded.') else: raise ValueError(file + 'Not an Annotation file.') tmp.append(tmp2) data =
pd.concat(tmp, ignore_index=True, sort=False)
pandas.concat
import anaconda2 import pandas as pd import matplotlib.pyplot as plt s = pd.read_csv('SUYI Proxy Data 2012-2013.csv'); df =
pd.DataFrame(s)
pandas.DataFrame